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1.0 Introduction

We will confine ourselves to the analysis of frequency domain narrowband array processing.
Specifically, we will analyze two well known methods, the conventional or Bartlett processor and the
minimum variance distortionless response (MVDR) processor (Johnson, 1982). We will assume all
noise and source signals are temporally wide sense stationary, ergodic random processes.

1.1 Notation

Lower case bold letters represent vectors. Upper case bold letters are matrices. A vertical
vector is denoted x, x its complex conjugate or Hermitian transpose, and x| its transpose.
1.2 Array Processing

Gencrally stated, our array processing problem consists of spatially sampling a signal-plus-noise
field and localizing an acoustic source which produces a spatially correlated signal of some frequency fo.

The output y of the array processor is
y=ax, (1.1)

where a is the complex weight vector and x is the frequency-domain data vector. We calculate the ith
element of x by sampling the Fourier transform of length 2T of the output of the ith sensor x;(t) at the
T

frequency of interest, i.e., x;(fo) = in(t) ¢72™o4t . The output power of the processor or the
-T

variance of the process y is then defined as

Pout =Jim__ o Edly P} = Jim o a"E{xx}a=a"Ra (1.2)
where E{ } denotes the expectation operator. We define R as the cross-spectral density matrix
(CSDM). The weight vector a will be a function of the signal that we presume is propagating across
the array. If indeed there is such a signal vector in R, the array processor will coherently add the
signal components observed at each of the sensors while hopefully incoherently adding the noise
components. Peak(s) in Py, will identify or localize the acoustic source(s).

We must note that in practice we can not compute the ensemble average in equation (1.2). So
we use the ergodicity assumption to estimate R by dividing the time series data into L segments and

computing




. L
R=}] le.(fo)x.”(fo) , (1.3)
1=

where x,,,(fo) is the Fourier transform of the ItM segment of time series data observed at sensor m
sampled at the frequency f, and normalized by its length.
1.2.1 Plane-wave signal model

We will use plane-wave signals in our analysis and simulations. That is, in a signal-plus-noise
environment a plane-wave signal s(t,z) propagates with velocity c in the direction -k, where -k is a unit

h

vector normal to the plane of the wavefront. The time series output of the m*" sensor is then

zm k
xm(t) = s(t + Z0E) + nm(t) (1.4)

where zy, is the coordinate vector of the mth

sensor with respect to some origin and ny(t) is the noise
process at the sensor. In general npy,(t) might contain temporal and spatial white noise (receiver noise)
and also spatially correlated components from other acoustic sources (interferers). The Fourier
transform of a sample function of the process xm(t) is then

'2—”(1,1,1-1{)

xm(f) =s(f) e © + (D) - (1.5)

If s(t,2) is a narrowband process, the Fourier transform will be

xm(fo) = s(fo) e* © + nm(fo) (1.6)

where we have sampled the noise spectrum at frequency fo. Including the ff," frequency component of

all the sensors in vector form we get
x=s(fp)s+n (1.7)
where 8 represents the phase-shift components of the plane wave signal and n represents the noise. The
signal vector will be shown as s.
The cross spectral density matrix of this signal-plus-noise environment will be

R = E{xx"'} = E{] s(fo) |2ss" + no" + sn" + ns"} . (1.8)

If the noise is spatially white (contains no interferers) and is temporally uncorrelated with the signal,

then




R = o2ss + o3I, (1.9)

where we have normalized the signal and noise spectrums so that ag and (7% represent the signal and
noise powers respectively at each sensor.

We note that we have assumed plane-wave models for convenience only. The analysis
presented here is applicable to the more general matched-field case.
1.2.2 Conventional processor

The simplest and most commonly used array processing algorithm is the conventional
processor. The weight vector is simply the ideal signal vector that we predict is propagating in the
"direction of look.” We will call this weight vector the steering vector e, i.e., a = e in this processor.

If we use the one-signal model from equation (1.9) and steer towards the signal (e = s),
Pcony =€¢'Re= M%0Z + M o2 (1.10)

where M is the number of sensors. We will normalize Pqpy, by ﬁl'i )

Pcony = MLz fMRe = o2 + f’Mg (1.11)
The conventional processor can produce good results for large aperture arrays that are spatially
sampled at the Nyquist rate. In fact for some minimum interelement spacing, as M—oo the
conventional processor’s beamwidth and sidelobes become zero (| s |2 — 0 where s is a signal vector
and e # s). However there can be serious beamwidth and sidelobe problems for finite-sized arrays that
are not "packed.” In this case performance might be degraded severely. As as result, array processing
techniques have been developed that are not as sensitive to these factors. We will discuss the most
common one.
1.2.3 Minimum variance distortionless response processor
The MVDR (Owsley, 1985) method determines the weight vector a that minimizes the output
power or variance P = a''R a subject to the single boresight constraint aHe = 1. That is the processor
allows a signal modeled by e to pass through the array unattenuated while nulling out signals not
modeled by e. Thus the MVDR processor adapts itself to the noise environment. The well known
solution to this constrained minimization problem achieved by using the method of Lagrange

multipliers is (Johnson, 1982 and Hudson, 1981)

-1
a= R e

= . 1.12
e Rle ( )



Using equation (1.2) the output power then is

Ppmvor = Frl. ;.1(! . (1.13)

Using the one-signal model of equation (1.9) we can calculate R'! in closed form using the

matrix inversion lemma (Johnson, 1982, Hudson, 1981, and Steinhardt and Van Veen, 1989) as

2
Rl=1 [1 —Js ssH:I : (1.14)

oh Mag + a’%

Then the output power of the processor for e = s will be

=5

Puvbr = 95 + (1.15)
So, for this special signal-plus-noise environment, the output power of the MVDR processor when
steered at the signal is equal to the normalized Py of equation (1.10), i.e., no adaptivity takes
place.
1.2.3.1 Adaptivity

We will illustrate the adaptive properties of the MVDR processor by comparing the output
powers of the MVDR and conventional processors using the signal-plus-noise model of equation (1.9)
when steered away from the signal (e # s). We also gain insight into adaptivity by examining the
effect the conventional beampattern has on the MVDR processor.

The output powers of the conventional and MVDR processors using the matrix of equation

(1.9) when steered away from the signal are

2 2
[ o
Pconv = ﬁ% |es 12+ 52, (1.16)
and
Pmvor =02 |88 P+ of |af? (1.17)

where a is calculated from equation (1.12). Now using equations (1.12), (1.14), and (1.17) we get

(1.18)

Note that | e"'s |2 is equal to the conventional beampattern value at s when steered at e. Now the




signal s can be interpreted as an interfering signal and the MVDR processor will suppress the output
power due to this intetferer. The question arises of how well does the MVDR processor null out the

interferer as compared to the conventional processor? We will answer this question initially by
P
MVDR

ONV
of the MVDR and conventional processors. The better the MVDR processor performs over the

examining the ratio That is, our measure of performance will be the ratio of output powers
conventional, the smaller this ratio. The upper bound on this ratio is one, i.e., under certain conditions
the MVDR performance equals the conventional.

Now using equations (1.16) and (1.18) we get the performance ratio relation

Mza%(Mag + a%)
(Mo? + 02| eHs ) (Mo2 + o2(M2 - | M5 |2))’

Prat = (1.19)

where Pp, v = 1 for e = 8, and Pgp+ < 1 for e # s . Analysis of this equation will show that for a
given 02, o2 and M, if | efs |2 &« M? (the signal falls on or near a null in the conventional
beampattern) the performance of the MVDR processor will be similar to the conventional (Pgat & 1).
However the MVDR processor might perform much better than the conventional (Pga+ <« 1) for
some 0 < | e's |2 < M2. Note however that as | e''s |2 — M2, PraT — 1. See Lapic, Lockwood,
and Gingras (1988) for a more complete analysis of the effects of the conventional beampattern on
MVDR performance. Moreover, for | e's |2 < M2, the higher the signal power o2, the better the
MVDR performance over the conventional. Also, the lower the white noise power, the better the
MVDR performance.
1.2.3.2 Simulation

A simple example will illustrate these conditions. We will compute the performance ratio of
equation (1.19) by processing a 20-element horizontal random array that is receiving a 30-hz plane
wave with bearing 180° from the y-axis at 0° declination angle in spatially white noise. The diameter
of the array is six wavelengths or 975 feet assuming sound velocity of 4875 feet/second. Table 1.1
displays the ratio of equation (1.19) for various signal and noise powers when we steer at the signal and
away from the signal for the cases when the signal falls on a null of the conventional beampattern and
when it falls on a sidelobe. The beampattern values are given in the table. We can see that these
numbers agree with the previous statements. Note also for this special signal-plus-noise environment,

that when we steer at the signal (e = 8) Pga1=1.




