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AN ADAPTIVE PRIMAL-DUAL METHOD
FOR LINEAR PROGRAMMING

Florian Jarre* and Michael A. Saunders
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it

January 1991

Abstract

A simple analysis for an adaptive primal-dual method for linear program-
ming is given. Starting from a pair of primal and dual feasible points near the
path of centers, the method maintains a worst-case complexity of O(Vf.4log .1)
iterations to reduce the initial duality gap by a factor of c. In contrast to other
interior-point algorithms that share the same complexity ([13, 4] and many
others), the algorithm proposed here allows an acceleration of the rate of con-
vergence (up to a complexity of O(rn log 1)) if the problem is "well behaved".

Key words: linear programming, interior-point method, theoretical com-
plexity, orthogonal projection

1. INTRODUCTION

We discuss interior-point algorithms that apply one iteration of Newton's method
to a set of nonlinear equations involving a parameter p > 0, and then reduce p by
a certain amount before repeating the process. For p = 0 the solution of the set
of nonlinear equations coincides with the solution of a given linear program. The
reduction of p is of the form p = p(l-b) for some "steplength" 6 E (0,1), where the
focus is on the size of 6. The method of centers (e.g. [13]) is typical of "short-step"
methods in which 6 < 1/V,/ at every iteration, where n is the number of variables.
Roughly speaking, the shortness of the steplength 6 < 1/V/n allows a proof that
the Newton iterates remain strictly feasible, but for numerical implementations this
rate of convergence is too slow when n is large. A "long-step" method is one for
which 6 > 1/v/'n. (Typically 6 is a constant independent of n.)

In the recent past a number of investigations have been presented that analyze
long-step interior-point methods for linear programming (see [3, 6, 11, 14]). Their
goal is to generalize the existing proofs of convergence of certain interior-point al-
gorithms to wider classes of algorithms and to justify the correctness of existing

tThis work was supported by a research grant from the Deutsche Forschungsgemeinschaft, and
by the U.S. National Science Foundation Grant DDM-8715153 and the Office of Naval Research
Grant N00014-90-J-1242.

*On leave from Institut far Angewandte Mathematik, University of Wiirzburg, 8700 Wfirzburg,
(West) Germany.



implementations of interior-point algorithms that yield very fast convergence for
(most) numerical examples. In allowing long steps, however, the theoretical com-
plexity of these investigations degrades. This apparently paradoxical behavior is
due to the fact that for large steps the Newton iterates may no longer be feasible,
and therefore the method has to use damped Newton iterations with a damping
factor a E (0, 1). Loosely speaking, the iterates may not be able to "follow" such
a long step 6 in the parameter ju. The goal of the present paper is to improve the
theoretical complexity. We will consider an adaptive choice of the steplength 6 such
that the full Newton iterate may always be used.

By a thorough analysis of the integral over the curvature of the path of centers
it was shown in [16] that for certain subclasses of linear programs the theoretical
complexity could be reduced below O(v'n log -) iterations, and in [12] a probabilistic
analysis showed that the "anticipated" number of iterations could be reduced below
O(Vfi log !), but in a general worst-case analysis this complexity is (still) the state
of the art. The analysis presented here is particularly simple. It also illuminates
why the theoretical complexity could not be improved so far by any analysis that
focuses on the worst case in a single iteration, rather than examining a sequence of
iterations.

In Sections 2.1-2.4 we present a proof of convergence for the method of centers.
The result is well known (see e.g. [7]), but the analysis is new and allows us to explain
in Section 3.1 where the factor -/i comes from, and to analyze a new adaptive
method in Section 3.2 that automatically chooses large steps if Newton's method
for finding the center converges "well", and takes short steps otherwise.

