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1. INTRODUCTION

1.1 Study Objectives

This report describes the results of study undertaken at AER to identify
and implement a state-of-the-art nonlinear retrieval approach to characterize
line of sight variability of atmospheric thermal and constituent environ-
ments. This path characterization capability is designed to interface with
the existing Geophysics Laboratory (GL) line-by-line radiance/transmittance
code, FASCODE.

Military and commercial endeavors have become increasingly reliant on
sophisticated electro-optical communications and sensor systems operating in
both active and passive modes throughout the electromagnetic spectrum. Such
systems enhance the effectiveness of decision makers to obtain timely and
accurate meteorological, environmental, ecological, and military data upon
which to formulate and execute operational plans. Since the atmospheric path
is an integral component of these electro-optical systems, adverse environ-
mental effects can seriously degrade their reliability. Therefore, optimum
design and deployment of such systems requires the capability to simulate and
predict the impact of the intrinsic variability of factors affecting the line
of sight propagation paths over which they operate. Fundamental among the
factors affecting path characterization are those thermodynamic and composi-
tional parameters which determine the optical properties of the path such as
temperature, pressure (density), and the abundances of relevant absorbing
gases and scattering aerosols. Furthermore, it is desired to systematicaily
evaluate the degree of success potentially achievable in the characterizarion
of relevant path parameters from acquired sensor data sets. Comprehensive

error analysis provides the formalism necessary to accomplish this evaluation.

1.2 Implementation Approach

We have divided the path characterization procedure into a few definable
steps (Isaacs, 1988). Sensor design first requires the ability to select
channel sets which will provide data with the potential to measure changes in
the desired path parameters. To provide a first-look opportunity to identify
potentially fruitful spectral regions for sensor channel placement in the

sensor design process, we have developed a simple screening algorithm. This




preprocessing step uses a simple model of atmospheric transmittance for model
atmospheres to locate optically thick spectral regions for the species of
concern to the user. Once candidai~ sensor channels are selected it is
necessary to simulate representative data sets for the hypothetical instrument
concept. This capability is called data simulation or the forward problem.
The availability of state-of-the-art line-by-line data and radiative transfer
codes (such as FASCODE) enables users to calculate high resolution, spectrally
dependent transmittances and radiances over broad spectral ranges by defining
the relevant thermodynamic and compositional properties of a specific line of
sight path. In this manner, sensor operation can be simulated and synthetic
data calculated for a variety of environmental scenarios. Thus, the
capability exists to answer the question: "How will the sensor respond to a

given variation in the character of the path?"

An equally valid and perhaps more challenging question constitutes the
so-called inverse or retrieval problem. Given spectrally dependent transmit-
tance or emittance (i.e., radiance) data obtained for a specified path (e.g.
it could be obtained using a forward problem simulation or actual sensor
data), what can be said about the variability of its thermodynamic and compo-
sitional properties? The mathematical formalisms applicable to treating this
question are described by a variety of extant path characterization retrieval
approaches. In particular, our study of potential nonlinear retrieval schemes
with the mix of flexibility and robustness for implementation with the GL
forward problem models has identified a simple physical least squares (PLS)

approach.

Finally, there is the problem of providing statistically appropriate path
characterization retrieval accuracy assessment indices. One must consider the
problem of retrieval design, implementation, and evaluation from a systems
perspective (Peckham and Flower, 1983). The retrieval code per se does not
choose the optimum set of frequencies to obtain a sounding of a particular
path, nor does it generally evaluate the accuracy of results, i.e., the
retrieval algorithm is only one submodule of the overall inversion system.
Recognizing these factors, error analysis assessment must be combined with the
forward problem and retrieval capabilities to provide a complete path

characterization system.




The path characterization approach is summarized in Figure 1-1.
Identified are the major path characterization program elements described
above including: (a) the spectral screening procedure for channel
identification, (b) the data simulation to assess path sampling
characteristics and provide the forward problem model generator for the PLS
retrieval, (c) the PLS retrieval algorithm, and (d) the error analysis to

diagnose retrieval accuracy.

SELECT
RETRIEVAL
OPTION

l

SCREENING
ALGORITHM

SELECT REFINE
CANDIDATE CHANNEL
CHANNELS SPECIFICATION

A
RETRIEVAL
ALGORITHM
l o
RETRIEVAL VALIDATE
ERROR RETRIEVAL
ANALYSIS RESULTS
Figure 1-1. Path characterization concept.




1.3 Overview of Report

The report is divided into nine sections and five appendices. Following
this introduction is a review of retrieval techniques relevant to the path
characterization problem (Section 2). This review was undertaken to determine
an appropriate approach for implementation with the FASCODE forward problem
algorithm. Based on this review, we have selected a physical least squares
(PLS) approach. Section 3 describes a preprocessing algorithm developed to
aid the user in screening for spectral regions which should prove fruitful for
further detailed analysis with the path characterization retrieval code. A
comprehensive description of the theory employed in the implementation of the
PLS retrieval code is described in Section 4. The retrieval error analysis
capability is described in Section 5. In addition to the error analysis
approach employed, examples are provided. Section 6 contains application of
the path characterization retrieval to two test cases. A comprehensive
program description including flow charts of the path characterization
algorithm is provided in Section 7. Conclusions and recommendations are given

in Section 8. Finally, references are provided in Section 9.

The main body of the text is supplemented by four related appendices.
These include: (a) screening algorithm output, (b) user instructions, (c)
test case input, and (d) test case output. This is followed an appendix (e)

related to publications and presentations associated with this research.

2. PATH CHARACTERIZATION REVIEW

2.1 The Forward Problem

Given a set of data acquisition requirements (usually stated in terms of
desired path characteristics), a procedure is required to identify instru-
mental spectral response regions with sufficient signal to discern variations
in the desired parameters. We call this procedure spectral screening. Once
channels are selected, one would like to be able to simulate sensor data in
order to investigate its sensitivity to changes in the path parameters.
Sensor data, i.e. the system measurements, are in reality complicated mathe-
matical convolution integrals involving the desired path characterization

parameters and the system instrumental response function. The form of these




relationships between data and desired parameters is expressed by the

radiative transfer equation (RTE).

2.1.1 Spectral Screening

Practical sensor channel selection is intuitive and, perhaps, something
of an art. One has to be aware of the possible spectral regions applicable to
the retrieval of each desired parameter, of interferences from absorption
features from other perhaps irrelevant species, and of the potential effects
of continuum extinction due to aerosol scattering which may reduce or mask the

desired signal. The process is most often iterative.

The basic tool for channel selection via spectral screening is one of the
available spectral line parameter compilations. To insure that a particular
path parameter significantly affects the path optical properties, we may
require that the line strength is greater than a threshold value. Using the
graphical line strength data catalog of Park et al. (1981), for example, this
can be done visually, including an assessment of potential interferences from
other absorbing species. In order to include the characteristics of the path
including absorber concentrations and the temperature and pressure dependences
of absorption line parameters in the screening procedure, however, a more
detailed procedure is required. This can be implemented using a computerized
algorithm which uses a data base of spectrally averaged line strengths and
halfwidths (computed off-line using a suitable averaging increment, say
0.5 cm'l) together with atmospheric model profiles of temperature and absorber
amounts to provide the characteristics of selected paths. The spectral data
are modified to account for line strength, temperature dependence, and pres-
sure and temperature dependence of halfwidths. These data sets are then
combined using an appropriate simple band model to calculate path optical
depths which are then screened using a critical optical depth criterion to
insure sufficient signal. The procedure is performed for all absorbers
present to identify potential interferences. The result of the spectral
screening is the identification of suitable wavenumber regions to measure the

desired path parameters.

The screening procedure provides a zeroth order channel selection which
is refined using sensitivity analyses performed with the forward problem

simulator. Sensitivity analyses based on signal to noise criteria allow one




to optimally select the channels needed to infer the desired path para-
meters. In general, the ability to infer a change in a parameter of magni-
tude ép will depend on the detection of a measurable change in the signal of
magnitude §d in one or more of the sensor channels. These changes are related

through the forward problem described below.

2.1.2 The Exact Forward Problem

The dependence of remotely-sensed data on desired atmospheric parameters
(i.e., the forward problem) can be stated rigorously in terms of an appropri-
ate solution to the radiative transfer equation. Stated generally, the sensor
incident radiance, Ri(o,po), in the ith sensor channel (with characteristic
wavenumber, v; for look angle #) is given by Goody (1964).

Po
R{(8, Po) = Ry(d, pb) r1(8.pp) + | S(p) j—p r1(6,p) dp (2.1)
Pb

where R;(p,) is the radiance emerging from a boundary at pressure Py, 71(0.P)
is the mean atmospheric transmittance evaluated from level p to P, along look
angle 6, and S(p) is the source function of emitted and/or scattered radiance
at level p in the atmosphere. Here, P, 1s the pressure at the path starting

point. Usually p,, is a physical boundary such as the Earth's surface or the

top of a cloud.

The atmospheric transmittance fi(o,p) consists of contributions by lines,

Tig the continua, Tic» and particulate extinction, Tie'

r1(8,p) = 755(8,p) 74.(6,P) 74.(8,P). (2.2)

The contribution due to n discrete absorption lines is

n Po

P
rip(0,p) = J ¢i(v) exp {L§§9£ T [ kalv,p', T(P')] qn(p’) dp'} dv (2.3)

where ¢, is the response (i.e., filter) function of the ith sensor channel,
kn(v,p,T) is the absorption coefficient for the nth line, and qn(p) is the
mixing ratio profile of the absorbing gas contributing to the nth line. The




absorption coefficient depends on an assumed spectral line shape (Goody, 1984)
and an appropriate set of absorption line parameters such as the AFGL line
parameter data set (Rothman et al., 1983; Rothman et al., 1987; Poynter and
Pickett, 1980; Poynter and Pickett, 1984). Much of the inaccuracy in calcu-
lating the forward problem may be traced to uncertainties in the line shape
and in determining some of these parameters. Existing line-by-line techniques
to evaluate Eq. (2.3) include the NASA model and the AFGL FASCODE algorithm
(Susskind et al., 1983; Clough et al., 1981; Clough et al., 1986).

Continua contributions to total transmittance, Tic include the col-
lision-induced absorption by nitrogen and oxygen (Rinsland et al., 1989;
Kneizys et al., 1980; Vodar and Vu, 1963) and water vapor continua throughout
much of the spectrum (Clough et al., 1989; Clough et al., 1980; Clough et al.,

1981; Burch and Gryvnak, 1980; Liebe, 1980).

Particulate transmittance, Ties includes the effect of Mie scattering
(Van deHulst, 1957; Diermendjian, 1969) of aerosols and cloud in the visible
and infrared (Shettle and Fenn, 1979), and of cloud and rain in the infrared

and millimeter/microwave regions (Diermendjian, 1975; Falcone et al., 1979).

The specific forms of Ri(pb)' ri(o,p), and S(p) in Eq. (2.1) above will
vary from one spectral region to another due to the wavelength dependence of
atmospheric scattering and absorption processes. Consequently, the choice of
observational wavelengths provides a means to focus selectively on particular
meteorological parameters. Table 2-1 summarizes the features of boundary and
atmospheric source functions, Ri(pb) and S(p), respectively, in different

wavelength regions (Isaacs et al., 1986).

In Eq. (2.1) the scattering source function contribution to the total
source function (see Table 2-1) is given by the product of the single
scattering albedo wi(p), i.e., the local ratio of total scattering to total

extinction, and the scattering source function Ji(p,ﬂ) defined by
1 ’ ’ !’
I (p.0) = 1= J P,(p,0,0') R, (p,0') dn (2.4)

where P; is the angular scattering function and Ri(p,0') is the value of the
local radiance field (Chandrasekhar, 1960). Angular scattering (e.g., phase)
functions have been evaluated for aerosol in the visible and infrared (Ridgway

et al., 1982); cloud in the infrared (Yamamoto et al., 1971); and




Table 2-1 Radiative source functions. Forms of boundary, Ri(Pb)’ and atmo-
spheric, S(p), contributions to sensor-incident radiances, Ri(o).

Spectral Region Boundary, Ry (py) Source Function, S(p)
[1] Ultraviolet/visible wFy p(Q) 15 (6,.Py) wi(p) Ji(p.0)
(A < 0.7 pm) *
[2] Near infrared xF.p ()7 (0, ,Pp) [1-ws(p)] B;[T(p)]
if1 i‘’o!tb i %
0.7 < X\ < 4.0) + €5B; [T(py) ] + w{(p)Ji P,9) .
+ (I-€5) Ryd(py)
(note i)
[3] Infrared €;B;[T(py) ] By [T(p)]
(4.0 < XA < 100 pm) + (l-ei) Ril(pb) (note 2)
(4] Millimeter/microwave €;B; [T(py)) [1-w;(p)] B[T(p)])
(A > 100 pm) + (1-€4) Rid(py) +w; (p) J;(p,0)
i’ BT\ i i
(note 3)
Legend
Fy solar irradiance
Pi bidirectional reflectance of boundary
0,,0, sun/sensor reflection angle, solar zenith angle
€4 boundary emissivity
wy single scattering albedo
R: 4 downward atmospheric flux

B Planck function (thermal source function)

J}p,ﬂ) scattering source function for scattering angle Q

Notes:

(1) Assumes scattering by aerosol or cloud.

(2) Assumes no scattering, if scattering, same as [2].

(3) Assumes scattering by precipitation; if no scattering, same as [3].

precipitation in the microwave (Savage, 1978; Isaacs et al., 1988). Since the
scattering source function depends on the local radiance field a numerical

solution is required (Lenoble, 1985). .

Parameters determining the radiometric properties of the boundary

(temperature, emissivity, albedo) and those related to these properties (e.g., v
surface wind over the ocean and soil moisture over land in the microwave

region) may be inferred directly from the first term in Eq. (2.1) if the

atmospheric contributions from the second term are negligible or can be

subtracted away. Spectral regions satisfying these criteria are commonly

referred to as atmospheric transmission "windows". Window spectral regions




are summarized in Table 2-2 (Fraser and Curran, 1976). 1In addition to sirface
related information, imaging wavelengths also provide a means to observe the
influence of atmospheric scatterers such as aerosol, cloud, and precipitation
(depending on spectral region) on sensor incident radiances. In this case
contributions from the second term in the r.h.s. of Eq. (2.2) are no longer
negligible. Parameters potentially observable in this manner include cloud
optical depth at visible wavelengths and cloud liquid water content and rain-

fall rate in the millimeter/microwave regions.

In spectral regions where scattering can be ignored (i.e., w; = 0.0), the
wavelength dependence of transmissivity can be exploited as a means to sound
the atmosphere’s vertical structure (Kaplan, 1959). Assuming unit surface
emissivity (e; = 1.0) and choosing spectral regions with a single active ab-
sorber, Eqs. (2.1) and (2.3) may be combined using Table 2-1 to yield the

following retrieval equation for nadir viewing:

Table 2-2 Transmission windows. Major atmospheric windows available for
spacecraft remote sensing (Fraser and Curran, 1976).

Spectral Region Windows
Microwave 20.0+ mm
7.5-11.5
3.0-3.75
2.06-2.22
Thermal Infrared 17.0-22.0
10.2-12.4
8.0-9.2
Mid-Infrared 4.5-5.0
3.5-4.16
Near-Infrared 2.05-2.4
1.55-1.75
1.19-1.34
1.0-1.12
Ultraviolet and Visible 0.77-0.91
0.30-0.75




R,(0,p,) = B,[T(R,)] 7,(0,p,) (2.5)

(o]

+

o |

P D
J B [T(P)] q(p) k(v;.P) exp[’—é] q(p’) k(v ,p')dp’]dp
P

pb o

For uniformly mixed gases such as COz or Oz, q(p) is assumed to be
constant, and Eq. (2.5) may be used to obtain the temperature profile, T(p).
Conversely, given the temperature profile, a mixing ratio profile (such as
that of H;0, for example) may be obtained. Applicable temperature sounding

wavelengths and corresponding species are summarized in Table 2-3.

Table 2-3 Sounding wavelengths and species

Band Species Wavelength
Visible 03 0.6 pm
Near IR HZO 0.94

1.16
1.38
1.89
COZ'HZO 2.51
Middle IR €0, 4.30
HZO 6.70
Thermal IR 03 9.6
(00) 15.0
Hzg 20
Microwave H20 0.16 cm
(183 GHz)
1.35 cm
(22.235 GHz)
02 0.25 cm
(118 GHz)
0.5 cm
(60 GHz)
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2.1.3 Rapid Algorithms

Rapid transmittance algorithms are devices to reduce computer usage time
when many retrieval scenarios are desired and the channel set and desired path
are well defined (McMillin and Fleming, 1976; Fleming and McMillin, 1977;
McMillin et al., 1979; Susskind et al., 1982; Eyre and Woolf, 1989). 1In
circumstances when the user wishes to obtain many retrieval simulations
obtained under a variety of environmental conditions, the use of a line-by-
line code as the forward problem simulator may not be the most efficient
approach. This would be the case, for example, when the sensor channel set
has been selected, and it is desired to obtain statistics to evaluate the
dependence of retrieval accuracy on regional or seasonal meteorology. Once
sensor channels and particular paths are selected, line-by-line (LBL) calcula-
tions can be avoided by parameterizing layer transmittance as functions of
path related temperature and constituent abundances. These parameterizations
are derived based on and calibrated by the LBL transmittance calculations.

The rapid algorithm reproduces the required channel transmittances, including
their dependence on the important path variables such as temperature and
constituent abundances to a desired accuracy. Given an analytical form of the
approximate transmittance model, LBL calculations are used both to generate

empirical coefficients and to verify the model.

For example, a rapid algorithm was developed at NASA Goddard Space Flight
Center to provide accurate simulations of the radiances from the HIRS2
infrared temperature and moisture sounder (Susskind et al., 1982). The
averaged discrete line transmittance, ;12’ through the atmosphere from
pressure p to pressure p, along a given atmospheric path, at a zenith § as

seen by channel i, is modeled as:

an— 2 — — —

where Ty, 7;o, and T, represent models for effective layer transmittances

from pressure Py to pj-l(pj > pj-l) at zenith angle 4. The term ;iF
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represents absorption by gases assumed to have a fixed mixing ratio, while 710

and 7, represent absorption due to ozone and water vapor, respectively.
iw rep P

Most of the absorption for the HIRS2 temperature sounding channels is due
to the gases of fixed distribution, primarily CO, and N20. In these cases,
transmittance at a given angle depends only on the temperature profile. The
model for mean layer transmittance due to gases of fixed distribution for each

reference angle is given by:

fip(pj,pj-l,ﬂ) - Aij(ﬂ) + Bij(o)['l'j - Tg] + Cij(ﬂ)[Tij(ﬁ)-ng(a)] (2.7)

where Tj is the mean temperature in the layer j, between Pj and Pj-1 for the
temperature profile under consideration, T3 is the mean temperature in layer j
in a standard temperature profile, and TiJ and ng are effective mean tempera-
tures for the entire profile from P4 to the top of the atmosphere for the
temperature profile under consideration and the standard temperature profile,
respectively. The effective mean temperature above pressure p for chamnel i
is defined as the average temperature above pressure p weighted by the
weighting function for channel i. The effective temperature is then channel

and angle dependent and is defined as:

1 j d‘ri
Ti5(6) = m o T(p) ~ap (6) dp (2.8)

where rg(p,a) is the transmittance of channel i for the standard temperature
profile. The coefficients Aij(o), Bij(ﬂ), and Cij(O) are determined sc as to
give the best fit in the least squares sense to the values of 7ip obtained
from LBL calculations. Similar expressions are used to obtain layer transmit-

tances due to water vapor and ozone.

A rapid algorithm generator has not been provided as part of the path
characterization effort; however, any appropriate band model can be adopted

for this purpose.




2.2 The Inverse Problem

The fundamental retrieval problem may be stated as follows: given a set
of measurements of the radiation emitted, scattered, and/or reflected from the
earth-atmosphere system what can be deduced about the physical state of this
system? There are many individual retrieval methods. However, a recurrent
theme of the many comprehensive reviews available (Westwater and Strand, 1972;
Rodgers, 1976; Towmey, 1977; Fymat and Zuev, 1978) is the conceptual unity
among apparently diverse approaches. This is due to the fact that these

approaches all share the same general underlying mathematical problem.

Stated symbolically, we obtain radiance data d;, j = 1,...M which are the

J
sum of an unknown error, €5 and a contribution Fj which depends on the ther-
modynamic and compositional parameters of interest, pi, £ = 1,...N. That is,
dj - j(pl, pz,...pN) + €j j b 1,...M. (2.9)

The Fj are known as mapping functions. The retrieval problem is: given the
dj' determine the p;. For the problem at hand the Fj are determined by the
wavelength dependent radiative transfer processes, including absorption, emis-
sion and scattering by the atmosphere, by clouds and by the surface. The
desired parameters p; include atmospheric temperatures T(p), surface tempera-
ture T;, surface pressure p , and relevant gaseous absorber amounts q(p). For

the purpose of discussion consider a mapping function of the form

1n Pp
F = J B(T(p)) W(p,T(p)) dlnp (2.10)

In p,

where B, the Planck function, and W, the weighting function, are known. The
major contribution to the mapping functions for the retrieval of atmospheric
temperature structure has this form. Since T(p) is a function of pressure but
the number of available channels of data, M, is finite, such problems, even in
the absence of measurement errors, do not have unique solutions and are thus
not well-posed. To be well-posed a problem must have a solution which exists,
which is unique and which depends continuously on the data of the problem. By

data we mean the parameters, functions, etc., used to specify the particular
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problem. In our example, the measurements dj and the functions B and W are the
data. The retrieval problem may be rendered well-posed by adding some con-
straints on the physical parameters to be retrieved. For example, T(p) may be
expressed as a finite sum of known empirical structure functions. With this
formulation the coefficients of the structure functions become the unknowns
and the problem reduces to a finite set of algebraic equations. Such systems
of equations will not in general be well-posed, but if the number of (inde-
pendent) channels is equal to the number of coefficients the problem will be
well-posed. However, well-posedness and its implied continuous dependence on
the data is not enough to insure that the solution to a problem will be useful

when the data are uncertain.

In practice, the data always have some degree of uncertainty, and solu-
tions of a well-posed problem can still be ill-conditioned, that is very sen-
sitive to the data. When this is the case, small measurement errors may be
translated into large errors in the retrieved parameters. Ill-conditioning
occurs for example when variation of one of the geophysical parameters has
only a small effect on the measured radiances. In our example, decreasing the
number of coefficients used and minimizing the sum of squared €5 will usually
improve the conditioning of the problem.