Table 1.1. Conventional and MVDR processor performance ratio ( Pga1 ) for various signal
and noise powers when steered at signal ( 180° ), when steered in direction where
signal falls on beampattern null ( 57° ), and when steered in direction where signal
falls on sidelobe ( 43° ) for a 20-element horizontal random array.

Signal and noise
powers

€=8
| éMs |2 = 26.02 dB

s on null
| eMs |2 = -17.45 dB

8 on sidelobe
| eHs |2 = 18.69 dB

02 =04dB, 02 =04dB 0dB ~0 dB - 5.87 dB
02 =0dB, 02 =10dB 0dB -0.04 dB - 14.91 dB
02 =04dB, 02 =-10 dB 0dB ~0 dB -0.79 dB
02 =20dB, 02 =0dB 0 dB ~0 dB -0.02dB
02 =-20dB, 02 = 0dB 0dB -0.38 dB - 24.80 dB




2.0 Characterizing MVDR Performance

The array designer only can control the performance of the conventional processor via the
array geometry since the designer generally has no control over the signal and noise environment.
While array element ”shading” is used in conventional processing, this method suppresses all of the
sidelobes at the expense of more severe tolerances on the array parameters. However the MVDR
processor offers additional flexibility due to its ability to adapt to th- noise environment and decrease
only selected sidelobes. More severe array parameter tolerances also are required for MVDR processing
(see mismatch example of table 2.1). One of the significant costs of this adaptivity is the need to have
a full rank CSDM R. Naturally the O(M3) numerical operations needed to invert R can also lead to a
significant computational burden.

In the previous section we illustrated that while the array geometry influences MVDR
performance, the spatially correlated and uncorrelated noise environment also plays a significant role.
In this section we will use parameters that have proven illuminating in describing the adaptive nature
of the MVDR processor. We use these parameters to characterize MVDR performance under various
environmental conditions so that we will be able to identify and characterize situations where MVDR
performance is degraded.

2.1 Mismatch

Environmental mismatch is an example of a situation in which MVDR performance, under
certain circumstances, can be severely degraded. This degradation occurs when the signal we attempt
to steer towards is not correctly modeled by e. We then are faced with the classic problem of
mismatch in adaptive array processing (Cox, 1973). There can be many factors which contribute to
mismatch. Our knowledge of the acoustic environment might be inaccurate to the extent that the
underlying model we use for the signal is incorrect. For instance, the wavefront of the signal might be
curved rather than the assumed plane. We might have imprecise knowledge of the array geometry or
sensor positions in situations where calibration is impossible. The signal might be correlated with noise
or other signals. A faulty estimate of R from equation (1.3) could lead to this condition. In any case,
the MVDR processor can be very sensitive to this mismatch.

To illustrate MVDR performance degradation due to mismatch and the conditions under which
it 18 most severe we will use the example given in the previous chapter. We use the same 20-element
random circular array except now we will not have precise knowledge of the sensor positions. Using

equation (1.5), the m'" element of the steering vector e when stecred at s is now




27fo T
-2 Kk
em = i (zm + € 2.1)

where z;, is the actual sensor position vector and e is the error vector associated with our sensor
position assumption. The magnitude of ¢ is a random variable uniformly distributed between 0 and
0.1), and the phase is a random variable uniformly distributed between 0 and 2x. Table 2.1 contains
the performance ratio of equation (1.19) calculated under these conditions for the cases described in the

previous section.

Table 2.1.  Conventional and MVDR processor performance ratio ( Pga1 ) for various signal
and noise powers when steered at signal ( 180° ), when steered in direction where
signal falls on beampattern null ( 57° ), and when steered in direction where signal
falls on sidelobe ( 43° ) for a 20-element horizontal random array with sensor
posilion eslimale errors.

Signal and noise e=8+¢ s on null 8 on sidelobe
powers |eHs2=25.82dB | |e's|2=-389dB | |eHs|? =18.43dB
02 =0dB, 02 =0dB - 2.60 dB -0.08 dB -5.73 dB
0% =0dB, 02 =10dB -9.81 dB -0.80 dB - 14.72 dB
o2 =0dB, 62 =-10dB -0.24dB ~0 dB -0.76 dB
02 =20dB, 02 = 0dB ~0dB ~0 dB -0.02 dB
02 =-20dB, 02 = 0 dB - 19.40 dB - 4.82 dB - 24.60 dB

The null and sidelobe values are given in the table. Note that due to the sensor position errors
these values have changed somewhat from those of paragraph 1.2.3.2 and table 1.1. Most importantly
the mainlobe response has decreased to | eMs |2 = 25.82 dB. We can see that the values in the last two
columns of table 2.1 are similar to those of table 1.1. However column one demonstrates that when we
have mismatch, the MVDR processor treats the signal as an interferer even though we are actually
attempting to steer towards it. In this case, a small Pgpt is evidence of the deleterious effects of

mismatch. Note also that mismatch becomes more of a problem at higher signal-to-noise ratios

(03/03).




2.2 Characteristics of the MVDR Processor - Single Interferer Case
To begin our analysis of the characteristics of the MVDR processor let us first assume the

CSDM R of equation (1.2) has the form

R=021+ o2ss" + aftt“ ) (2.2)
where a% is the power of the spatially uncorrelated (white) process, o;" is the power of a signal
represented by vector s and a;" is the power of an interferer with vector t. The output power of the

MVDR processor is
P =a"R
MvDR =3 'Ra (2.3)
where a is given by equation (1.12). Using R above we have

H
Puvor = oalal? + o3|aMs? + ofat?, (2.4)

where | . |2 denotes magnitude squared.

We see that the MVDR output power consists of three components in this case: output powers
due to white noise (¢2|a]2) which is dependent of the magnitude squared of the weight vector, the
signal (¢2}a"s|?), and the interferer (af|a“t|2). The MVDR processor attempts to minimize these
three terms. The importance of white noise power, interferer power, and the spatial distribution of the
interferer to MVDR performance becomes apparent when we steer at the signal s. Naturally in this

case, the constraint als=1 requires the processor to minimize only ¢7%|a|2 and af|aHt |2 , L.e.,
2 2 2 2: H, 2
Ppmvor = oalal® + 0§ + agfa”t[". (2.5)

Using the results presented in appendix A (equation A.5) for Q = aftt“ we get the MVDR weight

vector

(631 + agttH)'le

— . 2.6
eH(o2 1+ o2utH)? (26)
Tken using the matrix inversion lemma we get
H
Y
o

= 2-7
Jet |2 27)

M + a?




where a? = 6%/ a%. Since the output power Py,,pr of equation (2.5) is dependent on |aHt|2 and
|a|?, we compute them as
2
[M a 2i|2 | th |2
a2 = SO (2.8)
|: | et | } 2
M- 2
M+ a
M+ —L M oM )?
2 M4+a“*|M+a
lal¢ = Y . (2.9)
At 7o
M + o?

