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connected with the so-called gravimetric inverse problem, extended computations were
carried out in the European Alps in order to verify already established (model)
relationships.

After discussing various possibilities for the consideration of density in an integrated geo-
detic adjustment, a new approach is presented using the physical relationship, namely
Newton's attraction integral, for the construction of the necessary auto- and
crosscovariances when treating anomalous density as a stationary random process.
Isostatic response theory as developed by Dorman/Lewiq as a generalization of Vening
Meinesz' isostasy model is introduced in the derivation and also proposed as deterministic
predictor. The empirical relationship between seismic velocities and density as well as
gravity is thoroughly investigated. Starting from the wave equation for an inhomogeneous
medium seismological displacements are used forming a stochastic process.

For the various numerical investigations geophysical and geodetic/gravimetric data were
collected in a local area as well as over the European Alps. Geophysical models of the
Moho, the seismic basement, and the depth of the lithosphere as well as a

threedimensional P wave velocity model are developed.

Numerical tests in gravity prediction are carried out mainly using the attenuated white
noise gravity covariance model and quasi-harmonic inversion.
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1. INTRODUCTION

The determination of the gravity field is one of the major tasks of geodesy besides precise
positioning. Especially in the last two decades great progress could be achieved. On the
one side satellite observations became available which contributed significantly to the
construction and improvement of global earth models (SZABO 1986). The best of those
are nowadays complete to degree and order m = n = 360 (RAPP, CRUZ 1986)
corresponding to a resolution of 30' x 30' mean gravity anomalies, say 50 x 50 km2 .

Satellite altimetry has reversed the state of global knowledge of the gravity field with
respect to land and oceans. Whereas still in the 1960's the gravity field over land was
much better known than over sea, now the opposite became true.

On the other side integrated data processing techniques were developed which are able to
give best estimates by combining all available geodetic observations. Their field of

application can be found more or less in the local or regional range. Least-squares
collocation and integrated geodesy adjustment, first developed and proposed by KRARUP
(1969), EEG, KRARUP (1973), are the key developments on this theoretical and data

analysis side.

Despite of these great achievements on the observation recovery and the analysis side, the
demands grow further for a better resolution and accuracy of the earth's gravity field.
With respect to global aspects the needs are coming from satellite geodesy where most
missions require an orbit determination in the submeter- or even decimeter level. They are
coming from oceanic circulation investigations, sea-level variability studies and marine
geophysics. Crustal dynamics and plate tectonic research has to be mentioned, too. On the
regional or local scale the advent of the Global Positioning System has started a revolution
in surveying techniques. Although the measurements yield threedimensional positions, the
height problem cannot be solved due to its dynamical character. Thus, precise geoid

heights - nothing else than a functional of the geopotential - have to be known in order to
derive, for example, orthometric heights from GPS ellipsoidal heights. A method which
can lead to a replacement of the traditional spirit levelling, so far physical geodesy is able
to provide the geoid with sufficient accuracy. Prerequisite again is the precise knowledge of
gravity (anomalies) and/or vertical deflections in those areas.

What is the state-of-the art in the knowledge of the gravity field? Although due to satellite

altimetry nearly a complete gravity coverage over the oceans can be used for the
construction of global earth models, there are still something like 5500 10 x 10 blocks over
land where mean gravity values for certain reasons are not available. This corresponds to

1



approximately one third of the earth's land surface (see Fig.1.1). Those gaps have to be

filled by so-called geophysical anomalies, that means that the gravity anomaly values have

to be estimated on the basis of geophysical information and models. There is no doubt that

an improvement in those procedures and gravity values, respectively, results in more

accurate global geopotential models.

Approximation methods like collocation are able to combine different geodetic and

gravimetric observations to determine the gravity field and its functionals with

wavelengths smaller than the resolution of the global earth models. Mainly, gravity

(anomalies) and astronomic latitudes and longitudes (deflections of the vertical) are

combined. For gravity anomaly interpolation a certain reduction has to be carried out in

order to perform the real numerical computations in a smooth field, often referred to as
"remove-restore" technique. For the determination of the geoid as a boundary value

problem, gravity and other data have to be reduced down to the geoid. For both purposes

mentioned before digital terrain models have to be available and rock density assumptions

are necessary. Although the gravity field is caused by mass irregularities within the earth -
see Newton's law of gravitation - geodetic/gravimetric algorithms for the determination of

the gravity field (prediction, interpolation, etc.) do not use geophysical data, like density

and mass distribution to construct the gravitational potential,

V(a) = G ff dvE(X) (1-1)

where G is the gravitational constant, vE is the volume of the earth E, p is the density and

, y are threedimensional position vectors.

The imperfect knowledge of the density distribution within the earth, however, results in

the fact, that the gravitational potential outside the earth has to be determined by solving

a boundary value problem with gravity anomalies as boundary data, for example.

For both methods, smoothing as well as reduction, density assumptions have to be made.

In case of isostatic gravity anomalies even hypotheses on the model of isostatic

compensation and the depths of the Mohorovidi6-discontinuity are necessary to perform

the necessary computations. Thus, the geophysical (model) data are used indirectly in

geodesy. With increasing observations in seismics, geophysics is nowadays able to give

reasonable density values or seismic velocity information for whole regions. An excellent

example is the digital surface density model of WALACH (1987). Often also density values
at discrete locations are available. This seems to be now the time to think about the direct

2
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use of geophysical data in geodetic approximation methods for the determination of the
gravity field. First proposals in the last years are reviewed in chap. 4. Two warnings are
always coming from geophysicists when we try to use those available density data and
establish a certain mathematical/physical relationship between density and gravity (see

also chap. 2).

Density is varying with depth and can change drastically also in lateral direction.

Consequently, it is very hard to establish a density model. No e- bt, it has to be
threedimensional. The need of geodesy, to generalize the density information - both,
laterally in the form of certain mean blocks, and vertically, in the form of a minimum of
layers - implies a certain loss on geophysical information. It is, however, required for the
sake of numerical handling of the problem in the computer. Insofar, a digital model of
(surface) rock densities has its problem. What does surface density mean? Obviously, the
first some hundred meters down to sea-level are characterized: a small distance compared

to the earth's radius.

Due to the complexity of the earth's crust a simple mathematical relationship between

density p and gravity with sufficient accuracy exists only locally, g = f(p). However, the
problem in opposite direction, p = f(g) is ambiguous and usually called "inverse problem"

in geophysics.

Nevertheless, (more details are outlined in the next chapter on the definition of the prob-

lem), in view of all those generalizations and approximations which have to be made, it is
better to use such density information, for example, in gravity (anomaly) interpolation

than to leave the gravity gaps white or to use globally averaged estimates like p = 2.67 g
cm- 3. Even probabilistic approaches are justified ("When in doubt, smooth", Sir Harold

Jeffreys).

This report proposes some first (simple) ideas, proposals, and approaches how to use geo-
physical data in the determination of the earth's gravity field and its functionals (gravity,

deflections of the vertical, geoid heights). Numerical investigations with real data are espe-
cially carried out in the field of gravity interpolation.

4



2. DEFINITION OF THE PROBLEM

We will assume that we have made the following measurements on the earth's surface (or

in space),

gravity g, astronomic latitude 4), astronomic longitude A, gravity gradients
o2W/aoxjoj (second-order derivatives of the gravity potential) or, in other form, after
subtracting reference- or model-(normal) values:
gravity anomalies Ag, components of deflections of the vertical in north-south and in

east-west direction ( ,77), resp., anomalous gravity gradients o2T/xi~oxj .

We further assume, that geophysical information is available, in detail,

- density data, characterizing as discrete point or mean block values over a certain
lateral area a specified layer of the earth's crust,

- seismic velocities v, referring as representative values to certain portions or layers
within the earth's crust,

- seismic displacements.

In the ideal case density and seismic velocities are given in the form of a threedimensional

digital model.

We are looking for a solution for the gravity potential W (or disturbing potential T)

outside the earth by combining all available geodetic and geophysical information as
mentioned above. From this representation of W (or T) we like to derive all functionals,

like gravity anomalies, deflections of the vertical, geoidal heights, etc.

A good ezample for the problem stated above in the real world would be the prediction of
gravity anomalies in unsurveyed areas (without gravity observations) where, however,

density estimates and/or seismic velocities either from geophysical investigations are
available, or where a reasonable guess of the density variation based on geological features
can be made. In addition, gravity values in the surrounding areas are available which

could be considered in a combination solution.

Central point in such a solution algorithm is the mathematical-physical foundation of the

relationship

seismic velocity v -. density p #--4 gravity g (or gravity potential W).

5



It was already mentioned that the determination of internal masses from (surface) gravity
data, p - f(g), has no unique solution and is treated in geophysics as so-called inverse

problem.

GRAVITY FIELD OF THE EARTH

DENSITY
P

I T

SEISMICS

seismic velocities

Fig. 2.1. Gravity, density, and seismic data in geodesy and geophysics (the corresponding
arrows indicate the main goals and working directions of geodesy (=>) and geo-
physics (->)).

There are, however, two major differences to geophysics in our task which are also
illustrated in Fig. 2.1. First, we are only interested in the solution in the one direction v -
p - g. A fully established, mathematically and physically correct inverse relationship or
solution is not of primary interest for us, since we are only interested in the improvement
of the exterior gravity field. It may be possible, for example, that a certain relationship
between p and g leads to a reasonable solution for g = f(p); however, the inverse-relation
applied in the algorithm may yield unacceptable results. The second point which should be
raised here when defining the problem is the following. If we are faced with the problem
that no gravity observations are available in certain regions of the world even a guess of
the geological/geophysical situation may help in the prediction of smoothed gravity values
and may be better than to use zero-values in the spherical harmonics solution of an earth
model. It is obvious, that for such a task some kind of generalization has to take place
which may drastically smooth local geophysical features.

6



Finally, we have to decide on the character of the relationship v -- p --+ g. Should we
define it in the deterministic way or is it opportune to apply the concept of random
processes in such a (prediction) algorithm. There are good reasons to vote for the last.
Gravity field determination involves functions, or better functionals like geoid heights,
gravity disturbances, deflections of the verticals, etc. which have to be evaluated from the

same source. Our knowledge about the interior of the earth and the needed mathematical/
physical relationships are limited. Thus, the concept of probability enters to some extent
into our problem. Even from the (visual) distribution of the masses within the earth one
might think of some irregular distribution which justifies the application of stochastic or
random theory. No doubt, that it would also extend the already applied concept of
geodetic collocation in integrated geodesy. These arguments all have led us to the decision
to look - besides other deterministic methods - also for an (overall) stochastic concept.

7



3. THE INFLUENCE OF SEISMIC STRUCTURES ON THE GRAVITY FIELD:

THE GEOPHYSICIST'S VIEW

In order to use geophysical data for gravity interpolation we have to understand more in de-

tail the underlying mathematical/physical relationship between the corresponding observa-

tions. Since those relations often have model character or represent simplified physics it is

worthwhile to verify them also with real data. Therefore this chapter mainly tries to inves-

tigate available models and includes also some inverse computations determining density

contrasts between the different layers of the earth's crust.

The layer boundaries determined from seismic or seismological data are the most direct

evidence for physical inhomogeneity within the earth's crust and upper mantle. Since

density tends to correlate with seismic velocity, undulating layer boundaries are very likely

to influence the gravity field. The recently released digital density models, see, e.g., WA-

LA CH (1987), represent, however only surface densities. In spite of their rather exact know-

ledge they cannot be reliably continued downward. More knowledge about the density dis-

tribution at depth is necessary, if we want to compute and improve the gravity field and its

functionals.

The most important and widely accepted way to determine the rock densities at depth is to

apply the velocity-density systematics or relationships. They are based on experimental

laboratory measurements (e.g., BIRCH 1960, 1961; LIEBERMANN, RINGWOOD 1973) or

on solid state physical theory (e.g., BIRCH 1979; ANDERSON 1973). Another approach is

the inversion of gravity data with the assumption of "known" geometrical structure, e.g.,

from seismic studies, and the additional assumption that bodies of constant seismic velocity

are also uniform in density (e.g., JACOBY 1973, 1975).

We must note, however, that gravity, as any potential field, cannot be inverted

unambiguously but that in principle there is an infinite number of solutions. Nevertheless

the number can be drastically reduced by adding information, e.g., from geology, and

seismic or other geophysical information. If the structure of the crust is sufficiently known,

the gravity effect of finite parts, e.g., bodies or layers, can be computed at any surface

points. If only their densities are unknown, one may determine them with the aid of the

least-squares method by fitting the computed sum of the individual bodies to the

observations. Subsequently one may relate the density variation found with the already

known seismic velocities to determine the velocity-density systematics. From this, it is

hoped, the physical state and the chemical and petrological composition of the earth's

interior will be better understood.

8



In principle, it should be possible to extend this method to gravity prediction. If the gravity

field is known incompletely, e.g., only in parts of a region or only in its long wavelength

components, but published seismic models are fairly detailed, one may attempt the

following approach. First find the best fitting densities as sketched above and then compute

the gravity anomalies and/or geoid undulations that are caused by the seismic structure

with the density variation determined. However, whether this approach is successful has to

be tested with practical examples.

3.1 Computation of the gravity effect of given model bodies

The starting point for the computation of the gravity effect of given masses is the

contribution of an infinitesimal mass element dm to the gravitational potential WV. It can

be expressed as:

6 = G fff Ix dm (3-1)
N 1;- YJ

where G is the universal gravitational constant ((6.673 - 0.003 ) x 10-s g-1 cm 3 S-2), and the

vectors y = { ,77,(j and x = {x,y,z} represent the coordinates of the mass element and

the observation point (where the gravity effect is to be calculated), respectively (see Fig.

3.1).

Differentiating equation (3-1) with respect to z (vertical downward) assuming a local

cartesian threedimensional coordinate system and expressing Ix- I by their components

renders the gravity effect 6g of the mass body (density is denoted by p)

G f f (,9 ) ( yI) ((--z) -J. dC d-q d(. (3-2)t g(x) = 5V~) = G(3-2)

The integral (3-2) can be most easily computed for two-dimensional masses. Such masses

can be represented by a polygon (with j corners) in the normal section of the mass which is

assumed to be infinite horizontally at the right angle to the section. According to JUNG

(1961) the gravity effect at the point P of a triangular section with apex P(2;) is (see Fig.

3.2 for the notation and corresponding quantities):

bg(x) = 2 Gp (n -x) sina [sinaln sin (+A + Cosa (VP - VA)] (3-3)
sin( + B +  (

9



Y. 7P

Fig. 3.1. Coordinate system for calculating gravity and geoid

P

a

Fig. 3.2. Integration of a triangle (two-dimensional body)

Fig. 3.3. The effect of two-dimensional bodies represented as a polygon calculated
from the sum of triangles
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The effect of a two-dimensional mass of an arbitrary polygonal cross section is calculated

by dividing the polygon into j triangles between two neighbouring corner points and P as

the apex. The total gravity effect is the sum of all triangle effects where the sign changes

along the circumference of the polygon such that the effect of "external" triangles are

subtracted and that the "interior" area (volume) is left (see Fig. 3.3).

For three-dimensional masses, more appropriate in reality, a similar approach is available.

The surface of a body is divided into a finite number of triangles or one approximates the

body by a polyhedron. Each triangle forms a tetrahedron with the observation point P. As

in the two-dimensional case, the gravity effect of the whole body is the sum of the effects of

all tetrahedra with a similar sign rule. Therefore one has again to follow strict rules when

defining the orientation of the triangles at the body surface, e.g., by surrounding them

always clockwise such that the surface normal always points out of the body. The analytical

solution of the gravity integral (3-2) for this case, i.e., the gravity effect of just one

tetrahedron is complicated and would fill several pages (QA V§AK 1988). (A computer code

in FORTRAN77 is available to the authors.)

3.2 Computation of geoid undulations caused by model mass anomalies

For the computation of potential anomalies or geoid undulations the solution has been

described in detail by CHAPMAN (1979). It is extendable to the gravity effect without

much difficulty. The gravity effect is obtained by differentiating the potential solution with

respect to z. Computing the geoid means to determine the shape of an equipotential surface.

Roughly speaking it is a rotational ellipsoid with small perturbations (undulations), which

are related to the disturbing potential. If the disturbing potential T is known, the geoid

undulation N is found from Bruns' formula (HEISKANEN, MORITZ 1967):

N =T (3-4)7'

where -7 is the normal gravity value at the reference ellipsoid vertically below (above) the

observation point. The potential ff1 of a disturbing point mass m at a distance I is given by:

-- _ _(3-5)

II



If this definition is extended to the expression (3-1) with the coordinates used there (Fig.

3.1) the integral expression for the geoid becomes

N(x,y,z) f f (3-6)

3.3 Estimation of the normal values for crustal parameters

In gravimetric modelling of the crust it is necessary to extend bodies, as, e.g., layers not

limited to the study area, beyond its margin in order to avoid edge effects. One may use a

coarse grid to represent such "external" bodies if known, taking advantage of the "remote

zone effect". If unknown, as often the case, the "external" crustal structures have to be

extended anyway, but one may assume standard or normal models. Deviations of

boundaries from their normal values are the cause of gravity and geoid anomalies and their
knowledge is thus important as a reference. For gravity calculations the crustal model must

extend several hundred kilometers beyond the limits, 200 - 500 km are generally sufficient.
For geoid calculations the external extension must be greater, at least 600 - 1000 km,

because of the slower decrease of the potential with distance.

In estimating the normal crustal values, e.g., of the Moho depth, one may make use of a

standard functional relationship between elevation of the earth's surface and Moho depth.

This is because the isostatic equilibrium of sufficiently large regions of the earth's crust is

generally expected to exist. We may assume the average linear relationship, which has been

reported by TURCOTTE, SCHUBERT (1982), based on the Airy model of isostasy and the

assumption of standard values of crustal thickness and crust as well as mantle densities.

Z. [km] = 33.0 + 6.60 * H [km] . (3-7)

Z. is the depth of the Mohorovidid discontinuity and H is the average topographic elevation

of a compartment.

If one has sufficient data for the study area, one may determine regionally more appropriate

values of A and B in the model Z. = A + B * H by linear regression analysis. In oTder to

determine this isostatic effect and the normal average crustal thickness one limits the
investigation to elevations H > 0.2 km. Fig. 3.4 and Table 3.1 present the results of such an

analysis on the basis of all compartments in the study area except those in the southern

Rhine Graben, where the Moho is anomalously shallow, and the southeast part of the study
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area where our Moho data are merely interpolated. Table 3.1 also includes the results of

GEISS (1987) for comparison.

+ + ++ + "4

I..

t. + + ++
Q ++ + + -t-S+

2. -414

203 30 40 50 50
depth o boho CkmJ

Fig. 3.4. The correlation of Moho depth and topographic elevation in the test area
"European Alps".

Table 3.1. Regression of topography and crustal thicknessZ [kin] = A + B*H [ki].

Modelj A [km] AA B LB Rt STDV

1 I2036 28.20 i 0.20 9.00 * 0.26 0.61 6.40
2 332 26.20 * 0.74 4.40 * 0.32 0.60 7.20
3 I1851 29.90 * 0.24 7.78 * 0.20 0.67 5.56
4 I1587 30.03 - 0.26 7.79 * 0.20 0.69 5.26

n ... number of data duplette,
AA,AB .. standard deviation of the coefficients A,B,
R .correlation coefficient,
STDV ... standard deviation of the regression [kmn]

Model 1 ... crust (H 0.2 kin) Central Europe and Alps (GE. SS 1987)
Model 2 ... Oceans (H < - 0.2 kmn) (GEISS 1987)
Model 3 .. Alps, all data dupletts (H 0.2 kin)
Model 4 .. as Model 3, but without anomalous and uncertain values

13



The results are rather similar, but the correlation coefficients are a little larger, and the
standard deviations are smaller than those of GEISS (1987), whose investigation was based

on much bigger compartments (12' x 20' and 10 x 10). The regression shows also that the
relationship between elevation and crustal thickness fit the data with remarkably little

scatter in the Alpine region. An "isostatic" Mohorovitik discontinuity computed on the

basis of the models 2 and 4 (Table 3.1) shows a good agreement with the seismically

determined one (Fig. 8.13), in fact, it agrees within the reliability limits (Figs. 8.14 and

8.15). Note, however, that the dependence of Moho depth on elevation is greater in the seis-

mic model than in the theoretical one of equation (3-7), based on Airy-isostasy and stand-

ard densities.

Similar regression analyses for the other boundaries (seismic basement Zb and lithosphere/
asthenosphere boundary Zj) are not possible or sensible. The basement does not show any

unique correlation with the topography and it is not the result of isostatic equilibrium. The

same is true for the lithospheric root which may be a relic of subduction. Isostasy is the
vertical mass equilibrium, or in other words, the tendency towards hydrostatic pressure at

some depth with a laterally varying density distribution above the surface of pressure

equilibrium. Experience with other large scale models (JACOBY 1973, 1975) have shown

that this surface must lie below the deepest Moho depth, but it is not identical with the
lithosphere/asthenosphere boundary. Thus, in estimating the normal Zb and Z1 values one

can only rely on the literature.

