
OFI FIEFIIN COPYNIN

ALGORITHS

Roct ls c~0l'

Unclassified
SECURITY CLASSIFiCATiON OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIF1 ATION b. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFiCATION AUTHORIT', 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. ECLS~iiCATON DOWGRADNG CHEULEApproved for public release; distribution
Zb. ECLSSIFCATON DOWGRAING CHEULEis unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S.MONITORING ORGANIZATION REPORT NUMBE R(S)

MIT/LCS/TR 493

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science (iJ plcbe Office of Naval .Research/Dept. of Navy

6r- ADDRESS (City; State, andi ZIP Code) 7b. ADDRESS (City. State, and ZIP Codt)

545 Technol.ogy Square Infor~ation.Systems Program
Cambridge, MA 02139 Alnt , VA. 22217

8a. NAME OF FUNDING/ SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
DARPA/ DODI

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE 'OF FUNDING NUMBERS

140 ~so lv.PROGRAM PROJECT TASK WORK UNIT10 WisnBv.ELEMENT NO. NO. NO ACCESSION NO.
Arlington, VA 22217

TITLE tInc!ude Security Clasification,)

The Design and Analysis of Efficient Learning Algorithms
12. PERSONAL AUTHOR(S)

Robert Elias Schapire
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical IFROM ____ To___ 11 lanuarv 1991 188
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GRO7UP machine learning, computational learning theory, concept

learning, learning from examples, distribution-free learning
probably approximately correct learning, polynomial-time

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Abstract. This thesis explores various theoretical aspects of machine learning
with particular emphasis on techniques for designing and analyzing computa.
tionally efficient learning algorithms.

Many of the results in this thesis ate concerned with a model of concept
learning proposed by Valiant.

The thesis begins in Chapter 2 with a proof that any 'weak" learning al-
gorithm in this model that performs just slightly better than random guessing
can be converted into one whose error can be made arbitrarily small. Several
interesting consequences of this result are also described.

Chap~ter 3 next expicr-s in dletaiI a simple' but pou, rful technique for discov-
ering the structure of an unknown read-once formula from random examples.

C ap 4onsier ssrs aresi exso ofethePCmdlocnet
that ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Q may,~ exhibi uncertai orpoablsi bhvorg7ageoWecnqe

[3 UNLASSFIEDUNLIITED 0 SAE ASRPT. 0 DTCUnSRlaUcsififid

18. identification, exact identification, read-once formulas, probabilistic concepts,
finite-state automata.

19. In the last chapter. we present new algorithms for inferring an unknown
finite-state .utomaton from its input-output behavior. This problem is moti-
vated by that faced by a roicot in unfamiliar surroundings who mhst. through
experimentation, discover the -structure" of its environment.

Portions of this thesis are joint work with Sally A. Goldman, Michael J.
Kearns and Ronald L. Rivest.

Accession For

DTIC TAB Q
Unannounced Q1
Justification

By

Distribut ion/

Availability Codes

Avail and/or
Dist Special

"itA
Pee , ,

The Design and Analysis of Efficient Learning Algorithms

by

Robert Elias Schapire

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1988)
Sc.B., Mathematics and Computer Science

Brown University
(1986)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

D T IC Doctor of Philosophy

S ELECTE
FEB07 1991. at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1991

® Massachusetts Institute of Technology 1991

Signature of Author
Department of Electrical Engineering and Computer Science

January 11, 1991

Certified by
Ronald L. Rivest

Professor of Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

DI Utf N TATEMENT A-

Approvod low pubicle .msj

2

The Design and Analysis of Efficient Learning Algorithms
by

Robert Elias Schapire

Submitted to the Department of Electrical Engineering and Computer Science
on January 11, 1991, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis explores various theoretical aspects of machine learning. Particular emphasis is
placed on techniques for designing and analyzing computationally efficient learning algorithms.

Many of the results in this thesis are concerned with the so-called distribution-free or prob-
ably approzimately correct (PAC) model of learning proposed by Valiant. In this model, the
learner tries to identify an unknown concept based on randomly chosen examples of the concept.
Examples are chosen according to an unchanging but unknown and arbitrary distribution on
the space of instances. The learner's task is to find a hypothesis or prediction rule that, with
high probability, correctly classifies all but an arbitrarily small fraction of the instances.

Following a brief introduction, this thesis begins in Chapter 2 with a study of the problem
of improving the accuracy of a hypothesis output by a learning algorithm in this model. In
particular, it is shown that any "weak" learning algorithm that performs just slightly better
than random guessing can be converted into one whose error can be made arbitrarily small.
Among the many consequences of this result is a technique for converting any PAC-learning
algorithm into one that is highly space efficient.

In Chapter 3, we pext explore in detail a simple but seemingly powerful technique for
discovering the structure of an unknown read-once formula from random examples. The method
is based on sampling of the target formula's statistical behavior under various perturbations
of the underlying instance-space distribution. An especially nice feature of this technique is
its powerful resistance to noise. One of the highlights of this chapter is the application of this
technique to derive the first polynomial-time algorithm for learning read-once Boolean formulas
over the usual basis against any product distribution (i.e., any distribution in which the setting
of each variable is chosen independently of the settings of the other variables). Algorithms for
various other classes of read-once formulas are also presented.

We next consider in Chapter 4 a realistic extension of the PAC model to concepts that
may exhibit uncertain or probabilistic behavior. Such probabilistic concepts arise naturally in
many situations, such as weather prediction, where the measured variables and their accuracy
are insufficient to determine the outcome with certainty. While building on the recent results
of Haussler on the sample complexity of learning in probabilistic settings, this chapter focuses
primarily on the design of efficient algorithms for learning probabilistic concepts. This work
also extends many of the results in the standard PAC model to the new probabilistic model.

In the last chapter, we present new algorithms for inferring an unknown finite-state automa-
ton from its input-output behavior. This problem is motivated by the problem faced by a robot
in unfamiliar surroundings who must, through experimentation, discover the "structure" of its
environment. Some of our algorithms are based on Angluin's algorithm for learning finite-state
automata; however, unlike her procedure, our algorithms are effective in the absence of a means
of resetting the machine to a start state. We describe provably effective learning algorithms
based on both the usual state-based representation, and the diversity-based representation in-

3

troduced by Rivest and Schapire. We also present superior algorithms for the special class of
permutation automata.

Portions of this thesis are joint work with Sally A. Goldman, Michael J. Kearns and
Ronald L. Rivest.

Thesis Supervisor: Ronald L. Rivest
Title: Professor of Computer Science

4

Acknowledgments

Thanks go first to my advisor, Ron Rivest, for all he has taught me, and for all the help he
has given me during my years as a graduate student. I am grateful to Ron for giving me a
start on research, for arranging my financial support, and for being an encouraging and ever
enlightening source of feedback and guidance. Ron provided several key ideas that appear in
various parts of this thesis. He also gave a thorough reading to a preliminary draft of this
thesis, and was quite helpful with its presentation.

Major portions of this thesis are products of collaborative efforts: Chapter 3 is joint work
with Sally Goldman and Michael Kearns, Chapter 4 is joint work with Michael Kearns, and
Chapter 5 is joint work with Ron Rivest. I am very grateful to all three co-authors for allowing
me to include our joint work in this thesis, and for the many things I learned working with
each.

I wish to give special thanks to David Haussler for his substantial contribution to the research
presented in Chapter 4. I also appreciate the careful reading and many helpful comments
provided by two anonymous referees of a journal version of Chapter 2, and I am grateful to
Sanjoy Mitter and Michael Sipser for serving as readers on my thesis defense committee. Helpful
comments were also provided by Jonathan Bachrach, Avrim Blum, Yoav Freund, James Park,
Leonard Pitt, Hans Schapire, Roberta Sloan, Umesh Vazirani, and Manfred Warmuth.

Thanks to all the members of the MIT theory group for providing a supportive and friendly
environment in which to work. Special thanks to Be Hubbard for being such a dependable
source of help, information and cheerfulness.

Thanks to my wonderful wife, Roberta Sloan, for being so wonderful, and thanks to my
family, friends, colleagues, in-laws and especially my parents for all their support.

Finally, I am very grateful for the generous financial support provided by ARO (Grant
DAAL03-86-K-0171), DARPA (Contract N00014-89-J-1988), NSF (Grants CCR-8914428 and
DCR-8607494), and the Siemens Corporation. Part of the research included in this thesis
was also carried out while I was visiting GTE Laboratories in Waltham and the University of
California at Santa Cruz.

Publication notes. Much of the research presented in this thesis has appeared elsewhere, in one form
or another.

Chapter 2 is a revised version of a paper published with the same title in the journal Machine

Learning [78]; an extended abstract of this paper also appeared in the proceedings of the 30th Annual

Symposium on Foundations of Computer Science, and an abstract was published in the Proceedings of
the Second Annual Workshop on Computational Learning Theory.

An extended abstract describing many of the results in Chapter 3 was published with the title "Exact
Identification of Circuits Using Fixed Points of Amplification Functions" in the proceedings of the 31st
Annual Symposium on Foundations of Computer Science [30]. This research is joint work with Sally A.
Goldman and Michael J. Kearns. An abstract of this research was published in the Proceedings of the

Third Annual Workshop on Computational Learning Theory, and these results were also included in

Sally Goldman's PhD thesis [31].
The research in Chapter 4 is joint work with Michael J. Kearns. An extended abstract describing this

research appeared with the same title in the proceedings of the 31st Annual Symposium on Foundations
of Computer Science [53]. An abstract of this research also appeared in the Proceedngs of the Third
Annual Workshop on Computational Learning Theory.

Finally, Chapter 5 is joint work with Ronald L. Rivest and was published in extended abstract

form with the same title in the Proceedings of the Twenty First Annual ACM Symposium on Theory of

Computing [74].

6

Table of Contents

1 Introduction 9

2 The Strength of Weak Learnability 20
2-1 Introduction 20
2-2 Preliminaries 23
2-3 The equivalence of strong and weak learnability 25
2-4 Improving Learn's time and sample complexity 39
2-5 Variations on the learning model 43
2-6 General complexity bounds for PAC learning 45
2-7 Conclusions and open problems 55

3 Statistical-perturbation Methods for Inference of Read-once Formulas 56
3-1 Introduction 56
3-2 Preliminaries 60
3-3 Exact identification of read-once majority formulas 61
3-4 Exact identification of read-once positive NAND formulas 69
3-5 Handling random misclassification noise 72
3-6 Learning unbounded-depth formulas 75
3-7 Learning probabilistic read-once formulas 81
3-8 Conclusion and open problems 107

4 Efficient Distribution-free Learning of Probabilistic Concepts 108
4-1 Introduction 108
4-2 The learning model 113
4-3 Efficient algorithms: The direct approach 115
4-4 Hypothesis testing and expected loss 125
4-5 Uniform convergence methods 129
4-6 A lower bound on sample size 133
4-7 Occam's Razor for general loss functions 136
4-8 Conclusions and open problems 138

7

8 Table of Contents

5 Inference of Finite Automata Using Homing Sequences 140
5-1 Introduction 140
5-2 Two representations of finite automata 14-1
5-3 Homing sequences 147
5-4 A state-based algorithm for general automata 149
5-5 A diversity-based algorithm for general automata 159
5-6 A state-based algorithm for permutation automata 169
5-7 A diversity-based algorithm for permutation automata 172
5-8 Experimental results 179
5-9 Conclusions and open questions 181

Bibliography 183

CH1APTER 1

Introduction

The final objective of machine learning research is to build machines that learn from experience.

For example, we might like to build an autonomous robot that can adapt to its environment,

and can teach itself to walk, navigate, grasp objects, etc. It might also be useful to have a

general purpose prediction machine that can study large data bases, recognize patterns, and

based on those patterns make predictions about the future. Such a machine might be useful, for

instance, as a tool for predicting earthquakes. rendering medical diagnoses, or otherwise aiding

in scientific discovery, There is little doubt that machine learning will also play an important

role in the development of computers that can speak, read and understand human languages.

The solution of such complicated tasks is clearly beyond the skill of even the best program-

mer; what is needed is the develop.nent of systems that learn, computers that can program

themselves. Even if we could directly program a machine to solve such tasks, the result would

be a highly inflexible machine capable only of carrying out the specific tasks for which it was pre-

programmed. On the other hand, a system incorporating machine learning technology would,

in principle, be much more versatile, capable of adapting to changing conditions. Flexibility is

vital to several of the problems mentioned above; for instance, a nobile robot should be able

to adapt to changing terrain, and a computer that interprets spoken English should be able to

adjust to a different speaker.

Besides these practical considerations, the study of machine learning may also lead to a

deeper understanding of human intelligence and of the remarkable phenomena of learning,

inference, induction and adaptation.

Though the objective of machine learning research seems clear, the way to reach that ob-

jective is not so obvious. This tantalizing problem has attracted researchers from a myriad of

different fields, including psychology, cognitive science, neural science, linguistics, philosophy,

9

10 Introduction

physics, computer science, control theory and mathematics. The approaches applied to the

problem in recent years are also tremendously varied. For instance, there is today a great deal

of interest in so-called connectionist learning algorithms [2, 76], some of which are loosely in-

spired by the anatomy of the brain. Others, such as Holland [45, 46], work on so-called genetic

algorithms which learn by mimicking evolutionary processes. Gy6rgi and Tishby [32] have re-

cently used principles of statistical mechanics to understand certain learning algorithms, and

Drescher [211 has designed and implemented a learning system based on Piaget's theories of

early childhood development. These examples illustrate, but by no means exhaust, the diversity

and abundance of approaches applied to the problem of machine learning. For a more compre-

hensive treatment, see for instance the survey papers of Dietterich [20] and Mitchell et al. [64];

there are also several collections of learning papers available [54, 62, 63, 65, 80].

The results in this thesis belong to an area of machine learning research known as compu-

tational learning theory. Here, our purpose is to investigate the problem of machine learning in

a mathematically-oriented framework. Our goal is to develop a sound, theoretical foundation

for studying and understanding machine learning.

Computational learning theory is also characterized by its emphasis on efficiency. Thus,

we are interested in building machines that not only learn, but that also learn efficiently,

consuming limited resources as sparingly as possible. Specifically, we are most often interested

in minimizing the time it will take for a machine to learn, the size computer that will be needed

(in terms of memory size), and the amount of data that must be collected for learning to take

place. Efficiency is an extremely important issue. For the purposes of developing computer

programs that run fast, the design of efficient algorithms is arguably of greater importance

than the development of faster and more powerful computer processors.

This thesis is about the design of efficient learning algorithms, and the analysis of their

performance. The main part of this thesis is organized into four fully self-contained chapters

(i.e., no chapter is prerequisite to any other). Each chapter considers a different aspect of

machine learning. Here are some of the main contributions:

Chapter 2 describes a general technique for dramatically improving the error rate achieved

by a certain kind of concept-learning algorithm. Specifically, it is shown that a "weak" learning

algorithm whose error rate is just slightly better than that achieved by random guessing can

be converted into one whose error rate is extremely small. A surprising consequence of this

result is a technique for dramatically improving the space efficiency of many known learning

algorithms.

Chapter 3 explores in detail a simple but powerful statistical method for efficiently inferring

the structure of certain kinds of Boolean formulas from random examples of the formula's

input-output behavior. A featured application of this method is an algorithm that efficiently

Introduction 11

infers a good approximation of any read-once formula (in which each variable occurs at most

once) when the random examples are chosen according to a product distribution (in which the

setting of each variable is independent of the settings of the other variables).

Chapter 4 extends a standard model of concept learning to accommodate concepts that

sometimes exhibit uncertain or probabilistic behavior. This chapter systematically explores a

variety of tools and techniques for designing efficient learning algorithms in such a probabilistic

setting. For example, we describe an algorithm for learning a probabilistic analog of decision

lists.

Finally, Chapter 5 presents a set of efficient algorithms to be used by a robot to infer the
"structure" of its environment through experimentation. In particular, we describe algorithms

that efficiently infer the structure of any deterministic and finite-state environment by planning

and executing experiments, and with the additional aid of a source of "counterexamples" to

incorrectly conjectured models of the environment.

A more detailed overview of this thesis follows below.

Concept learning

Many of the results in this thesis deal with one of the most fundamental of learning problems,

namely, learning a concept from examples. In recent years, a great deal of research has been

devoted to this learning problem, much of it within the framework of one particular learning

model introduced by Valiant [83] in 1984. Since it is so important both to the results in

this thesis and to current research in computational learning theory, we begin with a brief

introduction to the Valiant model.

Informally, a concept is a rule that divides the world into positive and negative examples.

For instance, the concept of "being red" divides the world into those things that are red and

those that are not red. The learning algorithm is presented with examples of the concept, and

is told if each is a positive or negative example of the concept. For instance, the learner might

be shown several objects and told whether each is red or not.

To determine if the learner has succeeded in "learniing" the concept, we give it a test: we

present it with one or more unclassified examples, and ask it to predict if each is a positive or

negative example of the concept; if the learner "understands" the concept, it should have no

trouble passing this test.

The "universe of objects" from which the learner is presented examples is called the domain

(or sometimes, the instance space), and each object in the domain is called an instance. For

example, in the example above, the domain might consist of all the fruit in the world, in which

case all of the examples observed by the learner are pieces of fruit, and the learner's job is to

distinguish red fruit from non-red fruit.

12 Introduction

- - + + + +

+ + +- 3:i::i~:! + + ++ + I~i~!::: -

+ + +

....~::::iiil"........

C

Figure 1: Learning rectangles in the plane.

As another example, the learner might be trying to learn the "concept" of the solid-border

rectangle c in Figure 1. In this example, the domain is the set of all points in the real plane. The

learner is presented with the sample points labeled + or - as shown in the figure. When tested,

the learner may, for example, choose to classify all points inside the dashed-border rectangle h

as positive, and those outside as negative. (This would be a reasonable prediction rule since it

is consistent with the observed sample.) Such a prediction rule is called a hypothesis. In this

case, the learner will misclassify a test point if and only if it falls in the shaded region, the

so-called "symmetric difference" between the two rectangles c and h.

Note that in this example, we assume that the learner knows a priori that the target concept

c (the one it is trying to learn) is a rectangle. That is, as is typical for such learning problems,

the learner knows beforehand that c belongs to some concept class, namely, the class of all

rectangles.

What we have not yet specified is how the examples presented to the learner for training

and for testing should be chosen. Typically, we assume that the examples are chosen at random

(although other scenarios are certainly possible). This random selection of examples is meant

to model the "random" observations that might be made in the real world. However, the

distribution of such observations may be quite arbitrary. We therefore will often ask that

our learning algorithm be effective when examples are presented randomly according to any

distribution on the domain.

Introduction 13

Thus, returning to the previous example, we ask that the learner be able to learn the differ-

ence between red and non-red fruit, regardless of the "true" distribution of fruit in the world.

This may seem unfair since the entirely arbitrary distribution may be such that some kinds of

fruit are never observed. For instance, the learner might only be shown green fruit, making

it impossible to truly learn the concept of red fruit. However, we only ask that the learner

perform well when tested on instances chosen randomly according to the same distribution on

which it was trained. Thus, if the learner never saw a red piece of fruit in training, then it is

unlikely that it will see one in testing, and so it should be able to pass such a test.

We measure the quality of a learning algorithm by its expected performance on such a test.

More precisely, the error of a learning algorithm (or rather, of its hypothesis) is the probability

that it will misclassify a new instance when, as described above, the new instance is chosen

randomly according to the target distribution, the distribution on which the learner was trained.

Equivalently, the error is the expected fraction of instances that will be misclassified in any test.

Similarly, the accuracy is the chance that the learner correctly classifies a new instance.

We ask that the learner be able to make its error arbitrarily small. That is, for any arbitrarily

small positive number E, the learner should be able to find a hypothesis with error less than C.
Also, there is always some small chance that the algorithm receives an unfairly unrepresentative

sample that causes it to fail to learn the concept with the desired accuracy. However, we ask

that the probability of such a failure be less than 6, where 6, like c, is any arbitrarily small

positive number.

Naturally, the smaller the chosen values of c and 6, the larger the sample needed by the

learning algorithm, and the longer the computation time needed. However, we ask that the

sample size and computation time not grow too quickly as c and 6 are made small, nor as

other parameters of the learning problem increase. In other words, we ask that the learning

algorithm be efficient. To make this notion of efficiency more precise, we require that the

learning algorithm's running time be bounded by a polynomial in 1/c, 1/6 and any other

parameters which measure the size of the learning problem. (For example, if learning "hyper-

rectangles" in R", we might allow the running time to also be polynomial in n.)

As mentioned above, the formal model we have just described was introduced by Valiant [831.

Since the target distribution may be arbitrary, this model is sometimes called the distribution-
free model. The model is also referred to as the probably approximately correct (PAC) model

since the learning algorithm's hypotheses should be approximately correct (have low error) with

high probability.

Actually, the names "PAC" and "distribution-free" refer to different aspects of the learn-

ing model, and it makes sense to talk about a PAC-learning algorithm (one that achieves low

error with high probability) that is effective only against certain restricted target distribu-

14 Introduction

tions. (However, unless explicitly stated otherwise, PAC learning refers to learning in Valiant's

distribution-free model.)

Improving a mediocre learning algorithm

Besides restricting the target distribution, there are many other ways in which the Valiant

model might be modified; in fact, most of the results in this thesis deal with variations on the

Valiant model. For instance, the Valiant model seems very demanding in its insistence that the

learner be able to make the error of its hypotheses arbitrarily small. Why not just require that

the learner be 90% correct, or 65% correct? (After all, 65% is a passing grade in most American

grade schools.) Note that a learning algorithm that guesses entirely at random on every test

point achieves an accuracy rate of 50%. What if we then require the learning algorithm to be

only 51% correct? Certainly, we would expect it to be much easier to design such a "weak"

learning algorithm that performs just barely better than random guessing than it would be to

find one that achieves an accuracy rate of, say, 99.9%.

Chapter 2 of this thesis considers exactly this question. Somewhat surprisingly, it turns out

that any such weak learning algorithm can be efficiently converted into one whose error can

be made arbitrarily small. This result is relevant to the design of efficient learning algorithms

since, in the future, to find an extremely good learning algorithm, it will suffice to first design

one that performs only slightly better than random guessing.

The result is relevant to algorithm design for another reason as well: quite unexpectedly,

it turns out that the main result of Chapter 2 can be applied to dramatically improve the

complexity (i.e., the efficiency) of any PAC-learning algorithm, in several respects. Specifically,

we show that any PAC-learning algorithm can be converted into one whose time and sample-size

requirements come close to the best possible, and, even more surprisingly, whose space (memory)

requirements are very modest. For example, the memory size needed by this converted algorithm

is much less than would be necessary to store the entire sample (as is done by many previous

PAC-learning algorithms).

Learning Boolean formulas from random examples

Thus, dropping the seemingly strong requirement that arbitrarily good error rates be attainable

does not change what can or cannot be learned in the Valiant model. However, restricting the

target distribution, a variation suggested above, does turn out to significantly affect what can

be learned. This is the topic of Chapter 3.

Specifically, Chapter 3 considers the problem of learning read-once Boolean formulas against

certain restricted distributions. Informally, a formula is an expression that can be written down

in terms of variables and simple functions or operators. A Boolean formula is one in which each

Introduction 15

variable is Boolean-valued (i.e., either true or false), and the formula itself evaluates to a

Boolean value.

For example, a car buzzer buzzes if the key is in the ignition and the door is open, or if

the motor is on and the seat belt is unfastened. Let K, D, M and S be four Boolean variables

which are true if and only if, respectively, the key is in the ignition, the door is open, the motor

is on, and the seat belt is fastened. Then the buzzer buzzes if and only if the Boolean formula

(K AND D) OR (M AND NOT(S))

evaluates to true. Here, AND, OR and NOT are the standard logical Boolean operators which

behave just as would be expected (i.e., x AND y is true if and only if both z and y are true,

and so on). Also, this formula would be said to be read-once since it contains at most one

occurrence of each variable.

Boolean formulas can be used to compute quite complicated functions, and it is natural to

consider their learnability. (Thus, in this learning problem, the domain is the set of all Boolean

assignments to the variables, and an instance (an assignment to the variables) is a positive

example if and only if this assignment causes the formula to evaluate to true.) Unfortunately,

Boolean formulas cannot be learned efficiently in the distribution-free learning model (given

certain technical assumptions), as was proved by Kearns and Valiant [49, 52]. In fact, their

result holds even if a wide range of restrictions are made on the form of the target formula; for

instance, their result holds even if the formula is read-once.

Since our goal is to find the most general circumstances in which learning can take place,

it makes sense to ask if this intractability result holds even for restricted distributions. For

instance, can read-once Boolean formulas be learned efficiently when the target distribution is

uniform (assigning equal probability to every point in the domain)? One of the main results of

Chapter 3 is an affirmative answer to this question. In fact, we show that such formulas can

be PAC learned against any product distribution in which the setting of each variable is chosen

independently of the settings of the other variables.

This result is based on a simple but powerful technique based on sampling of the formula's

statistical behavior under various perturbations of the target distribution. One of the very nice

features of this technique is its robustness to noise or randomness that corrupts the learner's

observations. The algorithm mentioned above for learning read-once Boolean formulas can

-handle a great deal of randomness that affects the formula's behavior in a variety of ways.

This technique can also be applied to exactly identify certain kinds of read-once formulas

against certain fixed distributions; that is, the learning algorithm identifies the exact structure

of the target formula, and so obtains a hypothesis with 100% accuracy. Thus, since these same

classes of formulas are known to be not even weakly learnable in the distribution-free model,

16 Introduction

our results can be interpreted as demonstrating that while there are some distributions which in

a computationally bounded setting reveal essentially no information about the target formula,

there are natural and simple distributions which reveal all information.

Dealing with uncertainty

One rather unrealistic aspect of the Valiant model is its assumption of determinism in the

classification of instances; that is, we assume that the target concept classifies every instance

in the domain as either a positive or a negative example. In the real world, things can be
(and usually are) much more uncertain. For example, returning to the problem of learning

the concept of "being red," there are many objects in the world which might or might not be
called red, depending on who is asked; for instance, this would likely be the case for a crimson

Harvard pennant, or a glass of Burgundy. A good learning algorithm should be able to deal
with the fact that "red" is a concept with a "fuzzy" boundary, and that some instances in the

domain will sometimes be classified "red," and sometimes not.

For another example, consider the problem of learning to predict whether or not it will rain
tomorrow based on today's weather conditions. Practically speaking, tomorrow's weather is at

least to some degree a probabilistic event, and the best we can usually do is to try to predict

the probability of rain tomorrow.

Chapter 4 extends the Valiant model to incorporate such probabilistic concepts (or p-
concepts). Specifically, a p-concept c is a real-valued function that assigns to each instance

x a probability c(x) of being labeled positively. For instance, the p-concept of "being red"

might assign a very high value (near 1) to a strawberry, a very low value (near 0) to a banana,

and some value in between to a pomegranate.

This chapter describes efficient algorithms for learning various classes of p-concepts. These
include the class of all nondecreasing functions on the real line, and a probabilistic analog of a

class of concepts introduced by Rivest [72] called decision lists.

In addition to these and other efficient algorithms for learning in the p-concepts model, we
study in detail the underlying theory of learning p-concepts. For instance, we give a technique

for testing the quality of candidate hypotheses. That is, given two hypotheses, we give a statis-

tical method that can be used to determine which is better. For example, if two meteorologists

apply for a job, how can we determine which makes better predictions? If one predicts that it
will rain tomorrow with 70% probability, and the other says the chance of rain is 85%, it is not

so clear how to determine which prediction is more accurate since tomorrow it will either rain

or it won't. (We have no direct access to what the "true" probability of rain is tomorrow.) We

describe in this chapter a technique for making such a determination.

We also give a non-trivial lower bound on the number of examples needed to learn in this

Introduction 17

Figure 2: A crossword puzzle environment.

model, and we extend some of the older algorithm-design techniques from the (deterministic)

Valiant model to the new p-concept model.

Learning the structure of an unfamiliar environment

Finally, in Chapter 5, we consider a very different learning problem. This chapter, unlike the

others, is not concerned with concept learning, nor with learning from random examples. In this

chapter, we study the problem of learning about one's environment through experimentation.

Imagine a robot that has been placed in unfamiliar surroundings. For instance, the robot

might find itself in the "crossword puzzle" environment of Figure 2. In such an environment,

the robot has a limited number of actions, and receives a very limited amount of sensory

information about its environment. For instance, in this example environment, the robot can

step forward one square, or turn left or right by 90 degrees. If the robot attempts to step

forward, but its path is blocked by a wall or one of the black squares, then nothing happens.

In this environment, each wall has been painted a different color, and the robot can detect the

color of the wall it faces; however, if its view is obstructed by a black square, then it only sees

black. This is the only sense data the robot receives about its world.

We assume that the robot knows nothing a priori about its environment, except that the

environment is deterministic and finite state. The robot gathers information about its environ-

ment by executing actions and observing changes in the sensory data it receives.

18 Introduction

We make the realistic assumption that the robot has no "reset" or means of bringing the

environment back to some fixed start state. This distinguishes our work from much of the

p~evious research on this problem.

The goal of the robot is to discover the "structure" of its environment by planning and

executing experiments. In other words, we ask that the robot build a very good model of its

environment through experimentation. As was the case for concept learning, we can judge the

quality of the robot's model by testing it: given a sequence of actions, the robot should be able

to use its model to predict what sensations will be observed when those actions are executed.

An action sequence that causes the robot's model to make an incorrect prediction is called a

counterezample.

It turns out that the robot cannot efficiently build a perfect model of its environment using

only experimentation; the reason is that there are some environments with hard-to-reach states

that can never be discovered (efficiently) simply through experimentation. We therefore find

it necessary to assume that the robot has some source of counterexamples. Thus, the robot

runs experiments, builds a model of its environment, and then obtains a counterexample to this

conjectured model. The robot repeats this process until it converges to a perfect model. (This

source of counterexamples is not as unnatural as it sounds on first blush since, in practice, the

robot can often discover counterexamples on its own. For example, a counterexample can often

be found by simply taking a "random walk" through the environment.)

In this framework, we describe an efficient algorithm that the robot can use to discover

the structure of its environment. This is the first provably fast and effective algorithm for this

problem. We also describe an algorithm that solves the same problem, but that is based on a

different representation of finite-state environments, called the diversity-based representation.

Finally, for a special class of environments (called permutation environments), we also present

efficient algorithms that are effective even in the absence of a source of counterexamples.

Summary

In sum, this thesis extends the current theory of machine learning in several new directions.

Chapter 2 extends our fundamental understanding of the PAC model by demonstrating

an important property of this model, namely, that seemingly weak learning algorithms that

perform only slightly better than random guessing can be converted into algorithms that per-

form extremely well. The result also implies interesting and surprising upper bounds on the

complexity of learning in the PAC model.

Chapter 3 extends the known techniques for efficiently learning the class of read-once

Boolean formulas. The statistical technique that is presented is simple, powerful, and quite

robust to noise.

Introduction 19

Chapter 4 extends the basic PAC model to incorporate randomness or uncertainty that is

almost certain to be found in any real-world application of learning technology. The chapter

explores a range of techniques for designing efficient learning algorithms in such a setting.

Finally, Chapter 5 extends our ability to efficiently infer the structure of a deterministic,

finite-state environment through experimentation. This chapter includes algorithms for learning

in such environments even in the absence of a "reset," using either of two representations for

finite-state systems.

CHAPTER 2

The Strength of Weak Learnability

2-1 Introduction

Since Valiant's [83] pioneering paper, interest has flourished in the so-called distribution-free

or probably approximately correct (PAC) model of learning. In this model, the learner tries to

identify an unknown concept based on randomly chosen examples of the concept. Examples

are chosen according to an unchanging but unknown and arbitrary distribution on the space of

instances. The learner's task is to find a hypothesis or prediction rule of its own that correctly

classifies new instances as positive or negative examples of the concept. With high probability,

the hypothesis must be correct for all but an arbitrarily small fraction of the instances.

Often, the inference task includes a requirement that the output hypothesis be of a specified

form. However, in this chapter (and throughout most of this thesis) we will instead be concerned

with a representation-independent model of learning in which the learner may output any

hypothesis that can be used to classify instances in polynomial time.

A class of concepts is learnable (or strongly learnable) if there exists a polynomial-time

algorithm that achieves low error with high confidence for all concepts in the class. A weaker

model of learnability, called weak learnability, drops the requirement that the learner be able

to achieve arbitrarily high accuracy; a weak learning algorithm need only output a hypothesis

that performs slightly better (by an inverse polynomial) than random guessing. The notion

of weak learnability was introduced by Kearns and Valiant [52] who left open the question of

whether the notions of strong and weak learnability are equivalent. This question was termed

the hypothesis boosting problem since showing the notions are equivalent requires a method for

boosting the low accuracy of a weak learning algorithm's hypotheses.

Kearns [48], considering the hypothesis boosting problem, gives a convincing argument

discrediting the natural approach of trying to boost the accuracy of a weak learning algorithm

20

2-1 Introduction 21

by simply running the procedure many times and taking the "majority vote" of the output

hypotheses. Also, Kearns and Valiant [49, 52] show that, under a uniform distribution on the

instance space, monotone Boolean functions are weakly, but not strongly, learnable. This shows

that strong and weak learnability are not equivalent when certain restrictions are placed on

the instance space distribution. Thus, it did not seem implausible that the strong and weak

learning models would prove to be inequivalent for unrestricted distributions as well.

Nevertheless, in this chapter, the hypothesis boosting question is answered in the affirmative.

The main result is a proof of the perhaps surprising equivalence of strong and weak learnability.

This result may have significant applications as a tool for proving that a concept class is

learnable since, in the future, it will suffice to find an algorithm correct on only, say, 51% of the

instances (for all distributions). Alternatively, in its negative contrapositive form, the result

says that if a concept class cannot be learned with accuracy 99.9%, then we cannot hope to do

even slightly better than guessing on the class (for some distribution).

The proof presented here is constructive; an explicit method is described for directly con-

verting a weak learning algorithm into one that achieves arbitrary accuracy. The construction

uses filtering to modify the distribution of examples in such a way as to force the weak learning

algorithm to focus on the harder-to-learn parts of the distribution. Thus, the distribution-free

nature of the learning model is fully exploited.

Since this result was first published, Freund [261 was able to improve the construction

presented in this chapter. His construction yields hypotheses that are simpler in form and

smaller in size. Some implementations of his procedure are also more efficient than those

described here.

Consequences

An immediate corollary of the main result is the equivalence of strong and group learnability.

A group-learning algorithm need only output a hypothesis capable of classifying large groups

of instances, all of which are either positive or negative. The notion of group learnability

was considered by Kearns et al. [51], and was shown to be equivalent to weak learnability by

Kearns and Valiant [49, 52]. The result also extends those of Haussler et al. [38] which prove

the equivalence of numerous relaxations and variations on the basic PAC-learning model; both

weak and group learnability are added to this class of equivalent learning models. The relevance

of the main result to a number of other learning models is also considered in this chapter.

An interesting and unexpected consequence of the construction is a proof that any strong

learning algorithm outputting hypotheses whose length (and thus whose time to evaluate)

depends on the allowed error c can be modified to output hypotheses of length only polynomial

in log(l/c). Thus, any learning algorithm can be converted into one whose output hypotheses

22 The Strength of Weak Learnability

do not become significantly more complex as the error tolerance is lowered.

Put in other terms, this bound implies that a sequence of labeled examples of a learnable

concept can, in a sense, be efficiently "compressed" into a far more compact form-i.e., into a

rule or hypothesis consistent with the labels of the examples. In particular, it is shown that a

sample of size m can be compressed into a rule of size only poly-logarithmic in m. In fact, in

the discrete case, the size of the output hypothesis is entirely independent of m. This provides a

partial converse to Occam's Razor, a result of Blumer et al. [13] stating that the existence of such

a compression algorithm implies the learnability of the concept class. This also complements

the results of Board and Pitt [15] who also provide a partial converse to Occam's Razor, but of

a somewhat different flavor. Finally, this result yields a strong upper bound on the sample size

needed to learn a discrete concept class.

We show that such results also apply to non-discrete domains. In particular, Littlestone

and Warmuth [59] describe a notion of data compression in which the output prediction rule is

represented by a sequence of examples from the original sample. Such compression schemes are

also considered by Floyd [25]. Littlestone and Warmuth show that the existence of an efficient

compression scheme of this kind for some concept class implies the learnability of the class. In

this chapter, we prove the converse, showing that any learning algorithm can be converted into

a compression scheme. Thus, we prove a complete characterization of efficient PAC learnability

in terms of data compression.

The bound we prove on the size of the output hypothesis also implies the hardness of

learning any concept class not evaluatable by a family of small circuits. For example, this

shows that pattern languages-a class of languages considered previously by Angluin [4] and

others-are unlearnable assuming only that NP/poly 5 P/poly. This is the first representation-

independent hardness result not based on cryptographic assumptions. The bound also implies

that, for any function not computable by polynomial-size circuits, there exists a distribution

on the function's domain over which the function cannot be even roughly approximated by a

family of small circuits.

In addition to the bound on hypothesis size, the construction implies a set of general upper

bounds on the dependence on c of the time, sample and space complexity needed to efficiently

learn any learnable concept class. Most surprising is a proof that there exists for every learnable

concept class an efficient algorithm requiring space only poly-logarithmic in 1/c. Because the

size of the sample needed to learn with this accuracy is in general fl(1/E), this means, for

example, that far less space is required to learn than would be necessary to store the entire

sample. Since most of the known learning algorithms work in exactly this manner-i.e., by

storing a large sample and finding a hypothesis consistent with it-this implies a dramatic

savings of memory for a whole class of algorithms (though possibly at the cost of requiring a

2-2 Preliminaries 23

larger sample).

Such general complexity bounds have implications for the on-line learning model as well.

In this model, the learner is presented one instance at a time in a series of trials. As each is

received, the learner tries to predict the true classification of the new instance, attempting to

minimize the number of mistakes, or prediction errors.

Translating the bounds described above into the on-line model, it is shown that, for every

learnable concept class, there exists an on-line algorithm whose space requirements are quite

modest in comparison to the number of examples seen so far. In particular, the space needed

on the first m trials is only poly-logarithmic in m. Such space efficient on-line algorithms are

of particular interest because they capture the notion of an incremental algorithm forced by its

limited memory to explicitly generalize or abstract from the data observed. Also, these results

on the space-efficiency of batch and on-line algorithms extend the work of others interested in

this problem, including Boucheron and Sallantin [18], Floyd [25], and Haussler [34]. In partic-

ular, these results solve an open problem proposed by Haussler, Littlestone and Warmuth [39].

An interesting upper bound is also derived on the expected number of mistakes made on

the first m trials. It is shown that. if a concept class is learnable, then there exists an on-line

algorithm for the class for which this expectation is bounded by a polynomial in log m. Thus,

for large m, we expect an extremely small fraction of the first m predictions to be incorrect.

This result answers another open question given by Haussler, Littlestone and Warmuth [39],

and significantly improves a similar bound given in their paper (as well as their paper with

Kearns [38]) of m" for some constant o < 1.

2-2 Preliminaries

We begin with a description of the distribution-free learning model. A concept c is a Boolean

function on some domain of instances. A concept class C is a collection of concepts. Often, C

is decomposed into subclasses C, indexed by a parameter n. That is, C = U"'>I C,, and all the

concepts in C,, have a common domain X,,. We assume each instance in Xn has encoded length

bounded by a polynomial in n, and we let X = U,>1 X,,. Also, we associate with each concept

c its size s, typically a measure of the length of c's representation under some encoding scheme

on the concepts in C.

For example, the concept class C might consist of all functions computed by Boolean formu-

las. In this case, C,, is the set of all functions computed by a Boolean formula on n variables,

X,, is the set {0, l}" of all assignments to the n variables, and the size of a concept c in C is

the length of the shortest Boolean formula that computes the function c.

The learner is assumed to have access to a source EX of examples. Each time oracle EX

is called, one instance is randomly and independently chosen from X, according to some fixed

24 The Strength of Weak Learnability

but unknown and arbitrary distribution D. (More formally, D is a probability measure on a

a-algebra of measurable subsets of X,.) The oracle returns the chosen instance x, along with a

label indicating the value c(x) of the instance under the unknown target concept c E C,,. Such

a labeled instance is called an example. We assume EX runs in unit time.

Given access to EX, the learning algorithm runs for a time and finally outputs a hypothesis

h, a prediction rule on X,. In this chapter, we make no restrictions on h other than that

there exist a (possibly probabilistic) polynomial-time algorithm that, given h and an instance

z, computes h(z), h's prediction on x.

We write PrED [r(x)] to indicate the probability of predicate 7r holding on instances x drawn
from X, according to distribution D. To accommodate probabilistic hypotheses, we will find it

useful to regard ir(x) as a Bernoulli random variable. For example, Pr[h(x) # c(x)] is the chance

that hypothesis h (which may be randomized) will misclassify some particular instance x. In

contrast, the quantity PrED[h(x) $ c(x)] is the probabil;- that h will misclassify an instance

x chosen at random according to distribution D. .ote that this last probability is taken over

both the random choice of x, and any random bits used by h. In general, we have

PrED[7r(X)] = J Pr[7,(x)]dD(x).

The probability PrED[h(x) 5 c(x)] is called the error of h on c under D; if the error is

no more than c, then we say h is c-close to the target concept c under D. The quantity

Pr.ED[h(x) = c(x)] is the accuracy of h on c under D.

We say that a concept class C is learnable, or strongly learnable, if there exists an algorithm

A such that for all n > 1, for all target concepts c E C,,, for all distributions D on X,,, and for

all 0 < e, 6 < 1, algorithm A, given parameters n, c, 6, the size s of c, and access to oracle EX,

runs in time polynomial in n, s, 1/c and 1/6, and outputs a hypothesis h that with probability

at least 1 - 6 is c-close to c under D. There are many other equivalent notions of learnability,

including polynomial predictability [381. Also, note that other authors have sometimes used

the term "learnable" to mean something slightly different.

Kearns and Valiant [52] introduced a weaker form of learnabiity in which the error c cannot

necessarily be made arbitrarily small. A concept class C is weakly learnable if there exists a

polynomial p and an algorithm A such that for all n > 1, for all target concepts c E C,, for all

distributions D on X,,, and for all 0 < 6 < 1, algorithm A, given parameters n, b, the size s of

c, and access to oracle EX, runs in time polynomial in n, s and 1/6, and outputs a hypothesis

h that with probability at least 1 - 6 is (-)close to c under D. In other words, a weak

learning algorithm produces a prediction rule that performs just slightly better than random

guessing.

2-3 The equivalence of strong and weak learnability 25

2-3 The equivalence of strong and weak learnability

The main result of this chapter is a proof that learnability and weak learnability are equivalent

notions.

Theoram 3.1 A concept class C is weakly learnable if and only if it is learnable.

That strong learnability implies weak learnability is trivial. The remainder of this section

is devoted to a proof of the converse. We assume then that some concept class C is weakly

learnable and show how to build a strong learning algorithm around a weak one.

We begin with a description of a technique by which the accuracy of any algorithm can be

boosted by a small but significant amount. Later, we will show how this mechanism can be

applied recursively to make the error arbitrarily small.

2-3.1 The hypothesis boosting mechanism

Let A be an algorithm that produces with high probability a hypothesis a-close to the target

concept c. We sketch an algorithm A' that simulates A on three different distributions, and

outputs a hypothesis significantly closer to c.

Let EX be the given examples oracle, and let D be the distribution on X, induced by EX.

The algorithm A' begins by simulating A on the original distribution D1 = D, using the given

oracle EX, = EX. Let hi be the hypothesis output by A.

Intuitively, A has found some weak advantage on the original distribution; this advantage is

expressed by hl. To force A to learn more about the "harder" parts of the distribution, we must

somehow destroy this advantage. To do so. A' creates a new distribution D2 under which an

instance chosen according to D2 has an equal chance of being correctly or incorrectly classified

by hl. The distribution D2 is simulated by filtering the examples chosen according to D by EX.

To simulate D2 , a new examples oracle EX2 is constructed. When asked for an instance, EX2

first flips a fair coin: if the result is "heads," then EX, requests examples from EX until one

is chosen for which hi(x) = c(y); otherwise, EX2 waits for an instance to be chosen for which

hl(x) : c(x). (Later we show how to prevent EX2 from having to wait too long in either of

these loops for a desired instance.) The algorithm A is again simulated, this time providing A

with examples chosen by EX2 according to D2 . Let h2 be the resulting output hypothesis.

Finally, D3 is constructed by filtering out from D those instances on which h i and h2 agree.

That is, a third oracle EX3 simulates the choice of an instance according to D3 by requesting

instances from EX until one is found for which hl(x) 5 h2 (x). (Again, we will later show how

to limit the time spent waiting in this loop for a desired instance.) For a third time, algorithm

A is simulated with examples drawn this time by EX3, producing hypothesis h3 .

26 The Strength of Weak Learnability

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5

Figure 1: A graph of the function g(x) = 3x - 2X3.

At last, A' outputs its hypothesis h: given an instance x, if hi(x) = h2(x) then h predicts

the agreed upon value; otherwise, h predicts h3(x). (In other words, h takes the "majority

vote" of hl, h2 and h3 .) Later, we show that h's error is bounded by g(a) - 3a2 - 2a 3. This

quantity is significantly smaller than the original error a, as can be seen from its graph depicted

in Figure 1. (The solid curve is the function g, and, for comparison, the dotted line shows a

graph of the identity function.)

2-3.2 A strong learning algorithm

An idea that follows naturally is to treat the previously described procedure as a subroutine

for recursively boosting the accuracy of weaker hypotheses. The procedure is given a desired

error bound c and a confidence parameter b, and constructs an c-close hypothesis from weaker,

recursively computed hypotheses. If c > - - I then an assumed weak learning algorithm can2 ptas)

2-3 The equivalence of strong and weak learnability 27

Learn(c, 6, EX)

Input: error parameter c
confidence parameter 6

examples oracle EX
(implicit) size parameters s and n

Return: hypothesis h that is -close to the target concept c with probability _ 1 - 6

Procedure:

if c > I . ,o) then return WeakLearn(6, EX)2 p(n,s)

g 4-
1

(C)

EXI +- EX
h, -- Learn(a, 6/5, EXI)
71 C E/3
let ii be an estimate of a, = PrED[hl(x) 3 c(x)]:

choose a sample sufficiently large that la, - aI I r with probability > 1 - 6/5

if ii < c - r, then return h,

defun EX 2()
{ flip coin

if "heads." return the first instance x from EX for which hi(x) = c(x)
else return the first instance T from EX for which hl(x) $ c(x) }

h2- Learn(a, 6/5, EX 2)
2 (1 - 2a)c/8

let be an estimate of e = PrED(h2(z) 0 c(X)):
choose a sample sufficiently large that le - il -< r 2 with probability _ 1 - 6/5

if < c - r2 then return h2

defun EX3 ()
{ return the first instance x from EX for which hi(x) ? h 2(x) }

h3 - Learn(a. /5, EX3)

defun h(x)
{ b, -- h1(x), b2 -- h2(x)

if b= = b2 then return b,
else return hA(x) }

return h

Figure 2: A strong learning algorithm Learn.

be used to find the desired hypothesis; otherwise, an c-close hypothesis is computed recursively

by calling the subroutine with c set to g-(C).

Unfortunately, this scheme by itself does not quite work due to a technical difficulty alluded

to above: because of the way EX2 and EX3 are constructed, examples may be required from

a very small portion of the original distribution. If this happens, the time spent waiting for

an example to be chosen from this region may be great. Nevertheless, we will see that this

28 The Strength of Weak Learnability

difficulty can be overcome by explicitly checking that the errors of hypotheses h, and h2 on D

are not too small.

Figure 2 shows a detailed sketch of the resulting strong learning algorithm Learn. The

procedure takes an error parameter c and a confidence parameter 6, and is also provided with

an examples oracle EX. The procedure is required to return a hypothesis whose error is at

most c with probability at least 1 - 6. In the figure, p is a polynomial and WeakLearn(6, EX) is

an assumed weak learning procedure that outputs a hypothesis (, , - 1 -close to the target

concept c with probability at least 1 - 6. As above, g(a) is the function 3a2 - 2a 3, and the

variable a is set to the value g-'(c). Also, the quantities a, and i are estimates of the errors of

h, and h 2 under the given distribution D. These estimates are made with error tolerances r,

and r 2 (defined in the figure), and are computed in the obvious manner based on samples drawn

from EX; the required size of these samples can be determined, for instance, using Chernoff

bounds. The parameters s and n are assumed to be known globally.

Note that Learn is a procedure taking as one of its inputs a function (EX) and returning as

output another function (h, a hypothesis, which is treated like a procedure). Furthermore, to

simulate new example oracles, Learn must have a means of dynamically defining new procedures

(as is allowed, for instance, by most Lisp-like languages). Therefore, in the figure, we have used

the somewhat non-standard keyword defun to denote the definition of a new function; its

syntax calls for a name for the procedure, followed by a parenthesized list of arguments, and

the body indented in braces. Static scoping is assumed.

Learn works by recursively boosting the accuracy of its hypotheses. Learn typically calls

itself three times using the three simulated example oracles described in the preceding section.

On each recursive call, the required error bound of the constructed hypotheses comes closer to

1/2; when this bound reaches . - I.,' the weak learning algorithm WeakLearn can be used.

The procedure takes measures to limit the run time of the simulated oracles it provides

on recursive calls. When Learn calls itself a second time to find h2 , the expected number of

iterations of EX2 to find an example depends on the error of hl, which is estimated by i. If

h, already has the desired accuracy 1 - c, then there is no need to find h 2 and h3 since hi is

a sufficiently good hypothesis; otherwise, if a, = fP(E), then it can be shown that EX2 will not

loop too long to find an instance. Similarly, when Learn calls itself to find h3 , the expected

number of iterations of EX 3 depends on how often h, and h2 disagree, which we will see is

in turn a function of the error of h2 on the original distribution D. If this error e (which is

estimated by) is small, then h2 is a good hypothesis and is returned by Learn. Otherwise, it

will be shown that EX3 also will not run for too long.

2-3 The equivalence oi strong and weak learnability 29

2-3.3 Correctness

We show in this section that the algorithm is correct in the following sense:

Theorem 3.2 For 0 < c < 1/2 and for 0 < 6 < 1, the hypothesis returned by calling

Learn(E, 6, EX) is c-close to the target concept with probability at least 1 - 6.