2.2.1 Adaptive nulling

We initially are interested in how well and under what conditions the MVDR processor nulls
out the interferer term |at |2

. Appendix B (equations B.1 - B.5) contains an analysis which shows that

is an increasing function of a2. So for a given |e"'t|? (0 < |e"t]?2 < M2), as a2 becomes

smaller (white noise power 02 decreases or the interferer power af increases) the null |aHt |? becomes

|a

deeper. We might, in this case, expect P+ of equation (1.19) to become very small. That is MVDR

2

performance might become far superior to conventional performance. Conversely, as a“ increases

(white noise power increases or the interferer power decreases) the null [aHt |? becomes more shallow.
In fact, as a?—o0, IaHl;|2 — |e't|2/M2. In this case we would get the normalized conventional
processor "nulling” performance. Pgav would then be close to unity.

It is also interesting to investigate the effect | et |2 (the value of the conventional
beampattern at t when steered at e) has on MVDR nulling. In appendix B (equations B.6 - B.9) we
Hy 2. Ht |2 increases from

show that | aHt |2 is an increasing function of | e So for a given a? as | €

zero to M2, | at't |2 approaches the normalized conventional beampattern at t (| "'t |2/M2). That is
very little adaptive nulling takes place. In fact, if | et |2 = M? we have effectively steered at t.

To sum up we make the following observations: if we steer at s and a%/af < 1 the MVDR
processor emphasizes the nulling | a™'t |2 of the signal. Likewise, if a%/af 3> 1, the MVDR processor
emphasizes the minimization of the magnitude squared of the weight vector at the expense of interferer
nulling. In this latter case the adaptive nulling properties of the MVDR processor might be degraded

severely.
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2.2.2 Magnitude squared of the weight vector

The magnitude squared of the weight vector a has proven to be a useful parameter for
characterizing and gauging the adaptive nature of the MVDR processor (Hudson, 1981). As pointed
out above, | a |2 can play a critical role in MVDR performance so it certainly deserves further
examination. We follow the nulling analysis from above to determine the effect noise power and
spatial distribution of the interferer have on | a |2. As shown in appendix B (equations B.10 -
B.14), | a |2 is a decreasing function of a? for 0 < a?< oo for some | Mt 120 < | et I2< M2). In
other words, while the MVDR processor puts an increasingly deeper null in the direction of t (| aM't |2)
as 02—»0, the magnitude of the weight vector increases. Conversely, while MVDR performance

2_,00, the magnitude of the weight vector

approaches conventional performance (no adaptivity) as o
decreases. In fact | a |2 = 1/M in the latter case.
| a | behaves in an interesting way with respect to | e"t |2. In appendix B (equations B.15 -

B.17) we show that | a |2 is maximum for

M2(M + o?)

2.10
M + 2a° ( )

H, 2
et [Max =

M2(M + o?)

That is | a |2 is an increasing function of | et |2 for | et |2 < 5
M+ 2a

and a decreasing

M2(M + a?)

function of | et |2 for | et [2 > 5
M + 2a

. We see that as a2 —0, | et ‘%AAX —M2, That is
for high interferer powers, we can consider | a |? generally as being an increasing function of | et |2 .

We now can think of | a |2 as a gauge of the "effort” that the MVDR processor is putting into
adaptive nulling. The magnitude of the weight vector increases as the noise environment becomes
more severe (large af and/or large | et |2).
2.2.3 Performance improveinent due to adaptivity

The value | a |2 alone cannot be used to measure improvement in performance over the
conventional processor. As was pointed out previously, for very large | Mt |2 nulling might be
degraded severely. The corresponding increase in | a |2 (resulting in greater output power due to noise)
can even further degrade pcrformance. The problem occurs because the MVDR processor attempts to
minimize both noise terms in equation (2.5). The amount of emphasis the processor places on nulling
as opposed to minimizing | a |2 is dependent on the noise powers and | et |2.

Another parameter that has proven useful in analytically characterizing the MVDR processor is
the performance improvement due to adaptivily or PIA (Jablon, 1986). It is defined as the MVDR

output signal to noise ratio over the conventional output signal to noise ratio or

11




N
PIA = > :MVDR . (2.11)
CONV

The greater this ratio, the better the MVDR processor performs over the conventional. PIA = 1
signifies that no adaptivity occurs. This parameter inherently separates the MVDR output power due
to white noise and interferers from the output power due to the signal unlike Pg 5+ of section 1.0.

We note that PIA is not necessarily a good measure of how detection is affected by mismatch.
While the degradation in PIA of a particular MVDR response under conditions of mismatch might be
severe, the corresponding increase in the magnitude of the weight vector will actually contribute to the
detection of the signal. A better measure of detection degradation might be
PMVDR(mismatch)/PMVDR(nomismatch)' However PIA will be a better performance measure if we
desire to do interarray coherent processing. In this case, a high PIA is of critical importance. We also
believe that understanding how PIA is affected by various noise environments contributes to a better
understanding of how the MVDR processor works.

Using equations (2.2), (2.8), and (2.9) and that

SNRcony = M2§3 T3 (2.12)
Mo2 + ol et |

and

SNR = o (2.13)

MVDR = 272 1 02| at |2 )
we get
H, |2 H, 12)2
PIA=1+ 2'“' (e 1) (2.14)

a’(M + a?) ) Mzaz(M +a?)’

As we would expect PIA is a decreasing function of a®. This can be proven in the fashion of
appendix B.
2.2.3.1 Optimal sidelobe level

Since PIA is a quadratic equation with respect to | et |2, we take the derivative of PIA with

respect to | et |2 to get an | et |2 that optimizes PIA as

2
H
| Mt 2opr = M- (2.15)
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Then

PlAgax = 1 + (2.16)

S
40%(M + a?)

So for the one interferer case of equation (2.2), we get maximum MVDR perform~nce as measured by
PIA if the interferer falls on a sidelobe that has a magnitude of M?/2. A sidelobe level of this
magnitude results in the best balance of interferer nulling and | a {> minimization. Interestingly | et
|2op*r is not a function of a2 (noise powers).
2.3 Characturistics of the MVDR Processor - Multiple Interferer Case

It must be emphasized that the previous analysis was based upon the special one-signal case of
equation (2.2). Analytical calculations, such as those above for a more general interferer matrix Q, are
difficult due to the matrix inverse required to calculate the weight vector a. Such calculations however
can be accomplished using the results in (Lapic, Lockwood, and Gingras 1988, and Mohnkern, 1989),
i.e., by treating the interferer vectors as mutually orthogonal. That is we will assume the CSDM R

with N interferers is represented by

N
R=0f 1+ o2ss" + ) oZpt! (2.17)
i=1

where

t't, =0 fori #j (2.18)

and N < M.
Now using the result of appendix A (equation A.5) where

W =031+ Zagt't,”, (2.19)
i=1

W1 can be represented by

wi [1 -121”3 n Ma2 i ,:‘ (2.20)

Then as in equation (2.7) we compute the weight vector for this signal and noise environment as
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N tiHe
e- Z 2t|
i=] M+ o (2.21)
a = .
M i“: |eMt; |
where 02 = "n/"tu Then
2
@ |27 H, 2
—t t
|2l [M“’?} i Vi (2.22)
! ] i .
1My P,
M+ a?
and
Hi 12 N Hy 12
t] | e7t;]
] a |2 M- 22 (M + c'2)2
(2.23)

[M Z M :t i2]

Now we will simplify | a |2 above by assuming that | thi 12 =) e |2 and afi = a;" or a? = a?for

alli. So,

M+ —1 M __92iN|et?
M+012|:M+a2 :l | |

N 22
M + o?

Note that since the interferers are mutually orthogonal, equation (2.22) is identical in form to equation

lal? = (2.24)

(2.8) so the previous analysis of adaptive nulling also holds for this special multiple interferer case.