The work of MOSTAANPOUR (1984) indicates that the depth of the seismic basement in

large parts of Europe is close to 6.0 k 0.1 km. The mean value of Zb in our study area is

only 5.5 km. The normal thickness of the "lid" or the thickness of the uppermost mantle

part of the lithosphere between Moho and top of the asthenosphere is given by

SUHADOLC, PANZA (1988) for the Mediterranean - Alpine region to be 70 - 80 km. With
the normal crustal thickness added we get about 110 km for the normal lithosphere

thickness. For our purposes this value is questionable since we are interested in the

anomalous region of the Alps. The lithosphere thickness in marine areas (e.g., of the
Mediterranean) is only 40 - 60 km, and in northern central Europe the values are also

rather low. If the marginal regions of our models are assumed to follow the above normal

values, the error introduced into the gravity computations is neglegibly small because of the

rapid gravity decrease with distance. In calculating the geoid, decreasing as 1/1, the errors

will still be noticeable. Generally, a given mass element (of the upper and lower crust as
well as the uppermost mantle typical for an Alpine model, each with the same lateral

14



extent, directly below a station) at 13, 39 and 65 km depth has effects that vary as 1 : 0.3

0.02 for gravity and 1 : 1 : 0.1 for the geoid; for horizontally displaced elements the geoid

effect decreases even less with depth. Table 3.2 summarizes the mean values, reference

depth for computed values and depth of boundaries used as extensions beyond the model

limits for the following gravimetric computations.

Table 3.2. Mean values and reference depth of layer boundaries.

Layer VEAN REF F

Basement 5.53 5.50 6.00
lohorovicic discontinuity 36.60 32.00 30.00
Lithosphere thickness 143.19 105.00 110.00

MEAN ... mean value for study area [km],
REF reference depth [km],
F ... extension depth outside study area [km].

3.4 Two-dimensional model computations

Although two-dimensionality is a gross deviation from the real geometry of the earth,

two-dimensional models for profiles at right angles to the main strike of the geological

structures are a simple and important means to estimate the density contrasts at

boundaries. They can thus give an indication of how good the seismic models are. The

advantage of two-dimensional modelling is that it requires much less computing time than

three-dimensional models. If the depth extent is small as compared to the approximately

linear horizontal extent, the errors caused by two-dimensionality are small. In the study

area "European Alps" a profile was chosen that is perpendicular to the main axis of the

Alps (see Fig. 3.5). The two-dimensionality is acceptable in view of the maximum model

depth of less than 200 km and the radius of curvature of the Alpine axis of more than 400

km. The location of the profile is determined largely by the availability of gravity data (see

chap. 8.2.2) and parallels the Swiss Geotraverse. The data bases are the area means of the

Bouguer anomaly, i.e, a smoothed version of the gravity profile (see Fig. 3.5). The profile

crosses the Ivrea body, which is possibly a high-density piece of oceanic crust and upper

mantle (lithosphere) obducted onto continental lithosphere from the south. The Ivrea body

was approximated by an additional model body dipping to the south as indicated in the

seismic data (BERCKHEMER 1968). In fitting gravity, this assumption proved to be very

important to reduce the residuals or "errors" and to improve the density estimation for the

three layers of our general model, shown in Fig. 3.6 as a cross section through the
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three-dimensional models (Figs. 8.11, 8.13, 8.16). Our experience is that the neglect of
important geometrical model aspects will adversely influence the density estimates of the

rest of the model.

In computing the densities we advanced from simple models to as complete ones as possible.
In the sequence, we first (model 1) asssumed only the Mohorovidic discontinuity to exist,

then we added the seismic basement (model 2) and finally completed the model by adding

the lithosphere/asthenosphere boundary. The Ivrea body was always included. The results,
i.e., our estimates of the various density contrasts (across the boundaries relative to the

mantle below the lithosphere) are presented in Table 3.3.

Table 3.3. Density coihtrasts from two-dimensional model calculations (fit of Bouguer
anomaly) relative to sublithospheric mantle.

Model Co C1  C2  C3  C4  R STDV

1 233.0*21.6 -0.24*0.02 0.13*0.05 0.93 17.4
2 310.3*30.9 -0.41*0.06 -0.27*0.02 0.12*0.04 0.95 15.3
3 129.2*23.5 -0.40*0.03 -0.27±0.01 0.06*0.02 0.09*0.01 0.99 7.45

Co ... constant gravity value [mGal], only formal,
C, ... density contrast of lower crust [g/cm3],
C2  ... density contrast of upper (sedimentary) crust [g/cm3],
03 ... density contrast of lithosphere [g/craB,
C4 ... density contrast of Ivrea body [g/cm3],
R ... correlation coefficient
STDV ... standard deviation of model gravity anomaly [mGal],

Model 1 ... Moho and Ivrea body included,
Model 2 ... Moho, seismic basement, Ivrea body,
Model 3 ... Moho, seismic basement, Ivrea body, and lithosphere / as-

thenosphere boundary.

The results demonstrate that the models get better if more details (of seismic origin) are

included, particularly the lithosphere/asthenosphere boundary; the fit is greatly improved

(standard deviation less than half from model 1 to 3), and the density contrasts assume
values that are very plausible in view of seismic velocities. If a reference density of

3.3 g/cm3 (KISSLING 1982) is assumed for the uppermost part of the earth's mantle below
the Alps, the densities are similar to the densities in a north-south profile (part of the
European Geotraverse) which was computed by SCHWENDENER, MULLER (1985). They

found the following values: upper crust assumed and fixed at 2.73 g/cm3; middle crust
2.86 g/cm3 , lower crust 2.957 g/cm 3, and uppermost mantle 3.264 g/cm 3. In our own
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two-layer model the corresponding values are: upper crust: 2.845 g/cm 3, middle and lower

crust: 2.973 g/cm 3, and uppermost mantle 3.30 g/cm 3 (assumed).

The positive density contrast from the asthenosphere to the lithosphere is expected from

geodynarnic arguments and from the low seismic velocities in the asthenosphere. Similar

values have been found by JACOBY (1973, 1975) and by SUHADOLC, PANZA (1988) for

the Alps, who investigated gravimetically the sub-Alpine lithospheric roots and obtained
+ 0.05 g/cm 3. In contrast GEISS (1987) found a value of about - 0.01 g/cm3 which is
insignificant, but surprising.

The density contrast of - 0.327 g/cm 3 from the mantle to the crust falls into the frequently

assumed range of - 0.30 to - 0.35 g/cm 3 (KISSLING 1982). For the Ivrea body we found
the density to be nearly that of the upper mantle. This was the result of a free fit of model
gravity to the observations. These results give us some confidence into the model and we

believe that this is an argument for the high quality of seismic data. There are still relative
large residuals in the region of the Ivrea body and the northern Molasse (see Fig. 3.7); these

are probably caused by shallow mass anomalies not sufficiently well incorporated into our

model. The deviations from the two-dimensionality assumed will also contribute to the
residuals.

3.5 Three-dimensional model computations

Two-dimensional models are always rather arbitrary and incomplete, though very simple.

The above results are therefore to be verified by computing a three-dimensional model for
the whole study area "European Alps". We computed both gravity effects and geoid

undulations on the basis of the shapes of the boundaries Zb, Zm, and Z1. In computing the

geoid we must also take into account the effect of the topography. For simplicity we
assumed the density of the "topographic masses" to be 2.67 g/cm 3. The data to be fitted

were the geoid undulations represented by a global spherical harmonic expansion to degree

and order 360 (spatial resolution about 0.5 degree). For the gravity fit we again used the
area means of the Bouguer anomaly (see Chapter 8.2.2). Compartments near the Ivrea body

were excluded from density estimation by least-squares gravity fit so that we could avoid

the introduction of an additional complicated and uncertain three-dimensional model of this
structure. The geoid representation also includes no effect of the Ivrea body.

The results of gravity fitting on the basis of 1660 compartments are presented in Table 3.4.

The standard deviations are much greater than in the 2-d cases. The density contrasts
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Table 3.4. Density contrasts at the layer boundaries from three-dimensional model
computations (fitting of gravity).

RIode1 . CO C1  C2  C3  R STDY

1 -28.23 *1.39 -0.207 10.005 10.71 33.94
2 -15.96 *1.48 -0.191 *0.011 -0.253 *0.005 10.76 31.37

[3 A-36.39 ±4.80 -. 176 10.012 1-0.278 *0.008 0.029 ±0.006 0.7 -3....9

Co ... constant of fitting [mGal],
C1  ... density contrast at the seismic basement [g/cm 3],
C2  ... denity contrast at the Moho [g/cm3],
C3  .. density contrast at the lithosphere / asthenosphere boundary

[g/cm3],
R correlation coefficient
STDV .. standard deviation of the model [mGal],

Model 1 ... only Moho included,
Model 2 . Moho and the seismic basement included,
Model 3 . Moho, basement, and lithosphere / asthenosphere boundary.

computed are, however, much the same. The density contrasts relative to the

sub-lithospheric mantle and the absolute values (if 3.3 g/cm3 is assumed for the

lithosphere) are: lithosphere + 0.029 (3.30) g/cm 3; lower crust above the Moho: - 0.249

(3.022) g/cm3; and upper crust above the seismic basement: -0.425 (2.846) g/cm 3. Note

that the density contrast between the lithosphere and asthenosphere is much smaller, only

about one half of that computed for the two-dimensional profile. The introduction of the li-

thosphere/asthenosphere boundary does also no longer reduce the standard deviation that

much. It is suspected that the model assumptions - mainly the homogeneity of the layers

between the boundaries - are not exactly true and that this becomes more serious the larger

the region included in the modelling (2-d profile towards 3-d model). This may be especially

so in the case of the lithosphere and asthenosphere, perhaps the lithospheric roots. The two-

dimensional profile exactly crosses the root below the western Alps. In other regions the

density contrast may be lower; an indication is also the result of GEISS (1987) - see above.

The effects of the three boundaries with the density contrasts of model 3 and the computed

effect resulting from the fit of the original data are shown in Figs. 3.8 a,b,c and 3.9. The

computed gravity map for the region of Switzerland is already quite similar to that of

KISSLING (1982) in which the effects of the Ivrea body and of the superficial sediments at

the northern Alpine margin have been removed from measured gravity data. The gravity

minimum in the central Alps is about 40 mGal lower in our map. The gravity high in the

Po plain is well approximated. The gravity fit is worse in Austria as compared to detailed
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gravity maps (e.g., STEINHA USER, PUSY IZEK 1987); the reason for this is probably the

poorer crustal model in this region. To the north in the foreland of the Alps the

interpretation of PLA UMANN (1987) is confirmed.

The greatest contribution to the total gravity effect is that of the Moho variation. It is the

exclusive cause of the Alpine gravity minimum. This confirms the statistically inferred

aspect of the good isostatic compensation of the Alpine structure. The mismatch of

40 mGal in the axial region cannot be explained by changing the Mohoroviid discontinuity

within the limits of confidence (Figs. 8.14, 8.15). A rock layer of 1 km thickness at 40 km

depth with a density contrast of 0.3 g/cm3 will have a gravity effect of less than 10 mGal at

the surface and a change of Moho depth within the permissible limits will not explain more

than 50 % of the residuum.

Fitting the geoid data (see Fig. 3.10) in the same manner how it was done with the mean

Bouguer anomalies leads to the density contrasts represented in Table 3.5. The density of

the topographic masses was fixed to 2.67 g/cm3 as mentioned above.

Table 3.5. Density contrasts at the layer boundaries from three-dimensional model
computations (fitting of geoid).

odel Co C1  C2  C3  R STDV

4 41.32 *0.69 -0.234 *0.005 0.74 3.315
5 67.42 0.75 -0.453 *0.010 -0.342 *0.004 0.88 2.369
6 80.19 *0.70 -0.421 *0.008 -0.197 *0.005 -0.071 *0.002 0.77 1.898

Co ... constant of fitting [mGal],
C1  ... density contrast at the seismic basement [g/cm3],
C2  ... density contrast at the Moho [g/cm3],
C3 ... density contrast at the lithosphere / asthenosphere boundary[g/CM3],

R ... correlation coefficient
STDV ... standard deviation of the model [mGal],

Model 4 ... only Moho included,
Model 5 ... Moho and the seismic basement included,
Model 6 ... Moho, basement, and lithosphere/asthenosphere boundary.

Trhe density contrasts relative to the sub-lithospheric mantle and the absolute values (again

with the assumption of 3.3 g/cm 3 for the lithosphere) are as follows: lithosphere: - 0.071

(3.30) g/cm3; lower crust above the Moho: - 0.268 (3.103) g/cm3; and the upper crust

above the seismic basement: - 0.689 (2.682) g/cm 3. The densities derived from geoid inver-
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sion are also quite reliable but they differ, however, from those derived from gravity inver-

sion mainly in two points. First the significant negative density contrast at the lithosphere/

asthenosphere boundary has to be noticed, secondly the strong negative density contrast at

the seismic basement. In Table 3.5 one could see, that the densities in the different models

are even more dependent on the number of influencing boundaries.

The effects of topography and the boundaries with the density contrasts of model 6 and the

total geoid effect resulting from the best fit of the input data are shown in Figs. 3.11 a,b,c,d

and 3.12. The greatest contribution to the calculated geoid is that of the topography; the

variation of the Moho has not the strong effect on geoid as on gravity. Although the geoid is

well fitted (comparison of Figs. 8.17 and 8.19 and the correlation coefficient of 0.92

corroborate this fact) the density contrasts found do not lead to a linear velocity-demnstty

systematics. About the reasons one can only speculate. Our opinion is that edge effects of

the seismic model are not entirely eliminated and that the geoid data resolution calculated

from a spherical harmonic expansion up to order and degree 360 is too coarse to include the

effect of such small areas like the Alpine lithospheric roots with its positive density

contrast. Such geoid data are not suitable to deduce velocity-density systematics, but its

inversion could be used to consider the results of gravity inversion. If the seismic model is

good, the geoid inversion should give results of the same order of magnitude. This is true in

case of our model.

3.6 Velocity-density systematics

The term "systematics" for the relationship between density and seismic velocity is used to

indicate that there is only a trend with much real scatter. Solid state theory cannot yet

establish unequivocal relationships. Velocity and density are influenced by the material as

such (composition, mean atomic weight) and by the packing and bonding of the atoms

(crystallography, mineralogy), i.e., by many parameters. Thus in order to connect gravity

and seismic data via density-velocity systematics one tries to establish them empirically.

Mostly one refers to laboratory results, e.g., by BIRCH (1960, 1961).

It is, however, also possible to take the reversed route. If we compare the density contrasts

found with the two- and three-dimensional gravity models (density contrasts found from

geoid inversion are excluded) and the average seismic velocities V,, in the layers of our

models, we find a nearly linear relationship (Fig. 3.13). The density contrasts in this case

have been transformed to absolute densities with the assumption of a value of 3.3 g/cm 3
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within the uppermost mantle. We find the coefficient b = 9vp/9p to be about 5.4 * 0.4

[km/s]/[g/cmlJ. This result is relatively high as compared to other investigations. For

example, JA COB Y (1975) - Fig. 3.15 - found values about 4.8 :k0.8 [km/s]/[g/cm3] for
long range models or profiles in North and South America. Laboratory investigations

(BIRCH 1960, 1961) have given somewhat lower values of, for example, about 3.5

I km/s]/[g/cml] for basalt-type rocks. We therefore shall not overemphasize our linear
relationship.
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Fig. 3.13. Velocity-density systematics from two- and three-dimensional gravity
inversion; triangles: two-dimensional models; asterixes: three-dimensional
models; quadrangles: three-dimensional geoid model (for comparison), the
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However, the gravimetiic results as ours principally suffer from their insensitivity to purely

depth-dependent density variations in the earth. It is quite likely that there is generally

such a component of purely vertical density increase in the real density variation of the

crust and upper mantle; this component may differ from region to region and thus explains

the deviation of our result from others obtained by similar methods and from laboratory

measurements.
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- - _ _ - ----- --
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6 114 0 W 0 Andes .0 Kermadec

Fig. 3.15: Velocity-density systematics from gravity studies after JACOBY (1975).

This is no real handicap for the present investigation and for the aim of regional gravity pre-

diction, since the component of vertical density variation does not influence the gravity varia-

tion in a region where this component is approximately constant. If it changes on larger re-

gional scale the corresponding gravity variations will be of about the same length scale. If the

studies are applied to large regions, the vertical density variation common to such regions

may be smaller. If smaller and larger scale studies are combined it should be possible to link

the gravity prediction scheme to the scale (wavelength, harmonics) of gravity field representa-

tions of sufficient reliability. In any case, the approach to the question of gravity prediction

as proposed here is probably best for scales of order of 102 - 103 km and not good on very

large scales (> 103 kin). If the seismic data are good and the gravimetric data are good in

parts or for relatively long wavelength two- and three-dimensional modelling as presented in

this chapter, we believe we can advance to a finer spatial resolution of the gravity field with a

reliability comparable to that of seismic data. The method can also be used to interpolate or

to some extent even to extrapolate the gravity field.
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4, A BRIEF SURVEY OF PROPOSED (GEODETIC) APPROACHES IN THE PAST

Special emphasis in this brief survey is put on approaches relevant for geodesy. It may be

by no means complete. The idea of using geophysical information when predicting gravity

anomalies is not new, see (WILCOX 1974). It is obvious, that the solution of the "inverse

problem" plays an important role in geophysics. A mathematically-oriented overview of

possible methods can be found, e.g., in TARANTOLA (1987).

Consequently, we may categorize the work done up till now into three groups:

(1) Geophysical treatment of inverse problem theory. As mentioned before, one can find

chapters on inverse problem theory, e.g., the determination of the internal structure

of the crust from other data like seismic and gravity measurements in every

textbook. From the large variety we only like to mention BOTT (1971), BULLEN

(1975), MEISSNER (1986), or the handbook of LANDOLT-BORNSTEIN (1982).

Recently, the complex relationships between mass heterogeneities and surface

observables such as topography, gravity, etc. were treated by various authors (see

e.g., FLEITOUT, FROIDEVAUX 198P; KHAN 1977; VIGNY, FROIDEVAUX

1988; WOODHOUSE, DZIEWONSKI 1984). Especially in seismics, the term "3D-

tomography" is now used with respect to studies of the earth's internal structure.

Quite recently, MORITZ (1989) presented a (geodetic) approach to the gravimetric

inverse problem.

(2) Indirect use of geophysical data in geodetic methods. Since the determination of the

gravity potential in geodesy is considered to be a boundary value problem, where the

boundary data like gravity anomalies etc., have to be given on the geoid, it is

necessary to reduce the observations from the physical surface of the earth to the

geoid. For gravity field interpolation a certain smoothing is anticipated in order to

reduce the prediction errors.

For these purposes a simple density model, eventually in connection with isostatic

compensation hypotheses and a digital terrain model are used to take into account

some kind of geophysical evidence. Thereby the density between the surface of the

earth and the Mohorovii6 discontinuity is simplified as global constant, Po = 2.67

g cm - 3. In the frequently-used Airy-Heiskanen isostasy model (see, e.g., HEISKA-

NEN, MORITZ 1967, p. 135f.) the mountains of constant density Po float on a dense

underlayer of constant density P, = 3.17 g cm- 3. The condition of floating equilibrium

is (in flat earth approximation)
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t Ap = hpo (4-1)

where Ap = P, - po, h is the topographic height. The thickness of the corresponding
root, starting at the compensation depth T, is defined by t. Assuming standard

values (Ap = 0.6 g/cm 3; Po = 2.67 g/cm3) leads to the "rule of thumb" t = 4.45 h.
The crustal thickness under mountains is T + h + t , where the normal thickness (-4
Moho depth, to some extend) is generally assumed to be T = 30 km. These short

descriptions illustrate more or less the (poor) consideration of geophysical data in

geodetic methods.

The recent developments of digital (surface) density models, see for example

WALACH (1987), and also the construction of Moho models (see chapter 8.2.6) will

lead to a significant improvement in near future in the indirect use of geophysical

quantities in geodetic algorithms (SUNKEL 1986; TSCHERNING 1979). High-
resolution global isostatic earth models were presented by SUNKEL (1986), see also

RUMMEL et a] (1988). More detailed investigations on "experimental isostasy" can
be found in (DORMAN, LEWIS 1970; LEWIS, DORMAN 1970).

In a more general sense, one can understand those smoothing approaches with respect
to mixed models (or collocation) also in such a way, that the more the deterministic

part is increasing the stochastic treatment of the rest will become smaller and

smaller.

Quite recently, GRAFAREND (1989) proposed to replace "Ie standard topographic
mass reduction by a volume integral over the datum-dependent internal Neumann
kernel and anomalous masses 6p plus a surface integral over the surface-reduced

internal Neumann kernel and the anomalous boundary data of gravimetric type.

(3) Direct use of geophysical data in geodetic computations. Direct use in this context

means that we (i) either use the geophysical data as some kind of (pseudo-)

observations in our geodetic algorithms, or (ii) set it into correlation/regression to
gravity field functionals like geoidal heights, etc., or (iii) use it in the construction of

earth gravity models consistent with internal mass distributions. The last is often

also a prerequisite for methods (i).