Ultimately, all retrieval methods are constructed to address the problems
of ill-posedness and ill-conditioning. One or both of these problems may
cause a particular method to produce nonphysical results or fail to con-
verge. Methods which are successful circumvent these potential pitfalls by
introducing some (explicit or implicit) constraint on the solution based on a
priori knowledge of the physical system. We will classify the constraints as
one of the following: (1) a smoothness constraint, (2) a statistical con-
straint, or (3) a physical constraint. These classes of constraints
correspond to three types of retrieval methods: smoothing (Phillips, 1962;
Twomey, 1963; Tikhonov, 1963) as applied, for example, by Wark and Fleming
(1966), statistical (Strand et al., 1970; Rodgers, 1971; Smith et al., 1970;
Turchin et al., 1971; Smith and Woolf, 1976), and physical (Chahine, 1968;
Chahine, 1972; Smith, 1970; Susskind et al., 1984; Smith et al., 1986).

A fourth approach (Backus and Gilbert, 1967; 1968; 1970) which is usually
applied to the design and analysis of the instruments themselves rather than

to the actual retrievals, recognizes that sufficient constraints may not exist
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to render the problem well-posed and, furthermore, that it may not be possible

to reduce noise levels in the data to a level which results in acceptable

conditioning of the retrieval problem.

Thus, there is a tradeoff between

acceptable noise and sufficient resolution in retrieving the desired para-

meters.

set of retrieved parameters.

The approach of Backus and Gilbert provides criteria to select the
This approach has been applied diagnostically to

study the vertical resolution available from temperature retrievals (Conrath,

1972; Thompson, 1982).

Although all the techniques cited above are designed to solve the same

mathematical problem, they may produce results which differ considerably in

practice.

This is a consequence of using different a priori data, adapta-

bility to a particular problem, and computational details.

2.3 Path Characterization Approaches

There are a considerable number of potential algorithms available for

implementation as path characterization approaches.

Table 2-4 summarizes the

path characterization retrieval related approaches to be discussed in this

section and their applications.

Table 2-4 Candidate path characterization retrieval approaches discussed in
this section

Retrieval Method/

[Section]

Reference

Application

nonlinear,
iterative
{2.3.1]

statistical
[2.3.2]

simultaneous

[2.3.3]

Chahine, 1968;
1972; Smith,
1970

Smith and
Woolf, 1976;
Westwater and
Strand, 1968;
Isaacs and
Deblonde,
1987

Smith et al.,
1986; Isaacs,
1989

Thermal and constituent retrievals; requires
forward problem simulator; time consuming
line-by-line simulation can be avoided by
implementing a rapid transmittance algorithm.
Implementation straightforward.

Requires statistics relating parameters and
data; if concurrent data/parameter observa-
tions are available, no forward problem is
necessary; alternatively, synthetic data can
be simulated; statistical retrievals provide
excellent first guess profiles for nonlinear,
iterative method. Easy to implement.

Combines attributes of statistical and
Chahine-type retrieval. Obtains thermal and
constituent soundings simultaneously.
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2.3.1 Nonlinear, Iterative Retrievals

Chahine (1968; 1972) has developed a general nonlinear, relaxation method
to invert the radiative transfer equation for all atmospheric parameters which
appear in its integrand. The approach provides the capability to retrieve
such desired parameters as temperature and species concentrations of active
absorbers along a specified path using little a priori information. Chahine
(1972) has discussed the necessity for a nonlinear approach to treat ill-
conditioned problems such as those commonly encountered in path retrieval
calculations. The method does require an accurate code to calculate the
forward problem. In the present context, the forward problem generators

discussed in Section 2.1 would be appropriate.

The solution is obtained iteratively, adjusting a first guess sounding of
the desired parameter based on comparison of simulated with actual data. Ad-
justments are made to the trial parameter profiles by associating each sensor
channel brightness temperature with that layer in the atmosphere which is most
sensitive to a local change in the desired parameter. This association is
made through the channel weighting functions. A solution is obtained when
simulated data obtained using the iterative, trial sounding is consistent with
the actual data. The iterations are terminated and the retrieval said to
converge when the simulated and actual data differ by sensor channel noise

equivalent radiances.

The forward problem simulation of path radiance is obtained from the
radiative transfer equation. The radiances in each of the N selected sensor
channels, R(vi), i=1,..N, will depend on the temperature and constituent

profiles through the relation:

np,
R(vi) = Bvi, T)7(wipy) + [ Blug, T(p)] g d4np (2.11)
Anp,

where p; and p; are the pressures at the specified path endpoints and a target
with unit emissivity and temperature T, is placed at the path terminus. For
general paths, this equation could have been written in terms of a range
variable rather than pressure. For consistency with the retrieval literature,
we have retained pressure as the independent variable. The temperature
profile T(p) appears explicitly as an argument of the Planck function, B.
However, the dependence of the radiance on the composition profile of the

televant absorbing gas, q(p), is implicit in the transmittance factor.
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The retrieval is obtained by starting from an arbitrary initial guess for
temperature or composition profile (i.e., T (p), q,(p); n=0). If any
subsequent trial profile is a retrieval solution, then the residuals for each

channel defined as:
A™(vy) = R(vy) - R%(yy) (2.12)

will approach the magnitude of the computational and instrumental noise for
all channels. If this convergence criteria is not satisfied, the desired
parameter profile is adjusted. The adjustments are applied within specific
domains of the path determined by the sensitivity of each channel’s response
to path changes in the desired parameter. For simplicity, adjustments are
made at N path positions using the N channels of dat The location of these
positions is determined by the channel weighting functions. The adjustment

for each channel is accomplished via a relaxation equation.

The form of the relaxation depends on whether *emperature or composition
is being treated. For temperature, it is easy to show that a new guess (i.e.,
the n+lth iteration) for the Planck function (and hence, temperature profile)
at each of the N path domains associated with a channel can be calculated from
the nth trial Planck function and its associated simulated radiance Rn(ui) and

the radiance data for that channel, R(ui), by the expression:

Blvy T™1(p)] = R(vy)  Blvy, TP)]
Rn(”i) (2.13)

This expression can be simplified to obtain the following form for the

relaxation equation for temperature:
n+1 n
T (Pi) = aiT (Pi) (2.14)

To apply the approach for composition profiles, Eq. (2.11) above is integrated
by parts to obtain:

Anp,

I(vi) = B(vi,py) - J 7[v,q(p)] 5%%p d4np. (2.15)

£np,




From this form of the equation a similar relaxation equation for the composi-

tion profile is obtained:
™ 1(py) = a;4"(py) (2.16)

After each iteration and application of the relaxation equation, the adjusted
profile is obtained by connecting the N path domains by a suitable interpola-
tion formula. The relaxation is repeated until the relaxation parameters a;

approach unity and the residual criteria are met.

The Chahine-type retrieval has been widely applied in the remote sensing
community. Smith (1970) developed a similar approach to obtain temperature
profiles from satellite borne radiometer data. Recently, Kaplan et al. (1986)
used the Chahine retrieval approach to investigate the water vapor profile re-

trieval capabilities of a proposed next generation infrared sounder.

2.3.2 Statistical Estimation

Statistical retrievals are based on an approach to obtaining geophysical
parameters from radiometric data discussed by Rodgers (1976), Westwater and
Strand (1968), Smith and Woolf (1976), and Isaacs and Deblonde (1987). The
essential element of the scheme is to choose, in a statistical sense, the most
probable combination of atmospheric path properties which produces the set of
measured radiometric data values. It is a general statistical regression
technique which minimizes the mean square error between the estimated and
observed values of the parameter of interest. As applied to the path
characterization problem, the desired parameters, pi.» are the thermodynamic
and compositional state of the path. The data, dj' are measured radiances,
brightness temperatures, or transmittances. Of course, the forward problem
algorithm can be used to generate synthetic data sets from which to obtain
statistics. The statistical estimation formalism provides two important capa-
bilities: (1) use of statistical estimation can provide excellent first
guesses for the Chahine-type retrieval (Kaplan et al., 1986), and (b) the
eigensystem decomposition of the covariance matrices of parameter and data
sets calculated as an intermediate step in the evaluation of the regression or

"D" matrix (described below) provide insight into the information content of
the retrieval.
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An individual retrieval of a specified parameter vector (e.g.

temperatures at r levels) is obtained from:

p - Dd (2.17)
with
t -1 ALt
D = (UT )(T*A* T* ) (2.18)
where
) is the parameter vector, a vector giving a statistical estimate of

the profile of the desired parameter in each of r layers

d is the data vector, a vector whose components are n brightness

temperatures or radiances

U.s 1s the parameter profiles matrix at r levels for s atmospheric
samples

T,s 1s the brightness temperature or radiance matrix for n channels for
s samples

A
T* are "selected" eigenvectors of TTt

A * 1is the diagonal matrix whose elements are the corresponding

eigenvalues

The eigenvectors having relatively small eigenvalues (compared with the
largest eigenvalue) can be discarded since they represent noise. In the
algorithm employed, only eigenvectors of the covariance matrix of the data set
with itself have the potential to be discarded. The advantage of the method
is that by truncating the sequence of eigenvalues, one reduces the condition
number of the matrix, and therefore also the sensitivity to noise. In this
method, if none of the eigenvectors are discarded, the problem reduces to that

of solving the least squares fit problem, i.e.

D = uTt(TTt)"! (2.19)
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From Eq. (2.17), it can be seen that the statistical retrieval reduces
computationally to the multiplication of the "D" matrix with the data

vector, p. It is therefore qui = an efficient approach.

2.3.3 Smith's Simultaneous Approach

This approach employs a perturbation form of the radiative transfer
equation which relates changes in atmospheric path parameters to changes in
sensor channel brightness temperatures. These changes are defined with
respect to a selected a priori first guess or climatological mean. By
inverting this relationship in a least squares sense, residuals in channel
brightness temperatures (defined as the difference between observed brightness
temperatures and those evaluated assuming the first guess atmospheric pro-
files) can be used to evaluate the most likely atmospheric profile. This ap-
proach uses all channels and retrieves such path parameters as the temperature
and water vapor profiles, surface temperature, and surface emissivity
simultaneously. Therefore, Smith calls it a simultaneous retrieval method.
Other approaches generally use "temperature" channels to retrieve temperature,

"water vapor" channels to retrieve water vapor, etc.

Writing Eq. (2.5) in a perturbation form, the change in ith channel radi-

ance is given by:

0 0
aB ar ar 9B
SR, §T aT 9p d 6q aq 3p dp
Py P
+ éei Bi (Ts) S (ps) (2.20)
dB.

where §T(p), 6q(p), 8¢, and 6Ts are changes in the temperature and moisture

profiles, surface emissivity, and surface temperature for an a priori value,

e.g.,
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§T(p) = T(p) - T(p). (2.21)

The a priori value can be a first guess or climatological value. The change

in ith channel brightness temperature is given by

5Ty, - 6R1/[%%]T (2.22)
By

Focusing on the temperature profile alone, the perturbation profile §T(p) can

be expanded about a suitable set of functions ¢j:

M
§T(p) = z e j(p) (2.23)
j=1

We have used empirical orthogonal functions (EOFs) of temperature and moisture

in our work. (Smith uses the weighting functions.) This result is:

M
STBi - z a QlJ
=1
or 3 (2.24)
STB =& a
where

aBi
¢j(P a'l‘ ap dp. (2.25)

In this equation, STB is a vector of residuals of observed brightness
temperature from an a priori set based on the assumed first guess temperature
and water vapor profiles. By linearizing the result above, it can be related
to the physical temperature retrieval approach described by Susskind et al.
(Susskind et al., 1984).

The inversion for the temperature profile is obtained by solving (2.24)
above for the vector, a, of coefficients in the EOF expansion about the first

guess. This is done using least squares:
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— T t . T -
a=(Pd+0I) 1O STB (2.26)

where the oI term stabilizes the matrix inversion. This type of least squares

is often called ridge regression and o the ridge parameter. Once inverted:

T(p) = T(p) + 6T(p) (2.27)

where §T(p) = zgai ¢1(p). (2.28)

Smith et al. (1986) have applied this technique to retrieve temperature
and water vapor using HIRS2 data and to HIS interferometric data sets (Smith
et al., 1987). The simultaneous approach has also been adopted to unify
retrievals using DMSP microwave mission sensor (i.e., SSM/T, SSM/T-2, SSM/I)
data (Isaacs, 1989).

2.4 Selection of Path Characterization Retrieval Algorithm

Based on our review of the computational attributes of these methods and
the requirements imposed by interfaces with the FASCODE formalism, a variation
of the simultaneous approach which we have called the physical least squares
method has been selected as the viable methodology for the path

characterization problem.

A number of considerations have contributed to this decision:

(a) Statistical: Implementation of the statistical retrieval approach is
based on the availability of statistics relating sensor channel data
(brightness temperatures, radiances, spectra) and the desired path
characteristics (level temperatures, constituent abundances, etc.). In a
sense, this is the most versatile approach since sensor data can easily
be correlated with path dependent parameters of any kind. As a practical
matter, however, such statistical data bases, even if available, can’t
readily be included with FASCODE. We require that the path characteriza-
tion retrieval process should be independent of external data bases. The

required statistics could be generated using FASCODE as the sensor simu-
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(b)

lation model. However, in our judgment we feel that, in its current
form, the production of simulated statistical data bases would be too
costly for the average user. (These considerations depend to a certain
extent on whether an efficient rapid algorithm is feasible for use with
FASCODE). Another nontrivial disadvantage of the statistical approach is
its inherent linearity which limits its applicability to the retrieval of
constituent abundances. Finally, the approach proceeds somewhat inde-
pendently of the essential physics of the radiative transfer process.

This is not very satisfying to us.

Chahine - The Chahine type retrieval avoids the requirement for sta-
tistical data bases required above. It also treats the nonlinearities of
the problem and includes the essential physics of radiative transfer. We
see a difficulty, however, in a straightforward, generic code implementa-
tion which will treat the broad range of user defined problems which will
potentially be encountered. The most effective formulation of these
retrievals are individually designed to specifically treat temperature,
moisture, clouds, etc. This is an important consideration because the
retrieval of constituent abundances will require a retrieved temperature
profile. In the satellite retrieval problem, clouds are done first,
followed by temperature, and then perhaps moisture (see Susskind et al.,
1984). 1It is not clear that this hierarchy of retrieval calculation can
easily be established for the generic path characterization problem. For
example, assuming that two or more constituent abundances are required,
and that it is always necessary to do the temperature retrieval first,

how does one decide which species to retrieve first?

An additional consideration, often missed, is that the relaxation
equation used in the Chahine type retrieval, must be carefully formulated
to optimize the problem. The relaxation equation provides the relation-
ship which adjusts the nth
solution., Studies at AER have indicated that this must be carefully

order trial solution to obtain the n+1th

selected for the water vapor problem, bearing in mind the physics of the
water vapor absorption process for the selected channel set. This is not
possible in a generic formulation, and we suspect the relaxation can be
suboptimal (i.e. over- or under-relaxed). This could lead to convergence

problems. Finally, as with all iterative approaches, first guess values
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for desired parameters are required. This is not an important restric-
tion, however, since the inherent FASCODE model atmospheres can be used

to provide the appropriate first guesses.

(c¢) Simultaneous - The simultaneous retrieval avoids most of the pitfalls
discussed with respect to the approaches above. It has the following
attributes: (a) no extensive supplementary data sets are required,

(b) the method is self-contained, (c) nonlinearities and the physics are
a.l treated, (d) there is no requirement to establish a hierarchy for the
retrieval process since all path parameters are treated simultaneously,
and (e) the analog of the relaxation equation, based on a perturbation
approach applied to the forward problem, is intrinsic to the formulation
and need not be individually formulated. A further appeal is its

capability for generic application.

The discussion above is summarized in the attached Table 2-5. The
FASCODE related attributes of each retrieval approach which were considered in
the selection process are illustrated. The desirable attributes are indicated
in italics. The choice of the simultaneous retrieval approach is most

consistent with the desired attributes relative to a FASCODE implementation.

3. PREPROCESSING ALGORITHM

The purpose of the screening algorithm is to provide the user with
potentially fruitful spectral regions for the retrieval of desired atmospheric
properties. The spectral data for each molecule is taken from the HITRAN
database, the background atmosphere is specified via FASCODE procedures, and
the screening algorithm selects the ideal set of wavenumbers to cover the

range in optical depth.

3.1 Spectral Screening

The objective of this code segment is to avoid the necessity to perform
multiple FASCODE calculations at full spectral resolution to identify

potentially useful spectral regions.
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Table 2-5 FASCODE related attributes of candidate retrieval approaches

Approach/Reference
Statistical Iterative Simultaneous
Attribute (Gaut et al., 1975) (Chahine, 1972) (Smith et al., 1985)
External data bases yes no minimal
required
Nonlinear no yes yes
Physics treated no yes yes
Hierarchy required for no yes no
multiple parameters
Relaxation equation n/a no yes
optimization
First guess required no yes yes
Generically applicable yes no yves

We have decided that a suitable band model would provide the essential
information to accomplish this aspect of the preprocessing. The following
discussion describes the development of this band model. The governing

equation for the emitted flux reaching the top of a plane-parallel stratified

atmosphere overlying a black surface at pressure p, is (Kaplan et al., 1977):
0
I, = [ B(T(®)]ldr,(p,0)/dlnp]dinp
Po
(3.1)

+ Bj[T(ps)]rj(pS,O),

where Bj(T,vj) is the blackbody radiance in a channel centered at frequency
v

i

If the channel has an effective bandpass Dj and contains a random array of

lines of individual equivalent widths wji’ the average transmittance is
(Kaplan, 1953):




7j(P;0)11neS = exp [' ? Wji(pyo)/bj} (3-2)

to the extent that the lines in Dj are representative of those in a broader
bandpass. 1If, further, the lines have a Lorentz shape and their intensi-
ties Sji and halfwidths aji are independent of temperature and the absorbing

gas is uniformly mixed in the atmosphere with volume fraction q, the

individual equivalent widths have the value (Pederson, 1942):

Wi (P 0) = 2./§?aojip/po>r(nji + 1/2)/T(nyy), (3.3)

where e, is the halfwidth at reference pressure P, and

il

myg = (a84;pg)/(2may ip°g> ' (3.4)

J

is independent of height with o being the reference density used to define

Sji and g the acceleration of gravity.

With the substitution of Eq. (3.3), Eq. (3.2) becomes

7j(p’o)lines - exp('ajp)’ (3'5)
where _
21#
a, = Za T(n + 1/2)T(n..) (3.6)
h) pODj 1 oji ji ji

is a constant, which approaches proportionality to

[@log) = (5;5ay )12

i T

as the "ji's increase, and to (q/po)z S
i

)

as the qji's decrease.

ji

In terms of absorber amount

9

m = P
Po8 0

(3.7)
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the optical path in the vertical from Py to the top of the atmosphere is
obtained from Eqs. (3.2) through (3.6):

2z . I(S;,m/2nay + 1/2)

-lnr (p,,0) =
jro Dji 1 oji P(Sijm/Zxao)

(3.8)

This asymptotically approaches, in the weak- and strong-line limit,

respectively,

- - - - D 3.9
in rj(po,O)WL é;fo( 1n fj(po,O) f Sjim/ J (3.9

-In(r.(p,,0)o; = lim (-1n 1 _(p,,0) = %/2S, ma,../D.. (3.10)
jrorTsL Sm/ao*m jro PR S 0ji’ "]
It can be representz=d by, and has the same asymptotic limits as, a

computationally ~fficient approximation

S.im S.im -1/2
-1n 7,(p;,0) e R , (3.11)
i)
1

which agrees with (3.8) to better than one or two percent. It is similar in
form to the Goody (1952) random exponential model, which, however, differs in

the strong-line limit by u factor of J/x/2.

The weak- and strong-line approximations (3.9) and (3.10), can be used
for a preliminary spectral screening to eliminate parts of the spectra that
would not be useful for remote sensing purposes. For example, spectral
regions Dj need not even be considered for temperature sounding in the nadir
viewing mode if the equivalent optical path of the molecular species

considered is less than say, 0.01.

To the extent that the assumption of constant temperature and composition
hold, the integrated optical path from the top of the atmosphere to any
pressure level can be obtained by a linear multiplication of p/p,, as can be
seen from Eq. (3.3). This is the quantity required to compute the weighting

functions. Further screening and preliminary channel selection require taking
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into account variation with height of temperature and composition, using
various typical or standard distributions. The temperature and composition
corrections can be accomplished, in first order, by Godson’s (Rodgers and

Walshaw, 1966) scaling approximations, with the use of precalculated tabula-
tion of ratios of £ S.; and of £ / S;:a_.. as functions of temperature.
1 "3t i jivoji _

We account for the temperature dependence of the line strengths by
compiling the quantities, ? Sji and of % j”§3;5;3; as a function of tempera-
ture using the values, 200K, 250K, 296K, 340K, and interpolating as
required. An efficient and accurate parameterization which we have developed
uses a mixing function, vy = 7y /(7yp + 7g1). To obtain a hybrid optical depth
for the region intermediate between the two limits, the following criteria

have been established:
If vy £ 0.5,

r - A(y) TWL (3.12)

2
where A(y) = [—5—1;12—]1/2

(1-7)2 + 12
If v > 0.5,
T = B(Y)TSL
2
where B(y) = l—zf——z 172 (3.13)
(1-v)" + «

Equations (3.12) and (3.13) provide a good approximation to the optical depth
while allowing for a simple Curtis-Godson path characterization and
computational efficiency.

Figures 3-1 and 3-2 illustrate results of the optical depth calculation

1 at 1 cm'1

for water vapor and ozone, respectively, for the first 100 cm”
resalution. The choice of resolution should be guided by the trade-off
between high resolution FASCODE run time and faster screening algorithm

1

application. For example, 1 cm = would not be appropriate to screen for 0y in

the microwave, but would be to look at C02 in the infrared. Plotted are the
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Figure 3-1. Screening algorithm calculation of water vapor optical depths for
0-100 cm 1 region.
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weak-line, strong-line, and intermediate (see Eqs. (3.12) and (3.13)) optical
thickness for each absorber assuming a path from space to an altitude of

40 km. These values scale with the Curtis-Godson modified absorber amounts.
The rotational water vapor features at 22.235, 183.31, and 326 GHz are
apparent as is the regular nature of the weak ozone absorption. Bear in mind

that this data base is to be used for screening purposes only.

3.2 Screening Algorithm Implementation

The screening algorithm uses as inputs the object code FSCATMB (from
FASCODE), input files Tape 5 (for FSCATM), and database files T200P1, T200P2,
T200P3, T250P1, T250P2, T250P3, T296P1,T296P2, T29613, T340P1, T340P2, and
T340P3. The database files store the molecular strong-line and weak-line
optical depths for 4 temperatures and 28 molecules. The main output file is

Tape 20, with a plotting file Tape 19.