An analysis identical to that of appendix B shows that | a |2 in this case is an increasing
function of N for 1 < N < M. That is as the number of interferers increases | a |2 also increases for
fixed a2 and | "'t |2 . This fact reinforces the view that we can use | a |2 to measure the "effort” the
MVDR processor is putting into adaptive nulling. Naturally we would expect a multiple interferer

environment to pose more of a challenge to nulling than a one interferer situation.
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2.3.1 Performance improvement due to adaptivity
We now repeat the PIA calculations for this multiple interferer environment using the previous

assumptions. Using equations (2.17), (2.22), and (2.23) and that

SNRconv = M2a2§ 3 (2.25)
Mo2 + Nogl et |

and

SNR = of (2.26)

MVDR ™ 521212 + No2| a1 |2
we get
H, |2 H, 12,2
PIA=14etl” | _(Net|) (2.27)

a?(M + a?) M2a°M + o?)’

2.3.1.1 Optimal sidelobe level

As before we find an | et |2 that optimizes PIA under the multiple interferer assumption as
| eMe |2 =M (2.28)
OPT = 9N ° .

Interestingly, PIApax =1 as in the one interferer case. We can view this as the

M2
40’(M + o?)
optimal (as measured by PIA) sidelobe level for an N-interferer environment under the assumption that
the interferers are mutually orthogonal and approximately of the same power. Note that equation
(2.28) is simply equation (2.15) divided by the number of interferers. That is as the number of
interferers increases the average sidelobe leve! must decrease in order to maintain optimal (with respect

to PIA) MVDR processing.
Since the PIA of equation (2.27) is also a quadratic function of N, we now find the number of

interferers that optimizes PIA given a sidelobe level | e/t |2 as

_ M2

If we use the results presented in Mohnkern (1989), where it is shown that under this interferer power

assumption the ratio of number of interferers to the number of sensors that maximizes “excess array

15




gain” (array gain (dB) - 10logM) is 1/2, we get a corresponding optimal average sidelobe level of
et 20pr =M. (2.30)

So if the number of interferers equals half the number of sensors, we get maximum "excess array gain”
and optimum PIA if the sidelobe condition of equation (2.30) is met.
2.4 Simulations

The parameters | a |2 and PIA also have proven useful in analyzing and characterizing the
effects of mismatch on MVDR performance. Based upon the previous analysis we expect the MVDR
processor under conditions of mismatch to perform as if the ”interferer” is falling on a very high
sidelobe (mainlobe in this case) since the processor treats any signal s as an interferer if | s 2 < M2.

To show this we will use the examples presented in section 2.1 for the signal and white noise
power cases (63 = 0 dB, 02 = 10 dB) and (¢2 = 10 dB, 02 = 0 dB). Figure 2.1 is the MVDR array
response and | a | for the case where we have perfect knowledge of sensor positions and (a% = 0 dB,
02 = 10 dB). Note the interesting behavior of | a [2. As we steer through the 180° region the signal
enters the mainlobe of the beampattern and we see the characteristic increase in | a |2 since the signal
is treated as an interferer. However when we steer close to s, | a |2 quickly drops to the minimum
level (1/M or -13.01 dB in this case). The Ppypg in this direction is due primarily to the signal
power a;", i.e., Ppayvpr & ag, because of the a''s =1 constraint. As we steer beyond 180° | a |2 first
increases dramatically then drops off as the signal leaves the mainlobe. Note also the similarities
between the side region of Py,,pg and | a |? where there is no signal. Pyvpr Virtually mirrors | a [2
so the majority of the MVDR output power in these directions is due to white noise.

Figure 2.2 contains the results for the (62 = 10 dB, 02 = 0 dB) case. The behavior of | a |? is
not nearly as dramatic as in the previous example because the MVDR. performance is dominated by the
white noise term o3, i.e., the MVDR processor emphasizes the minimization of | a | as opposed to
nulling. These observations are entirely consistent with the analysis above.

2.4.1 Mismatch revisited

We now include the 0.1 sensor position uncertainties in our simulations. Table 2.2 contains
| a |2 and PIA for the two input SNR scenarios when we steer at 180° azimuth. The nonmismatch
case is included for comparison. Here even though we are steering at 180° azimuth, e # s and the
MVDR processor views the signal as an interferer.

We note the dramatic difference between the PIA of the high SNR case and the low SNR case.
Note also that the PIA for the low SNR case is not significantly less than the PIA that we obtain with
perfect sensor position knowledge (PIA = 1 or 0 dB). This merely indicates that the MVDR processor
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Figure 2.1. MVDR processor results for signal power 02 = 10 dB and noise power 02 = 0 dB:

(a) output power, (b) corresponding magnitude squared of the weight vector | a | 2.
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Figure 2.2. MVDR processor results for signal power o2 = 0 dB and noise power ¢2 = 10 dB:
(a) output power, (b) corresponding magnitude squared of the weight vector | a | 2,
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Table 2.2. | a| 2 and PIA of the MVDR processor when steered at signal with
(a) no mismatch and (b) mismatch caused by 0.1\ errors in sensor

position estimates.

(a)
Signal and noise | al? PIA
powers
02 =04dB, 02 =10 dB -13.01 dB 0dB
02=10dB, 02 = 0 dB -13.01 dB 0dB
(b)
Signal and noise | a|? PIA
powers
02 = 0dB, 02 =10 dB -0.42 dB -32.61 dB
62 =104dB, 02 = 0 dB -12.42 dB -1.34 dB
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does not place much emphasis on nulling the signal for the low SNR case. This fact is also exhibited
by | a |2. Conversely great emphasis is placed on nulling the signal for the high SNR case as shown by
a2

Figures 2.3 and 2.4 are the complete array responses and | a |%’s for these two cases. While
| a |2 of figure 2.1 (b) exhibits a deep notch at 180°, the notch is entirely missing from | a |2 of
figure 2.3 (b). This signifies that Py,,pr in this direction is primarily due to white noise, i.e.,
PuvDrR™ a%] a |2. This graphically explains the corresponding PIA of table 2.2. As we expect,
Puvor and |a {2 of the low SNR case of figure 2.4 are not significantly different from those of the

corresponding nonmismatch case of figure 2.2,

Since under conditions of mismatch the MVDR processor treats the signal as an interferer we

can examine equation (2.10) in the context of mismatch wheres =t. We see that as | e's |2 —

M2(M + o?)

M?%(M + o?)
M + 2a2

mismatch becomes more severe. However when | eMs |2 moves beyond M+ 202
+ 2a

and approaches M2, MVDR performance degradation due to mismatch lessens. So we might view

M2(M + o?)

a2 < | e"s |2 < M2 (2.31)

as a region of | eMs |2 where mismatch can be tolerated for this simple one-signal case. Note that for
high SNR situations and/or for large M this region can be quite narrow.
2.4.2 MVDR performance with an interferer

Previously we noted the important effect an interferer has on MVDR performance. To see how
an interferer affects the mismatch situation we inclade a relatively strong interferer (10 dB) in the
above simulations. We will place the interferer at a null and a high sidelobe observed while steered at
180°. These directions will be identical to those described in section 1.0.

Table 2.3 contains the results for the case where the interferer falls on a null and table 2.4
contains the case where the interferer falls on a sidelobe. While | a |2 and PIA of the high SNR case of
table 2.3 (interferer on null) are not markedly different from those of table 2.2 (single signal only),
there is a considerable amount of improvement in PIA shown in table 2.4 (interferer on sidelobe).
From our knowledge of the effect the spatial distribution of the interferer has on MVDR performance
we conclude that since the MVDR processor exerts more effort nulling the interferer when it falls on a
sidelobe than when it falls on a null we get improvement in MVDR performance over conventional
performance. Also since | a | increases in magnitude when an interferer falls on a sidelobe, the MVDR
processor places more emphasis on minimizing | a ]2 thus sacrificing to a certain extent unwanted

signal nulling.
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Figure 2.3. MVDR processor results for signal power 02 = 10 dB and noise power o2 = 0 dB with
0.1 sensor position error: (a) output power, (b) corresponding magnitude squared of the

weight vector | a | 2.
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Figure 2.4. MVDR processor results for signal power ag = 0 dB and noise power 02 = 10 dB with

0.1 sensor position error: (a) output power, (b) corresponding magnitude squared of the
weight vector | a | 2.
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Table 2.3. | a| 2 and PIA of the MVDR processor when steered at signal with a
10 dB interferer falling on a null with (a) no mismatch and (b) mismatch
caused by 0.1 errors in sensor position estimates.

