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1.0 Introduction

We will confine ourselves to the analysis of frequency domain narrowband array processing.

Specifically, we will analyze two well known methods, the conventional or Bartlett processor and the

minimum variance distortionless response (MVDR) processor (Johnson, 1982). We will assume all

noise and source signals are temporally wide sense stationary, ergodic random processes.

1.1 Notation

Lower case bold letters represent vectors. Upper case bold letters are matrices. A vertical

vector is denoted x, xH its complex conjugate or Hermitian transpose, and xTits transpose.

1.2 Array Processing

Generally stated, our array processing problem consists of spatially sampling a signal-plus-noise

field and localizing an acoustic source which produces a spatially correlated signal of some frequency fo.

The output y of the array processor is

y = aH x, (1.1)

where a is the complex weight vector and x is the frequency-domain data vector. We calculate the ith

element of x by sampling the Fourier transform of length 2T of the output of the ith sensor xi(t) at the

T

frequency of interest, i.e., x1(fo) = J x i(t) e-J2 fOtdt . The output power of the processor or the

-T

variance of the process y is then defined as

Pout = lir 1 EI y 12) = lira 1 a HExxH)a = aHR a (1.2)

where E{ ) denotes the expectation operator. We define R as the cross-spectral density matrix

(CSDM). The weight vector a will be a function of the signal that we presume is propagating across

the array. If indeed there is such a signal vector in R, the array processor will coherently add the

signal components observed at each of the sensors while hopefully incoherently adding the noise

components. Peak(s) in Pout will identify or localize the acoustic source(s).

We must note that in practice we can not compute the ensemble average in equation (1.2). So

we use the ergodicity assumption to estimate R by dividing the time series data into L segments and

computing



L

x'f °O)x H"(fO) ' (1.3)
1=1

where xmi(fo) is the Fourier transform of the 1th segment of time series data observed at sensor m

sampled at the frequency fo and normalized by its length.

1.2.1 Plane-wave signal model

We will use plane-wave signals in our analysis and simulations. That is, in a signal-plus-noise

environment a plane-wave signal s(t,z) propagates with velocity c in the direction -k, where -k is a unit

vector normal to the plane of the wavefront. The time series output of the mth sensor is then

xm(t) = s(t + zm-) + nm(t), (1.4)

where zm is the coordinate vector of the mth sensor with respect to some origin and nm(t) is the noise

process at the sensor. In general nm(t) might contain temporal and spatial white noise (receiver noise)

and also spatially correlated components from other acoustic sources (interferers). The Fourier

transform of a sample function of the process xm(t) is then

.27rfT

Xm(f) = s(f) e -J -C (zm k + nm(f). (1.5)

If s(t,z) is a narrowband process, the Fourier transform will be

2 W'fo( T,,

xm(fo) = s(fo) ec- -' - zm iJ + nm(fo) (1.6)

where we have sampled the noise spectrum at frequency fo. Including the foh frequency component of

all the sensors in vector form we get

x = s(fo)s + n (1.7)

where s represents the phase-shift components of the plane wave signal and n represents the noise. The

signal vector will be shown as s.

The cross spectral density matrix of this signal-plus-noise environment will be

R = E{XxH - E{I s(fo) 1288H + nnH + BnH + msH} . (1.8)

If the noise is spatially white (contains no interferers) and is temporally uncorrelated with the signal,

then

2



2sH 2I, (1.9)

where we have normalized the signal and noise spectrums so that as' and rn represent the signal and

noise powers respectively at each sensor.

We note that we have assumed plane-wave models for convenience only. The analysis

presented here is applicable to the more general matched-field case.

1.2.2 Conventional processor

The simplest and most commonly used array processing algorithm is the conventional

processor. The weight vector is simply the ideal signal vector that we predict is propagating in the

"direction of look." We will call this weight vector the steering vector e, i.e., a = e in this processor.

If we use the one-signal model from equation (1.9) and steer towards the signal (e = s),

PCONV = e H R e = M2 n +M o (1.10)

where M is the number of sensors. We will normalize PCONV by - so

1H 2 2
PCONV= eHRe = 0,2 + (1.11)

The conventional processor can produce good results for large aperture arrays that are spatially

sampled at the Nyquist rate. In fact for some minimum interelement spacing, as M--.oo the

conventional processor's beamwidth and sidelobes become zero (I eHS 12 --+ 0 where s is a signal vector

and e 96 s). However there can be serious beamwidth and sidelobe problems for finite-sized arrays that

are not "packed." In this case performance might be degraded severely. As as result, array processing

techniques have been developed that are not as sensitive to these factors. We will discuss the most

common one.

1.2.3 Minimum variance distortionless response processor

The MVDR (Owsley, 1985) method determines the weight vector a that minimizes the output

power or variance P = aHR a subject to the single boresight constraint aHe - 1. That is the processor

allows a signal modeled by e to pass through the array unattenuated while nulling out signals not

modeled by e. Thus the MVDR processor adapts itself to the noise environment. The well known

solution to this constrained minimization problem achieved by using the method of Lagrange

multipliers is (Johnson, 1982 and Hudson, 1981)

a R-le (1.12)
eH R71 e

3



Using equation (1.2) the output power then is

PMVDR - eH R1 e (1.13)

Using the one-signal model of equation (1.9) we can calculate W 1 in closed form using the

matrix inversion lemma (Johnson, 1982, Hudson, 1981, and Steinhardt and Van Veen, 1989) as

W 1 i O2 H] (1.14)0= L MO' + Or J

Then the output power of the processor for e = s will be

20MDR= 2 n (1.15)PMVDR = 17S -M '

So, for this special signal-plus-noise environment, the output power of the MVDR processor when

steered at the signal is equal to the normalized PCONV of equation (1.10), i.e., no adaptivity takes

place.

1.2.3.1 Adaptivity

We will illustrate the adaptive properties of the MVDR processor by comparing the output

powers of the MVDR and conventional processors using the signal-plus-noise model of equation (1.9)

when steered away from the signal (e # s). We also gain insight into adaptivity by examining the

effect the conventional beampattern has on the MVDR processor.

The output powers of the conventional and MVDR processors using the matrix of equation

(1.9) when steered away from the signal are

PCONV = Iell s 2+ (1.16)

and

PMVDR = 02 as 12 + n I a 12 (1.17)

where a is calculated from equation (1.12). Now using equations (1.12), (1.14), and (1.17) we get

2PMVDR - Gl 1 (1.18)
M - -2 as 2 1 eHs 2

Mors + On

Note that I A~~ 12 is equal to the conventional beampattern value at s when steered at e. Now the

4



signal s can be interpreted as an interfering signal and the MVDR processor will suppress the output

power due to this interferer. The question arises of how well does the MVDR processor null out the

interferer as compared to the conventional processor? We will answer this question initially by
examining the ratio PMVDR That is, our measure of performance will be the ratio of output powers

PCONV
of the MVDR and conventional processors. The better the MVDR processor performs over the

conventional, the smaller this ratio. The upper bound on this ratio is one, i.e., under certain conditions

the MVDR performance equals the conventional.

Now using equations (1.16) and (1.18) we get the performance ratio relation

M2 o2n(MOs2 + ,2)
RAT (M,2 + .r2I eHs 12 )(MO'2 + ,2(M 2 - I eHs 12)) (1.19)

where PRAT = 1 for e = s, and PRAT < 1 for e :0 s . Analysis of this equation will show that for a

given ors, 0,2 and M, if I eA 12 < M 2 (the signal falls on or near a null in the conventional

beampattern) the performance of the MVDR processor will be similar to the conventional (PRAT - 1).

However the MVDR processor might perform much better than the conventional (PRAT < 1) for

some 0 < I es 12 < M2 . Note however that as I es 12 . M2 , PRAT .- 1. See Lapic, Lockwood,

and Gingras (1988) for a more complete analysis of the effects of the conventional beampattern on

MVDR performance. Moreover, for I ells 12 < M2 , the higher the signal power a2 , the better the

MVDR performance over the conventional. Also, the lower the white noise power, the better the

MVDR performance.

