
ADC-TR-90-268 AD-A231 878
Final Technical Report
November 1990

RESEARCH DIRECTIONS IN DATABASE
SECURITY, II

SRI International

Teresa F. Lunt OTICS ELECTE
FEB 14 1993

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91 2 13 098

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information
Services (NTIS) At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-268 has been reviewed and is approved for publication.

APPROVED: yz 0

JOSEPH V. GIORDANO
Project Engineer

APPROVED:

OND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COTC) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

IFormn ApproveaREPORT DOCUMENTATION PAGE 0MB No. 0704-0188
Ptk "ad mor~ to OW AXd i rfa a . to.map Iwwag i p r , rE " &Mi fa W . m w' mm' a=a 1iam

d~,, W~ iWuw ft oar~ d~ W uuqU~ fv~ . iw w bJm--- 12 S' idtas

Dom di g$ Mi0ww . CA & VA - and tm Wa Offm d Mamywr &W Otito Sawnt. RG&M fP WO4.OI R. Wm - D s C 2=

I. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3a REPORT TYPE AND DATES COVERED
November 1990 Final Jul 89 - Nov 89

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
RESEARCH DIRECTIONS IN DATABASE SECURITY, II C - F30602-88-D-0025

PE - 35167G

6. AUTHOR(S) PR - 1068

Teresa A. Lunt TA - 01
WU - P3

7. PERFORMING ORGANIZATION NAME(S) AND ADORESSES) & PERFORMING ORGANIZATION
SRI International REPORT NUMBER
Menlo Park CA 94025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSOFNGIMONTORING
Rome Air Development Center (COTD) AGENCY REPORT NUMBER
Griffiss AFB NY 13441-5700 RADC-TR-90-268

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Joseph V. Giordano/COTD/(315)330-2925

12a. DISTRIBUTION/AVALABLITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13, ABSTRACT(Mwuu, 2wa.I

This report describes the final results of a workshop on database security held 15-18
May 1989 in Bethlehem New Hampshire. The workshop featured several short presentations
on technology areas including trusted applications, security checking with Prolog
extensions, inference/aggregation, auditing, Discretionary Access Control and operating
system support. Vendor activities and new product developments in multilevel secure
database management systems technology were also presented. Finally, a major portion
of the workshop was devoted to discussion and presentation of database design alterna-
tives for multilevel systems with emphasis on graphical presentation, inference/aggre-
gation, context and content-dependent classification, and modeling of classification
constraints.

14. SUBJECT TERMS It NUMBER OF PzAS

Multilevel Security, Trusted Systems, Database Management Systems 200
It PIWE COCE

17. SECURITY CLASSIFICATION I& SECURITY CLASSIFICATION 19. SECURIlY CLASSIFICATION 20. UMITATION OF AOSTRACTOFFREPORT OF THS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NIA 54" .2105=stwwa f cmW M ~e 2 on

P,@=beMd ASI ISi 9'

Contents

Workshop Summary
Teresa F. Lunt, SRI International

SCTC Technical Note: Organizing Secure Applications "By Name"
Paul Stachour, Honeywell Inc. Secure Computing Technology Center

MAC, DAC and the Need-to-Know
Gary W. Smith, George Mason University

Security Checking with Prolog Extensions
M. B. Thuraisingham, The MITRE Corporation

MLS Database Design, Homework Problem #2
Gary W. Smith, George Mason University

Report on the Homework Problem
Gary W. Smith, George Mason University

Database Design with Row Level MAC and Table Level DAC
Thomas H. Hinke, TRW

MLS Implementation Using the Sybase Secure SQL Server
Melody F. O'Brien and Edward D. Sturms, TRW, Inc. ;.