Proof: In proving this theorem, we will find it useful to assume that nothing "goes wrong"

throughout the execution of Learn. More specifically, we will say that Learn has a good run

if every hypothesis returned by WeakLearn is indeed - 1))close to the target concept,

and if every statistical estimate (i.e., of the quantities a, and e) is obtained with the required

accuracy. We will then argue inductively on the depth of the recursion that if Learn has a

good run then the output hypothesis is c-close to the target concept, and furthermore, that the

probability of a good run is at least 1 - b. Together, these facts clearly imply the theorem's

statement.

The base case that E > is trivially handled using our assumptions about WeakLearn.

In the general case, by inductive hypothesis, each of the three (or fewer) recursive calls to

Learn are good runs with probability at least 1 - 6/5. Moreover, each of the estimates 'h and

6 has the desired accuracy with probability at least 1 - 6/5. Thus, the chance of a good run is

at least the chance that all five of these events occur, which is at least 1 - 6.

It remains then only to show that on a good run the output hypothesis has error at most e.

An easy special case is that a, or 6 is found to be smaller than c - 7'1 or c - r", respectively.

In either case, it follows immediately, due to the accuracy with which a, and e are assumed

to have been estimated, that the returned hypothesis is -close to the target concept. (For

instance, if 6 < c - 7,, then e = Pr.,ED[h2(X) : c(z)] _< c, and thus the returned hypothesis h,
is C-close to c.)

Otherwise, in the general case, all three subhypotheses must be found and combined. Let

a, be the error of hi under Di. Here, D is the distribution of the provided oracle EX, and Di

is the distribution induced by oracle EX, on the ith recursive call (i = 1.2,3). By inductive

hypothesis, each a, < a.

In the special case that all hypotheses are deterministic, the distributions D, and D2 can be

depicted schematically as shown in Figure 3. The figure shows the portion of each distribution

for which the hypotheses h, and h 2 agree with the target concept c. For each distribution, the

top crosshatched bar represents the relative fraction of the instance space for which hi agrees

with c; the bottom striped bar represents those instances for which h, agrees with c. Although

only valid for deterministic hypotheses, this figure may be helpful for motivating one's intuition

in what follows.

30 The Strength of Weak Learnability

ID

10- I" O

hl=c h2=C

Figure 3: The distributions D, and D 2.

Let p,(x) =Pr[h,(x) 54 c(x)] be the chance that some fixed instance x is misclassified

by hi. (Recall that hypotheses may be randomized, and therefore it is necessary to consider

the probability that a particular fixed instance is misclassified.) Thus, a, = fx. p,(x)dDj(x).

Similarly, let q(x) = Pr[hl(x) 0 h2(X)] be the chance that x is classified differently by hi and h,.

Also define wi, as follows:

Woo = Pr-ED[(hl(x) 0 c(x)) A (h2 (X) $c(X))]
w = Pr-ED[(hl(x) i4 c(x)) A (h2 (X) =C(X))]

wo= PrrED[(hdzx) = c(x)) A (h 2 (X) $c(X))]
w = Pr.ZED[(hl(x) = c(z)) A (h 2 (X) =c(X))]

Note that the first subscript determines whether h, is correct, and the second subscript whether

h2 is correct. Thus, for i,j E {0, 1}, we have

=i Ii - PI(X)I - Ii - P2(x)IdD(x).

Clearly,

woo + wo1 = PrZED[hI(x) $4 c(x)] = a,, (3.1)

2-3 The equivalence of strong and weak learnability 31

and also

Woo + Wol + W10 + w 1 "- 1. (3.2)

In terms of these variables, we can express explicitly the chance that EX returns an instance

from any measurable set A C X:

DI(A) = D(A) (3.3)

D2(A) = -PrED[x E A I hi(z) 0 c(x)] + !PrED[x E A I h1(z) = c(x)]

I 2aT + I (X))dD(x) (3.4)fA (2a, 2(1 - a,))

D3(A) = PrED[z E AI h(x) # h2(X)]
X q(z) dD(x). (3.5)

fA Wol + Wio

In (3.5), we have used the fact that PrED[hl(z) $ h2(x)] = wo + W1o since c, hi and h2 are

Boolean valued.

From equation (3.4), we have that

1-a 2 = J (1-P 2())dD 2(z)

J (1 - p2(X)) (P1(X) + 1-PI(X) dD(x)
a 2 2a 2(1- 1))

= pI(x)(1 - p2 (X))dD(x) + 1 (1 - p(x))(l - p2(x))dD(x)

Wolt w (3.6)
2a, 2(1 - a,) "

To see that the second equality follows from (3.4), see, for instance, Theorem 16.10 of Billings-

ley [121. Also, note that (3.6) could have been derived from Figure 3 in the case of deterministic

hypotheses: if 1 is as shown in the figure, then it is not hard to see that w01 = 2a,#3 and

wil = 2(1 - al)(1- a,- 3). These equalities imply (3.6).

Combining equations (3.1), (3.2) and (3.6), we see that the values of w10 and woo can be

solved for and written expicitly in terms of w01, a, and a2:

Wto= Ia - wl
wo10 - a,)

1-a, -2(1-al)(1-a 2)+
a,

= (2a 2 - 1)(1 - a,) + wo1(1 - a,) (3.7)
a1

Woo = al- tol (3.8)

32 The Strength of Weak Learnability

We are finally ready to compute the error of the output hypothesis h. Recall that h is

correct if and only if h, and h2 agree in their predictions but are incorrect, or if h, and h,

disagree and h3 is incorrect. Thus the error of h is

Pr.,ED[h(x) 5 c(x)] = Pr.CD[[h,(x) = h2() # c(x)] V [hi(x) # h2(x) A h3(X) 5 c(x)]]

= PrZED[hl(z) 5 c(z) A h2 (x) # c(z))

+Pr.ED[h(x) h2 W(x) A h3(X) # c(x)J

= woo + J q(X)p 3(x)dD(x).

By equation (3.5), this is equal to

woo + J(w10 + wol)p 3 (x)dD3 (x) woo + a 3 (W1 0 + W01)

_ Woo + a(w1o + W01).

Applying equations (3.7) and (3.8), this equals

cr(2a2 - 1)(l - a,) + a, + wo' (a - a,) < (2a2 - 1)(1 - a,) + a
a,

< 0(2a - 1)(1 - a) + a =3a - 2a3 = g(a) =

as desired. The inequalities here follow from the facts that each a < a < 1/2, and that, by

equation (3.1), wo1 < a,.

This completes the proof. U

A footnote on measurability: For any hypothesis h output by WeakLearn, we have assumed

implicitly that the function fh(x) = Pr[h(x) $ c(x)] is measurable. (If this were not the case,

then it would hardly make sense to discuss the error of h, since the error is just the expected

value of fh.) By induction, the same can be proved about hypotheses output by Learn: Briefly,

each function pi used in the proof above is Di-measurable by inductive hypothesis. Thus.

by (3.4) and (3.5), P2 and qp3 are D-measurable (as follows, for instance, from Billingsley [12]

Theorem 16.10). Therefore, the error function fh = PIP2 + qp3 is also D-measurable, where h is

the output hypothesis. Note that these facts imply that all the integrals used in the preceding

proof are defined.

2-3.4 Analysis

In this section, we argue that Learn runs in polynomial time. Here and throughout this section,

unless stated otherwise, polynomial refers to polynomial in n, s, l/C and 1/6. Our approach will

be to first derive a bound on the expected running time of the procedure, and to then use a part

2-3 The equivalence of strong and weak learnability 33

of the confidence 6 to bound with high probability the actual running time of the algorithm.

Thus, we will have shown that the procedure is probably fast and correct, completing the

proof of Theorem 3.1. (Although technically we only show that Learn halts probabilistically,

using techniques described by Haussler et al. [381, the procedure can easily be converted into a

learning algorithm that halts deterministically in polynomial time.)

We will be interested in bounding several quantities. First, we are of course interested

in bounding the expected running time T(c, 6) of Learn(c, 6, EX). This running time in turn

depends on the time U(c, 6) to evaluate a hypothesis returned by Learn, and on the expected

number of examples M(c, 6) needed by Learn. In addition, let t(6), u(6) and m(6) be analogous

quantities for WeakLearn(6, EX). By assumption, t, u and m are polynomially bounded. (All

of these functions also depend implicitly on n and s.)

As a technical point, we note that the expectations denoted by T and Al are taken only

over good runs of Learn. That is, the expectations are computed given the assumption that

every subhypothesis and every estimator is successfully computed with the desired accuracy.

By Theorem 3.2, Learn will have a good run with probability at least 1 - 6.

It is also important to point out that T (respectively, t) is the expected running time of Learn

(WeakLearn) when called with an oracle EX that provides examples in unit time. Our analysis

will take into account the fact that the simulated oracles supplied to Learn or WeakLearn at

lower levels of the recursion do not in general run in unit time.

We will see that T, U and Al are all exponential in the depth of the recursion induced by

calling Learn. We therefore begin by bounding this depth. Let B(c,p) be the smallest integer

i for which g' (0 - 1) < c. On each recursive call, E is replaced by g- 1 (c). Thus, the depth of

the recursion is bounded by B(c,p(n, s)). We have:

Lemma 3.3 The depth of the recursion induced by calling Learn(c, b, EX) is at most

B(c,p(n, s)) = O(log(p(n, s)) + log log(1/,E)).

Proof: We can say B(,p(n, s)) _< b + c if gb (v,) _ 1/4 and ge(1/4) < c. Clearly,

g(x) < 3zX 2 for z > 0, and so, by an easy induction on i, g'(x) _< (3z)2 '/3. Thus, g'(1/4) _< E if

c = [lg lo94/ 3 (1/3c)].

Similarly, if 1/4 < x < 1/2 then 1/2 - g(x) = (1/2 - x)(1 + 2x - 2x 2) _ (11/8)(1/2 - x).

This implies (by induction on i) that 1/2- g'(x) _ (11/8)' (1/2 - x), assuming that

are all at least 1/4. Thus, gb (, < 1/4 if b - [log11 /s(p(n,s)/4)].

For the remainder of this analysis, we let p = p(n, s) and, where clear from context, let

B = B(E,p). Note that B(g-I(c),p) = B - 1 for c < 1 - -.

We show next that U is polynomially bounded. This is important because we require that

the returned hypothesis be polynomially evaluatable.

34 The Strength of Weak Learnability

Lemma 3.4 The time to evaluate a hypothesis returned by Learn(c, b, EX) is

U(,) = (3 u(6/5)).

Proof: If e > -- , then Learn returns a hypothesis computed by WeakLearn. In this case,
2

U(c,6) = u(6). Otherwise, the hypothesis returned by Learn involves the computation of at

most three subhypotheses. Thus,

U(_,) 3. U(g (c), b15) + c

for some positive constant c. A straightforward induction argument shows that this recurrence

implies the bound

U(c, 6) .5 3Bu(b/5B) + c(3B - 1).

When an example i .,quested of a simulated oracle on one of Learn's recursive calls, that
oracle must itself d -av several examples from its own oracle EX. For instance, on the third
recursive call, th', simulated oracle must draw instances until it finds one on which h1 and h2

disagree. Naturally, the running time of Learn depends on how many examples must be drawn
in this manner by the simulated oracle. The next lemma bounds this quantity.

Lemma 3.5 Let r be the expected number of examples drawn from EX by any oracle EX,
simulated by Learn on a good run when asked to provide a single example. Then r < 4/c.

Proof: When Learn calls itself the first time (to find hj), the examples oracle EX it was passed

is left unchanged. In this case, r = 1.

The second time Learn calls itself, the constructed oracle EX2 loops each time it is called
until it receives a desirable example. Depending on the result of the initial coin flip, we expect

EX2 to loop 1/a or 1/(1-a,) times. Note that if ai < c-2r = c/3 then, based on its estimate
of a,, Learn would have simply returned h, instead of making a second or third recursive call.

Thus, we can assume E/3 < a, < 1/2, and so r < 3/c in this case.

Finally, when Learn calls itself the third time, we expect the constructed oracle EX3 to loop
1/(wlo+ wol) times before finding a suitable example, since wio + woi is exactly the chance that
h, and h 2 disagree in their classifications. (Here, the variables wij are as defined in the proof
of Theorem 3.2.) It remains then only to show that wio + wi > c/4.

Note that the error e of h2 on the original distribution D is w10 + woo. Thus, using this fact
and equations (3.1), (3.2) and (3.6), we can solve explicitly for w10 + w01 in terms of c, a, and
a2. Specifically, (3.1) combined with the fact that e = w10 + woo gives

wl0 - w01 = e - a,, (3.9)

2-3 The equivalence of strong and weak learnability 35

and (3.1), (3.2) and (3.6) together imply that

-a2 wo + a, - w-o
2a, 2(1 - a,)

or equivalently,

2(1 - al)w, - 2alwio = 2a 1(1 - al)(1 - 2a2).

Combined with (3.9), this implies

(1 - 2a,)(w01 + w10) = e - a, + 2a 1(1 - al)(1 - 2a 2)

and so

e - a, + 2a 1(1 - al)(1 - 2a 2)
1 - 2a,

e - 4aja2(1 - a,)
1 - 2a,

e - 4alca(1 - a,)
> a + 1-a (3.10)

Regarding e and a < 1/2 as fixed, we refer to this last function on the right hand side of the

inequality as f(a,). To lower bound w1 0 + w0o, we find the minimum of f on the interval [0,0].

The derivative of f is:

f'(a1) = (4- 8o)a2 - (4 - 8a)al + (1 - 4a + 2e)
(1 - 2a,)2

The denominator of this derivative is clearly zero only when a, = 1/2, and the numerator,

being a parabola centered about the line a, = 1/2, has at most one zero less than 1/2. Thus,

the function f has at most one critical point on the interval (-oc, 1/2). Furthermore, since f

tends to -oo as a, - -oo, a single critical point in this range cannot possibly be minimal. This

means that f's minimum on any closed subinterval of (-oo. 1/2) is achieved at one endpoint

of the subinterval. In particular, for the subinterval of interest to us, the function achieves its

minimum either when a, = 0 or when a, = a. Thus, w10 + w,01 _ min(f(0), f(a)).

We can assume that e > c - 2r 2 = (3/4 + a/2) c; otherwise, if e were smaller than this

quantity, then i would be less than c - r2 and so Learn would have returned h2 rather than

going on to compute h3 . Thus, f(0) = e > 3/4. Also, using our bound for e and the fact that

c= 3a 2 - 2a', we have

e - 4a2(l - a)
f() a 1-2a

36 The Strength of Weak Learnability

a - 6a 2 + 4C(3 + e

1 - 2a

a - 6a' + 4a 3 + (3/4 + a/2) (3a2 - 2a 3)

1 - 2a

= (4 -7a+ 2a2).

Since 4-7a+2a 2 > 1 for a < 1/2, f(a) >_ a/4 > c/4. We conclude wlo+wo >_ E/4, completing

the proof. U

To bound the number of examples needed to estimate a, and e, we make use of the following

bounds on the tails of a binomial distribution [10, 44].

Lemma 3.6 (Chernoff Bounds) Let Xl,...,Xm be a sequence of m independent Bernoulli

trials, each succeeding with probability p so that E[Xi] = p. Let S = X, + - + X.. be the

random variable describing the total number of successes. Then for 0 < -Y < 1, the following

hold:

" (additive form) Pr[S > (p + y)m] 5 e- 2m' , and Pr[S < (p - 'y)m] < e-2m-;

" (multiplicative form) Pr[S > (1 + 7)pm] 5 e-, ',2 p/3, and Pr[S < (1 -)pm] < e - ' 3mp/2.

The additive form (also known as Hoeffding's inequality) holds also if Xl,..., Xm are indepen-

dent identically distributed random variables with range in [0, 1).

Lemma 3.7 On a good run, the expected number of examples M(c, 6) needed by Learn(c, 6, EX)

isO (36T. (p2 log(5b/6) + m(/5)))

Proof: In the base case that c > 1 - .1, Learn simply calls WeakLearn, so we have M(E, 6) =

m(6). Otherwise, on each of the recursive calls, the simulated oracle is required to provide

M(g-1 (e),6/5) examples. To provide one such example, the simulated oracle must itself draw

at most an average of 4/c examples from EX. Thus, each recursive call demands at most

(4/c)- M(g-(c), 6/5) examples on average.

In addition, Learn requires some examples for making its estimates a, and i. Using the addi-

tive form of Lemma 3.6, it follows that a sample of size O(log(1/6)/r2) suffices for each estimate,

for i = 1.2. Note that 1/p < 1/2 - c = 1/2 - g(a) = (1/2 - a)(1 + 2a - 2a 2) < (3/2)(1/2 - a).

Thus, by our choice of r, and r2, both estimates can be made using cp2 log(1/6)/e 2 examples,

for some positive constant c.

We thus arrive at the recurrent inequality:

M(E,6) < 12 . M(g_(C), 615) + cp2 log(1/6) (3.11)
C2

2-3 The equivalence of strong and weak learnability 37

To complete the proof, we argue inductively that inequality (3.11) implies the bound

36 B
. m(/5 B) + c(36" - 1)p 2 log(5 8 /6)M (, 6) _< C2 (3.12)

The base case (B = 0) clearly satisfies this bound. In the general case, equation (3.11) implies

by inductive hypothesis that

M(C, 6) < 12 [36B - 1 . m((6/5 B) + c(36 B- 1 - 1)p2log(5B/6)] cplog(1/6)- CT (g-,(E))2 I C2

< 12 [36 B - 1 m(/5B) + c(36 B- 1 1)p2log(5B/b)" +p21og(1/)C c /3 1 (

3 6 B . m(6/5B) + c(36B - 1)p 2 log(5/6) cp 2

C2+ - (log(1/6) - 351og(5C/2))

which clearly implies (3.12). The last inequality here follows from the fact that C < 3(g-(E)) 2

since g(a) < 3W2 for a > 0. U

Lemma 3.8 On a good run. the expected execution time of Learn({, b. EX) is given by T(c, 6) =

0 (3B . t(/5 B) + 108B . 2(/5B). (p 2 log(5 B /6) + m(b/5B)))C2

Proof: As in the previous lemmas, the base case that - is easily handled. In this case,
2p

T(£,b) = t(b).

Otherwise, Learn takes expected time 3 - T(g-(c),/5) on its three recursive calls. In

addition, Learn spends time drawing examples to make the estimates &I and , and overhead

time is also spent by the simulated examples oracles passed on the three recursive calls. A typical

example that is drawn from Learn's oracle EX is evaluated on zero, one or two of the previously

computed subhypotheses. For instance, an example drawn for the purpose of estimating &I is

evaluated once by hi; an example drawn for the simulated oracle EX3 is evaluated by both h,

and h2 . Thus, Learn's overhead time is proportional to the product of the total number of

examples needed by Learn and the time it takes to evaluate a subhypothesis on one of these

examples. Therefore, the following recurrence holds:

T(c£,6) < 3. T(g-(c),6 /5) + c. U(g-'(c), b/5) • M(, b) (3.13)

for some positive constant c. Applying Lemmas 3.4 and 3.7, this implies

T(, 6) 5 3. T(g-'(),615) + c'. 108 B . U(6/5B). (p2 log(5B/6) + m(6/5B)) (3.14)T({,) < . T~-l({,6/5 +C2

38 The Strength of Weak Learnability

for some positive constant c'. An induction argument shows that this implies:

T~~e,6) . t(b/5B) + 2c' . 1 0 8 B . U(6/5B) .~p o(B6 ~55).(.5T(c, b) < 3• t(/_B + (. •1log(5B/)+ "~1B) (3.15)

Clearly, the base case (B = 0) satisfies this inequality. In general, equation (3.14) implies using

our inductive hypothesis that

T(e, b) < 3 B .t(b 1 5 B)+

S3. 2c'. 108 - . u(6l5B) c'. 108B . u(/bl5) (p2 log(5b/6) + m(6/5D))91(W+ C2 " p o(

Since g-(c) _> c, this clearly implies equation (3.15), completing the induction. U

The main result of this section follows immediately:

Theorem 3.9 Let 0 < c < 1/2 and let 0 < 6 < 1. With probability at least 1 - 6, the execution

of Learn(c, 6/2, EX) halts in time polynomial in 1/c, 1/6, n and s, and outputs a hypothesis

c-close to the target concept.

Proof: By Theorem 3.2, the chance that Learn(c, b/2, EX) does not have a good run is at

most 6/2. By Markov's inequality, the chance that Learn(c, //2, EX) on a good run fails to

halt in time (2/) • T(E, b/2) is also at most b/2. Thus, using Lemma 3.8, the probability that

Learn(c, b/2, EX) has a good run (and so outputs an c-close hypothesis) and halts in polynomial

time is at least 1 -.

2-3.5 Space complexity

Although not of immediate consequence to the proof of Theorem 3.9, it is worth pointing out

that Learn's space requirements are relatively modest, as proved in this section.

Let S(c, 6) be the space used by Learn(c, b, EX); let Q(E, 6) be the space needed to store an

output hypothesis; and let R(c, b) be the space needed to evaluate such a hypothesis. Let s(b),

q(6) and r(6) be analogous quantities for WeakLearn(b, EX). (Each of these measures worst-case

space complexity.) Then we have:

Lemma 3.10 The space Q(c, b) required to store a hypothesis output by Learn(c, b, EX) is at

most O(3B. q(b/5B)). The space R(c, b) needed to evaluate such a hypothesis is O(B + r(//5B)).

Finally, the total space S(c,b) required by Learn is 0 (3 B - q(6/5B) + s(6 / 5 B) + B • r(6/5B)).

Proof: For > 1 _ the bounds are trivial. To bound Q, note that the hypothesis returned
- 2 p'

by Learn is a composite of three (or fewer) subhypotheses. Thus,

Q(c, 6) < 3.Q(g-'(c),6b/5)+O(1).

2-4 Improving Learn's time and sample complexity 39

To evaluate such a composite hypothesis, each of the subhypotheses is evaluated one at a time.

Thus,

R(E,6) _ R(g-(E),6/5) + 0(1).

Finally, to bound S, note that the space required by Learn is dominated by the storage of

the subhypotheses, by their recursive computation, and by the space needed to evaluate them.

Since the subhypotheses are computed one at a time, we have:

S(c,6) < S(g-(c),6/5) + 0 (Q(g-(e),6/5) + R(g-'(c),6/5)) .

The solutions of these three recurrences are all straightforward, and imply the stated bounds.

2-4 Improving Learn's time and sample complexity

In this section, we describe a modification to the construction of Section 2-3 that significantly

improves Learn's time and sample complexity. In particular, we improve these complexity

measures by roughly a factor of 1/c, giving bounds that are linear in 1/c (ignoring log factors).

These improved bounds will have some interesting consequences, described in later sections.

In the original construction of Learn given in Figure 2, much time and many examples

are squandered by the simulated oracles EX waiting for a desirable instance to be drawn.

Lemma 3.5 showed that the expected time spent waiting is 0(1/c). The modification described

below will reduce this to 0(1/a) = 0(1/v/c). (Here, a = g-(E) as before.)

Recall that the running time of oracle EX 2 depends on the error a, of the first subhypoth-

esis hl. In the original construction, we ensured that a, not be too small by estimating its

value, and, if smaller than e, returning h, instead of continuing the normal execution of the

subroutine. Since this approach only guarantees that a, _> Q(c), there does not seem to be

any way of ensuring that EX2 run for o(1/c) time. To improve EX2's running time then, we

will instead modify h, by deliberately increasing its error. Ironically, this intentional injection

of error will have the effect of improving Learn's worst-case running time by limiting the time

spent by either EX2 or EX3 waiting for a suitable instance.

2-4.1 The modifications

Specifically, here is how Learn is modified. Call the new procedure Learn'. After the recursive

computation of hl, Learn' estimates the error a, of hl, although less accurately than Learn.

Let al be this estimate, and choose a sample large enough that la, - a, < a/4 with probability

at least 1 - 6/5. Since, on a good run, a, _< a, we can assume without loss of generality that

40 The Strength of Weak Learnability

d, < 3a/4. (For if hi > 3a/4, then a, > a/2 (assuming di has the desired accuracy); thus, in

this case, jai - 3a/41 < a/4 and ti can be replaced by 3a/4.)

Next, Learn' defines a new hypothesis h' as follows: given an instance x, h' first flips a coin

biased to turn up "heads" with probability exactly

1a - -

If the outcome of this coin flip is "tails," then h' evaluates hi(x) and returns the result. Oth-

erwise, if "heads," h' predicts the wrong answer, -'c(x). Since h' will only be used during the

training phase, we can assume that the correct classification of x is available, and thus that h'

can be simulated. Also, note that 0 < / < 1 since ti < 3a/4.

This new hypothesis h' is now used in place of h, by EX2 and EX 3 . The rest of the procedure

Learn is unmodified. In particular, the final returned hypothesis h is unchanged-that is, hl,

not h', is used by h.

One other modification is made to improve Learn's time and sample complexity: after h2 is

computed, its error e with respect to D is estimated in a slightly different manner. Specifically,

we make an estimate i with the following properties:

" if e < c - 2r 2, then i < c - r2 with probability at least 1 - 6/5; and

" if e > c - 2r2, then > (1 - rT2 /)e with probability at least 1 - 6/5.

We will see that such an estimate has all of the needed properties, but requires a significantly

smaller sample.

2-4.2 Correctness

To see that Learn' is correct, we will assume as in the proof of Theorem 3.2 that a good run

occurs; this will be the case with probability at least 1 - . If < c - 7 2 so that h = h 2 is

returned, then either e < c - 2r 2, or is such that e < c . /(c - r2). In either case, the returned

hypothesis h2 clearly has error e < c.

Otherwise, note that the error of h' is exactly a' = (1 - /3)al + 3 since the chance of error

is a, on "tails," and is 1 on "heads." By our choice of 0, we have that:

a' < (1 -o)(+ 14)+

= 4a + 4a

it + a o-- a o,

4 n n4 t a i l
m ra

a~i
n i

n I K H n a H

2-4 Improving Learn's time and sample complexity 41

and also

al > 1a) +
= ia +(1 i+ 1-44~ 4

al (i - la + (1- ix-- p/

Thus, a/2 < a' < a.

Let h' be the same hypothesis as h, except with h' used in lieu of hl. Note that h', h', h2

and h 3 are related to one another in exactly the same way that h, hl, h 2 and h3 are related

in the original proof of Theorem 3.2. That is, if we imagine that h' is returned on the first

recursive call of the original procedure Learn, then it is not impossible that h2 and h 3 would
be returned on the second and third recursive calls, in which case h' would be the returned

hypothesis. Put another way, the proof that h' has error at most g(a) = c is an identical copy of
the one given in the proof of Theorem 3.2, except that all occurrences of h and h, are replaced

by h' and h'.

Finally, we must show that h's error is at most that of h'. Let p'(x) = Pr[h'(x) 0 c(x)],

and let p1(x) be as in Theorem 3.2. Then for x E X,,, we have

Pr[h'(x) o c(x)] = p'(x)[(I - p2(x))p3(x) + p2(x)(1 - P3(X))] + P2(x)P3(x)

> pI(x)[(1 - p2(x))p 3 (x) + p2 (x)(1 - p3 (x))] + p2 (x)p 3(x)

= Pr[h(x) 0 c(x)]

where the inequality follows from the observation that p'l(x) = (1 -O/)p 1(x) + /3 > p1(x). This

implies that the error of h is at most the error of h', which is bounded by C.

2-4.3 Analysis

Next, we show that Learn' runs faster using fewer examples than Learn. NVe use essentially

the same analysis as in Section 2-3.4. The following three lemmas are modified versions of

Lemmas 3.5, 3.7 and 3.8. The proofs of the other lemmas apply immediately to Learn' with

little or no modification, and so are omitted.

Lemma 4.1 Let r be the expected number of examples drawn from EX by any oracle EX

simulated by Learn' on a good run when asked to provide a single example. Then r < 4/a.

Proof: As in the original proof, r = 1 for EXI. We expect the second oracle EX2 to loop at

most 1/a' times on average. Since, as noted above, a/2 < a'1 < a, r is at most 2/a in this case.

42 The Strength of Weak Learnability

Finally, to bound the number of iterations of EX3 , we will show that w10 + w01 >! a/4 using

equation (3.10) as in the original proof. To lower bound w10 + w01, we find the minimum of

the last formula f of (3.10) (with a, replaced by a' of course) on the interval [a/2,a]. As

noted previously, the function f must achieve its minimum at one endpoint of the interval. We
assume as in the original proof that i > c - r 2 and thus that e > E - 2r 2 = (3/4 + a/2) c. It

was previously shown that f(a) > a/4, and, by a similar argument, we can bound f(a/2).

Specifically, since e > (3/4 + a/2)(3a 2 - 2a 3), we have that

f(a/2) + e-a2(2-a)
2 1- a
a + 3 + a a
2 4(1- a) - 2

This completes the proof. U

Lemma 4.2 On a good run, the expected number of examples M(c, 6) needed by Learn'(c, 6, EX)

is 0 (.(p2 log(5B/6) + m(6/5B))).

Proof: The proof is nearly the same as for Lemma 3.7. In addition to incorporating the superior

bound given by Lemma 4.1 on the number of examples needed by the simulated oracles, we

must also consider the number of examples needed to estimate a, and e. The first, a,, can be

estimated using a sample of size O(log(1/b)/a 2) = O(log(1/6)/e); this can be derived using the

additive form of Lemma 3.6, and by noting that c = g(a) < 3a 2 for a > 0.

Using the multiplicative form of Chernoff bounds, we argue that e can be estimated with

the desired accuracy using a sample of size only O(p2 log(1/b)/E). First, if e < c - 2 2 , then the

chance that i exceeds c - r 2 when derived from a sample of size m is at most the probability

of more than (, - r2)m successes occurring in a sequence of m Bernoulli trials, each succeeding

with probability exactly c - 2r 2. Applying the multiplicative form of Lemma 3.6 (with -f set to

r2/(E-2r 2)), it follows that this probability is at most b/5 for m proportionate to p2 log(1/b)/e.

Thus, for such a choice of m, if e < c - 2r 2 , then 6 < E - r 2 with probability at least 1 - b/5.

If e > c - r 2 then, again applying the multiplicative form of Chernoff bounds (with - set

to r2 f/), we see that > (1 - r2 /E)e with probability at least 1 - b/5 for a sample of size

proportionate to p2 log(1/b)/E.

Thus, we arrive at the recurrence

12 .bP 2 log(1)
Mg-,,,) C ~-() 5

for some positive constant c. This implies the stated bound by an argument similar to that

given in the proof of Lemma 3.7. U

2-5 Variations on the learning model 43

Lemma 4.3 On a good run, the expected execution time of Learn (c, b, EX) is given by T(c, 6) =

0 (3g • t(6/5B) + 108B" u(6/5B). (p2 log(5B/6) + m(6/5B))).

Proof: This bound follows from the recurrence (3.13), using the superior bound on M given

by Lemma 4.2. U

2-5 Variations on the learning model

Next, we consider how the main result relates to some other learning models.

2-5.1 Group learning

An immediate consequence of Theorem 3.1 concerns group learnability. In the group learning

model, the learner produces a hypothesis that need only correctly classify large groups of

instances, all of which are either positive or negative examples. Kearns and Valiant [49, 52]

prove the equivalence of group learning and weak learning. Thus, by Theorem 3.1, group

learning is also equivalent to strong learning.

2-5.2 Miscellaneous PAC models

Haussler et al. [38] describe numerous variations on the basic PAC model, and show that all of

them are equivalent. For instance, they consider randomized versus deterministic algorithms,

algorithms for which the size s of the target concept is known or unknown, and so on. It is not

hard to see that all of their equivalence proofs apply to weak learning algorithms as well (with

one exception described below), and so that any of these weak learning models are equivalent

by Theorem 3.1 to the basic PAC-learning model.

The one reduction from their paper that does not hold for weak learning algorithms concerns

the equivalence of the one- and two-oracle learning models. In the one-oracle model (used

exclusively in this chapter), the learner has access to a single source of positive and negative

examples. In the two-oracle model, the learner has access to one oracle that returns only

positive examples, and another returning only negative examples. The authors show that these

models are equivalent for strong learning algorithms. However, their proof apparently cannot be

adapted to show that one-oracle weak learnability implies two-oracle weak learnability (although

their proof of the converse is easily and validly adapted). This is because their proof assumes

that the error c can be made arbitrarily small, clearly a bad assumption for weak learning

algorithms. Nevertheless, this is not a problem since we have shown that one-oracle weak

learnability implies one-oracle strong learnability, which in turn implies two-oracle strong (and

44 The Strength of Weak Learnability

therefore weak) learnability. Thus, despite the inapplicability of Haussler et al.'s original proof,

all four learning models are equivalent.

2-5.3 Fixed hypothesis spaces

Much of the PAC-learning research has been concerned with the form or representation of the

hypotheses output by the learning algorithm. Clearly, the construction described in Section 2-3

does not in general preserve the form of the hypotheses used by the weak learning algorithm. It

is natural to ask whether there exists any construction preserving this form. That is, if concept

class C is weakly learnable by an algorithm using hypotheses from a class ?i of representations,

does there then exist a strong learning algorithm for C that also only outputs hypotheses

from it?

In general, the answer to this question is "no" (modulo some relatively weak complexity

assumptions). As a simple example, consider the problem of learning k-term DNF formulas

using only hypotheses represented by k-term DNF. (A formula in disjunctive normal form

(DNF) is one written as a disjunction of terms, each of which is a conjunction of literals, a

literal being either a variable or its complement.) Pitt and Valiant [68] show that this learning

problem is infeasible if RP 54 NP for k as small as 2.

Nevertheless, the weak learning problem is solved by the algorithm sketched below. (A

similar algorithm is given by Kearns 1481.) First, choose a "large" sample. If significantly more

than half of the examples in the sample are negative (positive), then output the "always predict

negative (positive)" hypothesis, and halt. Otherwise, we can assume that the distribution is

roughly evenly split between positive and negative examples. Select and output the disjunction

of k or fewer literals that misclassifies none of the positive examples, and the fewest of the

negative examples.

We briefly argue that this hypothesis is, with high probability, (I - Q(-L))-close to the

target concept. First, note that the target k-term DNF formula is equivalent to some k-CNF

formula [68]. (A formula in conjunctive normal form (CNF) is one written as the conjunction

of clauses, each clause a disjunction of literals. If each clause consists of only k literals, then the

formula is in k-CNF.) Next, we observe that every clause is satisfied by every assignment that

satisfies the entire k-CNF formula. Moreover, since the formula has at most O(nk) clauses, by

an averaging argument, there must be one clause not satisfied by f(1/nk) of the assignments (as

weighted by the target distribution) that do not satisfy the entire formula. Thus, there exists

some disjunction of k literals that is correct for nearly all of the positive examples and for at

least S1(1/nk) of the negative examples. In particular, the output hypothesis has this property.

Since the distribution is roughly evenly divided between positive and negative examples, this

implies that the output hypothesis is roughly (I - f(-))-close to the target formula.

2-6 General complexity bounds for PAC learning 45

2-5.4 Queries

A number of researchers have considered learning scenarios in which the learner is not only able

to passively observe randomly selected examples, but is also able to ask a "teacher" various sorts
of questions or queries about the target concept. For instance, the learner might be allowed to

ask if some particular instance is a positive or negative example. Angluin [7] describes several

kinds of queries that might be useful to the learner. The purpose of this section is simply to

point out that the construction of Section 2-3 is applicable even in the presence of most kinds
of queries. That is, a weak learning algorithm that depends on the availability of certain kinds

of queries can be converted, using the same construction, into a strong learning algorithm using

the same query types.

2-5.5 Many-valued concepts

In this chapter, we have only considered Boolean-valued concepts, i.e., concepts that classify

every instance as either a positive or a negative example. Of course, in the "real world,"

many learning tasks require classification into one of several categories (for instance, character

recognition). How does the result generalize to handle many-valued concepts?

First of all, for learning a k-valued concept, it is not immediately clear how to define
the notion of weak learnability. A hypothesis that guesses randomly on every instance will be
correct only 1/k of the time, so one natural definition would require only that the weak learning

algorithm classify instances correctly slightly more than 1/k of the time. Unfortunately, under
this definition, strong and weak learnability are inequivalent for k as small as three. As an

informal example, consider learning a concept taking the values 0, 1 and 2, and suppose that

it is "easy" to predict when the concept has the value 2, but "hard" to predict whether the

concept's value is 0 or 1. Then to weakly learn such a concept, it suffices to find a hypothesis that

is correct whenever the concept is 2, and that guesses randomly otherwise. For any distribution,
this hypothesis will be correct half of the time, achieving the weak learning criterion of accuracy

significantly better than 1/3. However, boosting the accuracy further is clearly infeasible.

Thus, a better definition of weak learnability is one requiring that the hypothesis be cor-
rect on slightly more than half of the distribution, regardless of k. Using this definition, the

construction of Section 2-3 is easily modified to handle many-valued concepts.

- 2-6 General complexity bounds for PAC learning

The construction derived in Sections 2-3 and 2-4 yields some unexpected relationships between

the allowed error c and various complexity measures that might be applied to a strong learning

algorithm. One of the more surprising of these is a proof that, for every learnable concept class,

46 The Strength of Weak Learnability

there exists an efficient algorithm whose output hypotheses can be evaluated in time polynomial

in log(1/). Furthermore, such an algorithm's space requirements are also only poly-logarithmic

in 1/c-far less, for instance, than would be needed to store the entire sample. In addition, its

time and sample size requirements grow only linearly in 1/c (disregarding log factors).

Theorem 6.1 If C is a learnable concept class, then there exists an efficient learning algorithm

for C that:
1

* requires a sample of size -. p1 (n, s, log(1/f),log(1/6)),

" halts in time - . p2(n, s, log(1/c), log(1/6)),

" uses space p3(n,s, log(1/c),log(1/6)), and

* outputs hypotheses of size p4(n, s, log(1/c)), evaluatable in time ps(n, s, log(1/e)).

for some polynomials Pi, P2, P3, P4 and p5.

Proof: Given a strong learning algorithm A for C, "hard-wire" c = 1/4, thus converting A into

a weak learning algorithm A' that outputs hypotheses 1/4-close to the target concept. Now let

A" be the procedure obtained by applying the construction of Learn' with A' plugged in for

WeakLearn. As remarked previously, we can assume without loss of generality that A" halts

deterministically in polynomial time. Note, by the lemmas of Sections 2-3 and 2-4 that A"

"almost" achieves the resource bounds given in the theorem, the only problem being that the

bounds attained are polynomial in 1/6 rather than log(1/6) as desired.

This problem is alleviated by applying the construction of Haussler et al. [38] for converting

any learning algorithm B into one running in time polynomial in log(1/6). Essentially, this

construction works as follows: Given inputs n, s, c and 6, first simulate B O(log(1/6)) times,

each time setting B's accuracy parameter to E/4 and B's confidence parameter to 1/2. Save

all of the computed hypotheses. Next, draw a sample of O(log(1/6)/c) examples, and output

the one that misclassifies the fewest examples in the sample. Haussler et al. argue that the

resulting procedure outputs an c-close hypothesis with probability 1 - 6.

Applying this construction to A", we obtain a final procedure that one can verify achieves

all of the stated bounds. U

The remainder of this section is a discussion of some of the consequences of Theorem 6.1.

2-6.1 Improving the performance of existing algorithms

These bounds can be applied immediately to a number of existing learning algorithms, yielding

improvements in time and/or space complexity -.t least in terms of c). For instance, the com-

putation time of Blumer et al.'s algorithm [14] for Learning half-spaces of R", which involves the

2-6 General complexity bounds for PAC learning 47

solution of a linear programming problem of size proportional to the sample, can be improved

by a polynomial factor of 1/c. The same is also true of Baum's (11] algorithm for learning unions

of half-spaces, which involves finding the convex hull of a significant fraction of the sample.

There are many more algorithms for which the theorem implies improved space efficiency.

This is especially true of the many known PAC algorithms that work by choosing a large

sample and then finding a hypothesis consistent with it. For instance, this is how Rivest's [72]

decision list algorithm works, as do most of the algorithms described by Blumer et al. [14],

as well as HeImbold, Sloan and Warmuth's [43] construction for learning nested differences of

learnable concepts. Since the entire sample must be stored, these algorithms are not terribly

space efficient, and so can be dramatically improved by applying Theorem 6.1. Of course,

these improvements typically come at the cost of requiring a somewhat larger sample (by a

polynomial factor of log(1/e)). Thus, there appears to be a trade-off between sample size and

space (or time) complexity.

2-6.2 Data compression

Blumer et al. [13, 14] have considered the relationship between learning and data compression.

They have shown that, if any sample can be "compressed"-i.e., represented by a prediction

rule significantly smaller than the original sample-then this compression algorithm can be

converted into a PAC-learning algorithm.

In some sense, the bound given in Theorem 6.1 on the size of the output hypothesis implies

the converse. In particular, suppose C is a learnable concept class and that we have been given

m examples (x1, c(Xl)), (x2, c(x2)),..., (x,,,, c(xm)) where each xi E X, and c is a concept in C.

of size s. These examples need not have been chosen at random. The data compression problem

is to find a small representation for the data, i.e., a hypothesis h that is significantly smaller

than the original data set with the property that h(xi) = c(xi) for each xi. A hypothesis with

this last property is said to be consistent with the sample.

Theorem 6.1 implies the existence of an efficient algorithm that outputs consistent hypothe-

ses only poly-logarithmic in the size m of the sample. This is proved by the following theorem:

Theorem 6.2 Let C be a learnable concept class. Then there exists an efficient algorithm that,

given 0 < b < 1 and m (distinct) examples of a concept c E C,, of size s, outputs with probability

at least 1 - 6 a deterministic hypothesis consistent with the sample of size polynomial in n, s

and log m.

Proof: Pitt and Valiant [68] show how to convert any learning algorithm into one that finds

hypotheses consistent with a set of data points. The idea is to choose e < 1/m and to run the

learning algorithm on a (simulated) uniform distribution over the data set. Since c is less than

48 The Strength of Weak Learnability

the weight placed on any element of the sample, the output hypothesis cannot misclassify even

a single data point. Applying this technique to a learning algorithm A satisfying the conditions

of Theorem 6.1, we see that the output hypothesis has size only polynomial in n, s and log m,

and so is far smaller than the original sample for large m.

Technically, this technique requires that the learning algorithm output deterministic hy-

potheses. However, probabilistic hypotheses can also be handled by choosing a somewhat

smaller value for c, and by "hard-wiring" the computed probabilistic hypothesis with a se-

quence of random bits. More precisely, set c = 1/2m, and run A over the same distribution as

before. Assume A has a good run. Note that the output hypothesis h can be regarded as a

deterministic function of an instance x and a sequence of random bits r. Let p be the chance

that, for a randomly chosen sequence r, h(., r) misclassifies one or more of the instances in

the sample. For such an r, the chance is certainly at least 1/m that an instance x is chosen

(according to the simulated uniform distribution on the sample) for which h(x, r) $ c(x). Thus,

the error of h is at least p/rn. By our choice of c, this implies that p _< 1/2, or, in other words,

that the probability that a random sequence r is chosen for which h(., r) correctly classifies

all of the m examples is at least 1/2. Thus. choosing and testing random sequences r, we can

quickly find one for which the deterministic hypothesis h(., r) is consistent with the sample.

Finally, note that the size of this output hard-wired hypothesis is bounded by Ihi + Irl, and

that Irl is bounded by the time it takes to evaluate h, which is poly-logarithmic in m. 0

Discrete domains

Naturally, the notion of size in the preceding theorem depends on the underlying model of com-

putation, which we have left unspecified. However, the theorem has some immediate corollaries

when the learning problem is discrete, i.e., when every instance in the domain X, is encoded

using a finite alphabet by a string of length bounded by a polynomial in n, and every concept in

C of size s is also encoded using a finite alphabet by a string of length bounded by a polynomial

in s.

Corollary 6.3 Let C be a learnable discrete concept class. Then there exists an efficient algo-

rithm that, given 0 < 6 < 1 and a sample as in Theorem 6.2, outputs with probability at least

1 - 6 a deterministic consistent hypothesis of size polynomial in n and s, and independent of m.

Proof: Since we assume (without loss of generality) that all the points of the sample are

distinct, the sample size m cannot exceed IXnI. Since log IXl is bounded by a polynomial in

n, the corollary follows immediately. E

Applying "Occam's Razor" of Blumer et al. [13], this implies the following strong general

bound on the sample size needed to efficiently learn C. Although the bound is better than that

2-6 General complexity bounds for PAC learning 49

given by Theorem 6.1 (at least in terms of c), it should be pointed out that this improvement

requires the sacrifice of space efficiency since the entire sample must be stored.

Theorem 6.4 Let C be a learnable discrete concept class. Then there exists an efficient learning

algorithm for C requiring a sample of size 0 (c • (p(n, s) + log(1/6))) for some polynomial p.

Proof: Blumer et ad. [13] describe a technique for converting a so-called "Occam" algorithm

A with the property described in Corollary 6.3 into an efficient learning algorithm with the

stated sample complexity bound. Essentially, to make this conversion, one simply draws a

sample of the stated size (choosing p appropriately), and runs A on the sample to find a

consistent hypothesis. The authors argue that the computed hypothesis, simply by virtue

of its small size and consistency with the sample, will be c-close to the target concept with

high probability. (Technically, their approach needs some minor modifications to handle, for

instance, a randomized Occam algorithm; these modifications are straightforward.) U

Non-discrete domains

Littlestone and Warmuth [59] consider the relationship between learning and more general kinds

of data compression schemes applicable to domains that are not necessarily discrete. Specifically,

a compression scheme is an algorithm that takes as input a sample S of m labeled examples

of some target concept c, and that outputs a hypothesis h consistent with the sample S and

represented over the alphabet S. In other words, h is represented by a sequence of examples

from the sample itself. For example, if the domain is the real plane, and the hypothesis classifies

points as positive if and only if they occur inside some rectangle determined by four points from

the sample, then h is naturally represented by those four examples.

The kernel size of the hypothesis is just the length of the sequence of examples that rep-

resents it. Also, it is often convenient to allow the hypothesis to incorporate "additional in-

formation" - say, a sequence of bits providing some supplementary information about the

hypothesis. The size of the hypothesis is then its total length in symbols over the alphabet

S U {O, 1}; that is, its length is equal to its kernel size plus the length of any additional infor-

mation. As usual, we require that the compression algorithm A run in polynomial time, and

that the output hypothesis be polynomially evaluatable.

Littlestone and Warmuth [59] show that if there exists a compression scheme algorithm .4

for a concept class C that outputs hypotheses significantly smaller than the sample (say, linear

in m' for some constant a < 1) then A can be used as a learning algorithm and C is learnable.

As a consequence of Theorem 6.2. we can show that the converse holds as well: if C is

learnable, then there exists a compression scheme for C outputting hypotheses of size polynomial

in n, s and log m.

50 The Strength of Weak Learnability

Theorem 6.5 Let C be a learnable concept class. Then there exists a compression scheme

algorithm for C that, given a sample S of m examples of some size-s concept c E C,, outputs

a hypothesis h consistent with S, and represented as a string in {0, 1}' X Sk for some k and f

polynomial in n, s and log m.

Proof: Let A be a weak learning algorithm for C. The key point in this proof is that hypotheses

output by A can be trivially represented by the entire set of examples actually received by the
algorithm: a hypothesis represented in this manner can be efficiently evaluated by re-running

A on the sample (given by the hypothesis) producing the "true" hypothesis of A which can
then be evaluated on a given instance. (If A is randomized, we also include the random bits

that were used.) Note that such a hypothesis has kernel size equal to the (polynomial) sample

complexity of A.

Next, we apply the hypothesis-boosting construction of Sections 2-3 and 2-4, and we then
eliminate any dependence on 6 in the size of the output hypothesis using the technique described

in the proof of Theorem 6.1. The result is a strong learning algorithm for C that outputs

hypotheses with kernel size only polynomial in n, s and log(1/c). Specifically, the hypothesis

is represented by the examples used on each simulated execution of A, in addition to a bit
string describing the overall structure of the hypothesis constructed by the boosting procedure.

Finally, this hypothesis (which may be randomized) is converted into a compression scheme as

described in Theorem 6.2. U
Thus, a necessary and sufficient condition for learnability is the existence of a compression

scheme of the style described by Littlestone and Warmuth [59].

It is worth pointing out that the technique described in Theorem 6.5, combined with the

results of Littlestone and Warmuth, gives an alternative method for analyzing the sample

complexity of the hypothesis boosting procedure of Section 2-3. Specifically, this proof shows
that Learn can be used as a compression scheme with output hypothesis size polynomial in

n, s and log m. Littlestone and Warmuth show that such a compression scheme can in turn
be converted into a learning algorithm with sample size c p(n, s, log(1/c), log(1/b)) for some

polynomial p.

Furthermore, notice that when Learn is used as a data compression scheme (using the

technique described in Theorem 6.5) the target distribution is entirely known, both at the top

level where it is uniform on the sample, and (with some simple modifications) at each lower
level as well. Thus, in such a case, there is no need to hypothesis test since the error of any

hypothesis can be computed directly by evaluating it on each instance and using our knowledge

about the target distribution. Also, there is no longer a need to filter any distributions - the

given distribution can be directly simulated. For these reasons, the algorithm can be shown to

run much faster - in fact, its running time is comparable to the sample size stated above.

2-6 General complexity bounds for PAC learning 51

Thus, Littlestone and Warmuth's techniques can be used to modify Learn, yielding time

and sample complexity bounds that, like those of Learn', are linear in 1/E (ignoring log factors).

However, in contrast to Learn', the resulting procedure is not space efficient since the entire

sample must be stored.

2-6.3 Hard functions are hard to learn

Theorem 6.1's bound on the size of the output hypothesis also implies that any hard-to-evaluate

concept class is unlearnable. Although this result does not sound surprising, it was previously

unclear how it might be proved: since a learning algorithm's hypotheses are technically per-

mitted to grow polynomially in 1/c, the learnability of such classes did not seem out of the

question.

This result yields the first representation-independent hardness results not based on crypto-

graphic assumptions. For instance, assuming P/poly 0 NP/poly, the class of polynomial-size,

nondeterministic Boolean circuits is not learnable. (The set P/poly (NP/poly) consists of those

languages accepted by a family of polynomial-size deterministic (nondeterministic) circuits.)

Furthermore, since learning pattern languages was recently shown [77] to be as hard as learning

NP/poly, this result shows that pattern languages are also unlearnable under this relatively

weak complexity-theoretic assumption.