1.2.3.2 Simulation

A simple example will illustrate these conditions. We will compute the performance ratio of

equation (1.19) by processing a 20-element horizontal random array that is receiving a 30-hz plane

wave with bearing 1800 from the y-axis at 0* declination angle in spatially white noise. The diameter

of the array is six wavelengths or 975 feet assuming sound velocity of 4875 feet/second. Table 1.1

displays the ratio of equation (1.19) for various signal and noise powers when we steer at the signal and

away from the signal for the cases when the signal falls on a null of the conventional beampattern and

when it falls on a sidelobe. The beampattern values are given in the table. We can see that these

numbers agree with the previous statements. Note also for this special signal-plus-noise environment,

that when we steer at the signal (e = s) PRAT=I.

5



Table 1.1. Conventional and MVDR processor performance ratio ( PRAT ) for various signal
and noise powers when steered at signal ( 1800 ), when steered in direction where
signal falls on beampattern null ( 570 ), and when steered in direction where signal
falls on sidelobe ( 430 ) for a 20-element horizontal random array.

Signal and noise e = s s on null s on sidelobe
powers I eHs 12 = 26.02 dB I eHs 12 = -17.45 dB I eHs 12 = 18.69 dB

2n  0 dB, ,2 -0 dB 0 dB -0 dB - 5.87 dB

0,2 0 dB, ,2 = 10 dB 0 dB - 0.04 dB - 14.91 dB

0,2 = 0 dB, a 2  -10 dB 0 dB .-0 dB -0.79 dB

012 = 20 dB, 2 =0 dB 0 dB ,-0 dB -0.02 dB

r,2 = -20 dB, ,2 -0 dB 0 dB - 0.38 dB -24.80 dB

6



2.0 Characterizing MVDR Performance

The array designer only can control the performance of the conventional processor via the

array geometry since the designer generally has no control over the signal and noise environment.

While array element "shading" is used in conventional processing, this method suppresses all of the

sidelobes at the expense of more severe tolerances on the array parameters. However the MVDR

processor offers additional flexibility due to its ability to adapt to tb: noise environment and decrease

only selected sidelobes. More severe array parameter tolerances also are required for MVDR processing

(see mismatch example of table 2.1). One of the significant costs of this adaptivity is the need to have

a full rank CSDM R. Naturally the O(M 3 ) numerical operations needed to invert R can also lead to a

significant computational burden.

In the previous section we illustrated that while the array geometry influences MVDR

performance, the spatially correlated and uncorrelated noise environment also plays a significant role.

In this section we will use parameters that have proven illuminating in describing the adaptive nature

of the MVDR processor. We use these parameters to characterize MVDR performance under various

environmental conditions so that we will be able to identify and characterize situations where MVDR

performance is degraded.

2.1 Mismatch

Environmental mismatch is an example of a situation in which MVDR performance, under

certain circumstances, can be severely degraded. This degradation occurs when the signal we attempt

to steer towards is not correctly modeled by e. We then are faced with the classic problem of

mismatch in adaptive array processing (Cox, 1973). There can be many factors which contribute to

mismatch. Our knowledge of the acoustic environment might be inaccurate to the extent that the

underlying model we use for the signal is incorrect. For instance, the wavefront of the signal might be

curved rather than the assumed plane. We might have imprecise knowledge of the array geometry or

sensor positions in situations where calibration is impossible. The signal might be correlated with noise

or other signals. A faulty estimate of R from equation (1.3) could lead to this condition. In any case,

the MVDR processor can be very sensitive to this mismatch.

To illustrate MVDR performance degradation due to mismatch and the conditions under which

it is most severe we will use the example given in the previous chapter. We use the same 20-element

random circular array except now we will not have precise knowledge of the sensor positions. Using

equation (1.5), the mth element of the steering vector e when steered at s is now

7



ojjrf(zm + E)Tk

em = e + (2.1)

where Zm is the actual sensor position vector and c is the error vector associated with our sensor

position assumption. The magnitude of c is a random variable uniformly distributed between 0 and

0.)o and the phase is a random variable uniformly distributed between 0 and 27r. Table 2.1 contains

the performance ratio of equation (1.19) calculated under these conditions for the cases described in the

previous section.

Table 2.1. Conventional and MVDR processor performance ratio ( PRAT ) for various signal
and noise powers when steered at signal ( 1800 ), when steered in direction where
signal falls on beampattern null ( 570 ), and when steered in direction where signal
falls on sidelobe ( 430 ) for a 20-element horizontal random array with sensor
position estimate errors.

Signal and noise e = s + C s on null s on sidelobe
powers I eHs 12 = 25.82 dB I eHs 12 = -3.89 dB I ells 12 = 18.43 dB

01 = 0 dB, a2 0 dB - 2.60 dB -0.08 dB - 5.73 dB

012 0 dB, 72 10 dB - 9.81 dB -0.80 dB - 14.72 dB

2n  0dB, .2 -10 dB - 0.24 dB -0 dB - 0.76 dB

n=20 dB,r= 0 dB -0 dB -0 dB - 0.02 dB

2=-20 dB, ,2 0 dB -19.40 dB -4.82 dB - 24.60 dB

The null and sidelobe values are given in the table. Note that due to the sensor position errors

these values have changed somewhat from those of paragraph 1.2.3.2 and table 1.1. Most importantly

the mainlobe response has decreased to I es 12 = 25.82 dB. We can see that the values in the last two

columns of table 2.1 are similar to those of table 1.1. However column one demonstrates that when we

have mismatch, the MVDR processor treats the signal as an interferer even though we are actually

attempting to steer towards it. In this case, a small PRAT is evidence of the deleterious effects of

mismatch. Note also that mismatch becomes more of a problem at higher signal-to-noise ratios

8



2.2 Characteristics of the MVDR Processor - Single Interferer Case

To begin our analysis of the characteristics of the MVDR processor let us first assume the

CSDM R of equation (1.2) has the form

R- 2 I + f ssH + o2ttH, (2.2)

where an is the power of the spatially uncorrelated (white) process, os2 is the power of a signal

represented by vector a and at is the power of an interferer with vector t. The output power of the

MVDR processor is

PMVDR = a H R a (2.3)

where a is given by equation (1.12). Using R above we have

PMVDR = ¢I2 12 + ,21aH1 2 + ,2IaHt12, (2.4)

where I . 12 denotes magnitude squared.

We see that the MVDR output power consists of three components in this case: output powers

due to white noise (anjIa12) which is dependent of the magnitude squared of the weight vector, the

signal (o's2,aHs12), and the interferer (o2I aHt 12). The MVDR processor attempts to minimize these

three terms. The importance of white noise power, interferer power, and the spatial distribution of the

interferer to MVDR performance becomes apparent when we steer at the signal s. Naturally in this

case, the constraint ars = I requires the processor to minimize only n a12 and ot2 aHt , i.e.,

PMVDR = .2an 2 + + u~laHt 2. (2.5)

Using the results presented in appendix A (equation A.5) for Q 2 otttH we get the MVDR weight

vector

a = e + o2ttH)-le (2.6)

TF-en using the matrix inversion lemma we get

e - t H e 2t
a= M + a (2.7)

M leHt 12

M + a2

9



where a 2 = a2/ct. Since the output power PMVDR of equation (2.5) is dependent on ant 12 and

I a12 , we compute them as

M a12 ]2

I a Htt 12+ 0 2] (2.8)

I et[M 2]I 

M + 2 e

Ia = M (2.9)[M 1e Ht 1 2]2

2.2.1 Adaptive nulling

We initially are interested in how well and under what conditions the MVDR processor nulls

out the interferer term I an t 12. Appendix B (equations B.1 - B.5) contains an analysis which shows that

I aHt 12 is an increasing function of a2. So for a given I e Ht 12 (0 < I eHt 12 < M2 ), as a 2 becomes

smaller (white noise power n decreases or the interferer power C2 increases) the null I ant 12 becomes

deeper. We might, in this case, expect PRAT of equation (1.19) to become very small. That is MVDR

performance might become far superior to conventional performance. Conversely, as a2 increases

(white noise power increases or the interferer power decreases) the null I aHt 12 becomes more shallow.

In fact, as a 2 -- oo, I aHt 12 . IeHt 12 /M 2 . In this case we would get the normalized conventional

processor "nulling" performance. PRAT would then be close to unity.