(a)
Signal and noise | af? PIA
powers
02 =04dB, s2=10dB -13.01 dB ~ 0dB
02 =10dB, 02 = 0 dB -13.01 dB ~ 0dB
(b)
Signal and noise | al? PIA
powers
02=04dB, ¢2 =10 dB -0.35 dB -30.75 dB
02=10dB, 2 =0dB -12.42 dB -1.10 dB
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Table 2.4. | a | 2 and PIA of the MVDR processor when steered at signal with a
10 dB interferer falling on a sidelobe with (a) no mismatch and (b) mismatch
caused by 0.1\ errors in sensor position estimates.

(a)
Signal and noise | a)? PIA
powers
02 =0dB, 02 =10 dB -12.13 dB 14.91 dB
02 =10dB, ¢2 =0dB -12.21 dB 5.87 dB
(b)
Signal and noise | al? PIA
powers
02 =04dB, 02 = 10 dB -0.26 dB -17.18 dB
02 =10dB, 02 =0dB -11.79 dB 4.47 dB
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The low SNR case is also quite revealing. While table 2.3 illustrates no significant change in
performance, table 2.4 reveals that the MVDR processor actually is performing much better than a
conventional processor (PIA > 0 dB) when the interferer falls on the sidelobe. We conclude that since
mismatch does not cause unwanted signal nulling in this case, the MVDR processor is free to null out
the interferer. Enhanced nulling is also demonstrated by the slight increase in | a |2 from table 2.2 to
table 2.4.

These simulations reveal that the severity of mismatch as measured by PIA is a function of the
spatial distribution of the interferers (and as a result array geometry) and the signal and noise (white

and correlated) powers.
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3.0 Improving MVDR Performance

We have demonstrated the utility of the parameters | a |2 and PIA in characterizing MVDR
performance. We have also shown how these parameters are affected by the environment (white noise
power, interferer powers, spatial distribution of interferers). In this section we will analyze algorithms
that attempt to enhance MVDR performance by synthetically altering the environment.

3.1 Optimal Robust MVDR Algorithm

We now attempt to improve upon MVDR performance under conditions of mismatch.
MVDR-based methods that are relatively immune to mismatch are traditionally called robust
algorithms. The classic problem is to prevent unwanted signal nulling while preserving the adaptive
nulling properties of the MVDR processor.

To begin we assume the following general form of the CSDM

R=021+02ss"+Q, (3.1)
where Q is the cross spectral representation of the interferer environment and s represents the signal of

interest. If we attempt to steer at s under conditions of mismatch, i.e., e # s, the MVDR weight

vector is

R le
ax= . 3.2
MR e 3-2)

Ideally we would like a to be represented as in equation (A.5), however mismatch causes the matrix
inverse term in equation (3.2) to remain a function of 8. We logically might assume a truly robust
MVDR algorithm that completely preserves the nonmismatch nulling properties would subtract a'gssH
from R thus giving the nonmismatch weight vector of equation (A.5). Since this would be impossible
we attempt to add robustness to the processor in other ways.
3.1.1 Heuristic view

We have seen that as 0,2, increases, the sensitivity of the MVDR processor to mismatch
decreases. So an intuitive robust method would synthetically increase the white noise in R by adding

an €2 to the diagonal elements, i.e.,

R=R+ 1, (3.3)

where 0 < ¢2 < co. Then the robust weight vector is
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-1
i= ;-B—e (3.4)

with output power
P =3a"R a
MVDR =3 R a. (3.5)

Note that as €2 — oo, the white noise term dominates R of equation (3.4) and a—e. We use the
calculated CSDM of equation (3.1) in the calculation of PMVDR since using R would unnecessarily add
white noise power to the output. Thus we must actually compute the robust weight vector & and form
the quadratic of equation (3.5) as opposed to directly computing the MVDR output power as in
equation (1.13).

Interestingly, adding a component to the diagonal element of the CSDM is also a method of
inverting ill-conditioned matrices. So we see that while this method might enable us to invert a rank-
defficient CSDM, it can also lead to a decrease in adaptivity of the MVDR processor.

We have also seen that as ag decreases, the sensitivity of the MVDR, processor also decreases.
Since we cannot simply subtract ag from R we might subtract a portion of the spatially correlated

component from R, i.e.,
R=oR1+(1-?)odss" + Q) (3.6)

where 0 < ¢2 < 1. Then

R= (1-¢HR-(1-¢Do21+ 031 (3.7)
or N
R=(1- CZ)I:R + ¢ Czaﬁ I ] (3.8)

Since the (1 - ¢2) term will cancel when we form & we see that subtracting Cz(agssH + Q) from R is

equivalent to adding synthetic white noise to R where

2
€2 = #ag . 3.9)
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3.1.2 Optimal solution

Since the magnitude of the weight vector is sensitive to the amount of white noise in R, we can
use a norm bound on & as another constraint on the MVDR processor (Hudson, 1981). That is we
want to

min( a7'R &) subject to aHe = 1 and | & |2= 62. (3.10)

The well known result of this optimization problem is

(R + €21 1e

d=s
MR + 21y te

(3.11)
where ¢2 in this case is a Lagrange multiplier. So synthetically adding white noise to R or subtracting
a portion of the correlated component from R is optimal in the sense of (3.10). Solving for €2 such that
|a [2 = 62 unfortunately is a difficult problem.

An approach to solving | & |2 = 62 in terms of €2 is given in Hudson (1981). The approach

uses the eigen decomposition of R (Johnson, 1982) as
M
R =) Avl (3.12)
i=1
where v, are the eigenvectors and ); the associated eigenvalues with A; > /\22 «w 2 Ap- Then

M
R+ et = 1 v 13
D iz=:1"i o (#19

and

i=11% 2
a2 =1 — = 6. (3.14)
M | eHvi |2 b
2
=1 A+ e
€2 then is found by finding the root of the equation
|aj?2-62=0 (3.15)

using a standard root finding technique (Kahaner, Moler, and Nash, 1989). It would seem that a
considerable amount of numerical difficulties r:side in this last step for large M. However positive

results have been reported in Hudson (1981).
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3.1.3 Simulations

To demonstrate the effect on MVDR performance of adding synthetic white noise to R we look
at the mismatch simulations given in section 2.0. Specifically we analyze the mismatch-sensitive high
SNR case. To begin we examine the simple one-signal case shown in table 2.2 for 02 = 0 dB and o2=
10 dB. Since in this case we want to eliminate all adaptive nulling when steered at the signal we
simply let a—e by letting e2—o00. We progressively compute aof equation (3.11) and PMVDR of
equation (3.5) for increasing values of ¢2 and determine the associated PIA’s. Figure 3.1 contains the

2, As we would expect, PIA approaches 0 dB as €2 increases. We

PIA versus €2 and | & |2 versus ¢
also see how | & | gradually approaches the minimum value of 1 /M or -13.01 dB.

A slightly more interesting example is the one shown in table 2.3. Here an interferer falls on a
null when we steer at 180° and we see the PIA is -30.75 dB for the (¢2 = 0 dB, 02 = 10 dB) case.

Figure 3.2 is the resulting plots for PIA versus ¢2 and | & |2 versus €2

. We note that these plots are
similar to those of figure 3.1. This fact seems reasonable since we know that the MVDR processor is
not putting "effort” into nulling this interferer. Thus the synthetic white noise only affects unwanted
signal nulling as in the previous one-signal example.

We now examine the case shown in table 2.4, Here the 10 dB interferer falls on a sidelobe
when we steer at 180°. Figure 3.3 clearly demonstrates the interesting effect synthetic white noise has
on interferer nulling in this situation. As we add more white noise to R we see that PIA gradually
rises. In fact at the €2 value of 16 dB, the PIA is markedly above 0 dB. Here we have achieved the
optimal balance of unwanted signal nulling and interferer nulling by placing the correct amount of
emphasis on | & |2 minimization. However as we add more €2 we begin to adversely affect this
balance. We see that at €2 = 34 dB we have hindered MVDR adaptive nulling to the extent that we
achieve only conventional performance.