The screening algorithm is shown schematically in Figure 3-3. To use the
algorithm, the user specifies the atmosphere in normal FASCODE mode, specifies
the wavenumber interval to be screened, and designates which molecules are of
interest and which molecules constitute the background (usually all molecules
are included). The algorithm echos back this information in the printout. It
then reads the strong-line and weak-line molecular opacities off the database
for the appropriate temperature, wavenumber, and molecules. A temperature and
pressure interpolation is done. The strong-line and weak-line molecular
opacities are scaled by column amounts and then are combined into a hybrid
opacity. The optical depths are binned for the molecules of interest
according to the number of channels selected by the user to specify his

sounding.

The algorithm evaluates the optical depth for the molecules of interest
versus the optical depth for the entire atmosphere as a function of wavenumber
over the wavenumber interval. The algorithm prints out a histogram of the
optical depths for the molecules of interest. Next it prints out a histogram
of the number of wavenumber bins where the molecules of interest are easy to
pick out from the background atmosphere. Then the algorithm selects and
prints out the best wavenumber in each optical depth bin (channel) which has
the best discrimination to do that sounding. The data can be plotted with
standard FASCODE plotting routines using the plotting output file, Tape 19.
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Figure 3-3. Schematic of retrieval screening algorithm.
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3.3 Sample Output

Appendix A contains sample output from the screening algorithm. This

case used a wavenumber interval of 1200 to 1950 cm'1

(FASCODE model 6) which used all 28 molecules, and the molecule of interest

, a background atmosphere

was water vapor.

4. RETRIEVAL CODE IMPLEMENTATION

4.1 Retrieval Approach

As the primary element of our path characterization model a general
program has been developed to retrieve atmospheric state parameters including
temperature, molecular species concentrations, path boundary parameters
(emissivity/reflectivity) and the pressure at the boundary (or lowest limb
layer) from path optical properties such as atmospheric path radiance and
transmittance. The present retrieval approach assumes that an accurate
forward model is available which, provided with the atmospheric state
parameters, calculates accurate path optical properties. Since this retrieval
method is directly dependent on the physics included in the forward model, the
present approach represents a physical retrieval method. FASCODE has been
used for the forward model in the current implementation because of its
flexibility and accuracy. The model has a distinct advantage in terms of the
spectral extent over which it is capable of performing atmospheric radiance
and transmittance calculations from the microwave to UV. A principal
liability of using an accurate line-by-line calculation such as FASCODE for
the forward problem, is the computational cost of performing the forward
calculation. While this model is currently not viable for operational
retrievals, utilization of rapid algorithms (see Section 2.1.3), anticipated
future improvement in computational power and more importantly the utilization
of parallel computational methods may ultimately enable the use of line-by-
line codes for operational retrievals. Another significant advantage of using
FASCODE for the forward model is the ability to control the resolution of the
model. The present method enables the study of the dependence of a retrieval
measurement approach on resolution. Further, retrieval results may be studied
for combined high resolution microwave measurements (AMSU) and lower

resolution infrared measurements (AIRS).
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The nonlinear method of physical least squares (PLS) has been utilized to
retrieve the atmospheric state parameters from radiance measurements. For
this method, derivatives with respect to the state parameters are required.
These derivatives are obtained from discrete finite differences by perturbing
the forward model. This operation constitutes the most computationally in-
tensive aspect of the present method. In general, the least squares method in
the absence of constraints requires that the number of measurement values ex-
ceed the number of parameters to be retrieved. This point will be considered

in more detail in the context of the constrained least squares method.

Two options are provided by the current PLS model: the maximum likeli-
hood method (MLM) and the ridge regression method. Included in the
implementation is an option to perform an eigenanalysis of the system
including parameter retrieval from the eigenvalues. An error analysis is
provided given estimates of the measurement noise and the error covariance of
the first guess if the maximum likelihood method is selected. Also, included
in the program is the capability to add noise to the measurements either with
a fixed seed or user supplied seed. The retrieval may be performed in a
representation in which the measurements are linear in radiance or in a

representation linear in equivalent brightness temperature.

It is desirable in a retrieval scheme of this type to constrain the
retrieved state parameters to physically realizable values. An example of
such a constraint relates to the retrieval of the mixing ratio of water vapor
profiles for which the relative humidity at each level should be constrained
to be greater than zero and less than 100%. Such linear and nonlinear
constraints may readily be added to the present program. However, in the
studies performed with the code thus far, violation of physical constraints
has not been observed. This is attributable to the constrained least squares
method we have adopted for which the state parameters that might not be well
determined (thus possibly having non physical values) tend to be constrained
toward physical values. Wherever possible, consideration has been given to
developing the model in the context of physical constraints. For instance the
hydrostatic equation is implicitly contained in the retrieval results for
application to the terrestrial atmosphere. This is a consequence of the fact
that changes in the retrievable layer parameters have minimal effect on the
mass of the layer (variation of the water column in a layer may have a small

effect on layer pressures).
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4.2 Physical Least Squares Theory

The physical least squares (PLS) approach is advantageous for path
characterization since it explicitly treats all variables affecting path
electro-optical properties on an equivalent mathematical basis. For this
problem of the estimation of state parameters from observations, the concept
of two limiting spaces proves useful: measurement space and null space. A
state parameter is considered to be in measurement space if the estimation of
the parameter is strongly dependent on measurements from the observing system
and in the null space if it is not dependent on the measurements. For
atmospheric state parameters that are outside null space, there is no
requirement for a priori climatological data on the desired path parameters.
Such information is, however, useful in formulating the first guess and
accelerating convergence. Our implementation of the PLS method is consistent

with the approach of Rodgers (1976, 1990) and more recently Eyre (1989).

The problem of retrieving atmospheric state parameters, x, is posed in
terms of minimizing the square of the differences between the observations and

the forward model F(x) such that the variance, 02, given by

oF =z U (R, - F (0] (4.1)
1 i
is a minimum. W; is the weight for the i’'th observed radiance, R;. This
approach has two attractive attributes: (1) an extensive body of work exists
on methods for solving the problem formulated in this way and (2) the final
solution is in the linear regime enabling the implementation of a compre-

hensive error analysis. We follow the customary approach to the solution of

this problem by adding a penalty function, xTFx, to o2 obtaining

o2 = [R - F(x)]T W [R - F(x)] + x'T x 4.2)
For the maximum likelihood method we have

T - s;l (4.3)

with S, the error covariance of the first guess and
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W=s (4.4)

with Sp the error covariance of the ..asurements. For the ridge regression

approach, T is given by
- 4.5
rij 6. .7, (4.5)

where 7 is a stability (damping) parameter. In this approach I' is viewed as
constraining the direction and length of the step for the nonlinear problem
(Levenberg, 1944; Marquardt, 1963) as well as providing a procedure to treat
the ill-posedness.

The retrieval is obtained by iterative implementation of the relation

(compare to 2.26-2.28)

R Y S (4.6)

The radiance residuals, r™, are given by

=R - F (xM) 4.7)

0

with x° the first guess. The matrix K represents the Jacobian of the forward

model with respect to the state parameters, obtained in our case from finite

forward differences.

_F (xO + 6x) - F(x?l

K 5% (4.8)

The derivatives are updated as infrequently as possible as a consequence of
the high cost of the forward calculation. In most of the cases we have
studied, convergence has been achieved in two or three iterations without

derivative updates. The quantity

H =KWK +T (4.9)
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from Eq. (4.6) represents the covariance matrix for the measurement vectors
and H'! is the covariance matrix for the state vectors. The error analysis

associated with this development for the PLS is provided in Section 5.

4.3 Role of the Penalty Function

The penalty function (see Eq. 4.2) serves two important but unrelated
purposes in the PLS retrieval method. The first purpose relates to the fact
that retrievals of the type we consider here are often associated with ill-
posed or poorly posed problems (see Section 2.2). The source of the ill-
posedness is related to the fact that some of the state parameters may be in
null space or that a near linear relationship may exist among two or more of
the state parameters. In the case of ill-posedness, the covariance matrix H,
in the absence of the penalty function, I'=0, is ill conditioned and the
determinant is near zero, precluding the determination of a stable inverse.
The penalty function serves to address this problem. In the case of the
maximum likelihood method the quantity I' is given by the inverse of the error
covariance matrix, Eq. (4.3), so the problem of ill-conditioning is addressed
in a prescribed way. For ridge regression, the situation is less clear. For
this case, Fij is often given by Eq. (4.5) so that a quadratic penalty
function from Eq. (4.2), Pq, is given by

(4.10)

This definition effectively creates a parabolic well around the current value
of the state parameters, the steepness of the well controlled by uE The
selection of 75 in dealing with ill-conditioning has traditionally been a
difficult issue. In our experience a choice is made based on an estimate of

2

the allowable increase in ¢

as a consequence of a given change in x In

j .
actuality this approach represents a crude approximation to using the diagonal

elements of the inverse of the error covariance matrix in the maximum
likelihood method.

The second purpose for the penalty function is to control the step size
and direction in the implementation of the Levenberg (1944) - Marquardt (1963)
approach to nonlinear least square problems. For this aspect of the applica-

tion of the penalty function, 7 is chosen to be as small as possible
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consistent with the solution space remaining in the same well. As the problem
is iterated, the 7j are relaxed to zero to accelerate convergence. This topic
has been discussed extensively in the literature, a particularly good
reference is Dennis and Schnable (1983). For the present work, we have found
that using the error covariance matrix with the maximum likelihood method has
served to fulfill the role of controlling the step size and length for the
iterative solution. As a consequence, the relaxation of the penalty function

for the purposes of accelerating the solution has not been pursued.

It should be mentioned that the matrix I' in the penalty function need not
be diagonal. In particular, T is not diagonal for the maximum likelihood
method for which it is given by the inverse of the error covariance matrix of
the state parameters, although we have not had the full matrix available to
study the effects of off diagonal terms. The matrix I must be positive _
definite in order that the covariance matrix S be positive definite. One of
the well known consequences of retrieving state vectors using the present
method is a tendency toward alternating error in the retrieved state
parameters, an effect sometimes described as jacknifing. Twomey (1977) has
pointed out that a smoothness constraint may be imposed on the retrieved state
parameters through the application of symmetric matrices with off diagonal

elements. For instance the following form of T

1-1
1]-12-1
= - (4.11)
2 -1 2-1

-11

will serve to minimize differences between adjacent state parameters providing
a smoothness constraint. Second derivative smoothing can be particularly

effective.

4.4 Retrieval System Eigenanalysis

In order to study the condition of the covariance matrix and to provide
an alternate solution method for the state vectors, an eigenanalysis has been

included in the program. Eq. (4.6), expressed as

5, - «Wwk + 1 &), (4.12)
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KlWr = (KWK + T) 6x

may be written in matrix form as

Y=Hx (4.13)
where

X = §x, (4.14)

YK Wr (4.15)

and H is the covariance matrix of the Jacobian for the problem. Performing a

diagonalization and obtaining eigenvectors T and eigenvalues Al we have

YT = THT TXT (4.16a)
and

YT = A1 TXT. (4.16b)

The spectrum of the eigenvalues with I'=0 provides information on the number of
parameters that may be retrieved for a given problem. The eigenvectors for a
given eigenvalue provides information on the linear combination contributing
to a given eigenvalue. If a linear relation exists between one or more state
parameters, an eigenvalue is identically zero and the eigenvectors identify
the linear relationship. The determinant may readily be obtained as the
product of the eigenvalues. The solution vector for X is also available from
the relation

1

X=TAX " 1%Y (4.17)

4.5 1Initial Guess Dependence

One of the most important aspects of a regression approach of the type

implemented here is the choice of the initial guess, x°.

In both the linear
and nonlinear situation, the state parameters are constrained to the initial
guess for the parameters which are in nuil space. In the linear problem, for

parameters in measurement space, the choice of initial guess will not influ-
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ence the result. In the nonlinear case, the choice of initial guess deter-
mines the well in which the retrieved parameters are finally obtained. For
cases in which Eq. (4.2) has more than one local minimum the choice of the
first guess is a particularly important issue. In general for the nonlinear
problem we seek the solution that represents the global minimum. Finally, in
the intermediate region between null space and measurement space, the initial
guess will have an influence on the retrieved parameters. It is useful to
define an equivalent parameter index (EPI, ej), which is a measure of the
degree to which a parameter is in measurement space (ej-l) or null space

(ej-O). EPI is given by the relationship

_ T -1 T
€ = {[K WK + T] (K wx]}jj (4.18)

or equivalently
-1 T
e, = 4H 7 K'WKp.. 4.19
J{ }JJ (419

The number of equivalent parameters (Nep) for the problem is given by the

trace, so that we have

-1.T
Nep = tr {H K WK} (4.20)

or equivalently

Nep = ? ej. (4.21)

This quantity will be required for the error analysis. The values for ¢ range
from 0 to 1 so that the Nep cannot exceed the number of state variables in the
problem, N,. As a consequence, it is possible to study a problem in which the
number of state variables exceeds the effective number of measurements, as

long as Ny, does not approach the number of measurements. It is in this

P
context that the assimilation of the AMSU A and AMSU B radiances into the

British Meteorological Office NWP model is proposed (Eyre, 1989).
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In general the performance of the retrieval procedure is improved in
cases for which the first guess is close to the true solution. The effect of
the transition region between measurement space and null space is reduced and
the convergence to the true solution in the nonlinear case is facilitated.
Operational applications of the PLS retrieval method have approached this
problem in at least two interesting ways. For the British Meteorological
Office NWP application, the first guess for temperature and water profiles are
obtained from the prediction of the NWP model itself (Eyre, 19893). 1t is
estimated that this will provide a guess temperature profile within 2K of the
correct profile and water vapor to 50% at the NWP levels. For icirievals at
NOAA/NESDIS, a classification scheme has been implemented to attain a guess
profile close to the true solution, then the PLS method is applied (MacMillan,
1989).

Strategies for the solution of non-linear minimization problems are
widely studied in optimization theory. An approach that facilitates the
retrieval procedure is the soclution of the problem in sub-spaces in advance of
seeking a solution in the full space. The reason for this is that the smaller
matrices are generally better conditioned than the larger matrices; the sub-
problem is better pcsed than the full problem. This has implications for the
question c¢f Lequential versus simultaneous retrievals aird fo retrieval of
atmospheric profiles for the limb case. It is instructive to consider an
example of this strategy for the retrieval of temperature and water vapor
using microwave and infrared channels. First a temperature profile would be
retrieved using microwave channels least affected by water vapor or other
molecular absorption, since this is essentially a linear problem. Then the
infrared radiances would be included and a refined atmospheric temperature
profile obtained. Next, water radiance channels would be included and a water
vapor profile obtained using the previously obtained temperature profile.
Finally, the full problem would be treated retrieving simultaneously tempera-
ture and water vapor profiles. The current path charactevization code has the

capability to study such strategies in a relatively straightforward manner.
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5. COMPREHENSIVE ERROR ANALYSIS

This section describes a comprehensive error analysis package that has
been developed based on Rodgers' work (see Rodgers, 1990) and incorporated
into the retrieval program. This algorithm provides an estimate of the
covariance of the retrieval errors that includes the effect of the measurement
noise and the uncertainty on the prior information which constrains the
inversion. A measure of the performance of the retrieval is derived, whenever
possible, from a comparison of the covariance of the state parauweters before
and after measurement. The important problem of the effects of errors in the
forward model parameters, which have not been explicitly considered in the

current version of the algorithm, will also be discussed in this section.

5.1 Theory

5.1.1 Perfect Model Case

In the following it is assumed that the solution x™ at the nth iteration
iies sufficiently close to the target profile so the forward model in a

linearized form,

= R(x-x") - €, (5.1)
i« the ocosurement noise, is valid. Using (5.1) in the general
solution yiven in Eq. (4.6) leads to the following expression for the new
estimate xn+1 of x
+1 - -
s a T xex™) + w T €. (5.2)

+1

or after rearranging the terms in Eq. (5.2) to give x™* as a departure from’

<,

x“+1 X = H'lr(x“-x) + H'lew € (5.3)

Equation (5.3) expresses the total error in the retrieved parameters as the

sum of a "null-space" error, so-called because it corresponds to those para-

meters that cannot be measured by the observing system, and the contribution
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of measurement errors. The total error covariance can be calculated from

Eq. (5.3) as

S = Sy + Sy (5.4)
where,
s, -nlas, ot (5.42)
N X
and
s -n! (KTS 'lx) n! (5.4b)

are respectively the null-space and measurement error covariance matrices (it

was assumed here that W = Sr’l). For the maximum likelihood method, T = Sx-l
and a much simpler form of (5.4) is obtained,
s =n1l : (5.5)

Note that it is the covariance of the first guess, S_, that has been used in

"
Eq. (5.4a) instead of the covariance of x", the solution parameters at the nth
iteration. This approximation is valid since the values of parameters that
belong to the null-space of the observing system remain close to the values of
the initial guess. Outside the null-space, the total error is dominated by
the measurement error and the impact of replacing x™ by x°, in Eq. (5.3), is

generally minor.

5.1.2 Model Errors

Model error is an issue that has not been considered in the previous
development. We are concerned here with the systematic bias in the estimate
of the observed radiance residuals that arises from errors in the forward
model such as spectral line data, continua, photometric calibration, radiance
algorithms and atmospheric layering. In principle, these biases can be
estimated based on a large number of independent measurements or can be
removed by tuning of the forward model. When model tuning is not performed,
it is possible to account for the systematic errors in the above error

analysis by adding in Eq. (5.4) an extra term of the form,

s_ - H! (K™K s Kk, Twk] 11 (5.6)
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where Ky represents the sensitivity of the measurements to the model
parameters and S, is the covariance of our knowledge of the model

parameters. In this probabilistic approach, S, is the componrii of the total
error covariance that is due to the uncertainties on the model parameters.
The expression for S_ given in Eq. (5.6) is similar to the one suggested by
Rodgers (1990). Although this expression incorporates the effects of the
model errors in a mathematically consistent way, it is difficult to apply as
such when dealing with line-by-line models. 1In this case, the large number of
parameters that are to be considered makes it cumbersome to attempt to evalu-
ate Ky. As a possible shortcut, a rough estimate of S’y = KbSbeT can be
obtained from a comparison of radiance calculations that are performed using
perturbed forward model parameters such as different spectral line parameters.
When the model errors are taken into account in the solution, the general
expression for the total error covariance becomes

-1 T -1 -1
S =H [IST+K (S +58 ) K] H . (5.7)

It should be noted that the error due to effects such as aerosol and cloud
contamination which would give rise to systematic errors if only molecular
absorption is included in the forward model, can be included in the present

treatment of model error.

5.1.3 Retrieval Performance

The matrix S as given by Eq. (5.7) can generally be taken as a good esti-
mate of the covariance matrix of the retrieval in nonlinear problems, at least
when K does not vary rapidly with x. One can therefore assess the performance
of the retrieval by comparing S to the covariance of the a priori information.
The simplest measure of the performance of the system involves the diagonal
elements of these matrices which contain the variances of the state para-
meters. It is useful for instance to evaluate the reduction in the variance
of each individual parameter as a consequence of the measurement. Similarly,
it is common to use the rms error, obtained in this context as the trace of
the covariance matrix, as a performance index for the whole profile. However
these diagnostics may be sometimes misleading as they do not take into account
the correlations between the errors at different levels. In that sense, the

concept of "information content" (Rodgers, 1976) is more appropriate. The
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information content of a measurement is defined as the change AH in the

entropy of the probability density function of x due to the retrieval process.

Assuming that the error statistics are Gaussian, the information content

of a measurement is given by

1 1 g
AH = 2 log2 [s| - 5 1og2 |Sx|, (5.8)
where || designates the determinant of a matrix (see Rodgers, 1976).

5.2 Algorithm Description

The different actions taken by the error analysis algorithm depend on the
nature of the information supplied by the user. These are summarized in a

diagram of Figure 5-1.

A full error analysis can be carried out only if the a priori error

covariance of the state parameters, S and the channels weights, W, are

x’
provided. When S, is not available a solution profile can still be obtained
with the ridge regression method. However, the algorithm will not perform the
complete diagnosis of the retrieval and will provide only an estimate of the

measurement errors.

As far as the chamnnel weights are concerned, the matrix W is treated as a
diagonal matrix. No provision has been made yet for dealing with inter-
channel correlations. The user can input the elements (W;;} directly or
choose to enter a set of standard deviations of the measurement noise either
in radiance units or in equivalent brightness temperature. The weights are

scaled internally by a factor e such that,

where N is the number of non-zero elements. The solution profile remains
unchanged if both W and TI' are multiplied by a constant. The purpose of the
scaling is to fix the range of reasonable values of the damping factors,

thereby facilitating the tuning of the solution whenever the conventional
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‘ll!!!!!)cz"ll!!!!!)a (X))

MAXIMUM RIDGE
LIKELIHOOD REGRESSION

FROM RESIDUAL

FULL ERROR
ANALYSIS

VGUESS
AVAILABLE

no

MEASUREMENT

FULL ERROR
ANALYSIS

ERROR ONLY

Figure 5-1. Flow diagram of the FASCODE retrieval error analysis for the
maximum likelihood and ridge regression options. The circled
names correspond to the user input data (here VGUESS is the error
covariance matrix of the first guess). The quantity a is a scale
factor applied to the input data (see text).
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ridge regression method is used. It is easily shown that in this case, an
appropriate expression for the covariance of the solution is,
[ [ . ’ ’ . ' ’ r
S = (KTW K+T) 1 [aKIW K+T Sx 1F ] (KTW K+T) 1, (5.9)
vhere, w o= oxSr'1 is the scaled channel weights matrix and I' is the matrix

that contains the input values of the damping parameters.

In order to facilitate the comparison with the ridge regression method,

it was decided to treat the weights in the same way when the maximum likeli-

hood option is selected. In this case, the scaling is applied to SX'1 also.
The covariance of the solution can be obtained directly in terms of S'x'1 -
an'l and Sr"1 = aSr'l, as

s -a's' k+s’ THL (5.10)

One interesting feature of the program is its ability to carry out the
error analysis in the absence of a complete characterization of the measure-
ment noise when the ridge regression method is used. 1In this case, the
program will supply the missing information by performing an analysis with the
measurement residuals. In the simple situation considered so far, it is
assumed that only the relative weighting of the channels is known to the
user. In other words,

! -1

W = al
r

where a is now an unknown multiplicative constant. Noting that the variance

0% of the weighted measurement noise is precisely equal to a,

0?1 = PS_P = aI, (5.11)

2

where P is a symmetric matrix such that P“=W, a convenient estimate of a is

EN rn2 ZN rn2
n=1 - n=1 , (5.12)
tr[I-R(T')] N-tr[R(T")]

>
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with R(I'') = QKH'lkg (see Engle et al., 1986). By analogy with the standard
linear regression formula, we can define the number of equivalent parameters
by tr{R(I'')]. It is important to point out that a is a good estimate of a
when the damping is not too strong. In fact, the damping of the solution
introduces a bias in the calculated radiances. However, when correct values
of T are used, the constraints affect mainly the null-space of the observing

system and this bias is only important in the transition region between null

space and measurement space.