2. THE PROBLEM AND A SIMPLE METHOD

The problem under consideration is the linear program

mincTx, S={x>OIAx=b}, (P)

where A E ,x, x E JR1, b E R'. For brevity we assume that the relative interior \"p,

of the feasible set S is nonempty and bounded, and that the rows of A are linearly
independent. The dual problem to (P) is given by

max {b Ty I ATy 5< c}. (D)
YERM For

2.1. Some Known Theory 13

Following the motivation given in [8], the "penalized" Lagrangian corresponding to ion
(P) with a logarithmic barrier term for the inequality constraints is given by

n ton/
L (z, y) = CTx - YT(Ax - b) - p in Xj, Lity Codes

Jl I. and/or

2 -'I .eail

n
I
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where p > 0. The necessary (and sufficient) conditions for a stationary point of L.
are

r ( Ax- (F1(~1) Ary +z - 0 ,' >0 (2.1)
Xz - pe 0

where X = diag(x,...,xn), e = (1,...,1)TE Rn', and z is an auxiliary variable.
(In the following a small letter and the same letter capitalized-like x and X-
will always stand for a vector and its corresponding diagonal matrix.) The unique
solution x(p), y(p), z(p) of (2.1) is the analytic center as defined in [15]. It is obvious
that x(p) is primal feasible and y(p) is dual feasible. From (2.1) it immediately
follows that the duality gap between x = x(p) and y = y(p) is bounded by np:

- Il=elli = IIXzi = IIX(c - ATy)IIi

_ xr(c - ATy) = cTx - (Ax)Ty = cTx - bTy.

As first proved in [9], x(p) and y(p) converge to primal and dual optimal solutions
as p tends to zero. (See also [1].)

2.2. The Newton Step for Finding the Center

Suppose that x > 0, z > 0 and y are given such that Ax = b and ATy + z = c. For
p > 0 we define the residual

r := Xz - pe,

so that F,.(x, y, z) = (0,0, rT)T. The Newton step for finding the analytic center
x(y), y(p), z(p) is then given by

AAx = 0,

ATAy + Az = 0, (2.2)
ZAx + XAz = -r.

Note that if we were able to solve the (nonlinear) system (2.2') where in the last
equation of (2.2) the term AXAz is added on the left-hand side, then we could find
the exact center as (x + Ax, y + Ay, z + Az), since (2.2') is then equivalent to (2.1).

Define the positive diagonal matrix D by D2 := XZ - '. Then (2.2) can be solved
via

q = DX- 1 r,

Ay = (AD 2AT)-lADq, (2.3)
Ax = DATAy- Dq,

Az = -D - D- 2 Ax.

This becomes obvious as we observe that (2.3) is equivalent to (2.4)-(2.6). First,

DATAy = lIRq (2.4)

(since DAT has maximal rank), where IR is the orthogonal projection onto the
range R(DAT) = {y I y = DATw for some w E 1Wn} of DAT. Let IN denote
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the orthogonal projection onto the null space N(AD) of AD. Since N(AD) is the
orthogonal complement to R(DAT), i.e. HR + HN = I, it follows that

Ax = D(IRq - q) = -DIINq, (2.5)

and finally,
Az = -D-'(q + D-Ax) = -D-IHRq. (2.6)

It is straightforward to verify that (2.4)-(2.6) satisfy (2.2).

2.3. Analysis of the Newton Step

The residual after executing the above Newton step (without damping1 ) is given by

f = (X+AX)(z+Az)-pe=Xz+XAz+ZAx+AXAz-e

= Xz - r + AXAz - Ae = AXAz = AX/z, (2.7)

where Ax = -D-Ax = HNq and Az = -DAz = llRq. Note that

DX -' = -VX-1Z- I = (,/R +A I) -1 (2.8)

(using Xz = r + pe). From (2.7)-(2.8) and the definition of q in (2.3) we can readily
derive the classical convergence results about the primal-dual method as given in [7]
or [14]. Assume that x > 0, z > 0 and y are given such that we can find a positive

ja fo r w h ich
11r112 <--/s (2.9)

for some # E [0,4]. (This means we are assuming that x, y, z is "moderately close"
to the path of centers.) It follows that

I1R + AI'112 : - (2.10)

so thatso t atJqJJ2 <  /J3¢ / /(1 -- / ) = / ,(2.11)

and

IIAx112 = #cos1,IZI12 - sinG, (2.12)

where 0 is the angle between q and 11Nq. Finally by (2.7), (2.12) and (2.11),

JIF112 = IIAXSzlI2 : 12 cosOsin < 2(0 1 -/)/4P2 < #2. (2.13)

Hence, the relative error jIXz - peJ2/p, = 11112/P is squared after each iteration of
Newton's method2.