With regard to (i) attempts were made to incorporate density into a stochastic

concept using the theory of random processes (JORDAN 1978, MORITZ 1977,

TSCHERNING 1976, 1977). SANSO (1980) proposed the application of the colloca-
tion principle to the internal densities (internal collocation). Later on SANSO,
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TSCHERNING (1982) represented the anomalous gravity field by a combination of

an anomalous potential Ts harmonic down to some Bjerhammar sphere So and an

anomalous potential Tt, generated by a layer of topographic masses between the

sphere So and the topographic surface S (mixed collocation). Recently, the so-called
"quasi-harmonic inversion" of gravity field data was tested (TSCHERNING, STR Y-

KOWSKI 1987; HEIN et al 1988). The central problem in those approaches, the

choice of norm for the density distribution - earlier treated by KRARUP (1970),

SANSO et al (1986), TSCHERNING (1974) - was solved in such a way that density

bp is supposed to be a solution of a partial differential equation, A(bp/p(r)) where

p(r) is a polynomial only dependent on the distance from the origin r, and A is the

well-known Laplace-Operator. In addition, indicator functions with overlapping sup-

port were proposed as covariance functions (HEIN et al 1988; TSCHERNING 1989).

VASSILIOU, SCHWARZ (1987) discussed different methods out of the variety of

the geophysical literature for the combination of gravity with other geophysical data

for the solution of the inverse problem. STRYKOWSKI (1989) presented density

autocovariance functions from North Sea density logs.

With respect to category (ii) example-wise we like to mention studies of COLIC et al

(1988), FOTIOU et al (1988), GEISS (1987), LAMBECK (1976), McNUTT (1980),

RICARD et al (1984).

The construction of reference (normal) density models consistent with the outer gravity

potential and vice versa is discussed in chap. 6.4 (MARTINEC, PE 1986a,b; MA TYSKA
1987; MESHCHERYAKOV et al 1986; PC, MARTINEC 1984, 1988; TSCHERNING,

SUNKEL 1981).
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5. THE INTEGRATED GEODESY ADJUSTMENT MODEL

As mentioned before, our goal is to incorporate the data types density, seismic velocities

and displacements in the direct way into geodetic algorithms for the approximation of the

gravity field outside the earth. For the sake of an unified theory we will try to derive

(pseudo-) observation equations fitting into the general scheme of integrated geodesy

adjustment. The mixed model approach is therefore also suited, since precise relationship

between density and gravity, for example, can often only be found locally. Necessary

generalizations for regional areas imply that besides such an (attempt of a) deterministic

mathematical/physical relation (more or less local) residuals may remain which can be

considered as forming a random process. This is in correspondence also with geophysical

proposals and investigations, to consider, for example, seismic wave propagation and densi-

ty perturbations in a random medium (CHERNOV 1960, KORN 1987).

We review here the general principle of integrated geodesy (EEG, KRARUP 1973, HEIN

1986). Every geodetic and geophysical measurement 1 can be expressed as a nonlinear

functional depending on one or several position vectors x = (x,y,z) in space and on the

gravity field of the earth, symbolically written

I = F(_x,W)(51

where W is the gravity potential

W = V+w2(x 2 +y2)/2 . (5-2)

V is the potential of the gravitational force and w is the angular velocity of the earth's

rotation. By (x,y,z) or (xl,X2,X3) we denote the Cartesian coordinates of the geocentric

system E defined as follows: the origin is at the earth's center of mass, the z-axis coincides

with the (mean) rotation axis, and the x-axis goes through the (mean) Greenwich meridian.

We presume further that the observations are corrected for time-dependent geodynamic

effects.

The scope of geodesy is now to determine the coordinates of material points on the surface

of the earth (and in space) and the gravity potential including its functionals by the

relation (5-1). Since our measurements are nonlinear functionals we have to introduce

approximate values for the linearization process.
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- 0 + 6_ (5-3)

W(_c) = U(m) + T(x_) (5-4)

xo is the approximate position vector, U(x) is some kind of trial value for the actual gravity
potential at x . This could be a so-called normal potential belonging to an arbitrary
ellipsoid or any other reference potential, e.g., a low-order harmonics expansion derived
from satellite geodesy. For the sake of comparison of the results with those of other

computations one can use one of the adopted reference systems of the International
Association of Geodesy. As done hitherto we will call T(x) the disturbing potential and we

will assume further that both, T(x) and 6x = (6x,6Y,bZ)T = (6x1,6X2 ,6x 3)T are small

quantities, which allow us to work with a linear model.

Thus we get for (5-1)

I = F(xO+ 6_, U + T). (5-5)

Applying Taylor's theorem at X0 [xI,x ,xR]T and restricting ourselves to first-order terms

in the series it follows

3
1 = F(x 0,U) + Fxi (xo,U) 6xi + L(T) (5-6)

where L(T) is a linear operator applied on T. By the substitutions

61 = 1- F(xo,U) (5-7)

OF
ai = FL(x 0 ,U) (5-8)

we get the general linear observation equation of the form

61 = aT bx + L(T), or (5-9)

considering noise n, in matrix form (A and R are corresponding design matrices),

61 = A6x + Rt + n (5-10)
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where the first expression of the right hand side represents the metric coordinates part and

the second the (functionals of the) disturbing potential, in detail

t = [T, 0T/09xi, o2T/0xi 0xj]T ij = {1,2,3} (5-11)

Simple mapping and scaling of the quantities in (5-11) yields

- geoidal heights N = T/7, (7 is normal gravity),

0T
- gravity disturbances 6g = - W'

- gravity anomalies Ag = +

(h indicates (approximately) the direction of the normal to the ellipsoid),

- deflections of the vertical,

north-south component = -

1 dT
east-west component 77 = - cos -

where R is the mean earth's radius, and (V,A) are spherical latitude and longitude,

- anomalous gravity gradients.

The observation equation system (5-10) can be solved using the hybrid minimum norm

condition

Sn n +tTK-t = min (5-12)

where Cnn and Ktt are the covariance matrices of n and t . The covariance matrix Ktt can

be derived from a (global) covariance model.

The solution of a general collocation model of type (5-10) can be found, e.g., in (MORITZ

1980, p. Ilif). The unknown coordinates are given by

1= (ATD-iA) - ' ATe - D1 (5-13)
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and the functionals of the disturbing potential at the observation points are

i=Ktt I D-I(& - A Li). (5-14)

Since in the collocation model an interpolation of the stochastic part is implicitly built in,
(5-14) can be also used for the determination of any other functional s of the gravity

disturbing potential at any other station when knowing the corresponding crosscovariances
Kst

I= KtTD-( -A_)- (5-15)

The error statistics are given by

Eix = (ATD-IA) - ' (5-16)
and

Ss = Ks - KstlI - A (AT-'A)- AT D- ] Kts (5-17)

where I is the identity matrix and

D = Cnn + R Kt RT . (5-18)

For the estimation process above there are certain assumptions necessary, as

E =n} 0 (5-19)

ft) 0 o(5-20)
fs} = o(5-21)

where E = EM is the total average. E is the expectation operator, and M describes a
homogeneous and isotropic average over the sphere.

In case, that we assume the positions x to be known where our measurements are taken, the

observation equation (5-10) reduces to

=_ = R t + n (5-22)
and

A 6x = 0 (A = 0) in (5-13) to (5-17)
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Central point in a possible inclusion of density p and seismic velocities v in the approach

above (consideration in t eventually) is the definition of the necessary covariance matrix

Ktt which is based on the autocovariance functions cov(p,p) and cov(v,v) as well as the

necessary crosscovariances cov(p,t), cov(v,t). The fulfillment of the necessary conditions

(5-20), (5-21) assumes that density as well as seismic velocities are considered to be

random which they are, of course, in reality not! But for the application of the theory of

random processes it can be artificially derived through trend elimination; in other words,

subtracting an approximate deterministic model leads to the corresponding anomalous

(random) quantities 6p, 6v.

For the deterministic relations underlying the crosscovariance propagation we have to find

some (simple) formulation which, obviously, concerns the so-called inverse problem. As a

consequence, possible constraints have to be considered in order to achieve uniqueness of

the solution. However, the reader should be reminded to the discussion in chapter 2, in

particular, see Fig. 2.1.

The application of mixed model approaches can be nowadays found in many scientific

disciplines. It is always just suited when the deterministic relationships for the explanation

of mathematical/physical phenomena are insufficiently known, so that no other choice is

than to live with large model discrepancies or to treat those residuals in a random way.
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6. DENSITY IN AN INTEGRATED GEODETIC APPROACH

6.1 Minimum norm solutions

In the following we like to discuss (simple) models for the relationship between density and
the gravity potential using a random approach. Some of them are already applied or in the
context of this work numerically tested.

Generalized Poisson equation

One of the simplest models would be to start from the generalized Poisson equation
(HEISKANEN, MORITZ 1967, p. 47)

AW = -4-Gp+2W2 (6-1)

where A is the Laplace operator, W the gravity potential, G the gravitational constant, and
w is the angular velocity of the earth's rotation. The potential of gravity W is the sum of
the potential of the gravitational force V and the potential of the centrifugal force 4P.

W V +- (6-2a)

with

4 = 0.5 W2 (X2 + y2) (6-2b)

where (x,y,z) are the cartesian coordinates in a global geocentric system.

We linearize by introducing (see also chap. 5)

W = U+T, (6-3)
P = p0 + 6p. (6-4)

U is a model or normal potential which has to be consistent with the corresponding model or
normal density. T is the anomalous (disturbing) potential and bp the anomalous density
function. We choose U and Po in such a way that the anomalous quantities, 6p and T, can
be considered to be random or stochastic. Inserting (6-3), (6-4) into (6-1) and solving for
bp we get
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bp = -(4 rG)"(AU + AT)-po (6-5)

where the anomalous density function is given by

3

2 2
p -(4 7rG)' AT -(4 rG)'L aT/0xj (6-6)

and the normal density is

22 2

p0 = (4 r G)-' AU : (4 7rG)' , /Ni (6-7)
il

Considering (6-6) as a linear observation equation where AT = Z T/8x0 is part of the
i=1signal vector t, see (5-11), we can define the necessary covariance function by

crosscovariance propagation from those of the second-order derivatives of the potential, for

example,

coy (6p, bp) = -(4 r G) 2 coy (AT, AT) (6-8)

The main drawback, however, lies in the fact that the generalized Poisson equation is valid
only in the interior of the earth, but we are interested in the determination of the gravity
potential outside the earth. The potential inside the earth is not harmonic. Second-order
derivatives have jumps at discontinuities of density. Thus, (6-6) can be considered only as
one possible solution out of the solution space, a so-called zero-potential density (MORITZ

1989).

Density as quasi-harmonic function

In order to overcome the difficulties mentioned above a proposal was made
(TSCHERNING, STR YKO WSKI 1988) to consider density as a quasi-harmonic function

using the condition

A (6p/p(r)) = 0 (6-9)
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p(r) is a polynomial only dependent on the radius of the point under consideration.
Assuming p(r) = rn and considering (6-4) we get using a spherical harmonic expression,

for the covariance function (or reproducing kernel) of the disturbing potential

CTT (P,Q) = r [ j P1 (cosO) (6-10)

2

with the degree variances ai

i
2 G~M ]2 2 -2=J (cij + Sij) (6-11)

j 0

Cij , Sij are the normalized coefficients of the spherical harmonics expansion, Pi are the Le-

gendre's polynomials, 0 is the spherical distance between points P, Q . GM is the product
of the gravitational constant and the mass of the earth, R the mean radius of the earth, and
r = r(P), r, = r(Q) are the radial distances of P, Q.

For the covariance function of the (anomalous) density function we get

C6p~p(P,Q) : (r r')n r 1 ]' Pi (cost) (6-12)
i--2

with

2 2 M 12(2i + 1)2 (2i + n) 2

(M j R2 n  + (6-13)

and the crosscovariance function between the disturbing potential T and 6p is

CT6p(PQ) I o 4 Pi (cos7) (6-14)

1:=2

The cross- (or auto- )covariances of all other functionals of the disturbing potential, si, sj ,
can be derived by (the inner product)
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coy (si, sj) = si(P) sj(Q) CTT(P,Q) • (6-15)

As easily verified, the use of p(r) = rn in the so-called quasi-harmonic inversion results in

anomalous density values which attain their maxima and minima at the boundary of the

earth. Density values at deeper localities within the earth are just a smooth mirror of the

corresponding situation at the earth's surface. This is in contradiction of the physical reality

where density increases with depth.

Denszty as harmonic function

Quite recently MORITZ (1989) has given a general solution for the (global) gravitational

inverse problem. A general set of continuous density distributions for the sphere consistent

with the gravitational potential outside the earth was represented using radius-dependent

polynomials, spherical harmonics, and generalized matrix inverses. Based on geophysical

evidence appropriate radius-dependent functions may be found which allow to determine

the anomalous density (after subtracting a reference density model, see chap. 6.4) within

the earth. Although still much more work has to be done in applying this model in numeri-

cal studies, it seems that the approach is suited for the construction of a global density-

gravity covariance model which could be an extension of the well-known Tscherning/Rapp

spherical harmonics covariance model (TSCHERNING, RAPP 1974).

Other choice-of-norm proposals

In (SANSO et al 1986) different minimum norms are discussed for the density distribution

of the earth. The generally used L2-norm (5-12) implies further that blocks of constant

density are uncorrelated. If base functions with overlapping support are used this problem

could be overcome. It leads to a reproducing kernel

n

Cb6(PQ) = Ii(P) I(Q) / vi (6-16)

where Ii is the indicator function of the i-th block with volume vi (TSCHERNING 1989).

However, the drawback there is that the density covariance function has values equal to one

and zero at the earth's surface (HEIN et al 1988). In addition, crosscovariance propagation

between density and gravity field functionals was only done numerically using Newton's

attraction integral instead of (needed) analytical solutions for practical applications.
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Thus, stronger norms or combination of different criteria have to be tried. The H"' 2-norm as

proposed by SANSO et al (1986) seems to be more realistic

fa 6p2+ b IV(6p)12dfn = min (6-17)

since it can take into account lateral variations of density within the earth's crust using the

horizontal gradient operator V in (6-17).

This principle can be extended using the so-called mixed collocation proposed by SANSO,

TSCHERNING (1982). They propose to split-up the gravity disturbing potential into a

part associated with an internal sphere l0 of the earth and a topographic layer including,
for example, all masses between the topographic surface and the Moho. At the first part the

L2-norm could be applied whereas to the second a Sobolev-type of norm like in (6-17) could

be tried,

f a 6p 2 dfl0 + fb JV(6p)12d(fl -0o) = min . (6-18)
Q 0 0 4 1 0t

6.2 The attenuated white noise statistical gravity model

A self consistent covariance model was developed 1976 by Heller (HELLER, JORDAN

1979; JORDAN 1978; JORDAN, HELLER 1978) which is able to consider also topography

and density contrasts within the earth.

The spherical model for the autocovariance function of the disturbing potential T has the

form

CTT(r, r',,b) = D 3(R-D/4)3CT [r2r'2-(r-D/2)4 (6-19)
[R 4-(R-D/2)4] [r2r',2+(R-D/2)4-2(R-D/2)2 r r' coso]' (

where 0i = I P-QI is the spherical distance between two points P,Q on the earth's surface,

R is the mean radius of the earth, and r = r(P), r' = r(Q) are the radii of P,Q. The two

free parameters (besides 0) scaling the model are the variance CoT of the disturbing

potential and the characteristic depth D.
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Model (6-19) was derived from Poisson's integral for upward continuation, assuming that

the disturbing potential is uncorrelated for any arbitrary small neighbourhood on the

surface, so that its white noise process distribution looks like

CTT(0') = A b(.0V') (6-20)2irRT s-5 i '

where 6(?') is the Dirac delta function and A is the spectral density of the impulse.

Because of this property (6-20) the name "attenuated white noise" was given to the model

(6-19), since the surface integral of (6-20) over the sphere with radius K yields the value A.

For local applications plane approximations of (6-19) are useful. Thus, the corresponding

asymptotic relation is obtained by considering R -4m or (D/R) - 0, 7P - 0 in (6-19) resulting

in

CT(n,v,z,z') -- 4D2 (2D+z+z') (6-21)
[u2+v+(2D+z+z')2] 1-5

where

u = x' -x = R4'cosa (6-22)

v = y' -y = R 0sina (6-23)

The points under consideration have the three-dimensional orthogonal plane coordinates

P(x,y,z Q(x',y',z') which are related by (6-22), (6-23) to their spherical counterpart. a

is the azimuth.

JORDAN (1978) has also proposed to superimpose many models of type (6-19) for more or

less global applications each representing an additional white noise shell (layer) of the

earth's interior. This explains also why he denotes 6p as density contrasts. As long as we are

working only with one shell (layer) the density contrast between outside the earth and the

first (surface) density layer corresponds to anomalous density bp used throughout this re-

port.

The auto- and crosscovariances of the other gravity field functionals can be derived by

common covariance propagation using the well-known potential relations between them.

For the reader who is interested in them, we refer to Appendix A.
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Interesting in this context is how the link to density (contrasts) is established. It is founded

by the theorem of Chasles (HEISKANEN, MORITZ 1967, p. 13) which states that the

potential V, at any point P outside the equipotential surface S, of a surface layer of density

p -- (4wG)-' oV/~n , (6-24)

is the same as that of the attracting body itself. n is the outer normal. Thus, the

corresponding relation with respect to the density contrast bp and the disturbing potential

T, at a point P(O,A,r), with spherical coordinates co-latitude 0, longitude A, radius r,

6p(O,A,r) - - (41rG) - a T(0,A,r) 6(r - R*) (6-25)

where

R- = R-r. (6-26)

By 5 the Dirac delta function is denoted, and r is the depth of the considered density

contrasts (in the case of many layers). The derivative in (6-25) is evaluated at R, = R* .

The density contrast autocovariance function corresponding to (6-25) and the autocovari-

ance of the disturbing potential CTT is

= (47rG)-2 a2 CTT • 6(r - R-) 6(r, - R*) (6-27)

For gravity field determination using density information the crosscovariance between free-

air gravity anomalies AgF and density contrasts bp necessary to apply least-squares predic-

tion is definded by

C',pL~g(rlr ,0t) = (41rG)i -1: + CTT 6(r - R-) . (6-28)

Note: When considering in the expressions above only one density layer, the inversion of

matrix I) in the prediction formula (5-15) becomes instable, in the asymptotic form even

singular in case that gravity anomalies and density data as observations are introduced.

From appendix A we can easily deduce that the covariances C6P6, and Cg6P as well as

C h)Ag and CAgAg are linear dependent then:

c(,4 6(z,z',O) = (41G)-' 6(z) C gb(zl,", )
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.8pAg(ZZ',) = (41rG)-' 6(z) CAgAg()ZY,)

Thus, the processing of a combined data set is not possible. One possibility to overcome

these difficulties when considering only one layer could be the replacement of the Dirac

delta function 6(z) by a function decreasing linearly or even exponentially with increasing

height or height difference (z'.-z).

As mentioned by JORDAN (1978) the model above is appropriate for density contrasts

which are not compensated isostatically. He has therefore developed also regional isostatic

compensation models for terrain and crust-mantle contrasts based on a floating elastic crust

and its mean (numerical) material constants (Lam6's parameters, etc.). Starting point of

this derivation is an equation for the displacement zM of the Moho under loading which

looks like the one treated by TURCOTTE, SCHUBERT (1982, p. 122). The resulting

autocovariance model for gravity anomalies considering regional isostatic compensation is

CAgA(r,A,O) = C8P 47r2G 2 [(1-1.5r2/A 2) _2A4(1-1.5r2/A )
(1+r 2 /A 2) I'5 At (1+r2/A2) 3 .5

+ A4 (1-1.5r 2/A 1 (6-29)

Al (1+r2/Aj) 3~ J5

where r = R ¢. A is a free parameter (characteristic distance) in (6-29) which has to be

determined from the empirical covariance function. C6P is the variance of the terrain

density contrasts. Further, we have

A = A + 0.693 d + H (6-29a)
A 3 = A + 1.386 d + 2H (6-29b)

where H is the average thickness of the crust, and d is an elastic parameter which can be

computed from

d4 = c (6-29c)
g (Pm - Pc)

with

c .....A... +- ) 3 (6-29d)

where A, g denote the Lam s constants of the crust, Pm is the mantle density, and P0 1.03

[g cm-3] for oceans, p0 = 0 for continents.
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6.3 A new approach to link gravity and density

As the reader might have realized from the preceding chapters, in particular 6.1, an optimal

approach can only be found when considering also the physical relationship between gravity

and density. The following proposal is mainly based on the theory of the earth's isostatic
response to a concentrated load as used in (DORMAN, LEWIS 1970; LEWIS, DORMAN

1970).

For the derivations afterwards we recall, that the Fourier transform of f(x) is defined by

CD

%[f] = F(s) = f(x) e - dx (6-30)

--m

and its inverse transform by

ODf 2i i (si)
-[F] - f(x) F(s) e - ds (6-31)

-- m

where x, s can be also two- or three-dimensional vectors, and consequently, the integration

two- or threefold.

Convolution (denoted by *) of two functions f(_x), g() is defined by

UD

h(x) = f(x) * g(x) = f g(_u) • f(_i - g) du (6-32)
--W

The convolution itself is also a function of x .