Theorem 6.6 Suppose C is learnable, and assume that X, = {0, 1)". Then there exists a

polynomial p such that for all concepts c E C, of size s, there exists a circuit of size p(n, s)

exactly computing c.

Proof: Consider the set of 2n pairs {(x,c(x)) : x E X,). By Corollary 6.3, there exists an

algorithm that, with positive probability, will output a hypothesis consistent with this set of

elements of size only polynomial in n and s. Since this hypothesis is polynomially evaluatable,

it can be converted using standard techniques into a circuit of the required size. U

2-6.4 Hard ftnctions are hard to approximate

By a similar argument, the bound on hypothesis size implies that any function not computable

by small circuits cannot even be weakly approximated by a family of small circuits, for some

distribution on the inputs.

Let f be a Boolean function on {0, 1}° , D a distribution on {0, 1}" and C a circuit on n

variables. Then C is said to 0-approximate f under D if the probability is at most 3 that

C(x) $ f(x) on an assignment x chosen randomly from {O, 1} according to D.

Theorem 6.7 Suppose some function f cannot be computed by any family of polynomial-size

circuits. Then there exists a family of distributions D1 , D 2 , ... , where D,, is over the set {O, 1}n ,

52 The Strength of Weak Learnability

such that for all polynomials p and q, there exist infinitely many n for which there exists no

n-variable circuit of size at most q(n) that (2 p-))-approximates f under Dn.

Proof: Throughout this proof, we will assume without loss of generality that p(n) - q(n) = n k

for some integer k > 1.

Suppose first that there exists some k such that for all n and every distrbution D on {0, 1}",

there exists a circuit of size at most nk that Q - ')-approximates f under D. Then f can, in a

sense, be weakly learned. More precisely, there exists an (exponential-time) procedure that, by

searching exhaustively the set of all circuits of size nk, will find one that (- -)-approximates

f under some given distribution D. Therefore, by Theorem 3.1, f is strongly learnable in a

similar sense in exponential time. Applying Theorem 6.6 (whose validity depends only on the

size of he output hypothesis, and not on the running time), this implies that f can be exactly

computed by a family of polynomial-size circuits, contradicting the theorem's hypothesis.

Thus, for all k > 1, there exists an integer n and a distribution D on {0, 1}" such that no

circuit of size at most nk is able to (I - -i-,)-approximate f under D. To complete the proof, it

suffices to show that this implies the theorem's conclusion.

Let Vk be the set of distributions D on {O, 1}n for which no circuit of size nk or smaller

(-)-approximates f under D. It is easy to verify that Vk, ;? Dk+V for all k, n. Also,

since every function can be computed by exponential size circuits, there must exist a constant

c > 0 for which 11", = 0 for all n. Let n[k] be the smallest n for which D' 5 0. By the

preceding argument, n[k] must exist. Furthermore, n[k] _ k/c, which implies that the set

N = {n[k] : k > 1} cannot have finite cardinality.

To eliminate repeated elements from N, let k, < k, < ... be such that n[k] $ n[kj] for

i $ j, and such that {n[k] : i > 1} = N. Let Di be defined as follows: if i = n[kj] for some

j, then let Di be any distribution in D ' (which cannot be empty by our definition of n[k]);

otherwise, if i 0 N, then define Di arbitrarily. Then DI, D2 ,... is the desired family of "hard"

distributions. For if k is any integer, then for all ki _ k, Dn[k,] E nk, n . This proves

the theorem. N

Informally, Theorem 6.7 states that any language not in the complexity class P/poly cannot

be even weakly approximated by any other language in P/poly under some "hard" family of

distributions. In fact, the theorem can easily be modified to apply to other circuit classes as

well, including monotone P/poly, and monotone or non-monotone NCk for fixed k. (The class

NCk consists of all languages accepted by polynomial-size circuits of depth at most O(log n),

and a monotone circuit is one in which no negated variables appear.) In general the theorem

applies to all circuit classes closed under the transformation on hypotheses resulting from the

construction of Sections 2-3 and 2-4.

2-6 General complexity bounds for PAC learning 53

2-6.5 On-line learning

Finally, we consider implications of Theorem 6.1 for on-line learning algorithms. In the on-line

learning model, the learner is presented one (randomly selected) instance at a time in a series

of trials. Before being told its correct classification, the learner must try to predict whether the

instance is a positive or negative example. An incorrect prediction is called a mistake. In this

model, the learner's goal is to minimize the number of mistakes.

Previously, Haussler, Littlestone and Warmuth [39] have shown that a concept class C is

learnable if and only if there exists an on-ine learning algorithm for C with the properties that:

" the probability of a mistake on the mth trial is at worst linear in m- , for some constant

0 < 3 _ 1, and (equivalently)

* the expected number of mistakes on the first m trials is at worst linear in m* for some

constant 0 < a < 1.

(This result is also described in their paper with Kearns [38].) Noting several examples of learn-

ing algorithms for which this second bound only grows poly-logarithmically in m, the authors

ask if every learnable concept class has an algorithm attaining such a bound. Theorem 6.8

below answers this open question affirmatively, showing that in general the expected number

of mistakes on the first m trials need only grow as a polynomial in log m. Thus, we expect only

a minute fraction of the first m predictions to be incorrect.

(This result should not be confused with those presented in another paper by Haussler, Lit-

tlestone and Warmuth [40]. In this chapter, the authors describe a general algorithm applicable

to a wide collection of concept classes, and they show that the expected number of mistakes

made by this algorithm on the first m trials is linear in log m. However, their algorithm re-

quires exponential computation time, even if it is known that the concept class is learnable. In

contrast, Theorem 6.8 states that, if a concept class is learnable, then there exists an efficient

algorithm making poly-logarithmic in m mistakes on average on the first m trials.)

Haussler, Littlestone and Warmuth [39] also consider the space efficiency of on-line learning

algorithms. They define a space-efficient learning algorithm to be one whose space requirements

on the first m trials do not exceed a polynomial in n, s and log m. Thus, a space efficient

algorithm is one using far less memory than would be required to store explicitly all of the

preceding observations. The authors describe a number of space-efficient algorithms (though

are unable to find one for learning unions of axis-parallel rectangles in the plane), and so

are led to ask whether there exist space-efficient algorithms for all learnable concept classes.

Surprisingly, this open question can also be answered affirmatively, as proved by the theorem

below.

54 The Strength of Weak Learnability

Lastly, Theorem 6.8 gives a bound on the computational complexity of on-line learning (in

terms of m). In particular, the total computation time required to process the first m examples

is only propoTtional to m og' m, for some constant c. Thus, in a sense, the "amortized" or
"average" computation time on the mth trial is only poly-logarithmic in m. (In fact, a more

careful analysis would show that this is also true of the worst-case computation time on the

mth trial.)

Theorem 6.8 Let C be a learnable concept class. Then there exists an efficient on-line learning

algorithm for C with the properties that:

* the probability of a mistake on the mth trial is at most m - pi(n,s,logm),

* the expected number of mistakes on the first m trials is at most p2(n, s, log m),

* the total computation time required on the first m trials is at most m p3(n, s, log m), and

* the space used on the first mn trials is at most p4(n, s, log m),

for some polynomials Pl, P2, P3, P4.

Proof: Since C is learnable, there exists an efficient (batch) algorithm satisfying the properties

of Theorem 6.1. Let A be such an algorithm, but with E12 substituted for both E and b. Then

the chance that A's output hypothesis incorrectly classifies a randomly chosen instance is at

most C. (This technique is also used by Haussler et al. [381.)

Fix n and s, and let m(£) be the number of examples needed by A. From Theorem 6.1,

in(e) :_ (p/c) .lgc(1/f) for some constant c and some value p implicitly bounded by a polynomial

in n and s. Let c(m) = (p/m).lgc(m/p). Then it can be verified that m(£(m)) _i m for m > 2p.

Thus, m examples suffice to find a hypothesis whose chance of error is at most c(m).

To convert A into an on-line learning algorithm in a manner that preserves time and space

efficiency, imagine breaking the sequence of trials into blocks of increasing size: the first block

consists of the first 2p trials, and each new block has twice the size of the last. Thus, in general,

the ith block has size si = 2'p, and consists of trials ai = 2(2 - ' - 1)p+ 1 through bi = 2(2'- 1)p.

On the trials of the ith block, algorithm A is simulated to compute the ith hypothesis

hi. Specifically, A is simulated with c set to E(si), which thus bounds the probability that hi

misclassifies a new instance. (Note that there are enough instances available in this block for A

to compute a hypothesis of the desired accuracy.) On the next block, as the (i + 1)st hypothesis

is being computed, hi is used to make predictions; at the end of this block, hi is discarded as

hj+j takes its place.

Thus, if the mth trial occurs in the ith block (i.e., if ai _ m < bi), then the probability of a

mistake is bounded by c(si-1), the error rate of hi- 1 . From the definition of co, this implies the

2-7 Conclusions and open problems 55

desired bound on the probability of a mistake on the mth trial, and, in turn, on the expected

number of mistakes on the first m trials.

Finally, note that on the ith block, space is needed only to store the hypothesis from the

last block hi-1, and to simulate A's computation of block i's hypothesis. By Theorem 6.1, both

of these quantities grow polynomially in log(1/E). By our choice of c, this implies the desired

bound on the algorithm's space efficiency. The time complexity of the procedure is bounded in

a similar fashion. U

2-7 Conclusions and open problems

We have shown that a model of learnability in which the learner is only required to perform

slightly better than guessing is as strong as a model in which the learner's error can be made

arbitrarily small. The proof of this result was based on the filtering of the distribution in a

manner causing the weak learning algorithm to eventually learn nearly the entire distribution.

We have also shown this proof implies a set of general bounds on the complexity of PAC-learning

(both batch and on-line), and have discussed some of the applications of these bounds.

It is hoped that these results will open the way on a new method of algorithm design for

PAC-learning. As previously mentioned, the vast majority of currently known algorithms work

by finding a hypothesis consistent with a large sample. An alternative approach suggested by

the main result is to seek instead a hypothesis that works correctly on slightly more than half

the distribution. Perhaps, such a hypothesis is easier to find, at least from the point of view

of the algorithm designer. This approach leads to algorithms with a flavor similar to the one

described for k-term DNF in Section 2-5.3. To what extent will this approach be fruitful for

other classes not presently known to be learnable?

Another open question concerns the robustness of the construction described in this chapter.

Intuitively, it seems that there should be a close relationship between reducing the error of the

hypothesis, and overcoming noise in the data. Is this a valid intuition? Can our construction be

modified to handle noise? Can the construction be extended to the p-concept model described

in Chapter 4?

Finally, turning away from the theoretical side of machine learning, we can ask how well

our construction would perform in practice. Often, a learning program (for instance, a neural

network) is designed, implemented, and found empirically to achieve a "good" error rate, but

no way is seen of improving the program further to enable it to achieve a "great" error rate.

Suppose our construction is implemented on top of this learning program. Would it help? This

is not a theoretical question, but one that can only be answered experimentally, and one that

obviously depends on the domain and the underlying learning program. Nevertheless, it seems

plausible that the construction might in some cases give good results in practice.

CHAPTER 3

Statistical-perturbation Methods for
Inference of Read-once Formulas

3-1 Introduction

This chapter explores in detail a simple but powerful statistical technique for discovering the

structure of a read-once formula. (A formula is read-once if each variable appears at most once

in the formula.) As a demonstration of its power, we apply this technique to an array of learning

problems; in each case, we obtain the first provably efficient algorithm that effectively solves

the given learning problem. We also demonstrate that our method is highly robust against a

great deal of noise and randomness.

Similar to the Valiant model [831, we consider the problem of learning read-once formulas

from randomly chosen examples. The basic idea of our method is to observe the statistical

behavior of the target formula's output under various simple and easily sampled perturbations

of the target distribution (the distribution under which random examples are chosen). For

example, a typical perturbation might "hard-wire" a single variable to some fixed value. In a

variety of situations, we demonstrate that this simple technique can be applied to effectively

discover much or all of the target formula's structure.

For example, using this method, we are able to derive efficient algorithms for exactly iden-

tifying certain classes of read-once Boolean formulas when the observed examples are chosen

randomly according to specific, fixed and simple distributions. Even when the formula's output

is corrupted by a great deal of random misclassification noise, we show that exact identification

can be achieved.

We also apply our method to a probabilistic generalization of the class of all read-once

Boolean formulas constructed from the usual basis {AND, OR, NOT}. We show that an arbitrarily

56

3-1 Introduction 57

good approximation of such formulas can be inferred in polynomial time against any product

distribution (i.e., any distribution in which the setting of each variable is chosen independently

of the settings of the other variables). For example, this shows that the class of read-once

Boolean formulas over the usual basis can be learned in polynomial time against the uniform

distribution in the sense of Valiant.

The problem of learning Boolean formulas against special distributions has been considered

by a number of other authors. In particular, our technique closely resembles that used by

Kearns et al. [51] for learning the class of read-once formulas in disjunctive normal form (DNF)

against the uniform distribution. A similar result, though based on a different method, was

obtained by Pagallo and Haussler [66]. Our results extend theirs to a much broader class of

read-once formulas.

Also, Linial, Mansour and Nisan [57] used a technique based on Fourier spectra to learn
the class of constant-depth formulas (constructed from gates of unbounded fan-in) against the

uniform distribution. Furst, Jackson and Smith [27] generalized this result to learn this same

class against any product distribution. Verbeurgt [86] gives a different algorithm for learning

DNF-formulas against the uniform distribution. However, all three of these algorithms require

quasi-polynomial (nPo lYl 9(')) time, though Verbeurgt's procedure only requires a polynomial-

size sample.

Exact identification using amplification functions

As mentioned above, this chapter includes efficient algorithms for exactly identifying certain

classes of read-once Boolean formulas by observing the target formula's behavior on examples

drawn randomly according to a fixed and simple distribution. This distribution is related to the

formula's amplification function. The amplification function Aj(p) for a function f : {0, 1} --

{0, 1} is defined as the probability that the output of f is 1 when each of the n inputs to f is

1 independently with probability p. Amplification functions were first studied by Valiant [83]
and Boppana [16, 17] in obtaining bounds on monotone formula size for the majority function.

The method used by our algorithms is of central interest. For several classes of formulas,
we show that the behavior of the amplification function is unstable near the fixed point; that

is, the value of Aj(p) varies greatly with a small change in p. This in turn implies that small

but easily sampled perturbations of the fixed-point distribution (that is, the distribution where

each input is 1 with probability p, where Af(p) = p) reveal structural information about the

formula. As mentioned above, a typical perturbation of the fixed-point distribution hard-wires

a single variable to I and sets the remaining variables to 1 with probability p.
We apply this method to obtain efficient algorithms for exact identification of classes of

read-once formulas over various bases. These include the class of logarithmic-depth read-once

58 Statistical-perturbation Methods for Inference of Read-once Formulas

formulas constructed with NOT gates and three-input majority gates (for which the fixed-point

distribution is the uniform distribution), as well as the class of logarithmic-depth read-once

formulas constructed with NAND gates (for which the fixed-point distribution assigns 1 to each

input independently with probability 1/0 = 0.618, where 0 = (1 + V/5)/2 is the golden ratio).

Thus, for these classes, since the fixed point of the amplification function is the same for all

formulas, we obtain a single simple distribution for the entire class. As proved by Kearns

and Valiant [52, 49], these same classes of formulas cannot be even weakly approximated in

polynomial time when no restriction is placed on the target distribution; thus, our results may be

interpreted as demonstrating that while there are some distributions which in a computationally

bounded setting reveal essentially no information about the target formula, there are natural

and simple distributions which reveal all information.

For Boolean read-once formulas (a superset of the class of formulas constructed from NAND

gates) there is an efficient, exact-identification algorithm using membership and equivalence

queries due to Angluin, Hellerstein and Karpinski [8, 41]. The class of read-once majority

formulas can also be exactly identified using membership and equivalence queries, as proved

by Hancock [33] and Hellerstein and Karpinski [42]. Briefly, in the query model, the learner

attempts to infer the target formula by asking question, or queries, of a "teacher." For instance,

the learner might ask the teacher what the formula's output would be for a specific assignment

to the input variable; this is called a membership query. On an equivalence query, the learner

asks if a given conjectured formula is equivalent to the target formula

Note that our algorithms' use of a fixed distribution can be regarded as a form of "random"

membership queries, since this fixed and known distribution can be easily simulated by making

random membership queries. Thus, our algorithms are the first efficient procedures for exact

identification of logarithmic-depth majority and NAND formulas using only membership queries.

Furthermore, the queries used are non-adaptive in the sense that they do not depend upon the

answers received to previous queries. In contrast, all previous algorithms for exact identification,

including the algorithms mentioned above, require highly adaptive queries.

We also prove that our algorithms are robust against a large amount of random misclas-

sification noise, similar to, but slightly more general than that considered by Sloan [81] and

Angluin and Laird [9]. Specifically, if io and 77 represent the respective probabilities that an

output of 0 or 1 is misclassified, then a robust version of our algorithm can handle any noise

rate for which q(o + 171 # 1; the sample size and computation time required increase only by an

inverse quadratic factor in 11 - i/0 - 771. Again regarding our algorithms as using "random"

membership queries, these are the first efficient procedures performing exact identification in

some reasonable model of noisy queries. Our algorithms can also tolerate a modest rate of

malicious noise.

3-1 Introduction 59

Finally, we present an algorithm that learns any (not necessarily logarithmic-depth) read-

once majority formula in Valiant's model against the uniform distribution. To obtain this result

we first show that the target formula can be well approximated by truncating the formula to

have only logarithmic depth. We then generalize our algorithm for learning logarithmic-depth

read-once formulas to handle such truncated formulas. A similar result also holds for read-once

NAND formulas of unbounded depth.

Probabilistic read-once formulas

In Section 3-7, we describe an algorithm for learning a probabilistic generalization of the class

of read-once formulas over the usual basis JAND, OR, NOT}.

We adopt from Chapter 4 the notion of a probabilistic concept (p-concept). A p-concept c is

a function which maps each input-variable assignment x to a real number c(x) between 0 and 1.

We interpret c(z) as the probability that instance x will be positively classified. Thus, in the

p-concept model, a randomly labeled example is chosen as follows: first, an instance x is chosen

at random according to the target distribution on the instance space; then, with probability

c(x), the labeled example (x, 1) is observed, and with probability 1 - c(x), the labeled example

(x, 0) : observed. Thus, in general, the learner has no direct access to the function c, even on

individual points.

We view the learning problem as that of inferring from such randomly chosen examples a

good approximation of the function c itself. Thus, we ask that the learner infer a real-valued

hypothesis h for which Ih(x) - c(x)l is small for most instances x. This is called learning with

a model of probability.

Specifically, we consider the problem of learning a class of real-valued read-once formulas,

called read-once real formulas. Formulas in this class are constructed using two kinds of gates,

or operators: The first gate, denoted MUL, simply multiplies its two real-valued inputs. The

second gate, LINZW, computes the function LIN 2,(y) = z + wy. Here, z and w may be any real

numbers for which z and z + w are both in the range [0, 1]. Clearly, for a Boolean assignment

to the input variables, a formula constructed from such gates outputs a real number between

0 and 1, and so these are indeed p-concepts. We show that this class can be learned with a

model of probability against any product distribution (such as the uniform distribution).

Note that, for Boolean-valued inputs, the function MUL simply computes the logical AND

of its inputs, and LIN,-, computes the logical negation of its input. Thus, the class of read-

once real formulas includes the class of read-once Boolean formulas with basis fAND, OR, NOT).

Therefore, our result demonstrates for the first time the existence of a polynomial-time al-

gorithm for inferring a good approximation of any such Boolean formula (against a product

distribution).

60 Statistical-perturbation Methods for Inference of Read-once Formulas

Also, a gate LIN,. can alternatively be viewed as describing the behavior of a noisy or

random Boolean gate which, on input 0 randomly outputs 1 with probability z, and on input 1

outputs 1 with probability z + w. (If the input to such a randomized gate is 1 with probability p,

then the output is easily computed to be 1 with probability LIN,. = z + wp.) Thus, for the

distributions considered, our result can be regarded as a demonstration of the learnability of

read-once Boolean formulas, even when every gate and every wire of the formula is corrupted

by significant amounts of randomness.

3-2 Preliminaries

Given a Boolean function f : {0, 1}" --+ {0, 1}, Boppana [16, 17] defines its amplification function

A1 as follows: A!(p) = Pr[f(X1,...,X,) = 1], where X 1,..., X, are independent Bernoulli

variables that are each 1 with probability p. The quantity A1(p) is called the amplification

of f at p. Valiant [83] uses properties of the amplification function to prove the existence of

monotone Boolean formulas of size 0(n 5
.
3) for the majority function on n inputs. Also, we

denote by DW the distribution over {0, 1}" induced by having each variable independently set

to 1 with probability p.

For qj E {0,1} and i, E {1,...,n}, 1 < j < r, we write f1x,--q ,...,x,,-q, to denote

the function obtained from f by fixing or hard-wiring each variable xi. to the value qj. If each

qj = q for some value q, we abbreviate this by f i,,..., xi, -- q.

In our framework, the learner is attempting to infer an unknown target concept c chosen

from some known concept class C. In this chapter, C = U>i C, is parameterized by the

number of variables n, and each c E Cn represents a Boolean function on the domain {0, 1}". A

polynomial-time learning algorithm achieves exact identification of a concept class (from some

source of information about the target, such as examples or queries) if it can infer a concept

that is equal to the target concept on all inputs. A polynomial-time learning algorithm achieves

exact identification with high probability if for any 6 > 0, it can with probability at least 1 - 6

infer a concept that is equal to the target concept on all inputs. In this setting polynomial

time means polynomial in n and 1/6. Our algorithms achieve exact identification with high

probability when the example source is a particular, fixed distribution.

In the distribution-free or probably approximately correct (PAC) learning model, introduced

by Valiant [831 and described in previous chapters, the learner is given access to labeled (positive

and negative) examples of the target concept, drawn randomly according to some unknown

target distribution D. The learner is also given as input c, 6 > 0. The learner's goal is to output

with probability at least 1 - b a hypothesis h that has probability at most f of disagreeing with

c on a randomly drawn example from D (thus, the hypothesis has accuracy at least 1 - c). If

such a learning algorithm exists (that is, a polynomial-time algorithm meeting the goal for any

3-3 Exact identification of read-once majority formulas 61

n > 1, any c E Cn, any distribution D, and any c, 6), we say that C is PAC-learnable. In this

setting, polynomial time means polynomial in n, 1/c and 1/6. In this chapter, we will primarily

be interested in a variant of Valiant's model in which the target distribution is known a priori

to belong to a specific restricted class of distributions.

Note that because we consider only read-once formulas, there is a unique path from any

gate or variable to the output. We define the level or depth of a gate A to be the number of

gates (not including A itself) on the path from A to the output. Thus, the output gate is at

level 0. Likewise, we define the level or depth of an input variable to be the number of gates

on the path from the variable to the output. The depth of the entire formula is the maximum

level of any input, and the bottom level consists of all gates and variables of maximum depth.

An input xi, or a gate A, feeds a gate A' if the path from x, or A to the output goes through

A'. If zi or A is an input to A', then we say that z or A immediately feeds A'. For any two input

bits zi and xi we define l(xi, x) to be the deepest gate A fed by both xi and xj. Likewise,

r(xi,xi,Zk) is the deepest gate A fed by xi, xi, and xL. We say that a pair of variables xi and

xj meet at the gate r(x,,xi). Also, if r(xi,x,) = r(xi,xk) = r(xi,xk) = r(xi,x, X), then we

say that the variables xi, xj and xk meet at gate r(xi,xi,Xk); otherwise, the triple does not

meet in the formula. (Note that this only makes sense if there are gates with more than two

inputs, such as a three-input majority gate.)

3-3 Exact identification of read-once majority formulas

In this section we use properties of amplification functions to obtain a polynomial-time algo-

rithm that with high probability exactly identifies any read-once majority formula of logarithmic

depth from random examples drawn according to a uniform distribution.

This type of formula is used in Chapter 2's proof that a concept class is weakly learnable

in polynomial time if and only if it is strongly learnable in polynomial time. That is, the

hypothesis output by the boosting procedure described in that chapter can be viewed as a

majority formula whose inputs are the hypotheses output by the weak learning algorithm. We

also note that a read-once majority formula cannot in general be converted into a read-once

Boolean formula over the usual {AND, OR, NOT} basis.

It can be shown that the class of logarithmic-depth reac -nfice majority formulas is not

learnable in the distribution-free model (modulo some cryptographic assumptions; see Kearns

and Valiant [52] for details). Briefly, this can be proved using a Pitt and Warmuth-style
"prediction-preserving reduction" [70] to show that learning read-once majority formulas is at

least as hard as learning general Boolean formulas. Given a Boolean formula (of logarithmic

depth, without loss of generality), the main idea of such a prediction-preserving reduction

is to replace each OR gate (respectively, AND gate) with a MAJ gate, one of whose inputs is

62 Statistical-perturbation Methods for Inference of Read-once Formulas

wired to a variable that, under the target distribution, always has the value 1 (respectively,

0). The resulting majority formula can further be reduced to one that is read-once using the
substitution method of Kearns et al. [51]. Finally, combined with Kearns and Valiant's result

that Boolean formulas are not learnable (modulo cryptographic assumptions), this shows that

majority formulas are also unlearnable.

Despite the hardness of this class in the general distribution-free framework, we show that
the class is nevertheless exactly identifiable when examples are chosen from the uniform dis-

tribution. The algorithm consists of two phases. In the first nhase, we determine the relevant
variables (i.e., those that occur in the formula), their signs (i.e., whether they are negated or

not), and their levels. To achieve this goal, for each variable, we hard-wire its value to 1 and

estimate the amplification of the induced function at 1 using examples drawn randomly from
the uniform distribution on the remaining variables. Here, by "hard-wiring" a variable to 1,

we really mean that we apply a filter that only lets through examples for which that variable

is 1. We prove that if the variable is relevant, then with high probability this estimate will be

significantly smaller or greater than 1, depending on whether the variable occurs negated or

unnegated in the formula: otherwise, this estimate will be near ." Furthermore, the level of a

relevant variable can be determined from the amount by which the amplification of the induced

function differs from 1

In the second phase of the algorithm, we construct the formula. More precisely, we first

construct the bottom level of the formula, and then recursively construct the remaining levels.

To construct the bottom level of the formula, we begin by finding triples of variables that are
inputs to the same bottom-level gate. To do this, for each triple of relevant variables that

have the largest level number, we hard-wire the three variables to 1 and again estimate the

amplification of the induced function from random examples. We show that we can determine

whether the three variables all enter the same bottom-level gate based on this estimate.

Briefly, the recursion works as follows. Suppose that we are currently constructing level t

of the formula and we find that xi, xj, and x& are inputs to the same level-t gate. Then in the

recursive call we replace x i , xj, and Xk by a level-t meta-variable y _ MAJ(Xi,Xj,Xk). Since

y is a known subformula, its output on any example can be easily computed and y can be
treated like an ordinary variable. Furthermore, since . is the fixed point for the amplification

2

function of any read-once majority formula, it follows that y is 1 with probability 1. Thus, for

the recursive call we replace all triples of variables that enter level-t gates with meta-variables,

and we easily obtain our. needed source of random examples drawn according to the uniform

distribution on the new variable set from the original source of examples.

For the remainder of this section, we explore some of the properties of the amplification

function of read-once majority formulas, leading eventually to a proof of the correctness of this

3-3 Exact identification of read-once majority formulas 63

A fp)
1.0-

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1h=

0.0 1 1 1 - I I p
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1: The amplification function for read-once majority formulas for complete ternary
trees of depth h.

algorithm.

Lemma 3.1 Let XI, X 2 and X 3 be three independent Bernoulli variables, each 1 with proba-

bility pi, P2 and p3 , respectively. Then Pr[MAJ (XI, X 2, X 3) = 1] = PlP2 + PIP3 + P2P3 - 2plP2P3.

Proof: The stated probability is exactly the chance that at least two of the three variables

are 1. 0

Lemma 3.1 implies that A,(-) = for any read-once majority formula f. Thus, 4 is a fixed

point of Af.

Our approach depends on the fact that the first derivative of A! is large at , meaning that

a slight perturbation of D (112) (i.e., the uniform distribution) tends to perturb the statistical

-behavior of the formula sufficiently to allow exact identification. See Figure 1 for a graph

showing the amplification function for balanced read-once majority formulas of various depths.

We perturb D(1/2) by hard-wiring a small number of variables to be 1; such perturbations can

always be efficiently sampled by simply waiting for the desired variables to be simultaneously

set to 1 in a random example from D01 1 2) .

64 Statistical-perturbation Methods for Inference of Read-once Formulas

We begin by considering the effect on the function's amplification of altering the probability

with which one of the variables xi is set to 1. This will be important in the analysis that follows.

Lemma 3.2 Let f be a read-once majority formula, and let t be the level of an unnegated

variable x. Then for q E {0, 11, A 1 1 + ()' (q-1).

Proof: By induction on t. When t = 0, the formula consists just of the variable xj, and

the lemma holds. For the inductive step, let fl, f2 and f3 be the functions computed by

the three subformulas obtained by deleting the output gate of f; thus, f is just the majority

of fl, f2 and f3. Note that x, occurs in exactly one of these three subformulas-assume
it occurs in the first. Since xi occurs at level t - 1 of this subformula, by the inductive

hypothesis, Ajf:j-q(1) = +()t- (q-!), and since xi does not occur in the other subformulas,

= for i = 2,3. From Lemma 3.1, it follows that Al,,-,(.) has the stated value,

completing the induction. U
It can now be seen how we use the amplification function to determine the relevant variables

of f: if xj is rele: int, then the statistical behavior of the output of f changes significantly when

xi is hard-wired to 1. Similarly, the sign and the level of each variable can be readily determined

in this manner.

Theorem 3.3 Let f be a read-once majority formula of depth h. Let & be an estimate of

A fl.,_&() for some variable x;, and assume that 1& - al< r < (1)h+2. Then

x i, is relevant if and only if 16 - I >r;

• if xi is relevant, then it occurs negated if and only if & < 1;

•x occurs at level t if and only if VI - 21 - ,, < r.

Proof: This proof follows from straightforward calculations using Lemma 3.2. U
Thus, if one estimates the value of the amplification function from a sample whose size is

polynomial in 2", then with high probability one can determine which variables are relevant, as
well as the sign and level of every relevant variable. Specifically, we can apply Chernoff bounds
(Lemma 2-3.6) to derive a sample size sufficient to ensure that all the above information is
properly computed with high probability. We therefore assume henceforth that the level of
every variable has been determined, and that (without loss of generality) all variables are

relevant and unnegated.
More problematic is determining exactly how the variables are combined in f. A natural

approach is to try hard-wiring pairs of variables to 1, and to again estimate the amplification
of the induced function in the hopes that some structural information will be revealed. The
following lemma, which is useful at a later point, shows that this approach fails.

3-3 Exact identification of read-once majority formulas 65

Lemma 3.4 Let f be a read-once majority formula, and let xi and xi be distinct, unnegated

variables which occur at levels t, and t2, respectively. Then

= 1 + + ,

regardless of the depth d of A = I(xi, xj).

Proof: By induction on d. Let fl, f2 and f3 be the three subformulas of f which are inputs

to the output gate so that f = MAJ(fl, f 2, f 3).

If d = 0, then A is the output gate, and xi and xi occur in two of the subformulas (say, f,

and f2, respectively). From Lemma 3.2, it follows that

= +

for k = 1,2, and, since neither xi nor xj is relevant to f3, 1,',j(= -. The stated value

for Af,.,-I() follows then from Lemma 3.1.

If d > 0, then A is a gate occurring in one of the subformulas (say fi) at level d - 1 of the

subformula. By inductive hypothesis,

= _ + (I) +

Also, A,.,- = for k = 2,3. The stated value for AfIr,,x,_1(1) again follows from

Lemma 3.1. U

Thus, if two relevant variables are hard-wired to 1, no information is obtained by knowing

the value of the amplification function. That is, the amplification function is independent of

the level at which the two variables meet.

Therefore, we instead consider what happens when three relevant variables of the same level

are fixed to 1. In fact, it turns out to be sufficient to do so for triples of variables all of which

occur at the bottom level of the formula. We show that by doing so one can determine the full

structure of the formula.

For each triple xi, x, and xk all occurring at level t, there are essentially two cases to

consider; either

1. the triple x,, xi, xk does not meet in the formula; or

2. the three variables xi, z2 and xk meet at the gate (xi,xj, xk). We divide this case into

two sub-cases:

(a) x,, zj and xk are inputs to the same gate so that F(Z, j,Zxk) occurs at level t - 1;

or

66 Statistical-perturbation Methods for Inference of Read-once Formulas

(b) r(Zi, x,) occurs at some level d < t - 1.

We are interested in separating Case 2a from the other cases by estimating the amplification

of the function when all three variables are hard-wired to 1. This is sufficient to reconstruct

the structure of the formula: if we can find three variables that are inputs to some gate A

(and there always must exist such a triple), then we can essentially replace the subformula

consisting of the three variables and the gate A by a new meta-variable whose value can easily

be determined from the values of the original three variables. Furthermore, since is a fixed

point for all read-once majority formulas the meta-variables' statistics will be the same as those

of the original variables. Thus, the total number of variables is reduced by two, and the rest of

the formula's structure can be determined recursively.

The following two lemmas analyze the amplification of the function when three variables

are hard-wired to 1 in both of the above cases. We begin with Case 2:

Lemma 3.5 Let f be a read-once majority formula. Let xi, x, and xk be three distinct,

unnegated inputs which occur at levels t1 , t2 and t3, respectively, and which meet at gate

A = r(xi,xi,xk). Let d be the level of A. Then

= 1 + (.)t1+1 + Q)12+ + (1)t 3 +1 - (l)t,+t 2 +t 3 -2d-1

Proof: By induction on d. As in the preceding lemmas, suppose that f = MAJ(f 1 ,f 2 ,f 3). If

d = 0, then A is the output gate of f, and, without loss of generality, xi, x, and xk occur one

each in fl, f2 and f3, respectively. From Lemma 3.2, Aif,, ,..._1() = +(1) , for r = 1,2,3.

The stated value for A follows from Lemma 3.1.

If d > 0. then one of the subformulas (say, fl) contains A at depth d - 1. By inductive

hypothesis,

A, z&,.,.() =1 + (I)II + (1)t2 + (1)t3 - (-1)91+s+t3-2d-2

and of course, A, 1 r.,.,,r.Q() = 1 for r = 2,3. The proof is completed by again applying

Lemma 3.1. U

So, unlike the situation in which only two variables are hard-wired to 1, here the value of the

amplification function depends on the level of the formula at which the three variables meet.

However, it may be the case that xi, xj, and xk do not meet at all (i.e., we may be in Case 1).

The next lemma considers this case.

Lemma 3.6 let f be a read-once majority formula. Let xi, xi and xLk be three distinct, un-

negated inputs that occur at levels t1, t2 and t3 , respectively, and for which A' = F(xi,x!)

r(zi,xj,zk) = A. Then

= 1 + (1)" + (1)2'+)t-+1

3-3 Exact identification of read-once majority formulas 67

regardless of the levels d and d' of gates A and A'.

Proof: By induction on d. As before, assume that f = MAJ(f 1 ,f 2 ,f 3). If d = 0, then A

is the output gate, A' occurs (say) in fl, and Xk in f2. From Lemma 3.4, AI,1x.,,,z..() -
+ (1)" + (1)23, and from Lemma 3.2, A2.,.l + (). Also, .. = 4.

Lemma 3.1 then implies the stated value for _&!,-1).

If d > 0, then A occurs, say, in fl. By inductive hypothesis, Afj,,..() = -4 + (4)" +

()' + (4)", and clearly , for r = 2,3. An application of Lemma 3.1

completes the induction. U

Combining these lemmas, we can show that Case 2a can be separated from the other cases

by estimating the function's amplification with triples of variables hard-wired to 1.

Theorem 3.7 Let f be a read-once majority formula. Let xi, xj and xk be three distinct,

unnegated, level-t inputs. Let r be an estimate of a = Afor which I - a <T <

3(1)1+4. Then xi, xj and xk are inputs to the same gate of f if and only if & < 41 + (-)1 +

Proof: If Case 2a applies, then Lemma 3.5 implies that a = 4 + ()'. Otherwise, if either

Case 1 or 2b applies, then Lemmas 3.5 and 3.6 imply that a > + (1)+3 ()t+3 .The theorem

follows immediately. U
We are now ready to state the main result of this section:

Theorem 3.8 There exists an algorithm with the following properties: Given h, n, b > 0, and

access to examples drawn from the uniform distribution on {0, l}" and labeled by any read-once

majority formula f of depth at most h on n variables, the algorithm exactly identifies f with

probability at least 1 - 6. The algorithm's sample complexity is 0 (4h " log(n/b)), and its time

complexity is 0(4' • (r3 + n) • log(n/6)), where r is the number of relevant variables appearing

in the target formula.

Proof: First, for each variable xi, estimate the function's amplification with xi hard-wired

to 1. (We will ensure that, with high probability, this estimate is within (-)h+2 of the true

amplification.) It follows from Theorem 3.3 that after this phase of the algorithm, with high

probability we know which variables are relevant, and the sign and depth of each relevant

variable. (So, we assume from now on that the formula is monotone.)

In the second phase of the algorithm, we build the formula level by level from bottom to

top. To build the bottom level, for all triples of variables xi, xj, xk that enter the bottom

level, we estimate the amplification with x,, xj. and xk hard-wired to 1. (We will ensure that.

with high probability, this estimate is within 3 (I)h+4 of the true amplification.) It follows from

Theorem 3.7 that we can determine which variables enter the same bottom-level gates.

68 Statistical-perturbation Methods for Inference of Read-once Formulas

LearnMajorityFormula(n, h, 6)

E - ((4 h log(n/b)) labeled examples from D (1 / 2
)

X -0

for I <i < n
E ,examples from E for which xi 1
6 i- fraction of E' that are positive

ifi - 2 ()h+2 then
if 6> -3 then X - X U {xi}

else X-X u{Z}

t(xi) 4-- copute-level(&, h)
BuildFormula(h, X, E)

BuildFormula(t, X, E)
if t = 0 then target formula is only variable in X
else

for allx x, x,xk E X for which t(xi)-=t(xj)=t(xA) = t
E' - examples from E for which x, = xi = 1
& +- fraction of E' that are positive
if& < 1 + (1)t + 3 (1)t+4 then

let y MAJ(Xi,Xj,Xk) be a new variable
t(y) -- t - 1
X - (X U {y)- {x,,z4

BuildFormula(t - 1, X, E)

Figure 2: Algorithm for exactly identifying read-once majority formulas of depth h. Procedure

compute-level(d, h) computes the level associated with 6 as given by Theorem 3.3.

We want to recurse to compute the other levels; however, we cannot hard-wire too many

variables without the filter requiring too many examples. The key observation is that on exam-

ples drawn from the uniform distribution, the output of any subformula is 1 with probability I2

Thus, the inputs into any level are in fact distributed according to a uniform distribution. Since

we compute the formula from bottom to top, the filter can just compute the value for the known

levels to determine the inputs to the level currently being learned. Our algorithm is described

in Figure 2.

Given that the estimates for the amplification function have the needed accuracy, the proof

of correctness follows from Theorems 3.3 and 3.7. Specifically, for each variable xi, we need

a good estimate 6 of a = Af 1 .-_1(!); we require that the chosen sample be sufficiently large

that Ia - 61 < 2 -(h+2) with probability at least 1 - 6/2n. Then every such estimate for the n

variables will have the needed accuracy with probability at least 1 - 6/2. These estimates thus

satisfy the requirements of the first phase of the algorithm.

3-4 Exact identification of read-once positive NAND tormulas 69

In the second phase, we require good estimates of the formula's amplification when triples of
variables are hard-wired. In fact, we need such estimates not only when ordinary variables are
hard-wired, but also when we hard-wire meta-variables. Note that, assuming all estimates have
the needed accuracy, every (meta-)variable added to the set X in Figure 2 in fact computes

some subformula g of f. Thus, for every triple of subformulas g1, g2 and g of f, our algorithm
requires an estimate & of a, the amplification of f at ., given that the output of each subformula

g1, 92 and 93 is fixed to the value 1. Since a read-once majority formula on n variables has at
most 3n/2 subformulas (since it has at most n/2 MAJ gates), we require a sample sufficiently
large that Ja - &I < 3 (_)h+4 with probability at least 1 - 4b/(3n)3 . The chance that all of the
(at most (3n/2)3) estimates have the needed accuracy is then at least 1 - b/2.

Thus, a sufficiently large sample provides all of the needed estimates with probability at
least 1 - 6. The sample size required can be derived using a standard application of Chernoff
bounds (Lemma 2-3.6). 0

Note that our algorithm's sample complexity has only a logarithmic dependence on the
number of irrelevant attributes. Also, it follows immediately from Theorem 3.8 that any read-
once majority formula of depth O(log n) can be exactly identified in polynomial time.

Finally, we note that our algorithm can be modified to work without receiving a bound for
the height of the formula as input; the time and sample complexity only increase by a factor
of two. The idea is to guess an initial value of h = 1 and to increment our guess each time
the algorithm fails; it can be shown that, if the formula's height is greater than our current
guess, then this fact will become evident by our algorithm's inability to successfully construct a
formula. (Specifically, the algorithm BuildFormula in Figure 2 will reach a point at which there
remain level-t variables in X. but no three remaining level-t variables are immediate inputs to

the same gate.)

3-4 Exact identification of read-once positive NAND formulas

In this section we use the properties of the amplification function to obtain a polynomial-time

algorithm that with high probability exactly identifies any read-once positive NAND formula of
logarithmic depth from D(') where 0, is the constant (v5- 1)/2 ; 0.618. Note that b = 1/0 =

- 1, where 0 is the golden ratio.

The class of read-once positive NAN D formulas is equivalent to the class of read-once formulas
constructed from alternating levels of OR/AND gates, starting with an OR gate at top level, and

with the additional condition that each variable is negated if and only if it enters an OR gate.
This observation is easily proved by repeated application of DeMorgan's law.

It is interesting to compare our result with what is known about learning this class of for-
mulas in other models. It follows from the results of Kearns and Valiant [52] and Pitt and

70 Statistical-perturbation Methods for Inference of Read-once Formulas

Warmuth [70] that learning this class of formulas is hard in the distribution-free model (under

cryptographic assumptions). Thus, there exist distributions that reveal essentially no informa-

tion about the formula that is useful for prediction to a computationally-bounded algorithm.

If one views the sampling of the distribution D10 as a form of non-adaptive "random mem-

bership queries," our result can also be compared with the algorithm of Angluin, Hellerstein

and Karpinski [8] which uses membership and equivalence queries that are considerably more

complicated and are highly dependent on the target concept; on the other hand, their algorithm

can be used to identify a broader class of formulas.

We show that this class of formulas is learnable when examples are chosen from a distribution

in which each variable is 1 with probability 0. The basic structure of the algorithm is just like

that of the preceding algorithm for identifying read-once majority formulas. In the first phase

of the algorithm, we determine the relevant variables and their depths by hard-wiring each

variable to 0, and estimating the amplification of the induced function at 0' using random

examples from D(). In the second phase of the algorithm, we construct the formula by finding

pairs of variables that are direct inputs to a bottom-level gate. Here, we show that this is

possible by hard-wiring pairs of variables to 0 and estimating the function's amplification.

After learning the structure of the bottom level of the formula, we again are able to construct

the remaining levels recursively.

Since the techniques used in this section are so similar to those in Section 3-3, the proofs

of the lemmas and theorems have been omitted. Most of the lemmas can be proved by simple

induction arguments as before.

We turn now to a discussion of some of the properties of the amplification function of

read-once positive NAND formulas; these lead to a proof of the correctness of our algorithm.

Lemma 4.1 Let X, and X 2 be independent Bernoulli variables, each 1 with probability p, and

P2, respectively. Then Pr[NAND(X 1,X 2) = 1] = 1 - P1P2.

It is easily verified that 1 - V)2 = 0, and thus that 7P is a fixed point of the amplification

function A1 whenever f is a read-once positive NAND formula. Once again, our approach

depends on the fact that slight perturbations of D (O) tend to perturb the statistical behavior

of the formula sufficiently to allow exact identification.

Lemma 4.2 Let f be a read-once positive NAND formula, and let t be the level of some vari-

able z,. Then Afl,_q(iP) = 0 + (q -

Thus, hard-wiring an even-leveled input to 0 decreases the amplification while hard-wiring

an odd-leveled input to 0 increases the amplification. To give some intuition explaining this

behavior, consider the correspondence described above between read-once positive NAND for-

mulas and leveled OR/AND formulas. An even-leveled input corresponds to an input to an AND

3-4 Exact identification of read-once positive NAND formulas 71

gate and thus hard-wiring that input to 0 clearly decreases the amplification. However, an

odd-leveied input corresponds to an input that is first negated and then fed to an OR gate;

thus, this case corresponds to hard-wiring the input to an OR gate to 1 which clearly increases

the amplification function.

As we saw in the last section, the amplification function can be used to determine the

relevant variables of f: if xi is relevant then the statistical behavior of the output of f changes

significantly when xj is hard-wired to 0. Similarly, the level of each variable can be computed

in this manner.

Theorem 4.3 Let f be a read-once positive NAND formula of depth h. Let & be an estimate of

a - Afl,._0(i) for some variable xj, and assume that I& - al < r < iPh+/ 2 . Then

* xj is relevant if and only if Id - J'I > r;

* xj occurs at level t if and only if 10 + (-V)t+l - &I <

We next consider the effect on the amplification function of hard-wiring two inputs. Unlike

the case of majority formulas, measuring the amplification of the function when pairs of variables

are hard-wired to 0 reveals a great deal of information about the structure of the formula. In

particular, the value of the amplification function when two level-t variables xi and xj are

hard-wired to 0 depends critically on the depth of r(xi,xi).

Lemma 4.4 Let f be a read-once positive NAND formula, and let xi and xi be two distinct

variables which occur at levels t, and t2, respectively, and for which A = F(xi,x) is at level d.

Then

A= iL' + (t)+1 + _t+1 -

Using the same ideas as in the last section, it can now be proved that, given a good estimate

of the amplification function, one can determine which variables meet at bottom-level gates.

Theorem 4.5 Let f be a read-once positive NAND formula. Let xi and xi be two level-t inputs.

Let & be an estimate of a = , for which Id - al < r < vt+a/2. Then x, and xi are

inputs to the same level-t gate of f if and only if I ' + (-V)+ - d < r.

We are now ready to state the main result of this section:

Theorem 4.6 Let 0' = 1/0 = (v' - 1)/2. Then there exists an algorithm with the following

properties: Given h, n, 6 > 0, and access to examples drawn from the distribution D(0 on

{0, 1}' and labeled by any read-once positive NAND formula f of depth at most h on n vari-

ables, the algorithm exactly identifies f with probability at least 1 - 6. The algorithm's sample

complexity is O(.02 1 • log(n/6)), and its time complexity is O(2
1h • (r2 + n) . log(n/ 6)), where r

is the number of relevant variables appearing in the target formula.

72 Statistical-perturbation Methods for Inference of Read-once Formulas

Our algorithm is obtained by making the obvious modifications to LearnMajorityFormula

and BuildFormula. The proof that this algorithm is correct follows from the preceding lemmas

and theorems, and is similar to the proof of Theorem 3.8.

As before, it follows immediately that any read-once positive NAND formula of depth at

most O(log n) can be exactly identified in polynomial time.

3-5 Handling random misclassification noise

Because the algorithms described in the preceding sections are statistical in nature, they are

easily modified to handle a considerable amount of noise. In this section, we describe a robust

version of our algorithm for learning logarithmic-depth read-once majority formulas. Although

omitted, a similar (though slightly more involved) algorithm can be derived for NAN D formulas.

Our algorithm is able to handle a kind of random misclassification noise which is similar, but

slightly more general than that considered by Angluin and Laird [9], and Sloan [811. Specifically,

the output of the target formula is "flipped" with some fixed probability which may depend on

the formula's output. Thus, if the true, computed output of the formula is 0, then the learner

sees 0 with probability 1 - ilo, and 1 with probability t}o, for some quantity 77o. Similarly, a true

output of 1 is observed to be 0 with probability i'l and 1 with probability 1 - iY. When 770 = 771,

this noise model is equivalent to that considered by Angluin and Laird, and Sloan. Note that

when 770 + '11 = 1, outputs of 0 or 1 are entirely indistinguishable in an information-theoretic

sense. Moreover, we can assume without loss of generality that 77o + i}m !5 1 by symmetry of the

behavior of the formula f with its negation -,f.

If we regard our algorithm's use of a fixed distribution as a form of membership query, we

can alo handle large rates of misclassification noise in the queries. Here the formulation of a

meaningful noise model is more problematic. In particular, we wish to disallow the uninteresting

technique of repeatedly querying a particular instance in order to obtain its true classification

with overwhelming probability. Thus, we consider a model in which noisy labels are persistent:

for each instance z, on the first query to x, the true output of the target concept is computed

and is reversed with probability 70 or 771, according to whether the true output is 0 or 1 (as

described above). However, on all subsequent queries to x, the label returned is the same as the

label returned with the first query to x. A natural interpretation of such persistent noise is that

of a teacher who is simply wrong on certain instances, and cannot be expected to change his

mind with repeated sampling. This kind of persistent noise is not a problem for our algorithms

because, when n is large, the algorithm is extremely unlikely to query the same instance twice.

Our algorithm assumes that i1o + ri is bounded away from 1 so that 77o + 1i S 1 - p for some

known positive quantity p. The error rates themselves, i1o and 1}l, are assumed to be unknown.

Our algorithm exactly identifies the target formula with high probability in time polynomial in

3-5 Handling random misclassification noise 73

all of the usual parameters, and 1/p.

Our robust algorithm has a similar structure to that of the algorithm described previously for

the noise-free case: The algorithm begins by determining the relevance and sign of each variable.

However, it is not clear at this point how the level of each variable might be ascertained in the

presence of noise. Nevertheless, it turns out to be possible to find three bottom-level variables

which are inputs to the same gate. As before, once such a triple has been discovered, the

remainder of the formula can be identified recursively.