Finally, the output listing for the full error analysis includes the

variances of the retrieved parameters, S as well as the a priori variances

iiv
Sy..- Also listed are the fraction of unexplained variances (FUV) defined for
ii
the ith parameter as
Si1
FUV(i) = 3 - (5.13)
h

6. PATH CHARACTERIZATION RESULTS

The path characterization method has been applied to a number of problems
including the retrieval of temperature and water vapor profiles from SCRIBE
(Stratospheric Cryogenic Interferometric Balloon Experiment) radiance spectra
(Murcray et al., 1984; 1985). This has proven to be a particularly
interesting retrieval because we have been able to identify errors in the
intensities for some of the weaker carbon dioxide bands ou the HITRAN data
base. This has been accomplished following the adjustment of the state
parameters using the present retrieval method. This retrieval application to
the SCRIBE data will be described at greater length in the final report under
contract 19628-86-C-0172. Here we describe the results for two cases. The
first is a simulation case based on the microwave AMSU (Advanced Microwave
Sounding Unit) channels. This case was chosen since the temperature retrieval
in this spectral region is a linear problem and can be used to study the path
characterization model from the point-of-view of Sections 4 and 5. We also
performed retvieval for water vopor and a simultaneous retrieval for
temperature and water vapor for this case. The second problem we have studied
is the retrieval of ozone from an aircraft measurement with the U. of

Wiscovsin H13 (High yesolution Tnterferometer Sounder), (Smith et al., 1983).
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6.1 AMSU Test Case

The channels for the AMSU test case are provided in Table 6-1la. Channel
numbers 4, 8, 11, 13, 15, and 17 were added in the expectation that the system

wight be underdetermined, the number of state parameters being determined by

Table 6-la Specifications for the channels used in this analysis (includes

AMSU/A and AMSU/B). The weights are based on the noise equivalent
delta temperature (NEDT).

CHANNEL FREQ “f=- +/= RADIANCE NEDT NER WEIGHT
NUMBER (GHZ) (GHZ) (GHZ) W CM-! STER-1 K W CM-1 STER-1

1 7.3008 298088 2:i 4,585€-10 AF 9.3216E-13 16467
2 £2.8000 BOEBR 0028 6.353E-1g .25 6.4195E-13 . 34729
3 53.5957 10544 Baeg 6.545E-1x¢ .25 6.6145E-123 .32724
4 53,8690 .o9988 L0008 6.642E-18 .25 6.6799E-13 . 32866
S 54,4000 . BBRBe Ragefsdsg 6.516E-1yg .25 6.8145E-13 .38812
3 54.9488 L8288 O2ee 5.370€E-140 .28 6.95A5E~13 .29¢618
7 55.5089 .B2R88 L0090 6.283C-13 .25 7.8929%E-13 L2844
Y $6.4900 BeRABY L O20Q 6.501E~18 25 7.3248E-13 .26668
9 57.2994 iy 0008 6.543E-1y9 48 1.2893E-12 .£9785
18 57.2984 .21708 LOBY 6.591E~18 .49 1.2993E-12 .g9785%
1l 57.29494 .32214 1928 6.597&E-18 .49 1.2893E-12 .2978¢%
12 57.2984 .32214 8482 6.712E-1g ) 1.2@93€-12 .89785%
13 57.2984 .32214 a31e 6.814E~1g .52 1.5116E-12 .96262
14 57.2994 .32214 B228 6.913E-19 .68 1.8139E-12 LB4349
15 57.2984 .32214 o148 7.8977e-18 78 2.1162E-12 LB319%
16 57.2984 .32214 o 7.221€-18 .80 2.4188E~-12 .B2446
17 57.2984 32214 L0865 7.423€E-19 1.00 3.8231kE-12 L1566
15 57.29084 .32214 LUB45 7.892E-14g 1.28 3.6278BE-12 .gigs7
1g 18.7089 B33 B038 4.0604E~11 .38 9.6628E-14 15.32445
2 31.4£98 BPo28X L Qe 1.202€-18 .30 2.7244E-13 1.92767
ra 89.202¢ .9Le0RE ofrdct 1.295E-83 .58 3.6479E~12 .B1875
22 23.8080 .Be088 0887 7.479E-11 .38 1.5652E-13 5.84941
23 166.00808% .20e8BQ Bo8e 6.312E-09 .68 1.5229€-11 82262
24 183.31981 1.0900808 o882 7.49Q0€E-29 .89 2.4761E~11 .88823
2% 183.3191 3.80028 i 7.888E-99 .89 2.4761E~11 .B9823
26 183.3181 7.0980% .0BR2 8.392E-89 .89 2.4761E-11 80223

Table 6-1b The standard deviation (K) £ the background temperature profile
for the maximum likelihood method, Fig’'s. 6.4 - 6.7.

PAR LAYER & BACKGR.
NUM PARAMETER STD. DEV.
1 17 TEMP 15.789870
2 16 TEMP 11.249889
3 15 TEMP 5.140039
4 14 TEMP 5.549775
5 13 TEMP 5.870264
6 12 TEMP 8.429709
7 11 TEMP 10.080179
8 10 TEMP 9.979980
9 9 TEMP 9.590099
10 8 TEMP 7.149825
1 7 TEMP 7.071068
12 6 TEMP . 7.289719
13 5 TEMP 6.920260
14 4 TEMP 7.071068
13 3 TEMP 10.969959
16 2 TEMP 10.989995
17 1 TEMP 13.019985
18  SURF TEMP 15.000000
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the FASCODE layering, and that additional measurement channels would be help-
ful. The addition of these layers eventually proved to be unecessary as will
be discussed. The centrai frequen. and the associated frequency splittings
are given in the next two columns. The simulated radiances were developed to
be representative of a tropical model atmosphere. This was accomplished by
replacing the U.S. Standard temperature profile in the calculation of simulat-
ed radiances with the tropical temperature profile for the temperature re-
trieval, the U.S. Standard water vapor profile with the tropical water profile
for the water retrieval and replacing both for the simultaneous retrieval.

The atmosphere has 17 layers; the geometry is nadir viewing from 100 km. The
noise equivalent brightness temperature (NEDT) for each channel is provided
together the the calculated noise equivalent radiance (NER) and the calculated
relative weight. The standard deviations for the background temperature
profile are indicated in Table 6-1b. These values of the standard deviation
were estimates based on a climatological data set. The weighting functions

for the AMSU A channels are provided in Figure 6-1 (Houghton et al., 1984).

The first guess for the temperature retrieval is the U.S. Standard tem-
perature profile shown in Figure 6-2a together with the tropical temperature
profile representative of the correct solution. Of particular note is the
sharp temperature reversal and the low temperature at the tropopause for the
atmosphere to be retrieved. 1In Figure 6-2b the weighting functions on the
same log pressure scale as the temperature profiles are provided. The results
of the PLS temperature retrieval using the maximum likelihood method are indi-
cated in Figure 6-3a. The curve labelled TROPICAL-STD represents the error in
the first guess. The temperature residual profile labelled TROPICAL-Cl is the
result after one iteration and TROPICAL-C3 is the result of the third itera-

tion. The radiances used for this retrieval set are without measurement noise.

The derivatives were computed in the reference representation, the U.S.
Standard atmosphere. Of particular interest is the ability of the PLS
algoritnm to retrieve the cold and sharp tropopause of the tropical atmosphere
as evidenced by the temperature residuals at 100 mb. In Figure 6-3b the t 1o
errors for the temperature retrieval are provided. At lower pressures, the
errors approach those of the estimated error covariances of the first guess.
This is further evidenced by the retrieval results in which the error
approaches that of the first guess below 0.4 mb. It may also be noted that

above 500 mb the retrieval error is less than two degrees and is 0.34K at the
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PRESSURE (mb)

1 i I\ e
00— 23 a4 5 ¢ 7
WEIGHTING FUNCTIONS

Figure 6-1. Weighting functions for the AMSU/A channels (from Hougton et al.,
1984).
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surface. At lower pressures the error is less than 4K until the 10 mb level s

reached.

6.1.1 Temperature Retrieval

Table 6-2 contains the results for this temperature retrieval. Column C2
gives the temperature used in the FASCODE forward model calculation for the
third iteration. The linearly predicted constants are given by column C3 with
the indicated probable error (lo). Since the maximum likelihood method is
used, the damping is achieved through the first guess error covariance so the
damping factors including GAMMA are presented as zero. The equivalent para-
meter or fit index (EPI) is provided in the final column, zero indicating that
the parameter is in null space and one in measurement space. The number of
equivalent parameters is obtained from the sum of EPI which for this case
gives 10.96, the possible number of state variables being 18 for the problem.
Of interest is the estimated noise value obtained from the residuals associ-
ated with the retrieval compared with that based on the assumed standard deri-
vation of the measurement noise. After three iterations the variance for this
retrieval, which did not include noise in the simulated radiances, is 0.11576
of that based on the assumed measurement noise. The fact that it is not zero
may be attributed to possible error contributions from the null space transi-
tion regions, lack of full convergence, and discrete numerical effects in the

forward problem.

Table 6-3 provides explanatory information related to the retrieval
including the reference state parameters, x°, the change in state variable for
the derivatives, the difference between the current state variable results
(C3) and the reference values and the percentage changes. The latter quantity
is especially relevant for the retrieval of column abundances. For cases in
which simulated data is used, columns providing the state values for the
simulated case, the difference between the simulated and r-' :rence case and
the difference between simulated and the current result are provided. Note

that it is these latter values that are plotted in Figure 6-3a.

Having established that the number of equivalent variables for the
extended AMSU channels was substantially less than the number of measurement
channels, the experiment for the original AMSU channel set was considered by
setting the weights for the added channels to zero (SRii set large for
channels 4, 8, 1, 13, 15 and 17). The results of this retrieval are provided
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Table 6-2 Results from the second it
showing the constangs C2(x

rat
S)

predicted temp C3(x”), and the probable error using MLM.

MICROWAVE RUN - AMSU CHANNELS - TROPICAL TEMPERATURE PROFILE

3

-t i b s et —a
NOWVIFUMN 2O O0VO O S WA -

18

STM. WGHTED NOISE VAR.=

LAYER &
PARAMETER

17 TEMP
16 TEMP
15 TEMP
14 TEMF
13 TEMP
12 TEMP
11 TEMP
10 TEMP
9 TEMP
8 TEMP
7 TEMP
6 TEMP
5 TEMP
4 TENP
3 TEMP
2 TEMP
1 TEMP
SURF TEMP

c2
sV

213.826521
226.831400
238.999616
253,272694
266.045472
273.037437
260.863089
248.663237
240,255829
228.282258
219.708495
203.956787
203.002734
222.822813
246.876506
270.418298
291.021090
299.955780

FASCODE PATH CHARACTERIZATION RETRIEVAL

OEL
c3

.065454
.106175
039793
.057969
050774
-.082282
«. 192242
114151
- . 060427
.164168
e 227969
.281039
-.549828
.938184
+.903354
. 243394
0467790
.021038

GAMMA = 0,000E+00

€3
1)

213.891975
226,937575
239.039409
253.330663
266.096246
272.955155
260.670847
248,777388
240,195402
228.446426
219.480526
204.237826
202,452906
223.760997
245.973152
270,661692
291.068880
299.976818

ER

1
1

6.3707E-28 TRUE WGHTED NOISE VAR.=
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PROBABLE
ROR FOR C3

5.670800
0.765889
4.985886
5.161775
5.248437
6.459797
7.339175
5.545287
3.875051
3.476311
2.908806
2.333386
2.611045
3.168437
2.933627
1.462842
1.076954

.346188

5.5032e-27

PERCENT
DEL C3/c2

,030611
.046808
.016650
022888
.019085
-.030136
-.073695
045906
-.025151
.071915
<. 103760
137793
-.270847
421045
-.365913
.090006
.016422
007014

INVRT  89/12/13

DAMPING
FACTOR

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000£+00
0.000€+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

RATIO= 1.1576E-01

ion for the temperature retrieval
, the predicted change DELC3, the

09.37.20

FIT
INDEX

.015025
084194
.059082
. 134938
.200636
412764
469900
.691263
.836729
763601
.830777
897541
857641
799220
.928485
.982283
.993158
999467




Table 6-3. Retrieval resulits for a case with simulated data.

the constants for the first guess, DEL refers to

REF indicates
the parameter

increment for the derivatives and SIM indicates the constants for

the simulated data.

MICROWAVE RUN - AMSU CHANNELS - TRCPICAL TZMPERATURE PROFILE

REFERENCE AND SIMULATION DATA

PAR LAYER & REF DEL DIF PERCENT SIM

NUM PARAMETER DATA DERIV C3-REF  (C3-REF)/REF DATA
1 17 TEMP 212.430000 2.000000 1.461975 .688215  207.890000
2 16 TEMP 224480000 2.0000C0 2.457575 1.094786  224.910000
3 15 TEMP 238,1C0000 2.000000 939409 394544 241.950000
4 14 TEMP 251,810000 2.000000 1.520663 603893  256.590000
5 13 TEMP 264.180000 2.000000 1.916246 725356  265.720000
6 12 TEMP 269.750000 2.000000-  3.205155 1.188195  269.180000
7 11 TEMP 259.240000 2.000000 1.430847 .551939  260.920000
8 10 TEMP 245,050000 2.000000 3.727388 1.521073  250.050000
4 9 TEMP 232.150000 2.000000 8.045402 3.465605 239.190000
10 8 TEMP 225,020000 2.000000 3.426426 1.522721  229.070000
1" 7 TEMP 220.580000 2.000000 -1.099474 -.498447  219.120000
12 6 TEMP 217,010000 2.000000 -12.772174 -5,885523  204.480000
13 5 TEMP 216.700000 2.000000 -14.247094 -6.574570  202.240000
14 4 TEMP 217.210000 2.000000 6.530997 3.015974  224.210000
15 3 TEMP 231,770000 2.000000 14.203152 6.128124  245.680000
16 2 TEMP 256,060000 2.000000  14,601692 5.702449  270.620000
17 1 TEMP 278.890000 2.000000 12.178880 4,366912  291.400000
18  SURF TEMP 288.200000 2.000000 11.776818 4.,086335 299.700000
REGION = 1 V1 = 1.678 V2 = 1.678 DV = 8.584E-07 NLIM = 26

TIMING FCR INVRT
READ AMAT EIGN INVT MULT STAT ouTP
L7900 .5280 .0000 2640 .5980 L0590 .1550
TIME LEAVING INVRT 10.2830 TOTAL 2.5650
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INVRT  89/12/13 09.37.20
DIF DIF
SIM-REF SIM-C3
-4,540000 -6.001975
630030 -2.027575
3.850000 2.910591
4.780000 3.259337
1.540000 -.376246
-.570000 -3.775155
1.680000 249153
5.000000 1.272612
7.040000 -1.005402
4.050000 623574
-1.460000 -,360526
=12,530000 ,2642174
-14.460000 -.212906
7,000000 449003
13.910000 -.293152
14.560000 -.061692
12.510000 .331120
11.500000 -.276818




in Figure 6-4a and the *lo error in Figure 6-4b. It may be noted that at the
third iteration, the retrieval residuals for the temperature profile are
slightly greater than those for the extended channel set. The retrieval
errors are only slightly greater than those for the extended channel set and
the probable errors are only slightly larger, with the biggest difference
being somewhat over 1K at 10 mb.

For this near linear case, the retrieval of the temperature profile in
the microwave, the PLS algorithm performs extremely well. A nearly correct
solution is obtained at the third iteration even though the initial guess is
far from the correct solution. The oscillating character of the temperature
residuals, referred to previously as jacknifing, is apparent in the early
stages of the retrieval. By the third iteration this effect has diminished to
a level small compared with the probable retrieval error. In Figure 6-5a
and 6-5b we ind’ :ate the effect of decreasing the variance of the measurement
error by a factor of two. The retrieval error (*lv) decreases by a factor of
two for parameters in measurement space and is unchanged for parameters in
null space as expected. The transition regime from measurement space to null

space extends over a rather large pressure range, roughly 80 mb to 1 mb.

A final test of the retrieval procedure consists of invoking the option
to add noise to the simulated data and is shown in Figure 6-6. The level of
the measurement noise is determined by the equivalent brightness temperature
noise specified for the channel. This test was performed after the first
iteration; consequently, the temperature profile residuals are slightly
different from those of the previous examples. The temperature retrieval
residuals with noise are entirely consistent with the probable error as given

in Figure 6-4b,

6.1.2 Pulse Retrieval

An interesting question arises as to the ability of a retrieval algorithm
of this type to treat discontinuities in the atmospheric profile. To demon-
strate the response of the PLS algorithm, we have performed two retrievals
containing discontinuities in the atmospheric temperature profile: one in
which the temperature of the 550 mb layer is increased by 3K and one in which
the temperature of the 61 mb layer is increased by 3K. For these tests, no
measurement noise has been added to the simulated radiances. The retrievals

for these cases are shown in Figures 6-7a and 6-7b, respectively. 1In the
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550 mb case the temperature is retrieved very accurately, but the oscillatory
behavior at the other levels has increased significantly. This ringing effect
would be reduced by performing additional iterations; the results we show are
for a single iteration. For the 61 mb case, in which the pulse is added to a
layer close to the tropopause, the pulse temperature is not as well retrieved.
The ringing effect is also apparent for this case. Again, if the problem were
iterated the solution would converge on the atmospheric profile including the
discontinuity. Although this capability of reproducing a discontinuity may be
regarded as an advantage of the present method, it is the same property of the
algorithm that allows it to follow the noise. So, while a more statistical
approach may have the advantage of being less influenced by measurement noise,
it has limited capability for retrieving discontinuities. In a more extended
sense, the statistical approach has less capability to describe unusual or

extreme situations, but may be expected to perform better on "average".

6.1.3 Water Vapor Retrieval

The next aspect of the AMSU measurement set that we have considered is
the retrieval of water vapor. In this case the simulated data were obtained
by replacing the water vapor column abundances for the reference atmosphere
(U.S. Standard) by the column abundances for the tropical atmosphere and
running the forward model. The mixing ratio profiles for the two atmospheres
are given in Figure 6-8. Of particular interest is the much higher water
vapor mixing ratio at the higher atmospheric pressure levels for the tropical
atmosphere, approximately a factor of three times greater than for the U.S.
Standard. The weighting functions for both the tropical and the U.S. Standard .
atmospheres for the AMSU water vapor channels related are provided in
Figures 6-9a and 6-9b. Of particular note here are the significant vertical
shifts in the peaks of the weighting functions for the two atmospheres which
is consistent with the differences in the mixing ratio profiles. Since this
is a nonlinear retrieval, this altitude shift has the potential to cause
difficulty in the retrieval. In Figure 6-10a we show the residuals expressed
as a percentage change from the correct solution from the first guess,
TROPICAL-US STD; for the first iteration, TROPICAL-Cl; and after the second
iteration, TROPICAL-C3. The variable chosen in the algorithm for the

retrieval of column abundances is percentage change. This variable may
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equally well be considered as applied to the layer column amounts or to the
layer mixing ratios, since these two variables are linearly related. The
water vapor profile is well retrieved, ~*10%, for pressures above 300 mb as
evidenced by Figure 6-10a. At lower pressure levels, the water vapor state
parameters are essentially in null space. This is partially due to the
location of the weighting function peaks as indicated in Figure 6-10b but more
importantly due to the rapid decrease in the column abundances of water vapor
as a function of altitude. The transition region from measurement space to
null space occurs rapidly from 300 mb to 200 mb as indicated in the * lo error
result of Figure 6-11. Only three of the 17 layer levels are outside of null
space for this case and the effective number of parameters is approximately

one.

Finally, the results for the simultaneous retrieval are provided in

Figure 6-10s with parameter error provided in Figure 6-10b. There is some

increased iustability in the temperature retrieval for this case. Although
the tempera-ure part of this retrieval may be considered linear, the entire
problem is nonlinear due to the simultaneous treatment of water vapor. Had
the initial guess been taken from the results of the previous two retrievals,
then the simultaneous retrieval would likely have converged in the first
iteration to a very accurate result. The retrieved water vapor profile for
the simult.neous retrieval is somewhat improved over the previous retrieval

for water vapor alone.

6.2 HIS Ozone Retrieval Test Case

The PLS method has also been applied to the retrieval of an ozone profile
from data taken with the University of Wisconsin High Resolution Interfero-
meter Sounder (HIS) (Smith et al., 1983). The data were taken with the NASA
ER2 at 19.6 km with a nadir view.

The initial validation of FASCODE with these measurements has been
described by Clough et al. (1989). The measured unappodized radiance spectrum

1 is shown in

in equivalent brightness temperacure from 600-1100 cm’
Figure 6-12. The difference between the measured spectrum of Figure 6-12 and

a forward model calculation with FASCOD2 using radiosonde defined atmospheric

parameters is shown in Figure 6-13a. The strong spectral residuals at
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Figure 6-12, HIS measured radiance spectrum (equivalent brightness
temperature) taken over the ocean on 14 April 1986 from
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WAVENUMBER (CM-1

Difference between the HIS measured spectrum and a FASCOD2 calculated

spectrum using a radiosonde specified atmosphere with U.S. Standard
ozone.
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Figure 6-13b.

WAVENUMBER (CM-1)

Difference between an enhanced version of FASCODE including line
coupling effects, improved carbon dioxide intensities, and treatment of
CFC1ll and CFC12 absorption and the previous FASCOD2 calculated
spectrum. Note that most differences are accounted for with the
exception of the ozone absorption region, 980 - 1100 cm’
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618 cm'l, 720 cm'l, 741 cm'l, and 791 cm'1 are due to line coupling and the
broader absorption features at 850 en'l and 925 cn'! are due to CFC1l and

1 are due to

CFC12 respectively. Some of the spectral differences at 729 cm”
CCl,. In Figure 6-13b we show the difference between a spectrum from an
improved FASCODE model which includes line coupling and CFCll and CFC12
effects and the FASCOD2 model used for Figure 6-13a. For this improved model
a modified set of carbon dioxide intensities was required (Rothman, 1988).
The similarity of Figure 6-13a and 6-13b represents the current state of our
validation for FASCODE and the line data base for this problem. Notably,

1 t0 1100 cm™! does not show agreement

however, the ozone region from 1000 cm
and this is primarily a consequence of an incorrect atmospheric profile for
ozone. The other possible issue is the adequacy of the ozone lines on the

1986 HITRAN data base (Rothman et al., 1987). For the present study we have

applied the PLS retrieval procedure to retrieve an improved ozone profile.