It is also interesting to investigate the effect I eHt 12 (the value of the conventional

beampattern at t when steered at e) has on MVDR nulling. In appendix B (equations B.6 - B.9) we

show that I a n t 12 is an increasing function of IeHt 12. So for a given a 2 as I eHt 12 increases from

zero to M2 , I aHt 12 approaches the normalized conventional beampattern at t (I eHt 12 /M 2 ). That is

very little adaptive nulling takes place. In fact, if I eHt 12 = M2 we have effectively steered at t.

To sum up we make the following observations: if we steer at s and an 1 the MVDR

processor emphasizes the nulling Iat 12 of the signal. Likewise, if 1, the MVDR processor

emphasizes the minimization of the magnitude squared of the weight vector at the expense of interferer

nulling. In this latter case the adaptive nulling properties of the MVDR processor might be degraded

severely.
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2.2.2 Magnitude squared of the weight vector

The magnitude squared of the weight vector a has proven to be a useful parameter for

characterizing and gauging the adaptive nature of the MVDR processor (Hudson, 1981). As pointed

out above, I a 12 can play a critical role in MVDR performance so it certainly deserves further

examination. We follow the nulling analysis from above to determine the effect noise power and

spatial distribution of the interferer have on I a 12. As shown in appendix B (equations B.10 -

B.14), a 12 is a decreasing function of a2 for 0 < 0 2 < o for some I eHt 12 (0 < Iet 12 < M2 ). In

other words, while the MVDR processor puts an increasingly deeper null in the direction of t (I aHt 12)

as a 2 -+0, the magnitude of the weight vector increases. Conversely, while MVDR performance

approaches conventional performance (no adaptivity) as a2 ... oo, the magnitude of the weight vector

decreases. In fact I a 12 = 1/M in the latter case.

I a 12 behaves in an interesting way with respect to I eHt j2. In appendix B (equations B.15 -

B.17) we show that J a 12 is maximum for

IeHtI 2  M 2 (M + ,2 )

''MAX = M+2a 2  (2.10)

That is Ia 12 is an increasing function of I e Ht 12 for I e Ht 12 < M2 (M + a,2 ) adadcesn

M + 2a 2

M2M + 2) and a decreasing

function of I e Ht12 for I eHt 12 > M2 (M + a 2 ) We see that as a 2 --+0, l eHt I2AX--_M 2 . That is
M + 2a2 "

for high interferer powers, we can consider I a 12 generally as being an increasing function of I eHt 12

We now can think of I a 12 as a gauge of the "effort" that the MVDR processor is putting into

adaptive nulling. The magnitude of the weight vector increases as the noise environment becomes

more severe (large o 2 and/or large I eHt 12).

2.2.3 Performance improvemiient due to adaptivity

The value I a 12 alone cannot be used to measure improvement in performance over the

conventional processor. As was pointed out previously, for very large I eHt 12 nulling might be

degraded severely. The corresponding increase in I a 12 (resulting in greater output power due to noise)

can even further degrade performance. The problem occurs because the MVDR processor attempts to

minimize both noise terms in equation (2.5). The amount of emphasis the processor places on nulling

as opposed to minimizing I a 12 is dependent on the noise powers and I eHt 12.

Another parameter that has proven useful in analytically characterizing the MVDR processor is

the performance improvement due to adaptivity or PIA (Jablon, 1986). It is defined as the MVDR

output signal to noise ratio over the conventional output signal to noise ratio or

11



PIA = SNRMVDR (2.11)

The greater this ratio, the better the MVDR processor performs over the conventional. PTA = 1

signifies that no adaptivity occurs. This parameter inherently separates the MVDR output power due

to white noise and interferers from the output power due to the signal unlike PRAT of section 1.0.

We note that PTA is not necessarily a good measure of how detection is affected by mismatch.

While the degradation in PTA of a particular MVDR response under conditions of mismatch might be

severe, the corresponding increase in the magnitude of the weight vector will actually contribute to the

detection of the signal. A better measure of detection degradation might be

PMVDR(mismatch)/PMVDR(nomismatch). However PTA will be a better performance measure if we

desire to do interarray coherent processing. In this case, a high PTA is of critical importance. We also

believe that understanding how PTA is affected by various noise environments contributes to a better

understanding of how the MVDR processor works.

Using equations (2.2), (2.8), and (2.9) and that

M20.
2

MNRONV- (2.12)SNRcoNv M + o21 eHt 12

and

°2
SNRMVDR = r a1 2 + 21 aHt 12  (2.13)

we get

I eHt 12 (I eHt 12)2PIA =1+ 02(M + 02) M 2 or2(M + 2 ). (2.14)

As we would expect PTA is a decreasing function of a 2 . This can be proven in the fashion of

appendix B.

2.2.3.1 Optimal sidelobe level

Since PTA is a quadratic equation with respect to I eHt 12, we take the derivative of PTA with

respect to I eHt 12 to get an I eHt 12 that optimizes PTA as

eHt I2 =m 2  (2.15)
e~I OPT

12



Then

PIAMAX = 1 + 2 (2.16)
42M+ a2 )

So for the one interferer case of equation (2.2), we get maximum MVDR perform-nce as measured by

PIA if the interferer falls on a sidelobe that has a magnitude of M 2 /2. A sidelobe level of this

magnitude results in the best balance of interferer nulling and I a 12 minimization. Interestingly I eHt

12OPT is not a function of a 2 (noise powers).

2.3 Charactistics of the MVDR Processor - Multiple Interferer Case

It must be emphasized that the previous analysis was based upon the special one-signal case of

equation (2.2). Analytical calculations, such as those above for a more general interferer matrix Q, are

difficult due to the matrix inverse required to calculate the weight vector a. Such calculations however

can be accomplished using the results in (Lapic, Lockwood, and Gingras 1988, and Mohnkern, 1989),

i.e., by treating the interferer vectors as mutually orthogonal. That is we will assume the CSDM R

with N interferers is represented by

N
R = n t20 + 1 ssH + o utRt (2.17)

i=1

where

t -tj = 0 for i : j (2.18)

and N < M.

Now using the result of appendix A (equation A.5) where

N
W= ,2I+ ti 4 1 (2.19)

i=1

W-1 can be represented by

W- N 0, 2 1
+MI2 titj (2.20)

Then as in equation (2.7) we compute the weight vector for this signal and noise environment as

13



N tHe
a 1 1 2 (2.21)

N eHti
2

M'" M+ ai
i=1

where ar2/a 2  Then

I a'~td2= LM 2i 2 eHt, 12 (.2l Hti12 =  M+ a2J et

r i 7 Vi (2.22)
1 M eHti 1212

M +

and

N 1eHtii2  N IeHti12

a12= M -2E M- n M )
•i i= l( + a

SeHti 2 (2.23)

[M. le ie l 2E +J

Now we will simplify I a 12 above by assuming that I eHti 12 = I eHt 12 and ,2 =0,2 or r= ? a 2 for

all i. So,

M+ 1 M 2 NIeHt 12

Ja12 - M L+ 2 + 2 (2.24)[M NJ A~ [2] 2
M + a2_

Note that since the interferers are mutually orthogonal, equation (2.22) is identical in form to equation

(2.8) so the previous analysis of adaptive nulling also holds for this special multiple interferer case.

An analysis identical to that of appendix B shows that I a 12 in this case is an increasing

function of N for 1 < N < M. That is as the number of interferers increases I a 12 also increases for

fixed a 2 and I eHt 12 . This fact reinforces the view that we can use I a 12 to measure the "effort" the

MVDR processor is putting into adaptive nulling. Naturally we would expect a multiple interferer

environment to pose more of a challenge to nulling than a one interferer situation.

14



2.3.1 Performance improvement due to adaptivity

We now repeat the PIA calculations for this multiple interferer environment using the previous

assumptions. Using equations (2.17), (2.22), and (2.23) and that

SNRCONV M2 (2.25)SN~c~v =Man + Nat e t 1

and

or2
SNRMVDR - 2 2 - 21 aH 12 (2.26)

01nl a12 No'at

we get

PIA = 1 + NI eHt 12 (NI eHt 12)2 (2.27)
a 2 (M + a 2 ) M 2 a 2 (M + a 2 )

2.3.1.1 Optimal sidelobe level

As before we find an I eHt 12 that optimizes PIA under the multiple interferer assumption as

IeHt I2 OPT M2 (2.28)

Interestingly, PIAMAX = 1 + 2 as in the one interferer case. We can view this as the
4a 2 (M + a,2 )

optimal (as measured by PIA) sidelobe level for an N-interferer environment under the assumption that

the interferers are mutually orthogonal and approximately of the same power. Note that equation

(2.28) is simply equation (2.15) divided by the number of interferers. That is as the number of

interferers increases the average sidelobe level must decrease in order to maintain optimal (with respect

to PIA) MVDR processing.