6.3.1 Newton's attraction inte9ral

We start with the gravity-density relationship by Newton's attraction integral,

W(x) = G fp(x) 1-1 dvE(y) + 4,(2) (6-33)
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where W is the gravity potential, G is the gravitational constant, p is the density, yE is the

volume of the earth, x = (xI, x2, X3) and y = (YI, Y2, Y3) are threedimensional vectors, and

I - y is their distance. The potential of the centrifugal force is given by

4(x) = 0.5 w2 r2 cos2 , (6-34)

where w is the angular velocity of the earth's rotation, r = r(x) is the radius of a spherical

earth, and p = px), A = A(x) are the spherical latitude and longitude, resp. As already

mentioned we decompose density (6-4) in a reference or model part P0 and an anomalous

(irregular) term bp, the last forming a scalar stationary random process with zero mean,

POO = PO(L) + bp(x) (6-35)

For example, the model density po can be defined by a laterally homogeneous function as

done in some earth density models (see chap. 6.4),

p(o, A, r) = po(r) + bp (V, A, r) . (6-36)

This leads to a split-up of (6-33) into

W(x) = G f po(x) 1-1 dvE(y) + G f 6p(y) 1-' dvE(y) (6-37)

VE VE

where the first integral of the -;'ht hand side has to be consistent with the normal or refer-

ence potential U (see also 6. ) inci ding P, and the second one with the disturbing or

anomalous potential T. We will further assume that the kernel of the second part behaves

in such a way that the integration has to be carried out only in a local region with limited

volume v, so that

T(x) = G f 6p(y) 1-' dv(y). (6-38)

v

6.3.2 The isostatic response function in space-domain representation

The gravity disturbance (or also gravity anomaly in flat-earth approximation) is the

vertical derivative of T
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T (2) = G f 6p(y) 9(,y) dv(y) (6-39)

V

where 9(_j,y) is a Green's function

((1))- = ( -1) (6-40)

and r is the earth's radius.

In the further approach we assume (using spherical coordinates , A, r) that the change in

density 6p (vA,r) at a given depth under a point due to isostatic response is a function of

depth alone and location alone,

6p(o,A,r) = ff h ( ,A,) bp(r, V- pA-A,)cosV dp dA"
bp (V,A,r) -- h .* p(r, p- , A- A,) = h* bp (r, b) (6-41)

where * denotes the convolution (6-32) of the functions based on the coordinates V, A. ? is

here the central angle between (V, A) and (V', A'), defined by

cosO = cosO cosO" + sinO sinO'cos (A - A,) (6-42)

with 0 = 900 - V . Thus, the (isostatic) density changes are now expressed as a product of a

function of depth alone and function of position alone. bp(r,7k) is the characteristic density

change due to a unit load, and h = h(W,A) is the elevation.

Considering (6-41) in (6-39) we get (in spherical approximation)

gg (,A,r) = h * q(r,4O) (6-43)

where q(r,7) is the isostatic response function,

rEF

q(r,o) = G f bp (r', ), (r',,) dr' (6-44)
0

Looking more in detail to (6-43) tbg must be the Bouguer anomaly Ago minus the gravity

effect due to variations in density, Ag.,

bg = Ago - Agp. (6-45)
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6.3.3 The isostatic response function in frequency-domain representation

As done in other methods recently - see, e.g., terrain correction determination - we like to

use the advantages of transforming the formulas in the frequency domain by means of the

Fourier transform. We will assume that due to the local applications having in mind a

plane approximation is sufficient (possibly supplied by small corrections).

Considering (6-45) in (6-43) the isostatic response function in frequency-domain

representation is given by (6-43) using (6-30),

Q = T[q] - [hI---- (6-46)

Since AgP is the gravity effect due to variations of density it can be assumed that the

crosscorrelation between AgP and topography tends to zero. Thus, the real part of the

isostatic response function in frequency-domain representation is

Q(IQI) " Re . (6-47)

6.3.4 The power spectral model for gravity anomalies (disturbances)

The autocovariance function for bg forming a scalar random field is given by

C6g6g(_) = M {g(y) g(_i + )} (6-48)

where M is a suitable averaging operator. Analogously, we have for the density anomalies

bp

C6OO = M {6p(XY) p(x_ + Y)}. (6-49)

Using the Wiener-Khinchine theorem we can express the covariance functions above in

terms of their power spectral densities C6g6g, S6p6p

f i i (sri

Chghg(x) = S ghg(s) e - ds (6-50)
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f Q6,6((0 e 2i% i ( sz) dI(6-51)

-M

where S6g6,, S6 6 are defined by the Fourier transform (6-30). Of course, the inverse
relations, expressing the power spectra in terms of their covariance functions hold too, using
the (inverse) Fourier transform (6-31).

We are starting our derivation now using (6-48) and inserting Newton's attraction integral
(6-33). After reordering the integration we have

C6gsg(2x) = G 2fdy dy' G(Lc,y) G(Lc',y') M {6p(y) p(+ )}6-52)

where M{6p(l) bp(Lc+y' )} C6P6,(x) represents the autocovariance function of the
density anomalies (6-49). We now insert in (6-52) the corresponding relation in terms of its
power spectrum (6-51) and get

2% is( y, -Y+X)Csg6g(N) = G 2 J fdy dy, &(,X) &(~,,I,) f Sp 6 p(j)-------ds. (6-53)

The two-dimensional power spectral density of (6-53)

Swgg(!) = q[C6g6g(2)] (6-54)

ip of the form (*means here conjugate complex)

S8gg(jo) =G2 f S 66(g) 1(g',x,y) 1* (s',x,y') ds (6-55)
1R 3

where

I'xy) f j,y gi -2'sdy (6-56)
V

I(r'xy') f&(,y,)e2 NlfYz dy' (6-57)
V
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and

s" = (s , st , s3)

Solving the integrals (6-56), (6-57) analytically, e.g., with software like REDUCE, and

considering that the special Green's function (6-40) used here is defined by (g(x,y')

similarly)

9(x) -( 3 -x3 ) (6-58)
[(y,-xI)2 + (yr-x2)2 + (yr-x3)2j1°

we get for (6-56), (6-57) the expressions

( i-OS 3 2(6-59)5I= + s2 + s3

* = -i-O) 3 + (6-60)s'I' + si2 + s3

Thus, expression (6-55) represents a gravity disturbance power spectral model as function

of the power spectral density anomaly.

6.3.5 The gravity disturbance covariance model

As always done in geodesy we choose an analytical model for an autocovariance function
whose free parameters are determined by a best approximation to the empirical derived

covariance values. In this case we take the well-known Gauss' function to describe the

autocovariance function of density anomalies,

Cb,6,(x) = Cg,(27r)-o. 5 e- x21/2a (6-61)

The free parameters are the density variance Cg, and the length scale parameter a. (6-61)

has the power spectral density

Sfpbp() = Cl,(21r)0.5f e- I 2/2a e- - -dx (6-62)
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After solving the integral in (6-62) we get

sp6os = C60,a 3  e- 2 2a2(sJ+sJ+sJ) (6-63)

which is inserted in the gravity disturbance power spectral model (6-55) using (6-59),
(6-60)

Ssg6g(s) = 2G2 C a3 V fe - 2 2 a2 s 2  si d, (6-4)S' f s-17 2 + 2 d s
(T-s4)

resulting in the analytical expression

[1 + 472a2(s,2+s,2)] e212a(s 2+s 2)s%6g(j) = G2 6.o a 7r1 8, . (6-65)
16 (s;2+s 2)°'s

Considering the Wiener-Khinchine theorem (6-50) we can derive from (6-65) the covariance
function of gravity anomalies (disturbances) as function of the variances C8. of the density

autocovariance function C6.6., a, and the distance. Thus, we have a consistent model to

predict gravity anomalies (disturbances) using density information on the basis of the theory
of stochastic processes.

6.3.6 Inferences for gravity prediction applications

In the application of the theory mentioned above the assumption has to be made that the

regional mechanism of compensation is of the same or similar nature in the whole area

under consideration. Several approaches are now possible to use the density information for
gravity field approximation.

Let us assume that after subtracting a certain (e.g., laterally homogeneous) density refer-

ence model anomalous density values bp are available forming a scalar stationary random

process with zero mean. Then we are able to d, -nine the empirical anomalous density

autocovariance function (6-49) which can then be fitted to the corresponding model (6-61)

using adjustment techniques resulting in the determined free parameters, the variance Cg,
and the length scale factor a. Using these quantities the gravity anomaly power spectrum

(In flat-earth approximation), see (6-65), is determined. By applying the Wiener-Khinchine
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theorem (6-50) the gravity autocovariance function is defined. In a similar way as outlined

in 6.34 we can also derive the crosscovariance cov(bg,6p). Thus, we are able to define the

necessary covariance matrix Ctt needed to apply the prediction approach described in

chapter 5 (possibly in combination with other geodetic / geometric observations).

It would be also possible to use the isostatic response function itself as gravity predictor.

The spectral form (6-46) could be either determined from a Bouguer gravity anomaly ficid

and applied in unsurveyed areas showing the same compensation mechanism. In this case

the Wiener-Khinchine theorem has to be used and the convolution (6-43) carried out with
the actual topography. If density information is available in the area, the isostatic response

function can be determined numerically by (6-44), in addition, resulting most likely in a

more improved and detailed resolution which reflects the local compensation.

If namely the compensation is assumed to be due to a change of density as a function of

depth Ap(r) occuring directly beneath the load, then the transfer function Q (6-46) can be

directly constructed by

rE

= f Ap(r) e -dr. (6-66)
0

This follows from applying Hankel's transform to (6-44).

Some available gravity data in the area would be useful to transform the gravity anomalies

derived via (6-43) into the right frame (adding a trend, for example).

Estimating the isostatic response function is widely applied now in modern geophysics. A

survey is found, e.g., in (LAMBECK 1988; p.425). The corresponding transfer function

(6-46) can be used to estimate the mean density of the topography, similar to the Nettleton

approach, see LEWIS, DORMAN (1970, p.3373).

P= Re+(ReI I (6-67)

P= ' (A -Re - )]-T( (6-68)

= [ Q(§)+ 27rGp-( ReAS )) (6-69)
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where AgF are free-air gravity anomalies, AgT are the terrain corrections, and H is the
elevation. The brackets < - > indicate averaging. The transfer function Q'(s) is related to

the gravity field of the compensation and topography.

One remark to the type of available density data: In general those data come from borehole
investigations and characterize only the parts of the earth's crust near the earth's surface.

In constructing the isostatic response function according to (6-44) the integration has to be

carried out between the center of mass and the surface. Thus, for the interior of the earth

certain density earth models have to be used. If the stochastic approach (see chapter 5) is

applied as mentioned before those models can be used also to achieve the zero mean of

density anomalies as required for the application of the theory of random processes.

On the other hand it might be worthwhile to consider the possibility of constructing always
first the isostatic response function (6-44) in order to use it as some kind of (pseudo-)

observation in least-squares prediction. The advantage of using it instead of (anomalous)
density values lies in the fact that the isostatic response is a function depending only on the
horizontal distance f( A-A', A-A'), and no more on the depth (or radius, resp.) as it is the

ease with density. Insofar, such a quantity fits better to an integrated adjustment of

geodetic/geophysical observations using least-squares collocation (or prediction).

6.4 Reference (normal) density models

In chapter 6.1 - see (6-3) or (6-37), resp. - the reference or normal potential was
introduced

U(A) = G fpo(y) 1-1 dvE(y) (6-70)

where P0 is the so-called normal or model density. Due to the integration of different type of

observations in the least-squares collocation model of integrated geodesy, Po has to be

consistent with U, e.g., U = f(po). Thus, assuming that we usually work with a normal po-

tential model adapted by the International Association of Geodesy, the corresponding earth

density model has, in principle, to come from the inverse gravimetric problem, p0 = f(U),
which has no unique solution (MA TYSKA 1987; MORITZ 1989).
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Thus, the reference density model has to fulfill the following conditions:

(1) The mass of the earth M has to be reproduced by P0

M - fp0(y) dvEW() (6-71)

VE

(2) The normal density distribution should have ellipsoidal or spherical geometry

consistent with the normal potential. Analogously, the geometry of the different

layers of shells should be of the same form.

Thus we have (with respect to an ellipsoidal normal potential of the earth) to fulfill

the relation

J20 = C- (A+B)/2 (6-72)
M az

where J2 0 is the underlying coefficient of the spherical harmonic expansion (dynamic

flattening). A, B, C are the moments of inertia defined in (HEISKANEN, MORITZ

1967, p. 62)

A= f (Y + Y2) po(y) dv(y) (6-73)

VE

B = f(y +y)Po(y) dv(y) (6-74)

VE

C = f(y2 + y2) po(y) dv(y) (6-75)
VE

where y = (YI,y2,y3) are geocentric cartesian coordinates.

(3) If the density distribution is within a sphere with mean radius R

R = FU (6-76)
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and the reference potential generating body is rotating with angular velocity w, our

density earth model is consistent with the normal potential. a, b in (6-76) are the

two axes of the ellipsoid. For a spherical earth model we have to set a = b.

It might be possible, in particular with respect to very local applications, that a simple

geometric trend function can be used, too, in order to generate our anomalous densities 6p.

Various models and proposals are already developed in the geodetic / geophysical literature.

The reader is referred to BULLEN (1975), KHAN (1982), MARTINEC, PE2 (1986 a,b),

MESHCHERYAKOV et al (1986), MORITZ (1989), PE, MAR TINEC (1984), RUMMEL

et a] (1988), SUNKEL (1986), TSCHERNING, SUNKEL (1981).

60



7. SEISMIC AND SEISMOLOGICAL DATA IN AN INTEGRATED APPROACH

In the following a first attempt is made to use seismic data in gravity prediction. The out-

lined approaches are rather possible proposals than fully developed algorithms. Still more

work has to be done in that field since geophysicists started to develop three-dimensional

digital seismic velocity models of (parts of) the earth which will be available in near future.

In our study a corresponding model was developed for the European Alps (see chap. 8).

7.1 Simple seismic velocity-density relationship in a homogeneous medium

Through seismic experiments artificial shocks (or explosions) are generated to which the

earth responds by releasing part of the energy in form of elastic waves which travel through

rocks with a certain velocity depending on density and elastic moduli. The same happens

when earthquakes occur. The types of body waves (there are also surface waves) follow the

laws of geometrical optics being reflected and refracted at layer boundaries where the

velocity (and consequently, the material constants) changes.

Assuming a homogeneous medium we observe the so-called P waves, longitudinal waves, due

to transmission of compressions and rarefactions, whose velocities vp are given by

VI (7-1)

where A, A are the Lam6 elastic parameters characterizing the material, and p is the density.

In seismology, it is convenient to replace the parameter A by the so-called bulk modulus k,

k = A + JA (7-2)

so that we get for P waves

~k + jsV; 4P1 (7-3)

it is also called the rigidzty modulus.
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The S (shear) wave velocities (transverse wave motion) are given by

vs = (A/p)o.. (7-4)

Thus, (7-3) and (7-4) represent the relationship between seismic velocities and density, so

far the bulk and rigidity moduli are known and a homogeneous medium is assumed. '[he

non-linear relations can be linearized and - at least theoretically - observation equations

can be built up as a function of the disturbing gravity potential using Poisson's equation

(6-1). Remember, however, the implications with it discussed in chap. 6. By doing so, we get

(A is here the Laplace operator)

£5Vp = (8xG) "1 (k0 + 4Io)05 Po'5 AT (7-5)

and

-1.5
bvs = (8G)' .So P0 AT (7-6)

where AT indicates that the relations to second order derivatives AT = fT/axi are

established. 6v1, = vp - vp0, 6vs = vs - vs0 are the residual observations, and k0, Ao, P0 are

known (approximate) values.

As extensively discussed in chap. 3 and verified by own calculations, we can find a linear

empirical relationship between densities and P wave velocities of the form (BIRCH 1961)

p = a.+ Vp (7-7)

or, expressed as vp = f(p) , we get

VI) -a+bp (7-8)

where

b = = /8/p, a=ba (7-9)

BIRCH (1961) has published for a = 0.41 [g cm-3] and for b = 0.3597 [(g cm' 3)/(km sec-)]

corresponding to approximately b = 2.8 [(km sec-l)/(g cm' 3 )] which he found from laborato-

ry experiments. It is well known from studies with actual data, that those coefficients b
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found are somewhat higher in the range 4 ... 5.5 [(km sec-')/(g cm-3)]. Our own experiment

showed a mean value of 5.4 * 0.4 for the European Alps. Even more complex relationships

can be established; see, e.g., ANDERSON (1967, 1970), BUNTEBARTH (1982), RY-

BA CH, B UNTEBA R TH (1982).

Thus, assuming that a sufficient trend (or constant) with respect to the vp velocities is

subtracted from the data, so that we can work with residual or anomalous velocities bv
forming a scalar stationary random process, the coefficient b (7-9) can be used for

constructing the relevant covariance propagation which is needed to consider it in the
integrated model for gravity prediction.

We further think that dzgttal three-dimensional seismic velocity models will be available in

near future - we have one constructed over the European Alps, see chap. 8 - so that those

informations can be used to determine and/or to improve the gravity field. In this context,

also proposals and developments for global P velocity models in the form of spherical har-
monic models are already made (DZIEWONSKI 1984; PE, MARTINEC 1985; WOOD-

HO USE, DZIE WONSKI 1984).

7.2 Seismic wave motion in an inhomogeneous medium

Since density p and elastic Lam6 parameters A, p (or bulk and rigidity moduli, respectively)

are very irregular functions of position, they may be treated as randomly distributed in

space forming a stochastic process. These statements refer to the famous work of CHER-

NOV (1960). Meanwhile among geophysicists the theory was successfully applied, see, e.g.

AKI (1973), CAPON (1974), KNOPOFF, HUDSON (1964), KORN (1987) - to mention

also some.

Thus, KNOPOFF, HUDSON (1964) introduced six correlation functions of the form

CXX = cov(bA(P), A(Q)) (7-10)

C114L = cov( I(P), bA(Q)) (7-11)

CV, = cov(tp(P), bp(Q)) (7-12)

ovQ5= A(P), 640 (7-13)
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cxp = cov(bA(P), 6p(Q)) (7-14)

Cip = cov(6.(P), 6p(Q)) (7-15)

and treated the quantities 6p, 6A, 6A as signals which perfectly fit to our proposed integra-

ted approach in conformity to least-squares collocation.

Following KNOPOFF, HUDSON (1964) the basic equation of wave motion in an inhomoge-

neous elastic medium is given by the following partial differential equation

p = v{(A+2A)V.uQ-vxVAV u

+ 2(VA- V) -2(V )V .I+2(VA)xVxu (7-16)

where

u4 ... seismic displacement vector (observed by seismographs),

p ... density,

A, A ... elastic parameters (Lam6 constants),
t ... time,

V ... gradient operator,

V- ... divergence operator,

VX ... rotation operator.

For the sake of simplicity we want to discuss only the effect of density anomalies on wave

motion. Thus, we assume, that A and u are (known) constants. This assumption does not al-
ways conform with reality, but simplifies the discussion. We are mainly interested in densi-

ty anomalies, since their relationship to gravity was discussed in the chapters before.

The generalization with respect to all three parameters p,A,1s can be done using the work of

KNOPOFF, HUDSON (1964) and CHERNOV (1960). The formal solution already exists.

Starting point is again the decomposition

P = Po + bp (7-17)
A = Ao (7-18)

A1 = A0 (7-19)
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where po, Ao, go are approximate values and constants, and 6p are density anomalies. In the

same way we decompose the displacement vector u in

g = go + (7-20)

where

go is the approximate value, and

bu is the variation of the displacement vector due to density anomalies.

As a consequence of (7-17) to (7-19) the gradients are VA0 = q, VgO = Q, and Vpo = 0, which

enter the basic equation of motion (7-16). It can be linearized resulting in

02Uo Ao + 2/po V (V Uo)- V . (VUo) (7-21)

= P o Po

026U Ao + 2/ 0V (V, P)_ I (V 6u). f (7-22)-t 2p 0 Po-

where

= -1 2  6p (7-23)

(7-21) defines the approximate wave motion, if the medium would be homogeneous.(7-22)

is the inhomogeneous elastic wave equation which relates the variation tu of the displace-

ment vector to the density anomalies bp, where f is the disturbing force.

It is further common to introduce the wave velocities a and #defined by

2 = AO + 21LO (7-24)
PO

,q2 = AO (7-25)
Po

For the solution of wave equations like (7-21), (7-22) we decompose the displacement vec-

tor in one part, which is due to a compression (P) wave, and in another part, which is due

to a shear (S) wave. Thus, introducing

60 = V. u (7-26)

6w = V x6u (7-27)
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we find from (7-22)

W =a2 A 6 4+ V •f P wave (7-28)

99 W= # 2 A 6W + V f S wave (7-29)

where A is the Laplace operator.