To start with, note that if p is the probability that a 1 is output by the target formula f
under some distribution on {0, 1}', then the probability that a 1 is observed by the learner is

Al1 - 771) +¢ (1 - p)q --- p(1 - 77o - ni) +1 J0"

Thus, A1 (p) = A 1(p) - (1 - 170 - 771) + i7o is the probability that a 1 is observed when each

input is 1 with probability p. Under the uniform distribution, a 1 is observed with probability

= 1(_). Since qo and i7' are unknown, is unknown as well. However, an accurate estimate

(say, within 0 (p/ 2h) of) can be efficiently obtained in the usual manner by sampling.

The next lemma shows that a variable xi's relevance and sign can be determined by hard-

wiring it to 1 and comparing to an estimate of the value a = Af I,-1(2)-

Lemma 5.1 Let f be read-once majority formula of depth h. Let and & be estimates of

= A1(1) and a = I, Q), for some variable xi. Assume Io - & < 7r and J - < r for

some r < p/ 2 h+3. Then

* z is relevant if and only if I& - I > 2 r;

* if x i is relevant, then it occurs negated if and only if & < .

Proof: Note that a-E = (1 -i7o-i))(Af 1 ,_.. 1 (.)-5). The lemma then follows from Lemma 3.2,
and by noting that 1 - r7o - 91 > p. U

More difficult is the problem of determining the level of each variable since iro and rih
are unknown. Nevertheless, it turns out to be possible to identify the formula without first

determining the level of each variable. In particular, we can determine a triple of variables

which are inputs to the same bottom-level gate. As described in Section 3-3, once this is done,

the three variables can be replaced by a meta-variable, and the rest of the formula can be

constructed recursively. Thus, to complete the algorithm, we need only describe a technique

for finding such a triple.

From the comments above, we can assume without loss of generality that all variables

are relevant and unnegated. The key point, proved below, is the following: Af,,,,k-&20

is minimized over triples xi, xi and xk whenever the three variables are inputs to the same

74 Statistical-perturbation Methods for Inference of Read-once Formulas

bottom-level gate. Thus, such a triple can be found by estimating , for each

triple and choosing the one with the smallest estimated value.

Lemma 5.2 Let f be a monotone, read-once majority formula of depth h. For all triples of

distinct indices i, j and k, let &ijk be an estimate of aijk = Af 1, 2 and assume that

]aijk - &ijkl < T < 3p/2h+ 4. Suppose that &£qr = min{&ijk : i,j,k distinct }. Then Xq, x, and

x, are bottom-level variables that are inputs to the same gate.

Proof: From Lemma 3.5, if xi, xi and xk are bottom-level variables that are inputs to the

same gate, then

Otherwise, Lemmas 3.5 and 3.6 imply that

ajk _ (1o- - 71)(I + (1)") + 70- + 3 p/ 2h+3

Since each &ijk is accurate to within 3 p/ 2
h +4, it follows that &qn, can be minimal only if xq, Z

and x, are bottom-level inputs to the same gate. a

Thus, Lemma 5.2 gives a technique for finding bottom-level inputs to the same gate, and,

as previously mentioned, the remainder of the formula can be constructed recursively as in

Section 3-3. We thus obtain the main result of this section:

Theorem 5.3 There exists an algorithm with the following properties: Given h, n, p > 0,

6 > 0, and access to examples drawn from the uniform distribution on {0, 1}", labeled by a read-

once majority formula f of depth at most h on n variables, and misclassified with probabilities

7o and i7l (as described above) for 7o + rh < 1 - p, the algorithm exactly identifies f with

probability at least 1 - 6. The algorithm's sample complexity is O((4h/p2) • log(n/6)), and its

time complexity is O((4h/p2) • (n + r3) • log(n/b)), where r is the number of relevant variables

appearing in the target formula.

Finally, we comment that our algorithms can be extended to handle a fair amount of ma-

licious noise. In this model, an adversary is allowed to corrupt each example in any manner

he chooses (both the labels and the variable settings) with probability r7. We can show that

the algorithm described in Sections 3-3 for majority formulas can handle malicious error rates

as large as 0 (2
- h) where h is the height of the target formula. Thus, for logarithmic-depth

formulas, we can handle malicious error rates up to an inverse polynomial in the number of

relevant variables. Similar results also hold for NAND formulas.

The extension of the algorithm to handle malicious noise is quite simple. The algorithm

of Section 3-3 depends only on accurate estimates of probabilities a that the formula outputs

3-6 Learning unbounded-depth formulas 75

1 under various distributions. Note that malicious noise can change such probabilities by at

most an additive factor of q7. That is, if the formula, under some distribution, outputs 1 with

probability a, then the chance that a positive example is observed (in the presence of malicious

noise) is at least a - ij and at most a + 17.

Thus, using Chernoff bounds (Lemma 2-3.6), an estimate of a that is accurate to within

'7 + r can be obtained from a sample of size polynomial in 1/r (with high probability). Since

Theorems 3.3 and 3.7 show that the required estimates need only be accurate to within 3 / 2h+4,

it follows that a malicious error rate of, say, half this amount can be tolerated without increasing

the algorithm's complexity by more than constant factors.

3-6 Learning unbounded-depth formulas

In this final section on amplification-function techniques, we describe extensions of our algo-

rithms to learn formulas of unbounded depth in Valiant's PAC model with respect to specific

distributions. As in the last section, we focus only on majority formulas, omitting the similar

application of these techniques to NAND formulas.

For formulas of unbounded depth, exact identification from the uniform distribution in

polynomial time is too much to ask: For purely information-theoretic reasons, at least fl(2h)

examples must be drawn from the uniform distribution to exactly identify a majority formula

of depth h. This can be proved by showing (say, by induction on h) that if xi occurs at level h

of formula f, then 2
- h is the probability that an instance is chosen for which the output of f

depends on xi (i.e., for which f's output changes if x, is flipped). Thus, Q(2 h) random examples

are needed simply to determine, for example, whether xi occurs negated or unnegated.

Therefore, to handle arbitrarily deep formulas, we must relax our requirement of exact iden-

tification. Instead, we adopt Valiant's criterion of obtaining a good approximation of the target

concept (with high probability). As before, our algorithms do not work for all distributions,

just the fixed-point distribution. We describe an algorithm that, given c,6 > 0 and access to

random examples of the target majority formula drawn from the uniform distribution, outputs

with probability 1 - 6 an c-good hypothesis, that is, one that agrees with the target formula

on a randomly chosen instance from the uniform distribution with probability at least 1 - C.

Furthermore. the running time is polynomial in 1/6, 1/c and the number of variables n.

We begin by briefly discussing the main ideas of the algorithm. First, as noted above,

variables that occur deep in the formula are unimportant in the sense that their values are

unlikely to influence the formula's output on a randomly chosen instance. Intuitively, we would

like to take advantage of this fact by somehow treating such variables as irrelevant. However,

they cannot be simply deleted from the formula without leaving "holes" that must in some way

be handled.

76 Statistical-perturbation Methods for Inference of Read-once Formulas

We therefore introduce the notion of a partially visible function. This is a function on a set

of visible variables whose values can be observed by the learner, and a set of hidden variables
which are not observable. With respect to a distribution on the set of assignments to the

hidden variables, we say that two partially visible Boolean functions are equivalent if, for all

assignments to the visible variables, the probabilities are the same that each function evaluates
to 1 (where the probabilities are taken over random assignments to the hidden variables). In

other words, the behaviors of the two functions are indistinguishable with respect to the visible

variables.

Thus, we handle all deep variables by regarding them as hidden variables, and the target

formula as one that is partially visible. In particular, insignificant variables-those that occur

below level h = rlg(n/2c)]-are considered hidden and their actual values ignored. We call

the partially visible formula obtained from the target formula f in this manner the truncated

target.

Our algorithm works by exactly identifying the truncated target, that is, by constructing a

partially visible formula f' that is equivalent to it (in the sense described above, with respect to

the uniform distribution). It can be shown that f and f' agree on a randomly chosen instance

with probability at least 1 - c, and therefore f' is an c-good hypothesis satisfying the PAC

criterion.

It remains then only to show how f' can be constructed. First, observe that by Lemma 3.2

all significant variables occurring in f can be detected (and their signs and levels determined)

in polynomial time. Moreover, by arguments similar to those given in Section 3-3, it can be

shown that if some triple of significant variables meet at a gate, then the level of that gate can

be detected from the amplification function by hard-wiring the three variables to 1. We call this

information (the level and sign of each significant variable, and the level at which each triple of

significant variables meet, if at all) the formula's schedule. It turns out that the schedule alone

is sufficient to fully re-construct the partially visible formula f', as is shown below.

These then are the main ideas of the algorithm. What follows is a more detailed exposition.

A partially visible function f(z : y) is a Boolean function f on a set of visible variables

z = x, .. .z,, and a set of hidden variables y = y, ... y0. Two partially visible functions f(x : y)

and g(x : z) on the same set of visible variables are equivalent with respect to distributions D

and E on the domains of y and z if, for all x, Pr[f(x : Y) = 1] = Pr[g(x : Z) = 1], where Y
and Z are random variables representing a random assignment to y and z according to D and

E. In the discussion that follows, we will only be interested in uniform distributions.

As described above, our algorithm regards variables that occur deep in the target formula

as hidden variables. The next two lemmas show that two partially visible read-once majority

formulas that are identical except for some deep hidden variables are very likely to produce the

3-6 Learning unbounded-depth formulas 77

same output on randomly chosen inputs.

Lemma 6.1 Let f be a read-once majority formula on n variables. Let t be the level of x,

in f. Let X, . ..X,,_.1, Y and Z be independent Bernoulli variables, each 1 with probability

1/2. Then Pr[f(X1 , ... ,X,;Y) 3 f(X1,.. .,X -1;Z)] =2" .

Proof: By induction on t. If t = 0, then f is the function Xn and since Pr[Y # Z] -

1/2, the lemma holds. If t > 0, then let f = MJ(f 1,f 2,fa), and suppose that f, is the

subformula in which xn occurs. Since x,, does not also occur in f2 or fa, we will regard

these as functions only on the remaining n - 1 variables. It is not hard to see then that

f(Xl,...,Xnl;y) 0 f(X,...,X,,_.;Z) if and only if f2(Xl,...,X,,1) $ f3(X ,...,.,,-1)
and fi(X 1 ... ,X .- 1;Y) 5 f(X1, ..., Xn-1; Z). Since f2 and f3 each output 1 independently

with probability 1/2, we have

Pr[f 2(X1 ,..., X,,-,) j f 3(X1 ,..., X,,-,)] = 1/2.

Also, by inductive hypothesis,

Pr[f1 (X,.. .,Xnl;Y) $ fl(Xl,...,XnI;Z)] = 2-t.

The lemma then follows by independence. U

Lemma 6.2 Let f be a read-once majority formula on n variables. Let ti be the level of

variable x, in f. Let X 1 ,..., X; X',..., X', r < n, be independent Bernoulli variables, each 1

with probability 1/2. Then Pr(f(X 1....,X,) $ f(X, X',X+1, ...,.,)] < Er 2-*-1.

Proof: By induction on r. If r = 0, then the lemma holds trivially. For r > 0, we have

Pr[f (X ,..., X,) 54 f(X',..., X', X+11,...,I X,)]

Pr[f(X,,...,Xn) f (X ,...,X'_ 1 fX,.. .,X,)]
+Pr[f(X '_1, X , .. X) 0 f (X ', ...,- X', X +1 ,. ... X,)]

r-1

< - +2 -' -

i=1

where the last inequality follows from our inductive hypothesis and the preceding lemma. U

As proved below, Lemma 6.2 implies that any partially visible formula is an c-good hypoth-

esis if it is equivalent to the truncated target, the partially visible formula obtained from the

target formula by regarding all variables at or below level h = [lg(n/2c)] as hidden variables.

Given an assignment to the visible variables, such a hypothesis is evaluated in the obvious

78 Statistical-perturbation Methods for Inference of Read-once Formulas

manner by choosing a random assignment to the hidden variables and computing the output

of the formula on the combined assignments to the hidden and visible variables. (Thus, the

hypothesis is likely to be randomized.)

Lemma 6.3 Let c > 0, and let f be a read-once majority formula on n variables. Let x -

zX..*r be the variables occurring above level h = [lg(n/2c)], and let y = y ""yn-r be the

remaining variables. Let g(x : z) be any partially visible formula equivalent to the partially

visible formula f(x : y). Then Pr[f(X : Y) # g(X : Z)] < c, where X, Y and Z are random

variables representing the uniformly random choice of assignments to x, y and z. That is,

g(z : z) is an E-good hypothesis for f.

Proof: Let Y' be a random variable representing a random assignment to y, chosen indepen-

dently of Y. Since f(x : y) is equivalent to g(x : z), we have

Pr[f(X : Y) $ g(X : Z)] = Pr[f(X : Y) # f(X : Y')].

By Lemma 6.2, the right hand side of this equation is bounded by C, since each of the n - r < n

variables y1 occurs at or below level h in f. E

For c > 0 and target formula f, we will henceforth say that variables occurring above level

h = lg(n/2c)l are significant. Note that Theorem 3.3 implies that the significance, sign and

level of any variable zj can be determined by hard-wiring that variable to 1, as usual. More

specifically, if & is an estimate of a = A 11 ,() for which I& - aI < r < (_)h+2 then xj is

significant if and only if 16 - 1 > ()h+1 + r, and, if it is significant, then its sign and level can

be determined as in Theorem 3.3.

Similar to Theorem 3.7, we can show that. for any triple of significant variables, we can

determine the level of the gate at which the triple meets, if at all. More precisely, if xi, xj

and xL are three unnegated variables occurring at levels ti, t2 and t3 , and if & is an estimate

of a = A for which 1e - al < 7 < 2
- h, then it follows from Lemmas 3.5 and 3.6

that xi, xj and Xk meet at a level-d gate if and only if

+ ()tI+ + (1)t2+1 . (1)t 3 +1 (.1)91+t 2 +t3-2d-2 2
I <

As mentioned above, we call the sum total of this information-the significance of each

variable, the level and sign of each significant variable, and the level of the gate at which each

triple of significant variables meet, if at all-the formula's schedule. It remains then only to

show how an (-good hypothesis can be constructed from the schedule. Specifically, we show how

to construct a partially visible formula that is equivalent to the truncated target f(x : y). (hlere,

x is the vector of visible (i.e., significant) variables, and y is the vector of hidden (insignificant)

variables.)

3-6 Learning unbounded-depth formulas 79

Suppose first that no three visible variables meet in f. Such a formula is said to be unstruc-

tured. Although strictly speaking f cannot be unstructured (by our choice of h), this special

case turns out nevertheless to be important in handling the more general case since subformulas

of f may be unstructured.

Lemma 6.4 below shows that an unstructured formula f(x : y) is equivalent to any other

unstructured partially visible formula whenever each visible variable occurs at the same level

with the same sign in both formulas. Thus, unstructured formulas are not changed when

visible variables -ire moved around within the same level. This fact makes the identification of

unstructured formulas from their schedules quite easy.

For any partially visible read-once majority formula f(x : y), let pf(x) = Pr[f(x : Y) - 1]

where Y represents a random assignment to y.

Lemma 6.4 Let f(z : y) and g(x : z) be unstructured read-once majority formulas on s visible

variables. Suppose that each visible variable xj is relevant and occurs at the same level tj with

the same sign in both formulas. Then the two partially visible formulas are equivalent.

Proof: It suffices to prove the lemma when no visible variable is negated since negated variables

can simply be replaced by unnegated meta-variables.

To prove the lemma, we show that

21 x = 2" (xi - 1).(61=f W +2 •(6.1)

Since this statement applies to any unstructured formula, it follows immediately that pj(x) =

p,(x) and the two partially visible formulas are equivalent.

We prove Equation (6.1) by induction on the height h of f. If h = 0, then f consists of

a single visible or hidden variable. If f is the formula xj, where xj is some visible variable,

then p1(x) = xj, satisfying (6.1). If f is the formula yj, where y, is a hidden variable, then

pf(x) = 1, also satisfying (6.1).

If h > 0, then let f = MAJ(f 1,f 2 ,f 3) where fl, f2 and f, are partially visible subfcrrtulas.

Since f is unstructured, one of these (say f3) contains no visible variables, and thus pj3 (x) = i

Suppose without loss of generality that x 1,. x, are the visible variables relevant to fi. Then,

by inductive hypothesis,
t")

p11(z = ~ r Z2"+' (xi-
i=l

and

p = (X) = + 2-+(x, -)p22"

80 Statistical-perturbation Methods for Inference of Read-once Formulas

Applying Lemma 3.1, it is easily verified that Equation (6.1) is satisfied, completing the induc-

tion. U

Thus, if f(x : y) is unstructured, then an equivalent unstructured formula can be constructed

from f'b schedule. For instance, here is an efficient algorithm: Let t be the depth of the deepest

visible variable in f. Break the set of all level-t variables into pairs. Replace each such pair

xi, xi by a level-(t - 1) meta-variable w -MAJ(x 1 , xj, y), where y is a new hidden variable. If an

odd level-t variable xi remains, replace it with a level-(t - 1) meta-variable w -MAJ(xi, y, y'),

where y and y' are new hidden variables. Repeat for levels t - 1, t - 2,.. ., 1. It is not hard to

show that this algorithm results in a formula that is unstructured, and that is consistent with

f's schedule (and so is equivalent).

With these tools in hand for dealing with unstructured formulas, we are now ready to

describe an algorithm for handling the general case, i.e., for reconstructing any (not necessarily

unstructured) formula from its schedule.

Let f(x : y) be the truncated target. If f is unstructured, then the previous algorithm

applies. Otherwise, we can find from the schedule three visible variables xi, xj and xk which

meet at some maximum-depth gate A of f; that is, they meet at a level-d gate, and no triple

of visible varia'.les meet at any gate of depth exceeding d. Then the subformula g subsumed

by A computes the majority of three subformulas gl, 92 and g, each containing one of xi, xi

and xk (say, in that order). Let xt be some other visible variable. Then it is easily verified that

xt is relevant to g, if and ony if xt, xj and xk meet at a level-d gate (namc.,, A). Thus, all

of the visible variables relevant to g, (and likewise for g2 and g3) can be determined from the

schedule. Moreover, note that each of these subformulas is unstructured since A is of maximum

depth. Thus, each subformula can be identified using the previous aigorithm for unstructured

formulas, and tLerefore, the entire subformula subsumed by (and including) A can be identified.

The rest of the formula can be identified recursively: we replace subformula g by a new

meta-variable w, and update the schedule appropriately.

This completes the algorithm. The sample complexity can be derived, as usual, using

Chernoff bounds (Lemma 2-3.6), and the time analysis is straightforward. We thus have:

Theorem 6.5 There exists an algorithm with the following properties: Given n, 6 > 0, and

access to examples drawn from the uniform distribution on {0, 1}" and labeled by any read-once

majority formula f on n variables, the algorithm exactly identifies f with -robability at least

I - 6. The algorithm's sample complexity is O((n/c)6 • log(n/b)), and its time complexity is

0((n'/c) •-log(n/b)).

3-7 Learning probabilistic read-once formulas 81

3-7 Learning probabilistic read-once formulas

In this section, we extend the techniques of the preceding sections to a broad class of probabilistic

concepts, which includes the class of all read-once formulas over the usual basis {AND, OR, NOT).

We show this class is PAC learnable against all product dis, -ibutions (i.e., all distributions in

which the assignment to each variable is independent of the settings of the other variables).

As described in detail in Chapter 4, a probabilistic concept (p-concept) is a function c : X

[0, 1] where X is the domain. (In this chapter, X is always {0, 1}".) The interpretation here is

that c(z) is the probability that an instance X E X is labeled 1, and 1 - c(x) is the probability

it is labeled 0. Thus, we assume an oracle EX which first chooses X E X randomly according

to some target distribution D, and then randomly labels z according to c as just described.

In this section, we will be interested in the problem of learning with a model of probability.

Here, the goal is to infer a good approximation of the function c itself. Specifically, given

positive £ and 6, we ask that, with probability at least 1 - b, the learning algorithm find an

c-good model of probability for f, i.e., a real-valued hypothesis h such that

EZED [jh(x) - c(x)I] < c. (7.1)

Furthermore, the learning algorithm's running time must be polynomial in 1/c, 1/6 and n.

(This definition differs slightly, but is equivalent to, the definition of learning with a model of

probability given in Chapter 4. See Section 4-2.)

We describe in this section an algorithm for learning with a model of probability any p-

concept in a particular class of p-concepts against any product distribution on the domain

{0, 1}", i.e., any distribution in which the setting of each bit xi is chosen independently of the

settings of the other bits.

The p-concept class of interest is the class of real-valued read-once formulas over the basis

{MUL, LINz} where MUL denotes ordinary multiplication of two real numbers, and LIN,. is the

unary operator

LIN..,(y) = z + wy.

Here, z and w may be any real numbers for which z and z + w are both in the range [0, 1]. We

call formulas over this basis real formulas.

For instance,

LINO,. 2 5 (MUL(LIN 5 ,.5 (X 1), LINI, 1 (X 2))) = .25" (.5 + .5Xl) " (1 - X 2) (7.2)

is a read-once real formula.

An easy induction argument shows that real formulas have range [0, 1], and so are p-concepts.

82 Statistical-perturbation Methods for Inference of Read-once Formulas

Also, note that for Boolean-valued inputs, MUL is equivalent to AND, and LIN 1,,- is equivalent

to NOT. Thus, the class of read-once real formulas includes the class of read-once Boolean

formulas over the basis {AND, NOT), or, equivalently, {AND, OR, NOT}.

Further, our criterion (7.1) for good learning of real formulas implies the usual PAC learn-

ability of Boolean formulas: if c is a deterministic concept (i.e., a p-concept with range in

{0, 1}), and h is a real-valued hypothesis satisfying (7.1), then h' - round(h) = Lh + 1/2J is a

2c-good hypothesis for c since

Pr-ED [h'(x) $ c(x)] Pr-ED [Ih(x) - c(z)l _ 1/2]

and, by Markov's inequality,

c > EIED [jh(x) - c(x)l] !Pr-ED [Ih(x) - c(x)l 1/2].

Thus, the results in this section subsume those in Section 3-4.

Note that the class of read-once real formulas also includes the class of Boolean formulas

which have been corrupted with the kind of random misclassification noise described in Sec-

tion 3-5. This is because such noise can be simulated by a single, output-level gate LINqo.._,o-i.

on input 0, this gate outputs i70, and on input 1, it outputs 1 - i7. Thus, 77o and 'h are the

respective probabilities that an input of 0 or 1 is "misclassified" or flipped by this gate.

In general, we can regard gates LIN,. as describing the behavior of a "noisy" or randomized

Boolean gate which on input 0 outputs 1 with probability z, and on input 1 outputs 1 with

probability z + w. Clearly. if the input to such a randomized gate is 1 with probability p, then

the gate outputs 1 with probability

(1- p)z + p(z + w) = z + wp = LINw(p).

Thus, the probabilistic behavior of a formula constructed with such randomized gates is de-

scribed by the p-concept obtained by replacing each randomized gate by a LIN,. gate, for an

appropriate choice of z and w. (This can be proved rigorously, for instance, using a straight-

forward induction argument on the depth of the formula.)

Thus, our result can be viewed as a demonstration of the learnability of read-once Boolean

formulas with large doses of noise sprinkled throughout the formulas. Such noise may affect the

formula's output ("misclassification noise"), the inputs ("attribute noise") or it might affect

the output of every gate of the formula.

3-7 Learning probabilistic read-once formulas 83

3-7.1 Overview of the learning algorithm

Our learning procedure uses many of the ideas and techniques developed in the preceding

sections. The algorithm operates in three stages. In Stage I, we estimate the probability pi

that each variable x1 is set to 1. Any "sticky" variables for which this probability is too close to

0 or 1 will be disregarded in later stages. We also determine the "influence" of each variable xi:

roughly speaking, this is the probability that the target formula's value changes significantly if

xi's setting is flipped. Variables which have very little influence are also considered irrelevant

in later stages, similar to the manner in which insignificant (deeply occurring) variables are

ignored in the algorithm of Section 3-6. Not surprisingly, sticky and uninfluential variables can

be ignored without introducing much error.

In Stage II, we construct an approximation of the target formula's topology or skeleton

structure. By the skeleton of a real formula, we refer to the topological structure of the formula,

i.e., the formula stripped of the z, w-values on the LIN gates. For instance, the formula in (7.2)

has skeleton:

LIN(MUL(LIN(xl), LIN(X 2))).

In Stage II, we infer a skeleton o which we show approximates the target formula in the

sense that a is the skeleton of some formula which is a good approximation (say, in the sense

of (7.1)) of the target formula.

Finally, in Stage III, we approximate the z, w values of the LIN gates of the skeleton inferred

in Stage II.

3-7.2 Some preliminary facts

Let f be the target formula, and let D be the target distribution. In what follows, all expecta-

tions are taken with respect to distribution D. For a function g, we also sometimes write § to

denote its expectation:

= E[g] = ED[g(x)].

We will be interested in the partial derivatives of f, which turn out to be easily computed

and their expectations easily approximated by sampling. We say that a gate A is an uncle of

variable z if A is an immediate input to a MUL gate fed by xi, but A is not itself fed by xi.

Lemma 7.1 Let zi be a relevant variable of f. Let {LIN,,. ,} be the sequence of LIN gates fed

by zi, and let {gi } be the sequence of subformulas subsumed by uncles of xi. Then

of
af H j fl 1gj.

T s

The same holds if z, is replaced by a subformula of f.

84 Statistical-perturbation Methods for Inference of Read-once Formulas

Proof: By induction on the depth of f. If the depth is zero, then f = x,, and the lemma holds.

(The "empty" product is 1.)

Otherwise, if the output gate of f is a LIN,. gate, then f = LINto(f') = z + wfo, for

some subformula f'. (The notation f' is potentially confusing since f' sometimes denotes the

derivative of f. However, here and throughout this chapter, f' simply denotes a function that, in

general, is unrelated to any derivative of f.) Thus, Of/Ox = w . (Of'/Ox,) and the lemma holds

by inductive hypothesis. If the output gate is a MUL gate, then f = f'g, for some subformulas

f' and g. Variable xi is relevant to only, say, f'. Thus, g is a subformula subsumed by an uncle

of xi, and since xi is not relevant to g, we have Of/Oxi = g. (Of/Ox,). Thus, the lemma holds

again in this case by inductive hypothesis.

Regarding a subformula g of f as a meta-variable, it can be seen that this same argument

holds if xi is replaced by subformula g. U
Since each gj in this lemma is itself a real formula, gj has range in [0, 11. Also, Iwj < 1 for

each wi. Thus, it follows from Lemma 7.1 that IOf/Oxil < 1, and that the sign of Of/Oxi is
determined by the wj's. Thus, Of/Oxi is either a nonpositive or nonnegative function.

Note that the formula f could be "multiplied out" to give a polynomial over the variable

set. This polynomial is linear in each variable xi. This follows, for instance, from Lemma 7.1

since x, is not relevant to any of the functions gj, and so O2f/Ox? = 0. Thus, we can write

f = u + vxj

for some functions u and v to which x, is not relevant. We call u and v the decomposition of f

in terms of x,. In the same manner, f can be decomposed in terms of any subformula g, and so

can be written f = u + vg for some functions u and v that do not contain any variable relevant

to g.

Clearly, if f = u + vxi, then

Ox, = = (fix, -)- (fx,'-0). (7.3)

Since, as noted above, Of/Ox, is either nonpositive or nonnegative on all inputs,

IE [Of/Ox,]i = E [lOf/Ox,i] = E [(fx, i-- 1) - (fIx i-0)I1.

This latter expression is a natural measure of the influence of xi, the degree to which xi's value

affects the value of f.

Also, equation (7.3) implies that

E [Of/Ox,] = E [fIx,. -- 1] - E If Ix, - 0]. (7.4)

3-7 Learning probabilistic read-once formulas 85

Note that the expressions on the right can be easily approximated by simply estimating the

probability that a positive example is received when xi is hardwired to 0 or 1 (assuming x, is

not sticky). Thus, the expected value of Of/dxi can be easily estimated as the difference of

these estimates.

In Stages II and III, we will also be interested in the expected value of the the second partial

derivatives; these values turn out to be quite useful to our algorithm. If i 5 j, then since f is

linear in every variable, f can be written as

f - Uo + uIZi + u2 x, + u3XiXj

for some functions u0 , u1 , u2 and u3 to which xi and xj are irrelevant. Then it is easily verified

that

c- = Us (flxi-1,x-1)-(fli,-1,xj-O)

-(fix, -0, X- 1) + (flx, -0, xj --0). (7.5)

Since, as before, the expectation of each expression on the right can be estimated by sampling

on filtered distributions, we can obtain a good estimate of E [8 2f/OxiOx].

Note that Lemma 7.1 shows that either Off/a, or its negation is a read-once real formula.

Thus, in either case, the lemma implies that the second partial derivative o 2 f/OXs xj has many

of the properties of the first derivative described above: in particular, its magnitude is bounded

by 1, and it is nonnegative or nonpositive on all inputs.

3-7.3 Stage I: Eliminating sticky and uninfluential variables

As described above, in Stage I, sticky and uninfluential variables are eliminated. Our algo-

rithm begins by estimating the probability pi that each variable xi is set to 1 under the target

distribution. Applying Chernoff bounds (Lemma 2-3.6), we see that a polynomial-size sample

suffices to obtain estimates Oi such that, with probability at least 1 - 6/4, every estimate pi is

such that jpi - l </12n. If Aii < c/4n or Pi _> 1 - /4n, then we say that x, is stcky. In

this case, assuming the accuracy of our estimates, either p, < c/3n or 1 - p, < e/3n. Sticky

variables are ignored in later stages of the algorithm.

If z, is not sticky, then c/6n < p, < 1 - c/6n. In this case, a good estimate of E [fix, ,--b]

can be obtained for b E {0, 11. We require that these estimates have accuracy c /2(9n)'°. (This

high degree of accuracy is necessary for later stages of the algorithm.) With probability at

least 1 - 6/4, such estimates can be obtained for all unsticky variables using a polynomial-size

sample (again by applying Chernoff bounds).

These estimates can in turn be used to obtain estimates h, of the expected value of B =

86 Statistical-perturbation Methods for Inference of Read-once Formulas

af/Osx using equation (7.4). We then have I/,- l -I< Eg/(9n)'°. If 1IBI > c/4n, we say that

xi is influential; in this case, I/ld > c/5n. In later stages, uninfluential variables are ignored;

for these variables, I/d < c/3n.

We show next that sticky and uninfluential variables can be ignored without introducing

much error. Let f' be the read-once real formula obtained from f by replacing some variable xi

by the constant pi (or, equivalently, since this is not technically a real formula, by LINp,,O(x)).

Formula f' is just the p-concept obtained by regarding xi as a hidden variable - if we ignore xi's

value, then f' describes the probability that an assignment to the other variables is labeled 1.

Note that # = 4' for every subformula g of f and its corresponding subformula g' of f'; this can

be proved by an easy induction argument on the depth of g. Applying Lemma 7.1, this shows

in particular that the influence of any other variable x, is the same in f and f'.

Let u, v be the decomposition of f in terms of xi so that f = u + vxi. Then f' - u + vpi,

and so

f - f' - v(X, - Pi) = (Of/xi)(Xi - Pi).

Thus, by independence,

E [if - f'l] = E [lOf/xI]. E [Ix, - pI IB,I. 2 p,(1 - pi).

Note that if xi is sticky or uninfluential, then this latter expression is at most 2C/3n.

Suppose X1,. .. , xo are the variables of f which are either sticky or uninfluential. Let fo = f,

and let fi be obtained from f,.-I by replacing x, with the constant pi for 1 < i < s, and let

fl = f,. Then

E [If- fill E 'E[If, - f,- 11

< 2sc/3n < 2c/3,

since, by the preceding argument. E [If, - f,-1] < 2c/3n.

As in Section 3-6, we henceforth regard fI as the target formula. Sampling according to fi

is achieved by simply ignoring the variables eliminated from f. In the later stages, it is shown

how to find a hypothesis! such that E [Ij - f'l] :< /3, and thus E [I!- f 11< .
Note that we can easily handle at this point the special case that all the variables of f are

eliminated. For this case, fl simply computes some constant function p. Since f = fl = p, we

can with high probability obtain an estimate fi of p so that Ip - P6I < c/3. Letting j = 0 be our

hypothesis, we have that E [IJ - flI = - pl, and thus E <I- ifj <,as desired.

3-7 Learning probabilistic read-once formulas 87

3-7.4 Stage II: Inferring the formula's skeleton

Based on the results of Stage I, we can assume henceforth that none of the variables of f

are either sticky or uninfluential. Thus, in this section, f actually refers to the formula fl of

the previous section, and all of the variables discussed are assumed to be neither sticky nor

uninfluential.

We show in this section how an approximation of the skeletal structure of f can be obtained.

Specifically, we show how a structure a can be inferred which is the skeleton of some formula

fli for which If - fiII is very small on all inputs. In Stage III, we will see how a formula very

close to fil can be inferred from a and other statistical information.

Note that the functional composition of two LIN gates is a LIN gate, and that LIN0 ,1 is the

identity function. Thus, without loss of generality, we assume the gates of f occur in alternating

layers of MUL and LIN gates, the output gate being a LIN gate, and every variable an input to

a LIN gate. Thus, the topology or skeleton of f is entirely determined by the tree structure of

f with respect to the MUL gates. Therefore, in reconstructing f's skeleton, we will be quite

interested in determining which MUL gates are fed by which other MUL gates, and in particular,

which of two M U L gates occurs deeper in the formula.

Our algorithm uses two tests for determining which of two MUL gates is deeper. After

describing the two tests, we show how a skeleton can be constructed from the results of these

tests.

To simplify notation, we let rj = F(xj,xj), and we write gij to denote the subformula

subsumed by r,,.

For any three variables xi, xj and xLk, we must have that two of the gates rij, Fik and Fik

are actually the same, and that the remaining gate is the deepest of the three. For instance, if

Fr is the deepest gate, then it feeds Fk = Fjk. Our purpose, initially, is to determine which of

these gates is deepest. This will be detei-,ined from the expected values of the first and second

partial derivatives of f.

Recall that good estimates of Bj = E [f/Ozi] were obtained in Stage I. Let Ai, -

02f/Dz, Oz,. From equation (7.5), it follows that good estimates iij of A.ij can also be obtained.

Specifically, for each pair of variables, and each bl, b2 E {0, 1}, we estimate E [f Ix +-- b, X --b.]

to within accuracy cs/4 • (9n) 10 . Such accuracy can be achieved (for all unsticky variables)

with probability at least 1 - 6/4 using a polynomial-size sample. Estimates of Aij can then be

aerived using equation (7.5) since

A. = E 0xi0x I

= E[flz,-1,x,4-l] - E[flxs-1,z.4--0]- E[flzd.-O, -l] + E[f/lx-O,j-- 0].

88 Statistical-perturbation Methods for Inference of Read-once Formulas

f

LIN,,.,,,

gii

xi xi

Figure 3: The decomposition of f used in Lemma 7.2.

We assume henceforth that all of the estimates have the desired accuracy. Then estimates of

Ai derived in this manner are such that IAqj - ijl < /(9n) 10 . It will also be convenient to

assume that each /A, and Ai, is in the range [-1, 11; since Di and Aij are known to be in this

range, we make this assumption without loss of generality. ("Clamping" estimates in this range

can only improve their accuracy.)

The sign test

Our first test for determining which of two gates is deeper in f is called the sign test, and it is

based on our ability to determine the sign of certain partial derivatives as described below.

Specifically, for variables x, and xj, we show below that it is possible to determine the sign

of E [Of/Ogi,], which we denote by ci,. To see that this might be useful, note that if rk = rik

then certainly gi-, = gk, and so cik = cik. Thus, if for some triple zi, xj and xz, we find that

ci, j = ck, then we can conclude that ri' occurs deeper in f than rik = Fj. (Recall that

exactly two of the gates rij, rik and rjk must be equal to one another; since ci, $ ci -: Ck,

this is the only possibility.) This is the essence of the sign test.

Lemma 7.2 Let x, and x1 be distinct variables. Thcn

sign(E[0f /ag,i]) = sign(B," Bi Ai).

Proof: Since pairs of variables can only meet at MU L gates, we can write gj as a product of its

3-7 Learning probabilistic read-once formulas 89

inputs, gi = hih2 , where h, and h2 are subformulas containing xi and xj, respectively. We can

decompose h, and h2 in terms of xi and zj, and so can write h, = ul + vixi and h2 = u2 + V2 Xz.

We can also decompose f in terms of gq: f = uo + vogij. (This decomposition is summarized

in Figure 3.)

Thus, we can easily compute that:

B = Vovlh 2

B, = vohIV2

A0j = VoVIV 2.

We have that Ivol < 1 by Lemma 7.1, and hi and h2 , being subformulas, are in the range [0, 1].

Thus,

jAij = IfYODIf 1~ ! Io0iv2hih2I = IAII.I
This last expression is at least (c/5n)2 since x, and x, are influential. Thus, sign(Aij) =

sign(A,4). Likewise, the signs of Pi and A, can be determined from their estimates.

From the expressions above, and since h, and h2 are nonnegative, it is clear that sign(3o) =

sign(4 . Bj . A,,). Since Vi = E [Of/Ogi,], this proves the lemma. U

Thus, as described above, our algorithm computes ci, = sign(E [9f/Ogq]) for each pair of
variables xi and x.. Then, for each triple x,, xj and xk, the algorithm tests whether c, $ Cik =

cjk. If it finds that this is the case, then the algorithm can correctly conclude that rik = Ik,

and therefore Fi, occurs deeper than this gate.

The results of all these sign tests are organized in a directed graph G,. The nodes of G, are

unordered pairs {i,j}, for i 5 j. For each ordered triple of distinct indices i,j, k, our algorithm

tests if ci $ cik = ck. If this is the case, an edge is directed in G, from {i,j} to {i,k}. Thus,

as argued above, an edge is added to G, in this fashion only if Fi, is deeper in f than Fik.

Moreover, by transitivity, a path from {i,j} to {i',j'} implies that Frj is deeper than rip.

Note that the sign test is a one-sided test in the sense that if cii = cik = cik then nothing can

be concluded about the relative depth of 17, and Fk . However, our next lemnas give conditions

under which the sign test and its graph G, are guaranteed to give such depth information.

Lemma 7.3 Let z,, zj and xk be distinct variables of f, and assume F,j is deeper in f than

rik = r, . Then cj #4 ck if and only if E [Og,/qOgii] < .

Proof: This follows immediately from the chain rule

Of Of Og8,k
Og,, - O9ik Og,,'

which implies by independence that ci, = cik • sign(E [Ogik/Ogq]).

90 Statistical-perturbation Methods for Inference of Read-once Formulas

Lemma 7.4 Let zi, xj and Zk be distinct variables of f, and assume rij is deeper in f than

ri, = rik. Assume also that the path in f from Iij to rik includes a gate LINZ,, with w < 0.
Then there exists a path in G, from {i,j} to {i,k}.

Proof: Let {,,}'=j be the sequence of LIN gates on the path from rF, to Fk, and suppose that

each A computes the function LIN,.,.

By Lemma 7.1, the sign of 9gik/Ogij is given by the sign of the product 1l w.. Thus, if
F W,. < 0, then Ogik/Oij is nonpositive, and so by Lemma 7.2, an edge is directed in G, from
{i,j} to {i,k}, and the lemma holds in this case.

Otherwise, fl w, > 0. Note that l w, is nonzero since if it were zero, then by Lemma 7.1,
af/Oxi would be zero (since the path from r', to rik is a subpath of the path from xi to the

output), contradicting the assumption that xi is influential.

Thus, Fl w, > 0. Since we assume some w,. < 0, there is some s such that '= 1 w, < 0 and

IH,=,+t w, < 0. Since, by assumption, no LIN gate is the input to another LIN gate, there must
be a MUL gate separating Ar and A,.+,; since this MUL gate is fed by xi, it can be written rit
for some variable xt. Applying the first part of this argument twice (the case that H- wr < 0),
it follows that there must exist an edge in G, from {i,j} to {i,e}, and another edge from {i,i}

to {i, k}. This proves the lemma. N
Thus, the sign test succeeds in determining which of two gates Fi and Fik occurs deeper in

f whenever the path from one gate to the other includes a LIN,. gate with w < 0. We describe

next another test for handling all other situations.

The product test

The second test is called the product test, and it has a flavor similar to that of the sign test.
We will be interested in the quantities dik = -• Ajk. Note that dijk = dikj always. We will see
that if rFj occurs deeper than Fk, then dij, = djik, but that if Fik occurs deeper than rFj then

djik is apt to differ significantly from dijk. Thus, the values of dijk will give a second method
for determining which of the three gates rj, rik and rjk occurs deepest in f.

Lemma 7.5 Let xi, xj and xk be distinct variables, and assume rij occurs deeper in f than

rik = rik. Then dijk = djik.

Proof: We can decompose f in terms of gik as f = U0 + Vogik, so that none of the variables
relevant to gi, are relevant to the functions u0 and v0. Since rFk and rij are M UL gates, we
can express the function gik in terms of the subformulas that it subsumes: gi, = yy3. Gate T1j
occurs in one of these subformulas, say y, and Xk occurs in the other y3 . We can decompose y

and y3 in terms of gij and Zx, respectively, so that V = u + vgij, and V3 = U3 + V3Xk. Similarly,

rij is a MUL gate, so we can write gi = Y1Y2 where yj and Y2 contain x, and xj, respectively.

3-7 Learning probabilistic read-once formulas 91

f

gik

LIN ,,LIN,,,,

gij

Xi xj

Figure 4: The decomposition of f used in Lemmas 7.5 and 7.6.

Decomposing Yl and Y2, we can write yl = ul + vjxj and Y2 = U2 + v 2xj. (This decomposition

of f is summarized in Figure 4.)

By a direct computation, we have that:

Bi VVOV1 Y2 Y3

Bj = vvoy 1 v2y3

Bk = yvov 3

Aij = VVoV 1 V2 y3

Aj = VVOy! V2 V3

Air= VVoV 1y 2 V3
•

Thus, by independence,

dijk = V2 2v Vt2v3Y1Y2Y3 = djik.

92 Statistical-perturbation Methods for Inference of Read-once Formulas

As defined in this proof, we call the function u the offset of gik with respect to gij, and we

denote it offset(gik,gi,).

Lemma 7.6 Let xi, xj and xk be distinct variables, and assume rij occurs deeper in f than

rik = rjk. Then Idij - dk,,il _ (c/5n)3 . IE [offset(gik, gij)] I

Proof: With the same set-up as in the preceding lemma, we have that

dkij = . 2l 393.

Thus, since y = u + vyly 2,

dkij - dik = a •(9 - F) 192) = a,

where a = i) 2f2 3 3 . Note that lal = I]k . Aj/I _ (c/5n)3 since Igi < 1, and since all of

the variables are influential. (It was shown in the proof of Lemma 7.2 that IAij I [I I&I-)
This implies the lemma. E

We use dijk = Bi • Ajk to estimate dijk. Then

_<2cs/(9n)' °

using the fact that A I and IA4jk are both bounded by 1. As before for the sign test, we

maintain a graph Gp with vertices {i,j} for i 5 j. Edges are directed from {i,j} to {i,k} and

also from {j,k} to {i,k} for all ordered triples i,j,k which satisfy Idijk - djik _4/(9n).

Thus, by Lemma 7.5, if Frj is deeper than rFk = rk, then dik = djik and so edges are directed

from {i,j} to {i, k} and from {j, k} to {i, k}. However, the product test is one sided (though

in a different way than the sign test): it may happen that such edges are added even if Fj is

above f',L. Nevertheless, by Lemma 7.6, this can only be the case if JE [offset(gik,gi)]I is quite

small.

Constructing the skeleton from G, and Gp

Finally, we are ready to show how an "approximate" skeleton of f can be computed from the

graphs G, and Gp. First, to reiterate what was pointed out above, an edge in G, from {i,j} to

{i, k} indicates that Fri must be deeper than r,; however an edge in Gp between these vertices

indicates only that Fi' may be deeper than or equal to Fik (although it might not be). On the

other hand, if Fi is deeper than Fri, or if Fri = Fik, then there must be an edge in Gp from

{i,j} to {i,k}, but possibly not in G,.

3-7 Learning probabilistic read-once formulas 93

We can combine Gp and G, into a single graph G, on the same vertex set: From the

comments above, it follows that the edge set of G, is a subset of the edge set of Gp. The graph

of G, is obtained from Gp by deleting all edges from {i,j} to {i,k} which "contradict" G,,

i.e., for which there exists a path in G, from {i, k} to {i,j). Such edges can be removed with

impunity since the reverse path in G, indicates that rik must be deeper than rij.

It is easily seen that if Fr, is deeper than Fik, or if ri, = rik then G, will contain an edge

from {i,j} to {i, k) since the corresponding edge in Gp will not be deleted.

Thus, if there exists a path in G, from {i,j} to {k,I}, but no path in the reverse direction,

then we can conclude that ri is deeper in f than rkt. The problem arises when there exist
paths connecting these vertices in both directions, that is, when {i,j} and {k, f} are in the

same strongly connected component of G,. We therefore need some way of dealing with these

strongly connected components.

We say two vertices of G, are equivalent (with respect to G,) if they are in the same strongly

connected component.

We say that a LIN gate of f is trapped if it is immediately fed by some MUL gate r,, and

it immediately feeds another MUL gate Fbt for some indices i, j, k, I which are such that {i,j}
and {k,1} are equivalent. In other words, the LIN gate is trapped if it is "surrounded" above

and below by gates whose indices are in the same strongly connected component of G,. We

will see that if some gate LIN_, is trapped, then its z-value must be quite small, and so we will

be able to approximate such gates by a LIN0. gate. As will be seen, the strongly connected

components of G, correspond to connected regions of f (where we view f as a graph whose

vertices are the gates. and whose edges are the "wires" connecting the gates); thus we will be

able to approximate these connected regions by simple MUL gates.

Below, we let 0 = (8 .5 4 /910)C4 /n 6 .

Lemma 7.7 Suppose A is a trapped LIN,. gate off. Then w > 0 and z < 6.

Proof: Since A is trapped, it is immediately fed by some MUL gate Fi,, and it immediately

feeds MUL gate Fkt where {i,j} and {k.t} are eq'iivalent. Let T Lie the set of vertices {i',j'}
for which Fi,j, feeds Fij, or Iri,j, = ij. Then {k,j} V T, since ri feeds rt. Since there exists

a path from {k,f) to {i,j}, there must be an edge directed from one vertex {i',k'} 0 T to

another {i',j'} E T. Since Fi,j, feeds or is equal to Fi, the path in f from rii,, to !,lk must

include gate A.

We are interested in examining this path more closely. Let ho, hl,..., h, be the sequence

of subformulas subsumed by the MUL gates along this path Thus, h0 = gi,j,, and hr = gik'.

Further, since each consecutive pair of MUL gates is separated by some gate LIN,,,, we can
write ht = y,(zt + wh,-), where y, is a subformula subsumed by an uncle of gi,r,, for 1 < t < r.

94 Statistical-perturbation Methods for Inference of Read-once Formulas

Note that no wt < 0. If it were, then by Lemma 7.4, there would be a path f,'om {i',j'} to

{i',k'} in G,, and so, by construction of G,, there could not be an edge in G, from {i',k'} to

{i',j'}. In particular, since A is on the path from Fi,j, to Ii,k,, dhis implies w > 0.

We can decompose the subformula z + wtht- in terms of h0 so that zt + wtht- = ut + vtho.

Thus, ht = yt(ut + vho). Note that us = offset(ht, h0). Expanding, this implies for t > 2 that

ht = y,(zt + wth,-l)

= Yt(Zt + W,y,_.(ut_ + vt..ho))

= y,(zt + wtyt-lut-I + wtyh-vt-ho)

= yt(ut + vtho).

Thus,

Ut = Zt + WlYt..lUt_1

for t > 2. For t = 1, we have that h, = yj(u 1 + vlho) = y1(z + w1ho) so ul = z1 . By a

straightforward induction on r, it follows that

offset(h,, ho) = u, (z. II yt-1

Since each wt _> 0, this sum is at least z, wtYt.- for any s. Note that, by Lemma 7.1,

I'I.=, wtyt- 1 >_ 149fIOxi,I since the path in f from xi, to the output includes the path from

ri,', to r ,k,. Thus, by Lemma 7.6 and our criterion for adding edges to Gp, and since xi, is

influential,
(5n)3 W

Z.- < IE[offset(h,,ho)]I <5 (9n)o
5n

Since z = z, for some s, this proves the lemma. U

Let f' = fjI be the real formula obtained from f by replacing all trapped gates LIN,. by

LINo.. Then f' is a good approximation of f:

Lemma 7.8 Let f and f' = fjI be as above. Then If(x) - f'(x) _5 2nO for all inputs X.

Proof: We show by induction on the height of f that If - f' - sO for all inputs, where s is the

number of LIN gates occurring in f. We prove the lemma in a slightly stronger form for any f'

obtained from f by replacing each LINZW gate by a LIN,,, gate for any z' satisfying jz - z'I < 0;

also, z' must be such that z' and w + z' are in the range [0, 1] so that f' is a real formula. Note

that the f' of the hypothesis satisfies these conditions by Lemma 7.7.

If f x id, then f' = i = f, and the lemma holds.

If f = LINs(y), then f' - LINz,,(y') for some z' and y' satisfying Iz - z'j < 0 and, by

3-7 Learning probabilistic read-once formulas 95

Input: the graph G,
Output: a skeleton that approximates f
Procedure:
1 G--G,
2 F - {LIN(X,):i < i < n}
3 repeat while G is not empty
4 find a strongly connected component H of G with no incoming edges
5 E - {a E F: {i,j} E H and ,x E rel(a)}
6 F - (F - E) U {LIN(MULIEEO)1

7 G,--G-H
8 end
9 output the only member of F

Figure 5: An algorithm for inferring a good skeleton from G,.

inductive hypothesis, ly - yI < (s - 1)0. Then on all inputs,

If-f'I - Iz- z' + w(y-)
<_ Iz - z'l + IWllY - Y'l

< a0

since Iwi _ 1.
If f = MUL(yl, Y2) = YY2, where sl and 52 LIN gates occur in yj and Y2, respectively, then

81 + 82 = s, and f' = y141 where Ii' - y4I <- s,6 for i = 1,2. Then on all inputs,

If - f'l = Y1 Y2 - Y'lY2'1

I 1 Y2 - Y1 A + y11 - Y'l' Y2

< S20 + SIO = SO.

This completes the induction.