The initial guess for the retrieval is the U.S. Standard ozone profile.
Figure 6-14 shows the HIS spectrum of Figure 6-12 for the ozone region on an
expanded scale. In Figure 6-15a we show the difference between the measure-
ment and a FASCODE calculation using the U.S. Standard ozone profile,

Figure 6-13a for the ozone region. Applying the PLS retrieval we obtain after
the second iteration the spectral residuals indicated in Figure 6-13b. It
should be emphasized that the rms deviation of these spectral residuals is
approximately five times the measurement noise. Possible explanations for
this situation include our failure to properly account for the instrument
function of the HIS instrument, a small frequency calibration error in the
data, and problems associated with the HITRAN database. Current efforts to
deal with the first two points have realized a factor of two improvement in
the residuals. Of interest in this difference spectrum are the reasonably
strong spectral residuals at 1009 cm'l, 1014 cm'l, 1028 em™ ! and 1066 cm L.
These residuals are due to intensity errors in the weak water vapor lines in
this spectral region. With the possible exception of the feature at

1066 cm'l, it would have been unlikely that this problem would have been
noticed using the spectral residuals of Figure 6-15a.

The maximum likelihood method has been used to obtain the retrieved
result. The error covariance was quite arbitrarily set to a value cor-

responding to an 8% probable error for the first guess. The retrieved ozone
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Figure 6-14. An expanded representation of the measured equivalent brightness
spectrum in the ozone region.
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profile is provided in Figure 6-16a. The vertical line at O corresponds to no
change from the first guess U.S. Standard ozone profile. The retrieval resi-
duals marked C1-U.S. STANDARD are after the second iteration. The derivatives
are for the reference profile. These results appear quite reasonable with the
possible exception of the mixing ratio change for the first layer. An abrupt
change of this magnitude in the atmospheric profile is possible but bears
rurther analysis. A possible explanation of this result is that the measure-
ment is being made in the atmosphere in a region of high ozone concentration
and that the forward model does not adequately model the radiance from a
strongly absorbing layer directly in front of the measurement. A new algo-
rithm for the computation of radiance has been implemented in a recent version
of FASCODE and it will be of interest to ascertain if this will have an effect

on this apparent anomaly.

6.3 Pressure Retrieval of Lowest Level

For the examples of the path characterization algorithms presented here,
retrievals for the lowest atmospheric pressure level or alternatively the
pressure of the lowest layer, have not been included. The implementation of
this capability was accomplished after the present studies were accomplish-
ed. Some general comments about the retrieval of pressure are warranted. For
the terrestrial atmosphere the change in the mass of a layer is essentially
independent of the state parameters being retrieved. Changes in layer temper-
ature have an effect on the density of a layer, but not on the mass. The
molecules for which the concentrations may be retrieved do not include nitro-
gen, oxygen and argon which are principally responsible for the mass of the
atmospheric layer, so that the mass distribution by layer is unaffected by the
retrieval. The minor exception to this is water vapor for which changes in
the concentration profile may have a small effect on pressure; these small
changes in pressure are negligible in terms of affecting the pressure broaden-
ing for the layer. They can be important, however, in terms of the associa-
tion of the layers with altitudes as is relevant for numerical weather predic-
tion applications. For the path characterization algorithm as appliad to the
earth’'s atmosphe-e, if the hydrostatic equation is satisfied for the reference
atmosphere, then to good approximation it will be satisfied for the retrieved
atmosphere. For applications to more general inhomogeneous atmospheres, the

retrieval of molecular concentrations may sufficiently alter the mass of the
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layers so as to have a non-negligible effect on the layer pressure. In this
case the interaction of the retrieved concentration and the pressure must be

included as part of the non-linear problem.

In the context of the path characterization algorithm, the pressure at
the lowest atmospheric level is the state parameter which characterizes the
mass, layer pressure and mass path of the lowest layer. For nadir problems
this pressure is associated with the pressure at the surface and for limb
cases it is associated with the pressure at the tangent height. For the
present implementation, the finite difference with respect to this parameter
is attained by perturbing the lowest altitude in the path by a specified
amount, resulting in a perturbation at the lowest path boundary. The actual
variable for the problem is the fractional change in the lowest level

pressure, consistent with the approach used for the molecular concentrations.

7. PROGRAM DESCRIPTION AND IMPLEMENTATION

7.1 Program Overview and Description of User Instructions

7.1.1 Program RETRVL

RETRVL is the driver for the Path Characterization subroutines. Several

features have been built into the program. These include:

FASCOD3
- FASCOD3 is a subroutine to RETRVL and is called within the

derivative loop
. Radiance and Brightness Temperature derivatives
- the user can optionally select either radiance or brightness

temperature derivatives to be calculated

. Retrievable constituents currently include layer temperature, water

and ozone, plus surface temperature and pressure

. An extensive error analysis scheme is available
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7.1.2 RETRVL Program Qverview

The structure of the Program RETRVL will be discussed in Section 7.3, but
the following provides an overview of the program’s operation. The first
thing that is required in order to run RETRVL is an idea of the atmosphere to
be retrieved. Once an appropriate problem is selected, the user should run
FASCOD3 using the IPUNCHioption to produce a TAPE7 which can be used as input
for the retrieval run. Once the user has selected the constituent(s) to be

retrieved, a run may be accomplished.

In order to do a retrieval the user must first select an appropriate
TAPE3 (FASCOD3 Line File) and get the initial TAPE5 as T5REF. The input file
RETVCTL contains the control cards which select or deselect the appropriate
options. We will assume for the sake of discussion that all of the options,
excluding IFASC3 have been selected. For this case we require for input the
following files:

TAPE3 - FASCOD3 Line File

T5REF -  Reference TAPES

TSSIM - Simulated Radiances TAPES
RETVCTL - Input control file for RETRVL

Upon entering RETRVL the first operation that is performed is the calcu-
lation of the Reference Case. This is the FASCOD3 run to which all subsequent
FASCOD3 calculations will be compared. The reference case is calculated by
copying T5REF to TAPE5 and running FASCOD3. The scanned output file is then
copied to T11SEQ which will form the basis for the derivatives.

The next option is to calculated T11SEQ itself. This requires the user
to have selected constituent(s) on which the derivatives will be based. We
will assume that layer temperature and surface temperature were selected. The
first step is to call ATMOD and have it modify the temperature of the first
layer by the quantity DELSV. This will produce a ’'new' TAPES which will con-
tain the modification. FASCOD3 is then run and the resulting scanned file is
copied directly after the reference case onto T11SEQ. We then continue around
the loop and modify the next layer temperature. The resulting FASCOD3 output
is then copied to T11SEQ. We continue in this fashion through all of the

desired layers and then for the last run, we do the surface temperature. Once
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this FASCOD3 output file has been copied to T11SEQ this step has been
completed. We now have a file (T11SEQ) which contains our reference run and

all of the resulting outputs which were obtain from perturbing the atmosphere.

We are now ready to calculate derivatives. We can either chose radiance
or brightness temperature derivatives. For this case we will call RADBT and
calculate brightness temperature derivatives. RADBT takes T11SEQ as input and
converts all the radiances to brightness temperatures and stores them on
T11BT. DERIV is then called and each of the FASCOD3 runs is compared to the
reference case and a derivative 1s calculated. The resulting file is stored
in RADERVO.

The next step is to calculate T11SIM. This can be real data, or a
FASCOD3 simulation on which the retrieval is being tested. For this case we
will use the file T5SIM to calculate a set of simulated radiances. The file
T5SIM is copied to TAPE5 and a subsequent FASCOD3 run produces our simulated

radiances.

We now need to produce a difference file which the retrieval can use in
order to attempt to retrieve our simulation. Since the derivatives have been
calculated in brightness temperature, we must calculate the differences in
brightness temperature also. So we first call RADBT and it produces a file
T11SBT which contains the simulated brightness temperature. This file is then
compared with the reference case on T11BT and the resulting difference is
written to the file RADDIFO. We now have the required input necessary for the

retrieval.

INVERT is now called and a matrix inversion is performed. This produces
a vector which contains the changes to the reference case in order to retrieve
the simulation. These results are written to the files RETVOUT and PARAMOT.
RETVOUT is the full output listing, PARAMOT is used for the next iteration and
plotting.

In order to facilitate the next iteration we also call ATMDT5 which reads
the files PARAMOT and TSREF and produces a new 'TAPE5’ called TS5ITR which has
the 'required’ changes to the reference case. This TAPE5 then becomes the

reference for the next iteration, or set of derivatives.
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7.1.3 RETRVL User Instructions

Appendix B contains the user instructions for RETRVL. These instructions
will be explained in further detail belcw. The user instructions for FASCOD3
will not be discussed here, but we refer the user to the FASCOD3 documentation
for a complete input description. Record 1 of the user instructions for
RETRVL is the HEADER which is used for file RADDIFO. This record is required
for all runs not just IFDIF > 0.

Record 2 contains the main control flags for RETRVL. IRCASE selects the
calculation of the reference case or not. IFSEQ flags the calculation of the
file T11SEQ which contains the reference case and the perturbed FASCOD3 runs.
IDERIV selects the derivative calculation and allows the choice of radiance or
brightness temperature derivatives. ISIMUL selects the calculation of simu-
lated radiances as the 'data’ to be retrieved. IFDIF selects the difference
calculation and allcws the choice of radiance or brightness temperature
differences. JINVRT selects the matrix inversion or retrieval which uses the
derivatives and differences to produce a retrieved solution. IATMT5 allows
the user to modify the reference case by the retrieved solution to produce a
new TAPE5 for the next iteration. IFASC3 allows the user to run FASCOD3 using
RETVCTL as the input file. This allows the user to utilize the FASCOD3

plotting routines in order to plot the retrieval results.

Record 3.1 contains the five possible constituents to be retrieved.

ICNST is defined as one of the following:

a) 0,-1 ends read of parameters
b) 1-28 corresponds to the molecules as used by FASCODE i.e. 1-H,0,
2-C02, 3-03, ... etc.
c) 29 corresponds to the layer temperature
d) 30 corresponds to the surface temperature
e) 31 corresponds to the surface emissivity
(not currently implemented)

£) 32 corresponds to the lowest boundary pressure
LAYB is the beginning layer for retrieving parameter ICNST. LAYE is the

ending layer for retrieving parameter ICNST. DELSV is the change that is

applied to the state parameter which is used in calculating the derivatives.
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Record 3.2 contains the control flag NZFLG which is the total number of

layer boundaries which are to be read in to determine to layers to be used.

Record 3.3 contains the layer boundaries which are determined by NZFLG on
Record 3.2. ZLEVP must be a subset of the boundaries which are found on

TSREF.

Record 4.1 contains the header which is used by INVERT. JHEADR is used
for labeling the files RETVOUT and PARAMOT.

Record 4.2 contains the main control flags for INVERT. NUMFIL selects
the total number of frequency regions (files) which will be used by the
retrieval. NUMFIL = 2 would require the files RADERVO, RADERV1, RADDIFO and
RADDIF1 in addition to any other required files. NREF selects the index for
the reference constants. NPAR is the total number of parameters to be
retrieved. NPRT is the number of parameters to be output per page. NEIG is
the flag which selects running the Eigen solution, which is provided for
informational purposes only. IREFD flags the reference data input. This
allows the user to use the quantities on file PARAMIN instead of those present
on the derivative file header. This is useful for analysis in cases of
multiple derivatives. NSIM is the flag for reading in simulated atmosphere
data from PARAMIN.

Record 4.3 contains IOUT which selects the parameters and order for the
retrieval. This allows the user to tailor the input and output of the

parameters.

Record 4.4 contains the control flags used for retrieval output. TKMAT
selects the printing of the KMATRIX. IHMAT selects the printing of the H
matrix. IHCOR selects the printing of the correlation H matrix. IHINV
selects the printing of the H inverse matrix. IHICR selects the printing of
the correlation H inverse matrix. IHHIN selects the printing of the H ma=rix
times H inverse¢ matrix. IHHIN selects the printing of the H matrix times H
inverse matrix. IYVEC selects the printing of the Y vector. IDRDI selects
the printing of the residual vectors (RD-Rn), (Rn+l-Rn) and (RD-Rn+l).

Record 4.5 contains control flags for additional retrieval options.
IGUESS determines whether or not a error covariance matrix is read in and
used. MXLKHD selects the retrieval method, either ridge regression or maximum
likelihood. PEIG selects the printing of the eigenvalues and eigenvectors for
NEIG = 1.
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Record 4.6 contains the control parameters for the damping, weighting and
noise factors. GAMMA is the damping factor which is applied to all of the
parameters. NDAMP is the number of individual damping factors to be read in
on Records 4.6.1 and 4.6.2. IWGHT is the flag for measurement weights to be
input on Record 4.6.3. NOISE flags the addition of noise to the retrieval.
DSEED is the seed which is used by the random number generator in calculating

the noise.

Record 4.6.1 contains the list of parameters to which damping is to be

applied. 1IDAMP is the desired parameter to be damped.

Record 4.6.2 contains the damping factors which are applied to each
parameter. DAMP corresponds to the parameter defined by IDAMP in
Record 4.6.1.

Record 4.6.3 contains the weights to be applied to particular points in
the retrieval. IWFLG selects how the weight is to be used. IFWGHT is the
input file to which the weights will be applied. IBWGHT is the beginning
point on file IFWGHT which will be used. IEWGHT is the ending point of file
IFWGHT which will be used. WGTFAC is the weighting factor to be applied.
FREQ is the wavenumber value used in converting the brightness temperature
noise to radiance noise. CHTMP is the average temperature for the spectral
interval. CHTMP is used to convert the brightness temperature noise to

radiance noise. For microwave runs, CHTMP should be zero.

Records 5.1-5.XX contain the FASCOD3 input file which is selected by
IFASC3 = 1. See the FASCOD3 user instructions for a description.

7.1.4 RETRVL File Utilization

RETRVL used three types of file structures: a) formatted 1/0 files, i.e.
RETVCTL, RETVOUT, PARAMIN, PARAMOT, RADDIFO, ERCOVCG, TSREF, T5SIM and TSITR,
b) unformatted binary file, i.e. KMATRIX, and c¢) unformatted FASCCDE files,
i.e. T11SEQ, T11BT, T11SIM, T11SBT, RADERVO and RESIDFS.

These files and their use are outlined below:

1) ERCOVCG - is the error covariance matrix input file used for the
first guess. This file is used by INVERT.
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2)

3)

4)

5)

6)

7)

KMATRIX - contains the derivatives which are used by INVERT. The
derivatives are ordered by the parameter IOUT and were created by

DERIV.

PARAMIN - contains the retrieval results from the previous iteration
which are to be used by the current iteration. PARAMIN also con-
tains the simulated atmosphere when used. PARAMIN and PARAMOT share
a common structure which we will now describe. The files consist of
9 columns of data. The first column is simply an integer index of
the parameter. The second column contains the layer number and
constituent which is being retrieved. The third column contains the
reference data used for the retrieval. The forth column contains
the results of the retrieval which is the change which is to be
applied to the reference case to produce the retrieved results. The
fifth column contains the retrieved results. The sixth column con-
tains the reference data that was used in calculating the deriva-
tives. The seventh column contains the simulation data when

needed. The eighth and ninth columns contain the lower and upper

boundary altitudes for the associated layer.

PARAMOT - is the results from the current retrieval. PARAMOT
becomes PARAMIN for the next iteration. PARAMOT is also used by
ATMDTS to created the new TAPES (TS5ITR) from TS5REF.

RADDIFO - contains the differences between the simulated radiances
or data and the current reference case. RADDIFO is created by
FSCDIF and used by INVERT.

RADERVO - contains the derivatives which were calculated by
perturbing the input file to FASCOD3. RADERVO is created by DERIV
and used by INVERT.

RESIDFS - contains the three vector results of the retrieval which

are stored in FASCODE format for plotting. These vectors are
(RD-Rn), (Rn+1'Rn) and (RD-Rn). RESIDFS is created by INVERT.

81




8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

RETVCTL - is the input control file for RETRVL.

RETVOUT - is the print ou'put file resulting from a run of INVERT.
TSITR - is the TAPE5 for the next iteration. TSITR is created by
ATMDTS5 by using the retrieval results from PARAMOT and modifying

T5REF to produce T5ITR.

TSREF - is the TAPES for the reference case. TSREF is used as the

basis for the derivative calculation.

T5SIM - is the TAPES5 for the simulated radiances. T5SIM is used

when simulated radiances are desired instead of data.

T6REF - is the TAPE6 resulting from the reference case. T6REF is
output from FASCOD3.

T6SIM - is the TAPE6 resulting from the simulation run. T6SIM is
output from FASCOD3.

T11BT - is the result of converting T11SEQ to brightness tempera-
ture. T11BT is the output from RADBT.

T11SBT - is the result of converting T11SIM to brightness tempera-
ture. T11SBT is the output from RADBT.

T11SEQ - contains the result of the reference case, and the

perturbed FASCOD3 runs. T11SEQ is used by RADBT and DERIV.

T11SIM - contains the result of the simulated radiance run. TI11SIM
is used by RADBT and FSCDIF.
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7.2 Implementation of RETRVL

7.2.1 compiling and Linking RETRVL Modules

RETRVL is made up of seven modules. These are outlined below:

a) RETRVL - contains main driver program and all modules excluding
INVERT and FASCD3 subroutines

b) INVERT - contains the matrix inversion driver routine

c) IMSL - contains the IMSL routines used by INVERT

d) FASCD3 - contains the main FASCOD3 subroutines

e) FSCATM - contains the FASCOD3 atmosphere subroutines

) FASLOW - contains the LOWTRN aerosol subroutines

g) FSCMS - contains the multiple scattering subroutines

For compiling and linking these routines on the AFGL Cyber, a segload file is
provided in Table 7-1. Once these routines are compiled and linked together

we can run the test cases.

7.2.2 Test Cases for RETRVL

Two test cases were selected for RETRVL. They were selected in order to
demonstrate the retrieval code without a significant amount of computation.

Each test case requires approximately 35 seconds on the AFGL Cyber.

7.2.2.1 Input Description

Appendix C contains the input files used for the two test cases. Test
Case 1 is designed to test all of the primary RETRVL options excluding
IFASC3. The first record contains a header which will be written to
RADDIFO. The next record selects the calculation of the reference case,
T11SEQ, the derivatives in brightness temperature, the simulated radiances,
the differences in brightness temperature, a retrieval, and the creation of
T5ITR containing the TAPE5 for the next iteration. The next record contains
the constituents to be retrieved, the beginning and ending layers, and the
perturbation which is to be applied. For the first constituent, layer
temperature will be perturbed for layers 1-3 by 0.5 degrees. For the second

constituent, surface temperature will be perturbed by 0.5 degrees. The next
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Table 7-1.

DR1VER TREE RETRVL- (FSCD3,ATMOD ,RADBT ,DERIV INVERT, ATMUTS)
RETRVL  GLOBAL MAIN, LAMCHN CONSTS,IFIL BNDPRP, FILHDR MSACCT TIMIN,
. IFILAT ,CHDATA CONTRL ,VSTOR

RETRVL INCLUDE  RETRVL,BUFIN, BUFOUT,COPYFL,ENDFIL, K T5COPY,FSCFIL

*

ATMOD INCLUDE
*

RADBT INCLUDE

*

DERIV INCLUDE
*
[NVERT  INCLUDE  INVERT,OPNFIL,MATINV,MULTIP,OUTCOR,OUTMAT,
_VECXMT , VECYMT, VREAD , VWRITE,ADNOIS, DPLNCK , GGNQF ,MDNRIS ,MERFI,
,UERTST,UGETIO,USPKD, EBALAF  EBBCKF , EHBCKF, EHESSF, EHOBKS , EHOUSS ,
.EIGRF,EIGRS, EQRH3F, EORT2S, LEQTLF, LEQT2F, LGINF, LUING, LINVLF,
.LINVIP,LINVZF, LINV2P,LSVD8,LSVG], LSVG2, LUDATF, LUDATN, LUDECP,
_LUELMF  LUELMN, LUELMP LUREFF, LUREFN, LUREFP,UERSET,VHS12
L]
ATMDTS
N
FSCDY TREE FASCDJ- (LAYRS, LASER , SCANFN, INTRPL, PLOTT,
FLTRFN, TESTMM, PRLNHD)

ATMOD ,OPNFLA  ZCNST
RADBT ,OPNFLB,BT

DERIV OPNFLD,RHEAD

INCLUDE ATMDTS ,OPNFLT

FASCD3 CLOBAL LASIV, ADRIVE ,MSCONS, LINHDR
FAasCcDl INCLUDE FASCD]
-

INCLUDE PRLNHD

PRLNHD

LAYRS TREE XLAYER - (OPPATHS ,OPDPTHS , XMERGES , XMERGIS,
GLOBAL XMMS  ABSORA, SCATTA . ASYMMA ,RMRG

INCLUDE XLAYER, XLAYMS , SCANRD, SCNINT, SCNMRG,
FLTRRD FLTMRG, FLTPRT

OPPATH - (FSTATMA, LOWT, PATH)
CWTRL PATHD  ZOUTP - SAVE
OPPATH

FSTATMA  TREE FSCATM- (FSCGEQ ,MDLATM)

FSCATM INCLUDE FSCATM,ATMPTH,ATMCON, PACK . WATVAP
FSCATM GLCBAL CONSTN HMOLS, PARMTR, DEAMT , ENDRY - SAVE
¥SCCED INCLLDE RFPATH,ALAYER , AUTLAY ,EXPINT, FINDSH, SCALHT ANDEX,

RADREF HALFWD FSCCEQ,FDBETA, FNDHMN ,REDUCE, AMERGE

MDLATM INCLUD MDLATM NSMDL MLATMB,CONVRT ,RDUNIT,DEFALT
MOLATM GLOBAL MLATM, TRAC-SAVE

*

LOWT TREE LOWTRN - (GEO, TRANS ,AERNS ,VSA  CIRRUS  NEWMDL)
LOWTRN INCLUDE TITLE

LOVTRY GLOBAL LCRD1, LCRD2,LCRD2D, LCRD3, LCRD4 ,MODEL,CNSTNS,

,MDLZ  ZVSALY MART.USRDTA TITL RAIN-SAVE

SED INCLUDE GEQ . GEOINL.REDUCL,EXPINT ,RADR&F , SCALHT L ANDEX.
RFPATL FOBETL,FNOHML, FINDSL FILL,K LOLAYR

wED GLOBAL PARMLT .RFRPTH-SAVE

TRANS INCLUDE TRANS  AEREXT,TNRAIN,DEBYE,DOP, INDX, AB,
GAMFOG AITK CMRAIN EXABIN, EXTDTA,GAMFOG,

CATTE GMRAIN

TRANS GLOBAL EXTD

AERNS AERNSM
AERNSM AERPRF, PRFDTA MARINE MARDTA,STDMOL MOTA

MDATA - SAVE

PATH

XMERGE - (SABINIT,ABSMRG, SEMINIT. RADMRG)
YME

RADEN  XMERGE ,GETEXT,ADARSL ,AERF

KMERGI - (TABINIT, ABSINT, TEMINIT RADINT)
X1

RADFY {MERGI,GETEXT,ADARSL, AERF

EMINIT EMIN EMOUT, BBFN AERF

EMINIT, EMIN, EMOUT,BBFN,AERF

TEMINIT INCLUDE
*

SABINIT INCLUDE  ABINIT ABSOUT
B

TABINIT INCLUDE

>

ABINIT, ABSOUT

Segmentation directives for path characterization model

OPDPTHS TREE
OPDPTH  GLOBAL
L

HIRACI INCLUDE HIRACL, SHAPEL, SHAPEG, VOICON ,RDLIN, CNVFNV, PANEL , MOLEC
.QV.ABSOUT,VERFN, R1PRNT XINT, BMOLEC, BHIRAC, BSHAPL, YDIH1,

.LBLF4 RDLIN4,CONVF4

HIRACL CLOBAL FNSH-SAVE

*

OPDPTH- (HIRAC1, LINF4 ,CONTNW NLTE)
LBLF ABSORB,SCATTR

LINF4 INCLUDE
s

CONTNW TREE CONTNM- (SL296,SL260 ,FRN296 , FRNCO2,,
. N2CONT XO3CHP ,O3HHTC, O3HHT1,03HHT2, 03HHUV,02CONT)

LINF4 RDLNFL,MOLEC,QV,SHRINK,VOICON, BMOLEC

CONTNM INCLUDE  CONTNM,XINT
XO3ICHP INCLUDE X0O3CHP,03CH
O3HHTO INCLUDE  O3HHTO,BO3HHO
O3HHTL INCLUDE O3HHT}, BOIHH1
O3HHT2 INCLUDE  O3HHT2,BO3HH2
Q3HHUV INCLUDE O3HHUV, BO3HUV
O2CONT INCLUDE  OQ2CONT, BO2C

SL296 INCLUDE
SL260 INCLUDE

SL296,B5296
SL260,BS260

FRN296  INCLUDE  FRN296,BFH20

FRNCO2  INCLUDE  FRNCO2,BFCO2

N2CONT  INCLUDE  N2CONT,BN2

x

NLTE TREE NONLTE- (HIRACQ, VIBTMP , VIBPOP)

NONLTE  GLOBAL  VBNLTE

HIRACQ  INCLUDE  HIRACQ,SHAPEL,SHAPEG,VOICON,RDLIN,CNVFNQ, PANELQ.