'Analyzing full Newton steps only is not a severe restriction, since a damped Newton step can
be viewed as a full Newton step for a linearly perturbed system of equations (the original system
of nonlinear equations to which a linear perturbation is added).

2 Note that (2.13) and the first equation in (2.7) imply that (X + AX)(z + Az) > 0. One way
to verify strict feasibility (i.e. z + Az > 0 and z + Az > 0) is to show that IX-'AzII2 < 1. By

(2.12), I1'Az11 < , and so fIX-'AI -IIX'D &X 2 = IIv &+,r''Zl2 < , / V' "- ) <.
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2.4. A Model Algorithm

The above analysis allows us to formulate the following classical model algorithm.
Let x0 > 0, y0, z0 > 0 and p0 be given such that Ax 0 = b, ATyo-+z 0 = c, Xz 0 -p 0 e =
r° and 1r012/p 0 _ 12 . (Again this assumes that the initial point is moderately close
to the path of centers.) Further, let some desired accuracy c be given. Set k = 0.

1. Perform one Newton step via (2.2) to obtain xk+1, Yk+1, zk+1.

2. Decrease lk to yk+1 :=/ k(1 _ 47.)"

3. Set k=k+l.

4. If l1k < C/n then stop, else go to Step 1.

Since IIrk+1 112 _ IIIk 12 + 4, I e 11 2 J + - (with as in (2.13)) it follows

by induction that all residuals rk fulfill (2.9) with /3 = , and hence (by the results
of Section 2.2) the method is well defined. Since the complementarity parameter
p converges linearly to zero (Step 2), the method terminates after O(Vf/log a!!')
iterations. This result is well known [7].

3. IMPROVEMENTS

We shall now examine possible improvements of the convergence analysis. For this
purpose, it is useful to analyze which of the estimates leading to (2.13) axe sharp,
and which ones can possibly be tightened.

Note that the relations (2.7), (2.8) and (2.12) are exact. However the bounds
(2.10) and (2.11) could also be established under the weaker assumption

Ilrlloo _<Op (2-9')

(It is interesting to note that for any feasible x, y, z one can always find some p > 0
such that (2.9') is satisfied with 03 = 1.) Also, the bound (2.13) is based on the
inequality IIStI 2 :_ JIS11211tI12, which also holds in terms of the infinity norm: IIStil _<
I1s~I ltll . Finally, to guarantee feasibility of x + Ax,z + Az, the inequalities
IIxloo, IIi xIlo :</ would suffice in place of (2.12) 3. Unfortunately, an estimate
corresponding to (2.12) in terms of the infinity norm only holds in the form

II xll. < v4 I4cos0, II zllo < o/n/3sini9. (2.12')

We "lose" a factor of ,/ii both times. Stating (2.13) in terms of the infinity norm
would thus "lose" a factor of n.

3An analysis in terms of the infinity norm would be particularly interesting, since by the update
in Step 2 of the model algorithm the residual r* 1 is obtained from fh by rk 1 = +(P k - k+l)e
and the infinity norm of e is smaller than its 2 norm: hello. = *.11e112.
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3.1. Understanding the Analysis

The purpose of the following analysis is to shed some light on this apparent "in-
compatibility" of norms. Assume for the moment that for some p = k the exact
center x, y, z is given. (A "central" analysis is particularly interesting since it has
been observed (see e.g. [21) that at the center all the search directions suggested for
interior-point algorithms since Karmarkar [5] are equivalent.) At the center, D,r
and q reduce to

D 2 = XZ - 1  X2, r = (Ak _ pk+l)e =: 6pe, q = 6 V'Ae, (3.1)

where 6 E (0, 1). Using the Newton step for finding x(pk+l),y(pk+l),z(tk+l) via
(2.2) we obtain (using (2.5))

AX = -XliNe. (3.2)

What is the largest possible steplength 6 that keeps the next iterate strictly feasible?
Clearly, x + Ax > 0 is maintained iff 5lINe < e. As mentioned in (2.12'), the
orthogonal projection lN may increase some components of e by O(V/'n). A simple
example to illustrate this worst case is A -(- ,, 1) E ,?lx(n+I), X = Z =
c = e - (1,...,1)T E B? + l, y = 0 and b- n - Vf/u. These vectors satisfy (2.1)
with p 1 1, i.e. x,y,z form a center, and fIRe = n-/ - , 1 and hence

IlNe = n+--n (,/'n, 1,..., 1)T. The infinity norms of HIRe and fiNe are larger than
Ilello by a factor of (nearly) V/i_2.