Since f has at most 2n LIN gates, this also proves the lemma. U
Finally, we give an algorithm that infers the skeleton of a formula h that equals f'. (That

is, h may differ syntactically from f', but it is functionally equivalent.) The algorithm is shown

in Figure 5. The algorithm maintains a family of skeletons F. On each iteration of the loop,

several of these skeletons are combined into one. We will show that only one skeleton remains in

F upon termination. Also, although the MUL operator is technically binary, the multiple-input

product used at line 6 can be replaced in the obvious manner by a tree of MUL gates. The set

96 Statistical-perturbation Methods for Inference of Read-once Formulas

rel(a) for skeleton or subformula a is the set of variables relevant to a. Finally, G - H at line 7

denotes the graph obtained from G by deleting all vertices in H, and any edges incident to

these deleted vertices.

We say a condition holds at all times if it holds between each iteration of the main loop.

The algorithm clearly halts since some vertex of G is removed on each iteration.

Lemma 7.9 At all times, if a, and a2 are distinct members of F, then rel(al) n rel(ar) = 0.
Also, Uoer rel(a) = {x,...,X,}.

Proof: Using the fact that rel(LJN(MULEEa)) = UqEE rel(a), this follows by an easy induction

on the number of iterations of the main loop. a

Lemma 7.10 At all times, if {i,j} is not a vertex of G then {xi,xj} C rel(o) for some a E F.

Proof: Note that {i,j} is removed from G at line 7 only if xi and xj are relevant to skeletons

in E. U

Lemma 7.11 Upon termination of the main loop, IF = 1.

Proof: If, upon termination, F contained two skeletons a1 and 0 2, then each must have

distinct relevant variables zi and zj, respectively, by Lemma 7.9. By Lemma 7.10, this implies

{i,j} E G, contradicting the fact that G is empty. •

Lemma 7.12 At all times, if a E F then a is the skeleton of some formula which equals a

subformula of f'.

Proof: By induction on the number of iterations of the main loop. Initially, the lemma holds

trivially.

Consider the state of the algorithm immediately before G is modified at line 7. Let E

{o1,...,lr} be as in the algorithm, and let r = LIN(MULr=IOa). Let {k,f} E H be such that

rFL is a gate of minimal depth in the set {r7: {i,j} E H}. (That is, IL7, does not feed any
gate in this set.)

Claim: rel(a) = rel(gki).
Proof of claim: Note first that, by definition of E,

rel(a) = {xi : {i,j} E H).

Thus, if xi E rel(a) then {i,j} E H for some j. Let T be the set

{{i',j'} E G: ri, feeds rk or rii, = r,,}.

3-7 Learning probabilistic read-once formulas 97

We will show that {i,j} E T; this implies that xi is in the subformula subsumed by gkl, and

thus zi E rel(gkl).

If {i,j} . T, then since {k,1} E T and since {i,j} and {k,t} are equivalent, there must be

an edge in H from some node {i',j'} T to some other node {i',k'} E T. Then Fr,k, must feed

risjo, and rki must be on the path in f from riv to ripio. Thus, r,,kI feeds (or is equal to) rk,
which in turn feeds ri,,. Thus, there exist paths in G, from {i',k'} to {k,1}, and from {k,1}

to {i',j'}. Since an edge is directed from {i',j'} to {i',k'}, this implies that {i',j'} is in H.

However, this contradicts the definition of {k, 1} since {k, 1} is deeper than {i', j'}.
Thus, rel(a) C rel(gia).

Conversely, suppose zi E rel(gkt). Then rit feeds or is equal to rki. Thus, there is a path

in G, from {i, 1} to {k, e}. Since H is assumed to have no incoming edges, this implies that

either {i,1} E H or {i,1} V G. If {i,f} 0 G, then by Lemma 7.10, xi E rel(o) since x, E rel(a).

If {i,e} E H, then xi E rel(a) by construction. Thus, rel(a) = rel(gkj), proving the claim.

The gate rkt in f' immediately feeds some LIN gate. Let h be the subformula of f' subsumed

by this LIN gate. We will show that a is the skeleton of a formula that equals h.

By inductive hypothesis, each at is the skeleton of a formula equal to some subformula ht

of f'. The above claim implies that each h, is in fact a subformula of h. Thus, h can be written

as h = g(hl,..., h,) for some read-once real formula g. That is, g is what remains of h when

each ht is replaced by a meta-variable.

Consider a gate rij in h that does not belong to any of the subformulas h, (and thus that

remains in g). Since r'j, is in h, xi and xj are in rel(a), from the above claim. However, since rij
is not in any of the subformulas h1, xi and xj must be in different subformulas; thus, {i,j} E G
by Lemma 7.10. Since rij feeds or is equal to rk,, there exists a path in Gc from {i,j} to {k,1}.

Thus, {i,j} E H.

This implies that every internal LIN gate of g is trapped since {i,j} E H for every M UL gate

ri, of g. Thus, if LIN,, is an internal gate of g then z = 0 by construction of f', and the LIN

gate is simply multiplying its input by a constant. Since

MUL(LINO,.(yj), LIN0,w,(Y2)) = LIN,ww 2 (MUL(yl, Y2)),

this implies that all of the LIN gates of g can be "pulled to the top." In other words, we can

write

h = LIN,.(MUL"f 1 h,)

for an appropriate choice of z and w. This completes the lemma. U
Combining Lemmas 7.9, 7.11, and 7.12, it follows immediately that the algorithm of Figure 5

outputs a skeleton of a formula equal to f'. The algorithm clearly runs in polynomial time.

98 Statistical-perturbation Methods for Inference of Read-once Formulas

3-7.5 Stage III: Inferring the skeleton's z, w values

In the final stage, our algorithm "fills in" the missing z, w values of the skeleton inferred in
Stage II. Recall that this skeleton a was for a function fjl which closely approximates the
target f. We would like to view flI as the target since we have its skeleton to work with. The
problem is that we have no way of sampling according to fII - we can only sample using the
target we have been provided with, and fjI may differ slightly from the target.

However, it turns out that this is not a problem since f and fhi are so close to one another.

We showed in Lemma 7.8 that If(z) - fII(z)I < 2n0 on all inputs z. Thus, for any distribution
on the inputs (such as the filtered distributions used for estimating the expected values of the
partial derivatives), the expected value of f is within 2ne of the expected value of fi. Thus,
we can view fII henceforth as the target concept f, taking into account the fact that all of our
statistical estimates are off by an additional factor of 2n8. In particular, for all i, j,

i-bil -< c8/(Dn)0 + 4n <aE4</n'

I~ii,-AjI -5 c8 /(9n) 10 +8n8<ae 4 /n 5

where

a = (64- 54 + 1)/9 10 .

Note that Bi now refers to afl/azi for f = fjI but the estimates hi are unchanged; likewise for
Ai. Thus, for this new target formula, influential variables are such that Bi 2! c/4n - aC41n5 >_

E/5n.
Our algorithm uses these values to estimate the z, w values of the LIN gates of f. The

algorithm computes the z, w values from the bottom up: the algorithm visits each gate of the

skeleton, starting with those nearest the input level. No gate is visited vntil all those that feed
it have been visited. When some gate A is visited which subsumes subformula g, our algorithm

computes a formula that approximates not the function g itself, but rather the function g/j.
(Apparently, g/4 is easier to approximate than g.) This is done for all gates except the output-
level gate where an approximation of the function f itself is computed.

Although not the case for the skeleton computed in Stage II, we nevertheless assume without
loss of generality that the gates of a occur in alternating layers of MUL/LIN gates, with a LIN

gate at the output, and every variable an input to a LIN gate.

Suppose that our algorithm is visiting some gate of a, and assume that the corresponding
gate A of f subsumes subformula g. There are five cases to consider:

1. A is a MUL gate, and thus A is immediately fed by a LIN gate, and immediately feeds a

LIN gate;

3-7 Learning probabilistic read-once formulas 99

2. A is a LIN gate immediately fed by a variable, and A is not the output gate;

3. A is a LIN gate immediately fed by a MUL gate, and A is not the output gate;

4. A is a LIN gate immediately fed by a variable, and A is the output gate; and

5. A is a LIN gate immediately fed by a MUL gate, and A is the output g;te.

When A is not the output gate (i.e., cases 1, 2 and 3), we show inductively how to find an

approximation h of h = g/ so that E [Ih - hi] :_ sr/ where s is the number of gates in g,

and

r = C/12n2.

We will find it useful in case 1to also prove as part of our inductive hypothesis that E [Ih - <

5. When A is the output gate (cases 4 and 5) we show how to find an approximation f of g = I,
so that E [c/4.

Case 1

In this case, A is a MUL gate. Thus, we can express g as a product of its inputs, g gg 2. We
assume inductively that, for i = 1,2, approximations hi are available for hi = gi/li with the

property that

E [Ih - hil] Sr/g,.

Here, s, is the number of gates in gi, so that s = S1 + 82 + 1 is the number of gates in g.

We use h, and h2 to approximate h = g/j. Clearly, by independence, h = 1g9 = 1g2/§1§2 =

h h2, so we let h = hh 2 in this case.

Then the average error of h can be computed as follows:

E [Ih- hI] = E [1hih2 - hh2l]1
= E [Il(h2 - h2) + h2(h, - hi) - (h, - hi)(h2 h2)l]

Note that h, = h2 = 1, and that h, and h2 are nonnegative functions. Thus, by independence,

and by our inductive assumptions about the accuracy of h, and h2 , it follows that E [Ih - hi]

is bounded by
3.lr S.21' S1827"2
= + _ + - - (7.6)
91 92 9192

Since 9 = g1g2 _ i for i = 1, 2, this is at most

Sr +S2r +8 182r
2 sir + S2r + r§ <

100 Statistical-perturbation Methods for Inference of Read-once Formulas

f

9ij

LIN,,,~

Xi zj

Figure 6: The decomposition of f used in Case 2.

since each i _< 3n, and since r < 1/9n 2 . This gives the desired bound of 8T/r for Case 1.

Alternatively, note that 1 > c/5n since g, is subsumed by an uncle of some influential

variable zj relevant to 92, and by Lemma 7.1. Thus, since s1 _5 3n, siT/rlg 5/4 by our choice

of r. Similarly, S2 r/g 2 !_ 5/4, and therefore, the bound given in equation (7.6) implies that

E h - h < 65/16<5.

Case 2

In this case, A is a LIN,, gate immediately fed by some variable xi so that g = z + wx,.

Also, A is an input to some MUL gate Fr, for some index j. Thus, gi- = gg, for some subformula

g, to which xj is relevant. We can decompose g, in terms of ;j, and write g = ul + v1z3 .

Similarly, f = uo + vog,, for f's decomposition in terms of g,,. (This decomposition of f is

shown in Figure 6.)

Thus, f = uo + vogg, = uo + vo(z + wx,)(u, + vlzj), so

B = vovI(z + wx,)

Aij = vo v w.

Also, (BIzi ,--0) = v0vlz. Let a = E[Bjxo +-0], ,3 = Aij and -y = &. Then by independence,

a = ~o iz, 0 = fo7i3jw, and -y = Voi?,(z-+wp). (Recall that p, is the probability that bit x, is 1.)

Let ei, 3 and j be respective estimates of these quantities. (The quantity a can be estimated

using the fact that a = E[(fIzi-0,z--1) - (f .Tx-0,z -- 0)]. Thus, Ja - & 1 aC4 /n'.)

3-7 Learning probabilistic read-once formulas 101

Then it can be seen that
a +3i _ z + wx_ g

z + wpp P

so let h = (6 + 4xi)/j in this case.

The next fact will be useful for analyzing the error of h.

Lemma 7.13 For b and b nonzero,

Proof:

a- a +al = Ia-al + l b b I
b~ bb Ij-j

We are now ready to analyze the error of h. First, since x is influential, Iii (C/5n). By
Lemma 7.13,

Ef[h - h] E [a-G + 0j - O711 II

Clearly, h is nonnegative and A = 1. Thus,

E[1 - hj] S 'n -(I& - al + + - Ij - 11)
5n 3ae'

15ac r

74 - 9

since _ 1. Since g contains one gate, this satisfies our inductive hypothesis in case 2.

Case 3
In this case, A is a LIN,W gate which has as input some MUL gate Fr1 so that g = z + wg 3 .

Then gj can be expressed as a product of its inputs gi- g=g2 , where xi and xj are relevant to
gi and g2, respectively. Decomposing gi and g2, we can write g = u1 + v xi and g2 = u2 + V2Xj.
Gate A immediately feeds some MUL gate F. We can write gik as a product of its inputs
gik = gg 3, where g3 is some subformula which contains xk. Decomposing 93, we can write
93 = u3 + v3Xk. Finally, we can decompose f in terms of g,, so that f = uo + vog.,. (All this is
summarized in Figure 7.)

102 Statistical-perturbation Methods for Inference of Read-once Formulas

f

LIN,, 0,

gik

xi xi

Figure 7: The decomposition of f used in Case 3.

Thus, we have that

B, = vovlwg 2g3

B,, = Vo(Z +wgzg 2)va

A,, = VoVz wv 2g3

A,,, = voV3 wglv 2.

Let ca =/} B• ,,, and let fi =/J •, . A,. Then, by independence, and since g,, =gg,

= 3

Let &t = B. A,,, and N =,,, ALN
We assume inductively that an approximation o is available for h3 = . We assume

3-7 Learning probabilistic read-once formulas 103

that E [ho - h] min(5, (s - 1)r/g,,), where s is the number of gates occurring in g.

Let a" o/03, and let j - 6/f. Then -y = wij/(z + wgij) = uj,/9. Thus,

h = gl§ 1 - -1 + -j~o.

Naturally, then, we let

h=1- + -ho

in this case. We show that h has the desired accuracy.

First,

1- aj -3<jk2- + IAjkI[i - 'ai 2a /n

Similarly, ji - 3 2a(/n 5 .

Note that 1-1 = Iw"I / _< 1/j. Also, since all the variables are influential. [1 >_ (c/5n)3

(since IAij I _ I A IIB1 I); thus.

I I (E/5n)3 - 2a4/n 5 > (5 -3 2a)(c/n)3.

So, by Lemma 7.13, we have

16, (i- ai + i-ilj- -)

-5 -3 - 2a C "

4a c
5- - 2a n

So the error of h can be computed as follows:

!-[Ih-hl = 1- , o- holl

< J-l.-j L E[Ihol+TIE lho--ho j] + E-1E[1ho-hh.1]

Since E (Iho1] = 1. and by our inductive assumption on the error of ho, this is at most

71-f - + E 11ho - hol IwlI4 s-)r

4 jij

r + (s - 1)r
< sl

104 Statistical-perturbation Methods for Inference of Read-once Formulas

f

LIN
2,,

9ij

xiJ

xi Xj

Figure 8: The decomposition of f used in Case 5.

as desired.

Case 4

In this very easy case, f = LIN 2w(x 1) for some z,w. Since f = z + wxj, B1 = B1 = w. Let

ti = B1j, and let ii be an estimate of z = E[fIxI-0]. (Recall that an estimate of this latter

quantity was made in calculating P 1. Thus. Iz - Z-j -< ac4 /n 5 .) Finally, let = 2 + zbx 1 . Then

E[I f- jj] -< Iz- fl + 1wL,- &I[S 2ac4/n' /

as desired.

Case 5

In this case, A is a LIN 2w gate computing the formula's output f. Gate A receives its input

from some MUL gate r1i. Thus, f = Z + wgij, and gij computes the product 9i; = gg 2 , where

variables xi and xj are relevant to g1 and g2 , respectively. (Refer to Figure 8.)

We assume inductively that an approximation ho has been computed for ho =glgij,

and that the accuracy of ho is such that E fho - h0] S min(5,(s - 1)T/gij) where s is the

number of gates occurring in f. We wish to use h0 to compute an approximation j so that

E [j- f3 !/4.
We can decompose each subformula g, so that g1 = ul + vix, and g2 = u,. + vxj. Then we

3-7 Learning probabilistic read-once formulas 105

have:

B, = wvlg2

Bj= wv 2g1

A,, = wvlv 2 .

Let a = f, and let = B," Bj/Aij. Let 3 = Bi, -B/lij, and let & be an estimate of f so that

Ja - &1 :_ c/24n2 with probability at least 1 - 6/4. Such an estimate is easily computed since f
is just the probability that a positive example is received from the examples oracle. (Actually,

we can only sample according to the "true" target formula, rather than the one derived in

Stage II, and here regarded as the target. The additional error introduced by this fact has been

folded into the stated accuracy, as was done for our estimates i, etc.)

Note that a = z + wjij, and t3 = w91 9 2 = wjii. rhus, it is easily seen that

f (a - 0) + Oho,

and we let

- + A0.

We show that f has the desired accuracy.

First, note that

B},Bf - BB,I lbillbj - B'l + JjBB, ,- A,

_ 2ac4/ns.

Clearly, I < 1. so IAijl I I BJI _I (c/5n) 2 . Thus, _ (E/5n)-aE4/n 5 > (52-a)(/n).

Thus. bv Lemma 7.13.

S< ..L... i - f~,j + 'oil Ai, - i

3a f2

5- 2 - a n3'

Since 101 < 1. we assume without loss of generality that K 1. Thus, the average error of I
can then be computed as follows:

E[f - i] = + E+ -3+ ho-)hol

< E[1a-61+ 1- l + 1- lhl+ 101ho-]ho + 1--/ Iho -ho

106 Statistical-perturbation Methods for Inference of Read-once Formulas

C 21a(2

24n (5-2 - a)n3 + w(s-
< sr < 3nr < c/4

as desired. Here we have used the fact that E [Ihol] = 1, and our inductive bound on the error

of h0 .

Combined with the previous cases, this completes the induction, and proves that the final

computed hypothesis j has error at most E [If - f] _5 /4.

3-7.6 Putting it all together

Thus, we showed in Stage I how to eliminate sticky and uninfluential variables from the target

formula f, yielding another formula fI with E [If - fil] < 2c/3.

In Stage II, we regarded fi as the target, and showed how to find an approximate skeleton

o of fI; in particular, we showed that there exist z, w values for a which result in a formula

fxI. This formula is very close to fI; we showed that Ifi - fiil is much smaller than c/12 on all

inputs, and so certainly E [IfI - fulil < c/12.

Finally, in Stage III. we regarded fil as the target, causing a slight degradation in the

accuracy of our estimates. Nevertheless, we described a technique for approximating the z, w

values for flI, giving a final formula f with E [Ii- f.1j] S c/4. It follows immediately that

E [If - ill <' as desired. In other words. f is an c-good model of probability for f.

All of the operations described are clearly polynomial time, and the sample size is also

polynomial. The sample was needed to estimate the probability that each bit is 1. and the

expected value of f when zero, one or two unsticky variables are hardwired to fixed values. For

the accuracy needed, we can use Chernoff bounds (Lemma 2-3.6) to show that a sample of size

O((n 2 2 /Cs) - log(n/6)) suffices.

After the sample is drawn our algorithm records the obtained estimates of these values. All

of the remaining operations of the algorithm take negligible time compared to the time needed

to compute and record these values from the (unfortunately quite large) sample.

Thus we have:

Theorem 7.14 There exists an algorithm with the following properties: Given C, 6 > 0 and

access to random examples chosen according to a product distribution and classified randomly

according to some read-once real formula f, the algorithm outputs an ,-good model of probability

for f with probability at least 1 - 6. The sample size needed by the algorithm is O((n 22/(18)

log(n/6)), and its running time is O((n 2 4/,) • log(n/6)).

From the comments made at the beginning of this section, we have as corollary:

3-8 Conclusion and open problems 107

Corollary 7.15 There exists a polynomial-time algorithm that PAC-learns the class of read-

once Boolean formulas against any product distribution.

3-8 Conclusion and open problems

In this chapter, we have described polynomial-time algorithms for learning various classes of

read-once formulas in a number of settings. Our algorithms are based on a simple statistical

method of observing the formula's behavior under various perturbations of the target distribu-

tion.

The main open question is to determine how far this apparently powerful method can be

extended. In particular, can it be applied to formulas which are not read-once? Can it be

extended beyond product distributions? Are there other classes entirely different to which it

might be extended, such as decision trees, or finite automata?

Considering the classes described in this chapter, can the algorithms described be improved?

(It seems that this should certainly be the case for the algorithm of Section 3-7.) Turning the

question around, can we find good, non-trivial lower bounds for these problems? It is unclear

what such a lower-bound proof would look like, especially since, in the PAC model, much smaller

sample sizes are known to suffice in a computationally unbounded setting. (This follows, for

instance, from Occam's Razor of Blumer et al. [13].)

Finally, can our algorithms be extended to the so-called two-oracle model? In the one-

oracle model (considered exclusively in this chapter), the learner receives both positive and

negative examples from a random source of examples, and must perform well as measured

against this single distribution. In the two-oracle model, the learner has two random sources

of examples, one that provides just positive examples, and the other providing just negative

examples. The learner must perform well against both distributions (i.e., both the distribution

on the positive, and the distribution on the negative examples). In the distribution-free model,

Haussler et al. [38] show that these two models are equivalent. However. their proof falls
apart when the form of the target distribution is restricted. Kearns et al. [51] and Pagallo

and Haussler [66] have shown that read-once formulas in disjunctive normal form are efficiently

learnable against the uniform distribution in the two-oracle model. Can the results in this

chapter be similarly extended?

CHAPTER 4

Efficient Distribution-free Learning
of Probabilistic Concepts

4-1 Introduction

Consider the following scenarios:

A meteorologist is attempting to predict tomorrow's weather as accurately as possible. He

measures a small number of presumably relevant parameters, such as the current temper-

ature, barometric pressure, and wind speed and direction. He then makes a forecast of

the form "chances for rain tomorrow are 70%." The next day it either rains or it does

not rain.

A statistician wishes to compile an approximate rule for predicting when students will be

admitted to a particular college. There are some students whose record is so strong they

will be accepted regardless of which admissions officer reviews their file; similarly, there are

others who are categorically rejected. For many students, however, their admission may

be highly dependent on the particular admissions officer that evaluates their application;

thus the best model for the chances of these borderline students involves a probability of

acceptance. However, every student is either accepted or rejected.

A physicist is attempting to determine the orientation of spin for particles in a certain magnetic

field. Presumably, the orientation of spin is at least partially determined by a genuinely

random process of Nature. The spin of any particle is always oriented either up or down.

We wish to produce a good model for the recognition of common objects such as chairs. For

most objects in the world, there is nearly universal agreement as to whether that object

108

4-1 Introduction 109

is a chair or a non-chair. There do exist, however, a few objects that provoke widespread

disagreement, such as stools and benches. This is due to the fact that the concept of
"chair" is not absolute, and philosophical boundaries of this concept may be exposed

by both naturally occurring and artificially constructed objects. Most young children,

however, are not explicitly told about such definitional shortcomings; they are simply

told whether or not something is a chair.

There are some obvious common themes in each of the above situations. First, in each

there is uncertain or probabilistic behavior. This uncertainty may arise for radically different

philosophical reasons. For example, in the case of the meteorologist, it could be that while the
weather is in principle a deterministic process, the parameters measured by the meteorologist

and the limited accuracy of these measurements are insufficient to determine this process.

In the case of the physicist. the electron spin is believed to be governed to some degree by a

truly random process. In the case of the statistician, the uncertainty arises from the diversity of

human behavior, and in the case of chair recognition, a probability may model the philosophical

difficulties of providing a deterministic definition to an inherently uncertain or "fuzzy" concept.

A second theme that is common to each of these settings is the fact that even though

the best model may be a conditional probability p(x) that the event (rain, acceptance to the

college, etc.) occurs given x (where x represents the measured weather variables or a student's

application), the observer only witnesses whether or not the event occurs. Thus, examples are

of the form (x, 0) or (x, 1) - not (x, p(x)) - and the {0, 1} label provided with x is distributed

according to the conditional probability p(x). Furthermore, we should not expect to be able to

compute even an estimate of p(x) from the given {0, 1}-labeled examples, since in general we

are unlikely to ever see the same x twice (each day's weather is at least slightly different, as is

each student's application).

Finally, although there is uncertainty in each of these settings, there is also some structure to

this uncertainty. For instance, days with nearly identical atmospheric conditions and students

with very similar high school records can be expected to have nearly equal probabilities of

rain and acceptance to the college, respectively. We also expect some inputs x to be assigned

conditional probabilities that are very near 0 or 1; for example, days on which the sky is cloudless

or students with straight A's. This structured behavior strongly distinguishes these learning

scenarios from a "noisy" setting, such as that considered by Angluin and Laird [9], Kearns

and Li [50], and Sloan [81]. In a model of learning with noise, the noise is typically "white"

(that is. all inputs have either an equal probability of corruption or a probability determined

by an adversary), and the noise is regarded as something an algorithm wishes to "filter out"

in an attempt to uncover some underlying deterministic concept. In the examples given above,

the probabilistic behavior is both structured (possibly in a manner that can be exploited by a

110 Efficient Distribution-free Learning of Probabilistic Concepts

learning algorithm) and inherently part of the underlying phenomenon. Thus, whenever possible

we do not wish to filter this probabilistic behavior out of the hypothesis, but rather to model

it.

In this chapter we wish to study a model of learning in such uncertain environments. We

formalize these settings by introducing the notion of a probabilistic concept (or p-concept). A

p-concept c over a domain set X is simply a mapping c : X -- [0, 1]. For each z E X, we

interpret c(z) as the probability that x is a positive example of the p-concept c. Following

the discussion above, a learning algorithm in this framework is attempting to infer something

about the underlying target p-concept c solely on the basis of labeled examples (x, b), where

b E (0, 1} is a bit generated randomly according to the conditional probability c(x), i.e., b = 1

with probability c(z).

The value c(x) may be viewed as a measure of the degree to which x exemplifies some

concept c. In this sense, p-concepts are quite similar to the related notion of a fuzzy set, a kind

of "set" whose boundaries are fuzzy or unclear, and whose formal definition is nearly identical

to that of a p-concept. An axiomatic theory of fuzzy sets was introduced by Zadeh [89], and

they have since received much treatment by researchers in the field of pattern recognition. See

Kandel's book [47] for a good introduction.

We distinguish two possible goals for a learning algorithm in the p-concept model. The first

and easier goal is that of label prediction: the algorithm wishes to output a hypothesis that

maximizes the probability of correctly predicting the {0, 1} label generated by c on an input

x. We call this kind of learning decision-rule learning, since we are not primarily concerned

with actually modeling the underlying uncertainty but instead wish to accurately predict the

observable {0, 1) outcome of this uncertainty. The more difficult and more interesting goal is

that of finding a good model of probability. Here the algorithm wishes to output a hypothesis

p-concept h : X - [0. 1] that is a good real-valued approximation to the target c; thus, we

want jc(x) - h(x)l to be small for most inputs x. Following the motivation given above, we are

mainly concerned with this latter notion of learning.

To model the aforementioned structure of the target p-concept, we study the learnability of

classes of p-concepts that obey natural mathematical properties intended to model some realistic

environments. As a simple example, in constructing a p-concept model of the subjective notion

of "tall," it is reasonable to assume that x > y implies c(x) >_ c(y) (where x represents height)

- the taller a person actually is. the higher the percentage of people who will agree he is tall (or

the greater the "degree of tallness" we wish to assign). This motivates us to consider learning

the class C of all non-decreasing p-concepts over the positive real line. In general, we wish

to study the learnability of p-concept classes that are restricted in such a way as to plausibly

capture some realistic situation, but are not so restricted as to make the learning problem trivial

4-1 Introduction 111

or uninteresting.

We adopt from the Valiant model for learning deterministic concepts [83] the emphasis

on learning algorithms that are both efficient (in the sense of polynomial time) and general

(in the sense of working for the largest possible p-concept classes and against any probability

distribution over the domain). After formalizing the learning model and the two possible goals

for a learning algorithm (decision-rule learning and model-of-probability learning), we embark

on a systematic study of techniques for designing efficient algorithms for learning p-concepts

and the underlying theory of the p-concept model.

We begin by giving examples of efficient algorithms producing a good model of probabil-

ity that employ what we call the direct approach; the analyses of these algorithms give first-

principles arguments that the output hypothesis is good. These include algorithms for arbitrary

non-decreasing functions motivated above, a probabilistic analog of Rivest's decision lists [72],

and a class of "hidden-variable" p-concepts, motivated by settings such as weather prediction

where the apparently probabilistic behavior may in part be due to the fact that some relevant

quantities remain undiscovered.

We then consider the problem of hypothesis testing in the p-concept model. Working within

the framework suggested by Haussler [36], we define a loss function that assigns a measure

of goodness to any hypothesis p-concept on a {0, 1}-labeled sample. After proving that the

quadratic loss measure is most appropriate for our setting, we then give an example of an

efficient algorithm for finding a model of probability that first does some direct computation

in order to narrow the search and then uses quadratic loss to choose 1he best hypothesis from

among a small remaining pool. This algorithm learns a class of p-concepts in which only a

small number of variables are relevant, but the dependence on these variables may be arbitrary.

Next we consider the related but more difficult issue of uniform convergence of a p-concept

class. More precisely, how many {0, 1}-labeled examples must be taken before we have high

confidence that every p-concept in the class has an empirical quadratic loss that accurately

reflects its true performance as a model of probability? In a more general formulation, this

question has received extensive consideration in the statistical pattern recognition literature,

and its importance to learning has been demonstrated by many recent papers. We show that the

sufficient sample size for uniform convergence is bounded above by the quadratic loss dimension

of the p-concept class, a combinatorial measure derived from the combinatorial dimension

discussed by Haussler [36] and other authors.

We then give efficient algorithms that apply the uniform convergence method (that is. take

a large erough sample as dictated by the quadratic loss dimension, and find the hypothesis

minimizing the empirical loss over the sample) in order to find a good model of probability.

In particular, we prove the effectiveness of an algorithm for learning p-concepts represented by

112 Efficient Distribution-free Learning of Probabilistic Concepts

linear combinations of d given basis functions. We then show that the quadratic loss dimension,

when finite, is also a lower bound on the required sample size for learning any p-concept class

with a model of probability; thus the quadratic loss dimension, when finite, characterizes the

sample complexity of p-concept learning with a model of probability in the same way that the

Vapnik-Chervonenkis (VC) dimension characterizes sample complexity in Valiant's model. (See

Blumer et al.'s paper [14] for a full discussion of the VC-dimension.) However, we show that

p-concept classes of infinite quadratic loss dimension may sometimes be learned efficiently, in

contrast to classes of infinite VC-dimension in the Valiant model, which are not learnable in

any amount of time. (Technically, this is not always true if "dynamic" sampling is allowed; see

Linial, Mansour and Rivest's paper [58] for further details.)

We conclude with an investigation of Occam's Razor in the p-concept model. In the Valiant

model, Blumer et al. [13] show that it suffices for learning to find a consistent hypothesis that

is slightly shorter than the sample data. We look for analogies in our setting: namely, when

does "data compression" imply a good model of probability? We formalize this question, and

argue briefly that several of our algorithms can be interpreted as implementing a form of data

compression.

The primary contribution of this research is that of providing positive results for efficient

learnability in a natural and important extension to Valiant's model. This is significant because

the Valiant model has been criticized for both its strong hardness results (and drought of

powerful positive results), and for the unrealistic deterministic and noise-free view it takes

of the concepts to be learned. While at first it may seem paradoxical that we are able to

simultaneously generalize the model and obtain many positive results, this intuitively may be

explained by the fact that since we generalize the form of the representations being learned,

there are more ways in which concepts that capture some natural and realistic setting may

be simply expressed. In contrast, since the Valiant model tends to emphasize concept classes

based on standard circuit complexity, one is quickly led to study very powerful and apparently

difficult classes such as disjunctive normal form Boolean expressions.

Another contribution of this research is in demonstrating the feasibility and practicality of

the approach suggested by Haussler [361. His work addressed the issue of sample complexity

upper bounds in great generality, even encompassing the case where the input-output relation

to be learned has no prescribed functional form. This generality prevents Haussler from ob-

taining either good sample size lower bounds or efficient learning algorithms; indeed, he cites

both of these as important areas for further research. Our results may be regarded as a first

demonstration of applying some of Haussler's general principles to a specific and realistic model

in which computation time is of foremost significance.

4-2 The learning model 113

4-2 The learning model

Let X be a set called the domain (or instance space). A probabilistic concept (or p-concept) is a

real-valued function c : X - [0, 1]. When learning the p-concept c, the value c(x) is interpreted

as the probability that x exemplifies the concept being learned (i.e., the probability that x is a

positive example). A p-concept class C is a family of p-concepts. On any execution, a learning

algorithm for C is attempting to learn a distinguished target p-concept c E C with respect to a

fixed but unknown and arbitrary target distribution D over X. We think of D as modeling the

natural distributioi, of objects in the domain, and c represents the probabilistic concept to be

learned in this domain.

(More formally, D is a probability measure on a a-algebra of measurable subsets of X. We

assume implicitly that all of the p-concepts considered are measurable functions with respect

to this o-algrebra on X, and the Borel or-algebra on [0, 1].)

The learning algorithm is given access to an oracle EX that behaves as follows: EX first

draws a point x E X randomly according to the distribution D. Then with probability c(z),

EX returns the labeled example (x, 1) and with probability 1 - c(x) it returns (x, 0). Thus,

learning algorithms never have direct access to the conditional probabilities c(x), but only to

random examples whose labels are distributed according to these unknown probabilities.

Let h be a function mapping X into {0, 1}; we call such a function a decision rule. We

define the predictive error of h on c with respect to D, denoted RD(c, h), as the probability

that h will misclassify a randomly drawn point from EX. If h minimizes RD(c, .), then we say

that h is a best decision rule, or a Bayes optimal decision rule, for c. We say that h is an c-good

decision rule for c if RD(c, h) < RD(c, h) + C, where h is a best decision rule. Thus we ask that

h be nearly as good as the best decision rule for c.

The projection of the p-concept c is the function 7r, : X - {O, 1} that is 1 if c(x) > 1/2 and

0 if c(z) < 1/2. It is well known and easy to show that for any target p-concept c, its projection

ir, is a Bayes optimal decision rule.

In this chapter we are primarily interested not in the problem of finding a good decision

rule, but in that of producing an accurate real-valued approximation to the target p-concept

itself. Thus, we wish to infer a good model of probability with respect to the target distribution.

We say that a p-concept h is an (c, -y)-good model of probability of c with respect to D if we

have PrED[Ih(x) - c(x)l > -] < c. Thus, the value of h must be near that of c on most points

X.

We are now ready to describe our model for learning p-concepts. Let C be a p-concept class

over domain X. We say that C is learnable with a model of probability (respectively, learnable

with a decision rule) if there is an algorithm A such that for any target p-concept c E C, for

any target distribution D over X, for any inputs c > 0, 6 > 0 (and 7 > 0 for learning with

114 Efficient Distribution-free Learning of Probabilistic Concepts

a model of probability), algorithm A, given access to EX, halts and with probability at least

1 - 6 outputs a p-concept h that is an (f, -y)-good model of probability (respectively, an c-good

decision rule) for c with respect to D. Note that this model of learning p-concepts generalizes

Valiant's model for learning deterministic concepts.

We say that C is polynomially learnable if A runs in time polynomial in 1/c, 1/6 and, where

appropriate, 1/-y. Often the p-concept class C will be parameterized by a complexity parameter

n, that is C = U> 1 C,,, and all p-concepts in C,, share a common subdomain X,,. In such cases

we also allow a polynomial dependence on n.

Our first lemma shows that a good model of probability can always be efficiently used

as a good decision rule; thus, learning with a model of probability is a harder problem than

decision-rule learning.

Lemma 2.1 Let C be a class of p-concepts. If C is (polynomially) learnable with a model of

probability, then C is (polynomially) learnable with a decision rule.

Proof: To prove the lemma, we show that the projection of a good model of probability can

be used as a good decision rule. In particular, we show that if h is an (c,y)-good model of

probability, then 7rh is an (c + 27)-good decision rule. Thus, by choosing C and 7 appropriately,

an arbitrarily good decision rule can be found by the assumed algorithm for learning with a

model of probability.

Let x E X, and suppose Ih(x) - c(x)l < -. If Ic(x) - 1/21 > -, then clearly 7rh(X) = r,(X).

On the other hand, if lc(x) - 1/21 _ y, then it may be that lrh(x) # r,(x). However, the chance

that r,(x) agrees with a random label for x (chosen according to c) is at most 1/2 + Y, while

the chance that irh(x) agrees with the random label is at least 1/2 - y.

Thus, the difference in predictive error between ir, and 7rh (taken over a random choice of

an instance and its label) is at most c + (1 - E) • 27 _< c + 27.

4-2.1 Alternative formulations

In addition to the formulation given above, there are various other natural ways of expressing

the fact that some hypothesis p-concept h is "close" to the target c. For example, we might say

that h is a good model of probability for c if the average difference between the two functions

is small, i.e., if the quantity EoED [Ih(x) - c(x)l] is small. Alternatively, we might ask that the

expected square of the difference between the functions be small.

As we will see in the following sections, these alternative definitions are sometimes easier

to work with than the "official" definition given above. The next lemma shows that the three

formulations are equivalent modulo polynomial-time computation.

4-3 Efficient algorithms: The direct approach 115

Lemma 2.2 Let h and c be p-concepts, and let D be a target distribution on domain X. Let

= EED [Ih(x) - c(z)l] and let e 2 = EED [(h(x) - c(X))2]. Then

0 e2 !< el Vr2

* for any -f > 0, h is both an (e1/-yy)- and an (e2/y12, y)-good model of probability for c;

* if h is an (c,y)-good model of probability, then el 5 c + -Y, and e2 < C + -/ 2 .

Proof: Since Ih(x) - c(z)l < 1 for all x, it is clear that e2 < el. Also, by a convexity argument

we have (E[Y]) 2 < E[Y 2] for any random variable Y. Thus, el 5 e

Let -y > 0. Then by Markov's inequality,

ProED [jh(x) - c(x)l > 71 < el/7.

Similarly,

PrED [jh(z) - c(x)l > -f] = PrED [(h(x) - c(x)) 2 > "Y2] < e2 /y 2 .

These imply the second part of the lemma.

Finally, suppose h is an (c, 7)-good model of probability. Then

e l < PriED [jh(x) - c(x)l > 7] 1 + PrIED [Ih(x) - c(x)l _< 7]7 - S + (1 - c)7' < c + 7.

Similarly, e 2 < C + Y2.

4-3 Efficient algorithms: The direct approach

In this section. we describe efficient algorithms for learning good models of probability based

on first principles and proved correct by direct arguments. Later arguments will rely on an

underlying theory of p-concept learning that is developed in subsequent sections. We begin with

a p-concept class motivated by the problem of modeling "tallness" discussed in the ii. roduction.

4-3.1 Increasing functions

Theorem 3.1 The p-concept class of all nondecreasing functions c : R -- [0, 1] is polynomially

learnable with a model of probability.

Proof: We prove the result in slightly greater generality for any domain X linearly ordered by

some ordering "<." Given positive c. 6 and -y, let t = r4/e-y], and let

164x n(2 21/(-y)2) 2"n(4t/6)j
S= [max -f 1 2

116 Efficient Distribution-free Learning of Probabilistic Concepts

Our algorithm begins by drawing a labeled sample of m = st examples (xi, b,). The examples

are sorted and reindexed so that z _< .-. < -5,. In fact, we assume initially that no instance

occurs twice in the sample so that x, < < xm. Later, we show how this assumption can be

removed.

The set X can naturally be partitioned into t disjoint intervals Ij, each containing exactly s

instances of the sample; specifically, we let I, = (-oo, x,]; Ij = (z(j-1),, x1.] for j = 2,3,..., t-1;

and It = (z(i-l).,oo). For 1 < j _< t, let Pj = (1/s). - E1, bi. Thus, Pj is an estimate of the

probability pi that a random instance in I is labeled 1. Our algorithm outputs a step function

h defined in a natural manner: for x E Ij, we define h(x) = pi.

This algorithm clearly runs in polynomial time. We argue next that the output hypothesis

h is an (c, y)-good model of probability (with high probability). Here are the high-level ideas:

first, we show that (with high probability) each interval has weight approximately Cy under the

target distribution. Next we show that if c increases by roughly Y or less on the interval Ij,

then h is close to c on all points in the interval. On the other hand, since c is nondecreasing

and bounded between 0 and 1, c can increase by more than -y in at most 1/y intervals; since

these "bad" intervals have total weight at most c, h is a good model of probability.

Specifically, we can apply the uniform convergence results of Vapnik and Chervonenkis [85]

to show that each interval Ii has probability at most qf/2. Let S be the set of all intervals on

X. Then Theorem 2 of their paper shows that, with probability at least I - 6/2, for the sample

size m chosen by our algorithm, the relative fraction of points of the sample occurring in any

interval of S is within cy/4 of the true weight of the interval under the target distribution. In

particular, since each interval Ij contains 1/t < c7/4 of the instances in the sample, the weight

of 1i under the target distribution is at most E^/2.

(Technically, their results rely on certain measurability assumptions which depend on the

choice of X. However, these assumptions are satisfied when X = R.)

Let qj = c(x,,) for 1 < j < t, and let q0 = 0 and q, = 1. Then for x E I,, it is clear that

q,- 1 :_ c(x) !_ qj since c is nondecreasing. In particular, this is true for each xi E Ii. Thus,

each point xi E I is labeled 1 with probability c(x,) 2 qj-1, and so, for each j, Pj ? q,-i -f/2

with probability at least 1 - b/4t; this follows from the fact that s > (2/y 2) - ln(4t/6), and by

applying the additive form of Chernoff bounds given in Lemma 2-3.6. Similarly, APj qj + 7/2

with probability at least 1 - 6/4t. Thus, it follows that qj-i - y/2 < Pj <_ qj + -/2 for all j

with probability at least 1 - 6/2. Hence, if qj - qj- 1 _ -//2, then (h(x) - c(x)l 5 y for x E Ij.

On the other hand, qj - qj_- can exceed -y/ 2 for at most 2/7 values of j since c is nonde-

creasing, and bounded between 0 and 1. Since each of these "bad" intervals has probability

weight at most qy/2, the sum total probability of these intervals under D is at most E. Thus.

h is an (E,y)-good model of probability.

4-3 Efficient algorithms: The direct approach 117

Finally, we show how to insure that the sample does not contain the same instance more

than once. Such a situation could be problematic for our algorithm since it might cause some

of the intervals defined above to be empty, or to contain too many sample points.

The idea is to replace the given domain X and target distribution D with a new domain

X' and distribution D' under which the same instance is very unlikely to occur twice. In

particular, we let X' = X x T and D' = D x U where U is the uniform distribution on the

set T = {0,...,2 k - 1}, and k = [21gm + lg(1/)1. Then X' is linearly ordered under the

lexicographic ordering (i.e., (z, r) :_ (y, s) if and only if x < y, or x = y and r < s). Also, the

chance that any pair of instances are the same in a sample of size m drawn according to D' is

at most () -2 - k 2 2--1 < b/2.

In addition, given a random source of instances from X drawn according to D, we can easily

simulate the random choice of instances from X' according to D': given z E X, we simply draw

a random number r uniformly from T, yielding an instance (x, r) with distribution D' (x's label

is not altered). Thus, the previously described algorithm can be simulated (with b replaced

by b/2) on domain X'. If the same instance occurs twice in the sample, the algorithm simply

fails - as argued above, this will happen with probability at most b/2. Thus, with probability

at least 1 - 6, the algorithm returns an (f, 7)-good hypothesis h (with respect to X'). This

hypothesis can be used to estimate c(x) for a given point x E X by randomly choosing r E T

and evaluating h((x, r)). Although this yields a randomized hypothesis h', it remains true that

the probability (over choices of x E X and the randomization of h') that h' differs by more than

y from c is at most c. Thus, h' is an (f,-7)-good model of probability if h is. U

This algorithm can be modified to learn with a model of probability any function over the

real line with at most d extremal points: the running time is then polynomial in d, 1/c, 1/6 and

1/7.

In principle, the algorithm of Theorem 3.1 could be used to learn the p-concept class of non-

decreasing functions with a decision rule (by applying Lemma 2.1). However, a much simpler

and more efficient algorithm exists that we give in Section 4-5.

4-3.2 Probabilistic decision lists

We turn next to the problem of learning a probabilistic analog of Rivest's decision lists [72]. We

define such lists with respect to a basis F,, of Boolean-valued functions on the domain {0, 1}".

We assume always that F,, contains the constant function 1. Then a probabilistic decision list

c over basis F, is given by a list (fl,r 1),...,(f,,r,), where each f, E F,, and each ri E [0, 1].

We also assume that f, is the constant function 1. For any assignment x in the domain, c(x) is

defined to be r,, where j is the least index for which f,(x) = 1. In other words, the functions

in F,, are tested one by one in the order specified by the list, until a function which evaluates

118 Efficient Distribution-free Learning of Probabilistic Concepts

to 1 on x is encountered; the corresponding real number rj is then the probability that x is

labeled 1.

Rivest does not define decision fists with respect to a general basis as is done here. Rather,

in his definition, a decision list only tests the values of monomials. That is, he defines decision

lists specifically with respect to the basis consisting of all conjunctions of literals. He goes

on to define the class k-DL of decision lists in which each monomial occurring in the list is a

conjunction of k or fewer literals. Thus, this class is over the basis of all monomials of size at

most k. Rivest describes an efficient algorithm for learning the class k-DL, when k is any fixed

constant.

Below, we describe an efficient algorithm for learning a special class of probabilistic decision

lists over any basis 1 . The running time of this algorithm is polynomial in all of the usual

parameters, in addition to jY,, and the maximum time needed to evaluate any function f in

F,. Thus, in particular, this implies a polynormial-time algorithm for the same basis considered

by Rivest, namely, the set of all conjunctions of k or fewer literals, for k a fixed constant.

Let c be a probabilistic decision list over basis Y,,, given by the list (fl, rl), . . ., (f., r').

For w E [0, 1], we say that c is a probabilistic decision list with w-converging probabilities if

It, - wl >_ ri+ 1 - wl for 1 < i < s. Below, we describe an algorithm for inferring such lists when

w is known. As a special case, when w = 0, this algorithm can be used to learn probabilistic

decision lists with decreasing probabilities, i.e., lists in which ri _> rj for i < j.

Perhaps the most natural case occurs when w = 1/2. In this case, we say that c is a prob-

abilistic decision list with decreasing certainty since instances with the most certain outcomes

(labels) are handled at the beginning of the list. For instance, a college's admissions process

(see Section 4-1) might be naturally modeled in this manner as a list of criteria for determining

admission, ordered by importance: for example, if the student has straight A's, then he should

be admitted with 90% probability; otherwise, if he did poorly on his SAT's, then he should

be rejected with 85% probability; otherwise, if he was class president, then he should be ac-

cepted with 75% probability; and so on. Note that the class of probabilistic decision lists with

decreasing certainty includes the class of ordinary (deterministic) decision lists over the same

basis.

We also note that the algorithm given below in Theorem 3.2 can be applied to learn ordinary

decision lists when the supplied examples are "noisy." Specifically, consider the problem of

learning a deterministic decision list c given by the list (f 1 ,b 1), ... ,(f,,b,) where each f, is

in the basis F,,, and, since the list is deterministic, each b, E {0, 1}. Suppose further that

the classification of each example is flipped randomly with probability 77 < 1/2. This random

misclassification noise model is considered, for instance, by Angluin and Laird [9]. Note that the

observed behavior in such a situation can be modeled naturally by the probabilistic decision list

4-3 Efficient algorithms: The direct approach 119

Input: W E [0, 1]
basis F' = {, ,., ,

C, 6, / > 0
access to random examples of a probabilistic decision list over basis F,,

with w-converging probabilities
Output: with probability at least 1 - 6, an (c, y)-good model of probability
Procedure:
1 L -- empty list
2 J-{l,...,a}
3 obtain a sample S of m = [(32s/e3y2) - ln(2'+ 2s/b) random examples
4 repeat
5 if I{(z, b) E S :f(x) = 1}1 < mc/4s for some j E J then
6 t4--j

7 A +- 0
8 else
9 for j E J: P , -- {(x,b) ES: fj(x) = lAb = 1}1 :j{(x,b) ES: fj(x)= 1}1

10 choose t that maximizes wl - 1
11 L --L, (ft,[P,)

12 S.- {(x,b) E S :ft(x) = 0}
13 J g- {t}
14 until J =0
15 output L

Figure 1: An algorithm for learning probabilistic decision lists with w-converging probabilities.

c' given by (fl, 1b1 - q]),..1. , 1b, - 271). That is, c'(x) is the probability that x is labeled 1 by

a noisy oracle for c. Clearly, c' is a probabilistic decision list with 1/2-converging probabilities.

Thus. we can apply the efficient learning algorithm for this class (described below) to obtain

a good model of probability h for c'. If we choose -y < 1/2 - q/, then it can be seen that the

projection of h is a good approximation of c; that is, with probability at least 1 - 6. a hypothesis

h is obtained for which Pr1ED [Trh(X) $ c(x)] < c. (Technically, this algorithm assumes that 77,
or an upper bound on 7. is known. However, if no such bound is known, Angluin and Laird [9]

give a technique for finding a good bound using a kind of "binary search.")

Thus, a corollary of Theorem 3.2 is a proof that deterministic decision lists are efficiently

learnable even when the supplied examples are randomly misclassified with probability 71. The

running time is then polynomial in 1/(1 - 227), in addition to the usual other parameters. This

specifically answers an open question proposed by Rivest [72] concerning the learnability of

decision lists in such a noisy setting.

Theorem 3.2 Let w E [0, 1] be fixed, and let -F,, be a basis of functions. Then the p-concept

class of probabilistic decision lists over basis .F, with w-converging probabilities is learnable with

120 Efficient Distribution-free Learning of Probabilistic Concepts

a model of probability (assuming both w and Y, are known). Specifically, this class can be

learned in time polynomial in l/c, 1/-y, 1/b, n, IF,4 and the maximum time needed to evaluate

any function in F,.

Proof: Our learning algorithm for this p-concept class is shown in Figure 1. As usual, the

algorithm begins by drawing a large sample S of size m which will be used to construct a

hypothesis probabilistic decision list L. (Note that S and all subsets derived from S are multisets

- they are "sets" which may contain multiple copies of the same example.)

Assume for convenience that the functions in F, are indexed so that the target p-concept

c is given by the list (f 1 ,r 1),...,(f0,r,). (Of course, the learning algorithm is not aware of

this.) We also assume without loss of generality that every function in the basis F,, occurs in

the target list so that s = IF I.