The quandary we are faced when attempting to deal with mismatch occurs when we select ¢2
or the corresponding normbound on a. Since the severity of mismatch depends upon the signal power,

noise powers and the spatial distribution of the interferers we really can only guess at an appropriate €2

or | a |2 = 62 bound.
3.2 White Noise Constraint Robust MVDR Algorithm

As we have noted above, addition of synthetic white noise to R is the solution of the
constrained optimization problem of (3.10). However it is difficult to solve for €2 in terms of the
normbound constraint §2. Considerable amount of attention recently has been given to a technique
that approzimates (3.10) called the white noise constraint (WNC) algorithm (Cox, Zeskind, and Owen,
1987). As in the optimal solution, the WNC technique attempts to desensitize the MVDR processor
to mismatch by restricting | & |2 and thus constraining the output power due to white noise. We refer

the reader to Cox, Zeskind, and Owen (1987) for the complete description of the method.
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The WNC weight vector is computed as

. (R! + BDe
a = ——— 3.16
WNC eH(R'1 +81)e (3.16)
or
-1
Bwne = ot de 3.17)

+
"R le +/M 'R le +5M

where 3 is a scaler derived from the normbound constraint and I is the identity matrix. We obtain 8

by solving

|4 ywnel? =62. (3.18)

_éHRle l la]2-1/M
,3 —¢€ M [ -—-————-—-—62 - l/M 1] (319)

where | a |2 is the magnitude or norm squared of the unconstrained weight vector, i.e.,

We then get

Hp-2
|8|2= e 'R “e

(eHR'le)z . (3.20)

Since |a|2 > 1/M, 62 > 1/M and | a |2 > 62 we see that § > 0. That is we only use the constraint
if | a |2 exceeds the bound 62. Appendix C proves that a,,\c given in equation (3.16) is equivalent
to the form of the WNC weight vector given in Cox, Zeskind, and Owen (1987) for the single boresight

constraint case. Now, we proceed to compute the output power of the processor as

. H X
Pwiec = dwncR dwne - (3.21)
Using equation (3.16) we get

p. _Pmvpr(?r +1) + Pconv?’
WNC 7+ 1)2

(3.22)

where Py,,pr and Pcoyy are the output powers of the unconstrained MVDR processor and the
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conventional processor and

2-
N [TV w29

In other words, the output power of the WNC MVDR processor can be determined simply by scaling

and summing the output powers of the unconstrained MVDR and conventional processors.

3.2.1 Rationale for the WNC algorithm

We now present a rationale for the WNC MVDR algorithm which is consistent with the
analysis given at the beginning of this section. As we have shown, the method of adding robustness to
the MVDR processor involves adding synthetic white noise to R or equivalently subtracting a portion
of the correlated component from R. Since we want to analytically compute & of equation (3.4) in
order to avoid the numerical difficulties of Hudson (1981), we propose the following approach: subtract
a rank-one matrix dd™ from R of equation (3.1) to remove as much of the signal component as
possible while maintaining a significant portion of the interferer component in order to ensure adequate

adaptive nulling. So we compute aync as

) (R-ddHyle

==V 3.24
awWNC eH(R_ ddH)'le ( )

where we require
| & wiel? = 62 (3.25)
Then R - dd™ can be inverted analytically via the matrix inversion lemma. Note that the constraint
athnc e = 1is still satisfied.
As noted, ideally we would like to simply remove the signal component from R and thus get
the nonmismatch weight vector of equation (A.5). The rank-one matrix in this ideal case would be
ddH = o2 st . (3.26)
Obviously we will not know 8 so we propose the following form of the matrix:

dd " = a?Ree"'R . (3.27)

Expanding this equation and using equation (3.1) we get

35




N
dd " = a?(clee + 0| eMs |28 + Za‘t’il eHi |2 titr + K) (3.28)
i=1

N
where a? is a scalar, Q = Z”fi tit:" and K is a matrix containing the remaining cross terms. First
i=1

H component of dd H since it does not enter into the calculation of

note that we can disregard the ee
aync of equation (3.24). This is shown in appendix A (equation A.5). The ss™ component of dd H is
actually the term we wish to subtract from R, and, as in the optimal solution of equation (3.11), we
subtract a portion of the correlated component represented by the third term of equation (3.28). The
K matrix of equation (3.28) unfortunately might adversely affect the WNC MVDR processor
performance since K does not represent a physical component of R. The effect K might have on

performance naturally is dependent on the interferer environment.

Now using dd " of equation (3.27) we get

R1. —M___jle
. _ e"Re - l/az:l 3.99
Awne = o M T (3.29)
eI R -H—""‘—21€
e Re-1/a

Now if we let 0 < a® < 1/e"Re and use

B= - m“i_l—l/—a-i (3.30)
we get the WNC weight vector of equation (3.16). In other words, we can interpret the WNC weight
vector as an approximation of the optimal weight vector given by equation (3.11). The performance
we achieve using a,ync versus & of equation (3.11) as measured for instance by PIA is highly
dependent on the interferer environment. Interestingly, if | et i|2 = 0 for all i, i.e., the interferers are
orthogonal to the steering vector, then it is easy to show that K = 0 . Moreover since equation (3.28)
will not contain the interferer components we will simply be subtracting the signal component from R.
In this case, w.. actually might achieve superior performance with the WNC algorithm. However this
orthogonality scenario is highly improbable. In any case, if | et i|2 is small the effect of K might be
mitigated.

Based upon this analysis we conclude that in the simple one signal case where Q = 0 we would
expect the performances of the WNC and optimal algorithms to be equal for some bound §2. This

seems reasonable since in either case we equally will subtract a portion of ss' from R.
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3.2.2 WNC MVDR simulations

We now examine the effect of WNC on MVDR performance under conditions of mismatch by
reexamining the simulations described in section 2.0 and the beginning of this section. Figure 3.4
contains the MVDR array response and | & WNC|2 for the (a% =04dB, 02 =10 dB) with 0.1\ sensor
position error with a WNC or normbound 62 = -10 dB. We clearly can see how the weight vector has
been ”sheered” off at -10 dB. Moreover we see the corresponding increase in output power which
results in an increase of output power due to the signal. Table 3.1 lists the | & WNC|2 and PIA for
this case when we steer at the signal. We note the dramatic increase in PIA over the value shown in
table 2.2 (b). However it is still less than zero since we have not removed all of the adaptivity from
the processor. Note also the broadening of the peak in figure 3.4 as compared to the nonmismatch case
shown in figure 2.1. This fact is expected since we actually inhibit adaptive nulling when the signal
falls within the mainlobe and | & |2 > -10 dB. So while the WNC algorithm can be used to broaden

the mainlobe, it also contributes to a decrease in array resolution.

Table 3.1. | aync | 2 and PIA of the MVDR processor when steered at signal with
0.1 errors in sensor position estimates with normbound or WNC = -10 dB.

Signal and noise | awne 12 PIA
powers
02 =04dB, ¢2 =10 dB -10.00 dB -5.14 dB

Figure 3.5 shows the PIA and | & WNC|2 for various § when we steer at the signal. As we
expect, PIA—0 dB as f increases. Note the similarities between figure 3.5 and figure 3.1. So the
performance of the WNC algorithm is shown here to equal the performance of the optimal technique
for this one-signal case.