Since the PIA of equation (2.27) is also a quadratic function of N, we now find the number of

interferers that optimizes PIA given a sidelobe level I eHt 12 as

NOPT 2= m2 (2.29)

If we use the results presented in Mohnkern (1989), where it is shown that under this interferer power

assumption the ratio of number of interferers to the number of sensors that maximizes "excess array

15



gain" (array gain (dB) - 10logM) is 1/2, we get a corresponding optimal average sidelobe level of

I eHt 12OPT = M . (2.30)

So if the number of interferers equals half the number of sensors, we get maximum "excess array gain"

and optimum PIA if the sidelobe condition of equation (2.30) is met.

2.4 Simulations

The parameters I a 12 and PIA also have proven useful in analyzing and characterizing the

effects of mismatch on MVDR performance. Based upon the previous analysis we expect the MVDR

processor under conditions of mismatch to perform as if the "interferer" is falling on a very high

sidelobe (mainlobe in this case) since the processor treats any signal s as an interferer if I els 12 < M2 .

To show this we will use the examples presented in section 2.1 for the signal and white noise

power cases (4n = 0 dB, 0,2 = 10 dB) and (0,2 = 10 dB, 0,2 = 0 dB). Figure 2.1 is the MVDR array

response and a 12 for the case where we have perfect knowledge of sensor positions and (0n2 = 0 dB,
as2 = 10 dB). Note the interesting behavior of I a 12. As we steer through the 1800 region the signal

enters the mainlobe of the beampattern and we see the characteristic increase in I a 12 since the signal

is treated as an interferer. However when we steer close to s, I a 12 quickly drops to the minimum

level (1/M or -13.01 dB in this case). The PMVDR in this direction is due primarily to the signal

power as, i.e., PMVDR '-" Os, because of the ats = 1 constraint. As we steer beyond 1800 1 a 12 first

increases dramatically then drops off as the signal leaves the mainlobe. Note also the similarities

between the side region of PMVDR and I a 12 where there is no signal. PMVDR virtually mirrors I a 12

so the majority of the MVDR output power in these directions is due to white noise.

Figure 2.2 contains the results for the (an2 = 10 dB, as = 0 dB) case. The behavior of a 12 is

not nearly as dramatic as in the previous example because the MVDR performance is dominated by the

white noise term an , i.e., the MVDR processor emphasizes the minimization of I a 12 as opposed to

nulling. These observations are entirely consistent with the analysis above.

2.4.1 Mismatch revisited

We now include the 0.OA sensor position uncertainties in our simulations. Table 2.2 contains

I a 12 and PIA for the two input SNR scenarios when we steer at 1800 azimuth. The nonmismatch

case is included for comparison. Here even though we are steering at 1800 azimuth, e : s and the

MVDR processor views the signal as an interferer.

We note the dramatic difference between the PIA of the high SNR case and the low SNR case.

Note also that the PIA for the low SNR case is not significantly less than the PIA that we obtain with

perfect sensor position knowledge (PIA = 1 or 0 dB). This merely indicates that the MVDR processor

16
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Table 2.2. 1 a 12 and PIA of the MVDR processor when steered at signal with
(a) no mismatch and (b) mismatch caused by 0.1OA errors in sensor
position estimates.

(a)

Signal and noise I a 12 PIA
powers

n= 0 dB, s--10 dB -13.01 dB 0 dB

a = 10 dB, ,s = 0 dB -13.01 dB 0 dB

(b)

Signal and noise I a 12 PIA
powers

an = 0 dB, 0, 2 = 10 dB -0.42 dB -32.61 dB

a= 10 dB, 2 = 0 dB -12.42 dB -1.34 dB
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does not place much emphasis on nulling the signal for the low SNR case. This fact is also exhibited

by I a 12. Conversely great emphasis is placed on nulling the signal for the high SNR case as shown by

a 12.

Figures 2.3 and 2.4 are the complete array responses and I a 12,s for these two cases. While

I a 12 of figure 2.1 (b) exhibits a deep notch at 1800, the notch is entirely missing from I a 12 of

figure 2.3 (b). This signifies that PMVDR in this direction is primarily due to white noise, i.e.,

PMVDR2 n a 12. This graphically explains the corresponding PIA of table 2.2. As we expect,

PMVDR and I a 12 of the low SNR case of figure 2.4 are not significantly different from those of the

corresponding nonmismatch case of figure 2.2.

Since under conditions of mismatch the MVDR processor treats the signal as an interferer we

can examine equation (2.10) in the context of mismatch where s = t. We see that as J eHs j2 ,

M2 (M + a 2 ) mismatch becomes more severe. However when Ies 12 moves beyond M2(M + a 2 )

M 2C, 2  M + 2a 2

and approaches M2 , MVDR performance degradation due to mismatch lessens. So we might view

M2 (M + a 2 ) <M+a lells1 2 < M2  (2.31)M + 2a 2

as a region of I A 12 where mismatch can be tolerated for this simple one-signal case. Note that for

high SNR situations and/or for large M this region can be quite narrow.

2.4.2 MVDR performance with an interferer

Previously we noted the important effect an interferer has on MVDR performance. To see how

an interferer affects the mismatch situation we include a relatively strong interferer (10 dB) in the

above simulations. We will place the interferer at a null and a high sidelobe observed while steered at

1800. These directions will be identical to those described in section 1.0.

Table 2.3 contains the results for the case where the interferer falls on a null and table 2.4

contains the case where the interferer falls on a sidelobe. While I a 12 and PIA of the high SNR case of

table 2.3 (interferer on null) are not markedly different from those of table 2.2 (single signal only),

there is a considerable amount of improvement in PIA shown in table 2.4 (interferer on sidelobe).

From our knowledge of the effect the spatial distribution of the interferer has on MVDR performance

we conclude that since the MVDR processor exerts more effort nulling the interferer when it falls on a

sidelobe than when it falls on a null we get improvement in MVDR performance over conventional

performance. Also since I a 12 increases in magnitude when an interferer falls on a sidelobe, the MVDR

processor places more emphasis on minimizing I a 12 thus sacrificing to a certain extent unwanted

signal nulling.
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Table 2.3. 1 a 1 2 and PIA of the MVDR processor when steered at signal with a
10 dB interferer falling on a null with (a) no mismatch and (b) mismatch
caused by 0.1OA errors in sensor position estimates.

(a)

Signal and noise a 12 PIA
powers

O2 = 0 dB, s=10dB -13.01 dB - 0 dB

an2  10 dB, s = 0 dB -13.01 dB - 0 dB

(b)

Signal and noise I a 12 PIA
powers

2 = 0 dB, 0,2 = 10 dB -0.35 dB -30.75 dB

2 = 10 dB, 0,2 = 0 dB -12.42 dB -1.10 dB
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Table 2.4. 1 a 12 and PIA of the MVDR processor when steered at signal with a
10 dB interferer falling on a sidelobe with (a) no mismatch and (b) mismatch
caused by 0.1 A errors in sensor position estimates.

(a)

Signal and noise I a 12 PIA
powers

an = 0 dB, 2 = 10 dB -12.13 dB 14.91 dB

012 = 10 dB, as2 = 0 dB -12.21 dB 5.87 dB

(b)

Signal and noise I a 12 PIA
powers

0"2 = 0 dB, ,s = 10 dB -0.26 dB -17.18 dB

2=10 dB, ,2 = 0 dB -11.79 dB 4.47 dB
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The low SNR case is also quite revealing. While table 2.3 illustrates no significant change in

performance, table 2.4 reveals that the MVDR processor actually is performing much better than a

conventional processor (PIA > 0 dB) when the interferer falls on the sidelobe. We conclude that since

mismatch does not cause unwanted signal nulling in this case, the MVDR processor is free to null out

the interferer. Enhanced nulling is also demonstrated by the slight increase in Ia 12 from table 2.2 to

table 2.4.