.MOLEC QV,ABSOUT,VERFN ,R1PRNT ,XINT,BMOLEC, BHIRAQ, BSHAPL, YDIHL,
.LBLF4 RDLING, CONVF4

HIRACQ  GLOBAL FNSQ-SAVE

*

ABSMRG INCLUDE ABSMRG,ABSOUT

ABSINT INCLUDE  ABSINT,ABSOUT

*

RADMRG INCLUDE  RADMRG, EMIN,EMOUT, BBFN, AERF, EMBND

*

RADINT INCLUDE  RADINT, EMIN, EMOUT,BBFN, AERF, EMBND

*

SCANFN INCLUDE SCANFN, SHAPEG,RDSCAN, SHRKSC, SHAPET, CONVSC, PANLSC,

.CNVREC,SINCSQ

*

INTRPL INCLUDE INTRPL, RDPANL, INTERP,OTPANL
»

FLTRFN INCLUDE FLTRFN ,RDSCAN,CNVFLT

-

TESTMM INCLUDE  TESTMM BTEST

*

PLOTT TREE PLTFAS - (BBSCLE,HEADER ,AXEST, FPLINE)

PLTFAS GLOBAL PLTHDR ,AXISXY,YCOM, POINTS, TITLOC,NAME
PLTFAS INCLUDE PLTFAS,LINT, EXPT,XNTLOG, TEMPFN, TENLOG ,MNMX, FSCLIN,
LENDPLT

*
AXEST TREF
*
XLAYMSS TREE

AXES - (AXISL,AXLOG,AX2)

XMRGMS - (EMITMS ,RMRGHS , FLUXLP , FLUXES,, YLAYMS )

XMRGMS ~ INCLUDE  XMRGMS,RADFN,GETEXT,ADARSL,AERF,MSCOPY
XMRCMS ~ GLOBAL  MLTSCT,OLDMS,MSFLUX
-
EMITMS  INCLUDE  EMITMS,EMINMS,EMOUT,MSIN,MSOUT,BBFN,AERF, FLXADD,E3,
EMMSEN
.
INCLUDE ~ RMRGMS, EMINMS, EMOUT ,MSIN,MSOUT, BBFN AERF, FLXADD, E3,
FLUXES  TREE FLXDWY - (SRCFCN)
FLXDWN ~ INCLUDE  FLXDWN,RADFN,GETEXT, FLXADD,MSIN,MSOUT, 23 AERF,
,BBFN, EMMSFN
>
SRCFCX  INCLUDE  SRCFCN,BETABS,MSEMIS
*
YLAYMS  INCLUDE  YLAYMS,GETEXT,RADFN, FLUXLP,MSIN, MSOUT,MINMS , EMOUT,

.FLXADD,BBFN,AERF, E3 EMMSFN
*

FLUXLP

»

INCLUDE FLUXLP, FLXADD ,MSIN MSOUT, BBFN,AERF EMINMS E3, EMMSIN

END
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record indicates that the parameter input is concluded. The next record
contains the number of layer boundaries to be read in, and for this case, we
choose zero. The next record contains the header which is used by INVERT.
This is followed by a record containing the main control cards for INVERT.

For this case we are using 1 file, this is the initial run so NREF = 0O, there
are 4 parameters (3 layer temperature, 1 surface temperature), no eigenvalues
nor eigenvectors are calculates, NPRT = 12 for the print output, IREFD is set
to zero to use the reference data from the derivative file header and NSIM = 1
since simulation data is available on PARAMIN. The next record contains the
variables of IOUT which selects the parameters and their order. For this case
we have selected the parameters in order of altitude, with the highest at the
top, and the surface at the bottom. The next two records control some of the
I1/0 from INVERT. We have selected a sample print from each of the matrices
and vectors, and will use ridge regression for the retrieval. The next record
contains the damping factor and the weight and noise control flags. For this

case, the damping is 0.0, and no additional weights or noise is desired.

Test Case 2 is basically the same as case 1 except that we want to make 2
layers out of the three layers on T5REF. This requires a change to Record 3.2
and the layer temperatures become parameters 1 and 2, and the surface tempera-
ture becomes parameter 3. In order to facilitate combining the three layers
into two, we set NZFLG = 3 so that we can read in three layer boundaries to
produce two layers. The next record contains the layer boundaries. Note,
that the boundaries that are chosen consist of a subset of the layer
boundaries that are on TS5REF. The only additional change that is required is
to set NPAR = 3 on Record 4.2 for the inversion.

Both Test Cases also require a TAPE3 (FASCOD3 Line File), TSREF which
contains a FASCOD3 TAPES which doesn’t use the atmosphere, and TS5SIM which
contains the TAPE5 which will be used for the simulated radiances. A note
should be made concerning the TSREF file. It is a standard FASCOD3 input file
with IATM = 0. We have added a parameter ITYL to Record 1.5.1 to ensure that
the sampling interval, DV, is the same for every layer as the temperature
parameter is perturbed in the calculation of the derivatives using discrete
differences. This has been found necessary to decrease the effects of

discretization effects in the FASCODE calculation.
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7.2.2.2 Qutput Description

The output files for the Test Cases are found in Appendix D. The output
file which will be described is the file RETVOUT which is the result of the
INVERT module. The first page consists of the banner containing the header
and the date and time entering INVERT, followed by a print out of the K matrix
which shows a panel of the first and last five points for each parameter. The
user should note that the K matrix parameters are also ordered by IOUT.

Page 2 shows the H matrix, which is followed on page 3 by the correlation H
matrix. The bottom of page 3 also has a print from the IMSL inversion routine
which shows a value of IER = 0, implying the inversion was accomplished with
no errors. Page 4 shows a print out of the inverted H matrix. Page 5 shows
the correlation H inverse matrix, and page 6 shows the result of H matrix
times H inverse matrix. Page 7 shows the results of the inversion. The first
block shows the layer and the constituent retrieved, followed by the value for
each constituent before the retrieval. For this case, since NREF = 0, we see
the reference case values. This is followed by the change which will be
applied to the reference case in order to produce the retrieved quantities
which are printed in the following column. The user should note that the
retrieval is trying to place a 0.5 degree pulse in layer 2, which is precisely
what was done to generate the simulation. The next column shows the probable
error for the retrieved parameter. The next column contains the percent
change between the retrieved parameter and the reference value. The following
columns provide the individual damping factor which was used, and the fit
index for the parameter. The next panel shows a printout of the Y vector,
which is followed by a panel containing the residuals: (RD-RO), (R1-RO) and
(RD-R1). The final panel on page 7 contains the statistics generated in order
to evaluate the retrieval. Page 8 shows the comwparison of the retrieved
parameter with the original simulated values. The last column shows the
simulated minus the retrieved, which indicates a good retrieval. The final
two panels on page 8 show the spectral region which was used, and the time

required by INVERT.

The output from Test Case 2 is basically the same as for Test Case 1
except we have chosen one less layer for the parameters. If we look at the
results on page 7, we again see that the retrieval is trying to place a 0.5

degree pulse on layer 1. This is consistent with the simulation which placed
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a 0.5 degree pulse on layers 1 and 2 of the reference case which were combined

to form the retrieved layer 1.

7.3 Description of Program

Program RETRVL is the driver for the retrieval package. A block diagram
of the program is shown in Figures 7-1 and 7-2. A discussion of each routine

follows:

Subroutine ADNOIS adds random noise to the K matrix as per instructions

from the input file. ADNOIS is called from MATINV.

Subroutine ATMDTS processes the resulcs from the inversion run to produce
a new 'TAPES’' for use by FASCODE. The results are inputed from PARAMOT and
written to the file 'T5ITR’. ATMDTS is called from RETRVL.

Subroutine ATMOD is used within the derivative loop to modify 'TAPE5’ to
reflect the constituent for which a derivative is being calculated. ATMOD
reads from TS5REF and changes the desired constituent producing a new TAPES.
ATMOD is called from RETRVL.

Function BT calculates the brightness temperature corresponding to the

inputed radiance and frequency. BT is called from RADBT.

Subroutine DERIV calculates the derivative for the given constituent

based upon the adjustment which was applied. DERIV is called from RETRVL.

Subroutine DPLNCK computes the inverse planck function, calculating the
radiance which corresponds to the inputed temperature and frequency. DPLNCK
is called from RETRVL.

Subroutine EIGRS is the IMSL driver for the calculation of eigenvalues
and eigenvectors of a real symmetric matrix. EIGRS is called from MATINV.

Subroutine FASCD3 is the subroutine driver for FASCOD3. FASCD3 is called
from RETRVL.

Subroutine FSCDIF differences two unformatted FASCODE files producing a
formatted result. FSCDIF is called from RETRVL.

Subroutine FSCFIL checks to see if a particular unit is open, and closes
any units which are open. FSCFIL is called from RETRVL.
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PROGRAM RETRVL

RETRVL
[,
FASCD3 INVERT
MODULE I)IEI{I\[ MODULE
ATMOD RADBT ATMDTS
Figure 7-1. Program Retrvl
INVERT MODULE
INVERT
|
MATINV
l J I l j
LGINF DPLNCK ADNOIS EIGRS VECXMT
(IMSL MODULE) (IMSL MODULE)
OPNFIL OUTMAT] OUTCOR MULTIP VECYMT,

Figure 7-2.

Invert Module
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Function GGNQF is an IMSL routine which provides gaussian random
numbers. GGNQF is used by ADNOIS.

Subroutine INVERT is the driver for the matrix inversion and retrieval

subroutine MATINV. INVERT is called from RETRVL.

Subroutine LGINF is the IMSL driver for the calculation of the
generalized inverse of a real matrix. LGINF is called from MATINV.

Subroutine MATINV is the driver for the matrix inversion and calculates

the retrieved parameters. MATINV is called from INVERT.

Subroutine MULTIP perform=z a matrix multiplication. MULTIP is called
from MATINV.

Subroutine OPNFIL opens all the files used by INVERT and its subroutines.
OPNFIL is called from INVERT and MATINV.

Subroutine OPNFLA opens all the files used by ATMOD and its subroutines.
OPNFLA is called from ATMOD.

Subroutine OPNFLB opens all the files used by RADBT and its subroutines.
OPNFLB is called from RADBT.

Subroutine OPNFLD opens all the files used by DERIV and its subroutines.
OPNFLD is called from DERIV.

Subroutine OPNFLF opens all the files used by FSCDIF and its subroutines.
OPNFLF is called from FSCDIF.

Subroutine OPNFLT opens all the files used by ATMDT5. OPNFLT is called
from ATMDTS.

Subroutine OUTCOR prints a correlation matrix to a file. OUTCOR is
called from MATINV.

Subroutine OUTMAT prints a matrix to a file. OUTMAT is called from
MATINV.

Subroutine RADBT converts an unformatted FASCODE file from radiance to

brightness temperature. RADBT is called from RETRVL.

Program RETRVL is the main driver for the path characterization

subroutine package.
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Subroutine RHEAD reads the FASCODE file header to extract the necessary
retrieval parameters. RHEAD is called from DERIV,

Subroutine T5COPY copies one formatted file to another. TS5COPY is called
from RETRVL.

Subroutine VECXMT multiples a vector times a matrix and returns the
resulting vector. VECXMT is called from MATINV.

Subroutine VECYMT multiples a vector times K transpose matrix and returns

the resulting vector. VECYMT is called from MATINV.

Subroutine VREAD reads in a vector of the K matrix from the file
KMATRIX. VREAD is called from MATINV, OUTMAT, VECXMT and VECYMT.

Subroutine VWRITE writes out a vector of the K matrix to the fiie
KMATRIX. VWRITE is called from MATINV.

Subroutine ZCNST determines the constituent to be modified, and the
layers to which the modification will be applied for the calculation of
derivatives. ZCNST is called from ATMOD.

8. CONCLUSIONS

8.1 Program Summary

This report has described the results of study undertaken at AER to
identify and implement a state-of-the-art nonlinear retrieval approach to
characterize line of sight variability of atmospheric thermal and constituent
environments. This path characterization capability was designed to interface
with the existing Geophysics Laboratory (GL) line-by-line radiance/transmit-
tance code, FASCODE.

Accomplishments of the study include: (a) a review of the relevant
literature concerning potential path characterization retrieval algorithms,
selection of a physical least squares (PLS) nonlinear retrieval approach for
implementation based on criteria including flexibility within the context of
FASCODE and a certain degrce of robustness in application; (b) development of
a stand alone, preprocessing screening procedure to identify potential
channels for path characterization based on user requirements; (c) formulation

and implementation of the path characterization retrieval algorithm including
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suitable interfaces with FASCODE; (d) inclusion of a comprehensive error
analysis capability as an integral part of the retrieval procedure; (e)
demonstration of the approach for the retrieval of temperature, water vapor
and ozone; and (f) comprehensive documentation of the path characterization

code implementations.

We believe that the path characterization capability developed in this
study represents a significant enhancement to the existing FASCODE capabili-
ties for applications to sensor design and analysis of experimental data sets

consistent with current state-of-the-art retrieval theory.

8.2 Recommendations

In the course of our research we have identified a number of issues
related to the implementation of the path characterization retrieval which
require further elucidation. While we feel that the approach as implemented
is quite useful, we recommend that these additional aspects of the method

require further study.

The effects of nonlinearities in the parameter-data relationship has not
been fully explored. To some degree our discussion of the role of the penalty
function in Section 4.3. and the work with compositional retrievals of water
vapor and ozone described in Section 6 have addressed this issue. However, it
would be misleading to assert that all aspects of the impact of ronlinearities
have been investigated. A viable advanced approach to treating the non-linear
problem is available from optimization theory and could be faplemented at a

later date.

The mathematical formalism which we have adopted for the retrieval
calculation is based on exploitation of the FASCODE layering capability. It
is straightforward to implement the approach to retrieve profile properties
rather than layer properties. An advantage is the ability to perturb profile
rather than layer quantities in the evaluation of the required derivatives

consistent with the updated radiance algorithm in FASCODE.

With respect to the evaluation of the derivatives, the retrieval is
sensitive to systemmatic noise. This manifests itself in a number of ways,
one being the numerical noise introduced in calculating derivatives. FASCODE

is a numerical model. While forward problem discretization errors are small
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with respect to radiance output, they may not be negligible with respect to

the performance of the retrieval algorithm..

The potential importance of physical constraints on the retrieval pro-
cedure has also been discussed (Section 4.1). Although our test cases have
not required invoking such constraints it is possible that they may be

required in some problems.

While we have attempted to be ¢ 3 complete as possible in the implementa-
tion of the path characterization approach, we have put our testing and
evaluation effort described here into the investigation of nadir retrieval.
We believe the approach should be applicable to more general paths. These
include downward looking paths at arbitrary viewing angles, upward looking
paths, and limb paths. In the latter case a straightforward application of
the PLS approach should be possible via an onion peeling method; however, we
have not tested this hypothesis.

The use of the line-by-line algorithm as a forward problem model results
in the use of considerable computational effort both in the iterations
required and the generation of the K matrix coefficients (see Sections 4.1 and
4.2). 1t has been remarked that the use of rapid algorithms is one solution ‘
to this problem, and indeed plans for operational applications of physical

retrievals resort to this approach. Although we have not included a rapid
algorithm generation capability as part of the path characterization code,
this is a relatively simple matter which can be accomplished using one of the
approaches which has been cited in Section 2.1.3. The computational effort
required to generate the band model coefficient for the selected channel set
is considerably less than that required for any reasonable sensor design
scenario, even in light of the necessity to generate the coefficients for new

channels. .

Sensitivity to systemmatic errors in the forward problem is also an issue
with respect to use of so called "rapid" algorithms. While these may be the
only practical means to treat low resolution channels (say on the order of a
few wavenumbers in the middle infrared), they must be accurate enough to
provide the required derivative functions. This is easily determined by
assessing the accuracy of the rapid algorithm.
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The last issue is application of the approach to path parameters other
than temperature and composition. Conceptually, any variable which enters
into the forward problem can be treated within the general framework of this
approach. Such additional parameters include cloud and aerosol properties,
properties of the surface such as surface reflectivity and emissivity, and
non-local thermodynamic equilibrium (NLTE) properties in the upper
atmosphere. A recently completed feasibility study (Isaacs et al., 1990) has

addressed these applications; however, further work is needed.
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APPENDIX B - USER INSTRUCTION




INSTRUCTIONS FOR PATH CHARACTERIZATION RETRIEVALS .. RETRVL

15 March 19990




L3222 222222222222 22222 2Rt it 0 0 28222 2Rt X RS RRR S X {

** These user instructions for the program RETRVL * *

Ll describe the records to include in file: RETVCTL * %
2 SR R 2R R 2R SRR RS L RS2SR R RS SR RS RER SR SRR RS RS RSN EESEEEEEE SR X

RECORD 1

HEADER: 80 characters of user identification (A80)

header for file RADDIF0 if used

RECORD 2

IRCASE, IFSEQ, IDERIV, ISIMUL, IFDIF, JINVRT, IATMTS5, IFASC3
10, 20, 30, 40, 50, 60, 70, 80

7X,13, 7X,13, 7X,13, 7X,13, 7X,I3, 7X,13, 7%,13, TX,I3

IRCASE (0,1) flag for calculation of Reference Case

0 no Reference Case calculation
1 Reference Case calculated

Note: IRCASE is set to 1 when IFSEQ = 1
(Requires input files TS5REF and TAPE3)
IFSEQ (0,1) flag for creation of file T11SEQ which contains

the basis for the derivative calculation

0 T11SEQ not created
1 T11SEQ created

non

{(Requires input files TSREF and TAPE3)
IDERIV (0,1,2) selects desired derivative calculation which
creates the file RADERVO
= 0 no derivatives calculated
= 1 radiance derivatives calculated

= 2 Dbrightness temperatire derivatives calculated

(Requires input file T11SEQ)




RECORD 2 (continued)

ISIMUL

IFDIF

JINVRT

IATMTS

IFASC3

(0,1) flag for creation of file T11SIM which contains
the basis for the difference calculation when real
data is not available

= 0 T11SIM not created
= 1 T118IM created

(Requires input files T5SIM and TAPE3)

(0,1,2) selects desired difference calculation which
creates the file RADDIFO0

0 no difference calculated

1 radiance difference calculated
2 brightness temperatire difference calculated

(Requires input files T11SEQ and T11SIM)

(0,1) flag for Parameter Retrieval

= 0 no parameter retrieval
= 1 parameter retrieval performed

(Requires input files RADERV0, RADDIF0, and optionally
PARAMIN and ERCOVCG)
(0,1) flag for creation of file TSITR which contains
the FASCOD3 ’‘TAPE5’ for use with the next iteration

0 TSITR not created
1 TSITR created

(Requires input files TSREF and PARAMOT)
(0,1) flag for FASCOD3: input from RETVCTL
(Records 5.1 - 5.XX)

0 no FASCOD3 run
1 FASCOD3 run

(Requires input file TAPE3)




RECORDS 3.1-3.3

RECORD 3.1

ICNST

LAYB

LAYE

DELSV

(Required if IFSEQ = 1, otherwise omit)

ICNST, LAYB, LAYE, DELSV
10, 20, 30, 40
7X,13, 7X,13, 7%, 13, F10.3

is the parameter to be retrieved. ICNST is defined as
follows

0 or -1 ends read of parameters

1-28 corresponds to the molecule as used by FASCOD3
i.e. 1 = H20, 2 = C02, 3 =03, ... etc.

29 corresponds to the layer temperature
30 corresponds to the surface temperature

31 corresponds to the surface emissivity
(not currently implemented)

32 corresponds to the lowest boundary pressure

is the beginning layer for retrieving this parameter

Note: LAYB and LAYE are used for ICNST = 1-29

is the ending layer for retrieving this parameter

is the change that is applied to the state parameter
which is used in calculating the derivatives. For
ICNST = 1-28, DELSV is a percentage change in the
layer column amount of constituent for a layer. For
ICNST = 29 and 30, DELSV is the perturbation (K)

added to the temperature value. DELSV is calculated
internally for the lowest boundary pressure. Defaults
are 3 percent (0.03) for ICNST = 1-28, and 2.0 degrees
for ICNST = 29 and 30,




RECORD 3.2 NZFLG
10
7X,13

NZFLG is the total number of layer boundaries which are

to be read in to determine the layers to be used.
NZFLG = 0 will default to the NLAYRS on TSREF.