Assuming we have solved (7-28), (7-29) the diplacement vector variation bu is given by

bu = V 60 + V 6w8 (7-30)

Under the assumption that the incident ww, e uo is harmonic, that means time-dependent

ith e-iwt, the solutions for 60 and 6w can be found in KNOPOFF, HUDSON (1964).

f-4 0 (V f)-T--dv (7-31)
V

6w= + 10  f (V'xf) T- dv (7-32)
V

where (r, 0, A) are spherical coordinates (radius, co-latitude, longitude) and 0' is the

spherical distance (P,Q)

I = Ir+r 2-2rr' cos-] 0. 5, r=r(P), r, =r(Q) (7-33)
dv = r' 2 sin 0' dr' dO' dA (7-34)
k = w/a (7-35)

k w /fW (7-36)

a 1 +TF = - er + r's snV -OF e x + F' M eo (7-37)

(gradient operator in spherical coordinates)

w is the frequency of the incident wave, and using (7-31), (7-32) we find for the

displAcement vector variation 6_ (7-30)

_ = p0 W -f). V TeiI dv

+ 4 r P0-w f [ V - (V' -f) dv (7-38)
V
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We notice the important fact, that the integral solution for 6u (7-38) is in principle of the

same form as the expressions for the gravity field functionals using Newton's attraction in-

tegral. The variation u of the disp!acement vector is also given as an integral over the
volume v, where v should coincide with the volume in which we have density anomaly data.

The density anomalies enter in (7-38) via the disturbing vector f.

The incident wave 110 is assumed to be harmonic, e.g., 110 is a function of the form

u0(P,t) = e-i-t uo(P) (7-39)

with time-dependence e-iot and P(r, 0, A). Considering (7-39) we find for f (7-23)

f(P,t) = w2 e-iLt p(P) 110(P) . (7-10)

In order to evaluate the integrals for the displacement vector bu we have to insert f at the
integration point Q(r', 0', A') into the integrals and to compute the divergence and rota-

tion. Thus,

(V' f) = W2 e-iwt [V" 6p(Q) 110(Q) + bp(Q) V'- MoQ)] (7-41)

(V' x -) = w2 e- i ot [' Np(Q) X 1!o(Q) + Np(Q) VX u0(Q)I (7-42)

We can see from (7-41), (7-42) that the displacement vector variation bu is not only a func-

tion of 6p itself, but also a function of the density gradient V'p . This means that a change

of density in the volume v will cause an effect on the displacement vector, a physically real-

istic model.

[ e i c l ]

For the components of V -T- , c = k, kp} ,we get the following expressions using

spherical coordinates:

a0[ e ir l  e i l  011
[eFr - N~ [Fla 0 1] (7-43)

0 e ic l  e i c l  0

M 7-Z M eI01 T ) (7-44)

eil eicl 1 [

67



r - r, cos (7-46)

81 r r" sin* cosa (7-47)

1 r" sincoso sina (7-48)

The derivatives of (1/1) are

S 1 - r cos (7-49)

a .] rr' sinVcosa (7-50)

a ] r r" sino1coso sina (7-51)

[o r2-rr'
19 + r - r • ls (7-52)

where P(r, V, A) , Q(r' ,o', A'), (p = 90o - 0, and a is the azimuth.

For the evaluation of the volume integrals in (7-38) we have again to apply a discretisation,

e.g., replacing integration by summation over small volume elements.

If we assume, that an observed set of displacement vectors u(Pi, tj) at stations Pi and at

different times tj are available reduced with regard to uo0(Pi, tj) , we get from (7-38) in

connection with (7-41), (7-42) the following observation equations in matrix form

I =Ag+llV+n (7-53)

where

I ... (6u(PI, tj)) (7-54)

A ... (6p(Qi)) (7-55)

Vg ... (Vp(QO)) (7-56)

n is the observational noise and A, B are design matrices consisting of the kernels of (7-38).
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7.3 A possibility of evaluating the autocovariance function of density anomalies from

seismic observations

The concept of solution assumes that we know the autocovariance function of density

anomalies C6p6p. The computation can be done using available density data as outlined in

chap. 6 and done numerically in this study (see chap. 8, 9).

Another method of determination of C6p6P = cov(6p, 6p) is outlined in (KNOPOFF, HUD-

SON 1964) which is similar to variance-component estimation. The method is based on the

analysis of seismic observations 1 = (6u(P,t)) providing an a priori base function repre-

sentation of C6P6P with unknown con.t. ,nts. KNOPOFF, HUDSON (1964) have used a

Gauss' function in their approach.

C6P(P'Q) = C eap IP-QI (7-57)

But we may also think of a spherical harmonic representation of C6p6p

N

C6p6P(PQ) = Z c(P,Q) • Pn(COSO) (7-58)
n=0

In (7-58) the factors cn,(P,Q) may be treated as constants (in very local investigations);
they may be some functions of radial distances, considering the variations of density with

depth.

Let us assume now, that we have a network of seismic stations Pi at the earth's surface. At
each seismic station Pi, it is possible to observe the displacement vector ! = (6(Pi,t)) as a
function of time for a seismic event.

With I we start the covariance analysis by computing for each station Pi the covariance
matrix CI1 = (Pi,Pi)

Q11 = E { 11} (7-59)

Note, that - denotes here the conjugate-complex transposition, because we deal with

complex operators and observations.
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Using (7-53) in (7-59) we get

Q 0(P,P) = A Qapbp A* + A VLpop -* + R v-C6p A* + vvpsp B" + C. (7-60)

Having assumed that the incident wave Uo is harmonic with time-dependence e -iwt we

notice, that for a station Pi 1 1* is now no more any longer time-dependent because of

e-lwt • ei t = 1.

The computation of _L is obtained by evaluation of the seismograms in vertical and

horizontal direction.

The matrix -2-pp consists of all covariances between the discrete points in the volume v.

The further way is to substitute a model for a covariance function like (7-57) or (7-58)

into the covariance matrix C_.8p. For example, the covariance function (7-57) is a function

of the distance I P-QI with two free parameters, the variance Cg, and the distance-scale

parameters ap to be determined.

Under the assumption, that we know some approximate values for C04, ap, we may expand

Li , see (7-60), into a Taylor series, neglecting all higher-order terms,

o1(t o, p aci C_ + OC~lI 6" (7-61)6(Pi, C04, c) = Li1(Pi, C6P, a) + p 6p +

Using the observation vector 1, we may compute the so-called mean square fluctuation
(KNOPOFF, HUDSON 1964), that is the variance CO(l).

Co(1) = 1* Qin 1 (7-62)

Considering (7-61) together with (7-62) it should be possible to minimize the difference

601(P1 )

e5C0(P) = C0()- Co(l) I CIII-* L~lI+ iII5 g+I* I Ia (7-63)

with respect to 6Cgp and 6ap (the unknown parameters of the covariance function (7-57)
for all seismic stations Pi, i = {1, ... , N}.
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In this way we may obtain improved parameters for the autocovariance function Cbbf, .
Eqs. (7-59) to (7-63) are in principle a discrete approach to the discussions of KNOPOFF,

HUDSON (1964). Ilere an integral expression for the mean square fluctuation (7-62) is de-
rived. Subsequently, the covariance function (7-57) is inserted into the integral and the
integration is performed. The result of integration yields also the mean-square fluctuation

as a function of Cg, and a.
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&. TEST DATA

8.1 Test network "Roasdorf"

The test area Rossdorf is located around 50 km south of Frankfurt/F.R. Germany. It has an

extension of 26 x 23 km 2 and is especially well-suited because of large variations in (surface)

density. This is due to the fact that part of the area belongs to the Rhinegraben whose

upper layer consists of sedimentary fillings. The eastern part of the test area belongs to the
so-called "Odenwald", a low mountain range. For the investigations 78 (point) gravity ob-

servations were available. At these stations, at least in the near neighbourhood, also surface

densities were determined by a geologist (FAHLBUSCH 1987, pers. comm.). The density

data are estimates coming from laboratory investigations, boreholes, and descriptions found
in corresponding archives. They should be representative for a cylinder of about 150 m in

diameter round the gravity station and a depth of approximately 1 km.

The coverage of the area with observational points cannot be described to be homogeneous,

becmuse they follow more or less levelling lines, see Fig. 8.1. The density values vary largely
from 2,48 g/cm3 to 3.02 g/cm3. The area has only height variations of a few hundred

meters. The topography is plotted in Fig. 8.2 and a contour-line plot of surface densities is

given in Fig. 8.3.
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8,2 Test area "European Alps"

The test area European Alps extends from 45.00 to 48.50 North and from 6.00 to 16.50 East.

It comprises Switzerland, most of Austria, southern Germany to the Danube River,

northern Italy including the Po plain, and easternmost France excluding the western Alps

and the Lake Alps. The following section describes the data that are used in the geophysical

modelling (see chap. 3) as well as in the numerical computations with respect to gravity

prediction. Part of the data are digitally represented on an equidistant grid of 6' - 10'

(Aipo AA), corresponding to an area of 11 x 13 km2. The grid was chosen because other

data sets were already available on it (area means of topography and free-air anomalies).

The data values are considered as mean values for the grid compartments. Gridded data

used in our investigations are digital models of topography (digital terrain models),

equiangularly-spaced mean block values of gravity anomalies, and a model of surface rock

densities.

Block mean values of gravity and point values have considerably different spectral proper-

ties. There was also a need to use point values of gravity field functionals, especially in the

context of least-squares collocation for the determination of a corresponding reasonable

covariance function of the gravity anomalies.

9.2. I TopOgraphy

The anomalous gravity field is primarily due to two facts that seem at the first glance quite

different: variations in the visible topography and radial as well as lateral inhomogeneities

of the sub-surface masses. A major part in local gravity field variations (medium and high

frequencies of the spectrum of the gravity field) is a direct consequence of the topography.

So one of the fundamentals of a proper modelling of the gravity field is a model of the

heights in the area of interest. Heights stored in gridded form together with the assumption

of a constant density form a zero-order model of the distribution of masses whose successful

use has been demonstrated in various applications (e.g., KEARSLEY et al 1985; FORS-

89RG, TSCHERNING 1981).

For our computations several sets of height data were collected and used:

- The global set of block mean values of heights/depths released by the working group of

Prof. Suinkel, Technical University of Graz, described in (WIESER 1988). This set,
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referred to as TUG87m5, has a resolution of 5' by 5' and is referring to geographical co-

ordinates ( o, A). It is compiled from two sets of 5' by 5' resolution: ETOPO5 and

DB5B (previously SYNBAPS). Processing of both sets consisted not only of merging

the data but primarily included also detection and removal of gross errors.

The Austrian digital terrain model with a resolution of 20" by 20" is based on geographi-

cal coordinates and was developed by the Institute of Photogrammetry of the Technical

University of Vienna (HAITZMANN 1983). This model is referred to as POHEKR, see

Fig. 8.4 for a plot of a 10 x 10 block.

For Switzerland a set of approximately 100 m by 100 m point values was available called

RIMINI (De MARCHI 1983). The model is based on the map 1 : 25 000 of the Federal

Office of Topography. It comprises whole Switzerland (a total of 330 maps 1: 25 000)

resulting in 1.15 million height values.
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Fig. 8.4. Heights in a 10 x 10 block of the European Alps.
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For the southern part of Germany a set of point values based on UTM-coordinates is

available. Its resolution is approximately 100 x 100 m 2 . For a limited area we had also

access to a model of resolution - 50 x 50 M2 .

An overview over all available sets is given in Fig. 8.5.

8.2.2 Grammetric observations

The largest data set of observations consists of an amount of 41 681 gravity values within

our Alpine area. For an overview the data have been thinned to a minimum point separa-

tion of 10 km and plotted, see Fig. 8.6.

The gravity values for the eastern part of France as well as for whole Switzerland have been

made available by the Bureau Gravim~trique International, Toulouse. The Italian petrol

company AGIP provided a data set covering that part of northern Italy which was of

interest for our investigations. The Technical University of Graz, Austria, provided the

data for the Austrian part of our area.

The computation of the mean Bouguer anomaly values for the 6' x 10' areas is based on

the mean free-air anomaly and elevation values for Europe, as supplied by Institut fir An-

gewandte Geodasie (IFAG). Application of the mean Bouguer reduction to the mean free-

air anomalies results in an anomaly which approaches the mean Bouguer anomaly. In the

Alps this anomaly is strongly correlated (with negative sign) with the mean elevation. It re-

flects the fact that the mean elevation is closely correlated with Moho depth. The simple

Bouguer reduction applied is defined by:

bgH = 2wGpH (8-1)

with H being the mean elevation value of a compartment, G = 6.673 • 10-8 [g-1 cm 3 s-2],
gug in mGal. The density p was everywhere assumed to be 267 g/cm3, the value usually

taken for the average crust.

For relatively flat areas the approximation of an infinitely extended Bouguer-plate is

sufficient but for most of our area the full terrain reduction had to be computed. This was

done using the prism integration method which allowed also to simultaneously determine

the isostatic effect due to the topographic load. For the isostatic compensation the Airy-
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Heiskanen compensation mechanism was used assuming the following parameters: p = 2.67

g/(m 3, 'T = 32 km, Ap = 0.4 g/cm3.

ULnfortunate!y there are gaps in the given data sets resulting in significant gaps of the

Bouguer anomaly particularly in the Central Alps. Fig. 8.7 is a crude representation of the

distribution of Bouguer anomaly values.

8 2.3 Astronomical observatzons (deflections of the vertical)

For Austria a set of astronomical latitudes and logitudes (deflections of the vertical) with a
total of 521 values was available. Field work and accuracies are documented in (BRANI)-

STA TTER 1987). Parts of the observations were carried out by the Institute of Theoretical

Geodesy and Geophysics, Vienna, Austria (Prof. Bretterbauer).

Switzerland (Prof. Kahle, ETH Zurich) provided a set of 240 deflections of the vertical. A

good number of them are published in (GURTNER 1978).

For the southern part of Germany the deflections of the vertical are taken from

(SCHMIDT, EHLER T 1982).

For a plot of all available deflections of the vertical see Fig. 8.8.

8.2.4 Seismic data

The crustal structure of the Alpine region has been thoroughly investigated mainly by

seismic refraction experiments during the last 30 years. The results have been published in
a large number of papers and they do not cover the body of the Alps completely. In recent
years a number of attempts have been made to collect all the data and to arrive at a unified

areal interpretation (e.g., MOSTAANPOUR 1984; GEISS 1987). In spite of the doubtless

merit of these attempts, we have not simply incorporated the results, partly because we are
aiming at greater detail, partly because the uncritical use of other workers' results is easily

misleading. For our computations of the gravity and geoidal effects of the seismically
inferred crustal structures we have again reviewed and analysed all the original publications

available to us.
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The crust and upper mantle have a complicated three-dimensional structure which cannot

possibly be represented adequately except on a very fine three--dimensional grid. However,

there are elements of order to which the various seismic techniques are sensitive. Refraction

experiments (including the methods of data analysis and interpretation) will tend to "see"

refractors or layers, while reflection experiments mainly "see" reflectors or surfaces of

seismic impedance contrast mostly on a much smaller -scale (vertically and horizontally);

some may coincide with refractors, but most of them reflect internal structures of the gross

layering derived refraction seismology.

For convenience and as a means of data condensation we divided the crust into two layers

and the upper mantle similarly into the lithospheric part and the underlying asthenosphere

(with no bottom assumed). The most important refractor or large-scale boundary is the

Mohorovi6i discontinuity dividing crust and upper mantle; its depth, or equivalently the

crustal thickness, Zm, is reasonably well established in the region of study. Another

boundary on which we have significant information is the top of the crystalline basement or

its depth, Zb. The depth of the lithosphere-asthenosphere transition (or "boundary"), Z1, is

known with much less certainty; it is based mainly on the dispersion of (earthquake) surface

waves with poor spatial resolution.

To start with, our seismic model can, thus, be represented by three layer boundaries at

depths Zb, Zm, and Z1. However, as argued above, the layers are not homogeneous; in the

individual refraction results there is ample evidence for seismic velocity variations within

the layers. We attempted to treat these (as far as the data permitted it) as a perturbation

of the layered model.

First we constructed the layer boundaries on the basis of published contour maps and,

particularly, of seismic sections along observed profiles and a few fans. The sections usually

show boundaries and seismic P wave velocities, vp, mainly at the top of the layers. The

refraction results are also often published as velocity-depth functions for refraction profiles

or parts of them, pertaining to certain regions. In addition reflection seismic results have

been used. As mentioned, the lithosphere bottom was taken from interpretations of surface

wave dispersion and partly of teleseismic traveltime residuals.

All these data were digitized. The irregular points were then interpolated onto the grid

described above. Digitizing the input data had to take into account the different

cartographic projections, so that it was done mostly manually with the aid of strongly

magnified maps. To reduce the errors of locations (of the data points), mostly points of

intersection of contours with lines of latitude or longitude were taken. At the beginning,
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only those results were accepted that had been considered reliably by the original authors,

and extrapolations to the marginal regions (mostly shown by dashed lines) were omitted.

Only in larger regions with no data we included such information of less reliability. In
regions of data overlap from two or more sources we tried to avoid discrepancies in the first

step. In the second step the data set was analysed with respect to significant discrepancies.
These were either eliminated altogether or, in regions of broad scatter, the arithmetic mean

was taken.

This procedure resulted in a set of irregularly distributed points values. In the third step

this data set was interpolated onto a regular grid. Two methodes were used: the method

due to Hardy (GOPFERT 1977), called "multiquadratic", has been applied if not otherwise

stated; alternatively interpolation by triangulation was used (AKIMA 1978), were a 5h

order polynomial is expanded within triangles. The multiquadratic interpolation renders a

smoother set of point values and it is less sensitive to greater data gaps and strong

gradients resulting from discrepancies between close-by points; however, computation takes

much longer so that we were limited in the numbers of input and output points because of

limitations enforced by the reasonable computing time. The resulting grid (75-120 % of the

compartment size, depending on the original data density) was further refined to 20 % of

the compartment size with the aid of bicubic splines (PRESS et al 1986). Subsequently all

grid points thus obtained and lying within a 6' x 10' quadrangle were arithmetically

averaged and the mean value is then taken for this quadrangle. Averaging naturally results

in some smoothing of the data, but methodical weakness of the different kinds of interpola-

tion is partly cancelled. Tests in which both interpolation methods were compared for some

regions have demonstrated, that the results after the final averaging are nearly identical.

Thus, we believe that the requirement of a uniform data generation has been satisfied.

Lateral variations or perturbations of the seismic velocities within the layers were estimated

for parts of the crust in the following manner. We started from published velocity-depth

functions v(z) given for certain "points". Assuming a piecewise-linear velocity distribution,
we computed mean velocity Vi for n layers i of thickness Zi. The average velocity ri of a

crustal section Z = E Zi is given by (MOSTAANPOUR 1984):

n
E Zi

- (8-2)

Fig 8.9 shows the location of crustal sections discussed beside the contour maps. In the

following the seismic boundaries are presented from top to bottom, followed by the lateral

velocity perturbations.
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8.2.5 Depth of the seismic basement

The seismic basement is defined by the depth Z1, where the P wave velocity vp first reaches

the value 6.0 km/s, not by reflecting horizons as usually done in exploration geophysics. If

low-velocity layers exist at greater depth there may be additional 6.0 km/s surfaces which

are not included in the "seismic basement". What is the significance of the basement as de-

fined here? In a general way, it will correspond to the top of the crystalline rocks; thus the

depth Z1, is equivalent to the thickness of the sedimentary "layers". This, however is not

everywhere to be taken literally, particularly not in the Alps. Shallow crystalline rocks, par-

ticularly if tectonically deformed usually have vi,-values below 6.0 km/s. This has been de-

monstrated by BIRCH (1958) for normal granite assuming a temperature gradient of 18 0C

per km (Fig. 8.10). The relatively low velocities are caused by porosity and particularly by

sr.all open joints related to weathering and tectonics; at greater depth pressure generally

closes the joints and v,, exceeds 6.0 km/s, usually at depth of about 2 km. There are,

however, also sound-hard sediments, e.g., dolomite, with vp-values greater than 6.0 km/s.

The seismic basement Z1, as assumed here was essentially based on the interpretation and

the contour maps published by MOSTAANPOUR (1984). In addition, we took a number of

velocity-depth functions at a few points along the profiles shown in Fig. 8.9; these points

were incorporated into the interpolation or were used for checking. The result of our

interpolation is presented in Fig. 8.11.

The contours reflect the tectonic gross structures of the study area. The evolution of the

Alps that resulted in these structures may be briefly characterized as follows. A number of

compressive pulses lead to folding and nappe movement from the central region towards the

northern foreland. Today the Alps have an asymmetric structure of the deformed crust.

While in the north one crustal nappe after the other separated from its basement and

moved north, in the south a suture formed, the Insubric line. It separates the East Alpine

Block from the South Alpine block. To the north and south there are two large sedimentary

basins, the Molasse and the Po basin, which received the erosional products of the Alpine

orogene during repeated uplift phases. In east-west direction the Helveticum and the
Penninictim are to be distinguished. Fig. 8.12 shows the tectonic gross structures of the

Swiss Alps.

The greatest values of Zb are formed in the sedimentary basins of the Molasse, the southern

Rhine Graben, and the Po region. In the Molasse, the maximum values of 7 to 10 km are

reached at the edge of the Alps. In the southern Rhine Graben, values up to 11 km are

reached between the much shallower values in Black Forest and Vosges massifs. The Po
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basin shows up with values up to 8 km. The shallowest depths of the basement (less than

2 km) are found in the central East Alpine regions and along a narrow arch of the western

Alps (the zigzag shape of the contours results from insufficient grid resolution). Somewhat

greater Zb values (3 ... 5 kin) correspond to the Helveticum and Penninicum, rising towards

the Molasse basin. In the South Alpine region the Zb values are variable between 2 and

4 km before they drop towards the sedimentary Po basin. The transition is here more

gentle.