Here is the intuition behind our algorithm: using the sample, we might estimate the prob-

ability pi that a positive random example (x, 1) is drawn, given that fi(x) = 1. It can be

shown to follow from the definition of w-converging decision lists that 1p, - wj > jpi - wl for

all i. This suggests a technique for identifying the first variable in the list: if our estimates Pi
are sufficiently accurate, we would expect iA - wl to be maximized when i = 1. This is the

approach taken by our algorithm: the function f, for which fi~3 - wj is greatest is placed at the

head of the hypothesis list. The remainder of the list is constructed iteratively using the part

of the sample on which f,(x) = 0.

For I C {1,. .. , s} and j E {,. .. ,s}, let A(Ij) be the set of all instances x for which

fj(x) = 1 and fi(x) = 0 for all i E I. Let

u(I.j) = PrIED [x E A(I,j)]

and

v(I,j) = Pr(,b)EEX [b = 1 Ix E A(I,j)].

Also, let fi(I,j) and i(I, j) be empirical estimates of these quantities derivable from the sample

S in the obvious manner.

Let I C (1,...,s} and j E {1, ... ,s} be fixed. Then, using the multiplicative form of

Chernoff bounds given by Lemma 2-3.6, it follows that if u(Ij) > c/2s then, since m >

fl(I~j) _ i2 -u(I'j)

with probability at least 1 - b/(s . 2'+'). Furthermore, if f(I.j) > C/4s, then the number of

instances x E A(I,j) included in S is at least mc/4s > (8/C 2) • ln(2'+ 2s/6). Thus. applying

4-3 Efficient algorithms: The direct approach 121

the additive form of Chernoff bounds, we see that

vCI, j) - (I,j)l <5c-/

with probability at least 1 - 6/2+'s, assuming fi(I,j) > E/4s.

Thus, with probability at least 1 - 6, a sample S is chosen such that for all I C {1,...,s}

and for all j E { 1,. . ., s}, we have that

u(I,j) < max (-, 2Hi(Ij , (3.1)

and, whenever fi(I,j) > e/4s, we also have that

Iv(I,j) - (Ii) < fy. (3.2)
-4

We assume henceforth that all of the empirical estimates fi(I.j) and i(I,j) satisfy the

conditions described above. As just argued, this will be the case with probability at least

1 -6b. To complete the proof, we show that this assumption implies that the algorithm's output

hypothesis h is an (c,y)-good model of probability.

Suppose h is given by the list (ft,,r'),..,). Let T = {ti,..., ti}. To prove that h is

an (,E,-)-good model of probability, we show that, for 1 < i < s, either

Pr-ED [x E A(Ti_ 1, t,)] !5 c/2s (3.3)

or

PriED [Ih(x) - c(x)l > -y I x E A(T,_,,t,)] __ c/2. (3.4)

Note that the sets A(T_ 1 , ti) are disjoint. Thus, this implies

PrIED [lh(x) - c(x)l > 1]

= 'Pro[lh') - c(x)l > -y Ix E A(T_ 1,t,)] PrED [x E A(T,_1 ,t,)]
i=1

as can be seen by breaking the sum into two parts based on whether PrED [x E A(T,_1 , ti)]

exceeds or does not exceed c/2s.

Fix i, and consider the ith iteration of our algorithm. Prior to the extension of L at line 11.

the hypothesis list is (f,,r'). (ft._,,r _). Let C, = A(T_,,j). Also, let p =

and observe that, as defined in the figure, j = i'(T_-,j). This follows from the fact that, at

this point in the execution of the algorithm, all examples (x, b) in S are such that fk(x) = 0 for

122 Efficient Distribution-free Learning of Probabilistic Concepts

k E T-i.

Let t be as in the figure (i.e., t = ti). If t was chosen at line 6, then fi(Ti-,,t) <_ c/4s, and

so u(Tj_.,t) <_ E/2s by equation (3.1). Thus, in this case, equation (3.3) holds by definition of

u(I j).

Otherwise, for all j E J, fi(T-.,j) > c/4s, and thus, Jpj - PI -,< c-//4 by equation (3.2). We

wish to prove that equation (3.4) holds in this case, i.e., that

Pr-ED liPt - c(X)l > y I x EC,] < E/2.

Let u be the smallest member of J. Then p. = r, by definition of decision lists. Also, since c

is given by a list with w-converging probabilities, Ir - wj >_ jrj - wl for j _> u. Thus, by our

choice of t, for j E J,

I,' -wj .1 - wl = Ip. - wl < 1P. - wj + c3 /4 < I3, -wI + /4.

Suppose Pt > w. Then clearly rj < P, + c-y/4 for j E J, and thus c(x) < P, + fE7/4 < P, + 3'

whenever x E C,. Let z be the probability that an x is chosen for which c(x) < P, - 7f, given

that x is in C,:

z = PrED [c(x) <3, - ' j a E CJ.

Then

pt = EED[c(x) Ix E C,]

< z(it - f) + (1 -z)(P, + 7/4)

< _-(p, + f -y/4 - "1) + (1 - -,:)(p, + (-y/2)

< p, +,E/2- 'z.

This implies z < c/2, and so (3.4) holds in this case. The proof of (3.4) is symmetric when

i, <U.

The algorithm of Figure 1 clearly runs in polynomial time. U

It is an open question whether this class is learnable when w is unknown.

The class of probabilistic decision lists has also been considered by Yamanishi [88]. He

describes an algorithm, based on the principle of minimum description length, for learning a

model of probability for p-concepts in this class; however, his algorithm is not computationally

efficient. Also, Aiello and Mihail [1] have recently described an efficient algorithm for learning

arbitrary probabilistic decision lists over the basis consisting of all literals in the special case

that D is the uniform distribution.

4-3 Efficient algorithms: The direct approach 123

4-3.3 Hidden-variable problems

We next consider p-concept classes motivated by hidden-variable problems, in which there is an

underlying deterministic concept, but the settings of some of the relevant variables are invisible

to the learning algorithm, resulting in apparent probabilistic behavior. A visible monomial p-

concept is defined over {0, 1}" by a pair (M, a), where M is a monomial over the visible Boolean

variables x 1,. . .,x, and a E [0, 1]. The associated p-concept c is defined for x E {0, 11" to be

c(x) = a.M(z). We conceptually regard the true deterministic concept as having the form MAI,

where I is a deterministic concept over the hidden variables. We interpret a as the probability

that the settings of the invisible variables satisfy I. Note that we assume independence between

the settings for the variables of M and those for I.

For instance, I might itself be a monomial, in which case the underlying target concept is

a conjunction of literals, some which are visible and some which are hidden.

Visible monomials model well situations in which certain observable conditions are requisite

to some outcome, but in which these conditions are not in themselves enough to determine the

outcome with certainty. Thus, the conditions are necessary, but not sufficient, and, when the

conditions are met, the final outcome may be uncertain. For instance, if you are handed a drink

that is brown and fizzes and tastes sweet, then the drink might be Coke; on the other hand, it

might not be Coke (it could be Pepsi). In any case, if the drink lacks any one of these qualities,

then it certainly cannot be the real thing.

Theorem 3.3 The class of visible monomial p-concepts is polynomially learnable with a model

of probability.

Proof: Let the target p-concept c be defined by the pair (, a), and let the target distribution

over {0, 1} be D. We describe an algorithm that, given c.6 > 0, outputs with probability at

least 1 - 6 a hypothesis h for which EED [jh(x) - c(z)] < : Lemma 2.2 implies that such an

algorithm can be converted into one that learns a good model of probability.

The first step of the learning algorithm is to obtain an estimate P of p = Pr,b)EE.X [b = 1]

that, with probability at least 1 - b/3, is such that IP-P1 < c/3. If P3 _ 2E/3, then the

algorithm outputs the hypothesis h(x) =0 . Assuming P has the desired accuracy, we have

E.CD [c(X) - h(x)] < E in this case as desired, since p = ErEp [c(x)] < C. Otherwise, P > 2c/3,

and we can assume henceforth that p >_ E/3 (as is the case with probability at least 1 - 6/3).

Next our algorithm attempts to learn a good approximation of Al. This is done using

Valiant's algorithm [83], here denoted V, for learning monomials from positive examples only

in the distribution-free deterministic model. Algorithm V, which we here use as a "black-box"

subroutine, has the following properties: the algorithm takes as input positive c and 6, and

a source of positive examples of some monomial M, each chosen randomly according to some

124 Efficient Distribution-free Learning of Probabilistic Concepts

fixed, arbitrary distribution D+ on the set of all positive examples. After running for time

polynomial in 1/c, 1/6 and n, V outputs a monomial kl that, with high probability, has error

at most c for the positive examples of M, and has zero error for the negative examples. That

is, with probability at least 1 - 6, k is such that:

PrXED+ [ff(X) = 0] C'

and also

M(x) = 0 =: M(x) = 0.

Our algorithm simulates V with V's parameter c set to c/4, and 6 set to 6/3. We provide V

with a simulated oracle EX which supplies V with only positively labeled examples. Specifically,

when V requests an example, EX' draws examples from EX until an example (x, 1) is received;

this instance x is then provided to V.

Note that if x is labeled positively by EX, then c(x) > 0 and so M(x) = 1. Thus, V is only

supplied with positive examples. Note also that the probability of drawing a positively labeled

example from EX equals p. Since p > c/3, it follows that the expected running time of EX' is

at most O(1/c).

The probability that EX' outputs some instance x is just

D+(x) " Pr(yb)EX[y = x I b=
Pry b)cEx [y = x A b = 1]

Pr(y,b)eEX [b = 1]

aM(x) - D(x)
a. PrYED [Af(y) = 1]

M(x)D(x)
PrED [M(y) = 1]

= PrED [y = X I A(y)= 1.

With probability at least 1 - 6/3, V outputs a hypothesis k! which is such that AI1(x) 0

whenever M(x) = 0. and

PrzED+ [.f (x) = 0] < c/4.

Our algorithm next obtains an estimate 6 of a' = Pr(,,b)EEx [b = 1 j M(x) = I] that, with

probability at least 1 - b/3, is such that Ia' - & < E/2. Such an estimate can be derived from

a polynomial-size sample since

PrED [.X(x) = 1] > (1 - c/4) - PrED [M(x) = 1] > (1 - (/4)p _ (1 - E/4)(c/ 3).

4-4 Hypothesis testing and expected loss 125

The algorithm outputs the hypothesis h defined by (M , &); we argue next that h is, with

probability at least 1 - 6, within c of c on average.

As noted above, A has the property that

PrZ-ED [M(x) = 0 IM(x) = 1] = Pr,,,D+, [Ak(x) = 0] <c -/4.

Also, M logically implies M. Since

a = Pr(,b)EEx [b- 1 IM(x) - 1]

= Pr(Z,b)Ex lb = ik (X) =1 i] PrED IM*(X) = 1 I M(X) = i]

it follows that a > a' > a(1 - c/4) >_ a - c/4, and so Ia - 61 _ 3c/4. Thus, again making use

of the fact that Mi has one-sided error, it can be seen that

E-ED [Ih(x) - c(x)I] Pr.ED [Ki(x) = 0 A M(x) 1] + Ia - &I PrrD [fl'X)=i

_ Pr ,D [M(x) = OI M() 1] + Ia -l

< C.

Finally, we remark that the algorithm described in this proof can be easily extended to

learn any p-concept c of the form c = aco where a is an unknown constant in [0, 1] and co

is a deterministic concept from some known concept class for which there exists an efficient

algorithm that, like the algorithm V described in the proof, requires positive examples only,

and outputs hypotheses with one-sided error on the positive-examples distribution only. For

instance, Valiant [83] describes such an algorithm for learning k-CNF (the class of Boolean

formulas consisting of a conjunction of clauses, each a disjunction of at most k literals).

4-4 Hypothesis testing and expected loss

In this section, we address the problem of hypothesis testing in the p-concept model. More

precisely, given a labeled sample. and a hypothesis p-concept, how do we decide how good h is

with respect to the sample? As will be seen, the answer to this question depends on what our

goal is (a decision rule or a model of probability).

We begin with a description of the learning framework that was proposed by Haussler [36],

and that extends the work of Pollard [711, Dudley [23], Vapnik [84] and others. In this frame-

work, the learner observes pairs (x, y) drawn randomly from some product space X x YO ac-

cording to some fixed distribution. For instance, in the p-concept model, X is the domain, and

126 Efficient Distribution-free Learning of Probabilistic Concepts

Yo {0, 1}; the target distribution on X and the target p-concept together induce a distribution

on the space X x Y0.

Roughly speaking, in Haussler's model, the learner tries to find a hypothesis that accu-
rately predicts the y-value of a random pair (x, y), given only the observed x-value. Thus, the
hypothesis h should be such that h(x) is "near" y for most random pairs (z, y).

It is often convenient not to restrict the range of h to the set Y; for instance, if YO = {0, 1},
then we may want to allow h to map into [0, 1]. In general, then, we assume that h is a function

which maps X into some set Y D Y0.

In Haussler's model, the learner must choose a hypothesis from some given hypothesis space
"/H of functions (each mapping X into Y). The goal of the learner is to find the hypothesis from
-t that minimizes the "discrepancy" on random pairs (x, y) between the observed value y, and

the predicted value h(x). This discrepancy between y and h(x) is measured by a real-valued

"loss" function. Formally, a loss function L is a function mapping Y x Io into [0, 1]. (The
extension of such results to general bounded functions is straightforward.) Thus, the formal

goal of the learner in this framework is to find a function h E H- that minimizes the average
loss E[L(h(z), y)], where the expectation is over points (x, y) drawn randomly from X x YO

according to the distribution on this product space.

Following Haussler [36], we adopt the notation L(z, y) = L(h(z), y) for loss function L and
hypothesis h. Moreover, we will write E[Lh] to denote the expected loss of h (with respect to

L) under the unknown distribution on X x Y0. For a given sample S = ((xl, Yl),..., (xm, Ym))

of m labeled examples, we will also be interested in the empirical loss of h:

ts[Lh_= _1 Lh(xi,y).
Ini=l

Note that the empirical loss does not depend on the underlying distribution. Also, when the

sample is clear from context, the subscript S is usually dropped.

We can cast the problems of learning decision rules and models of probability into this
general framework. As mentioned above, in our setting Y = {0, 1} since an algorithm only sees

{0, 1)-labels. For decision-rule learning, the algorithm outputs {0, 1)-valued hypotheses, and
thus Y = Yo {O, 1} in this case. Similarly, for model-of-probability learning, we assume that

hypotheses have range [0, 1], and so Y = [0, 1]. The distribution on X x Y0 is naturally deter-

mined by the joint behavior of the target distribution D on X and the conditional probabilities

c(x) given by the target p-concept.

For finding the best decision rule. the discrete loss function is most appropriate, that is, the
loss function Z given by the rule Z(y, y') = 0 if y = y' and 1 otherwise. Then E[ZA] is just the
probability that h will misclassify a randomly drawn point, so minimizing E[Zh] is equivalent

4-4 Hypothesis testing and expected loss 127

to minimizing the predictive error.

For finding a model of probability, the quadratic loss function Q(y, y') = (y - y') ' has some

nice properties which follow from the following theorem, and that make it the appropriate

choice. Note that the empirical loss E[Qh] is the average squared-error statistic that is well

known to researchers in pattern recognition and statistical decision theory.

Theorem 4.1 For any target p-concept c, target distribution D, and p-concept h,

E[Qh] - E[Q] = EoED [(h(x) - c(z))2].

Proof: For fixed x E X, the probability that x is labeled 1 is c(x), and in this case, h has loss

QA(x, 1) = Q(h(x), 1) = (1 - h(x)) 2 .

Likewise. x is labeled 0 with probability 1 - c(x), and in this case, h has loss (h(x)) 2. Thus,

E[Qh] = [c(x)(1 - h(z)) 2 + (1 - c(z))h(x) 21 dD(x).

Similarly,

E[Qc] = fx [c(X)(1 - c(x))2 + (1 - c(z))c(x)2I dD(x).

Applying straightforward algebra and linearity of integrals, it follows that

E[QhI - E[Q] = Lx [h(x) - C(X)] 2 dD(x)

= EZED [(h(x) - c(x))21

as desired.

(All these integrals are defined, assuming as usual that c and h are measurable.) U

Combined with Lemma 2.2. this theorem immediately suggests a computationally efficient

method of choosing a good model of probability from a small (polynomial-size) class of can-

didate hypotheses. Suppose that a learning algorithm A has done some initial sampling and

computation and has produced a class R of hypotheses, one of which is a good model of prob-

ability. Then A may simply use the empirical loss E[Qh] on a large enough labeled sample (a

second sample) as an accurate estimate of the true loss E[Qh] for each h E R-, and then output

the hypothesis with the smallest empirical loss. Tis hypothesis h must have near minimal

true loss. and so. by the preceding theorem and our assumption that 7- contains a good model

of probability, h must itself be a good model of probability. The remainder of this section

describes an example of an efficient learning algorithm that employs this approach.

128 Efficient Distribution-free Learning of Probabilistic Concepts

4-4.1 Probabilistic concepts of k relevant variables

For a p-concept c on n Boolean variables, we say that variable xi is relevant if c(x) # c(y) for

two vectors z and y which differ only in their ith bit. We say that c is a p-concept of k relevant

variables if c has only k relevant variables. Such p-concepts are good models of situations in

which there are a small number of variables whose settings determine the probabilistic behavior

in a possibly very complicated manner, but most variables have no influence on this behavior.

Theorem 4.2 Let k > 1 be fixed. Then the class of all p-concepts of k relevant variables is

polynomially learnable with a model of probability.

Proof: For any set I C I1,..., n}, we say that two assignments z and y in {0, 1}' are equivalent

with respect to I if xi = y, for all i E I. Then this equivalence relation partitions {0, 1}n into

2 11 equivalence classes, called I-blocks.

Let c be the target p-concept, and let I. be the set of indices of the k relevant variables of c.

Our algorithm begins by drawing a sample S1 of size m, = O((2k/A) • log(2k/6)). For each

of the (n) sets I of k indices, and for each I-block B, our algorithm obtains from S an estimate

PB of PB = Pr(xb)EEX [b = 1 1 z E B]. A hypothesis h, is then defined by the rule hj(x) = PB

for x E B.

By our choice of ml, it follows from Chernoff bounds (Lemma 2-3.6) that, with probability

at least 1 - 6/2, a sample S, is chosen for which IJ3B - PBI < c/4 for every 1.-block B which

satisfies Pr:,ED [x E B] > c/2k+2. This implies that, with high probability,

EYED [h.(x) - c(x)] = 1 PrED [x E B] -PB - c(x)I < -/2
B

where the sum is taken over all 1.-blocks B. This bound follows from the fact that c(x) = PB

for x E B. and by breaking the sum into two parts according to whether PrED [x E B] exceeds

or does not exceed c/2k+2.

Next, our algorithm tests each hypothesis h,; that is, an estimate E[Qh,] is found from a

sufficiently large sample S2 that. with high probability, is within c/4 of E[Q,,]. Specifically, this

will be the case with probability at least 1 - 6/2 for all hypotheses h, if we choose a sample 52

of size O((1/ 2) • log(nk/6)). The algorithm outputs the hypothesis h = h, with the minimum

empirical loss. Then. applying Theorem 4.1, we have:

EED [(h(x) - c(x))] = E[QO] - E[Qj]

SEl[Qhj - E[QC] + c/4

< [Q,] - E[Q,] + c/4

4-5 Uniform convergence methods 129

< E[Qh.] - E[Q] + /2

= ExED [(h,.(x) - c(x)) 2] + c/2 < c.

Applying Lemma 2.2, it follows that this efficient algorithm can be used to learn a good model

of probability. U

4-5 Uniform convergence methods

When is minimization of the empirical loss over a hypothesis class Ri sufficient to insure good

learning of a decision rule or a model of probability? Note that even with computational issues

set aside, the hypothesis-testing methods of the preceding section fall apart in the case of an

infinite class Xt: directly estimating the empirical loss of each h E 71 separately would take an

infinite number of examples and an infinite amount of time. What is required is a characteriza-

tion of the number of examples required for uniform convergence of empirical losses to expected

losses analogous to that provided by the VC-dimension in the case of deterministic concepts.

This is particularly pressing in our model of p-concepts, where even when the domain is finite

(e.g. {0, 1}"), the target p-concept class is usually infinite due to the different values allowed

for the probabilities. We now turn to a discussion of such uniform convergence techniques

applicable to p-concept classes.

Haussler [36], Pollard [71] and others have described the combinatorial dimension of a class

of real-valued functions Y, and have shown that the combinatorial dimension is a powerful tool

for obtaining uniform convergence results. Before defining the combinatorial dimension. we

state its most important property for us, namely, that it allows us to upper bound the size of

a sample sufficient to guarantee uniform convergence of empirical estimates for the entire class

of functions. The following theorem is adapted directly from Haussler's Corollary 2 [35].

For a hypothesis space R- and loss function L, we define L-H = {Lh : h E R} .

Theorem 5.1 Let t be a hypothesis space of functions mapping X into Y which satisfies

certain "permissibility" assumptions (see Haussler's paper). Let D be a probability distribution

on X x Y0 , let L : Y x Yo - [0. 1] be a loss function, let d < oc be the combinatorial dimension

of LH, and let S be a sample of m points from X x Yo chosen randomly according to D. Assume

m > m(d,, 6) = -- 2dln I +ln

Then

Pr[3h E Rt: k[L,] - E[L,]f > (] < 6.

where the probability is taken over the random generation of S according to D.

130 Efficient Distribution-free Learning of Probabilistic Concepts

Theorem 5.1 suggests the following canonical algorithm for finding a hypothesis from Ht with
near minimum loss, when the combinatorial dimension d is finite: take a sample S of at least
m(d, e/2, 6) labeled examples from the oracle EX, and output any h E - that minimizes the
empirical loss lt[L5] with respect to S. Then the theorem guarantees that the output hypothesis
has true loss within c of the best possible with probability at least 1 - b. This of course ignores
the computational problem of actually finding such a hypothesis.

We can apply Theorem 5.1 to our learning problems by determining what the combinatorial
dimension is for each of the loss functions Z and Q. For the loss function Z, Haussler points
out that the combinatorial dimension is just the VC-dimension of the hypothesis class. That is,
if Wt is a hypothesis space of functions with range {0, 1}, then the combinatorial dimension of
the set of functions Z7j is just the VC-dimension of Xt. Thus, the number of examples needed
for decision-rule learning is bounded by the VC-dimension of the space of hypotheses used by
the learning algorithm. (That the VC-dimension can be used in this manner was also observed

by Blumer et al. [14].)
For example, consider the problem of learning a decision rule for an increasing function

over R. Note that the best decision rule for such a p-concept is always of the form h0(x) = 1
for x > a, and 0 otherwise, for some a. Thus, a natural and efficient decision-rule learning
algorithm for this problem is the following: draw a "large" sample from EX. Then, for each
xi in the sample, determine the empirical predictive error of hypothesis h.,, that is, the frac-
tion of points in the sample whose labels disagree with h.,. Finally, output the h,. with the
minimum empirical predictive error. Since the VC-dimension of this class of decision rules is 1,
it follows from Theorem 5.1 that a polynomial-size sample suffices to insure the correctness of

this algorithm.
For the problem of learning a model of probability, we introduce the quadratic loss dimen-

sion. Let Wt be a class of p-concepts over domain X. Let T = {(xI, r1),. .. , (Zd, rd)} be a set
of d pairs, where each xi E X and each ri E [0, 1]. We say that Rt shatters T if for every string
v E {0,1} d there is a p-concept h E 7 such that for 1 < i < d, if vi = 0 then h(xi) < ri and
if vi = 1 then h(zi) > ri. Thus on the points X1 Xd the class H- exhibits all 2d possible
"above-below" behaviors with respect to the ri. A geometric interpretation of this definition
is to regard (rl,. .. , rd) as the origin of a coordinate system in d-dimensional Euclidean space;
then Rt shatters T if the set {(h(x 1),. . ., h(xz)) : h E 7} intersects all 2d orthants of the coordi-
nate system. For this reason we will sometimes refer to (rd,...,rd) as the origin of shattering.
The quadratic loss dimension of a p-concept class Ht, denoted QD(R-), is defined as the largest
value of d such that there is some set T of d pairs that is shattered by Rt; if no such d exists,

then QD(it) is infinite.
The quantity QD(J-) is in fact just the combinatorial dimension of the class H-; but since

4-5 Uniform convergence methods 131

we evaluate hypotheses via the quadratic loss, we are more concerned with the combinatorial

dimension of the associated class Qj of loss functions. The following theorem states that the

combinatorial dimension of Qw is also equal to QD(74). Despite these equivalences, we choose

to use the notation QD(7W) to emphasize that in more general settings, the combinatorial

dimension of the class of loss functions may be quite different than that of the underlying

hypothesis class Xt.

Theorem 5.2 For any p-concept class 74, the combinatorial dimension of QW is equal to the

quadratic loss dimension of 7X.

Proof. Let {(xi, ri)}O=l shatter Ht. For all v E {0, 1}d, there exists h E 7- such that

sign(r, - h(x,)) = vi,

where sign(y) = 1 if y > 0 and sign(y) = 0 if y < 0. Since all quantities are non-negative,

h(x,) < r, if and only if Qh(',,O) = (h(x,)) 2 < r?. Thus,

vi = sign(r - Qh(X,,0)),

and so {((xi, 0), r,)}dI shatters QH. Thus, the combinatorial dimension of QW is at least

QD(H).

Conversely, let {((x,, bi), ri)}d 1 shatter QN. Since d is finite, we can assume without loss of

generality that the ri's are chosen so that strict inequality holds in the definition of combinatorial

dimension, i.e., fof all v E {0, 1}d there exists h E t such that Qh(x,,bi) < r, if vi = 1 and

Qh(xi,bi) > r, if v, = 0. Then

sign(r, - Qh(x,, bj)) = sign(r, - (h(x,) - b,) 2) = ign(fi, - Jh(x,) - bij)

which equals sign(V./' - h(x,)) if b, = 0. and equals sign(h(xi) - (1 - \/)) = 1 - sign((1 -

V/F)-h(x,)) if b, = 1. It follows that {(x,, Jbi - V/7l)d 1 shatters Ri, and thus the combinatorial

dimension of Qh is at most QD(R). U

Note that the second part of the proof of this theorem relies critically on the fact that, in

the p-concept model, instances are only {0, 1}-labeled.

4-5.1 Linear function spaces

Armed with the definition of quadratic loss dimension and the sample size upper bounds pro-

vided by Theorem 5.1, we can now seek efficient algorithms that work by directly minimizing

the quadratic loss over an infinite class of functions. This is the approach taken in our next

132 Efficient Distribution-free Learning of Probabilistic Concepts

theorem. For any domain X, let fi : X - R, 1 i < d be any d functions, and let C(fl,. .., fd)

denote the class of all p-concepts of the form c(x) = E I aif,(x) for a, E R, where we assume

that the f1 and ai are such that c(x) E [0, 1] for all x E X. We describe below an algorithm

that learns a model of probability for p-concepts in the class C(fl,. . .,fd). The running time

of this algorithm is polynomial in the usual parameters, d, and the time needed to evaluate the

functions fi.

This result can be applied to prove the polynomial learnability of several natural p-concept

classes. For instance, consider the generalization of deterministic disjunctions in which the

target p-concept has the form c(x) = (xi, + ... + x.,)/t, where the xi, are Boolean variables

chosen from xl,...,xz , and + denotes ordinary addition. Thus, such a p-concept is "more

positive" on vectors x E {0, 1}" that have many of the relevant variables set to 1. Such a

p-concept class is clearly of the form required by Theorem 5.3, and so is polynomially learnable

with a model of probability.

As a more subtle application, consider a class of p-concepts over {0, 1}n that are partially

specified by a canonical positive example z E {0, 1} n . We wish to model a setting in which

z is the prototypical positive instance, and those examples "most like" z are more likely to

be labeled positively. Thus, the target p-concept might have the form c(x) = a - b - d(x, z)

where d(x, z) denotes the Hamming distance and a and b are positive real-valued coefficients

such that c is maximized at z and is always in the range [0, 1]. Here the p-concept class C is

obtained by ranging over the choices of the prototype z and the coefficients a and b, and the

"decay function," which specifies the rate at which vectors further away from the prototype fail

to exemplify the concept, is linear. It is not difficult to show that each function in C can in fact

be written as a weighted linear sum of the variables xj,.. ., x", so C is polynomially learnable

with a model of probability.

Finally, we remark that Theorem 5.3 can be applied to learn so-called "t-transform func-

tions" considered by Mansour [60].

Theorem 5.3 For any set of d known computable functions fi : X - R, 1 < i < d, the

class C(fl , fd) is learnable with a model of probability. Specifically, there exists a learning

algorithm for this class whose running time is polynomial in L/f, 1/6, 1/Y, d and the maximum

time needed to evaluate any of the functions fi.

Proof: Given c, b > 0. our algorithm draws a sample of size m = Fm(d,c/2, b)] as given

by Theorem 5.1, and attempts to find the choice of coefficients a1,..., ad that minimizes the

quadratic loss over the sample. This can be done using a standard least-squares approximation.

For instance, this can be done directly by differentiating with respect to each unknown coefficient

a, the expression F I [(Ed. a,f,(xj))- bj] 2 (where {(xj,bj)}= is the labeled sample), and

4-6 A lower bound on sample size 133

setting the resulting partial derivative to 0. This yields a system of d linear equations in the d

variables ai that is of a special form and that can be solved using standard techniques. Cormen,

Leiserson and Rivest [19, Chapter 31] describe in detail how this can be done efficiently; see

also Duda and Hart [22].

Let a&,..., &d be the resulting solution, and let h0 = Fd=1 af,. Note that h0 may not be

bounded between 0 and 1, and so may not be in C = C(f 1 ,...,fd). We show below how to

handle this difficulty.

For any real-valued function f, let clamp(f) denote the function obtained by "clamping" f

between 0 and 1; that is, clamp(f) = g o f where g : R -- R, and g(x) is defined to be 0 if

: 0, x if0 <x < 1, and 1 if: > 1. Let Wi= {clamp(.., aif,): a, ER}. Our algorithm

outputs the hypothesis h = clamp(ho). Clearly h is in "W, as is the target c.

Dudley [23] shows that a d-dimensional linear function space has combinatorial dimension d.

(This is reproved by Haussler [35], Theorem 4.) Combined with Haussler's Theorem 5 (which

concerns the combinatorial dimension of families of functions constructed in the same way

as -/), this immediately implies QD(Jt) < d. Thus, by Theorem 5.1 and our choice of m,

with probability at least 1 - 6, E[Qh,] - Eb[Qh,]] _< c/2 for every h' E Ri. Also, note that

E[Qh] _< k[Qho] since all instances in the sample are {0, 1}-labeled, so clamping the hypothesis

only improves its performance. Thus, with probability at least 1 - 6, we have:

EfED [(h(x) - c(x))2] = E[Qh] - E[Qc]

< E[Qhj - E[Q] +,E/2

< E[Qh.] - E[Q] + c/2

_ E[Qj - E[Qj] + c/2 < c.

As usual, Lemma 2.2 can be applied to convert this algorithm into one that learns a good

model of probability for this class. U

4-6 A lower bound on sample size

Theorem 5.1 provides a kind of general upper bound on the sample size required for learning

a model of probability. We turn now to the problem of lower bounds on sample complexity in

this framework. For this, we need to introduce a refined notion of shattering.

Let 7 be a class of p-concepts over domain X. Let T = {(xrl),... . ,(Xd, rd)) be a set of

d pairs, where each x, E X and each r, E [0, 1]. For uw > 0, we say that I w-shatters T if for

every string v E {O, 1 }d there is a p concept h E 7- such that for 1 < i < d, if v, = 0 then

h(x:) < r, - w and if v, = I then h(x:) > ri + w. Thus, in addition to T being shattered by

134 Efficient Distribution-free Learning of Probabilistic Concepts

?- we require that there be a separation of width w between r and each h(x,); we call w the
width of shattering. Note that if 'H has quadratic dimension at least d then there always exists
some w > 0 such that some set of d pairs over X x [0, 1] is w-shattered.

Based on this stronge. notion of shattering, we can now prove the following lower bound
on sample complexity in our model. This lower bound, combined with Theorems 5.1 and 5.2,
shows that when the quadratic loss dimension is finite it characterizes the sample size required
for learning with a model of probability (that is, the bound obtained by applying Theorem 5.1
is tight within a polynomial factor of 1/c and 1/6). This lower bound may also be of theoretical

interest, since in Haussler's general learning framework [36] the combinatorial dimension is only
an approximate upper bound on the so-called covering number, which is directly used to obtain

sample-size bounds.

Theorem 6.1 Let C be a p-concept class that w-shatters a set of cardinality d. Then for
-t < i w and c + b < 1/8, any algorithm for learning C with a model of probability requires at least

Ld(lg e)/8J = £(d) examples.

Proof: Our proof is based on the analogous lower bound proof given by Blumer et al. [14]
for learning deterministic concepts. However, the analysis is more involved in the probabilistic

case.

Let T = {(xi,r,),. .. ,(xd, rd)} be w-shattered by the p-concept class C. Let Co _ C be any
fixed subclass of C such that Co w-shatters T and IC01 = 2d. Let A be a learning algorithm for C
taking m examples for the given choices of c, 6 and -y, and let hs denote the hypothesis output
by A on input a labeled sample S of size m. (We assume for simplicity that A is deterministic

- the proof is easily modified to handle randomized algorithms.)
Let the target distribution D be uniform over the points XI .. ,Xd. We define a weak

error measure e(c, S) for target c E Co and input sample S as follows: the error e,(c, S) at
xi is defined to be 0 if c(x i) and hs(x,) are either both less than r, or both greater than ri;

otherwise, ei(c, 5) = 1. Then e is just the average of the ei's:

1d
e(c, S) = =Eei(,S).

i=1

Note that if e(c, S) > c, then hs cannot be an (c, w)-good model of probability for c since if

c(xi) and hs(x,) are not "on the same side" of ri, then they differ by more than w.
This definition allows us to examine the expectation

Es[e(c, S)] = 1 Pr[Sc] . e(c, S)
S

4-6 A lower bound on sample size 135

which is taken over S drawn randomly according to D and labeled randomly according to c.

and Pr[Sjc] is the conditional probability that S is generated by D and c.

We will also be interested in the expectation of e(c, 5) when both c E Co is generated

uniformly at random and S is generated according to the randomly chosen c and the target

distribution D:

E ,s[e(c, S)] = - ,, Pr[Sc] -e(c, S).
S CECo

We wish to lower bound e(c, S) for most of the p-concepts in Co. For any sample S, let

Cs = {c E C0 : e(c,S) < 1/4}. Then for c E Co -Cs, e(c,S) i /I. and so we obtain the lower

bound

E,.s[e(c, 5)] Z Pr[SIc]- 2d+ (z Z Pr[S c] - Pr[Sici).
2 S ECo-Cs S CECo S CECs

Now

Z Z Pr[Sjc] = PrfSjc3 = ICo = 2d

S CECo CECO S

since for any c, Fs Pr[Slc] = 1. For the second term of the expectation, we will upper bound

the total number of possible samples S, the cardinality ICsI, and the value of Pr[Sjc]. First,

the number of possible samples S is at most (2d) ' , since each of the d points may appear with

either label and the number of examples in S is m. To bound ICsI, consider drawing a p-concept

c uniformly at random from the class Co. By choice of Co, the probability that e(c, S) < 1/4 is

bounded by the probability of fewer than d/4 heads occurring in d flips of a fair coin. Thus,

applying Chernoff bounds (Lemma 2-3.6), we conclude

IC .I <5 JCO " . e- dI = 2 (1-ao)d

where a0 = (lge)/8. Finally, Pr[Sjc] _ 1/d' since if we ignore the labels on the points in S,

the probability of any particular set of m points being generated by the target distribution D

is at most 1/dm .

Piecing together these bounds. we may now write

E.s[e(c, S)] 2 d - (2d)"n " 2 (I-ao)d " d-') = (1- 2 --. d)

Thus, if m < aod- 1 then Es[e(c, S)] > 1/8. From this it follows that for some fixed co E Co,

Es[e(co, S)] > 1/8 where the expectation is taken over S drawn according to D and labeled

according to co. By assumption A learns with a model of probability. Thus, with probability

at least 1 - 6, a sample S is chosen such that hs is an (c, w)-good model of probability. As

noted above, in such a case, e(c, S) :_ c. Thus, Es[e(co, S)] _< (1 - b)E + 6 < c + 6. Therefore,

136 Efficient Distribution-free Learning of Probabilistic Concepts

if c + 6 _ 1/8 then m is at least Laodj, proving the theorem. U
Any theorem giving a sample-size lower bound must incorporate the width of shattering; for

instance, ours holds only for -y < w. To see that this is necessary, note that the p-concept class
of all functions mapping X into {1/2 - w, 1/2 + w} shatters all of X, but for -y - w this class

can be learned with no examples with the hypothesis h(x) - 1/2. A more natural example is

provided by the non-decreasing functions of Section 4-3.1. Here the quadratic loss dimension

is infinite, but we have an efficient learning algorithm. An interesting open problem is to give
improved general upper bounds on sample size that incorporate the width of shattering.

4-7 Occam's Razor for general loss functions

In this section, we present a generalized form of Occam's Razor [13] applicable to the mini-

mization of bounded loss functions, and in particular to learning p-concepts with a model of

probability or a decision rule. Here we have several motivations: first, it is of philosophical

interest to investigate the most general conditions under which learning is equivalent to some
form of data compression; second, as in the Valiant model, we hope that Occam's Razor will

help isolate and simplify the probabilistic analysis of learning algorithms; third, Occam's Razor

may be easier to apply than uniform-convergence methods in the case that the combinatorial

dimensiun is unknown or difficult to compute; and fourth, Occam's Razor may give better

sample-size bounds than direct analyses.

An Occam algorithm for hypothesis class H over parametrized domain X, with respect to a
loss function L : Y x Yo -" [0, 1] is a polynomial-time algorithm A that takes as input a labeled
sample S E (X,, x Y0)' , and outputs a hypothesis h with the properties that:

1. E[Lh] - infh'E E[Lj,] < r = -r(n, m) = nam - for some constants a > 0, and a > 0; and

2. h can be represented by a string over the finite alphabet {0, 1} of encoded length I =

1(n, m) = n'mo for some constants b > 0 and / < 1.

Thus, as in the non-probabilistic setting, we require an Occam algorithm to perform some
kind of data compression, i.e., to output a hypothesis significantly smaller than the given sample.

Furthermore, the output hypothesis must come close to minimizing the empirical loss on the

sample over the entire hypothesis space H.

Theorem 7.1 Let A be an Occam algorithm as described above. Let S be a labeled sample of

size m generated according to some target p-concept c. Let h be the result of running A on S.

4-7 Occam's Razor for general loss functions 137

Assume m is so large that r < c/4 and 2(2' + 1)e - 12 -/8 < . Then

Pr[E[Lh] - inf EILh,] > El .

In particular, this will be the case if

m > max { (-) , (16(1n2)nb) 16 ln(4/b) }

Proof: The proof is analogous to that of Blumer et al. [13].

Let 74A be the set of (at most) 2' hypotheses which might potentially be output by A. Let

h. E Wt be such that E[Lh.] < infhl, ELh,] + c/4. Then, by Chernoff bounds (Lemma 2-3.6),

the probability that either E[Lh,] > Pt[L,,] +c/4 for any h' E 7
A, or that E[Lh.] > E[Lh.] +c/4

is at most 2(2' + 1)e - ,2m / < . So, with probability at least 1 - 6,

E[L] < E[Lh] + c/4

< inf E[Lh] + c/2

" E[Lh.] + c/2

" E[Lh.] + 3,E/4

< inf E[Lh'] + E.
- h'E7

We show next that the stated bound on m is sufficient. Clearly, from the first bound on

m, r < /4. Further, from the second bound, we have that I = nmO < (lge)C2 m/16. Thus,

2(2' + 1)e - 2m/8 < 4 •2'e - ,2 '_ / < 4 • e- '2 m/16 < 6 by the last bound on m. U

As an example, Theorem 7.1 can be applied to the problem of learning p-concepts with k

relevant variables. Essentially, the algorithm given in Theorem 4.2 can be modified so that a

single initial sample of size m can be used for all of the estimates made by that algorithm.

Note that a hypothesis output by this algorithm can be represented by the names of k of the

variables, plus the probabilities for the 2k equivalence classes. Each name requires lg n bits,

and moreover, each probability is a rational number (being an empirical probability estimate)

that requires only O(log m) bits; thus, the hypothesis has size O(k log n + 2' log m). Finally,

it can be shown that the hypothesis has the minimum empirical loss over the entire class of

p-concepts with k relevant variables. Thus, Theorem 7.1 can be used to easily determine an

appropriate sample size for this algorithm.

Note that Theorem 7.1 is only applicable to algorithms which output hypotheses over a finite

alphabet. However, the theorem can be extended to apply to other algorithms in a manner

similar to the approach taken by Littlestone and Warmuth [59] in the Valiant model. (See

138 Efficient Distribution-free Learning of Probabilistic Concepts

also Section 2-6.2.) The basic idea is to allow the learning algorithm to output hypotheses

that can be represented over the alphabet S U {O, 1}, where S is the given sample. That is,

the representation of the hypothesis may include individual examples from the sample itself.

For example, the hypothesis output by the algorithm for learning increasing functions with a

decision rule (Section 4-5) can be represented by a single example from the sample, despite the

fact that this hypothesis would require an infinite number of bits to represent over a fixed finite

alphabet. Thus, this alternate form of Occam's Razor can be used to provide a good sample-size

bound. Similarly, the algorithm given in Theorem 3.1 (slightly modified) for learning increasing

functions with a model of probability can be cast in this light as an Occam algorithm.

4-8 Conclusions and open problems

In this chapter, we have explored an extension of Valiant's model that incorporates the uncer-

tainty inherent to many real-world learning problems. We have focused primarily on techniques

for the design of efficient algorithms in this model.

Naturally, we would like to find efficient algorithms for much broader classes of p-concepts

than the simple classes considered here. For example, can the algorithm of Section 4-3.2 be

extended to learn arbitrary (not necessarily w-converging) probabilistic decision lists? As is

often the case in the deterministic Valiant model, sample size is not the problem: from Theo-

rem 7.1, one can fairly easily derive a polynomial sample-size bound for learning this class using

a computationally inefficient Occam algorithm that, given a sample, finds the decision list with

the minimum quadratic loss by trying all permutations of the list order. The problem here is

computational: how can we learn this class efficiently? The development of further techniques

for learning p-concepts is a vitally important direction for further research.

Although the p-concept model captures realistic aspects of many learning problems, it might

still be criticized for its assumption that the target p-concept belongs to an a priori known class

of p-concepts. More realistic is a so-called agnostic learning model in which the target p-concept

is any function from X into [0, 1], and the learner's goal is to find the best hypothesis from some

fixed space of hypotheses. This is actually the framework assumed by Haussler [36] in deriving

his sample-size bounds. A few of the algorithms described in this chapter are effective agnostic

learners, such as the algorithm of Theorem 4.2 for p-concepts with k relevant variables. An

important open problem is the extension of other algorithms to agnostic learning. For instance,

do there exist efficient agnostic algorithms for probabilistic decision lists with w-converging

probabilities (Section 4-3.2), or for linear function spaces (Section 4-5.1)?

It is also important to continue to develop a theoretical foundation for p-concept learning.

For instance, are there other loss functions that might be appropriate, such as the log loss

function? (See Haussler [37] in this regard.) Also, can the lower bound proof of Theorem 6.1

4-8 Conclusions and open problems 139

be significantly improved?

Finally, consistent with our quest for efficient algorithms is the need to be able to recognize

that a learning problem is computationally intractable. Various techniques in this regard have

been developed in the Valiant model, such as those of Pitt and Valiant [68], and Kearns and

Valiant [52, 49]. Can such techniques be extended to the p-concept model? Both of these

results seem to depend crucially on the deterministic nature of the Valiant model. What then

would a negative, computational result look like in the p-concept model?

CHAPTER 5

Inference of Finite Automata Using
Homing Sequences

5-f Introduction

Imagine a simple, autonomous robot placed in an unfamiliar environment. Typically, such a

robot would be equipped with some sensors (a camera, sonar, a microphone, etc.) that provide

the robot limited information about the state of its environment. Being autonomous, the robot

would also have some simple actions that it has the option of executing (step ahead, turn left,

lift arm. etc.).

For instance, the robot might be in the simple toy environment of Figure 1. In this envi-

ronment, the robot can sense its local environment (whether the "room" it occupies is shaded

or not), and can traverse one of the out-going edges by executing action "x" or action "y."

A priori, the robot may not be aware of the "meaning" of its actions, nor of the sense data

it is receiving. It may also have little or no knowledge beforehand about the "structure" of its

environment.

This problem motivates the research presented in this chapter: how can the robot infer on

its own from experience a good model of its world? Specifically, such a model should explain

and predict how the robot's actions affect the sense data received.

Certainly, once such a model has been inferred, the robot can function more effectively in

the learned environment. However, programming the robot with a complete model of a fairly

complex environment would be prohibitively difficult; what's more, even if feasible, a robot

with a pre-programmed world model is entirely lacking in flexibility and would likely have a

hard time coping in environments other than the one for which it was programmed. Thus, the

development of effective learning methods would both simplify the job of the programmer, and

140

5-1 Introduction 141

2

3 4

Figure 1: An example robot environment.

make for a more versatile robot.

This problem of learning about a new environment from experience has been addressed

by a number of researchers using a variety of approaches: Drescher [21] explores learning

in quite rich environments using an approach based on Piaget's theories of early childhood

development. Wilson [87] studies so-called genetic algorithms for learning by "animats" in

unfamiliar environments. Kuipers and Byun [56] advocate a "qualitative" approach to the

related problem of learning a map of a mobile robot's environment. The map-learning problem

is also studied by Mataric [61].

In this chapter, we take an initial step toward a general, algorithmic solution to the robot's

learning problem. Specifically, we give a thorough treatment to the problem of inferring the

structure of an environment that is known a priori to be deterministic and finite state. Such an

environment can be naturally modeled as a deterministic finite-state automaton: the robot's

actions then are the inputs to the automaton, and the automaton's output is just the sense data

the robot receives from the environment. Our goal then is to infer the unknown automaton by

observing its input-output behavior.

This problem has been well studied by the theoretical community, and it continues to

142 Inference of Finite Automata Using Homing Sequences

generate new interest. (See Pitt's paper [67] for an excellent survey.) Virtually all previous

research, however, has assumed that the learner has a means of "resetting" the automaton to

some start state. Such an assumption is quite unnatural, given our motivation; as in real life,

we expect the robot to learn about its environment in one continuous experiment. The main

result of this chapter is the first set of provably effective algorithms for inferring finite-state

automata in the absence of a reset.

Here is a brief history of some of the previous, theoretical work on inference of automata. The

most important lesson of this research has been that a combination of active experimentation

and passive observation is both necessary and sufficient to learn an unknown automaton.

Angluin [3] and Gold [29] show that it is NP-complete to find the smallest automaton

consistent with a given sample of input-output pairs. Pitt and Warmuth [69] show that merely

finding an approximate solution is intractable (assuming P $ NP). In the Valiant model,

Kearns and Valiant [52] consider the problem of predicting the output of the automaton on

a randomly chosen input, based on a random sample of the machine's behavior. Extending

the work of Pitt and Warmuth [70], they show that this problem is intractable, assuming the

security of various cryptographic schemes. Thus, learning by passively observing the behavior

of the unknown machine is apparently infeasible.

What about learning by actively experimenting with it? Angluin [5] shows that this prob-

lem is also hard. She describes a family of automata which cannot be identified in less than

exponential time when the learner can only observe the behavior of the machine on inputs of

the learner's own choosing. The difficulty here is in accessing certain hard-to-reach states.

In spite of these negative results. Angluin [6], elaborating on Gold's results [28], shows

that a combination of active and passive learning is feasible. Her inference procedure is able to

experiment with the unknown automaton, and is given, in response to each incorrect conjecture

of the automaton's identity, a counterexample, a string that is misclassified by the conjectured

automaton. Her algorithm exactly identifies the unknown automaton in time polynomial in the

automaton's size and the length of the longest counterexample.

As mentioned above, a serious limitation of Angluin's procedure is its critical dependence

on a means of resetting the automaton to a fixed start state. Thus, the learner can never

really "get lost" or lose track of its current state since it can always reset the machine to its

start state. In this chapter, we extend Angluin's algorithm, demonstrating that an unknown

automaton can be inferred even when the learner is not provided with a reset.

This chapter also includes an improved version of Angluin's algorithm in the case that a

reset is available; this improved algorithm significantly reduces the number of experiments that

must be performed by the learner.

The generality of our results allows us to handle any "directed-graph environment," such

5-1 Introduction 143

as the one in Figure 1. This means that we can handle many special cases as well, such as

undirected graphs, planar graphs, and environments with special spatial relations. However,

our procedures do not take advantage of such special properties of these environments, some of

which could probably be handled more effectively. For example, we have found that permutation

automata are generally easier to handle than non-permutation automata.

Previously, Rivest and Schapire [73, 75, 79] introduced the "diversity-based" representation

of finite automata, an egocentric and often quite compact representation. They also described

an algorithm that was proved to be effective for permutation automata, even in the absence of

a reset. Some general techniques for handling non-permutation automata were also discussed;

although not provably effective, these seemed to work well in practice for a variety of simple

environments.

In this chapter. we generalize these results, demonstrating probabilistic inference procedures

which are provably effective for both permutation and non-permutation automata. More gen-

erally, we present new inference procedures for the usual global state representation. as well as

for the diversity-based representation.

Like Angluin, we assume that the inference procedures have an unspecified source of coun-

terexamples to incorrectly conjectured models of the automaton. This differs from Rivest and

Schapire's previous work where the learning model incorporated no such source of counterex-

amples; as already mentioned, this limitation makes learning of finite automata infeasible in

the general case. For a robot trying to infer the structure of its environment, a counterexam-

ple is discovered whenever the robot's current model makes an incorrect prediction. For the

special class of permutation automata, we show that an artificial source of counterexamples is

unnecessary.

Our algorithms use powerful new techniques based on the inference of homing sequences. In-

formally, a homing sequence is a sequence of inputs that, when fed to the machine, is guaranteed

to "orient" the learner: the outputs produced for the homing sequence completely determine

the state reached by the automaton at the end of the homing sequence. Every finite-state

machine has a homing sequence. For each inference problem, we show how a homing sequence

can be used to infer the unknown machine, and how a homing sequence can be inferred as part

of the overall inference procedure.