These simulations reveal that the severity of mismatch as measured by PIA is a function of the

spatial distribution of the interferers (and as a result array geometry) and the signal and noise (white

and correlated) powers.
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3.0 Improving MVDR Performance

We have demonstrated the utility of the parameters I a 12 and PIA in characterizing MVDR

performance. We have also shown how these parameters are affected by the environment (white noise

power, interferer powers, spatial distribution of interferers). In this section we will analyze algorithms

that attempt to enhance MVDR performance by synthetically altering the environment.

3.1 Optimal Robust MVDR Algorithm

We now attempt to improve upon MVDR performance under conditions of mismatch.

MVDR-based methods that are relatively immune to mismatch are traditionally called robust

algorithms. The classic problem is to prevent unwanted signal nulling while preserving the adaptive

nulling properties of the MVDR processor.

To begin we assume the following general form of the CSDM

R = 2 1 + ssH + Q, (3.1)

where Q is the cross spectral representation of the interferer environment and s represents the signal of

interest. If we attempt to steer at s under conditions of mismatch, i.e., e - s, the MVDR weight

vector is

a= .we (3.2)eHRle

Ideally we would like a to be represented as in equation (A.5), however mismatch causes the matrix

inverse term in equation (3.2) to remain a function of s. We logically might assume a truly robust

MVDR algorithm that completely preserves the nonmismatch nulling properties would subtract a2s H

from R thus giving the nonmismatch weight vector of equation (A.5). Since this would be impossible

we attempt to add robustness to the processor in other ways.

3.1.1 Heuristic view

We have seen that as ~A increases, the sensitivity of the MVDR processor to mismatch

decreases. So an intuitive robust method would synthetically increase the white noise in R by adding

an c2 to the diagonal elements, i.e.,

ft= R+ 2 I ,  (3.3)

where 0 < c2 < oo. Then the robust weight vector is
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= lRe 
(3.4)

eHlt-le

with output power

PMVDR = jHR i . (3.5)

Note that as c2 -- ,oo, the white noise term dominates A of equation (3.4) and i--e. We use the

calculated CSDM of equation (3.1) in the calculation of tMVDR since using 1. would unnecessarily add

white noise power to the output. Thus we must actually compute the robust weight vector i and form

the quadratic of equation (3.5) as opposed to directly computing the MVDR output power as in

equation (1.13).

Interestingly, adding a component to the diagonal element of the CSDM is also a method of

inverting ill-conditioned matrices. So we see that while this method might enable us to invert a rank-

defficient CSDM, it can also lead to a decrease in adaptivity of the MVDR processor.

We have also seen that as 4i decreases, the sensitivity of the MVDR processor also decreases.

Since we cannot simply subtract 0s2 from It we might subtract a portion of the spatially correlated

component from R, i.e.,

, = u 1+ (1- (2)(4s2ssH + Q) (3.6)

where0< 2 < 1. Then

l= ( 2)R ((2)02 I+ 0,2 I(37

or
ft (1 (2)[R + 2 

2 ' . (3.8)

Since the (1 - (2) term will cancel when we form A we see that subtracting ( 2 (o42ssH + Q) from R is

equivalent to adding synthetic white noise to R where

2 2 22 * (3.9)
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3.1.2 Optimal solution

Since the magnitude of the weight vector is sensitive to the amount of white noise in R, we can

use a norm bound on a as another constraint on the MVDR processor (Hudson, 1981). That is we

want to

min( aHR i) subject to iHe = 1 and I i 12 = 62 (3.10)

The well known result of this optimization problem is

e (R + c2)-le (3.11)eH(R -+ f2I)-1e (.1

where c2 in this case is a Lagrange multiplier. So synthetically adding white noise to R or subtracting

a portion of the correlated component from R is optimal in the sense of (3.10). Solving fore 2 such that

I a 12= 62 unfortunately is a difficult problem.

An approach to solving I a 12 = 62 in terms of C2 is given in Hudson (1981). The approach

uses the eigen decomposition of R (Johnson, 1982) as

M
R = Aiviv! (3.12)

i--1

where vi are the eigenvectors and Ai the associated eigenvalues with A1 _ A2 ? ... _ AM. Then

M
(R + 21)-1 - 1 vvH (.3( R + e 1 -- / _1 i i H(3.13)

+ l 2

and

EM + 21ev 12

S12 = i= lL 2] I -- 62. (3.14)

LiAi +' (2

C2 then is found by finding the root of the equation

Ia 12- 62 = 0 (3.15)

using a standard root finding technique (Kahaner, Moler, and Nash, 1989). It would seem that a

considerable amount of numerical difficulties r side in this last step for large M. However positive

results have been reported in Hudson (1981).
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3.1.3 Simulations

To demonstrate the effect on MVDR performance of adding synthetic white noise to R we look

at the mismatch simulations given in section 2.0. Specifically we analyze the mismatch-sensitive high

SNR case. To begin we examine the simple one-signal case shown in table 2.2 for an = 0 dB and 02=

10 dB. Since in this case we want to eliminate all adaptive nulling when steered at the signal we

simply let a-+e by letting c2 ---oo. We progressively compute iof equation (3.11) and PMVDR of

equation (3.5) for increasing values of f2 and determine the associated PIA's. Figure 3.1 contains the

PIA versus c2 and a jL 12 versus C2 . As we would expect, PIA approaches 0 dB as C2 increases. We

also see how I L 12 gradually approaches the minimum value of 1/M or -13.01 dB.

A slightly more interesting example is the one shown in table 2.3. Here an interferer falls on a

null when we steer at 1800 and we see the PIA is -30.75 dB for the (o2 = 0 dB, 4s2 = 10 dB) case.

Figure 3.2 is the resulting plots for PIA versus c2 and I a 12 versus C2 . We note that these plots are

similar to those of figure 3.1. This fact seems reasonable since we know that the MVDR processor is

not putting "effort" into nulling this interferer. Thus the synthetic white noise only affects unwanted

signal nulling as in the previous one-signal example.

We now examine the case shown in table 2.4. Here the 10 dB interferer falls on a sidelobe

when we steer at 1800. Figure 3.3 clearly demonstrates the interesting effect synthetic white noise has

on interferer nulling in this situation. As we add more white noise to R we see that PIA gradually

rises. In fact at the c2 value of 16 dB, the PIA is markedly above 0 dB. Here we have achieved the

optimal balance of unwanted signal nulling and interferer nulling by placing the correct amount of

emphasis on a 12 minimization. However as we add more C2 we begin to adversely affect this

balance. We see that at c2 = 34 dB we have hindered MVDR adaptive nulling to the extent that we

achieve only conventional performance.

The quandary we are faced when attempting to deal with mismatch occurs when we select c2

or the corresponding normbound on i. Since the severity of mismatch depends upon the signal power,

noise powers and the spatial distribution of the interferers we really can only guess at an appropriate c2

or Ia 12 = 62 bound.

3.2 White Noise Constraint Robust MVDR Algorithm

As we have noted above, addition of synthetic white noise to R is the solution of the

constrained optimization problem of (3.10). However it is difficult to solve for (2 in terms of the

normbound constraint 62. Considerable amount of attention recently has been given to a technique

that approximates (3.10) called the white noise constraint (WNC) algorithm (Cox, Zeskind, and Owen,

1987). As in the optimal solution, the WNC technique attempts to desensitize the MVDR processor

to mismatch by restricting I a 12 and thus constraining the output power due to white noise. We refer

the reader to tox, Zeskind, and Owen (1987) for the complete description of the method.
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The WNC weight vector is computed as

(W 1 + PI)e (3.16)
WNC -- el(R1 +01)e

or

S R-le + fle (3.17)
eWNC eHWle + M eHRle +0M

where f is a scaler derived from the normbound constraint and I is the identity matrix. We obtain P

by solving

I i WNCI 2 - 62 (3.18)

We then get

= e I a 21 M 1/ M  (3.19)
eHle L _ /M

where I a 12 is the magnitude or norm squared of the unconstrained weight vector, i.e.,

Ia 12 = eHR 2 e (3.20)
(.HR-le)

2

Since I a 12 > 1/M, 62 > 1/M and I a 12 > 62 we see that P > 0. That is we only use the constraint

if I a 12 exceeds the bound 62. Appendix C proves that iWNC given in equation (3.16) is equivalent

to the form of the WNC weight vector given in Cox, Zeskind, and Owen (1987) for the single boresight

constraint case. Now, we proceed to compute the output power of the processor as

PWNC = aWNCR aWNC (3.21)

Using equation (3.16) we get

PWNC = PMVDR( 2 P + 1) + PCONVP 2  
(3.22)(P + 1)2

where PMVDR and PCONV are the output powers of the unconstrained MVDR processor and the
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conventional processor and

I a. 2 _ 1/M
62- 1/M 1 

(3.23)

In other words, the output power of the WNC MVDR processor can be determined simply by scaling

and summing the output powers of the unconstrained MVDR and conventional processors.