5,2 5,6 6,0 6,4 km/s

5

10

15

2oE

km

Fig. 8.10. P wave velocity versus depth for a medium granite after BIRCH (1958)
according to a temperature gradient of 8 OC/km.

8.2.6 Depth of the Mohorovi&ud discontinuity

The Mohorovi6i6 discontinuity (short: Moho) defines the crust-mantle boundary; it is

characteristically a rather abrupt increase of vi, from less than 7 km/s to values around 8.0

km/s (extreme value, of 7.5 and 8.5 km/s are rare). The 'acic.'se is not truly a first order

discontinuity although for long wavelengths it may be modelled that way; in reality it will

always be a transition zone ')etween crust and mantle of up to several kilometers vertical

extent. Therefore it is a matter of definition at which depth exactly the Moho lies and one

must pay attention to this if one wishes to accept published results. A number of possible

definitions has been discussed by MEISSNER (1986). According to him the most common

definition is the top of the transition zone (or layer) of the greatest vertical P wave velocity
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gradient vp)/Oz leading to values of 7.5 to 8.5 km/s. This definition is not meant to apply

to other high-velocity gradient zones (MOSTAANPOUR 1984). Some authors define the

Moho depth at the bottom of the transition zone or at its center. It is also quite common to

define the Moho depth Zm by the exact velocity value of 8.0 km/s. Keeping these

uncertainties of definition in mind, the uncertainty of the depth Z. for the Alps has been

estimated by various authors to be k 2 km (EGLOFF 1979), * 1 ... 2 km (PERRIER,

RUEGG 1973) and + 5 km (MOSTAANPOUR 1984).

Since the Moho attracts greatest interest there are more data on it than on any other

boundary and the spatial resolution is greatest. In this work a number of more detailled

maps and crustal sections have been combined with more regional Moho models (e.g.,

MOSTAANPOUR 1984; MEISSNER 1987). Because of the numerous data points a routine

was used where the interpolating function is a fifth-degree polynomial within each triangle

of the x-y surface of the data. In order to avoid edge effects of this method it was necessary

to include a 0.750 to 10 strip outside the actual study area. The result is shown in Fig. 8.13.

Multiple coverage of some regions from several publication also allows us to estimate the

confidence intervals of Zm in an empirical manner. The results are not given as usual as a

symmetric standard deviation (A AZ) but asymmetrically for the shallowest and the

deepest Moho depth for each 6' x 10' quadrangle. For the best cases the minimum uncer-

tainty was assumed to be + 1 km. In some regions, however, we found differences of Zm >

10 km. If those discrepancies could be traced to the differences of Moho definition in the

various publications, the data were excluded from the interpolation, but they were still used

to estimate the confidence limits. Discrepancies caused by unknown effects were averaged or

treated as described above.

For the arc of the western Alps and for the Swiss Alps there were about 100 discrete data

points available (CLOSS, LABROUSTE 1963; KISSLING 1982). In addition there were a

few published contour maps for these regions. The data had to be fitted together mainly in

southwestern Switzerland. Here also contour maps of the whole Alpine region (GIESE et al

1976) were taken into account. The Alpine forelands in the north and south were represent-

ed only by contour maps (DRISLER, JACOBY 1983; GIESE et al 1976; BARAZANGI,

BROWN 1986) which are consistent with other representations. Only in the regions of the

Swiss Jura and the southern Rhine Graben we noticed significant discrepancies in the Moho

depth. The eastern part of Austria is not well known with only 30 data points along three

seismic profiles (ARIC 1987) available. The Jugoslavian part of the study area is not

covered by reliable data; we had to revert to extrapolation. The data density is much
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greater in the western part of the test area than in the eastern part, and the data sources

are also more detailled and reliable in the west.

The upper and lower confidence limits of Z. are represented as two sets of discrete integer

values of length in kilometer. They are shown in Figs. 8.14 and 8.15. A representation in

the form of contour lines is of no meaning and no value.

The contour map of the Mohorovii6 discontinuity clearly shows the arc structure of the

Alps. The Z. values continuously increase from about 32-38 km in the region of the
northern Molasse across the strike direction towards the axis of the Alps to 40-45 km in the
Helveticum and Peninnicum. In West Alpine maximum Zm values of nearly 60 km are

reached. In contrast, the crust-mantle boundary in the central East Alpine is only 45-50

km deep. In the Po basin the crustal thickness is only 25-35 km, distinctly less than in the

Molasse to the north. This is similar to the sedimentary thickness.

Our contour map (Fig. 8.13) differs clearly from other interpretations (e.g., MOSTAAN-

POUR 1984; MEISSNER 1987) in that way that Zm gradually varies from the center of the

Alps to the south. The maps mentioned show a rise of the crust-mantle boundary from the

Po basin to the margin of the western Alpine arc to about 10 km from which the boundary

abruptly drops to values of about 50 km to the north of the Insubric Line. This behavior is
an expression of the lvrea body, which is also evident in the partial overlap of the contour

lines manually constructed. Such a small-scale structure cannot be resolved with the chosen

grid, and the interpolation procedures can only produce smooth surfaces with no disconti-

nuities. The Ivrea zone has the effect that the contours are quite dense in this zone.

The Z,, values of the Po plain belong to the "Adriatic plate". Crustal doubling as postula-

ted, e.g., by WIGGER (1984) and GIESE (1985) cannot be recognized in our model and

was not taken into account in our estimate of the confidence limits. There is no evidence for

the Eurasian plate to have been pushed a long distance south of the Insubric line below the
Adriatic plate. Locally at the contact of the Eurasian and Adriatic plates there is seismic

evidence for crustal subduction at the southern margin of the west Alpine arc and the

coastal regions of Toscana till the island Elba. A continuous connection between these two

regions could, however, not be verified by refraction seismology.

Finally we note the shallow Moho with Z, values of 22 ... 25 km below the southern IRhine

Graben. However, in contrast to seismic basement there is no abrupt change towards the

Black Forest and Vosges massifs.
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The possible deviations of the Moho depth from the values in Fig. 8.13 are in large areas

less than * 2 km (Figs. 8.14, 8.15). Possibly greater Zm values may be suspected in two re-

gions: in the Ivrea zone to the southern end of the west Alpine arc and broadly in the

eastern Alps. The main reasons are the problems of incorporating a complicated structure

as that of the Ivrea zone and considerable discrepancies in different Moho maps for Europe

(MEISSNER 1987); here the 50 km contour extends about 100 km further east than in all

other maps. Regions with possibly smaller Z. values are again along the west Alpine arc

and especially in the Ivrea Zone, as well as in the central East Alpine. Also the Swiss part

of the northern Molasse basin shows uncertainties towards shallower depths by 3 ... 5 km.

In Figs. 8.14 and 8.15 it is evident, that generally (with the exception of the Ivrea zone) the

reliability and accuracy in the western (Swiss) part of the study area are much better than

in the east. The reasons are the higher data density and the better seismic model.

8.2.7 Thickness of the lithosphere

The lithosphere plays an important geodynamic role as the uppermost quasi-rigid moving
plate. It consists of the crust and the uppermost part of the mantle. The transition to the

subjacent asthenosphere layer is, though gradual, a drastic change in rheology, i.e., a

decrease of viscosity by several orders of magnitude. The asthenosphere is also a layer of

low seismic velocities which may be explained by partial melt. However, the transition is

principally not resolvable as a reflecting or refracting boundary. The depth Z1 can only be

determined with the aid of surface wave dispersion analysis and by teleseismic travel time

residuals. Both will never allow the definition of a sharp boundary. Another indirect

method to determine the thickness of the lithosphere is by modelling the terrestial heat flow

(CERMAK 1982). However, this kind of modelling is ambiguous and depends on many

vague assumptions.

The present map (Fig. 8.16) was based on published work by BABULKA et al (1.985),

SUHADOLC, PANZA (1988), and PANZA et al (1980). PANZA (1981) has estimated the

uncertainty to be * 30 km. Fig. 8.16 differs in parts considerably from other published

maps. For example, PANZA, MULLER (1980) postulated a lithospheric root below the

Alps up to 200 km thickness and thermally induced high seismic velocities on the basis of

travel time residuals (particularly in the east and below the west Alpine arc). This root has

not been included by GEISS (1987), but he assumes a generally thickened lithoshere (to

130 km) below the Alps. At present, the existence of the lithosphere is being debated alto-

gether, e.g, by VIEL (1987) on the basis of observations of travel time residuals at his Al-
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pine stations and of model computations. The residuals were explained by him by crustal

thickening.

Fig. 8.16 represents the version most acceptable to us. There are two thickness maxima

near the west Alpine arc and below the central eastern Alps. Towards the margins of the

Alps the lithospheric thickness decreases strongly to values of 110 ... 130 km. A special fea-

ture is the southern Rhine Graben with a thickness of only 90 ... 100 km. But here the un-

certainty probably greatly exceeds the value of ± 30 km, particularly in view of the 45 ...

50 km given by PANZA et al (1980) for the whole European rift system. The same is true

for the transition from the Alps to the Dinarides in the southeastern part of the study area,

however, with the opposite sign. PANZA et al (1980) give values > 120 km for that area.

Generally one has to take into account that surface wave dispersion analysis cannot give
much spatial resolution horizontally since dispersion can only become evident along a cer-

tain horizontal path length; therefore features of small lateral extend will appear smoothed

if recognizable at all.

8.2.8 Perturbations of seismic velocities

The interpretation is based on the same data as the construction of the contour map of Z1,

does. Digitizing the contour maps was difficult, since the manually constructed contour

lines of MOSTAANPOUR (1984) are incomplete and appear topologically incorrect at

places. Therefore we took more of the original seismic profiles into account. In a broad

sense, however, the results are comparable to those of MOSTAANPOUR (1984). We deter-

mined the lateral variation of the mean P wave velocity in certain regions of the crust, i.e.,

from the depth range from the surface to the seismic basement: rb (Fig. 8.17), and for the

whole crust: , (Fig. 8.18). From these values one can compute the mean velocity ViC of

the crust below the sediments, i.e., from Zj) to Zm (Fig. 8.19); according to MOSTAAN-

POUR (1984)

AZ
ViC = Zm Zb with AZ = Zm-Zb. (8-3)

Vm Vb

Finally the P, velocity vei at the crust mantle boundary has been digitized. It is the

velocity immediately below the Mohorovi6id discontinuity (Fig. 8.20).
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The contours of i¢b again show the typical structure of the Alps. The Molasse basins and the

southern Rhine Graben filled with sediments are characterized by low seismic velocity as

theoretically expected. In the central East Alpine and the western Alpine arc Vb reaches re-

latively high values of 5.6 ... 5.8 km/s. It may be suspected that the definition of the seis-

mic basement (see section 8.2.5) ist not valid there. The variation of the mean P wave ve-

locity Vm for the whole crust is much smaller (about 5.8 ... 6.3 km/s) than that within the

upper crust. The variation correlates well with the locations of the sedimentary basins. We

note, however, the anomalously low average velocity in the western Alps (5.8 km/s). Here

the mean P wave velocity is the same in the upper and lower crustal layers. This is also

noticeable in the mean velocities i1 in the sediment-stripped crust (Fig. 8.19). Otherwise

the mean velocities in the lower crustal regions range between 6.0 and C.5 km/s. The

maximum values are found below the sedimentary basins. This agrees with results of

BIltRCH (1958).

Note that Fig. 8.19 clearly differs from the picture presented by MOSTAANPOUR (1984).

The reason for this is partly that we computed the average velocity V1, for each 6' x 10'

quadrangle, while MOSTA.4NPOUR (1984) had computed ot( only for a few points and

constructed the contour lines manually.

The Pn velocity v,.,, just below the crust-mantle boundary shows relatively low values

(7.8 km/s) in the region of the deepest Moho. These regions are surrounded by zones of re-

latively high Pn veloWity (8.2 km/s). There is some north-south asymmetry in the sedimen-

tary basins; the Molasse is underlain by high velocities (8.0 ... 8.2 km/s) while the Po plain

is underlain by relatively low velocities (7.8 km/s). The anomalously low velocities in the

lower crust of the western Alps has no counterpart below the crust mantle boundary, but

there are anomalously low P,, velocities below the southern Rhine Graben (7.5 ... 7.6 km/s).

8.2.9 Digital density model

In order to compute topographic (terrain) reduction of gravity measurements, one should

know the density distribution near the earth's surface above the reference level. For compu-

ter-adequate procedures one needs a digital density model besides the digital elevations.

The density surface rocks range between 2.0 (unconsolidated sediments) and 3.0 g/cm 3 (ul-

trakl sic iwigi;l.i ri.'ks) 'lhi' iiiial ;issurII)lion ()f ;I avermg dhensity f4 2. 67 g/(,i :l for tle

!,11111-1, i1A r lIt: 1;11 1 )' , I,*;*"''I: 1', Jl l ,illl, 'l i + f V'litIs IIlI llO " fl+'l, IIIIallo rl (if 1 th " o p,,g laqp i,

ic reductions. For Austria a digital density model is now available (see Fig. 8.21). It grew
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out of combination of data sets already published and a special data collection for the pres-

ent purpose. The bases are well researched densities of surface rocks in Austria. With the

aid of a geological map the region was divided into density provinces. This regionalisation

together with the corresponding density values is shown in Fig. 8.22. The densities are

given to the nearest 0.05 g/cm 3 and range from 2.0 to 2.85 g/cm 3. WALACH (1987) gives

the standard error of his model as 4 % and assumes that this holds from the earth's surface

to the sea level. These values had essentially been determined from samples by weighting in

air and water, by applying Nettleton's gravimetric method, and by gravity measurements

in vertical mine shafts.
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Fig. 8.22. Map of surface rock densities in [g/CM3] in Austria according to STEINHA U-
SER et al (1 983).
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9. NUMERICAL INVESTIGATIONS

9.1 Prediction of gravity anomalies in test area "Rosadorf"

The purpose of the computations was to investigate to what extent (surface) density data

can improve the prediction accuracy of gravity anomalies. This includes also the case where
gaps without gravity observations can be overbridged via density observations. For the nu-

merical realization methods were preferred fitting into the general integrated geodesy ad-

justment scheme.

From the various models discussed in chap. 4 two were implemented in FORTRAN77 pro-

grams: The method of quasi-harmonic inversion and the attenuated white noise gravity cova-

riance model of JORDAN, HELLER (1978).

For the investigations the stochastic properties of the gravity anomalies as well as those of

the density data had to be evaluated. For the fulfillment of the condition E{. } = 0 mean
values as simple trend were subtracted. Topographic-isostatic reduction of gravity anoma-

lies was done using the prism integration method (FORSBERG 1984), the digital terrain
model (100 x 100 M2) and the compensation model of Airy-Heiskanen type (HEISKANEN,

MORITZ 1967, p. 185), however, with the mean surface density of p = 2.63 g/cm 3 of all 78

stations. For the determination of the Bouguer anomalies the corresponding discrete density
data of the stations were applied. The resulting characteristics of the covariance functions

are summarized in Tab. 9. 1.

Table 9.1. Characteristic parameters of empirical covariance functions in test area
"Rossdorf"

Parameters of Free-air Bouguer Topographic- Surface
covariance functions gravity gravity isostatic density

anomalies anomalies anomalies data
AgF Agn AgTI 4

Variance 144 mGal2  93 mGal 2  103 mGal2  0.014(g/cm 3)2

Correlation length € 5.9 km 5.8 km 5.7 km 2.3 km

Variance of 570 E2 736 E2 780 E2 0.1(g/cm 3)/km
horizontal gradient
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As a second step an iterative fit to the analytical covariance model of TSCHERNING,

RAPP (1974) to the empirically determined covariance functions was carried out (for use in

the quasi-harmonic inversion method). The results can be found in Tab. 9.2.

Table 9.2. Parameters of the TSCHERNING, RAPP (1974) covariance model for the
test area "Rossdorf" using AgTI.

Order of local covariance function n 619

(RB/RE)2  0.999615

AVAR 96.91

In Tab. 9.2 (RB/RE) 2 is the square of the ratio of the radius RB of the so-called Bjerham-

mar sphere to the earth's radius RE, and AVAR is a scale factor of the model. Comparison

of the model crosscovariances cov(Ag,p) with the corresponding empirical values, however,

showed a significant disagreement (Figs. 9.1 to 9.3)

The third step was the prediction of gravity anomalies. The method applied was the follow-

ing: We assumed for each point Pi no observation being available and predicted for Pi the

gravity anomaly from its 77 (= 78 - 1) neighbours. The difference between the available
"observation" Ag and the predicted value Agpred can be considered as the contribution of

point Pi to a "true" prediction error defined by

a = (Ag_- Agpred)i / n. (9-1)

i=l

The predictions were done using gravity anomalies Ag alone, a combination of gravity ano-

malies and surface densities, and also using density values alone.

Prediction results using the quasi-harmonic inversion method

Results of the test runs are given in Tab. 9.3.
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Table 9.3. Results of gravity anomaly prediction in the test area "Rossdorf' using the
quasi-harmonic inversion method. "True" prediction errors in [mGal].

Data &gF AgB 6gTI

Gravity anomalies alone 4.0 2.9 2.8

Gravity anomalies and 59 44 44
density data

Density data alone 5.4 4.3 4.4

The prediction of gravity anomalies using only gravity anomalies was more or less carried

out in order to get some kind of reference. As expected the consideration of a simple

Bouguer plate as height model (-4 Aga) resulted already in a significant improvement in the

gravity prediction. Whereas the use of a detailed elevation grid assuming in addition an

isostatic compensation could not show any further reduction in the "true" prediction error.

This could possibly be explained that for the determination of the Bouguer plate effect

observed (point) density values were used and secondly, that it might be questioned

whether in that area the consideration of an isostatic compensation mechanism is justified.

It is surprising that the free-air gravity anomaly prediction from density data alone was

only slightly worse (1 5.4 mGal) than the one from gravity anomalies (± 4.0 mGal).

What at the moment cannot reasonably be explained is the fact that no improvement in

gravity prediction was achieved when using a combined set of gravity anomalies and

density data.

Gravity prediction using the attenuated white noise gravity covariance model

For numerical investigations the spherical (6-19) as well as the flat-earth form (6-21) of the

attenuated white noise gravity covariance model (see chap. 6.2) were programmed. The ex-

pressions for the necessary covariance and crosscovariance functions can be found in Appen-

dix A.

By varying the parameters D (characteristic depth) and COT (variance of the disturbing po-

tential) of the attenuated white noise gravity covariance model the following empirical

relations between D, COT and CoAg 1 0 (variance and correlation length of the

autocovariance function of gravity anomalies) were found:
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D =44', (9-2)

COT COAg D2 + += ~15 000 9)

or, when using the asymptotic forms (flat-earth model),

COT COAg D2)Co, =15 oo (74

The used units are:

D, V, R [kmi,

COT [m/s)],

COAg [mgal 2.

For the "Rossdorf" test area the free parameters are determined as function of the variance

and the correlation length of the autocovariance function of the corresponding gravity

anomalies (free-air, Bouguer, topographic-isostatic).

Table 9.4. Characteristic depth D and variance of the disturbing potential COT as
function of the correlation length 0 and the variance Coag of the
corresponding gravity anomaly covariance function.

Free-air Bouguer Topographic-
gravity gravity isostatic
anomalies anomalies anomalies

Agp AgB AgTI

Variance COAg 144 mGal 2  93 mGal2  103 mGal2

Correlation length 4 5.9 km 5.8 km 5.7 km

Characteristic depth D 7.9 km 7.8 km 7.7 km

Model variance COT 0.60 (1)4 0.38 (9)4 0.40 (M)4

Plots of the empirical as well as of the model covariance functions of the Tscherning/ Rapp

and the attenuated white noise gravity covariance model of Jordan/Heller are shown for

comparison in Figs. 9.1 to 9.3. The graphs indicate that the attenuated white noise
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gravity covariance model fits better to the empirical autocovariance functions CAgAg,

Cbpp , Ialthough its variance Co(bp,bp) is still too high. Both, crosscovariances C6PAg and

autocovariances C bp are decreasing too slowly with respect to small distances.

The numerical prediction trials were carried out in the same way as outlined before with re-

gard to the use of the quasi-harmonic inversion method. Only observations within a radius

of approx. 6 km (corresponding to a little bit more than the correlation length of the

empirical gravity covariance functions, see Tab. 9.1) were considered in the pointwise

gravity prediction algorithm. The results are given in Tab. 9.5.

Table 9.5. Results of gravity anomaly prediction in the test area "Rossdorf" using the
attenuated white noise gravity covariance model of Jordan/Heller. "True" pre-
diction errors in [mGalI.

Data AgF AgB AgTI

Gravity anomalies alone 4.3 2.9 2.8

Gravity anomalies and
density data

Density data alone 5.8 5.6 5.4

If the reader compares the results in Tab. 9.5 with the ones in Tab. 9.3 no principal

differences can be found except that when using the Jordan/Heller covariance model in the

form like here - one-layer crust - it is not possible to consider gravity and density data in a

combined observation set due to ill-conditioning and singularities, resp., in the flat earth

one-layer-crust covariance model (see the comments after eq. (6-28)).