In sum, the main results of this chapter are four-fold: We describe efficient algorithms for

inference of general finite automata using both the state-based and the diversity- based -repre-

sentations; both of these algorithms require a means of experimenting with the automaton and

a source of counterexamples. Then, for permutation automata. we give efficient algorithms for

both representations that do not require an external source of counterexamples. The time of the

diversity-based algorithm for permutation automata beats the best previous bound by roughly

144 Inference of Finite Automata Using Homing Sequences

a factor of D 3/ log D, where D is the size of the automaton using the diversity-based represen-

tation. In the other three cases, our procedures are the first provably effective polynomial-time

algorithms.

5-2 Two representations of finite automata

5-2.1 The global state-space or standard representation

An environment or finite-state automaton C is a tuple (Q, B, 6, qO, y) where:

* Q is a finite nonempty set of states,

* B is a finite nonempty set of input symbols or basic actions,

* 6 is the next-state or transition function, which maps Q x B into Q,

* qo, a member of Q, is the initial state, and

* -t is the output function, which maps Q into {0, 11.

This is the standard, or state-based, representation.

For example, the graph of Figure 1 depicts the global state representation of an automaton

whose states are the vertices of the graph, whose transition function is given by the edges, and

whose output function is given by the shading of the vertices.

We denote the set of all finitely long action sequences by A = B*, and we extend the

domain of the function 6(q, .) to A in the usual way: 6(q, A) = q, and b(q, ab) = b(b(q, a), b) for

all q E Q,a E A,b E B. Here, A denotes the empty or null string. Thus, b(q,a) denotes the

state reached by executing sequence a from state q; for shorthand, we often write qa to denote

this state.

We say that C is a permutation automaton if for every action b, the function 6(.,b) is a

permutation of Q.

We refer to the sequence of outputs produced by executing a sequence of actions a =

b1b2 .. .b, from a state q as the output of a at q, denoted q(a):

q(a) = (Q(q), -t(qbl), -y(qblb 2), .. , 7(qbb 2 ... b,)).

For instance, if the robot in Figure 1 executes action a = xy from its current state q = 3, then

it will observe the sequence of actions

q(a) = 3(xy)= 0 M El.

5-2 Two representations of finite automata 145

(Don't confuse -y(qa) and q(a). The former is a single value, the output of the state reached

by executing a from q; for instance, j'(qa) = El in the example above. In contrast, q(a) is a

(lal + 1)-tuple consisting of the sequence of outputs produced by executing a from state q.)

Finally, for a E A, we denote by Q(a) the set of possible outputs on input a:

Q(a) = {q(a): q E Q}.

Clearly, IQ(a)j < IQI for any a.

Action sequence a is said to distinguish two states q, and q2 if q1(a) # q2 (a). For instance

xy distinguishes states 3 and 4 of the environment of Figure 1, but not states 1 and 2. We

assume that £ is reduced in the sense that, for every pair of distinct states, there is some action

sequence which distinguishes them.

5-2.2 The diversity-based representation

In this section, we describe the second of our representations. See Rivest and Schapire's pa-

pers [73, 75, 79] for further background and detail. The representation is based on the notion

of tests and test equivalence.

A test is an action sequence. (This definition differs slightly from that given in previous

papers where the automata considered had multiple outputs (or "sensations") at each state.)

The value of a test t at state q is -f(qt), the output of the state reached by executing t from q.

Two tests tj and t2 are equivalent. wri ten tj E t2, if the tests have the same value at every

state. For instance, in the environment of Figure 1, tests yxx and xx are equivalent, as are tests

yy and A.

It's easy to verify that "-" defines an equivalence relation on the set of tests. Ve write [t]

to denote the equivalence class of t. the set of tests equivalent to t. The value of It] at q is well

defined as -y(qt). The diversity of the environment, D(E), is the number of equivalence classes

of the automaton: D(C) = j{[t] : t E A}I. It can be shown that lg(IQI) _< D(E) < 21QI, .so the

diversity of a finite automaton is always finite [73, 79].

The equivalence classes can be viewed as state variables whose values entirely describe the

state of the environment. This is true because two states are equal (in a reduced sense) if and

only if every test has the same value in both states.

It is often convenient to arrange the equivalence classes in an update graph such as the one

in Figure 2 for the environment of Figure 1. Each vertex in the graph is an equivalence class so

the size of the graph is D(E). An edge labeled b E B is directed from vertex [t1] to [t2] if and

only if t1 = bt2. Note that each vertex has exactly one in-going edge labeled with each of the

basic actions. This is because if tj - t 2 then bt1 = bt 2 -.

146 Inference of Finite Automata Using Homing Sequences

] - [xy] [xxy]

~x,y

x(y]

[xx] [x] [yx]

Figure 2: The update graph for the environment of Figure 1.

We associate with each vertex [t] the value of t in the current state q. In the figure, we have

used shading to indicate the value of each vertex in the robot's current state. The output of the

current state is given by vertex [A], so this is the only vertex whose value can be observed by the

robot. When an action b is executed from q, each vertex [t] is replaced by the old value of [bt],

the vertex at the tail of [t]'s (unique) in-going b-edge. That is, in the new state qb, equivalence

class [t] takes on the old value of [bt] in the starting state q. This follows from the fact that

j((qt't) = y(q(bt)). For instance, if action y is executed in the environment of Figures 1 and 2,

then the value of [A] in the new state is [], the old value of [y]; the new value of [yxy] is ,

the old value of [xy].

Thus, the value of each equivalence class in the state reached by executing any action can

be determined easily using the update graph. Thus, the update graph can be used to simulate

the environment.

5-3 Homing sequences 147

Simple-assignment automata

The update graph can be viewed more abstractly as a special kind of automaton: A simple-

assignment automaton S is a tuple (V,B,T, vo,w) where:

" V is a finite nonempty set of variables,

" B is a finite nonempty set of input symbols or basic actions.

* T is the update function, which maps V x B into V,

" v0 , a member of V, is the output variable, and

" w is the initial-value function which maps V into {0, 1}.

Here, we interpret V as a vector of state variables whose values determine the state of S.

The initial values of these variables are given by w, and the output of the machine is the current

value of the special variable v0. When an action b E B is executed. each variable v is updated

in the new state with the old value of variable T(v, b). The function T can be extended to the

domain V x A in the usual manner by defining T(v,A) = v and T(v, ba) = T(T(v,a),b) for

v E V, a E A and b E B. Thus, when a is executed, variable v is updated with the old value of

variable T(v, a). In particular, this means that the output of S after executing a E A from the

initial state is w(T(vo, a)).

Thus, the update graph is itself a simple-assignment automaton. In this case, the set

V is the set of equivalence classes {[t] : t E A}; the update function is defined by the rule

T([t]. b) = [bt]; the output variable is v0 = []; and w([t]) is the value of [t] in the initial state,

y(q0t). With these definitions, it is straightforward to verify then that T(vo, t) = [I], and so

w(T(to, t)) = y(b(qo, t)) for all t E A.

On first blush. the structures of simpie-assignment automata (such as the update graph of

Figure 2) and of ordinary finite-state automata (such as the one given by the transition diagram

of Figure 1) appear to be quite similar. In fact, their interpretations are very different. In the

global-state representation, the robot moves from state to state while the output values of

the states remain unchanged. On the other hand, in the diversity-based (or simple-assignment)

representation. the robot remains stationary, only observing the output of a single variable ([QA]),

and causing with its actions the values of the variables to move around. Thus, the diversity-

based representation is more egocentric - the world is represented relative to the robot. In

contrast, in the state-based representation, the world is represented by its global structure.

5-3 Homing sequences

Henceforth. we set D = D(E). n = IJQ, k = JBI.

148 Inference of Finite Automata Using Homing Sequences

Input: C - a finite-state automaton

Output: h - a homing sequence
Procedure:

1 h -A
2 while q1 (h) = q2 (h) but q1 h 5 q2 h for some ql,q 2 E Q do
3 let x E A distinguish q1 h and q2h
4 h- hx
5 end

Figure 3: A state-based algorithm for constructing a homing sequence.

A homing sequence is an action sequence h for which the state reached by executing h is

uniquely determined by the output produced: thus, h is a homing sequence if and only if

(Vql E Q)(Vq2 E Q) qj(h) = q2 (h) =' q1h = q2 h.

For example, the string consisting of the single action "x" is a homing sequence for the

environment of Figure 1. If q(x) = E E , then qx = 3; if q(x) = E [, then qx = 2; and, if

q(x) = 0 M then qx = 1.

Kohavi [55] gives a complete discussion of homing sequences. He distinguishes between

preset and adaptive homing sequences. Initially, we make use only of the former because they

are simpler; later, we show that our inference procedures can be improved using adaptive homing

sequences.

Given full knowledge of the structure of E, it is easy to construct a homing sequence h, as

shown in Figure 3. Initially, h = A. On each iteration of the loop, a new extension x is appended

to the end of h so that h now distinguishes two states not previously distinguished. Thus,

IQ(h)I < IQ(hx) < n, and therefore the program will terminate after at most n - 1 iterations.

Further. since each extension need only have length n - 1 (see, for instance. Kohavi [55],

Theorem 10-2), we have shown how to construct a homing sequence of length at most (n- 1)2.

A diversity-based homing sequence is an action sequence h which has the property that for

every test t, there exists a prefix p of h such that p - ht. For instance, it can be shown that

h = xxyx is a diversity-based homing sequence for the environment represented in Figures I

and 2. For example, if t = yxy then ht = xxyxyxy - xxy.

Every diversity-based homing sequence h is a homing sequence. For if q1 h 0 q2h then there

is some t for which -7(q,ht) -Y(q2ht). Since ht is equivalent to some prefix p of h, we have

y(qp) $ y(q 2p). Thus. qj(h) # q2 (h).

Figure 4 shows an algorithm for constructing a diversity-based homing sequence h. Again,

h is built up from A by appending extensions x. On each iteration, the cardinality of the set

5-4 A state-based algorithm for general automata 149

Input: C - a finite-state automaton
Output: h - a diversity-based homing sequence
Procedure:
1 h -A
2 while (3x E A)(Vp prefix of h) p 0 hx do
3 h+-hx
4 end

Figure 4: A diversity-based algorithm for constructing a homing sequence.

{[p] : p prefix of h} increases by at least one; since the cardinality of this set is clearly bounded

by D, there can be at most D - 1 iterations. Also, each extension need be no longer than D - 1.

(For if Jx: > D, then x has at least D + 1 suffixes, at least two of which must be equivalent.

Thus, for some p, r, s, x = prs, rs = s and r € A; therefore, ps is a shorter extension of h than x

for which hps is inequivalent to every prefix of h.) Thus, we can find a diversity-based homing

sequence of length at most (D - 1)2.

Some other remarks about the length of homing sequences: First, the homing sequences

constructed by the preceding algorithms are the best possible in the sense that there exist

environments whose shortest homing sequence has length fQ(n 2) (or Q2(D 2)). However, given

a state-based (or a diversity-based) description of a finite-state machine, it is NP-complete to

find the shortest homing sequence for the automaton. (This can be shown, for instance, by a

reduction from exact 3-set cover.)

5-4 A state-based algorithm for general automata

In this and the next sections, we describe general algorithms for inferring the structure of an

unknown environment C.

We say that the learner has a perfect model of its environment if it can predict perfectly the

output of the environment given any sequence of actions. The goal of our inference procedures

is to construct a perfect model.

We assume that the learner is given access to C, that the learner can observe the output

of the environment when actions of its choosing are executed. We also assume that there is a
"teacher" who provides the learner with counterexamples to incorrectly conjectured models of

the environment. A counterexample is a sequence of actions whose true output from the current

state differs from that predicted by the learner's model. Typically, there will be many sequences

of actions which are counterexamples to a given conjecture, and by choosing an especially long

or short counterexample, the teacher can significantly affect the running time of the procedure.

150 Inference of Finite Automata Using Homing Sequences

This fact is reflected in our running times which depend on the length of the counterexamples

provided.

In the framework of a robot learning about its environment, we might imagine the robot,

upon completion of a model of the environment which it believes to be correct, using that

model to make predictions of the output of the environment's next state until an incorrect

prediction is made. In this situation, the sequence of actions leading up to the error is the

needed counterexample.

We generally assume that the unknown automaton is strongly connected, that is, every state

can be reached from every other state:

(Vq1 E Q)(Vq2 E Q)(3a E A)(qla = q2).

We make this assumption with little loss of generality: if £ is not strongly connected, then an

experimenting inference procedure, having no reset operation, will sooner or later fall into a

strongly connected component of the state space from which it cannot escape, and so will have

to be content thereafter learning only about that component.

This section focuses on an algorithm based on the global state representation for inferring

an arbitrary unknown automaton.

5-4.1 Angluin's L" algorithm

Our procedure is based closely on Angluin's P algorithm for learning regular sets [6]. Angluin

shows how to efficiently infer the structure of any finite-state machine in the presence of what

she calls a minimally adequate teacher. Such a teacher can answer two kinds of queries: On a

membership query, the learner asks whether a given input string w is in the unknown language

U, that is, whether the string is accepted by the unknown machine. On an equivalence query,

the learner conjectures that the unknown machine is isomorphic to one it has constructed. The

teacher replies that the conjecture is either correct or incorrect, and in the latter case provides

a counterexample w, a string accepted by one machine but not the other.

The idea of Angluin's algorithm is to maintain an observation table (S, E, T). Here, S is a

prefix-closed set of strings, and E is a suffix-closed set of strings. We can think of S as a set

of strings that lead from the start state to the states of the automaton, and E as experiments

which are executed from these states. The last variable T is a two-dimensional table whose rows

are given by S U SB, and whose columns are given by E. Each entry T(se), where s E S U SB

and e E E, records whether the string se is in the unknown language. For fixed s, Angluin

denotes by row(s) the vector of entries T(se) for varying e E E. Her algorithm extends S

and E based on the results of queries, and ultimately outputs the correct automaton based on

an equivalence between the states of the unknown machine and the distinct rows of the table

5-4 A state-based algorithm for general automata 151

T. We denote by NM and NE the number of membership and equivalence queries made by

V. These variables are implicit functions of n, k and m, where m is the length of the longest

counterexample received. For Angluin's procedure L, we have NM = O(kmn 2), NE = n - 1.

However, in Section 5-4.5 below, we show how NM can be improved to O(kn2 + n log m).

In our framework, the learner could easily simulate Angluin's algorithm L" if it were given

a reset: to perform a membership query on w, the learner resets the environment, and executes

the actions of w, observing the output of the last state reached. To perform an equivalence

query on V, the learner resets the automaton and conjectures that C' is a perfect model of the

environment. The teacher returns an action sequence w on which the conjectured model fails;

this is the counterexample needed by L*.

5-4.2 Using a homing sequence in lieu of a reset

However. in our model the learner is not provided with a reset. The main idea of our algorithm

is to replace the reset with a homing sequence. In many respects, a homing sequence behaves

like a reset: by executing the homing sequence, the learner discovers "where it is," what state it

is at in the environment. However, unlike a reset, the final state is not fixed, and the learner does

not know beforehand what state it will end up in. (Note that an automaton need not possess

a synchronizing sequence, a sequence that forces the automaton into a given state independent

of its starting state. So we use homing sequences instead.)

We begin by supposing that the learner has been provided with a correct homing sequence h.

Later, we will show how to remove this assumption.

Suppose we execute h from the current state q, producing output a = q(h). If we ever

repeat this experiment from state q' and find q'(h) = a, then, because h is a homing sequence,

the states where we finished must have been the same in both cases: qh = q'h. If we could

guarantee that the output of h would continue to come up a with good regularity, then we

could simply infer £ by simulating Angluin's algorithm, treating qh as the initial state. When

L" demands a reset, we execute h: if the output comes up a. then we must be at qh, and our
"reset" has succeeded: otherwise, try again. Unfortunately, in the general case, it may be very

difficult to make h produce a regularly.

Instead, we simulate an independent copy L, of L" for each possible output a of executing

h, as shown in Figure 5. Since IQ(h)l < n, no more than n copies of L* will be created and

simulated. Furthermore. on each iteration of the loop, at least one copy makes one query and

so makes progress towards inference of E. Thus, this algorithm will succeed in inferring C after

no more than n(NM + NE) iterations.

152 Inference of Finite Automata Using Homing Sequences

Input: access to 6, a finite-state automaton
h - a homing sequence for C

Output: a perfect model of E
Procedure:
1 repeat
2 execute h, producing output a
3 if it does not already exist, create L , a new copy of L"
4 simulate the next query of L*:
5 if L. queries the membership of action sequence a then
6 execute a and supply L* with the output of the final state reached
7 if L, makes an equivalence query then
8 if the conjectured model E' is correct then
9 stop and output '

10 else
11 obtain a counterexample and supply it to L
12 end

Figure 5: A state-based algorithm for inferring E given a correct homing sequence.

5-4.3 Constructing a homing sequence

We now describe how to combine construction of the homing sequence h with the inference

of E. We maintain throughout the algorithm a sequence h which we presume is a true homing

sequence. When evidence arises indicating that this is not the case, we will see how h can be

extrc ded and improved, eventually leading to the construction of a correct homing sequence.

Initially, we take h = A.

We use our presumably correct homing s, .ence h as described above and in Figure 5. If h

is indeed a true homing sequence, we will of course succeed in inferring C.

On the other hand, if h is incorrect, we may discover inconsistent behavior in the course

of simulating some copy of L*: suppose on two different iterations of the loop in Figure 5, we

begin in states q, and q2, execute h. produce output q1(h) = q2(h) = a, and, as part of the

simulation of L , execute action sequence x. If h were a homing sequence, then x's output

would have to be the same on both iterations since q1h and q2h must be equal.

However, if h is not a homing sequence, then it may happen that q1h(x) 0 q2h(x). That is,

we have discovered that z distinguishes q1h and q2h, and so, just as was done in the algorithm

of Figure 3, we replace h with hx. producing in a sense a "better" approximation to a homing

sequence. At this point, the existing copies of L° are discarded, and the algorithm begins from

scratch (except for resetting h, of course). Since h can only be extended in this fashion n - 1

times, this only means a slowdown by at most a factor of n, compared to the algorithm of

Figure 5.

5-4 A state-based algorithm for general automata 153

Input: access to C, a finite-state automaton

n - the number of states of C
Output: a perfect model of C
Procedure:
1 h +-A
2 repeat
3 execute h, producing output a
4 if it does not already exist, create L,, a new copy of LV
5 if {rous) : s E S} < n then

6 simulate the next query of L* as in Figure 5 (and check for inconsistency)
7 else
8 let {s1 ,..... +} C S, be such that routs,) 0 row(s,)
9 randomly choose a pair si, si from this set

10 let e E E, be such that To(sie) 0 T,(sje)
11 with equal probability, re-execute either sie or sje (and check for inconsistency)
12 if inconsistency found executing some string x then

13 discard all existing copies of L
14 h .- hx
15 until a correct conjecture is made

Figure 6: A state-based algorithm for inferring E.

Figure 6 shows how we have implemented these ideas. Here we have assumed n, the number

of global states, has been provided to the learner. In fact, this assumption is entirely unneces-

sary. Although we omit the details, we can show that the stated bounds below hold (up to a

constant) for a slightly modified algorithm which does not require that the learner be explicitly

provided with the value of n. The trick is the usual one of repeatedly doubling our estimate

of n.

Recall that L requires maintenance of an observation table (S, E. T). Let (S,, E', To)

denote the observation table of L;. Of course, T, can only record output produced when

executing an action sequence from what is only presumed to be a fixed initial state.

Angluin's analysis implies that if L* makes more than NM + NE queries, then the number

of distinct rows will exceed n. This can only happen if h is not a homing sequence, but how

do we know how to correctly extend h if we have not actually seen an inconsistency? We show

that if an inconsistency has not been found by the time the number of rows exceeds n, then we

can use a probabilistic strategy to find one quickly with high probability.

Suppose we execute h from state q, with output a, and we find that for L*, there are more

than n distinct rows. Then, as in Figure 6, there exist strings s1,+ in S, whose rows

are all distinct. By the pigeon-hole principle, there is at least one pair of distinct rows si,sj

such that qhs = qhsj. Further, since row(s,) $ row(s,), there is some e E E, for which

154 Inference of Finite Automata Using Homing Sequences

T (sje) 54 To(sie). However, 7y(qhsie) = -(qhsje). Therefore, either j'(qhsie) $ To(sie) or

-t(qhsje) 9 To(sje), and so re-executing se (or sje, respectively) from the current state qh will

produce the desired inconsistency. (Recall that T, records the results of previous executions of

these strings.)

So the chance of randomly choosing the correct pair s, sj as above is at least (n+l)-1, and

the chance of then choosing the correct experiment to re-run of sie or sje is at least 1/2. Thus,

the probability of finding an inconsistency using the technique of Figure 6 in this situation is

at least 1/n(n + 1). Repeating this technique n(n + 1)ln(1/6) times gives a probability of at

least 1 - 6 of finding an inconsistency. Also, no more than n2 copies of L" are ever created, and

Ihi does not exceed O(n 2 + nm) since h is extended at most n - 1 times, and each extension

has length O(n + m). a bound on the length of any query required by L.

Putting these facts together, we have proved:

Theorem 4.1 Given 6 > 0, the algorithm described in Figure 6 halts and outputs a perfect

model with probability at least 1 - 6 in time polynomial in n, m, k and 1/6, and after executing

0(n 3 (n + m)(n 2 log(n/6) + NM + NE))

actions.

If we assume m = O(n) and k = 0(1) and use the previously given bounds on NM and NE,

then the number of actions executed by the procedure (and the running time as well) simplifies

to 0(n 6 log(n/6)).

The procedure can be modified, replacing the preset homing sequence which we have been

using with an adaptive one whose input at each step depends on the output seen up to that

point. This modification shaves a factor of n off the bound given above, and is described in

greater detail in the next section.

It is an open question whether this bound can be significantly tightened. It seems likely that

an algorithm which combines the many copies of L* into one would have a superior running

time, but we have not been successful in implementing this intuition.

5-4.4 Adaptive homing sequences

The algorithm of Figure 6 is certainly quite wasteful in that, when h is discovered not to be

a homing sequence, everything is thrown away and the algorithm starts over from scratch. As

a result, up to n copies of L° are discarded each time h is extended. Since h can be extended

up to n - 1 times. this means as many as n2 copies of L" may eventually be simulated by the

algorithm.

5-4 A state-based algorithm for general automata 155

Figure 7: An example adaptive homing sequence.

In this section. we describe a way of modifying the procedure so that only one copy of L

is discarded when h is extended, leading to an O(n) bound on the total number of copies of L °

simulated.

As mentioned above, the idea of the modification is to replace our preset homing sequence

(the kind described up to this point) with an adaptive one. In many ways, preset homing

sequences a:-, rather inefficient tools. For example, it may be that, starting from some states,

executing only half the sequence is sufficient to reach a state uniquely determined by the

observed output. An adaptive homing sequence is a much more intelligent kind of homing

sequence. It is like a preset homing sequence in that the output observed can be used to

determine the state reached. However, the difference is that the action executed at each step

may depend on the output observed up to that point.

Despite its name. an adaptive sequence a is not a sequence at all but a decision tree with

the following properties: The root node of a is labeled A, and each of the other nodes in the

tree is labeled with one of the basic actions in B. Every node has at most one 0-child, and at

most one 1-child. An example adaptive sequence is given in Figure 7.

An adaptive sequence is executed in a natural manner: We begin at the root node. If the

output of the current state is 0 (or 1) then we proceed to the 0-child (1-child) of the root. The

basic action labeling the node reached is then executed, and, based on the resulting output, we

proceed down the tree in the same fashion, at each step branching to the 0- or 1-child depending

on the output observed. This continues until we "fall off" the tree, i.e., until it is necessary to

move to a node that does not exist in the tree.

For example. if the tree of Figure 7 is executed from the current state of Figure 1. then the

action sequence "x" will be executed producing output [89 ; if the sequence is executed from

state 4. then "xy will be executed with output 0 ' M . (An adaptive homing sequence can

156 Inference of Finite Automata Using Homing Sequences

be naturally defined in terms of any set of output symbols, such as [and 0 , rather than 0

and 1.)

As with ordinary sequences, we write qa to denote the state reached by executing adaptive

sequence a from state q, and we write q(a) to denote the output produced by executing a from

state q. Thus, as for preset homing sequences, an adaptive homing sequence is an adaptive

sequence h for which q1(h) = q2(h) only if qh = q2h for all q1,q2 E Q.

Modifying the algorithm

We are now ready to describe how the algorithm of Figure 6 can be modified to use adaptive

rather than preset homing sequences. The structure of the algorithm is not changed at all. Nor

is the simulation of queries, the handling of over-sized copies of L*, etc. Only the construction

of the adaptive homing sequence h is modified.

Initially, h is chosen to be the adaptive sequence consisting just of a root node A. As before,

h is repeatedly executed; each time, its output selects a copy of L. A query of the selected copy

is then simulated, just as before. Now, however, a detected inconsistency is handled differently:

Suppose an inconsistency is found executing x. More precisely, suppose that on two different

iterations, we began in states q, and q2, executed h, and observed output q1(h) = q2 (h) = a.

Further, when x was then executed, it was discovered that qlh(x) 7 q2h(x). This latter fact

implies that q1h i q2h, and so h cannot be an adaptive homing sequence. As before, we would

like to use x to repair h: we would like to "graft" x onto tree h so that the resulting tree h'

distinguishes q, and q2.

In fact, this can be done quite easily: Let v0 be the last node of h visited when h is executed

from q, and q2 (it must be the same node in both cases since q1(h) = q2(h)), and let x = b'-. b,,

where bi E B. Note that v0 has no 7(qlh)-child since this marks the "fall-off" point of h. The

grafted tree h' is the same as h accept that in h', node v0 has a 7(qlh)-child which is the root

of a linear subtree corresponding to the execution of z. More precisely, in h', each node v,_-

has a y(qlhb' ... b,_1)-child vi labeled bi, for 1 < i < r.

It can be verified that ql(h') $ q2(h'). Thus IQ(h)J < IQ(h') <_ n, and so h will be grafted

in this fashion at most n - 1 times.

So line 13 in Figure 6 is replaced by a call to a grafting subroutine as described above.

Further, since h and h' are the same except for node v0, it is no longcr necessary to discard

all copies of L* - it is sufficient to discard only L,, the copy on which an inconsistency was

discovered. Thus, since IQ(h)J increases each time a single copy of L" is discarded, at most

n - 1 copies are ever discarded throughout the execution of the algorithm. Since the number

of copies in existence at any one time is also bounded by n, it follows that at most 2n - I

copies of V are simulated by this modified procedure. Thus, this improves the bound given in

Theorem 4.1 by a factor of 0(n).

5-4 A state-based algorithm for general automata 157

5-4.5 Improving Angluin's L* algorithm

In this section, we describe a variant of Angluin's P algorithm that significantly improves the

worst-case number of membership queries made by the inference procedure. This, in turn, leads

to immediate improvements in the performance of our homing sequence algorithms.

As mentioned above, Angluin's algorithm maintains an observation table (S, E, T). The

function or table T records the value T(x) = 7f(qox) for each string x E (S U SB)E. (Here,

qo is C's initial state to which, in Angluin's model, the automaton can always be reset.) The

entries of T are filled in using membership queries, and it follows that the number of queries

needed is just the cardinality of (S U SB)E. For Angluin's algorithm, SI is bounded by O(mn),

and IEI by 0(n). Our algorithm improves on Anlguin's by limiting 151 to just n; however, to

achieve this bound on JSJ, nlgm additional queries will be needed, giving an overall bound of

0(kn2 + n log m) on the required number of membership queries.

As mentioned earlier, S is a prefix-closed set of strings representing states of C. Unlike

Angluin's algorithm, ours maintains the condition that q0s1 j qos 2 if S1 A s2 for all s, s2 E S.

Thus, S" < n at all times. Also, S only grows in size (strings are never deleted from 5). The

set E represents a set of experiments which distinguish the states of S (i.e., the states q0s for

E 5).

Here is an outline of our algorithm, which is very similar to Angluin's. Initially, S and

E are initialized to the set {A}. Using membership queries, fill in the entries of table T,

and make (S., E, T) closed (discussed below). Then, from (S, E, T), construct and conjecture

machine C'. If the conjecture is correct, quit. Otherwise, update the set E using the returned

counterexample, and repeat until a correct conjecture is made.

We say observation table (S, E, T) is closed if for aU .s E SB there exists s' E S such that

row(s) = row(s'). (Recall that row(s) is that function f : E - {0, 1} for which f(e) = T(se).)

If s E SB witnesses that (S, E. T) is not closed, then s is simply added to S (and T updated

using membership queries). Note that this maintains the condition that all rows of S are distinct

(and thus, the states to which they lead are also distinct).

(Angluin's algorithm also requires that the observation table be consistent, that is, that

row(slb) = roL(s2b) whenever row(sl) = row(s2) for s1,S2 E S and b E B. However, since our

algorithm maintains the condition that row(s1) 5 row(s 2) for s, # 52, this condition is always

trivially satisfied.)

The conjectured machine E' = (Q', B, 6', q0, y') is constructed in a natural manner: its state

set is Q' = S with initial state q' = A; its output function is defined by ")'(s) = T(s); and

its transition function is given by b'(s. b) = s' where s' is that unique member of S for which

ro(sb) = row(s').

Finally, if C' is different from C, a counterexample z is obtained, and the set E must be

158 Inference of Finite Automata Using Homing Sequences

updated. Our algorithm adds only a single string to E using z. However, to find this string,

the procedure makes up to Ig Izi membership queries.

The key property that must be satisfied by the new experiment e (which will be added to E)

is the following: for some s, s' E S and b E B for which row(s) = row(s'b), it must be that

7y(qose) j -t(qos'be). That is, experiment e must witness that qos and qos'b are different states.

If this property is satisfied, then adding e to E will cause ISI to increase by at least one (to

maintain closure) so that the total number of equivalence queries is bounded by n - 1.

We now describe how such an experiment can be found. For 0 _< i < Izi, let pi, ri be such

that z = piri, and Ipi = i. Let s, = 6'(A,p,) be the state reached in ' after the first i symbols

of z have been executed. Then on input z, machine E reaches a state outputting the value

-y(qoz) = -y(qosoro). (Assume this value is 0.) On the other hand, on input z, machine '

reaches a state outputting the value /'(6'(A, z)) = -y'(sll) = T(s.1 l) = j(qosl2 jrj2j). Since z is a

counterexample, this value must be 1.

Let ai = -y(qosjr,). Note that, by simulating E', si can be computed, and so a, can be

determined with a membership query for any i. From the comments above, we have that

ao0 = 0 and alNj = 1. Using a kind of binary search, we can find some i such that aj 0 aj+i

(such an i clearly must exist): first we query al,1 /2 ; if the result is 1, then query al,1 / 4 ; otherwise,

query a 312 1/4, etc. In this manner, such an i can be found in Ig Izi queries.

Wa claim then that rj+j is the desired experiment: Let b be the first symbol of ri. Then

7(qosjbrj+1) = -y(qosjrj) = ai 0 a+j - -(qosi+lri+i). However, by definition of si, we have

sj+j = P'(s,,b) and so row(si+i) = row(sib). Thus, as argued above, adding rj+j to E causes

IS- to increase. It follows that at most n - 1 equivalence queries are required by the algorithm.

For each equivalence query, lg m membership queries are needed to find the right experiment

to add to E. Also, since [El < n and [SI < n, at most [(S U SB)EI < (k + 1)n 2 membership

queries are needed to record the entries of T. Finally, it can be seen that each membership

query has length at most n + m. The procedure is clearly polynomial time, and its correctness

follows from arguments given above and by Angluin.

In a quite naive implementation of the algorithm, the rows of S are filled in first, and, once

a row of some string in SB has been completed, it is compared in 0(n 2) time to every other row

of S until an identical row is discovered, or until it is determined that there is no other identical

row in S (in which case, (S, E, T) is not closed). For even such a naive implementation, it can

be verified that each query requires processing time that is at worst proportional to the bound

of 0(n + nm) on the length of h in the algorithm of Figure 6.

Combining this improvement to L" with the adaptive homing sequence ideas described in

Section 5-4.4. we thus have shown:

Theorem 4.2 There exists an algorithm that halts and outputs a perfect model of any finite-

5-5 A diversity-based algorithm for general automata 159

state environment .6 with probability at least 1 - 6. The algorithm's running time, and the

number of actions executed are both bounded by

O(n3 (n + m)(n log(n/6) + kn + log m)).

5-5 A diversity-based algorithm for general automata

In this section, we describe a diversity-based algorithm for inferring finite automata in the

general case. The idea of the algorithm is to construct a simple-assignment automaton that is

equivalent to the update graph.

Our algorithm maintains a suffix-closed set T of tests which will act as the variables of

the constructed simple-assignment automaton. A test t is added to T only after it has been

determined that t is inequivalent to every test already in T. Thus, at all times, ITI < D, and

each test of T represents a different test-equivalence class (i.e., a node of the update graph);

naturally, we would like eventually that all of the equivalence classes be represented.

Additionally, a function or table r : BT --- 2T is maintained with the interpretation that

r(x) represents those tests in T which are plausibly equivalent to x. That is, initially r(x) = T,

and a test t E T is removed from r(x) when it has been determined that t 0 x.

Note that if ITI = D (so that every equivalence class is represented in T), and if, for

all x E BT, r(x) is a singleton {s.} for some s, E T, then s, = x and a simple-assignment

automaton isomorphic to the update graph is easily constructed: its variable set is T, its output

variable is A, and its update function T is defined by T(t, b) = Sbt. (The initial values function

w is handled below.)

The simple-assignment automata conjectured by our algorithm are constructed from T and

r in a very similar manner. We choose V = T and v0 = A. However, in general. it may not be

the case that Ir(x)I = 1 for all x E BT. Therefore, we choose T(t, b) to be an arbitrary element

of r(bt). If one or more of our choices is incorrect, then we can use the provided counterexample

to correct our error. More precisely, we show that, using experiments and counterexamples to

this conjectured automaton, we can find t E T and b E B such that T(t,b) 0 bt. That is, our

choice for T(t, b) can be removed from r(bt). Thus, for some x E BT, r(x) is reduced in size.

Also, note that if r(z) is reduced to the empty set, then x is inequivalent to every member

of T, and so can itself be added to T. The table r is then updated appropriately. Since ITI < D,

since r(x) C T, and since some r(x) shrinks on each iteration, it follows that this simplified

algorithm converges to a perfect model after at most (k + 1)D2 iterations.

160 Inference of Finite Automata Using Homing Sequences

5-5.1 An algorithm that uses a provided homing sequence

As in Section 5-4, we assume initially that a diversity-based homing sequence h is given. Later.,

we show how h can be constructed.

Let t be any test. Then ht is equivalent to some prefix of h. For selected tests t in A, we

maintain candidate sets C(t) C {0, ... , Ihl} representing the prefixes of h which are plausibly

equivalent to t. Let hi denote that prefix of h of length i. Initially, C(t) = {0,..., thJ}, and,

when it has been determined that hi i ht, index i is removed from the set. Note that when ht

is executed from some state q, both of the outputs 7f(qhi) and -y(qht) are observed since hi is a

prefix of ht. Thus, if we find these outputs differ, then clearly hi 0 ht and so i can be deleted

from C(t).

Suppose h has been executed from some state q producing output a = (0,.. .,alhl). We

say that a set X C {0,...,hI} is coherent (with respect to a) ifai = aj for i,j E X. IfX is

coherent, then the common value of all a, with i E X is called X's selected value (with respect

to a), and it is denoted a[X].

Note that, if C.,) is coherent, then the value of t in the current state qh is known - it is

just C(t)'s selected value. On the other hand, if candidate set C(t) is incoherent, then if t is

executed, at least one element of C(t) will be eliminated.

What's more, if i is eliminated from C(t), then every other index j for which hi E hi is

also removed since the two tests have the same value in every state. That is, I{[hi] : i E C(t)}I

decreases by at least one. Thus, C(t) can be reduced in this fashion at most D - 1 times.

Also, if we find for tests ti and t. that C(t 1) and C(t 2) are disjoint, then t, and t2 cannot

possibly belong to the same equivalence class. Moreover, if for any a E A we find that C(ati)

and C(at2) are disjoint, then at1 i at 2 and therefore t, 0 t 2 . This is the primary technique

used by our procedure for determining inequivalence of tests (and thus for the elimination of

tests from r(x)).

Our algorithm maintains a candidate set for each t E T. If all of these candidate sets are

coherent (after h has been executed from some state q), then the value of every test t E T is

known in the current state qh; these values are used then to determine the function w in the

conjectured automaton. Specifically, if all the candidate sets for the tests in T are coherent,

then a conjecture may be made in which V/, v0 and T are as described above, and w(t) is taken

to be the selected value of C(t) (which is, from the preceding remarks, the value of t in the

current state).

We describe next how a counterexample z to such a conjecture S is handled. The technique

is similar to that described in Section 5-4.5. Let z = pisi where Ipil = i for 0 < i < Izi.

Let tj = T(A,si). Finally, let ui = pti. We maintain henceforth a candidate set for each

test u,. Our hope is that these candidate sets will be reduced to the point that, for some i,

5-5 A diversity-based algorithm for general automata 161

C(ui) n C(ui+1) = §. For if this happens, then we can conclude that ui 0 ui+. Noting that

ui= piti and ui+1 = pibti+l where b is the last symbol of pi+,, this implies that t, 0 bt+l. Since

ti= T(ti+,, b) E r(bti+), it follows that ti can be deleted from r(bti+,) as desired.

We show that C(uo) and C(ul.1) are disjoint. Thus, if the candidate sets C(ui) can be

sufficiently reduced, eventually two consecutive sets C(ui) and C(ui+i) will be made disjoint as

needed. Note that the conjectured automaton S predicted that the value of z in the current

state qh is w(T(A, z)) = w(t0). Assume this value is 0. Then, by W's definition, C(uo) = C(to) C
a- 1(0), where a-I(x) = {0 < i < Ihi : a = x}. On the other hand, since z is a counterexample,

-y(qhz) = 1. Thus, if z is executed from the current state, then C(ull) = C(z) will be included

in -'(1), and, as claimed C(uo) n C(ull) will be empty.

Unfortunately, to continually reduce the sets C(ui), these sets must continually be found

incoherent. This may be a problem because they may very well all be found to be coherent

without any consecutive pair being disjoint. To handle this situation, our algorithm makes a

new conjecture that leaves V, v0 and T alone, but which chooses W appropriately as described

above. This gives a new sequence of tests ui for which candidate sets must also be maintained.

We show below that no more than D - 1 such sequences need ever be started by the algorithm

before one of the sets r(x) is reduced.

The complete algorithm is shown in Figure 8. In the figure, when a counterexample z is

received, a sequence of tests uto , u1,,, is constructed as described above; variable f counts the

number of such counterexamples received for the same choice of T. The set K(i,j) is a candidate

set for test u i . Note that the same test may have several candidate sets, not necessarily the

same: even if uij = uip, it may be that K(i,j) 0 K(i',j') if (i,j) # (i',j'). Although this may

seem inefficient, it appears to be necessary for proving the algorithm's correctness.

Also, candidate sets are updated in the obvious way: if t E T is executed leading to a state

outputting the value x, then C(t) - C(t) n a-'(x) (and similarly for sets K(i,j)). Note that

only the specified candidate set is modified.

Theorem 5.1 The algorithm described in Figure 8 halts in polynomial time after executing at

most

O(kmD'(Ihl + D + m))

actions, and outputs a perfect model.

Proof: If the algorithm halts, then it outputs a perfect model. Therefore, it suffices to prove

that it halts having executed only the stated number of actions.

Most of the arguments needed to prove this theorem were given above. Here, we try to pull

those arguments together, filling in missing details. Below, we say that a property holds on

each iteration if it holds between each iteration of the main loop.

162 Inference of Finite Automata Using Homing Sequences

Input: access to C, a finite-state automaton
h - a diversity-based homing sequence for £

Output: a perfect model of E
Procedure:
1 T -- { A}; C(A) - {0,..., Ih}
2 r(b) - T, T(A,b)- A for b E B
3 1-0
4 repeat
5 execute h, producing output a
6 if C(t) is incoherent for some t E T then
7 execute t and update C(t)
8 else if K(i,j) is incoherent for some 1 < i < 1, 0 < j _< mi then
9 choose the smallest i for which K(i,j) is incoherent for some 0 < j < mi

10 execute u0 and update K(i,j)
11 else
12 w(t) -- a[C(t)] for t E T
13 conjecture S = (T, B, T, \,,w)
14 if S is a perfect model then
15 stop and output S
16 else
17 obtain counterexample z
18 t - t + 1; me - Izl
19 for0<j<_ me:
20 ut,-- pj - T(A. sj) where z = pjsj and Ipj = I
21 K(t,j) - {O,.... IhJ}
22 K(,0)- a-'(w(ut0))
23 execute z = ut., and update K(f, me)
24 ifhK(i,j)nK(i,j+ 1)= Oforsome 1 < i< 0< j < mi then
25 x - boto where ui,.j+ = pboto, IPl = j and bo E B [this imphes uj = p-T(to,bo)]
26 r(x) - r(x) - {T(to,bo)}
27 if r(x)= 0 then
28 r(t) .- r(t) U {x} for t E BT - T
29 T - T U {x): C(x) - {0 Jhl}
30 r(bx) - T for b E B
31 T(t, b) - any member of r(bt) for b E B, t E T
32 1,-0

33 end

Figure 8: A diversity-based algorithm for inferring £ given a diversity-based homing sequence.

5-5 A diversity-based algorithm for general automata 163

First, on each iteration, if i . C(t) then hi # ht for any t. This follows from the manner in

which C is updated. Also, the contrapositive implies that C(t) is non-empty on each iteration

since hi = ht for some i since h is a diversity-based homing sequence. These statements hold

also for candidate sets K(i,j). (At line 22, this follows from the fact that, by W's definition,

C(ut0) C a-'(w(uto)).)

These facts imply that, on each iteration, t . r(x) only if x # t, for t E T, x E BT. Note

also that r(z) is non-empty on each iteration.

Thus, if the last element of r(x) is eliminated, then z # t for all t E T, and so it follows

that the tests in T are pairwise independent. Thus, by definition of diversity, ITI < D on each

iteration, and so lines 25-32 are executed at most (k + 1)D 2 times; in particular, this implies

that t is reset to zero at most this many times.

We say a set x respects set y if either x C y or x n y = 0.
By definition of equivalence, and also because of the manner in which C is updated, the set

(0 < i < jhf hi =_ z} respects C(t) for any tests t and x, on each iteration. Thus, C(t) can be

reduced in size at most D - 1 times (and similarly for K(i,j)). Combined with the fact that

ITI < D, this implies that the condition at line 6 is satisfied at most D(D - 1) times.

We will show that t < D - 1 on each iteration. This will complete the theorem: Since

t is reset to zero at most (k + 1)D 2 times, the condition at ine 8 can be satisfied at most

(k + 1)mD2 (D - 1)2 times. Also, since I is incremented at line 18, the conditions at lines 6

and 8 can fail to be satisfied at most (k + 1)D 2(D - 1) times. This gives us an overall bound

on the total number of iterations of the main loop, and, since at most fhI + m + D - 1 actions

are executed on each iteration, the result follows.

Thus. to complete the proof. we show that f < D - 1 on each iteration.

First, note that on each iteration. K(i,j)f nK(i,j + 1) 0 0 for 1 < i < f and 0 < j < mi.

Also, because the smallest i is chosen at line 9, the set K(ij) is reduced by the algorithm only

when K(i',j') is coherent for all 1 < i' < i and 0 < j' :_ mi,. Also, a counterexample is obtained

only when every set K(i,j) is coherent. Thus. it follows that on each iteration K(i',j') respects

K(ij) for i' < i. (When K(ij) is reduced, either all or none of the elements of K(i',j') are

deleted.)

To prove I < D - 1, we define a sequence of undirected graphs Go,..., Gt. The vertex set

of each graph is the set {0,..., Jhf}. In Gi, an edge connects two vertices r and s if and only if

h, = h, or {r,s} C K(i',j) for some 1 < i' < i, 0 < j < mi,.

We will be interested in counting the number of connected components of each graph Gi.

First, note that Go has at most D connected components by definition of diversity. We will

show that each graph Gi- 1 has at least one more connected component than Gi. Since every

(non-empty) graph has at least one connected component, this implies that t < D - 1.

164 Inference of Finite Automata Using Homing Sequences

Since the edge set of G-I is a subset of the edge set of G1 , it suffices to find a single pair of

vertices which are connected in G,, but not in G- 1 .

As argued above in discussing the handling of counterexamples. the sets K(i, 0) and K(i, mi,)

are disjoint. Let r and s be respective members of these sets. Then r and s are connected in

G, because, as remarked above, K(i,j) n K(i,j + 1) # 0 on each iteration, for 0 < i < mi.

We claim that r and s are not connected in G_ 1 . For if they were, then since r but not s

is contained in K(i, 0), there must be adjacent vertices r' and S' on the path from r to 8 for

which r' but not s' is contained in K(i, 0). Since r' and s' are adjacent, either hr, = he or

{r', s'} C K(i', j) for some i' < i. However, as already argued, either case implies that {r', s'}

respects K(i, 0), a contradiction.

This completes the proof. U

So Theorem 5.1 shows that an effective diversity-based algorithm exists for inferring a finite-

state environment, assuming a diversity-based homing sequence has been provided. We turn

next to the problem of extending this algorithm to handle environments when such a sequence

is not available.

5-5.2 Constructing a homing sequence

As in the algorithm of Figure 6, we presume that some sequence h is a true diversity-based

homing sequence until it becomes necessary to extend and improve h. Initially, h = A. If

for some test x, candidate set C(x) is reduced to the empty set, then clearly h cannot be a

diversity-based homing sequence since this implies that hx is inequivalent to every prefix of h.

We therefore replace h with hx as is done in the algorithm of Figure 4. Since more equivalence

classes are represented by the prefixes of hx than by those of h, it follows that h must converge

to a correct homing sequence if extended in this fashion at most D - 1 times.

Our extended algorithm is quite similar to the one given in Figure 8. As before, we maintain

a set T and function r, which together record inequivalences determined among the tests. Now,

however, the problem of determining that two tests are inequivalent becomes more difficult: we

saw earlier that if h is a diversity-based homing sequence and C(x) n C(y) = 0 for two tests x

and y, then x 0 y. However, if h is not a diversity-based homing sequence, this conclusion may

be false - it may be that z and y are equivalent to one another, but not to any prefix of h.

Nevertheless, we show that if x and y are in fact equivalent, then by re-running these tests

repeatedly in an appropriate manner. we can with high probability eliminate all the elements

of one of the candidate sets, thus yielding an extension to h as described above.

Suppose that, having executed h. we find that C(x) and C(y) are coherent, and furthermore,

that their selected values are different. If x = y then, by definition of equivalence, the true

values of the two tests in the current state are equal. Thus, the selected value of one of the

5-5 A diversity-based algorithm for general automata 165

Input: access to C, a finite-state automaton
D - the diversity of £
6 - desired confidence

Output: a perfect model of C
Procedure:
1 h--A
2 60 6/((D - 1)((k + 1)D 2 + D - 1))
3 initialize T, r, T, C and t as in Figure 8 (lines 1-3)
4 repeat
5 execute h, producing output a
6 if C(t) is incoherent for some t E T then
7 execute t and update C(t)
8 else if U'0o K(i,j) is incoherent for some 1 < i < t then
9 choose the smallest i for which this is so

10 if K(i,j) is incoherent for some 0 < j < mi then
11 execute ui, and update K(i,j)
12 else [in, = 1, K(i,0) n K(i, 1) = 0 and a[K(i,O)] 5 a[K(i, 1)]]
13 choose j E {0, 1} randomly
14 execute ui0 and update K(i,j)
15 if K(i,j) $ 0 then
16 si - Si + 1
17 if si > lg(1/6 0) then
18 conclude u5 0 i u11 : update r, T, C, T as in Figure 8 (lines 25-31)
19 e4-0
20 else
21 make conjecture: handle returned counterexample as in Figure 8 (lines 12-23)
22 St - -1
23 if K(i,j) = 0 for some 1 < i < t, 0 < j < mi then
24 h - huij
25 C(t) - f0 Ihl for t E T
26 1 - 0
27 else ifK(ij)nK(i,j+ 1)=Oand si<Oforsome 1< < 1,0 <j < mi then
28 si - 0
29 Uio - uii; Ul - uij+,; mi - 1
30 end

Figure 9: A diversity-based algorithm for inferring C.

candidate sets must disagree with the common value of the two tests in the current state. If this

is the case for z (say), and x is executed, then C(x) will be reduced to the empty set (and hx

can replace h). In general. if the algorithm randomly chooses which of x or y to execute, then

with probability 1/2, the candidate set of the chosen test is emptied. Of course, by repeating

such an experiment many times. we can lift our confidence to arbitrarily high levels.

166 Inference of Finite Automata Using Homing Sequences

This then is the approach used by our extended algorithm (Figure 9) in determining test

inequivalence. The algorithm proceeds just as before. Now, however, when the candidate sets

of two tests are found to be disjoint (line 23), the procedure does not immediately conclude

that the tests are inequivalent. Rather, it keeps the two candidate sets around and, when given

the opportunity, re-runs the two tests as described above. Only after the tests have been re-run

many times with neither of the candidate sets emptying does the algorithm conclude that the

tests are inequivalent.

Theorem 5.2 The algorithm of Figure 9, with probability at least 1 - b, halts and outputs

a perfect model. The algorithm's running time, and the number of actions executed are both

bounded by

O(kD'(m + D)(mD + log(kD/6))).

Proof: The proof of this theorem is quite similar to the proof of Theorem 5.1. As before, we

need only show that the algorithm halts in the stated number of steps since it only halts when

a perfect model has been found.

As before, i . C(t) only if hi 0 ht for any test t and 0 < i < JhJ. Similarly for K(i,j).

In the algorithm, the variable si serves two purposes: When the sequence of tests ui0,. .. , uim

is first created (lines 21-22), si is set to -1. Variable si remains negative until the candidate

sets of two consecutive tests in this sequence are reduced to the point that they are disjoint.