3.2.1 Rationale for the WNC algorithm

We now present a rationale for the WNC MVDR algorithm which is consistent with the

analysis given at the beginning of this section. As we have shown, the method of adding robustness to

the MVDR processor involves adding synthetic white noise to R or equivalently subtracting a portion

of the correlated component from R. Since we want to analytically compute i of equation (3.4) in

order to avoid the numerical difficulties of Hudson (1981), we propose the following approach: subtract

a rank-one matrix ddH from R of equation (3.1) to remove as much of the signal component as

possible while maintaining a significant portion of the interferer component in order to ensure adequate

adaptive nulling. So we compute AWNC as

(WNC = (R- ddH)-le (3.24)aW = ell(R_- ddH)-le

where we require

Ii ' WNCI2 = 62. (3.25)

Then R - ddH can be inverted analytically via the matrix inversion lemma. Note that the constraint

-HaWNC e = 1 is still satisfied.

As noted, ideally we would like to simply remove the signal component from R and thus get

the nonmismatch weight vector of equation (A.5). The rank-one matrix in this ideal case would be

d H = ,2 ssH. (3.26)

Obviously we will not know s so we propose the following form of the matrix:

dd H = a 2 ReeH R. (3.27)

Expanding this equation and using equation (3.1) we get
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N

dd H a a 2 (0,4eeH + 741 eHs 128 H + -o,i eHt 12 tjt -+ K) (3.28)
1=1

N
where a2 is a scalar, Q = >Jo'2 t t H and K is a matrix containing the remaining cross terms. First

i=1

note that we can dis-egard the eeH component of dd H since it does not enter into the calculation of

iWNC of equation (3.24). This is shown in appendix A (equation A.5). The ssH component of dd H is

actually the term we wish to subtract from R, and, as in the optimal solution of equation (3.11), we

subtract a portion of the correlated component represented by the third term of equation (3.28). The

K matrix of equation (3.28) unfortunately might adversely affect the WNC MVDR processor

performance since K does not represent a physical component of R. The effect K might have on

performance naturally is dependent on the interferer environment.

Now using dd H of equation (3.27) we get

iWNC = [ 1 e HRe-1/a2 1 "  (3.29)
eH[R1 - eHReM 1 2 ]e

Now if we let 0 < a 2 < 1/eHRe and use

'3 H (3.30)
e Re - 1/a 2

we get the WNC weight vector of equation (3.16). In other words, we can interpret the WNC weight

vector as an approximation of the optimal weight vector given by equation (3.11). The performance

we achieve using iWNC versus i of equation (3.11) as measured for instance by PIA is highly

dependent on the interferer environment. Interestingly, if I eHt i12 = 0 for all i, i.e., the interferers are

orthogonal to the steering vector, then it is easy to show that K = 0 . Moreover since equation (3.28)

will not contain the interferer components we will simply be subtracting the signal component from R.

In this case, w.- actually might achieve superior performance with the WNC algorithm. However this

orthogonality scenario is highly improbable. In any case, if I eHt i12 is small the effect of K might be

mitigated.

Based upon this analysis we conclude that in the simple one signal case where Q = 0 we would

expect the performances of the WNC and optimal algorithms to be equal for some bound 62. This

seems reasonable since in either case we equally will subtract a portion of ssH from R.
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3.2.2 WNC MVDR simulations

We now examine the effect of WNC on MVDR performance under conditions of mismatch by

reexamining the simulations described in section 2.0 and the beginning of this section. Figure 3.4

contains the MVDR array response and I WNCI2 for the (n = 0 dB, rs2, = 10 dB) with 0.1A sensor

position error with a WNC or normbound 62 - -10 dB. We clearly can see how the weight vector has

been "sheered" off at -10 dB. Moreover we see the corresponding increase in output power which

results in an increase of output power due to the signal. Table 3.1 lists the I a WNCI 2 and PIA for

this case when we steer at the signal. We note the dramatic increase in PIA over the value shown in

table 2.2 (b). However it is still less than zero since we have not removed all of the adaptivity from

the processor. Note also the broadening of the peak in figure 3.4 as compared to the nonmismatch case

shown in figure 2.1. This fact is expected since we actually inhibit adaptive nulling when the signal

falls within the mainlobe and I a 12 > -10 dB. So while the WNC algorithm can be used to broaden

the mainlobe, it also contributes to a decrease in array resolution.

Table 3.1. I aWNC 12 and PIA of the MVDR processor when steered at signal with

0.1A errors in sensor position estimates with normbound or WNC = -10 dB.

Signal and noise I a WNC 12 PIA
powers

012 = 0 dB, 0,2 = 10 dB -10.00 dB -5.14 dB

Figure 3.5 shows the PIA and I A WNCI 2 for various 3 when we steer at the signal. As we

expect, PIA-+0 dB as ft increases. Note the similarities between figure 3.5 and figure 3.1. So the

performance of the WNC algorithm is shown here to equal the performance of the optimal technique

for this one-signal case.

Next we reexamine the interferer simulations described in the beginning of this section to

evaluate the effect an interferer has on the performance of the WNC MVDR algorithm. Figure 3.6

shows the PIA and I i WNCI 2 versus 0 when the 10 dB interferer falls on a null. Since the K matrix

of equation (3.28) is small in this case, we certainly would expect figure 3.6 to resemble figure 3.2

which was obtained by adding synthetic white noise to R. Conversely, figure 3.7 results from the

simulation that produced figure 3.3. Here the interferer falls on a sidelobe. We clearly see the

difference between the PIA of the WNC algorithm and that of the optimal synthetic white noise

algorithm. Figure 3.7 (a) lacks the hump of figure 3.3 (a). In fact the WNC PIA does not appreciably
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exceed 0 dB. Obviously the K matrix in this case adversely affects WNC MVDR performance.

3.2.3 Possible further work

Possible extensions to this work might involve determining a better rank-one matrix dd H that

will not result in severe cross terms in K. Possibly we could use a sum of rank-one matrices, i.e.,

d1 dl H + . . . + dpdpH , in order to reduce the effects of K.

3.3 Eigenanalysis Approach to Mismatch

Further insight into mismatch can be gained by analyzing the MVDR processor via the eigen

decomposition of R as in equation (3.12). The MVDR weight vector is then

M
±viv~ e

a= Li- ' ]e (3.31)
e lvivHi e"H M 

H]

It is well known (Johnson, 1982) that if

k-1
R=uI+osSH + antt~i t 1  (3.32)

i=1

then the eigenvectors associated with the k largest eigenvalues span the subspace containing the signal

vectors and the remaining M-k eigenvectors span the subspace which is orthogonal to the signal

subspace. Now if we steer towards s (e = s),

k He

a- i= I (3.33)k H ve2"

i=1

However, under conditions of mismatch a will be as in equation (3.31) above. In this case we might

view

M vHe M I v 'e 2

the terms E - vi and E _T7 in a as contributing to a certain amount of distortion in

i=k+l i=k+l

the weight vector.

Intuitively we argue that under conditions of mismatch we simply can disregard those M - k

eigenvectors in our calculation of the MVDR weight vector and force a to have the form of equation

(3.33). Since we usually do not know k (the number of spatially correlated components in R) we

propose using the magnitude squared of the weight vector as a gauge to determine the number of
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eigenvectors we can eliminate. That is we compute a as in equation (3.33) with the largest k such that

I a 12 < 62.