Next we reexamine the interferer simulations described in the beginning of this section to
evaluate the effect an interferer has on the performance of the WNC MVDR algorithm. Figure 3.6
shows the PIA and | & WNC|2 versus # when the 10 dB interferer falls on a null. Since the K matrix
of equation (3.28) is small in this case, we certainly would expect figure 3.6 to resemble figure 3.2
which was obtained by adding synthetic white noise to R. Conversely, figure 3.7 results from the
simulation that produced figure 3.3. Here the interferer falls on a sidelobe. We clearly see the
difference between the PIA of the WNC algorithm and that of the optimal synthetic white noise
algorithm. Figure 3.7 (a) lacks the hump of figure 3.3 (a). In fact the WNC PIA does not appreciably
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exceed 0 dB. Obviously the K matrix in this case adversely affects WNC MVDR performance.
3.2.3 Possible further work

Possible extensions to this work might involve determining a better rank-one matrix dd H that
will not result in severe cross terms in K. Possibly we could use a sum of rank-one matrices, i.e.,
dlle +... 4 dpde, in order to reduce the effects of K.
3.3 Eigenanalysis Approach to Mismatch

Further insight into mismatch can be gained by analyzing the MVDR processor via the eigen
decomposition of R as in equation (3.12). The MVDR weight vector is then

a= L] M . (3.31)
eH { Zl —,{_—viviH]e
1=

It is well known (Johnson, 1982) that if

k-1
R =0l +0dss + ) o2 et (3.32)

i=1
then the eigenvectors associated with the k largest eigenvalues span the subspace containing the signal
vectors and the remaining M-k eigenvectors span the subspace which is orthogonal to the signal

subspace. Now if we steer towards s (e = s8),

He
Vi

“

1
| v

i

(3.33)

I

i°|2
N

e

—
1l
ot

However, under conditions of mismatch a will be as in equation (3.31) above. In this case we might

view
A vfe L vl - . L
the terms zk: —"\n— v; and ; T in a as contributing to a certain amount of distortion in

the weight vector.

Intuitively we argue that under conditions of mismatch we simply can disregard those M - k
eigenvectors in our calculation of the MVDR weight vector and force a to have the form of equation
(3.33). Since we usually do not know k (the number of spatially correlated components in R) we

propose using the magnitude squared of the weight vector as a gauge to determine the number of
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eigenvectors we can eliminate. That is we compute a as in equation (3.33) with the largest k such that
|a|? < 62
3.3.1 Simulation

To determine whether we obtain any performance improvement under mismatch conditions
with this method, we examine the previous simulation involving the 10 dB interferer falling on a
sidelobe when we steer at the signal with 02 =04dB and 02 = 10 dB. Figure 3.8 is a plot of PIA and
| a |2 versus k. Note for k=2, | a |2 < -12 dB. For this value of k we gain considerably in PIA over
the WNC results of figure 3.7 and the synthetic white noise results of figure 3.3. In fact, the PIA at
k=2 is merely 1 dB less than the PIA of table 2.4 (a) that we obtain with no mismatch. Also note the
dramatic rise of | a |2 at k=3 and the associated dip in PIA resulting from mismatch. For comparison
purposes we have included the corresponding plots for the nonmismatch case in figure 3.9.
3.4 Possible Improvements to MVDR Nulling

In this section we briefly propose an approach that might lead to improved MVDR nulling
performance. As we have seen, computing the weight vector & with the addition of synthetic white
noise to the CSDM R leads to decreased emphasis on MVDR adaptive nulling. Since the level of white
noise power in R has such a significant impact on MVDR performance, one might argue that
subtracting a certain amount of white noise from R would lead to improvement in PIA under

nonmismatch conditions. That is we can compute the weight vector as

21
am L (3.34)
e (R- u“I)’e
Then,
Puvor = a1 (R- p2a =aHRa- 425 |2 (3.35)

where now we also subtract the white noise term #21 from R in our calculation of f)MVDR' Then

I — 1
P = = —. 3.36
MVDR eH (R _ 21)-1 e ( )

The obvious difficulty involves choosing the "best® u2. Certainly (R - 4#21) must be full rank
and physically meaningful. That is we would not want to subtract more white noise than what is
contained in R. Previous similar work in the field of spectral estimation (Pisarenko, 1973) involved
subtracting the largest quantity p? from the diagonal while still preserving the nonnegative definite
property of the matrix (Johnson, 1982).

In section 2.0 and in appendix B we presented how adaptive nulling and the magnitude
squared of the weight vector are related to white noise in R. Referring to equations (B.4) and (B.14)

for the one interferer case we see that as white noise power becomes very small, the null of the MVDR
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beampattern at t becomes very deep while | a |2 increases. Thus we argue that we actually want to
increase | a | to improve nulling performance. An MVDR-based algorithm that enhances nulling
performance would then increase the magnitude squared of the weight vector by subtracting an
appropriate u? from R while maintaining a sufficient bound on | a |? to prevent unwanted signal
nulling. However, as in the optimal robustness technique of equation (3.11), it is difficult to solve for
42 in equation (3.34) such that | & |2 equals some lower bound.

One approach would be to modify the robustness technique of section 3.1.2 and Hudson (1981)

to subtract a scalar factor from R rather than to add one. That is we define the output power as

P 1
Ppyvor = %4: T B (3.37)
i=1 %"
where we find p2 such that
M
E[ 1 2]2| ey, |2
A -
==l b = (3.38)
[ §:| e, |2:I
i=1 A -

where 12 is the minimum bound constraint on | a |2.
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4.0 Simulations

In this section we present MVDR processor simulation results from a 100 element horizontal
random array of diameter 72X at 30 Hz or 3566 m in noise environments consisting of white noise with
multiple interferers. We attempt to detect and process four signals of various powers and to
demonstrate the effect of interferers and mismatch on MVDR performance. We also show how the
WNC MVDR algorithm improves performance under conditions of mismatch.

We will process the four signals of interest described in table 4.1. All spectral energy is

assumed narrowband at 30 Hz.

Table 4.1. Power and bearing of the four signals of interest.

Signal powers Bearing
0 dB 180° Az. 0° De.
-5 dB 280° Az. 0° De.
-10 dB 300° Az. 0° De.
-15 dB 220° Az. 0° De.

4.1 20 Interferers

The first environment consists of white noise power of 0 dB with 20 0 dB interferers impinging
on the array from 2° to 40° azimuth, with 2° spacings and 0° declination angle. Figure 4.1 displays
the MVDR output power and magnitude squared of the weight vector | a |2 when we steer from 0° to
359° in azimuth at 1° intervals and 0° declination angle. We also include the PIA obtained with the
adaptive processor for each signal of interest. Note that since in this simulation the array beamwidth
is less than 1° for all directions of look figure 4.1 (b) lacks the characteristic peaks of figure 2.1 (b) for
steering directions close to those of the signals. Naturally if we were to azimuthally sample at a higher
rate we would also see these peaks in | a |2.

Next we include the sensor position error discussed in section 1.0 in our estimate of the array
geometry. Figure 4.2 (a) shows the characteristic drop in MVDR output power and the corresponding
increase in | a |2 in the direction of the stronger signals. We note the illuminating drop in PIA for the

three strongest signals. However the PIA of the weakest signal at 220° az has dropped only slightly.
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Figure 4.1. MVDR processor results for the 20 interferer environment: (a) output power with

PIA values for the signals of interest, (b) corresponding magnitude squared of the

weight vector | a | 2.
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This fact is supported by the slight increas- in | a |2 at 220° az over the corresponding value of figure
4.1 (a). Thus we conclude the MVDR processor is not sensitive to mismatch in this noise environment
when steered at the -15 dB signal.

We now apply a WNC to the MVDR algorithm of -18 dB. We choose this value essentially
because it is approximately the average | a |? of the nonmismatch case of figure 4.1 (b). Figure 4.3
represents the results. We clearly see the increase in output power for the three strongest signal
directions. However note that while the PIA has increased for the two strongest signals over the values
shown in figure 4.2 (a), the PIA has actually dropped for the -10 dB and -15 dB sigaals. Thus while
we are inhibiting unwanted signal nulling in these directions we are doing so at the expense of interferer
nulling.