Nevertheless, for further studies in gravity prediction using density data the application of

a Jordan/Heller multiple-layer crust model considering regional isostatic compensation (for

example in the form of eqs. (6-29) to (6-29d)) seems to be promising, since it contains no

singularities or ill-conditioning and can be widely adapted to the physical reality (in

contrast to the quasi-harnonic method).
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An interesting by-product of the developed gravity vrediction algorithms is their use for the

determination of density from gravity anomalies (inverse problem). The results of these
computations can be found in Tab. 9.6.

Table 9.6. True errors of density prediction in [g cm-]
in the test area "Rossdorf"

Quasi-harmonic
Data inversion Jordan/Heller

Tscherning/Rapp model covariance model

Gravity anomalies alone 0.10 0.08

Gravity anomalies and 0.16
density data

Density data alone 0.07 0.08

Although the results here are not representative, the accuracy of estimated density in the

range of -0.1 g cm-3 is remarkable.

9.2 Prediction of gravity anomalies in the European Alps

Whereas in chapter 9.1 test computations were carried out in a very local area, the inten-
tion here was to repeat those ones on a more regional scale. For that reason the data collec-

ted over the European Alps - described in chap. 8.2 - were used.

Empirical covariance functions over the European Alps (60 < A < 1695 ; 450 < o _ 4895)

For the topographic-isostatic gravity anomalies (see chap. 8.2.2) the empirical covariance

function was determined using some kind of homogeneous thinning procedure for the data,

similar to the one described by LANDAU et al (1988). The residual trend was removed

using a simple linear regression of type

Agvi = a+ bH (9-2)
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where H denotes the height and a,b are the parameters which were determined to be

a = 46.7 mGal
b = - 0.029 mGal/m

For the determination of the corresponding empirical surface density covariance function a

simple constant (mean value) as trend was considered to be sufficient, p = 2.41 g/cm3 . The

results of the computations are summarized in Tab. 9.7.

Table 9.7. Characteristics of empirical covariance functions over the European Alps

(60 <A < 1605 450 < W < 485).

Parameters of Topographic-isostatic Surface density data
covariance functions gravity anomalies (3' - 5')

__AgTr bp

Variance 660 mGal 2  0.15 (g/cm3)2

Correlation length 4 24.3 km 46.8 km

Variance of 208 E2
horizontal gradient

Plots of the empirical covariance functions are found in Figs. 9.4 and 9.5.

Comparing parameters for the gravity anomaly covariance function with the results of

(SUNKEL et al 1983) shows a difference in the variance. This, however, can be easily ex-

plained by the fact that they restricted themselves to data covering Austria only whereas

we also included gravity anomalies for the rest of the European Alps. Especially the gravity

field in Switzerland and northern Italy shows large variations in the gravity anomalies,

compare Tab. 9.8.

Table 9.8. Variations in gravity anomalies in [mGal].

Austria F.R. Germany Italy Switzerland

Minimum - 48 -60 - 108 - 60

Maximum + 121 + 3 + 160 + 134
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Empirical covariance functions over the 10 x 10 block (iso < A < 140 and 470 5_ V _ 480)

In order to save computer time it was decided to test the quasi-harmonic inversion in the
10 x 10 block mentioned above. There the topography varies from 500 m up to 2000 m (Fig.

8.4). Within this area an amount of 3396 gravity values wis found in the data base.

Table 9.9. Characteristics of empirical covariance functions over the 10 x 10 block
(130 < A < 140 and 470 < _480) of the European Alps.

larameters of Topographic-isostatic Surface density data
covariance functions gravity anomalies (3' x 5")

AgT1 6p

Variance 472 mGal 2  0.013 (g/cm3)2

Correlation length 0 18.5 km 20.3 km

Variance of 313 E2
horizontal gradient

Similarly to the computations in the "Rossdorf" test area an iterative fit of the analytical

covariance model of TSCHERNING, RAPP (1974) was carried out which resulted in the

parameters outlined in Tab. 9.10.

Table 9.10 Parameters of the TSCHERNING, RAPP (1974) covariance model for the
10 - 10 block of the European Alps.

Order of local covariance function n 200

(RB/RE)2  0.998615

AVAR 517.28

Test computations in gravity interpolation were again done in the same manner as in the

"Rossdorf" area using the quasi-harmonic inversion method. The results are found in Tab.
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Table 9.11 Results of gravity anomaly prediction in the European Alps (10 x 10 block)
using the quasi-harmonic inversion method.

Data True prediction error

Topographic-isostatic 5.2 mGal
gravity anomalies

Topographic-isostatic 7.0 mGal
gravity anomalies
and density data

Density data alone failed

The results have to be interpreted as "failed with respect to the assumption of quasi-

harmonicity for density". This is also in agreement with results published by HEIN et al

(1988) and experiences of STRYKOWSKI, TSCHERNING (1989, pers. comm.) who also

got from n~un.m.erica! investigations the impression that the "quasi-harmonicity" is a too

strong condition when using it to solve the inverse gravitational problem. There might be,
however, cases where the method gives reasonable results with respect to gravity prediction.
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10. CONCLUSIONS

The study presents some first trials to use density and seismic data in a direct way in grav-

ity field approximation, in particular gravity prediction. Although the geodesists are

primarily not interested in the inverse problem, it is necessary to deal with it to some

extent. The geophysicist's view on the structure of the earth's crust and its knowledge

through seismics can help to improve the geodetic gravity prediction algorithms. In

particular, empirical relationship between seismic velocity and density might be a valuable

replacement of complex wave propagation formulas (see chapter 3).

In the theoretical part a few new approaches are presented which seem to be very promis-

ing. Since methods developed up till now use rather mathematical than (realistic) physical

constraints for the covariance propagation needed in prediction algorithms of collocation

type, special emphasis was put to take advantage of Newton's attraction integral for that

purpose. The generalized isostatic response theory of DORMAN, LEWIS (1970) seems to be

a promising candidate in the gravity prediction applications.

Although the quasi-harmonic inversion is based on physically not realistic constraints, it

may offer in some cases reasonable prediction results. HELLER's 1976 developed

attenuated white noise statistical gravity model seems to be more realistic when

introducing multiple layers of the earth's crust. In particular, the proposal of JORDAN

(1978) to extend this covariance theory to regional isostatic compensation might result in

an even more realistic model for the terrain and crust-mantle contrasts.

In the consideration of seismic data for gravity prediction (chapter 7) the work of the

geophysicist CHERNOV (1960) is appreciated. His statements about density and the elastic

Lam6 parameters at being randomly distributed in space forming a stochastic process

allowed the incorporation of density and seismic data in the integrated geodesy adjustment

model and the formulation of covariance functions according to seismic wave motion in an

inhomogeneous medium.

The detailed numerical investigations in chapter 8 in a local as well as in the European alps

brought more insight in the statistical behaviour of density and present various

characteristics of covariance functions. Some first gravity predictions using density and the

quasi-harmonic inversion method as well as the attenuated white noise statistical gravity

covariance model show reasonable results.
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Since this report can represent only some initial work in this field, it is recommended to
continue this study, in particular, by realizing numerically (i) the proposed covariance
model in chapter 6.3 in connection with the generalized isostatic response theory, (ii) the

extension of HELLER's covariance model to regional compensation as proposed by
JORDAN (1978), and (iii) the inclusion of seismic data based on the statistical assumptions

found by CHERNOV (1960).

There is no doubt that density and seismic information will strengthen and improve gravity
prediction, in particular in areas where gravity gaps are. However, the best method still has
to be found in the future. It is hoped that this report provides a platform for further work.
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APPENDIX A

Auto- and crosscovariances of the gravity field functionals based on the attenuated white noise
statistical gravity model

By HELLER and JORDAN (1979) the autocovariance function of the disturbing
potential T is given in the form

2 2 2 2 4
D (2R-D) [ ri r2 -(R-D) ] Co(T)

Cov(T,T)(rl,r2,Psi) - ------------------------------------------

2 2 4 2 2 2 3/2
(2R -2DR+D ) (R-D) + ri r2 - 2rlr2(R-D) cos(Psi)

Substituting in (6-19) D/2 by D and introducing the abbreviations

3 3 4 4
A -D (2R-D) / R - (R-D)

2 2 2 2
- D (2R-D) / [ + (R-D)

2 2 2 2 2
- R - (R-D) R /[ +(R-D)j

2 2 4
B- ri r2 - (R-D)

2 2 4 2
C - rl r2 + (R-D) -2rlr2(R-D) cos(Psi)

leads to

B
Cov(T,T)(rl,r2,Psi) A A--------Co(T)

3/2
C

The auto- and crosscovariances between the functionals of the gravity field were

computed with the help of the Algebraic Computation Software REDUCE (RAYNA,1987).

So the derivatives of T and Cov(T,T) with respect to rl, r2, ... are written in

the form
DF(T,rl), DF(T,r2),.
DF(Gov(T,T),rl).

To get higher derivatives you have to add further arguments, e.g.

DF(Gov(T,T) ,rl,2,r2)
means the second derivative with respect to rl, first with respect to r2.
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The functionals of the gravity field in P are introduced by the following
expressions:

1) geoidai height NI - Ti/G

2) gravity disturbance d gi - - DF(Tl,ri)

3) gravity anomaly D gi - - DF(Tl,rl) - 2*Tl/rl

4) radial gravity gradient - - DF(Tl,rl,2) - 2*DF(Tl,rl)/rl

5) second radial derivative of T - + DF(Tl,rl,2)

E) N-S-component of the
deflection of the vertical Xii - - DF(Ti,pl)/CG*R)

7) E-W-couponent of the
deflection of the vertical Etal - - DF(Tl,ll)/(G*R*cos(pl))

8) density contrast d rho - - DF(Tl,rl)*DIRAC(rl - R')/(4*Pi*k)

In the formulas above G is the normal gravity value, k the Newtonian gravity
constant, R the earth's mean radius, R' the radius of the density contrast,
p1 the geographical latitude and 11 the geographical longitude of P.

To get the functionais in Q substitute Tl,rl,pi.il by T2,r2,p2,12.

The covariances between the functionals are computed as matrix elements
Cov(ij), where i and j are the numbers of the functionals in P and Q,
e.g. Cov(3,8) is the crosscovariance between the gravity anomaly in P and
the density contrast in Q.

2
Cov(l,i) - Cov(T,T)/G

Cov(1,2) - -DF(Cov(T,T),r2)/G

Cov(l,3) - C- DF(Cov(T,T),r2) - 2*Cov(T,T)/r2)/G

Cov(l,4) - (- DF(Cov(T,T),r2,2) - 2*DF(Cov(T,T),r2)/r2)/G

Cov(l,5) - DF(Cov(T,T),r2,2)/G

2
Cov(1,6) - - DF(Cov(T,T),p2)/(G *R)

2
Cov(1,7) - - DF(Cov(T,T),12)/(G *R*cos(p2))

Cov(i,8) - - DF(Cov(T,T),r2)*DIRAC(r2 - R'),(4*Pi*k*G)

Cov(2l1) - - DF(Cov(T,T),rl)/G
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Gov(2,2) - DF(Cov(T,T),rl,r2)

Cov(2,3) - DF(Cov(T,T),rl,r2) + 2*DF(Cov(T,T),rl)/r2

Gov(2,4) - DF(Cov(T,T),rl,r2,2) + 2*DF(Cov(T,T),rl,r2)/r2

Cov(2,5) - - DF(Cov(T,T),rl,r2,2)

Cov(2,6) - DF(Gov(T,T),rl,p2)/(G*R)

Cov(2,7) - Dr(Cov(T,T),rl,12)/(G*R*cos(p2))

Cov(2,8) - DF(Cov(T,T),rl,r2)*DIRAC(r2 - R')/(4*Pi*k)

Gov(3,I) - (-DF(Cov(T,T),rl) - 2*Cov(T,T)/rl)/G

Cov(3,2) - DF(Cov(T,T),rl,r2) + 2*DF(Cov(T,T),r2)/rl

Gov(3,3) - DF(Cov(T,T),ri,r2) + 2*DF(Cov(T,T),rl)/r2

+ 2*DF(Cov(T,T),r2)/rl + 4*Cov(T,T)/Crl*r2)

Cov(3,4) - DF(Cov(T,T),rl,r2,2) + 2*DF(Cov(T,T),rl,r2)/r2

+ 2*DF(Cov(T,T),r2,2)/rl + 4*DFCCov(T,T),r2)/(rl*r2)

Cov(3,5) - - DF(Cov(T,T),rl,r2,2) - 2*DF(Cov(T,T),r2,2)/rl

Cov(3,6) - (DF(Cov(T,T),rl,p2) + 2*DF(CovCT,T),p2)/rl)/(G*R)

Cov(3,7) - (DF(Cov(T,T),rl,12) + 2*DFCCovCT,T),12)/rl)/(G*R*cos(p2))

Gov(3,8) - DIRAC(r2 - R')*(DF(Cov(T,T),rl,r2) + 2*DF(Cov(T,T),r2)/rl)/(4*Pi*k)

Cov(4,I) - ( - DF(Cov(T,T),rl,2) - 2*DF(Cov(T,T),rl)/rl)/G

Gov(4,2) m DF(Cov(T,T),rl,2,r2) + 2*DF(Cov(T,T),rl,r2)/rl

Gov(4,3) m DF(Cov(T,T),rl,2,r2) + 2*DF(Cov(T,T),rl,r2)/rl

+ 2*DF(Cov(T,T),rl,2)/r2 + 4*DF(Cov(T,T),rl)/(rl*r2)

Cov(4,4) - DF(Cov(T,T),rl,2,r2,2) + 2*DF(Cov(T,T),rl,r2,2)/rl

+ 2*DF(Cov(T,T),rl,2,r2)/r2 + 4*DF(Cov(T,T),rl,r2)/(rl*r2)

Cov(4,5) - - DF(Cov(T,T),rl,2,r2,2) - 2*DF(CovCT,T),ri,r2,2)/rl

Gov(4,6) = (DF(Cov(T,T),rl,2,p2) + 2*DF(Cov(T1T),rl,p2)/rl)/(G*R)

Cov(4,7) = (DF(Cov(T,T),rl,2,12) + 2*DF(Cov(T,T),rl,12)/rl)/CO*R*cos(p2))

Gov(4,8) - (DIRAC(r2 -R')*(DF(Cov(T,T),rl,2,r2) + 2*DF(Cov(T,T),rl~r2)/rl)/

(4*Pi*k)
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Cov(5,1) - + DF(Cov(T,T),rl,2)/G

Cov(5,2) - - DF(Cov(T,T),rl,2,r2)

Cov(5,3) - - DF(Cov(T,T),rl,2,r2) - 2*DF(Cov(T,T),rl,2)/r2

Cov(5,4) - - DF(Cov(T,T),rl,2,r2,2) - 2*DF(Cov(T,T),rl,2,r2)/r2

Cov(5,5) - + DF(Cov(T,T),rl,2,r2,2)

Cov(5,6) - - DFCCov(T1T),rl,2,p2)/(G*R)

Cov(5,7) - - DF(Cov(T,T),rl,2,12)/(G*R*cos(p2))

Cov(5,8) - - DF(Cov(T,T),rl,2,r2)*DIRAC(r2 - Rl)/(4*Pi*k)

2

Cov(6,1) - - DF(Cov(T,T),pl)/(G *R)

Cov(6,2) - DF(Cov(T,T) ,pl.r2)/(G*R)

Cov(6,3) - (DF(Cov(T,T) ,pl,r2) + 2*DF(Cov(T,T),pl)/r2)/(G*R)

Cov(6,4) - (DF(Cov(T,T),Vl,r2,2) + 2*DF(Cov(T,T),pl,r2)/r2)/(G*R)

Cov(6,5) - - DF(Cov(T,T),pl,r2,2)/(G*R)

2 2
Cov(6,6) - DF(Cov(T,T),p1,p2)/(G *R)

2 2
Cov(6,7) - DF(Cov(T,T),pl,12)/(G *R *cos(p2))

Cov(6,8) - DF(Cov(T,T),pl,r2)*DIRAC(r2 - Rl)/(4*Pi*k*G*R)

2
Cov(7,1) - - DF(Cov(T,T),11)/(G *R*cos(pl))

Cov(7,2) - DF(Cov(T,T) ,11,r2)/(G*R*cos(pl))

Cov(7,3) - (DF(Cov(T,T),1I,r2) + 2*DF(Cov(T,T),11)/r2)/CG*R*cos(pl))

Cov(7,4) - (DF(Cov(T,T),11,r2,2) + 2*DF(Cov(T,T),11,r2)/r2)/(G*R*cos~pl))

Cov(7,5) - - DF(Cov(T,T),11,r2,2)/(G*R*cos(pl))

2 2
Cov(7,6) - DF(Cov(TT),11,p2)/(G *R *cos(pl))

2 2
Cov(7,7) - DF(Cov(T,T),11,12)/(G *R *cos(pl)*cos(p2))

Cov(7,8) - DF(Cov(T,T),11,r2)*DIRAC(r2 - R')/(4*Pi*k*G*R*cos(pl))
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Cov(8,l) - - DF(Cov(T,T),rl)*DIRAC(rl -R')/(4*Pi*k*G)

Cov(8,2) - DF(Cov(T,T),rl,r2)*DIRAC(rl - R')/(4*Pi*k)

Gov(8,3) - DIRAG(rl - R')*(DF(Cov(T,T),rl,r2) + 2*DF(Cov(T,T),rl)/r2)/(4*Pi*k)

* Cov(8,4) - DIRAC(r. - R')*(DF(Cov(T,T),rl,r2,2) + 2*DF(Cov(T,T),rl,r2)/r2)/

(4*Pi*k)

Cov(8,5) - - DF(Gov(T,T),rl,r2,2)*DIRAG(rl - R')/(4*Pi*k)

Cov(8,6) - DF(Cov(T,T),rl,p2)*DIRAC(rl - R')/(4*Pi*k*G*R)

Cov(8,7) - DF(Cov(T,T),rl,l2)*DIRAC(rl - R')/(4*Pi*k*G*R*cos(p2))

2 2
Cov(8,8) - DF(Cov(T,T),rl,r2)*DIRAC(rl - R')*DIRAC(r2 - R')/(16*Pi *k)

To get the derivatives r' 'a autocovariance function Cov(T,T) of the
disturbing potential, flit the derivatives of the expressions B, C
and Psi have to be cumLated. This was also done by means of REDUCE:

2 2 4
Derivatives of B - rl * r2 - (R-D)

2
DF(B,r2) - 2*rl *r2

2
DF(B,r2,2) - 2*rl

2
DF(B,rl) - 2*rl*r2

DF(B,rl,r2) - 4*rl*r2

DF(B,rl,r2,2) - 4*rl

2
DF(B,rl,2) - 2*r2

DF(B,rl,2,r2) - 4*r2

DF(B,rl,2,r2,2) - 4
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Derivatives of Psi:

cos(Psi) -sin(pl) * sin~p2) + cos(pl) * cos(p2) * cos(1 2-11)

DF(Psi,p2) -(-sin(pl)*cos(p2) + sin(p2)*cos(l1 - 12)*cos(pl))/sin(Psi)

DF(Psi,12) - sin(ll - 12)*cos(pl)*cos(p2)/sinCPsi)

DF(Psi,pl) -(sin(pl)*cos(ll - 12)*cos(p2) - sin(p2)*cos(pl))/sin(Psi)

2 2
DF(Psi,pl,p2) -(cos(Psi)*(sin(pl) *cos(11 - 12)*cos(p2)

2
- sin(pl)*sin(p2)*cos(ll - 12) *cos(pl)*cos(p2)

- sin(pl)*sin(p2)*cos(pl)*cos(p2)

2 2
+ sin(p2) *cos(11 12)*cos(pl))

2
- sin(Psi) *(sin(pl)*sin(p2)*cos(11 12)

3
+ cos(pl)*cos(p2)))/sin(Psi)

DF(Psi,pl,12) (cos(Psi)*sin(l1 - 12)*cos(pl)*cos(p2)

*(sin(pl)*cos(11 - 12)*cos(p2) - sin(p2)*cos(pl))

2 3
+ sin(Psi) *sin(11 - 12)*sin(pl)*cos~p2))/sin(Psi)

DF(Psi.11) - sin(I1 - 12)*cos(pl)*cos(p2)/sin(Psi)

DF(Psi,l1,p2) - (cos(Psi)*sin(ll - 12)*cos(pl)*cos(p2)

*(sin(pl)*cos(p2) - sin(p2)*cos(ll - 12)*cos(pl))

2 3
- sin(Psi) *sin(11 - 12)*sin(p2)*cos(pl))/sin(Psi)

2 2 2
DF(Psi,11,12) - (cos(Psi)*sin(l1 - 12) *cos(pl) *cos(p2)

2 3
- sin(Psi) *cos(11 - 12)*cos(pl)*cos(p2))/sinCPsi)
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2 2 4 2
Derivatives of C - ri * r2 + (R-D) - 2*rl*r2*(R-D) *cos(Psi)

2
* DF(C,p2) - 2*DF(Psi,p2)*sin(Psi)*rl*r2*(R-D)

2
DF(C,12) - 2*DF(Psi,12)*sin(Psi)*rl*r2*(R-D)

2 2
DF(C,r2) - -2*cos(Psi)*rl*(R-D) + 2*rl *r2

2
DF(C,r2,2) -2*rl

2
DF(C,pI) - 2*DF(Psi,pl)*sin(Psi)*rl*r2*(R-D)

2
DF(G,pl,p2) -2*cos(Psi)*DF(Psi,pl)*DF(Psi,p2)*rl*r2*(R-D)

2
+ 2*DF(Psi,pl,p2)*sin(Psi)*rl*r2*(R-D)