3.3.1 Simulation

To determine whether we obtain any performance improvement under mismatch conditions

with this method, we examine the previous simulation involving the 10 dB interferer falling on a

sidelobe when we steer at the signal with a2 - 0 dB and Sr2 - 10 dB. Figure 3.8 is a plot of PTA and

I a 12 versus k. Note for k=2, I a 12 < -12 dB. For this value of k we gain considerably in PTA over

the WNC results of figure 3.7 and the synthetic white noise results of figure 3.3. In fact, the PTA at

k=2 is merely 1 dB less than the PIA of table 2.4 (a) that we obtain with no mismatch. Also note the

dramatic rise of I a 12 at k=3 and the associated dip in PTA resulting from mismatch. For comparison

purposes we have included the corresponding plots for the nonmismatch case in figure 3.9.

3.4 Possible Improvements to MVDR Nulling

In this section we briefly propose an approach that might lead to improved MVDR nulling

performance. As we have seen, computing the weight vector i with the addition of synthetic white

noise to the CSDM R leads to decreased emphasis on MVDR adaptive nulling. Since the level of white

noise power in R has such a significant impact on MVDR performance, one might argue that

subtracting a certain amount of white noise from R would lead to improvement in PTA under

nonmismatch conditions. That is we can compute the weight vector as

a = (R_ p2i)_e • (3.34)

Then,

PMVDR = aH(R p2 1)j = jHRa - /"2 1 j 12 (3.35)

where now we also subtract the white noise term p21 from R in our calculation of PMVDR" Then

PMVDR = eH (R- 12l)-le (3.36)

The obvious difficulty involves choosing the "best" p 2 . Certainly (R - p 2 1) must be full rank

and physically meaningful. That is we would not want to subtract more white noise than what is

contained in R. Previous similar work in the field of spectral estimation (Pisarenko, 1973) involved

subtracting the largest quantity p2 from the diagonal while still preserving the nonnegative definite

property of the matrix (Johnson, 1982).

In section 2.0 and in appendix B we presented how adaptive nulling and the magnitude

squared of the weight vector are related to white noise in R. Referring to equations (B.4) and (B.14)

for the one interferer case we see that as white noise power becomes very small, the null of the MVDR

43



20

10

0

-10

-20

-30

-4 L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NUMBER OF EIGENVALUES K

(a)

M
5:

0

0

wi 0
15-

z

20

((b

Fiur -15 Egnetrbsdrbs M D rcso eut o ina oe s 0d n os

poe n=0d ih10d nefrrfli o ieoe a-I s.k b orsodn

mantdzqae fth egtvco
04



I II I I ! I I I I ! I I !

20

10

0

io

<-10
FL

-20

-30

-40 i I I I t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NUMBER OF EIGENVALUES K

(a)

m I I I I I I I I I I I I I

"2. 5
-

0

LJ 0

I.--

3 -5

0

01Li
~ -15

0
ILlo, -15
I.-

0

< -205

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NUMBER OF EIGENVALUES K

(b)
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beampattern at t becomes very deep while I a 12 increases. Thus we argue that we actually want to

increase I a 12 to improve nulling performance. An MVDR-based algorithm that enhances nulling

performance would then increase the magnitude squared of the weight vector by subtracting an

appropriate p2 from R while maintaining a sufficient bound on I a 12 to prevent unwanted signal

nulling. However, as in the optimal robustness technique of equation (3.11), it is difficult to solve for

P2 in equation (3.34) such that I j 12 equals some lower bound.

One approach would be to modify the robustness technique of section 3.1.2 and Hudson (1981)

to subtract a scalar factor from R rather than to add one. That is we define the output power as

PMVDR -- M eHv 12 (3.37)

where we find p 2 such that

ME 1A 21eHV 12

I 12 = i=I[1  -2I = 7 2 (3.38)
[ I eHvi 1212

where f72 is the minimum bound constraint on I a 12.
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4.0 Simulations

In this section we present MVDR processor simulation results from a 100 element horizontal

random array of diameter 72A at 30 Hz or 3566 m in noise environments consisting of white noise with

multiple interferers. We attempt to detect and process four signals of various powers and to

demonstrate the effect of interferers and mismatch on MVDR performance. We also show how the

WNC MVDR algorithm improves performance under conditions of mismatch.

We will process the four signals of interest described in table 4.1. All spectral energy is

assumed narrowband at 30 Hz.

Table 4.1. Power and bearing of the four signals of interest.

Signal powers Bearing

0 dB 1800 Az. 00 De.

-5 dB 2800 Az. 00 De.

-10 dB 3000 Az. 00 De.

-15 dB 2200 Az. 00 De.

4.1 20 Interferers

The first environment consists of white noise power of 0 dB with 20 0 dB interferers impinging

on the array from 20 to 400 azimuth, with 20 spacings and 00 declination angle. Figure 4.1 displays

the MVDR output power and magnitude squared of the weight vector I a 12 when we steer from 00 to
3590 in azimuth at 10 intervals and 00 declination angle. We also include the PIA obtained with the

adaptive processor for each signal of interest. Note that since in this simulation the array beamwidth

is less than 10 for all directions of look figure 4.1 (b) lacks the characteristic peaks of figure 2.1 (b) for

steering directions close to those of the signals. Naturally if we were to azimuthally sample at a higher

rate we would also see these peaks in I a 12.

Next we include the sensor position error discussed in section 1.0 in our estimate of the array

geometry. Figure 4.2 (a) shows the characteristic drop in MVDR output power and the corresponding

increase in I a 12 in the direction of the stronger signals. We note the illuminating drop in PIA for the

three strongest signals. However the PIA of the weakest signal at 2200 az has dropped only slightly.

47



5-

PIA =12.70 dB

0'

rn PIA 12.58 dB

-5.

0 PIA =12.60 dB

-10

-10PIA =13.41 dB
0

-15

-20...

0 30 60 90 120 150 180 210 240 270 300 330 360

AZIMUTH

(a)

M
5&

0

Li 0

-5

0

0 --

010

Lii-o - 15

-2

0 30 60 90 120 150 180 210 240 270 300 330 360

AZIMUTH

(b)
Figure 4.1. MVDR processor results for the 20 interferer environment: (a) output power with

PTA values for the signals of interest, (b) corresponding magnitude squared of the
weight vector Ia 2

48



5

0

M

LA -5-PIA -14.48 dB
-3:

0 -PJA =-3.62 dB

PIA =4.72 dB
S-10

DPIA 11.41 dB

-15

-20

0 30 60 90 120 150 180 210 240 270 300 330 360

AZIMUTH

(a)

c70 5-

0
I-
C)

i0-

I-

I -
0

0
LIJ
af-10

o -15
D

z
20 -- L

0 30 60 90 120 150 180 210 240 270 300 330 360

AZIMUTH

(b)

Figure 4.2. MVDR processor results for the 20 interferer environment with O.1)h sensor position error:
(a) output power with PIA values for the signals of interest, (b) corresponding magnitude
squared of the weight vector Ia 12.

49



This fact is supported by the slight increasi in I a 12 at 2200 az over the corresponding value of figure

4.1 (a). Thus we conclude the MVDR processor is not sensitive to mismatch in this noise environment

when steered at the -15 dB signal.

We now apply a WNC to the MVDR algorithm of -18 dB. We choose this value essentially

because it is approximately the average I a 12 of the nonmismatch case of figure 4.1 (b). Figure 4.3

represents the results. We clearly see the increase in output power for the three strongest signal

directions. However note that while the PIA has increased for the two strongest signals over the values

shown in figure 4.2 (a), the PIA has actually dropped for the -10 dB and -15 dB sigials. Thus while

we are inhibiting unwanted signal nulling in these directions we are doing so at the expense of interferer

nulling.

As stated in the previous section, it is difficult to determine the optimal WNC to apply to the

MVDR processor since the value of the WNC that optimizes PIA is dependent on the signal power and

the noise environment (white noise and interferer powers and the spatial distribution of the interferers.)

In fact, if the 0 dB signal were originating from a direction other than 1800 azimuth we would not

exp,- t the WNC of -18 dB to produce a PIA of 0.00 dB. Thus, the optimal (in the PIA sense) WNC

that we apply to the MVDR processor must necessarily be unique for each direction of look. In order

to demonstrate the PIA values we obtain for various WNC, we plot PIA versus WNC for each of these

four signals in figure 4.4. The WNC values that optimize PTA for each signal also are marked. We see

that the PIA values for the mismatch case of figure 4.2 are represented by the flat portions of the plots

and occur when WNC > I a 12, since we do not institute the constraint if this condition occurs.