As stated in the previous section, it is difficult to determine the optimal WNC to apply to the
MVDR processor since the value of the WNC that optimizes PIA is dependent on the signal power and
the noise environment (white noise and interferer powers and the spatial distribution of the interferers.)
In fact, if the 0 dB signal were originating from a direction other than 180° azimuth we would not
exp-~t the WNC of -18 dB to produce a PIA of 0.00 dB. Thus, the optimal (in the PIA sense) WNC
that we apply to the MVDR processor must necessarily be unique for each direction of look. In order
to demonstrate the PIA values we obtain for various WNC, we plot PIA versus WNC for each of these
four signals in figure 4.4. The WNC values that optimize PIA for each signal also are marked. We see
that the PIA values for the mismatch case of figure 4.2 are represented by the flat portions of the plots
and occur when WNC > | a |, since we do not institute the constraint if this condition occurs.
Coincidentally, the optimum WNC for the -5 dB and -10 dB signals are approximately equal for this
simulation. We also see that a WNC for the -15 dB signal is really not required. We might conclude
that a WNC ¢° -15.5 dB for all directions of look might represent the best choice for this signal and
noise environment.

4.2 40 Interferers

The next noise environment consists of 40 dB interferers arriving from 2° to 80° azimuth with
2° spacings and 0° declination angle. Figure 4.5 displays the MVDR output power and | a ]2.
Comparison with figure 4.1 (a) reveals that the 20 additional interferers result in an increase in PIA for
the four steering directions due to the adaptive nulling of the MVDR processor. Figure 4.6 represents
the MVDR output powers and | a |2 under the condition of mismatch caused by errors in sensor
position estimates. Comparison with figure 4.2 indicates that mismatch causes less severe unwanted
signal nulling in this case as indicated by the PIA values. This agrees with the results of section 2.0
which demonstrated that a strong interferer environment forces the MVDR processor to place a great
deal of emphasis on minimizing | a |2, resulting in less pronounced unwanted signal nulling. Figure 4.7
is the result of placing a WNC of -16.5 dB on the MVDR processor. Figure 4.8 plots PIA versus WNC

for this environment. As expected the plots have moved upward from those of figure 4.4. The most
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pronounced movement comes from the 0 dB signal since it was the most sensitive to mismatch in the
20 interferer case.
4.3 60 Interferers

The final noise environment consists of 60 0 dB interferers arriving from 2° to 120° azimuth.
Figure 4.9 is the resulting MVDR output power and | a |2. We see that the additional 20 interferers
do not cause an increase in PIA over those shown in figure 4.5 (a) for the 40 interferer case. In fact the
PIA’s for the 0 dB, -5 dB and -15 dB signals actually have decreased since the great number of
interferers is adversely affecting adaptive nulling (Mohnkern, 1989), and as a result causing
increased emphasis on | a [? minimization. Figure 4.10 results from the mismatch conditions. Note
that here the large number of interferers causes the MVDR processor to be less sensitive to mismatch
than in the 40 interferer environment of figure 4.6. Figure 4.11 is the result of adding a WNC of -16.00
dB. Finally figure 4.12 displays PIA versus WNC. We note that indeed the plots have moved upward

from those of figure 4.8 indicating less MVDR sensitivity to mismatch in this environment.
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Appendix A

In this appendix we compute the MVDR, weight vector for the case where we steer towards the
signal of interest.

Let the cross spectral density matrix R be given by
R=a%l+a§ssH+Q. (A.1)

We can analytically invert R via the matrix inversion lemma (Johnson, 1982, Hudson, 1981, and

Steinhardt and Van Veen, 1989) as

R! = w-l. wlsfw! (A.2)
sHW‘ls-i-l2
Os
where
W=o21+Q. (A.3)

Then the MVDR weight vector a will be

wle - sfwle wls
sHW'ls+l2
a= 7s : (A4)
H 1__H 1
Hwle . & '_V'V' is W'l' 8
s Wis+ =55
Os

Now if we steer at the signal s, i.e., the steering vector e is equal to the signal vector s,
-1
a=-W_e (A.5)

So in this case the matrix inverse term in the MVDR weight vector equation (A.5) is not a

function of s (or e ).
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Appendix B

In this appendix we determine the effect of the noise environment on MVDR nulling and the
magnitude squared of the MVDR weight vector.

First we show that

2
I: a 2]2Ith'2
|6Ht|2 - M+ a

_\: _ l iy lz] - (B.1)
M+ a2

is an increasing function of a’for0 < a? < o0 and 0 < | et |2 < M2. Taking the derivative

of | a"'t |2 with respect to a? we get

Hy 2 2
9 Ietlg3 [M2'lth|2]
d| a"t |2 (M + a)
—2—' = . . (B.2)
da AT E
M + a?
Now, using the fact that | et |2 < M2 we get
d| att l2
—_— >0 B.3
1a2 (B.3)
for 0 < a? < co and 0 < | et | < M2 with
lat |2y — 0 fora® — 0 (B.4)
and
H (2
t
| aHt [Zax et asa? ~ 0. (B.5)

Next we show that | a't |2 is an increasing function of | et |2 for 0 < | et |2 < M?
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and 0 < o2 < oo. Taking the derivative of | aMt |2 with respect to | et |2 we get
o + | et |2
df at |2 M + o? M + o?
o = : (B.6)
dl et | | th, |2 3
M + o
Since | et |2 < M? we get
H, |2
d_% (B.7)
d| et |
for 0 < a? < oo and 0 < | et | < M? with
| aMt IEAIN =0 for|et|Z2= 0 (B.8)
and
laMt Zax — M2 as [et]? = . (B.9)
Now we show that
M+M1 4&?2'ﬂ“WF
laf?2 = ta « (B.10)

L2l
M+012

is a decreasing function of a2 for 0 < a® < co and 0 < | et [2 < M2. Taking the derivative of

| a |2 with respect to o we get
Hy 12
2| Lt b T2 M)
dlal? (M + o)
d 2. = H, 2 . (Bll)
o et [%]3
M + a2
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Now, using the fact that | et |2 < M? we get

dlal?
da?

for 0 < a2 < oo and 0 < | et | < M? with
lalEAlN — ﬁ as a“ — o0

and

2 1
| a [ax — ——|th|2 for o

M M

2

— 0.

Finally we look at the behavior of | a |2 with respect to [ e t |2,

| a |2 with respect to | e t |2 we get

dlal> _ MM +a?)-M+24% | eMt)?

dl et 2 (MM + 02~ | He PP
We see that for
l eH t |2 - M2(M + a2)
M + 202
| a |2 is maximized where
| a |2 - (M + 202)2 .
MAX 4Ma’(M + a?)

Note that for small a2, | a |2 is maximum for |e" ¢ 2 ~ M2
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Appendix C

In this appendix we show that the WNC weight vector of (Cox, Zeskind, and Owen, 1987) can
be computed in an alternate form.
The form of the WNC weight vector a\\c given in (Cox, Zeskind, and Owen, 1987) for the

single boresight constraint is comprised of two orthogonal components as

(C.1)
ﬁ = Wc 3 (C.2)
a - ﬁ = v (C.3)
and
b
= —. C4
vl ©4)
Also,
Rle
a = . C.5
e"R1le (C5)
Note, our 62 is the inverse of the norm bound term given in (Cox, Zeskind, and Owen, 1987).
Now, since
- H n-1
a_izMRle-(e Rle)e (C.6)
M Me'R1e

and using (C.1), we have
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dwne = - T + ¥ (C.7)
al2- L
M e R’le\J M
62 - &
M
or
dwne = + ﬁ . (C.8)
-1
Now, by setting
-1 (C.9)
we get
< MRle-(eH"Rlee
dwne = " _1( Je 4 M (C.10)
M|e' R"e + M,BJ
or
-1 Hp-1,_
dwne = MR e+(Mﬂ1'° R e Mﬂ)°+ﬁ. (C.11)
M[eH R e + M,B]
Then
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M(l'\’.'le-i-ﬂe)-(eH Rle+ Mp)e
M[HRle + Mg |

iWNC - + ﬁ L] (C'l2)

or finally

) . (R'4pD)e
Awne = FRI+ ) e’ (C.13)

where 3 is given by (C.9).
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