2
DF(C,pl,12) -2*cos(Psi)*DF(Psi,pl)*DF(Psi,12)*rl*r2*(R-D)

2
+ 2*DF(Psi,pl,12)*sin(Psi)*rl*r2*(R-D)

2
DF(C,pl,r2) - 2*DF(Psi,pl)*sin(Psi)*rl*(R-D)

DF(G,pl,r2,2) - 0

2
DF(G,11) - 2*DF(Psi,11)*sin(Psi)*rl*r2*(R-D)

2
DF(G,11,p2) - 2*cos(Psi)*DF(Psi,ll)*DFCPsi,p2)*rl*r2*(R-D)

2
+ 2*DF(Psi,l1,p2)*sin(Psi)*rl*r2*(R-D)

2

DF(C,11,12) - 2*cos(Psi)*DF(Psi,11)*DF(Psi,12)*rl*r2*(R-D)

2
+ 2*DF(Psi,11,12)*sifl(Psi)*rl*r2*(R-D)
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2
DF(C,11,r2) - 2*DF(Psi,l1)*sinCPsi)*rl*(R-D)

DF(C,11,r2,2) - 0

2 2
DF(C,rl) -- 2*cos(Psi)*r2*(R-D) + 2*rl*r2

2
DF(C~rl,p2) - 2*DF(Psi,p2)*sin(Psi)*r2*(R-D)

2
DF(C,rl,12) - 2*DF(Psi,12)*sin(Psi)*r2*(R-D)

2
DF(C,rl,r2) -- 2*cos(Psi)*(R-D) + 4*rl*r2

DF(C,rl,r2,2) -4*rl

2

DF(C,rl,2) - 2*r2

DF(C,rl,2,p2) - 0

DF(C,rl,2,12) - 0

DF(C,rl,2,r2) - 4*r2

DF(C,rl,2,r2,2) - 4

Derivatives of Cov(T,T)

5/2
DF(Cov(T,T),p2) - - 3*DF(C,p2)*A*B*Co(T)/(2*C )

5/2
DF(Cov(T,T),12) - - 3*DF(C,12)*A*B*Co(T)/(2*C )

5/2
DF(Cov(T,T),r2) - A*Co(T)*(2*DF(B,r2)*C - 3*DF(C,r2)*B)/(2*C)

2
DF(Cov(T,T),r2,2) - A*Co(T)*(4*DF(B,r2,2)*C - 12*DF(B,r2)*DF(C,r2)*C

2 7/2
-6*DF(C,r2,2)*B*C + 15*DF(C,r2) *B)/(4*C )
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5/2
DF(Gov(T,T),pl) =-3*DF(C,pl)*A*B*Co(T)/(2*C )

DF(Cov(T,T),pl,p2) - 3*A*B*Co(T)*( - 2*DF(C,pl,p2)*C + 5*DF(C,pl)*DF(C,p2))/(4*C

12

DF(Cov(T,T),pl,12) -3*A*BwCo(T)*( - 2*DF(C,p1,,12)*C + 5*DF(G,pl)*DF(C,12))/(.*C

DF(Cov(T,T),pl,r2) - 3*A*Co(T)*( - 2*DF(B~r2)*DF(C,pl)*C - 2*DF(C,pl~r2)*B*C

7/2

+ 5*DF(Cpl)*DF(C,r2)*B)/(4*C)

DF(Cov(T,T),pl,r2,2) - 3*A*Co(T)
2 2

-4*DF(B~r2,2)*DF(C,pl)*C - 8*DF(B,r2)*DF(C,pl,r2)*C

" 20*DF(B,r2)*DF(C,pl)*DF(C,r2)*G - 4*DF(C,pl,r2,2)*B*C

" 20*DF(C,pl,r2)*DF(C,r2)*B*C
2

" lO*DF(C,pl)*DF(C,r2,2)*B*C - 35*DF(C,pl)*DF(C,r2) *B)

9/2
/(8*C )

5/2
DF(Gov(T,T),11) -- 3*DF(C,11)*A*B*Co(T)/(2*C )

DF(Cov(T,T),11,p2) = 3*A*B*Co(T)
7/2

-2*DF(C,11,p2)*C + 5*DF(C,11)*DF(C,p2))/(4*C )

DF(Cov(T,T),11,12) - 3*A*B*Co(T)
7/2

-2*DF(C,11,J-2)*C + 5*DF(C,11)*DF(C,12))/(4*C )

DF(Gov(T,T),11,r2) - 3*A*Co(T)*( - 2*DF(B,r2)*DF(C,11)*C
7/2

- 2*DF(C,11,r2)*B*C + 5*DFCC,11)*DF(C,r2)*B)/(4*C)

DF(Gov(T,T),11,r2,2) - 3*A*Co(T)
2 2

- 4*DFCB,r2,2)*DF(C,11)*C - 8*DF(B,r2)*DF(C,11,r2)*C

2
- 4*DF(C,11,r2,2)*B*C + 20*DF(C,11,r2)*DF(C,r2)*B*C

2

+ 1O*DF(C,11)*DF(C~r2,2)*B*C - 35*DF(C,11)*DF(C,r2) *B

9/2

+ 20*DF(B,r2)*DF(C,11)*DF(C,r2)*C)/(
8*C)
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5/2
DF(Cov(TT),rl) -A*Co(T)*(2*DF(B~rl)*C - 3*DF(C,rl)*B)/(2*C )

DF(Cov(T,T),rl,p2) - 3*A*Co(T)*( - 2*DF(B,rl)*DF(C,p2)*C
7/2

- 2*DF(C,rl,p2)*B*C + 5*DF(C,rl)*DFCC,p2)*B)/(4*C)

DF(Cov(T,T),rl,12) - 3*A*Co(T)*( - 2*DF(B,rl)*DF(C,12)*C
7/2

- 2*DF(C,rl,12)*B*C + 5*DF(C,rl)*DF(C,12)*B)/(4*C)

DF(Cov(T,T),rl,r2) - A*Co(T)
2

*(4*DF(B,rl,r2)*C - 6*DF(B,rl)*DF(C,r2)*C

- 6*DF(B,r2)*DF(C,rl)*C - 6*DF(C,rl,r2)*B*C

7/2
+ 15*DF(C,rl)*DF(C,r2)*B)/(4*C)

DF(Cov(T,T),rl,r2,2) -A*Co(T)

3 2
*(8*DF(B, ri,r2, 2)*C - 24*DF(B,rl, r2)*DF(C,r2)*C

2 2
- 12*DF(B,rl)*DF(C,r2,2)*C + 30*DF(B,rl)*DF(C,r2) *C

2 2
- 12*DF(B,r2,2)*DF(C,rl)*C - 24*DF(B,r2)*DF(C,rl,r2)*C

2
" 60*DF(B, r2)*DF(C, rl)*DF(C, r2)*C - 12*DF(C, r , r2 ,2)*B*C

" 60*DF(C,rl,r2)*DF(C,r2)*B*C
2

" 30*DF(C,rl)*DF(C,r2,2)*B*C -105*DF(C,rl)*DF(C,r2) *B)

9/2
/(8*C )

2
DF(Cov(TT),rl1 2) -A*Co(T)*(4*DF(B,rl,2)*C - 12*DF(B,rl)*DF(C,rl)*C

2 7/2
- 6*DF(C,rl,2)*B*C + 15*DF(C,rl) *B)/(4*C)
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DF(Cov(T,T),rl,2,p2) - 3*A*Co(T)
2 2

-4*DF(B,rl,2)*DF(C,p2)*C - 8*DF(B,rl)*DF(C,rl,p2)*C

+ 20*DF(B,rl)*DF(C,rl)*DF(C,p2)*G
2

+ 20*DFCC,rl,p2)*DF(C,rl)*B*C -4*DF(Crl2,p2)*B*C

2

+ 1O*DF(G,rl,2)*DF(C,p2)*B*C -35*DF(C,rl) *DF(C,p2)*B)

9/2
/(8*C )

DF(Cov(T,T),rl,2,12) 3*A*Ca(T)
2 2

-4*DF(B,rl,2)*DF(C,12)*C - 8*DF(B,rl)*DF(C,rl,12)*C

" 20*DFCB,rl)*DF(C,rl)*DF(C,12)*C
2

" 20*DF(C,rl,12)*DF(C,rl)*B*C -4*DF(C,rl,2,12)*B*G

2

" 1O*DF(C,rl,2)*DF(C,12)*B*G 35*DF(C,rl) *DF(C,12)*B)

9/2
/(8*C )

DF(Cov(T,T),rl,2,r2) -A*Ca(T)

2 3
- 24*DF(B,rl,r2)*DF(G,rl)*C + 8*DF(B,rl,2,,r2)*C

2 2

- 12*DF(B,rl,2)*DF(C, r2)*C - 24*DF(B,rl)*DF(C, ri,r2)*C

+ 60*DF(B,rl)*DFCC,rl)*DF(C,r2)*C

2 2

- 2*DF(B,r2)*DF(C, rl,2)*C + 30*DFCB,r2)*DF(C,rl) *C

2

" 60*DFCC, ri,r2)*DF(C,rl)*B*C -12*DFCC,rl ,2, r2)*B*C

2

" 30*DF(C,rl,2)*DF(C,r2)*B*C -1O5*DF(C,rl) *DF(C,r2)*B)

9/2
/(8*C )
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DF(Cov(T,T),rl.2,r2,2) -A*Co(T)

3
- 48*DF(B,rl,r2,2)*DF(C,rl)*C

3
- 96*DFCB,rl,r2)*DF(C,rl,r2)*C

2
" 240*DF(B,rl~r2)*DF(C,rl)*DF(C,r2)*C

.4
" 16*DF(B,rl,2,r2,2)*C

3
- 48*DF(B,rl,2,r2)*DF(C,r2)*C

3
- 24*DF(B,rl,2)*DF(C,r2,2)*C

2 2
+ 60*DF(B,r112)*DF(C,r2) *C

3
- 48*DF(B,rl)*DF(C,rl,r2,2)*C

2
" 240*DF(B,rl)*DF(C,rl,r2)*DF(C,r2)*C

2
" 120*DF(B,rl)*DF(C,rl)*DF(C,r2,2)*C

2
- 420*DF(B,rl)*DF(C,rl)*DF(C,r2) *C

3
- 24*DF(B,r2,2)*DF(C~rl,2)*C

2 2
" 60*DF(B,r2,2)*DF(C,rl) *C

2
" 240*DF(B,r2)*DF(C,rl,r2)*DF(C,rl)*C

3
- 48*DF(B,r2)*DF(C.rl,2,r2)*C

2
+ 120*DF(B,r2)*DF(C,rl,2)*DF(C,r2)*C

2
- 420*DF(B,r2)*DF(C,rl) *DF(C,r2)*C

2
" 120*DF(C,rl~r2,2)*DFCC,rl)*B*C

2 2
" 120*DF(C,rl,r2) *B*C

- 840*DFCC,rl,r2)*DF(C,rl)*DF(C,r2)*B*C
3

- 24*DF(C,rl,2,r2,2)*B*C
2

" 120*DF(C,rl,2,r2)*DF(C,r2)*B*C
2

" 60*DF(C,rl,2)*DFCC,r2,2)*B*C
2

- 210*DF(C,rl,2)*DF(C,r2) *B*C
2

- 210*DF(C,rl) *DF(C,r2,2)*B*C
2 2

+ 945*DF(C,rl) *DF(C,r2) *B)

11/2
/(16*C )
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Asymptotic relations (flat earth model)

For local applications the asymptotic form (6-21) is used for the autocovariance
function of the disturbing potential

2 A
Cov(T,T)(rl,r2,Psi) = 4 D ------- Co(T)

3/2
B

with

A - 2D + z1 + z2

2 2
B -S +A

2 2 2
S =U +V

U - x2 - xl

V - y2 - yl

For the functionals of the gravity field in P we get the following asymptotic forms

1) geoidal height N1 - Tl/G

2) gravity disturbance d gl - - DF(Tl,zl)

3) gravity anomaly D gl - - DF(Tl,zl)

4) radial gravity gradient - - DF(Tl,zl,2)

5) second radial derivative of T - + DF(Tl,zl,2)

6) N-S-component of the
deflection of the vertical Xil - - DF(Tl,xl)/G

7) E-W-component of the
deflection of the vertical Etal - - DF(Tl,yl)/G

8) density contrast d rho - - DF(Tl,zl)*DIRAC(zl)/(4*Pi*k)

To get the functionals in Q substitute Tl,xl,yl,zl by T2,x2,y2,z2.

Noteworthy is that the covariances of the gravity disturbance and the gravity
anomaly become identical.
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The covariances between the functionals are

2
Cov(1,1) - + Cov(T,T) / G

Cov(1,2) - - DF(Cov(T,T).z2) /G

Cov(1,3) - - DF(Cov(T,T),z2) /G

Cov(1,4) - - DF(Cov(T,T),z2,2) IC

Cov(1,5) - + DF(Cov(T,T),z2,2) G

2
Cov(1,6) - - DF(Cov(T,T),x2) G

2

Cov(1,7) - - DF(Cov(T,T),y2) /G

Cov(1,B) - - DF(Cov(T,T),z2) *DIRAC(z2) /(4*Pi*k*G)

Cov(2,I) - - DF(Cov(T,T),zl) G

Cov(2,2) - + DF(Cov(T,T),zl,z2)

Cov(2,3) m + DF(Cov(T,T),z1,z2)

Cov(2,4) - + DF(Cov(T,T),zl,z2,2)

Cov(2,5) - - DF(Cov(T,T),zl,z2,2)

Cov(2,6) - + DF(Cov(T,T),x2,zl) / G

Cov(2,7) - + DF(Cov(T,T),y2,zl) / C

Cov(2,8) - + DF(Cov(T,T),zl,z2) * DIRAC(z2) /(4*Pi*k)

Cov(3,1) - - DF(Cov(T,T),zl) / C

Cov(3,2) - + DF(Cov(T,T),zl,z2)

Cov(3,3) - + DP(Cov(T,T),zl~z2)

Cov(3,4) - + DF(Cov(T,T),zl,z2,2)

Cov(3,5) - - DF(Cov(T,T),zl,z2,2)

Cov(3,6) - + DF(Cov(T,T),x2,zi) / G

Cov(3,7) - + DF(Cov(T,T),y2,zl) / C

Cov(3,8) - + DF(Cov(T,T),zl,z2) * DIRAC(z2) /(4*Pi*k)
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Cov(4,1) - - DF(Gov(T,T),zl,2) / G

Gov(4,2) - + DF(Cov(T,T),zl,2,z2)

Cov(4,3) - + DF(Gov(T,T),z1,2,z2)

Cov(4,4) - + DF(Cov(T,T),zl,2,z2,2)

Cov(4,5) - - DF(Cov(T,T),zl,2,z2,2)

Gov(4,6) - + DF(Cov(T,T),x2,z1,2) / G

Gov(4,7) - + DF(Cov(T,T),y2.zl,2) / G

Cov(4,8) - + DF(Gov(T,T),z1,2,z2) * DIRAC(z2) /(4*Pi*k)

Cov(5,I) - + DF(Cov(T,T),z1,2) / G

Gov(5,2) - - DF(Gov(T,T),zl,2,z2)

Cov(5,3) - - DF(Cov(T,T),zl,2,z2)

Cov(5,4) - - DF(Cov(T,T),zl,2,z2,2)

Gov(5,5) - + DF(Cov(T,T),zl,2,z2,2)

Cov(5,6) - - DF(Cov(T,T),x2,z1,2) / G

Cov(5,7) - - DF(Cov(T,T),y2,z1,2) / G

Cov(5,8) - - DF(Cov(T,T),zl,2,z2) * DIRAC(z2) /(4*Pi*k)

2

Cov(6,1) - - DF(Cov(T,T),x1) / G

Cov(6,2) - + DF(Cov(T,T),x1,z2) / G

Cov(6,3) - + DF(Cov(T,T),xl,z2) / G

Gov(6,4) - + DF(Cov(T,T),xl,z2,2) / G

Gov(6,5) - - DF(Cov(T,T),x1,z2,2) / G

2

Cov(6,6) - + DF(Cov(T,T),x1,x2) / G

2

Cov(6,7) - + DF(Cov(T,T),x1,y2) / G

Cov(6,8) - + DF(Cov(T,T),x1,z2) * DIRAC(z2) /(4*Pi*k*G)
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2

Cov(7,I) - -DF(Cov(T,T),yl) / G

Cov(7,2) - + DF(Cov(T,T),yl,z2) / G

Cov(7,3) - + DF(Cov(T,T),yl,z2) / G

Cov(7,4) - + DF(Cov(T,T),yl,z2,2) / G

Cov(7,5) - - DF(Cov(T,T),yi,z2,2) / G

2
Cov(7,6) - + DF(Cov(T,T),x2,yl) / G

2
Cov(7,7) - + DF(Cov(T,T),yi,y2) / G

Cov(7,8) - + DF(Cov(T,T),yl,z2) * DIRAC(z2) / 4*Pi*k*G)

Cov(8,1) - - DF(Cov(T,T),zi) * DIRAC~zl) / (4*Pi*k*G)

Cov(8,2) - + DF(Cov(T,T),zl,z2) * DIRAC(zl) /(4*Pi*k)

Cov(8,3) - + DF(Cov(T,T),zl,z2) * DIRAC(zl) /(4*Pi*k)

Cov(8,4) - + DF(Cov(T,T),zl,z2,2) * DIRAC~zl) /(4*Pi*k)

Cov(8,5) - - DF(Cov(TT),zl,z2,2) * DIRAC(zl) /(4*Pi*k)

Cov(8,6) - + DF(Cov(T,T),x2,zl) * DIRAC(zl) /(4*Pi*k*G)

Cov(8,7) - + DF(Cov(T,T),y2,zl) * DIRAC(zl) /(4*Pi*k*G)
2 2

Cov(8,8) - + DF(Cov(T,T),zi,z2) * DIRAC(zl) *DIR.AC(z2) /(16*Pi *k)

in this case the derivatives of the autocovariance function Cov(T,T) of the
disturbing potential cati be given directly as

2 5/2
DF(Cov(T,T),x2) - - 124D * Co(T) *A * U / B

2 5/2
DF(Cov(T,T),y2) - - 12*D * Co(T) *A * V / B

2 2 5/2
DF(Cov(T,T),z2) - 4*D *r Co(T) *(-3*A + B) /B

2 2 7/2
DF(Cov(T,T),z2,2) - 12*0 * Co(t) *A * (5*A -3*B)/B
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2 5/2
DF(Gov(T,T),xl) -12*D * Co(T) * A *U /B

2 2 7/2

DF(Cov(T,T),xl~x2) - 12*D * Co(T) *A *(B - 5*U )/B

2 7/2

DF(Gov(T,T),xl,y2) - - 60*D * Co(T) *A *U * V /B

2 2 7/2

DF(Gov(T,T),xl,z2) - 12*D * Co(T) * U *(-5*A + B) / B

2 2 9/2

DF(Cov(T,T),xl,z2,2) - 60*D * Co(T) * A *U * (7*A -3*B) / B

2 5/2

DF(Cov(T,T),yl) - 12*D * Co(T) * A * V /B

2 7/2

DF(Cov(T,T),yl,x2) - - 60*D * Co(T) *A * U * V /B

2 2 7/2

DF(Cov(T,T),yl,y2) - 12*D * Co(T) * A *(B -5*V )/B

2 2 7/2

DF(Cov(T,T),yl,z2) - 12*D * Co(T) * V *( 5*A + B) / B

2 2 9/2

DF(Cov(T,T),yl,z2,2) - 60*D * Co(T) * A *V * (7*A - 3*B) / B

2 2 5/2

DF(Cov(T,T),zi) - 4*D * Go(T) *(-3*A + B) /B

2 2 7/2

DF(Cov(T,T),zi,x2) - 12*D * Co(T) * U * (5*A -B) / B

2 2 7/2

DF(Cov(T,T),zi,y2) - 12*D * Co(T) * V * (5*A -B) / B

2 2 7/2

DF(Cov(T,T),zl,z2) - 12*D * Co(T) * A * (5*A -3*B) / B

2 4 2 2 9/2

DF(Cov(T,T),zl,z2,2) - 12*D * Co(T) *( 35*A + 30*A *B - 3*B )/B
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2 2 7/2
DF(Cov(T,T),,zl,2) - 12*D * Co(T) * A *(5*A -3*B) / B

2 2 9/2
DF(Cov(T,T),zl,2,x2) - 60*D * Co(T) *A * U - 7*A + 3*B) /B

2 2 9/2
DFCCov(T,T),zl,2,y2) - 60*D * Co(T) *A * V *(- 7*A + 3*B) /B

2 4 2 2 9/2
DF(Cov(T,T),zl,2,z2) - 12*D * Co(T) *(-35*A + 30*A *B - 3*B )/B

2 4 2 2 11/2
DF(Cov(T,T),zl,2,z2,2) - 60*D * Co(T) *A * (63*A - 70*A *B + 15*B )/B
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