Coincidentally, the optimum WNC for the -5 dB and -10 dB signals are approximately equal for this

simulation. We also see that a WNC for the -15 dB signal is really not required. We might conclude

that a WNC c! -15.5 dB for all directions of look might represent the best choice for this signal and

noise environment.

4.2 40 Interferers

The next noise environment consists of 40 dB interferers arriving from 20 to 800 azimuth with

20 spacings and 00 declination angle. Figure 4.5 displays the MVDR output power and I a 12.

Comparison with figure 4.1 (a) reveals that the 20 additional interferers result in an increase in PIA for

the four steering directions due to the adaptive nulling of the MVDR processor. Figure 4.6 represents

the MVDR output powers and I a 12 under the condition of mismatch caused by errors in sensor

position estimates. Comparison with figure 4.2 indicates that mismatch causes less severe unwanted

signal nulling in this case as indicated by the PIA values. This agrees with the results of section 2.0

which demonstrated that a strong interferer environment forces the MVDR processor to place a great

deal of emphasis on minimizing I a 12, resulting in less pronounced unwanted signal nulling. Figure 4.7

is the result of placing a WNC of -16.5 dB on the MVDR processor. Figure 4.8 plots PIA versus WNC

for this environment. As expected the plots have moved upward from those of figure 4.4. The most
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Figure 4.7. MVDR processor results for the 40 interferer environment with 0.LA sensor position error

and WNC = -16.5 dB: (a) output power with PIA values for the signals of interest,
(b) corresponding magnitude squared of the constrained weight vector I iWNC 12,
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pronounced movement comes from the 0 dB signal since it was the most sensitive to mismatch in the

20 interferer case.

4.3 60 Interferers

The final noise environment consists of 60 0 dB interferers arriving from 20 to 1200 azimuth.

Figure 4.9 is the resulting MVDR output power and I a 12. We see that the additional 20 interferers

do not cause an increase in PIA over those shown in figure 4.5 (a) for the 40 interferer case. In fact the

PIA's for the 0 dB, -5 dB and -15 dB signals actually have decreased since the great number of

interferers is adversely affecting adaptive nulling (Mohnkern, 1989), and as a result causing

increased emphasis on I a 12 minimization. Figure 4.10 results from the mismatch conditions. Note

that here the large number of interferers causes the MVDR processor to be less sensitive to mismatch

than in the 40 interferer environment of figure 4.6. Figure 4.11 is the result of adding a WNC of -16.00

dB. Finally figure 4.12 displays PIA versus WNC. We note that indeed the plots have moved upward

from those of figure 4.8 indicating less MVDR sensitivity to mismatch in this environment.
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61



Appendix A

In this appendix we compute the MVDR weight vector for the case where we steer towards the

signal of interest.

Let the cross spectral density matrix R be given by

R = 2,I + 028H+ . (A.1)

We can analytically invert R via the matrix inversion lemma (Johnson, 1982, Hudson, 1981, and

Steinhardt and Van Veen, 1989) as

R 'I~ ~ --- W 1 w ss H  W -1

1= W 1- SHW 1  (A.2)sH W 1 0.

ffs

where

W - 21+ Q . (A.3)

Then the MVDR weight vector a will be

W-le - sH W-le W'1
s H W-1s+ 1

a = -s! (A.4)

eH W-le _ eHW ' 1ssHW - l sH 1
s H W - 1 s+ 1"2

Ors

Now if we steer at the signal s, i.e., the steering vector e is equal to the signal vector s,

a = e (A.5)eHW- 1 e

So in this case the matrix inverse term in the MVDR weight vector equation (A.5) is not a

function of s ( or e
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Appendix B

In this appendix we determine the effect of the noise environment on MVDR nulling and the

magnitude squared of the MVDR weight vector.

First we show that

L 2 2 Ht12

EM +a2] e 2
i I eHt 12 2 (B.1)

is an increasing function of a 2 for 0 < a 2 < oo and 0 < I eHt 12 < M2 . Taking the derivative

of I aHt 12 with respect to a 2 we get

2 ri e Ht 1 2 a2 M eH 2

dl aHt 12 L(-M  [M2- eHt 12+ (B22)

da 2  [M M-eHt 127 3 (.2)

Now, using the fact that I eHt 12 < M2 we get

dl aHt 12 > 0 (B.3)

da
2

for0 < a 2 < co and0 < IeHtI < M2 with

IaHt N -- 0 for a 2  0 (B.4)

and

MH 2 eH12  as a 2  oo. (B.5)

Next we show that I a Ht 12 is an increasing function of I eHt 12 for 0 < I eHt 12 < M 2
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and 0 < a 2 < oo. Taking the derivative of I a Ht 12 with respect to I e Ht 12 we get

2l e~ H2 F e t 1

LM+~
Sinc a H t 12 M we getI

dat12 Ht 12 (B.6)

d eHt 12

for 0O<a 2 < oo and0 <I e HtI< M 2 with

lHt 1 H 1 IN =0 for I e~t 2 ~ (B.8)

and

MatIAX - Ie~t 2  0 (B.9)

Now we show that

___ + 1 Fm - 2]1 IeHt 12

I a 12 
- + 012I[M + a2 J (B.10)

IM. 1eHt 12] 2

is a decreasing function of a 2 for 0 < a2 < 00 and 0 < I e Ht 12 < M2. Taking the derivative of

Ia 12 with respect to a2 we get

da 2  F [I eHt12 ] [I eHtI12 _ (B.2]
da 2  IM IeHt 1213

LM + a2i
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Now, using the fact that I eHt 12 < M2 we get

dl a 12<

da 2  (B.12)

for0 < a 2 < ooand < leHt I < M2 with

IaIMIN s 1 a 2-4c (B.13)

and

MAX 12 for a 0 (B.14)
M

Finally we look at the behavior of I a 12 with respect to eH t 12 Taking the derivative of

I a 12 with respect to I eH t 12 we get

dl al 2  M2(M+ a2 )_(M+2 2 ) IeHt 12

dIeHt1 2 
- [M(M+,2). leHtI2]3 (B.15)

We see that for

e eH t 12 = M2(M + a2) (.6M + 2a 2

I a 12 is maximized where

I (M + 2a2) 2  (B.17)
MaIMAX 4Ma 2 (M + a 2 )"

Note that for small a 2 , 1 a 12 is maximum for I eH t 12 z M2 .
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Appendix C

In this appendix we show that the WNC weight vector of (Cox, Zeskind, and Owen, 1987) can

be computed in an alternate form.

The form of the WNC weight vector aWNC given in (Cox, Zeskind, and Owen, 1987) for the

single boresight constraint is comprised of two orthogonal components as

aWNC= IaI2_ [a- -] + S, (C.1)

where, using the notation of [13],

e = wc, (C.2)
M

a- -e = v (C.3)

and

2 M b (C.4)

la 2_ I - v"

Also,

a R-1 e (C.5)a eH R-1e

Note, our 62 is the inverse of the norm bound term given in (Cox, Zeskind, and Owen, 1987).

Now, since

a - e M W 1 e- (eH W 1 e) e (C.6)

a Me Wle

and using (C.1), we have
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aWNC - MW' e- (eH W 1 e) e + e (C.7)

MeH~l a T 2 - m
M e H "1 e 62 1

or

M W 1 e- (eH W l e) e +AWNClal2 1 m(C.8)

M eHW e + eH Wle 2 1]

Now, by setting

H2_ 1
= eMe 1 1 (C.9)

we get

SMW l e- (eH R l e) e + e (C.10)
aMWNC M[e lWe + Mp,

or

AWNC = MW' e+(M,3- eH -le-M3)e + e (C.11)
M [eH Wle + M# ]

Then
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iWNC M M(W1 e+ fe) -(eH R1e + M3) e + (0.12)
M [eH W1e + MP]

* or finally

&WRNC + #1 13) e (C.13)
iWNC eH(W 1+ ,01) e

where P is given by (0.9).
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