At this point, si becomes a (non-negative) counter indicating how many times the tests ui0 and

ui, have been rerun without either candidate set emptying. It is easily verified that, on each

iteration, K(i,j)flK(i,j+ 1) # 0 for 0 < j < mi ifs, < 0, and mi = 1 and K(i,O)fnK(i, 1) = 0

if si > 0. Note that this implies at line 8 that Uj K(i,j) is coherent if and only if every K(i,j)

is coherent and K(i,0) and K(i, 1)'s selected values agree.

The algorithm is randomized, and can only be shown to behave correctly when certain low

probability events do not occur. Therefore. to simplify the analysis. we will assume that the

algorithm has a good run - specifically, that if ui = uil then s, does not exceed lg(l/ 0), for

1 < i < f. Later, we will show that a good run occurs with probability at least 1 - 6.

Assuming then that a good run occurs, it is clear that t r(x) only if x 0 t for t E T,

x E BT. Thus, all pairs of tests in T are inequivalent, and ITI < D. Further, this shows that

lines 18-19 are executed no more than (k + 1)D' times.

As argued above, h cannot be extended more than D - 1 times, implying that lines 24-26 are

executed at most D - I times. Thus, variable I is reset to zero no more than (k + 1)D' + D - 1

times. Later we will again argue that f < D - 1 on each iteration; assume for now that

this is the case. Then since s, < lg(1/lo) on each iteration, lines 13-19 are executed at most

(D - 1)((k + 1)D 2 + D - 1)lg(l/6 o) times.

5-5 A diversity-based algorithm for general automata 167

It can be verified, as in Theorem 5.1, that the set {0 < i < I: hi x} respects C(t) for any

tests t and x, on each iteration (and likewise for K(i,j)). Applying our bound on I and on the

number of times I is reset, this implies line 11 is executed at most (D- 1)2m((k + 1)D 2+ D- 1)

times, and so the condition at line 8 is satisfied at most (D- 1)((k + 1)D 2 + D - 1)((D- 1)m +

lg(1/6 0)) times.

The sets C(t) for t E T are reset to {0,..., Ihl} at most D - 1 times (i.e., only when h is

extended). Thus, the condition at line 6 is satisfied at most D(D - 1)2 times.

Finally, since I is bounded and is executed at line 21, the conditions at lines 6 and 8 fail to

be satisfied at most (D - 1)((k + 1)D2 + D - 1) times. Thus, the number of iterations of the

outer loop can be computed, and the bound on the number of actions executed follows from

the fact that Ihi _ (D - 1)(m + D - 1).

The proof that £ < D - 1 is quite similar to that given in the proof of Theorem 5.1. As

before, we define graphs Go,. Gt on vertex set {0,...,Ihi}. We let {r,s} be an edge of G,

if and only if h, = h, or {r,s} C U=0K(i',j) for some 1 < i' < i. Then Go has at most D

connected components. It can be argued as before that Uj K(i',j) is respects K(i,j i') if i' < i.

Also, K(i, 0) and K(i, mi) are disjoint. Therefore, if r is in K(i, O) and S is in K(i, mi) then r

and s are connected in Gi but not in Gi-1 by the argument given in the proof of Theorem 5.1.

Thus, Gi- 1 has at least one more connected component than G1, and £ < D - 1.

Thus, we have proved that the stated bound on the number of actions executed holds on a

good run. It remains then only to show that a good run occurs with probability at least 1 - 6.
As argued above, if K(i,0) and K(i, 1) are coherent with different selected values, and if

ui0 - uj, then the probability is 1/2 that K(i,j) is empty after uij is executed, for j chosen

randomly from {0 1}. Thus. if ui0 = uil, then the probability that s, exceeds k is less than

2-k. particular. si exceeds lg(1/b 0) with probability less than 60.

We argued above that. on a good run, lines 21-22 are executed at most (D - 1)((k+ 1)D 2 +

D - 1) times: that is. at most this many pairs u,0 , u,1 are created. The chance that si exceeds

lg(1/6o) when ui0 - uil for any of these pairs is thus bounded by 6. Thus, 6 bounds the

probability of a bad run. completing the proof of the action execution bound.

It is clear that this algorithm runs in polynomial time. It is not so obvious, however, how

it can be implemented to run in time proportional to the bound on the number of actions

executed. We discuss techniques that can be used to achieve stch a time bound.

Perhaps the most time consuming task performed by the algorithm is in checking the co-

herence of the many candidate sets. In a naive implementation, determining the coherence of

a subset of {0..... IhI} takes O(1hl) time. Thus, for instance, checking the ITI candidate sets

C(t) at line 6 takes up to O(D~hI) time; since only O(lh + D + m) actions are executed on each

iteration, this gives a time bound that exceeds the action execution bound by at least a factor

168 Inference of Finite Automata Using Homing Sequences

of D.

We show instead how the coherence of any candidate set can be checked in O(D) time

using a different representation: We maintain a partition 7r of the set {0,..., Jhj} with the

interpretation that i and j are in the same block of 7r if and only if every time that h was

previously executed (line 5), it was observed that ai = a, (where a was the observed output

sequence, as usual). In particular, if hi - hi, then i and j are always in the same block of 7r.

Thus 7ru < D.

Note that if such a partition is maintained, then on each iteration, each block of 7r respects

each candidate set C(t) or K(ij). It therefore makes sense to represent each candidate set as

a set of pointers to the blocks of ir that it includes. If this is done, then each candidate set

contains at most D pointers, and each set's coherence can be determined in O(D) time (it is

only necessary to examine the value of one member of each block since all the other members

have the same value).

It is quite easy to see how the partition 7r can be maintained: Initially, and each time h is

extended, 7r is set to {{0, ... , jhl}}. After h is executed with output a at line 5, the coherence

of each block of 7r is determined. Since each index 0,..., Ihi occurs in only one block of 7r,

this only takes O(Ihl) time. If any block s is incoherent, then it is split into two new blocks

s n a-'(0) and s n or-'(1). Since Iri D, this can happen at most D - 1 times. Naturally,

when it does happen, all of the candidate sets must be changed so that their members point

to blocks of the new partition. This takes O(D) time for each of the 0(mD) candidate sets.

Thus, since h can be extended at most D - 1 times, the algorithm spends at most 0(mD4)

time updating candidate sets in this fashion. (This time is negligible compared to the number

of actions executed.)

This still does not give the desired time bound because, even with this modification, naively

computing I unions, each of up to m candidate sets as at line 8, can take O(mD) time.

Instead of the naive approach. we therefore maintain a counter e(is) for each 1 < i e
and s E ir. This counter indicates the number of candidate sets K(i,j) which include S:

c(i,s) = 1{0 < j !5 mi : s C K(i,j)}I. It is straightforward how such a counter can be efficiently

maintained, and the union Uj K(ij) can now be easily computed in O(D) time as the union

of those blocks s E ir for which e(zs) > 0.

Finally, lines 23 and 27, which appear to require a great deal of search, actually do not

because only a small number of values i,j (those for which K(ij) was modified) need actually

be checked.

With these ideas, it can now be fairly easily verified that the algorithm halts within the

stated time bound. M

5-6 A state-based algorithm for permutation automata 169

5-6 A state-based algorithm for permutation automata

In this and the next sections, we present algorithms for inferring permutation automata. Unlike

the procedures described up to this point, these procedures do not rely on a means of discover-

ing counterexamples; the procedures actively experiment with the unknown environment, and

output a perfect model with arbitrarily high probability.

As before, we describe both a state-based and a diversity-based procedure. In both cases,

we describe deterministic procedures that, given a (diversity-based) homing sequence h, will

output a perfect model of the environment in time polynomial in n (or D) and Ih . To construct

the needed homing sequence, we show that any sufficiently long random sequence of actions is

likely to be a homing sequence.

We begin in this section with the state-based case. Consider first the simpler problem of

inferring a visible automaton. i.e., one in which the identity of each state is readily observable.

For instance, suppose each state, instead of outputting 0 or 1, outputs its own name. In

this situation, inference of the automaton is almost trivial. From the current state q, we can

immediately learn the value of 6 (q, b) by simply executing b and observing the state reached.

If 6 (q, b) is already known for all the basic actions, then either we can find a path based on

what is already known about 6 to a state for which this is not the case, or we have finished

exploring the automaton. It is not hard to see that O(kn 2) actions are executed in total by this

procedure.

Now suppose that the unknown environment £ is a permutation automaton and that a

noming sequence h has been provided. Because E is a permutation environment, we can easily

show that h is also a distinguishing sequence, that is, h distinguishes every pair of unequal states

of E. Put another way, q1 (h) = q2 (h) if and only if q, = q2 . (For if q1(h) = q2 (h) then, since h

is a homing sequence, q1 h = q2h. This implies ql = q2 since £ is a permutation environment.)

Thus, the identity of any state is uniquely given by the output of h at that state; its identity is

almost directly observable.

To infer the environment, we therefore use the inference procedure sketched above for visible

automata. Each state q is named or represented by q(h), the output of h at that state. To

identify the current state, simply execute h and observe the output produced.

Although executing h is helpful in identifying the state from which the sequence was exe-

cuted, doing so is also likely to leave us in a state at the end of the sequence whose identity is

unknown. This is a problem because the visible-automaton inference procedure requires that

we be able to find a state whose identity is known even without executing h. We can overcome

this problem, however, by maintaining a table u which records the fact that if a = q(h) was

just observed as the output of executing h, then the output of h if executed from the current

state qh is given by u(o).

170 Inference of Finite Automata Using Homing Sequences

Input: access to C, a permutation automaton

h - homing sequence
Output: a perfect model of C
Procedure:
1 d, u are initially undefined everywhere
2 execute h, producing output a
3 repeat

4 if u(o) is not defined then
5 execute h, producing output r
6 u(a) -

7 a+-
8 else if (3a E A, b E B) d(u(a), a) is defined, b'.' d(u(a), ab) is undefined then
9 choose the shortest such ab

10 a - d(u(a), a)

11 execute ab
12 execute h, producing output r
13 d(a,b) - r

14 a,--r

15 else
16 exit loop
17 end
18 let q be the current state
19 output the following prediction rule (model of C):
20 on input a E A,
21 a - d(u(a), a)
22 predict -(qa) = ao

Figure 10: A state-based algorithm for inferring permutation environment E.

Thus, we can reach a state whose identity is known (without executing h from it), we can

execute an experiment as dictated by the visible-automaton inference procedure, and we can

identify the last state reached by executing h. This can of course be repeated as many times

as necessary.

Our procedure is given in Figure 10. As mentioned, each state q is represented by q(h), the

output of h at q. For a E Q(h). we write q, to denote that state for which q,(h) = a. This

state is well-defined since h is a distinguishing sequence. A function or table u : Q(h) .-- Q(h)

is maintained for which u(a) = qh(h). That is, if h was just executed with output a. then the

current state is q,(,).

The transition function is represented by the program variable d : Q(h) x B - Q(h). For

notational purposes, the function d can be extended in the usual manner to the domain Q(h) x A.

The variable d is used to store and compute the output of h in future states. Given a E Q(h)

and b E B, d(a,b) denotes the output of h in ste qb. That is. if properly constructed,

5-6 A state-based algorithm for permutation automata 171

d(a, b) = qb(h).

Theorem 6.1 The algorithm of Figure 10 halts and outputs a perfect model of E after executing

at most O(kn(lhI + n)) actions, and in time O(kn(hI + kn)).

Proof: Clearly, IQ(h)I < n, so that after at most n + kn iterations, the procedure will halt

since every entry of u and d will be defined.

We can view d as defining a directed graph whose vertices are the elements of Q(h), and

whose edges are of the form a -- d(a,b) whenever a E Q(h), b E B and d(a,b) is defined. Then

the problem of finding an experiment ab as in the figure can be treated as that of finding a path

in the graph from u(a) to another vertex a whose out-degree is less than k. This is easily done

in O(kn) time (for instance, using breadth-first search), and the resulting experiment ab has

length at most n, the size of the graph. This proves the upper bound on the number of actions

executed.

The remaining steps of the loop can be achieved in O(IhI) time, for instance, if we store the

elements of Q(h) at the leaves of a depth (Ihi + 1) binary tree. It remains then only to show

that the prediction rule output by the algorithm is a perfect model of £.

We prove this by showing that the following invariants hold between each iteration of the

main loop:

1. If a E Q(h) and u(a') is defined, then u(a) = qoh(h).

2. If a E Q(h), b E B and d(a'.b) is defined then d(a,b) = qb(h).

Initially. these invariants hold vacuously since u and d are undefined everywhere. Suppose at

the top of an iteration of the loop that h was just executed from some state q with output a.

Then q = q,, and the current state is qh. If u(a') is undefined, then h is executed from the

current state with output r. Thus, we learn that r = qh(h). Setting u(a') to r, invariant 1 is

maintained.

On the other hand, if u(a) is defined, then the current state is qu(, 7). If an experiment ab is

found as shown in the figure, then invariant 2, together with an easy induction argument on the

length of a. shows that a = d(u(a'),a) = qU()a(h). The state we reach by executing a then is

just q,. Executing b, and then h with output r, we learn that r = qb(h). Setting d(a, b) = r,

invariant 2 is maintained.

With these invariants. it is not hard to see why, after the loop is exited, the output prediction

rule is correct. The current state q is just q,(,) as before. Given a E A. we have qa(h) =

d(u(a'), a). Therefore. the first element of d(u(or), a) is -y(qa). U

Finally, we must consider how to construct h. In fact, any sufficiently long random sequence

of actions is likely to be a homing sequence:

172 Inference of Finite Automata Using Homing Sequences

Theorem 6.2 Let 6 > 0, and let h be a random sequence of length 8kn5 .In(n). (n + ln(1/6)).

Then h is a homing sequence with probability at least 1 - 6.

Proof: The idea is to randomly construct the homing sequence in the manner described in

Figure 3. On each iteration, an appropriate extension x which distinguishes some pair of states

as needed by the algorithm is likely to be given by any sufficiently long random walk. This

follows from previous results on random walks in permutation automata. Specifically, we will

use the following result:

Lemma 6.3 Let q, and q2 be two distinct states and let x be a random sequence of length

2kn4 In(n) of the following form: At each step, with equal probability, we either do nothing, or

we execute a uniformly and randomly chosen basic adion from B. Then the probability that

t(qlx) 5 7y(q 2 X) is at least 1/2n.

Essentially, the same result is proved in my master's thesis [79] using results of Fiedler [24]

on the eigenvalues of doubly stochastic matrices, in addition to certain properties of point-

symmetric graphs. There, the result was proved for update graphs, but, because of the "dual"

relationship between update graphs and finite automata, the results holds as stated as well.

Let x-l,..., x, be a sequence of random strings, each of length 2kn4Iln(n). Let yi =

X1X2 ... We wish to show that y, is a homing sequence with high probability. Consider

a sequence of trials in which "success" on the ith trial means that either yi- 1 is a homing

sequence (so that yi is as well) or IQ(yi)l > IQ(yi-,)I. Clearly, if n of the trials succeed, then

y, is a homing sequence.

For any choice of yi_1, Lemma 6.3 shows that the probability of success on the ith trial is

at least 1/2n. Thus. applying Chernoff bounds (Lemma 2-3.6), we see that the probability of

fewer than n successes in r trials is at most 6 if r > 4n(n + ln(1/6)). This proves the theorem.

U

These theorems give our inference procedure a running time of O(k 2 n6 log(n).(n+log(1/b))).

5-7 A diversity-based algorithm for permutation automata

We can show in a similar manner how a permutation environment can be inferred using a

diversity-based representation. As before, we reduce the problem to that of inferring a visible

automaton - in this case, one for which all of the test-equivalence classes are known, and for

which the value of each test class is observable in every state. The problem of inferring such

automata is solved in Chapter 4 of my master's thesis [79]; the solution is based on the careful

planning of experiments, and on the maintenance of candidate sets similar to those described

in Section 5-5.

5-7 A diversity-based algorithm for permutation automata 173

Let h be a given diversity-based homing sequence for the unknown permutation environ-

ment C. As before, to simulate the inference algorithm for visible automata, it suffices to show

that the state of the automaton (i.e. the values of the test classes) can be observed by executing

h, and further that it is possible to reach a state whose identity is known even without executing

h. Since . is a permutation environment, we can show that every test class is represented by

some prefix of h. Therefore, at the current state q, the values of all the test classes can be

observed simply by executing h.

If, having executed h from some state q, we find that candidate set C(hi) is coherent, then

the value of test hi in the current state qh is just the selected value of C(hi). (As before, hi is

the prefix of h of length i.) Thus, if all the candidate sets are coherent, then qh(h), the output

of the entire sequence, is known in the current state. On the other hand, if one of the candidate

sets is incoherent, then by re-executing h we are guaranteed to reduce one of the candidate

sets. Thus, we can quickly reach a state in which the output of h is known without actually

executing it.

We say action sequence a is a diversity-based distinguishing sequence if every test is equiv-

alent to some prefix of a. Such a sequence is clearly a distinguishing sequence, since if q, 0 q2

then there exists a test t distinguishing the two states; since t - p for some prefix p of a,

y(qlp) 6 7(q2P) and so q1(a) $ q2(a).

A diversity-based distinguishing sequence is also a diversity-based homing sequence, as is

obvious from their definitions. In permutation environments (but not in general), the converse

holds: Suppose h is a diversity-based homing sequence. Let [t1], [t2],... [tD] be the equivalence

classes of C. Then there exist prefixes Pl,P2,. . PD of h such that pi = hti. Since 4 is a

permutation environment, if tj 0 tj then ht, # htj. Therefore, the D prefixes pi are pairwise

inequivalent, and so every equivalence class is represented by some prefix of h. Thus, h is a

diversity-based distinguishing sequence.

As in the last section. we assume a diversity-based homing sequence h has been given, and

show later how such a sequence can be randomly constructed.

Our procedure is given in Figure 11. As mentioned above, the algorithm maintains various

kinds of candidate sets. First. for each 0 < i < Jhi, a set G(i) is maintained with the interpre-

tation that j is in G(i) if hj could plausibly be equivalent to hhi, i.e., if it has not yet been

determined that hi # hhi. (Thus, G(i) = C(hi) in the notation of Section 5-5.) As described

above, such candidate sets are useful for reaching a state in which the output of h is known

prior to its execution from that state.

The algorithm also maintains sets U(i,b) for 0 < i < IhI and b E B; these sets consist of

indices j for which hj is plausibly equivalent to bhi. To see why such sets might be useful,

suppose h has been executed from some state q with output a. As seen before, if G(i) is

174 Inference of Finite Automata Using Homing Sequences

Input: access to C, a permutation automaton
h - a diversity-based homing sequence

Output: a perfect model of C
Procedure:
1 G(i),U(i,b)-- {0,...,lhl} for i E {o,...,Ihl},b EB
2 execute h, producing output a
3 repeat
4 if G(i) is incoherent for some 0 < i < JhI then
5 execute h, producing output r
6 G(i) *- G(i) n a-'(r,) for i E {O,..., Ihl}
7 Cr
8 else
9 3 -[G(i)] for i E {0,..., IhI}

10 if PLAN-EXP can find a shortest useful experiment ab then
11 ac, - 3[U(i,a)] for i E {0,...,Ih}
12 execute ab
13 execute h. producing output r
14 U(i,b) ,- U(i,b) n a-(r,) for i E {0,..., IhI}
15 o -r
16 else
17 exit loop
20 end
21 let q be the current state
22 A, .- a[G(i)] for i E {0,..., Ih}
23 output the following prediction rule (model of C):
24 on input a E A, predict y(qa) = ,3[U(O, a)]

Figure 11: A diversity-based algorithm for inferring permutation environment C.

coherent for all i. then 3 = qh(h) is known, the output of h if executed from the current state

qh. If, moreover, U(i. b) is coherent (with respect to /3), then y(qhbhi) is known; thus, if this

is the case for all i, then qhb(h) can be determined, the output of h from the state reached if b

were executed.

The function U can be extended in a natural manner to the domain {,..., IhI} x A by the

rule U(iA) = {i} and U(i, ab) = Ueu(j,,)U(j,b) for i E {O, ... ,IhI}, a E A and b E B. Then

the above statements also hold if b is replaced by any action a E A.

Our algorithm works by trying to reduce the candidate sets U(i, b) as much as possible until

U(i,a) is coherent for all i and all a E A; at this point, from the preceding comments, a perfect

model has been attained.

Let a, 3 and q be as above. assuming all G(i)'s are coherent with respect to a. If U(i,b) is

incoherent (with respect to 3), then executing b and then h will clearly cause some candidate

5-7 A diversity-based algorithm for permutation automata 175

set U(i, b) to shrink. In this case, b is called an immediately useful experiment. However, it may

be the case that there is no immediately useful experiment (all the sets U(i, b) are coherent)

but, nevertheless, some set U(i, a) is incoherent for a E A so that a perfect model has not been

achieved. In this case, it is possible to find a useful experiment; this is an experiment in which

a "set-up" action a E A is first executed leading to a state in which an immediately useful

experiment can be executed.

More precisely, a sequence ab, where a E A and b E B, is a useful experiment if, for some

0 <_ i < Ihi, U(i, nb) i incoherent, but U(j, a) is coherent for j E U(i, b). Note that the shortest

useful experiment has the additional property that U(j, a) is coherent for all j, 0 :_ i _ Ihi

(otherwise, a prefix of a would be a shorter useful experiment). A procedure for finding a

shortest useful experiment, called PLAN-EXP, was described in my master's thesis [79], and

is treated here as a "black-box" subroutine. (The inputs required by PLAN-EXP are omitted

from Figure 11, but are described fully below.)

Thus, at a high level, our algorithm is simple: execute h; if some G(i) is incoherent, then re-

execute h and update G; otherwise, find and execute a shortest useful experiment, and update

U. If no useful experiment exists, then a perfect model has been found.

Theorem 7.1 The algorithm described in Figure 11 halts and outputs a perfect model of C

after executing at most O(kD(IhI + D)) actions, and in time O(kD(Ihi + D2 + kD. a(kD, D))).

Proof: 7 irst, note that because of the manner in which G is updated, an index j is removed

from G(i) only if h, -$ hhi. Thus, since h is a diversity-based homing sequence, G(i) is never

empty. Also, if j is removed from G(i), then every other index j' for which hj = h, must also

be removed since equivalent tests have the same value in every state.

In addition. every index j appears in some set G(i), i.e., Ui G(i) = {0,..., [hi). To see that

this is so, note that, because h is a diversity-based distinguishing sequence, every equivalence

class is represented by the prefixes of h, that is, I{[h,] : 0 < i < IhIll = D. Since £ is a per-

mutation environment. h, = hj if and only if hh, = hhj. Thus, I{[hhi] : 0 < i < Ihi)I = D.

Therefore, the test hj is equivalent to some hhi, implying j E G(i).

For the analysis. it is important to note that the set {G(i) : 0 < i < Ihi) is a partition of

{0,..., Ihi). This can be proved by an inductive argument: For suppose, prior to the execution

of line 6, that G(i) and G(j) are equal or disjoint, for some i,j. Then if G(i) = G(j) and

r, = rj, then clearly G(i) n a-l(r) = G(j) fn l 1 (-rj). On the other hand, if G(i) and G(j) are

disjoint or if ri 5 rj. then G(i) n o-'(r,) and G(j) n a-(r) must also be disjoint. In either

case, the new sets following the execution of line 6 will be equal or disjoint.

Thus, since the set {0 < i < Ih! : hi = 4 respects G(i) for any test x on each iteration.

it follows that I{G(i) : 0 < i < Ihill _< D on each iteration. Since, some G(i) shrinks each time

that lines 5-7 are executed, it follows that this block is executed at most D - 1 times.

176 Inference of Finite Automata Using Homing Sequences

We would like to give a similar argument showing that lines 9-17 are executed at most

k(D - 1) imes. We will first give an inductive proof that j 0. U(i,b) only if hj 0 bh,:

Suppose that h has been executed from q with output a. Suppose also that each G(i) is

coherent with respect to a. Then there is some j for which hj = hhi, and which is therefore in

G(i). Thus -y(qhh,) = y(qhj) = aj = a[G(i)], and so qh(h) = '3 where a, = a[G(i)], as in the

figure.

Suppose that PLAN-EXP returns an experiment ab. Then U(i, a) is coherent (with respect

to 0) for all 0 < i < jIh, but, for some i, U(i, ab) is not. Since h is a diversity-based distinguishing

sequence, there exists j for which h, = ah,. By inductive hypothesis, j E U(i,a). Since U(i,a)

is coherent, we have a, = O[U(i,a)] = -y(qhhj) = -y(qhah,). Thus, a = qha(h).

It can now be verified that j is removed from U(i,b) only if hj ; bhi, completing the

induction. As before, this implies that each U(i,b) is nonempty on each iteration, and that

Uj DU(i, b) = {0,.. ., thl} on each iteration for each b E B. Also, having argued that a = qha(h)

at this point in the program, it can now be argued as before that the set {i : hi = x} respects

each U(i, b), and that the set {U(i, b) : 0 < i < jhI} is a partition consisting of at most D blocks

for each b E B.

Since ab is a useful experiment, some set U(i,b) must shrink at line 14. Thus, by the

preceding arguments, lines 9-17 are executed at most k(D - 1) times.

We will late. argue that the returned useful experiment has length at most D. This will

then complete the proof of the action execution bound.

Given the above arguments. it is quite easy to prove the correctness of the output prediction

rule: On exiting the main loop, each set G(i) or U(i,a) is coherent (with respect to a and /.

respectively, as in the figure) for all i and a E A. As argued above, in the current state q, this

implies that q(h) = /3. Also, given a E A. we showed above that 7 (qah,) = [U(i.a)]. Thus,

-1(qa) = 3[U(0, a)1, and the output rule is a perfect model.

Finally, we turn to efficiency considerations. If naively implemented. the running time of

the procedure may be quite poor. However, using similar techniques to those described in

Section 5-5, we can derive a time bound comparable to the action execution bound.

In particular, we maintain a partition 7r over the set {0,..., hi) with the condition that i

and j belong to the same block of 7r if and orly if the values of hi and h, have neve: differed on

any execution of h (so that the two tests are plausibly equivalent). As before, if hi E h,, then

i and j must he in the same block of r. Thus. Irl < D.

It is easily verified that, on each iteration. if i and i' are in the same block of r, then

G(i) = G(i'), and {i.i') respects each set G(j). Similarly. for b E B, U(i,b) = U(i',b) and

{i,i'} respects each set U(j,b). Thus. with respect to the data structures G and U, the two

indices i and i' are entirely indistinguishable. Therefore, we can represent these structures more

5-7 A diversity-based algorithm for permutation automata 177

efficiently in terms of the blocks of tr.

In particular, as was done in Section 5-5, we can represent each candidate set as a list of

pointers to those blocks of 7r which it includes. Thus, the representation of such a set has size

at most D. Also. since G(i) = G(j) if i and j are in the same block, we only need maintain

a candidate set for a single member of each block (say, the minimum element). That is, we

maintain a candidate set G(i) or U(i, b) (explicitly represented as described above) if and only

if i is the smallest member of its block; the other candidate sets are only implicitly maintained,

based on the equalities among candidate sets described above.

With such a representation, lines 4, 6 and 14 take only time O(D 2). Using the fact (to

be proved) that labi < D, we can also show that line 11 takes time O(D2 + ihl): computing

ai = 3[U(i,a)] for a single value of i takes O(D) time since lal is bounded, and since U(i,a)

is known to be coherent. Thus, computing ai for each i E {min(s) : s E r} takes O(D 2) time.

Finally, all the other values of ai can be computed by setting a, -- amin(s) for s E 7r, i E s in

O(IhI) time.
The partition 7r is easily maintained in the same manner described in Section 5-5: Each time

that h is executed, the coherence of each block of r is checked in O(Iht) time. If any block is

incoherent, then the structures G and U must be updated; this takes 0(kD2) time. Since 7r can

be partitioned at most D times, this adds 0(kD3) to the total running time of the procedure.

It remains then only to show how the running time of PLAN-EXP can be bounded. The

procedure PLAN-EXP takes as input a set V of variables; a set of candidate sets for each v E V,

E B: and an assignment to the variables in V. It returns a shortest useful experiment ab

(or reports that none exists) in time 0(kVI • a(klVI, I')) where a is a functional inverse of

Ackermann's function [82]. The length of the returned experiment ab is bounded by IVI.
Thus. if we use {O.... ,Ihl as our variable set in our call to PLAN-EXP, then the procedure

may take too long, and could plausibly return an experiment far longer than D. Instead, we

will use the blocks of ir as our variable set. The candidate sets are then defined naturally by

the rule U'(s,b) = {s' E 7r : s' C U(min(s),b)} for s E 7r and b E B. The assignment Y'(s) is

similarly defined to be 03(min(s)).

Note that our representation scheme for U is essentially equivalent to the structure U', and

the structure 3' is easily computed in O(D) time. Also, since lrl < D, PLAN-EXP runs in

time O(kD . a(kD, D)), and returns an experiment of length at most D.

It can be argued by induction on the length of a that U'(s,a) = {s' E ir : s' C U(i,a)} for

s E 7r and a E A, assuming i E s. With this fact, it can be seen that U'(s, a) is coherent with

respect to 13' if and only if U(i.a) is coherent with respect to 3.

In particular, this shows that if PLAN-EXP when called in this manner returns an experi-

ment ab. then U(i,a) is coherent (with respect to)3) for all 0 < i < Ihi, but, for some i, U(i, ab)

178 Inference of Finite Automata Using Homing Sequences

is not; that is, ab is indeed a shortest useful experiment. Likewise, if PLAN-EXP fails to find
a useful experiment, then each U(i,a) is coherent for all i and all a E A.

This completes the proof. U
As in the state-based case, we can construct a diversity-based homing sequence by choosing

a sufficiently long sequence of actions. Below, H, = EU 1 (1/i) is the nth harmonic number. It
is well known that H,, = 0(log n).

Theorem 7.2 Let b > 0, and let h be a random sequence of length 2kD 3 HD • ln(D) - ln(D/6).

Then h is a diversity-based homing sequence with probability at least 1 - 6.

Proof: We follow the algorithm of Figure 4 for constructing a diversity-based homing sequence.

On each iteration, we need to find an extension x to h for which hx is inequivalent to every prefix
of h. That is, if v equivalence classes are represented by the prefixes of h, and [t1], [t.,...,[-
are the equivalence classes not represented, then we wish to find x such that hx = t, for some

i. Equivalently, we want x = h-t,. (Here, h- ' is a sequence of actions for which h-1h is the
"identity" action, i.e., qh- 1 h = q for all q E Q. The existence of h-1 is guaranteed by the fact

that E is a permutation environment.)

Based on the results on random walks given in my master's thesis [79], it is easy to conclude

the following:

Lemma 7.3 Let t be any test, and let x be a random sequence of length kD 2 ln(D) of the
following form: At each step, with equal probability, we either do nothing, or we execute a
uniformly and randomly chosen basic action from B. Then the probability that t = x is at

least 1/2D.

Thus, the probability that an extension x as described above will be equivalent to any
h- 1 t, is at least (D - v)/2D. Extending h in this manner (2D/(D - v)) . ln(1/b) times gives

a probability of at least 1 - 6 of successfully increasing the number of equivalence classes

represented by the prefixes of h. Replacing 6 with b/D, we can conclude that h is a homing
sequence with probability at least 1 - 6 if its length is at least

D-1 2D
E kD 2 ln(D). D - .ln(D/6)
v=---

as claimed. (This sequence may be longer than strictly necessary since v may increase by more
than one with each extension; also. many of the "actions" required by the lemma are actually
"no-ops." This. however, does not affect the argument since a homing sequence remains one
even if suffixed or prefixed.) U

5-8 Experimental results 179

Thus, our inference procedure runs in time O(k2 D4 log2(D) - log(D/6)). This improves the

previously best-known bound of O(k 2 D7 log(D) log(kD/6)) given by Rivest and Schapire [73,

79] by roughly a factor of D 3 / log(D).

5-8 Experimental results

The algorithm described in Section 5-4 has been implemented and tested on several simple

robot environments.

In the "Random Graph" environment, the robot is placed on a randomly generated directed

graph. The graph has n vertices, and each vertex has one out-going edge labeled with each of the

k basic actions. For each vertex i, one edge (chosen at random) is directed to vertex i + 1 mod n;

this ensures that the graph contains a Hamiltonian cycle, and so is strongly connected. The

other edges point to randomly chosen vertices, and the output of each vertex is also chosen at

random.

In the "Knight Moves" environment, the robot is placed on a square checker-board, and

can make any of the legal moves of a chess knight. However, if the robot attempts to move off

the board, its action fails and no movement occurs. The robot can only sense the color of the

square it occupies. Thus, when away from the walls, every action simply inverts the robot's

current sensation: any move from a white square takes the robot to a black square, and vice

versa. This makes it difficult for the robot to orient itself in this environment.

Finally, in the "Crossword Puzzle" environment, the robot is on a crossword puzzle grid

such as the one in Figure 12. The robot has three actions available to it: it can step ahead one

square, or it can turn left or right by 90 degrees. The robot can only occupy the white squares

of the crossword puzzle: an attempt to move onto a black square is a "no-op." Attempting to

step beyond the boundaries of the puzzle is also a no-op. Each of the four "walls" of the puzzle

has been painted a different color. The robot looks as far ahead as possible in the direction it

faces: if its view is obstructed by a black square, then it sees "black," otherwise, it sees the color

of the wall it is facing. Thus, the robot has five possible sensations. Since this environment is

essentially a maze. it may contain regions which are difficult to reach or difficult to get out of.

In the current implementation, we have used an adaptive homing sequence or homing tree.

We have also used the modified version of L described in Section 5-4.5. Finally, we have

implemented a heuristic that attempts to focus effort on copies of L* that have already made

the most progress: if the homing sequence is executed and the L" copy reached is not very far

along, then the procedure is likely to re-execute the homing se4uence to find one that is closer

to completion. The idea of the heuristic is not to waste time on copies that 1, ve a long way to

go. The heuristic seems to improve the running time for these three environments by as much

as a factor of six.

180 Inference of Finite Automata Using Homing Sequences

Figure 12: A crossword puzzle environment.

For the "Random Graph" and "Crossword Puzzle" environments, the inference procedure

was provided in some experiments with an oracle which would return the shortest counterexam-

pie to an incorrect conjecture. All three environments were also tested with no external source

of counterexamples: to find a counterexample, the robot would instead execute random actions

until its model of the environment made an incorrect prediction of the output of some state.

Table 1 summarizes how our procedure handled each environment. In the table. "Source"

refers to the robot's source of counterexamples: "S" indicates that the robot had access to the

shortest counterexample. and "R" indicates that it had to rcly on random walks. The column

labeled "Iran(-y)f" gives the number of possible sensations which might be experienced by the

robot. (Extending our algorithms to the case that the range of Y consists of more than two

elements is trivial.) "Copies" is the number of copies of L° which were active when a correct

conjecture was made. "Queries" is the total number of membership and equivalence queries

which were simulated. "Actions" is the total number of actions executed by the robot, and

"Time" is elapsed cpu time in minutes and seconds. The procedure was implemented in C

on a DEC MicroVax III. For example. inferring the 8 x 8 "Knight Moves" environment using

randomly generated counterexamples required about 400,000 moves and 19 seconds of cpu time.

Note that for the "Random Graph" environment, the learning procedure sometimes did

better with randomly generated counterexamples than with an oracle providing the shortest

counterexample. It is not clear why this is so, although it seems plausible that in some way

5-9 Conclusions and open questions 181

Environment I size n I k I ran(y)l I Source I Copies I Queries [Actions I Time

Random 25 25 3 2 1 S 20 1,108 10,504 :01.0
Graph 50 R 21 1,670 17,901 :01.2

50 50 3 2 - 37 5,251 69,861 :06.0
R 33 4,581 61,325 :03.6

100 100 3 2 S 68 14,788 279,276 :24.1
R 64 17,221 342,450 :18.1

200 200 3 2 S 137 34,182 1,100,244 1:31.9
R 136 29,796 1,012,279 :47.5

400 400 3 2 S 275 72,027 3,010,377 4:52.0
R 258 33,388 1,757,720 1:19.5

Knight 4 16 8 2 R 10 2,0821 19,621 :01.4
Moves 8 64 8 2 R 50 17,818 385,678 :19.4

12 144 8 2 R 88 22,208 780,595 :36.3
16 256 8 2 R 124 63,476 3,855,520 2:41.9
20 400 8 2 R 157 129,407 8,329,257 5:58.9

Crossword 4 48 3 5 S 41 2,424 30,285 :02.5
Puzzle R 41 2,817 55,749 :04.1

8 208 3 5 S 97 18,523 839,087 :52.9
R 104 16,643 1,049,466 :51.0

12 416 3 5 S 188 68,793 5,564,299 5:15.6
R 193 58,222 8,850,079 7:12.5

Table 1: Experimental results.

the random walk sequences give more information about the environment. For example, the

counterexamples often become subsequences of the homing sequence, and it may be that random

walk counterexamples make for better, more distinguishing homing sequences.

In sum, the running times given are quite fast, and the number of moves taken far less

than allowed for by the theoretical worst-case bounds. Nevertheless, it is also true that the

number of actions executed is still somewhat large, much too great to be practical for a real

robot. There are probably many ways in which our algorithm might be improved - both in a

theoretical sense, and in terms of heuristics which might improve the performance in practice.

We leave these questions as open problems.

5-9 Conclusions and open questions

We have shown how to infer an unknown automaton, in the absence of a reset, by experimen-

tation and with counterexamples. For the class of permutation automata, we have shown that

the source of counterexamples is unnecessary. We have described polynomial-time algorithms

which are both state-based and diversity-based.

As discussed in the introduction, these results represent only modest progress toward our

182 Inference of Finite Automata Using Homing Sequences

ultimate goal, the development of a robot capable of inferring a usable model of its real-world

environment. It is not clear how to get there from where we are now. To begin with, we need

algorithms that are even more efficient than the ones described here. Perhaps more importantly,
we need techniques for handling more realistic environments. These would include environments

exhibiting various kinds of randomness or uncertainty, and also environments with infinitely
many states. In such cases, inference of a perfect model will almost certainly be out of the

question. What then is the best we can hope for? What are the skills most needed for the
robot to function in its environment, and how can those skills be learned?

Bibliography

(1] William Aiello and Milena Mihail. Learning the Fourier spectrum of probabilistic lists and
trees. In Proceedings of the Second Annual A CM-SIAM Symposium on Discrete Algorithms,
January 1991.

[2] James A. Anderson and Edward Rosenfeld, editors. Neurocomputing: Foundations of
Research. MIT Press, 1988.

[3] Dana Angluin. On the complexity of minimum inference of regular sets. Information and
Control. 39:337-350, 1978.

[4] Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21(1):46-62, August 1980.

[5] Dana Angluin. A note on the number of queries needed to identify regular languages.
Information and Control. 51:76-87. 1981.

[6] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation. 75:87-106. November 1987.

[7] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, April 1988.

[8] Dana Angluin. Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas with
queries. Technical Report UCB/CSD 89/528, University of California Berkeley, Computer
Science Division. August 1989. To appear, Journal of the Association for Computing
Machinery.

[9] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning.
2(4):343-370, 1988.

[10] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits
and matchings. Journal of Computer and System Sciences, 18(2):155-193, April 1979.

[11] Eric B. Baum. On learning a union of half spaces. Journal of Complexity, 6(1):67-101,
March 1990.

183

184 Bibliography

[12] Patrick Billingsley. Probability and Measure. Wiley, second edition, 1986.

[13] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam's
razor. Information Processing Letters, 24(6):377-380, April 1987.

[14] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-
ability and the Vapnik-Chervonenkis dimension. Journal of the Association for Computing
Machinery, 36(4):929-965, October 1989.

[15] Raymond Board and Leonard Pitt. On the necessity of Occam algorithms. In Proceedings

of the Twenty Second Annual ACM Symposium on Theory of Computing, pages 54-63,
May 1990.

[16] Ravi B. Boppana. Amplification of probabilistic Boolean formulas. In 26th Annual Sym-
posium on Foundations of Computer Science, pages 20-29, October 1985.

[17] Ravi Babu Boppana. Lower Bounds for Monotone Circuits and Formulas. PhD thesis,
Massachusetts Institute of Technology, 1986.

[18] Stfphane Boucheron and Jean Sallantin. Some remarks about space-complexity of learning,
and circuit complexity of recognizing. In Proceedings of the 1988 Workshop on Computa-
tional Learning Theory, pages 125-138, August 1988.

[19] Thoiaas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

[201 Thomas G. Dietterich. Machine learning. In Joseph F. Traub, Barbara J. Grosz, Butler W.
Lampson, and Nils J. Nilsson, editors, Annual Review of Computer Science, volume 4,
pages 255-306. Annual Reviews, 1990.

[21] Gary L. Drescher. Genetic Al - translating Piaget into Lisp. Technical Report 890, MIT
Artificial Intelligence Laboratory, February 1986.

[22] Richard 0. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. Wiley,
1973.

[23] R. M. Dudley. Central limit theorems for empirical measures. The Annals of Probability,
6(6):899-929, 1978.

[24] Miroslav Fiedler. Bounds for eigenvalues of doubly stochastic matrices. Linear Algebra
and its Applications. 5(3):299-310. July 1972.

[25] Sally Floyd. Space-bounded learning and the Vapnik-Chervonenkis dimension. In Proceed-
ings of the Second Annual Workshop on Computational Learning Theory, pages 349-364,
July 1989.

[26] Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, pages 202-216, August 1990.

[27] Merrick Furst. Jeffrey Jackson. and Sean Smith. Learning AC ° functions sampled under
mutually independent distributions. Technical Report CMU-CS-90-183, Carnegie Mellon
University, School of Computer Science. October 1990.

Bibliography 185

[28] E. Mark Gold. System identification via state characterization. Automatica, 8:621-636,
1972.

[29] E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37:302-320, 1978.

[30] Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. Exact identification of
circuits using fixed points of amplification functions. In 31st Annual Symposium on Foun-
dations of Computer Science, pages 193-202, October 1990.

[31] Sally Ann Goldman. Learning Binary Relations, Total Orders, and Read-Once Formulas.
PhD thesis, Massachusetts Institute of Technology, September 1990. Available as Technical
Report MIT/LCS/TR-483, MIT Laboratory for Computer Science.

[32] G. Gy6rgi and N. Tishby. Statistical theory of learning a rule. In Proceedings of the
STATPHYS-17 Workshop on Neural Networks and Spin Glasses, 1989.

[33] Thomas R. Hancock. Identifying u-formula decision trees with queries. Technical Report
TR-16-90, Harvard University, Center for Research in Computing Technology, 1990.

[34] David Haussler. Space efficient learning algorithms. Technical Report UCSC-CRL-88-2,
University of California Santa Cruz, Computer Research Laboratory, March 1988.

[35] David Haussler. Generalizing the PAC model for neural net and other learning applica-
tions. Technical Report UCSC-CRL-89-30, University of California Santa Cruz, Computer
Research Laboratory, September 1989. To appear, Information and Computation.

[36] David Haussler. Generalizing the PAC model: Sample size bounds from metric dimension-
based uniform convergence results. In 30th Annual Symposium on Foundations of Com-
puter Science, pages 40-45, October 1989.

[371 David Haussler. Decision theoretic generalizations of the PAC learning model. Unpublished
manuscript. 1990.

[38] David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmuth. Equivalence
of models for polynomial learnability. In Proceedings of the 1988 Workshop on Com-
putational Learning Theory, pages 42-55, August 1988. Available as Technical Report
UCSC-CRL-88-06, University of California Santa Cruz. Computer Research Laboratory.
To appear. Information and Computation.

[39] David Haussler, Nick Littlestone, and Manfred K. Warmuth. Expected mistake bounds
for on-line learning algorithms. Unpublished manuscript, April 1987.

[40] David Haussler. Nick Littlestone, and Manfred K. Warmuth. Predicting {0, 1)-functions on
randomly drawn points. In 29th Annual Symposium on Foundations of Computer Science,
pages 100-109, October 1988.

[41] Lisa Hellerstein. On Characterizing and Learning Some Classes of Read-Once Formulas.
PhD thesis, University of California at Berkeley, 1989.

[42] Lisa Hellerstein and Marek Karpinski. Read-once formulas over different bases. Unpub-
lished manuscript, December 1990.

186 Bibliography

[43] David Helmbold, Robert Sloan, and Manfred K. Warmuth. Learning nested differences

of intersection-closed concept classes. In Proceedings of the Second Annual Workshop on
Computational Learning Theory, pages 41-56, July 1989.

[44] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13-30, March 1963.

[45] John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[461 John H. Holland. Genetic algorithms and adaptation. In Oliver G. Selfridge, Edwina L.
Rissland, and Michael A. Arbib, editors, Adaptive Control of Ill-defined Systems. Plenum
Press, 1984.

[47] Abraham Kandel. Fuzzy Techniques in Pattern Recognition. Wiley, 1982.

[48] Michael Kearns. Thoughts on hypothesis boosting. Unpublished manuscript, December
1988.

[49] Michael Kearns. The Computational Complexity of Machine Learning. MIT Press, 1990.

[501 Michael Kearns and Ming Li. Learning in the presence of malicious errors. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pages 267-280, May
1988.

[51] Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. On the learnability of Boolean
formulae. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Com-
puting, pages 285-295, May 1987.

[52] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. In Proceedings of the Twenty First Annual ACM Symposium
on Theory of Computing, pages 433-444, May 1989.

[53] Michael J. Kearns and Robert E. Schapire. Efficient distribution-free learning of proba-
bilistic concepts. In 31st Annual Symposium on Foundations of Computer Science, pages
382-391, October 1990.

[54] Yves Kodratoff and Ryszard Michalski, editors. Machine Learning: An Artificial Intelli-
gence Approach, volume III. Morgan Kaufmann, 1990.

[55] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill, second edition, 1978.

[56] Benjamin J. Kuipers and Yung-Tai Byun. A robust, qualitative approach to a spatial
learning mobile robot. In SPIE Advances in Intelligent Robotics Systems, November 1988.

[57] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-
form, and learnability. In 30th Annual Symposium on Foundations of Computer Science,
pages 574-579, October 1989.

[58] Nathan Linial, Yishay Mansour, and Ronald L. Rivest. Results on learnability and the
Vapnik-Chervonenkis dimension. In 29th Annual Symposium on Foundations of Computer
Science, pages 120-129, October 1988.

Bibliography 187

[59] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Un-
published manuscript, November 1987.

[60] Yishay Mansour. Learning via Fourier transform. Unpublished manuscript, April 1990.

[61] Maja J. Mataric. A distributed model for mobile robot environment-learning and naviga-
tion. Master's thesis, Massachusetts Institute of Technology, May 1990. Technical Report
AI-TR 1228, MIT Artificial Intelligence Laboratory.

[62] Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors. Machine Learn-
ing: An Artificial Intelligence Approach. Morgan Kaufmann, 1983.

[63] Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors. Machine Learn-
ing: An Artificial Intelligence Approach, volume II. Morgan Kaufmann, 1986.

[64] Tom Mitchell, Bruce Buchanan, Gerald DeJong, Thomas Dietterich, Paul Rosenbloom,
and Alex Waibel. Machine learning. In Joseph F. Traub, Barbara J. Grosz, Butler W.
Lampson, and Nils J. Nilsson, editors, Annual Review of Computer Science, volume 4,
pages 417-433. Annual Reviews. 1990.

[65] Tom M. Mitchell, Jaime G. Carbonell, and Ryszard S. Michalski, editors. Machine Learn-
ing: A Guide to Current Research. Kluwer Academic Publishers, 1986.

[66] Giulia Pagallo and David Haussler. A greedy method for learning pDNF functions under
the uniform distribution. Technical Report UCSC-CRL-89-12, University of California
Santa Cruz, Computer Research Laboratory, June 1989.

[67] Leonard Pitt. Inductive inference, DFAs, and computational complexity. Technical Re-
port UIUCDCS-R-89-1530, University of illinois at Urbana-Champaign, Department of
Computer Science, July 1989.

[68] Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples.
Journal of the Association for Computing Machinery, 35(4):965-984, October 1988.

[69] Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot
be approximated within any polynomial. In Proceedings of the Twenty First Annual ACM
Symposium on Theory of Computing, May 1989. Available as Technical Report UIUCDCS-
R-89-1499, University of Illinois at Urbana-Ch ipaign, Department of Computer Science.
To appear, Journal of the Association for Co;,.puting Machinery.

[70] Leonard Pitt and Manfred K. Warmuth. Prediction-preserving reducibility. Journal of
Computer and System Sciences. 41(3):430-467, December 1990.

(71] David Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

[72] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.

[73] Ronald L. Rivest and Robert E. Schapire. Diversity-based inference of finite automata. In
28th Annual Symposium on Foundations of Computer Science, pages 78-87, October 1987.

[74] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing
sequences. In Proceedings of the Twenty First Annual ACM Symposium on Theory of
Computing, pages 411-420, May 1989.

188 Bibliography

[75] Ronald L. Rivest and Robert E. Schapire. A new approach to unsupervised learning in

deterministic environments. In Yves Kodratoff and Ryszard Michalski, editors, Machine
Learning: An Artificial Intelligence Approach, volume III, pages 670-684. Morgan Kauf-
mann, 1990.

[76] David E. Rumelhart and James L. McClelland, editors. Parallel Distributed Processing.
MIT Press, 1986.

[77] Robert E. Schapire. Pattern languages are not learnable. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, pages 122-129, August 1990.

[78] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227,
1990.

[79] Robert Elias Schapire. Diversity-based inference of finite automata. Master's thesis, Mas-
sachusetts Institute of Technology, May 1988. Supervised by Ronald L. Pivest. Technical
Report MIT/LCS/TR-413, MIT Laboratory for Computer Science.

[80] Jude W. Shavlik and Thomas G. Dietterich, editors. Readings in Machine Learning. Mor-
gan Kaufmann. 1990.

[811' Robert H. Sloan. Types of noise in data for concept learning. In Proceedings of the 1988
Workshop on Computational Learning Theory, pages 91-96, August 1988.

[82] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
Association for Computing Machinery, 22(2):215-225, April 1975.

[83] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-
1142, November 1984.

[84] V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

[85] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its applications, XVI(2):264-280,
1971.

[86] Karsten Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial
time. In Proceedings of the Third Annual Workshop on Computational Learning Theory,
pages 314-326, August 1990.

[87] Stuart W. Wilson. Knowledge growth in an artificial animal. In Proceedings of an In-
ternational Conference on Genetic Algorithms and their Applications, pages 16-23, July
1985.

[88] Kenji Yamanishi. A learning criterion for stochastic rules. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, August 1990.

[89] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, June 1965.