We emphasize that in this situation the search direction, even when secured by
a linesearch, does not allow a "long" step 4! This is particularly interesting since
all interior-point methods (also the "long-step" methods) generate the same search
direction at this point. To guarantee feasibility of x + Ax in the worst case for a fixed
steplength 6 we therefore need 6 < 2/v/'n, almost as in the model algorithm. Thus
the factor V/i can be interpreted as the "magnification" of certain components of a
vector during its orthogonal projection, rather than a result of "incompatibility" of
the norms or a result of our inability to prove the best possible bound.

At this point we may ask for a geometrical interpretation of the orthogonal
projection and of the fact that it sometimes magnifies certain components of the
vector e, i.e. that IIINel[. = O(V/n) > 1 = llelo,. Given a point x, y, z on the
path of centers, it is well known that -XIINe is the direction of the tangent (in
the primal space) to x(p). (To see this, simply differentiate (2.1) with respect to
p and observe that the resulting equation is exactly (2.2) with r = -e and with
the derivatives x', z' in place of Ax, Az.) Now, if some components of IINe are
> 1 (the case < -1 is similar with z in place of x) then the linear approximation
x(p(1 - 6)) x - bAx to the path of centers has a short "trust region", since even
for small 6 (any 6 > 1/[IIvINe[[I) the points x - bAx are not feasible, i.e. not near

4The conventional notion of short and long steps is somewhat confusing. Of course one may
decrease the complementarity parameter # by a long step at this point (and this is the general
understanding of a long step). What this example really shows is that the variables z, V, z may
not be able to follow such a long step; i.e. a damped Newton step is required, and the actual
complementarity gap is only reduced by a small amount.
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the path of centers. This implies that the second derivative of x(p) must be large
near y

Similar considerations also hold for "non-central" points Xz = pw where w 0 e
is a positive weight vector. For estimates about the curvature of x(p) we refer to
[16].

3.2. An Adaptive Method

If the path of centers is "well behaved" we do not anticipate the worst case-that
the infinity norm of the residual is increased by a factor of O(Jii)-in each step (see
[12]). The hope that the estimates used in the model algorithm axe too pessimistic
in the average case suggests the following adaptive choice of the steplength.

Let us again take I - as in the model algorithm. Given Xk,yk,zk and p = ik
such that

1rk112 = IlXkzk - ,e112 _,2'

we wish to determine ju k+1 as small as possible such that the residaal rk+i

following the Newton step for finding x(A), y(fl), z(js) satisfies the analogous bound

Ilrk+1112 = IIXk+Iz k+ 1 - jeI 2 <2 (3.3)

where xk+1 = xk + Axk and zk+1 = zk + Azk are obtained from xk and zk by (2.2)
with r = ,fk := Xkzk - e. If we set A := p(l-b) (for someb = 6 k > 0), then
it follows that fk = rk + 6pe. The component of Axk = DIINDX-' fk resulting
from rk is often referred to as the centering direction (it brings the iterate closer to
the center x(p)), while the component resulting from 6e is aimed at reducing the
duality gap and is usually referred to as the affine scaling direction. By (2.7) the

next residual is given by rk+1 = dXk/zk, where

Ax k = IINDX- 1 'l, Sz k = IIRDX- fk, (3.4)

(where x = xk, z = zk, D2 = XZ- 1 ). If we define qk = DX-lrk, sk = DX-'e and

k kk
v1 = IINq, v2 = q -vi, v3 = IINs, v4 =s v 3 ,

then
-kAx = v1 + bV3 , Azk = v 2 + bv.