RECORD 3.3 (ZLEVP (N) ,N=1,N2ZFLG) (Required if NZFLG > 0,
otherwize omit)
(8F10.3)
ZLEVP (1) are the layer boundaries which determine how the

atmospheric layers on TSREF are combined in order
to form the layers for use by RETRVL. ZLEVP must
be a subset of the boundaries which are on TSREF.




RECORDS 4.1 - 4.6.3

RECORD 4.1

*** Required for Retrieval Option (JINVRT = 1), ***
*k* otherwise omit. *ok X

JHEADR: 80 characters of user identification (A80)

used by INVERT

RECORD 4.2

NUMFIL, NREF, NPAR, NEIG, NPRT, IREFD, NSIM

10,

20, 30, 50, 60, 70, 80

7X,13, 7X,13, 7X,I13, 10X,7X,13, 7X,I3, 7X,13, 1X,I13

NUMFIL

NREF

NPAR

NEIG

NPRT

IREFD

NSIM

is the number of different frequency regions (files)
required for this retrieval. (maximum = 10)

Note: derivatives are RADERV(0 - RADERVO
differences are RADDIF() - RADDIF9

is the index for Reference Constants
first guess

output from previous run is
available on PARAMIN

v
(=N

is the total number of parameters to be retreived.

is the flag for running the Eigen solution: for
informational purposes. (0 = NO, 1 = YES)

is the total number of parameters to be output per
page (maximum = 12)

flag for reference data input

= 0 from derivative file header

=1 from file PARAMIN

( option 1 is useful for analysis in
case using multiple derivatives )

is the flag for reading simulation data from file
PARAMIN.




RECORD 4.3
(IOUT(I), I=1,NPAR)

(20I14)

selects the parameters and their order for the

retrieval.
in order to use parameters 1-5 in reverse

IOUT(I)

i.e.
order, simply set IOUT(l) = 5,
I0UT(2) = 4,
I0oUT(3) = 3,
etc.
B-8




RECORD 4.4

IKMAT, TIHMAT, IHCOR, IHINV, IHICR,

10,

20, 30, 40, 50,

7x,13, 7X,13, 7X,13, 7X,13, 77X,I13,

IKMAT

IHMAT

IHCOR

IHINV

IHICR

IHHIN

IYVEC

IHHIN, 1IYVEC, IDRDI
60, 70, 80

7X,13, 7X,13, 7X,I3

selects the printing of the K matrix
(derivatives and functions)

= 0 no output
= 1 abbreviated output

= 2 full output for number
=-2 will force full output

selects the printing of

= 0 no output
= 1 abbreviated output
= 2 full output

selects the printing of

= 0 no output
= ] abbreviated output
= 2 full output

selects the printing of

= 0 no output
= 1 abbreviated output
= 2 full output

selects the printing of
inverse matrix

= 0 no output
= 1 abbreviated output
= 2 full output

selects the printing of
H inverse matrix

= 0 no output
1 abbreviated output
2 full output

selects the printing of

= 0 no output
= ] abbreviated output
= 2 full output

the

the

the

the

the

the

of measurement values < 100

H matrix

correlation H matrix

H inverse matrix

correlation H

H matrix times

Y vector




RECORD 4.4 (continued)

IDRDI

RECORD 4.5

selects the printing of the residuals
(RD-Rn), (Rn+l-Rn) and (RD-Rn+1l)

where RD ~ measurement
Rn ~ reference
Rn+l =~ linear prediction

no output

abbreviated output

full output for number of measurement values < 100
will force full output

NN O

IGUESS, MXLKHD, IPEIG

10,

7X,13, X%,

IGUESS

MXLKHD

IPEIG

20, 30

13, 7X,1I3
determines whether or not an error covariance
matrix is read in and used

0 not read in or used

1 reads diagonal elements
2 reads full matrix

[T

selects retrieval method
(for MXLKHD = 1, IGUESS must be > 0)

= 0 ridge regression
= 1 maximum likelihood

selects the printing of the eigenvalues and
eigenvectors (if NEIG = 1)

0 no output
1 full output




RECORD 4.6
GAMMA, NDAMP, IWGHT, NOISE, DSEED
20, 30, 40, 50, 70

10X, E10.3, 7X,13, 7X,13, 7X,I3, 7X,E13.0

GAMMA damping facter applied to all parameters
NDAMP number of individual damping factors
IWGHT flag for measurement weights

= 0 all weights unity (= 1)
= 1 non-uniform weighting (see Record 4.6.3)

NOISE flag for noise (requires IWGHT = 1 and Record 4.6.3)

= 0 no noise
= 1 Gaussian noise added to radiance

DSEED seed for inital noise value (random number generator)

RECORD 4.6.1 (Required for NDAMP > 0, otherwise omit)
(IDAMP (I), I=1, NDAMP)

(2014)
IDAMP (I) damping selected for parameter IDAMP(I)

RECORD 4.6.2 (Required for NDAMP > (0, otherwise omit)
(DAMP (I), I=1,NDAMP)
(2014)

DAMP (1) damping factor for parameter IDAMP (I)
(ordered by parameter per Record 4.6.1)




RECORD 4.6.3 (Required for NWGHT > 0, otherwise omit)

IWFLG, IFWGHT, IBWGHT, IEWGHT, WGTFAC, FREQ, CHTMP

S, 10, 20, 30, 40, 60, 70

15, 15, 110, 110, G10. 3, G20.8, G10.3
IWFLG flag to determine how weights are applied

IFWGHT

IBWGHT

IEWGHT

WGTFAC

FREQ

CHTMP

=-1 end of weight input data
= 0 read weight (cannot be used with MXLKHD = 1)
= 1 read weight (W = Sn-1)
weights: diagonal elements of the inverse
of the measurement error covariance matrix
= 2 Noise: standard deviation
= 3 Noise: standard deviation in brightness temperature

converted to standard deviation in radiance
input file to which weights are applied

=-1 apply weights to all measurement values
= # (0-9) apply weights to measurement values
on files # (0-9) == (RADERV0 - RADERVY)

beginning point on file for application of
weight values (WGTFAC)

ending point on file for application of
weight values (WGTFAC)

weighting factor (applied IBWGHT through IEWGHT)

wavenumber value (cm-1) used in converting brightness
temperature noise (standard deviation) to radiance
noise (standard deviation)

(Required for IWFLG = 3)

average temperature for spectral interval. Used to
convert noise standard deviation in brightness
temperature to noise standard deviation in radiance.
(In microwave region - set CHTMP = 0.0)




RECORDS 5.1-5.XX (Required for IFASC3 = 1, otherwise omit)

These records correspond exactly to a FASCOD3 TAPES input
file. See FASCOD3 user instructions for a description.




APPENDIX C - TEST CASE INPUT




TEST CASE 1

THREE LAYER TEST CASE FOR PATH CHARACTERIZATION
RCASE= 1 FSEG = 1 DERIV= 2 SIMUL= 1 FDIFF= 2 INVRT= 1 ATMTS5= 1 FSCD3= (0

ICNST= 29 LAYB = 1 LAYE = 3 0.50
ICNST= 30 0 0 0.50
-1
NZFLG= 0
SCRIBE RUN - THREE LAYER TEST CASE
NFIL = 1 NREF = (0 NPAR = 4 NEIG = 0 NPRT = 12 REFD = 0 NSIM =

1

3 2 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KMAT = 1 HMAT = 2 HCOR = 2 HINV = 2 HICOR= 2 HHINV= 1 YVEC = 1 DRDI = 1

IGSS = 0 MXLK = 0 PEIG = 2 )
GAMMA =0.0000E+00 NDMP = (0 IWGHT= 0 NOISE= 0 DSEED= 12345678.D+0

THE FOLLOWIRG 2 FILES ARE REQUIRED FASCODE INPUT FILES FOR USE WITH THIS TEST
CASE.




TSREF TEST CASE 1

$ TEST CASE FOR RETRIVAL CODE
HI=1 F4=1 CN=1 AE=0 EM=1 SC=1 FI=0 PL=0 TS=0 AM=0 MG=0 LA=0 MS=0 RD=0

720.0
295, 34
3 7
807.05
1.47E+22
682.68
5.83E+21
592.45
2.98E+21
0.053
~-1.

725.0
1.
1.000000 1
288.28
1.06E+21
281.14
6.95E+20
273.39
5.69E+20
720.0

0. .0137 .100
SCRIBE ATMOS Hl= 5.10 H2=
99 1 1.22
1.07E+17 1.03E+18 4.48E+17
01
7.43E+16 6.74E+17 2.81E+17
21
6.33E+16 5.52E+17 2.25E+17
725.0 1 3

.0002

0 0
.001

1.22 ANG= 180.000 LEN= 0

2.80
5.45E+18 6.70E+23

4.00
3.58E+18 4.40E+23

5.10
2.93E+18 3.60E+23
0.0 12 1 1

2.52E+24
1.66E+24

1.36E+24
11




TSSIM (TEST CASE 1)

$ TEST CASE FOR RETRIVAL CODE
HI=1 F4=] CN=1 AE=0 EM=1 SC=1 FI=0 PL=0 TS=0 AM=0 MG=0 LA=0 MS=0 RD=0 0 0

720.0 725.0 0. .0137 .100 .0002 .001
295.34 1.
3 7 1.000000 1 SCRIBE ATMOS Hl= 5.10 H2= 1.22 ANG= 180.000 LEN= 0
807.05 288.28 99 1 1.22 2.80
1.47E+22 1.06E+21 1.07E+17 1.03%+18 4.48E+17 5.45E+18 6.70E+23 2.52E+24
682.68 281.64 01 4.00
5.83E+21 6.95E4+20 7.43E+16 6.74E+17 2.81E+17 3,58E+18 4.40E+23 1.66E+24
592.45 273.39 21 5.10
2.98E+21 5.69E+20 6.33E+16 5.52E+17 2.25E+17 2.93E+18 3.60E+23 1.36E+24
0.053 720.0 725.0 1 3 0.0 12 1 1 i1
-1.
$
c-4
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TEST CASE 2

TWO LAYER TEST CASE FOR PATH CHARACTERIZATION
RCASE= 1 FSEG = 1 DERIV= 2 SIMUL= 1 FDIFF= 2 INVRT= 1 ATMTS= 1 FSCD3= 0

ICNST= 29 LAYB = 1 LAYE = 2 0.50

ICNST= 30 0 0 0.50
-1
NZFLG= 0O
1.22 4.00 5.10
SCRIBE RUN - TWO LAYER TEST CASE
NFIL = 1 NREF = 0 NPAR = 3 NEIG = 0 NPRT = 12 REFD = (0 NSIM =

2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KMAT = 1 HMAT = 2 HCOR = 2 HINV = 2 HICOR= 2 HHINV= 1 YVEC = 1 DRDI =
IGSS = 0 MXLK = 0 PEIG = 2

GAMMA =0.0000E+00 NDMP = 0 IWGHT= ( NOISE= (0 DSEED= 12345678.D+0

=or

THE FOLLOWING 2 FILES ARE REQUIRED FASCODE INPUT FILES FOR USE WITH THIS TEST
CASE.




TSREF (TEST CASE 2)

$§ TEST CASE FOR RETRIVAL CODE

HI=1 F4=1 CN=1 AE=0 EM=1 SC=1 FI=0 PL=0 TS=0 AM=0 MG=0 LA=0 MS=0 RD=(

720.0 725.0 0. .0137 .100
295.34 1.
3 7 1.000000 1 SCRIBE ATMOS Hl= 5.10 H2=
807.05 288.28 99 1 1.22
1.47E+22 1.06E+21 1.07E+17 1.03E+18 4.48E+17
682.68 281.14 01
5.83E+21 6.95E+20 7.43E+16 6.74E+17 2.81E+17
592.45 273.39 21
2,98E+21 S5.69E+20 6.33E+16 5.52E+17 2.25E+17
0.053 720.0 725.0 1 3
-1.
3

.0002

0 0
.001

1.22 ANG= 180.000 LEN= 0

2.80
5.45E+18 6.70E+23

4.00
3.58E+18 4.40E+23

5.10
2.93E+18 3.60E+23
0.0 12 ) of 1

2.52E+24
1.66E+24

1.36E+24
11




T5SIM (TEST CASE 2)

$ TEST CASE FOR RETRIVAL CODE
HI=1 F4=1 CN=1 AE=0 EM=1 SC=1 FI=0 PL=0 TS=0 AM=0 MG=0 LA=0 MS=0 RD=( 0 0

720.0

295,34

3 7
807.05

1.47E+22
682.68

5.83E+21
592.45

2.98E+21

0.053

-1.

725.0

1.
1.000000
288.78
1.06E+21
281.64
6.95E+20
273.39
S.69E+20
720.0

0.
1 SCRIBE
1.07E+17
7.43E+16

6.33E+16
725.0

.0137 .1
ATMOS Hl=
99 1 1.22
1.03E+18
01
6.74E+17
21
5.52E+17
1 3

00

5.10 H2=

4.48E+17
2.81E+17
2.25E+17

.0002 .001
1.22 ANG= 180.000 LEN= 0
2.80
5.45E+18 6.70E+23 2.52E+24
4.00
3.58E+18 4.40E+23 1.66E+24
5.1)

2.93E+18 3.60E+23 1.36E+24
0.0 12 1 1 11
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APPENDIX D - TEST CASE QUTPUT
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VALIDATION OF FASCODE CALCULATIONS
WITH HIS SPECTRAL RADIANCE MEASUREMENTS

Shepard A. Clough and Robert D. Worsham
Atmospheric and Environmental Research, Inc.
Cambridge, Massachusetts 02139, USA

William L. Smith, Henry E. Revercomb, Robert O. Knuteson,
and Harold W. Woolf
Space Science and Engineering Center
University of Wisconsin
Madison, Wisconsin 53706, USA

Gail P. Anderson, Michael L. Hoke, and Francis X. Kneizys
Air Force Geophysics Laboratory (OPI)
Hanscom AFB, Massachusetts 01731, USA

ABSTRACT

An extended version of FASCODE (Clough et
al., 1986) has been utilized in conjunction with
the 1986 AFGL line parameters (Rothman et al.,
1987) and the line coupling coefficients for
carbon dioxide developed by Hoke et al. (1988),
to perform spectral radiance comparisons with
data from the High-Resolution Interferometer
Sounder (HIS) aircraft instrument (Smith et al.,
1983). The HIS instrument is a radiometrically
calibrafed interferometer with a resolutjon of
0.5 ¢cm™* from 600 to 1000 ¢cm™ " and 1 em™ " from
1100 to 2600 cm” An absolute spectral radio-
metric accuracy of 1 K with an RMS reproduci-
bility of 0.1 K has been achieved. The meas-
urements of upwelling radiance for this compari-
son have been made with the instrument mounted
on the NASA high altitude aircraft flying at
20 km. The meteorological conditions for the
measurements have been established by simultane-
ous radiosonde measurements. The agreement
between the HIS observations and FASCOD2
calculations is generally within 0.5 K {n
equivalent brightness temperature. In specific
spectral regions, significantly greater
differences are observed. These differences are
attributable to line coupling effects in the
carbon dioxide Q branches and to absorption by
the fluorocarbons, CFCll and CFC12. The
extended version of FASCODE provides a signi-
ficant improvement in the agreement between the
calculations and the measurements.

1. INTRODUCTION

A detailed comparison between measured and
calculated upwelling radiances has been under-
taken to validate both the results from the
High-resolution Interferometer Sounder, HIS,
(Smith et al., 1983) and the atmospheric radi-
ance model, FASCODE (Clough et al., 1986). This
constitutes an important step in establishing
the extent of the retrieval improvement attain-

(RS '88
Lenoble snd Geleyn (Fds.)
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Special emphasis has been placed on atmospheric
spectroscopic issues afsociaCed with Line
coupling; the 2400 cm™~ carbon dioxide band
edge; and atmospheric window absorption
including effects due to water vapor_and chloro-
fluorocarbons in the 800 to 1200 cm™ * region.

able with the HIS instrument operatin%zin space.

2. RADIANCE MEASUREMENTS AND FASCOD2
CALCULATIONS

The High-resolution Interferometer Sounder,
HIS, (Smith et al., 1983) is an accurately
calibrated Fourier Transform spectrometer
developed to measure the upwelling infrared
emission from earth and to establish the at-
tainable improvement in accuracy and vertical
resolution for temperature and humidity
retrievals. The important characteristics of
the instrument are provided in Table 1 and a
schematic optical diagram is shown in Fig. 1.
Accurate radiometric calibration has been a
central focus of the HIS program. Using two
blackbody calibration sources, one at 300 K and
the other at 245 K, the responsivity of the
{nstrument and the offset radiance are deter-
mined at each wavenumber value. The offset
radiance is defined as the equivalent system
input radiance that is actually due to internal
radiactive sources, Revercomb et al. (1987). The
calibration has been verified by performing
measurements on the ground of a third black-
body. Spectral calibration is achieved by laser
measurement of retardation using the nominal
laser frequency.

An important aspect of the comparison of
the observations with calculations relates to
the treatment of the line by line radiance
calculations to account for instrumental
effects. FASCOD2, an accelerated line by line
program (Clough et al., 1986), has been used to
obtain a calculated radiance s»hectrum. This
radiance spectrum is then transformed to the
Fourler domain at a sampling interval consistent
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Fig. 1.

Functional schematic of HIS optics.

Primary, collimating and

focusing mirrors are shown as lenses for simplicity.

with the experimental data. A correction is
applied to account for the effects of the finite
field-of-view, followed by application of the
same apodfzing function as that used for the
experimental interferogram and by truncation to
the experimental retardation. Finally, a
Fourier transform is performed to obtain the
spectrum. The calculated spectral radiances are
thus obtained at the identical spectral values
as the calibrated experimental spectra, the
instrument function having been appropriately
taken into account.

Characteristics of the HIS
Aircraft Instrument
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The data presented here are from an ER2
flight over the ocean on April 14, 1986 off the
California coast. This data set has been chosen
primarily because of the greater confidence in
the ocean surface properties relative to those
for land surface. The atmospheric conditions
for this flight represented a relatively dry
atmosphere. The calibrated equivalent bright-
ness temperature for a spectral radiance mea-
surement obtalned on this flight is shown in
FASCOD? calculations with 12 atmo-
spheric layers, using available radiosonde mea-
surements of temperature and water vapor and the
1986 HITRAN data base (Rothman et al., 1987),
were performed. In Fig. 3 we show the differ-
ence between the HIS measurement and the FASCQD2
calculations. The agreement is generally
excellent, but a number of spectroscopic issues
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Fig. 3. Difference of equivalent brightness
spectra: HIS (April 14, 1986) -
FASCOD2.

are clearly evident. The line coupling in the
co Q-bianches is apparent at 618, 720, 7&%. and
791 em” The spectral feature at 667 cm " is
due to a short path of warmer gas in the instru-
ment pod. The spectral bands due to the chloro-
fluorocarbons, CFC 11 and CYC 12, are cliarly
evident centered at 850 cm”™ " and 920 cm”
respectively. Finally, the deviations of the
true ozone profile from that assumed for the
calculations, cause fhe spectral discrgpancies
from 990 to 1060 cm™*.

3. EXTENDED FASCODE RADIANCES

An extended version of FASCODE has been
developed that treats line mixing effects as a
function of temperature and utilizes the cross
section data available as part of the HITRAN
data base, Massie et al. (1985). The line
coupling coefficients for the Q branches of
carbon dioxide at 618, 667, 720, 741 and
792 cm™ " have been developed by Hoke et al.
(1988). The coefficients are provided at four
temperatures (200 K, 250 K, 296 K and 340 K) and
are incorporated into the FASCODE line file.
Linear Interpolation is applied in FASCODE to
obtain coefficients at the appropriate atmo-
spheric layer temperatures. The cross sections
for CFCll and CFCl2 have been utfilized in the
following manner. The radiances from the ex-
tended FASCODE calculations have been attenuated
by transmittances, T(v), obtained from the
relation,

T(v) = exp (-X,,(v) W, - X;2(¥) W, ,)

where Xy; and Xi2 are the wavenumber dependent
cross gsectlons for CFCll and CFC12, and W;; and

S.A. CLOUGH ET AL.

V:2 are the associated column abundances. This
trestment assumes that in the spectral regions
affected, that the attenuating species, in this
case CFCll and CFCl2, are above the source of
radiation and that the attenuating species are
cold relative to the radiacive source. Further,
the temperature dependence of the cross sections
is not available and consequently has not been
taken into account.

In Fig. 4 the equivalent brightness tewmper-
ature differences between the extended FASCODE
radiance calculation and the FASCOD2 calculation
are shown. A sinc function has been used for
these calculacioni with an unappodized resolu-
tion of 0.275 cm” " consistent with the HIS
retardation for Band I. Comparison of Fii' 4
with Fig. 3 demonstrates that the 618 cm”

Q branch is well modeled by the present treat-
ment supporting the validity of the line
coupling coefficients and the treatment of their
temperature dependence. The 720 cm™ = Q branch
is not well modeled which on initial considera-
tion is unexpected since the Q branch is
spectroscopically similar to that at 618 cm L.
The discrepancy is attributable to incorrect
intensities for the weaker carbon dioxide
transitions in this spectral region, partjcular-
ly the isotopic 636 Q branch at 72].5 ca”~. The
Q branches at 742 cm™ " and 791 cm™ " may also be
affected by a reassessment of the intensities
for the weaker carbon dioxide transitions. The
spectral feature at 667 cm™ = is due to warmer
air in the pod area as previously discussed.

The spectral features due to CFCll and CFC12 are
well accounted for using values fog the colums
abundances, W;; and W3z, of 3 x 10° (molec/em®)
for both species. The brightness temperature
differences on either side of the main 667 cn!
carbon dioxide band and_ the general grend in the
difference from 600 ca ! to 1000 cm’: is not
explained. Modification of the temperature
profile may be expected to provide some
improvement in the comparison.
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Another spectral region of particular
interest for remote sensing 1s tha 2385 ca’
region dominated by the high J transitions of
carbon dioxide. A comparison of the HIS
measurements with FASCOD2 calculations in Fig. §
indicates reasonable agreement. However, the
large increase in the HIS equivalent brightness
temperature differences at the higher frequen-
cies {s presumably due to scattered sunlight and
precludes detailed comparison using radiance
calculations for the clear atmosphere.

4. CONCLUSIONS

The general agreement between the Band I
HIS measurements and the radiance calculations
using an extended version of FASCODE is within
2 K between 600 and 1000 cm™". A proper
atmospheric profile for ozone onld likely
extend the agreement to 1100 em™". Effects of
the order of 0.5 K in equivalent brightness
temperature such as those attributable to
fluorocarbon absorption are unambiguously
discernable. A need for improvements in the
intensities for the weaker carbon dioxide
transitions has been demonstrated.