This shows that (3.3) is equivalent to

k+11 =IIV 2 z - 2bAz + b2II,'k+iI11 = II(Vi + 6V3)(v2 + 6v,4)l] < ' - /4 ' +6 (3.5)
1jr 2 -4 4(35

which in turn is equivalent to

p(b) := ao + alb + a2b 2 + a36 3 + a4 b4 < , (3.6)

7



where
a0  = v Vi /4,

1  2  V2

a, = 2(vlv 3 v +v 2v4v +,/4),
2V2 + 2V2

a 2  = v2v 3 + vIv 4 + 4vlV2V3V 4 - 1/4, (3.7)

a3 = +

a4  = V2V2

and each "product" of four vectors "abcd" stands for the sum E] =l(aibicjdi).
The maximal permissible steplength 6 is therefore given by the largest positive

zero of p that is less than one5 . (This 6 - 6k can be computed in constant time.)
Thus we obtain a simple modification of the model algorithm by changing Step 2 to

2'. A k+1 := 14k(l _ bk).

3.3. Achievable Gains

The analysis of the model algorithm in Section 2.3 has shown that a steplength of
b = p/(4V'_) is possible in the worst case, i.e. that p(b) < 0 for 6 E (0,p/(4%/n)).
We now examine how long the step might be on average. We will call a vector v
well balanced if

IIVlIo < J-1v112

for some small constant r > 1. This excludes the case that v has only a few large
components.

Let us observe first that the vector sk is well balanced, since 1/v2 < s _
from the estimates (2.8) and (2.9).

To find how large we may expect 6 to be in the "best case" we assume that the
projections v3 = IlNsk and v 4 = 8 k - v3 are also well balanced, which essentially
excludes the case that some of the components of 8 k are magnified by more than a
constant factor during the orthogonal projection IIN. This allows a tight bound on
the size of the coefficients of p(6) by the following Lemma.

Lemma

1. If a and b are well balanced, then abcd < j-2llall2llbll2 llcll2lldll2.

2. If a is well balanced, then abcd < -'na 2Ib 2IcU 2IdI 2.

Proof

1. Z]a j bj cjd j  _ max jail max Ibj[ EIcj dj _ max lal max lbil 11cll2lldll2 <
llall2bll2Ilcll2Ildlt2. (The second inequality is the Cauchy-Schwarz inequality,

and the third uses that a and b are well balanced.)

5 1t is easy to see that if p is nonnegative in [0,1] we may choose 6 = 1 and thus find the solution
of (P) in one step. Unfortunately, this will not happen in general, and so we assume that p has a
zero in (0, 1).
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2. Same as above, only in the third inequality we use I1blIo _< 11bJ 2 instead of
flbjJoo _< lbl2 . U

By definition of vi and by (2.8) and (2.10), it follows that 11V1 112, JIv2112 _ V<T7
and 11V3112, 114112 -< 1/_i7. Further, inequality (2.13) (with v, = Sx and V2 = Az)
states that v2vi2 < p2 / 4 = jp2 /16. From these estimates and the lemma we obtain

ao 5-312 <0,

a2 < 6 2 -4 a3 < 8 2  , a 4  r.42 -

In this case we can verify that p(1/(16r.C/'n)) < 0, so that in the "best case" of the
adaptive algorithm we may expect a steplength of 0(1/./in), while the worst-case
bound of O(1/v'n) on the steplength is maintained regardless.

The factor /i still exists because the iterates remain close to the path of centers
(in the 2 norm). If we knew in advance that all projections were well balanced, then
the whole analysis could be carried out in terms of the infinity norm as indicated
earlier, and the rate of convergence would be independent of n.

4. CONCLUSIONS

The short-step interior-point methods that allow "nice" polynomial-time proofs of
convergence for linear programming turn out to be much too slow for practical
algorithms. Thus a number of "long-step" methods have been analyzed to date, most
of which are aimed at proving the correctness of existing numerical implementations;
see in particular [6].

In Section 3.1, however, we have presented a worst-case example in which the
iterates x, y, z are not able to "follow" a long step in the reduction of the comple-
mentaxity parameter p. The possibility of such worst cases is responsible for the
weak proofs of convergence for long-step methods. These proofs not only fail to
explain the fast convergence of the implementations that has been observed for all
numerical examples, but also exhibit a worse theoretical complexity than even the
short-step methods.

The adaptive method presented here is intended to close the gap between the-
oretical and practical complexity. If we were able to show that some percentage of
the projections of the vectors s k are well balanced over a sequence of iterations, then
we could indeed reduce the theoretical complexity. This is the goal of future work.
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the algorithm proposed here allows an acceleration of the rate of convergence (up to a complexity of
O( Gi log .))if the problem is "well behaved".
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