Evidence indicates that the absolute error
in the HIS measured brightne:s; temperatures is
better than 1 K and that the relative error in
the spectral regions with the highest signal to
noise ratfo is of the order of 0.1 K. Further
improvements in the model will require improved
line intensities and further study of the line
shape for carbon dioxide to explain the sys-
tematic dlffetefces of up to 2 K in the 618 ca”
and the 720 cm”™ " spectral region. No inferences
regarding the validity of the water vapor con-
tinuum can be drawn from the present comparison.
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ABSTRACT

Clough, S.A., Kneizys, F.X. and Davies, R.W., 1989. Line shape and the water vapor continuum.
Atmos. Res., 23: 229-241.

A formulation is developed in which the contribution of the far wings of collisionally broadened
spectral lines to the water vapor continuum absorption is established. The effects of deviations
from the impact (Lorentz) line shape due to duration of collision effects are treated semi-empir-
ically to provide agreement with experimental results for the continuum absorption and its tem-
perature-dependence. The centinua due to both water-water molecular broadening (self-broad-
ening) and water-air molecular broadening (foreign broadening) are discussed. Several atmospheric
validations of the present approach are presented.

RESUME

On développe vne formulation dans laquelle on établit la contribution des ailes éloignées des
raies élargies par collision au continuum d’absorption de la vapeur d’eau. Les effets des déviations
de la forme Jde raie d’impact (Lorentz) sont traités de fagon semi-empirique pour fournir un accord
avec les résultats expérimentaux concernant le continuum d’absorption et sa dépendence en tem-
pérature. Les continua dis a I'effet d'élargissement moléculaire eau-eau (self broadening) et air-
eau (foreign broadening) sont discutés. Plusieurs validations atmosphériques de cette apprcche
sont présentées. :

INTRODUCTION

The continuum absorption due to water vapor has posed a complex problem
for researchers concerned with atmospheric radiative problems. In fact, a uni-
versally accepted definition of continuum absorption has not been established
making more difficult the discussion of the effect. The regions of the atmos-
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pheric spectrum in the microwave and the infrared with the greatest transpar-
ency, the windows, are strongly dependent on the water vapor continuum. These
spectral regions are at 0 cm ™', 800-1200 cm ! and 2000-3000 cm . Labora-
tory measurements of the water vapor continuum are made difficult by the
long path lengths required with conventional spectroscopic techniques or by
the complexities encountered with methods of high sensitivity such as spectro-
phone detection. Atmospheric measurements are adversely affected by the dif-
ficulty in adequately characterizing the path, aerosol attenuation, turbulence,
scintillation and instrument calibration. From a theoretical point of view, the
continuum has posed a comparably complex problem and still lacks a com-
pletely satisfactory explanation. The issue of whether the absorption repre-
sents an excess or deficiency is fundamentally dependent on the line shape
formulation chosen as reference as well as on the frequency regime of interest.
A theoretical understanding of this problem entails a satisfactory description
of the line shape and its temperature-dependence from line center to the far
line wing requiring a proper treatment of the physical processes occurring in
the time associated with the duration of collision. Further, an adequate model
must also address the issue of collision-induced spectra as well as the possibil-
ity of dimer absorption.

LINE SHAPE FORMULATION

In our consideration of the continuum, we start with a line shape formula-
tion for the absorption coefficient k(r) (cm?/molec.), that is applicable from
the microwave to the infrared (Clough et al., 1983):

R(r)=R(») o) +o(—»)> (1)
with:
1—e #
R(V)=V1—':e—_7,; (2)
= v tanh(fvr/2) (3

where v is the wavenumber value, R(¥) (cm™"') is a radiation field term at
temperature T with f=hc/kT (cm),and {¢(v) + ¢(— v) ) is the symmetrized
power spectral density function (Van Vleck and Huber, 1977). The term R(v)
includes the effect of stimulated emission. This formulation has a number of
attractive properties: its appropriateness to all spectral domains and the fact
that the symmetrized power spectral density function satisfies an important
intensity sum rule, the Nyquist theorem. For the application of this formalism
to the computation of spectra in terms of line transition data, we obtain:
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k(v)=vtanh(Br/2) "

~ 1 o «;
X; Si(T);[mX(Vi — V)+mx(l/+ l/.'):l

where S; (cm?/molec.) is the intensity of the transition at wavenumber value
v; (cm~!') and halfwidth o, (cm™!). The Lorentz function, f(vr— v;) (cm):
1 a;

flv—v)==

n(v—v)’+a?

(5)

is the line shape function appropriate to the impact approximation for which
the collision time is assumed to be instantaneous. The y function is a semi-
empirical function applied to the impact result to correct for duration of col-
lision effects and to attain agreement between calculated and measured spec-
tra. With y=1, this line shape reduces to the Lorentz shape in the infrared,
since R(v) - v, for |v—v;| <V, and to the Van Vleck-Weisskopf shape in the
microwave, since R(v)— fr?/2. We adopt a notation in which a tilde over a
quantity indicates that the radiation term, R(v), has been excluded from that
quantity.

At this stage we define a continuum absorption by excluding from the power
spectral density function fast spectral components associated with the line
center. The continuum, C(v), is given by:

C(r)=(p(r)+o(—)). (6)
=Y Silf(v=v)x(v—v)+f(v+v)x(+v,)] (7)

where f. is a line shape with the strong central component excluded (Clough
et al., 1980). We systematically define f. (vF v;) in the following way:

1 _a
n25°+a? |[vF v <25cm™!

fc(y:r‘ ”i)‘: (8)
1 Q, lvFr,|=25cm!

T (wEv)+al

The function f, is indicated schematically in Fig. 1 by the solid curve. Another
function that has been used by Burch in some of his work is indicated by the
dashed line in Fig. 1. The lack of agreement among researchers on the line
shape formulation and on the definition of the function f, has inhibited the
intercomparison and validation of continua. It must be emphasized that the
continuum and the details of the line-by-line calculation are inextricably re-
lated. The present formulation for the continuum is consistent with the FAS-
CODE line-by-line model (Clough et al., 1986). Similarly, it is important to
recognize that band models developed to describe molecular absorption, must
also be derived in the context of a consistent treatment of the continuum. To
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Fig. 1. The line shape function, f.(¥), used to develop the continuum (solid curve). The dashed
curve represents the function used by Burch.

be more explicit, if a band model is to be used in conjunction with a continuum,
then the absorption effects included in the continuum must be excluded from
the band model. We should note that the continuum functions have been de-
veloped in such a way as to obey Beer’s law. .

It is an important consideration that the continuum coefficient, C(v), is
proportional to collider density, p. Since the collision frequency which is pro-
portional to density determines the broadening, density is more appropriate as
the dependent variable than pressure. At constant temperature the distinction
is not relevant. The values for the self broadened halfwidths, a?, referred to
atmospheric density, p,, are of the order of 0.1 cm~! (0.5 cm ™! for self-broad-
ened water vapor). With the halfwidth density-dependence given by:

o, =ai(p/po) (9)

the o terms in eq. 8 may be dropped and the continuum shape function
becomes:

la?(l’/ﬂo) | vFril<25cm™!
i ) n 25° 10)
AVE v;)= 10
la?(P/Po)
T (vF)® |vF v;|>25cm™!

The density scaling of the continuum is established as:
Cr)=C°(v) (p/po) (11)

since f, is proportional to (p/p,) for all values of v.

The temperature-dependence of the absorption is dependent on the radia-
tion term, R(v) in eq. 2, the strength S, the halfwidth a?, and on the line shape
factor . The dependence is known theoretically for R(v) and for S; and is
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satisfactorily described through an empirical exponent, m, determined from
measurements for «, where:

a;(p,T)Y=a(T/Ty)™(p/po)

For the line shape factor y the situation is more complicated. Near line cen-
ter, | v+ v;| <5 em™!, x is essentially unity for all temperatures. However far
from line center the temperature-dependence for y must be inferred from the
temperature of the absorption resulting from many overlapping lines.

WATER VAPOR

We are now in a position to apply the formulation we have developed to water
vapor absorption. Performing a line-by-line calculation using the entire set of
water vapor lines from 0 cm~' to 10,000 cm ™', we obtain the power spectral
density function for self-broadened water vapor shown in Fig. 2. The dotted
curve is attained by utilizing the continuum line shape function, f., thus ex-
cluding from the power spectral density function the contribution of the line
centers, and providing a spectrum of low spectral content designated as the
continuum. The well known water vapor bands associated with pure rotation
(0Oem™1'), vy (1600 cm™1), v, of HDO (2720 cm 1), 2v, (3100 cm ™), v, (3660
cm~ ') and v; (3760 cm~!) are evident in Fig. 2. In Fig. 3 we indicate two
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Fig. 2. The symmetrized power spectral density function for self-broadened water vapor at 26.7
mb. and 296 K (solid curve). The continuum is indicated by the dotted curve.
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Fig. 3. The continuum for self-broadened water vapor. The dashed line is the impact result and
the dotted curve is with the y function adjusted to fit the experimental data of Burch, 1981. The
broadening pressure is #6438 mb.

o1
continua, one obtained using the impact line shape (y=1), and the other with
a function obtained by adjusting the parameters in an empirical y-function to
attain agreement with the indicated spectral results (Burch, 1981; Burch and
Alt, 1984; Burch, 1985).

Note that in Fig. 3 the continuum coefficient for self-broadened water vapor,
C’, exhibits an excess absorption with respect to the reference impact contin-
uum (y=1) in the center of the bands at 0-500 ¢cm ~' and 1400-1800 cm ' and
a deficiency between central band absorption regions, 800-1200 cm ! and 1800-
3300 cm~'. This result is consistent with theoretical requirements and is a
direct consequence of the formulation. The y function associated with the line
shape for self-broadened water vapor, designated y,, is shown by the solid curve
in Fig. 4. The functional form of y is given by:

- (o) YRRy <95 em !

x= 257 (12)
g lvFr,]=225cm™!

where for self-broadening x, is obtained by setting ¥’ =y, with:

X.=8.63 exp(—22)+ (0.832%+0.03323) exp(— |2, |) (13)

e

-11
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Fig. 4. The y function for water at 296 K. The solid curve is for self-broadening; the dashed curve
is for foreign-broadening.

where z,= (V¥ »,;) /400 and z,= (v *+ v;) /250 at 296 K. From eq. 12 and Fig. 4
we note that y is continuous at 25 cm ™', but that the first derivative is discon-
tinuous. This is a direct consequence of the choice of f, (eq. 8) but causes no
particular problems in the formulation.

The self-continuum for water vapor demonstrates a rather strong tempera-
ture-dependence, particularly in the 1000 cm~' window. It is an important
shortcoming of the current state of line shape theory for molecular collisions,
that the temperature-dependence of the far wings, or alternatively of the con-
tinuum in the window regions, is not explained. Rosenkranz (1985, 1987), in
two particularly interesting papers, has proposed an alternative formulation
to egs. 1 and 3, which leads to a strong temperature-dependence consistent
with observations in the far-wing regions. This proposed formulation warrants
additional scrutiny. The dimer has often been postulated as a source of the
continuura absorption primarily as a consequence of its simple and attractive
temperature-dependence. However, the absence of spectral structure, difficul-
ties in explaining spectral pressure-dependence and the fact that the absorp-
tion in the windows as developed in this paper represents an excess with re-
spect to the impact line shape are in direct contradiction with the dimer theory.
On the other hand, dimers should be formed under atmospheric conditions so
that the central issue becomes the question of dimer lifetime (Suck et al., 1979).

For pragmatic purposes the temperature-dependence of the continuum has
been treated as follows: the parameters in an analytical y function are obtained
by least-squares fitting the calculated continuum to the data of Burch at 296
K and 338 K. These parameters for 296 K and 338 K are then extrapolated to
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260 K and a continuum for that temperature is calculated. Tliis is potentially
a source of error; however, validations for atmospheric measurements have
provided remarkably good results. Continua for 338 K, 296 K and 260 K are
shown in Fig. 5.

An analogous treatment is performed for air-broadening of water vapor, re-
ferred to as foreign broadening. Fig. 6 shows the empirical continuum, C{, fit
to the data of Burch as well as the continuum for the impact approximation.
For the foreign-broadened case, the line wings decay much more rapidly as a
function of wavenumber difference from line center than for the self-broad-
ened case. This is reflected in the foreign chi-function, x; shown by the dashed
curve in Fig. 4. For the foreign continuum y; :> obtained by setting y’' =x¢ in
eq. 12 with:

X:=6.65 exp(—2z%) (14)

where z, = (v * v;) /75. For the window regions of the foreign continuum, 1000
cm~! and 2500 cm ™! in Fig. 6, an absorption coefficient has been added to the
continuum resulting from the present formalism in order to attain agreement
with atmospheric measurements (Roberts et al., 1976). The contribution of
the foreign continuum is very small in these spectral regions making the mea-
surements particularly difficult. The observed effect may be due to collision
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Fig. 5. The self-broadened water vapor continuum at 338 K, 296 K and 260 K. The continua at
338 K and 296 K have been fit to data and the 260 K continua have been extrapolated.
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Fig. 6. The continuum for foreign-broadened water vapor. The solid curve is the calculated con-
tinuum with the y function adjusted to fit the experimental data of Burch, 1981. The broadening
pressure is 1013 mb.

induced spectra or humidity-dependent aerosols. No significant temperature-
dependence has been observed for the foreign continuum.

The total absorption coefficient due to self- and foreign-water-vapor contin-
uum, k_.(»), is given by the relation:

ko(v) = v tanh(Bv/2) {C2(p./po) +C2(pe/po) ] (15)

It is an important point that for atmospheric conditions, the foreign contin-
uum is dominant for in-band absorption and the self continuum is dominant
for the out-of-band absorption, the window regions of water vapor spectrum.

ATMOSPHERIC VALIDATION

The most important element in the development of an atmospheric trans-
mittance/radiance model is validation with atmospheric data. Since the at-
mospheric window at 1000 cm~! (10 um) is of such importance, we consider
that spectral region in more detail. The continuum currently being used in
FASCOD2 has been adjusted to fit the more recent measurements at 1000 cm '
of Burch and Alt, 1984 (Fig. 7). In Fig. 8 we show a plot of the optical depth
for a 1-km path at 990 cm~' as a function of water vapor density from
LOWTRANTY (Kneizys et al., 1988) which incorporates this continuum de-
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Fig. 7. Details of the self-broadened continuum at 1000 cm . The solid line is the calculated
continuum at 296 K. The data for 284 K and 296 K are from Burch and Alt (1984); the other data
are from Burch (1981).

velopment. We consider two sets of atmospheric measurements: one from the
Air Force Wright Aeronautical Laboratories (AFWAL) taken over an 8-km
path and for a range of visibilities (Kneizys et al., 1984) and the other from
the Technion Institute in Israel over an 8.6-km path (Oppenheim and Lipson,
1986). Both of these sets of measurements were taken with circular variable
filter (CVF) spectrometers. Since the atmospheric measurements include ex-
tinction due to aerosol effects, the calculated optical depths, which do not in-
clude aerosol contributions, are less than those for the atmospheric measure-
ments. The calculations do take into effect the contribution from other
molecules (intercept) and from the local water vapor lines. Spectral validation
of the continuum model with the Technion measurements for the 8-12 micron
window is shown in Fig. 9 and for the 3-5 micron window in Fig. 10. Of partic-
ular note is the excellent agreement between calculation and observation ob-
tained at 4.75 um and 3.2 um. These two regions demonstrate the predictive
capability of the current formulation since there has been no adjustment with
data in these spectral regions. With respect to the continua beyond 5000 cm ™',
it should be emphasized that the calculations are essentially qualitative and
unvalidated. This is particularly the case for the self-broadened continuum,

important between the bands.
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Fig. 9. Spectral comparison between a CVF measurement in the 8- 12 micron window overa 8.637-
km path by Technion (Oppenheim and Lipson, 1985) and a LOWTRAN calculation with the
FASCOD2 continuum (dotted curve). The measurement conditions: T=297.5 K, P=1008 mb.,
RH =85%, and visibility = 15 km.
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Fig. 10. Spectral comparison between a CVF measurement in the 3-5 micron window over a 10.37-
km path by Technion (Oppenheim and Lipson, 1985) and a LOWTRANG calculation (dotted
curve ). The measurement conditions: T=283 K, P=899 mb., RH =68% and visibility =40 km.

SUMMARY

The present discussion is not intended as a comprehensive review of the
water vapor continuum problem. It is rather a description of a specific ap-
proach that is consistent with the physics of the problem and that has been
constrained to provide results consistent with experimental measurements.
The choice of measurements used for this discussion has been highly selective.
This is related to a need for internal consistency of the observations, our esti-
mation of the accuracy of the measurements and a treatment of the data that
is in the context of the current development. The present status should be
regarded as useful if not definitive. In order to meet current objectives in at-
mospheric remote sensing and related phenomena, more observations of high
accuracy both in the laboratory and in the atmosphere are required, and sig-
nificant advances in the theoretical treatment of the effects of collision on
molecular line shape need to be achieved. A floppy disk containing a program
to calculate continuum absorption coefficients as described here and consis-
tent with FASCOD2 and LOWTRAN?7 is available from the authors.
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Application of the Optimal Probability Method to the Retrieval of
Temperature, Water Vapor and Ozone Profiles

S.A. Clough, R.G. Isaacs, R.D. Worsham and J.L. Moncet
Atmospheric and Environmental Research, Inc.

840 Memorial Drive

Cambridge, MA 02139

A code has been developed to perform the retrieval of atmospheric state
parameters using the method of nonlinear least squares in conjunction with a
program to compute the forward problem (Isaacs, 1988). In the present
study, FASCODE (Clough et al., 1986) has been utilized for the forward prob-
lem; other algorithms including rapid. algorithms may readily be accommo-
dated. The method has been applied to retrievals of temperature profiles,
surface temperature and pressure, water vapor profiles and other constituent
distributions using both real and simulated data. The method is applicable
to both sequential and simultaneous retrievals. Either of two approaches
may be selected for performing retrievals: the method of ridge regression or
the maximum likelihood method. Our implementation of the latter approach is
similar to that discussed by Rodgers (1976, 1987) and more recently by Eyre
(1989).

Toe problem of retrieving atmospheric state parameters, x, is posed in
terms of minimizing the square of the differences between the observations
and the forward model F(x) such that the variance, 02, given by

2 2
o =Z W, [R; = F.(x)] (1)
i
is a minimum. W, is the weight for the i’th observed radiance, R;. This
approach has two attractive attributes: (1) an extensive body of work

exists on methods for solving the problem formulated in this way and (2) the
final solution is in the linear regime enabling the implementation of a
comprehensive error analysis. We follow the customary approach to the solu-
tion of this problem by adding a penalty function, x I'x, to ¢ obtaining

02 = [R - F(x)]T W [R~-FX] + X x (2)

For the maximum likelihood method we have

r=:s (3)

We=Ss (4)

with Sy the error covariance of the measurements. For the ridge regression
approach, I' is given by

.. =S..v. 5
i 1373 (5)
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where 73 is a stability (damping) parameter. In this approach I' is viewed
as constraining the direction and length of the step for the nonlinear prob-

lem (Levenberg-Marquardt) as well as providing a procedure to treat the ill-
posedness.

The retrieval is obtained by iterative implementation of the relation

— )
L N S SR S R (6)

The radiance residuals, rn, are given by

=R -F (xM (7)

0

with x° the first guess. The matrix K represents the Jacobian of the

forward model with respect to the state parameters, obtained in our case
from finite forward differences,

0 0
_F (x +8x) - F(x)
K . (8)

The derivatives are updated as infrequently as possible as a consequence of

the high cost of the forward calculation. In the cases we have studied,
convergence has been achieved in two or three iterations without derivative
updates.

For the analysis of the error we follow Rodgers (1987),

E [(x — xF) (x - xn)T ] = SN + SM + Sb 9

where SN represents null space error, SM measurement error and Sb model
error. In the present analysis, we have not considered the important prob-

lem of model error. For the general case we obtain the error covariance for
the state parameters from

Sy = H ! [rs T H! (10) ‘
and

Sy = H LKW Sg WK] oL (1) )
where

H= (KWK +T) . (12)

For the maximum likelihood method we obtain the important result, applying
Eq. 3 tv Eq. 10 and Eq. 4 to Eq. 11,

E[(x — x")(x - x") = H_1 . (13)

B-20
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We have applied this method to the retrieval of an ozone profile from
data taken with the University of Wisconsin High Resolution Interferometer
Sounder (HIS; Smith et al., 1983). The data were taken with the NASA ER? at
19.6 km with a nadir view. The measured unappodized radiance spectrum
equivalent brightness temperature is shown in Fig. 1A. The initial guess is
obtained from the U.S. Standard ozone profile, with resulting residuals r°
given in Fig. 1B. The retrieval converges after two iterations providing
the radiance residuals in Fig. 1C and the retrieved profile
Table 1.

in

given in

A second application to be discussed is a temperature retrieval using
simulated radiances for an extended set of AMSU channels. The simulated
data correspond to temperatures associated with the tropical atmosphere and
the initial guess is taken as the U.S. Standard Atmosphere. Convergence is
achieved in two iterations for this near linear call. As an example of the
response of the method to a temperature impulse, we have added a 3° tempera-
ture increase in the second layer, and studied the response of the retrieval
procedure to the impulse. A noise analysis using the maximum likelihood
approach has been performed.
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Table 1
x0 error (lo)
layer pressure mixing ratio retrieved change mixing ratio

(mb) (PPMV) (%) (%)

64.5 1.97 -5.6 2.5
101.1 1.17 -20.7 1.5
182.0 0.348 -19.7 2.5
256.0 0.188 -1.8 8
299.9 0.121 0.2 8
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Fig. 1A. Brightness temperature spectrum from HIS (19.6 km alt., nadir view).
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Fig. 1B. Brightness temperature residuals from FASCODE with U.S. Standard ozone
profile (radiosonde temperature profile).
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Fig. 1C. Brightness temperature residuals from FASCODE with retrieved ozone profile.

E-22




LINE BY LINE COMPARISON WITH HIS AND SCRIBE RADIANCE MEASUREMENTS

S.A. Clough, R. D. Worsham
Atmospheric and Environmental Research, Inc. (AER), Cambridge, MA, USA

M.L. Hoke, L.S. Rothman
Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, USA

R.0. Knuteson
Space and Engineering Center, University of Wisconsin, Madison, WI, USA
13

We describe the comparison of radiance calculations using the accelerated line
by line code FASCODE, with spectral radiance data obtained from the High-
Resolution Interferometer Sounder (HIS) (Smith et al., 1983) and from the
Stratospheric Cryogenic Interferometer Balloon Experiment (SCRIBE) (Murcray et
al., 1984). Evaluation of measurements from both instruments established the
necessity for proper treatment of line coupling in carbon dioxide and an
improvement in the intensities for the carbon dioxide transitions relative to
the 1986 AFGL data base values. Some HIS ground based measurements will be
presented stressing implications for the water vapor continuum.
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