SCTC Technical Note: Secure Database Homework Problem #2,
LOCK Data View
Paul Stachour and Dan Thomsen
Honeywell Inc. Secure Computing Technology Center

Auditing in Secure Database Management Systems
Sushil Jajodia, Shashi K. Gadia, Gautam Bhargava, and Edgar H. Sibley
George Mason University

• - -== -- " ~ r "nu mmuunnuunuo mm um in In

Secure DBMS Auditor:
Audit in Trusted Database Management System Environments
Marvin Schaefer, Trusted Information Systems

The ROLES Facility
Bill Maimone, Oracle Corporation

DAC Mechanisms in Trusted Database Management Systems
Ronda R. Henning, Harris Corporation

Operating System Support of Multilevel Applications
Catherine Meadows and Judith Froscher, Naval Research Laboratory

An Interim Report on the Development of Secure Database Pro-
totypes at the National Computer Security Center

John R. Campbell, National Computer Security Center

Some Remarks on Inference Controllers
T. Y. Lin, California State University, Northridge

Commutative Security Algebra and Aggregation
T. Y. Lin, California State University, Northridge

List of Attendees

Acoession For

NTISGRI
DTIC TAB]
Unannounced]

justificatio

By
istribution/
LlaI1abili Y Codes

jAvall and/orI

Dist special

Aft

I 1.1

Workshop Summary
Teresa F. Lunt

Computer Science Laboratory
SRI International

Menlo Park, CA 94025

Introduction

The second h.ADC Invitational Database Security Workshop was held May
15-18 in Bethlehem, New Hampshire. Thanks to the unflagging efforts of
Joe Giordano, the workshop was funded by the U. S. Air Force, Rome Air
Development Center (RADC) '. The workshop focused on multilevel security
issues for Class B3 or Al database systems, The workshop was organized by
Teresa Lunt of SRI. Twenty people attended from SRI, NRL, TIS, Kanne
Associates, George Mason University, NCSC, RADC, Oracle, Tandem, TRW,
DEC, Harris, MITRE, and Secure Computing Technology Corporation.

The workshop featured several short presentations on research in progress,
but the bulk of the workshop was devoted to discussion. Gary Smith of
George Mason University devised an extensive homework problem, which
was mailed to attendees about a month before the workshop. Much of the
workshop's discussion sessions were devoted to presentation and discussion
of the various approaches to the homework problem.

Process Privilege

Paul Stachour of Secure Computing Technology Corporation gave a talk
called "On Behalf Of," in which he discussed the pros and cons of database
processeb that operate "on behalf of" a user versus processes that operate
"in the name of" a user. By "on behalf of" a user, Stachour means that the
userls actions are carried out by another agent at the user's request, and that
agent operates with different, usually greater, privileges than the user's. By
"in the name of" a user, Stachour means processes that operate under the
user's name with the user's privileges. Most database systems operate "on

'Subcontract E-21-T27-S1 of prime contract F30602-88-D-0025 with Georgia Institute
of Technology

I

behalf of" users, with a single process serving many users simultaneously,
and operate with privileges to the entire database, whereas individual users
are authorized for only a subset of the database. Stachour advocates using,
to the extent possible, processes that operate "in the name of" the user, for
least privilege and accountability. One workshop participant noted that we
need a lightweight process mechanism in operating systems so that we can
perform database processing "in the name of" users.

Need to Know

In Gary Smith's talk called "MAC, DAC, and the Need to Know," he pointed
out some "need-to-know" security policy requirements that cannot be met
by conventional mandatory or discretionary mechanisms. According to the
Trusted Computer System Evaluation Criteria [1], need-to-know require-
ments are to be addressed by discretionary mechanisms. However, Smith
pointed out that such requirements have a mandatory flavor to them, in that
the authorizations should not be passed from user to user at the user's dis-
cretion. On the other hand, these need-to-know requirements also have a
discretionary flavor to them, in that the authorization types do not form a
lattice, and information flow security may not be required. For example, the
policy "managers are authorized to see salary data only for those below them
in the chain of command" is a need-to-know policy that cannot readily be
mapped onto levels and compartments, but is also nondiscretionary in that
users cannot pass on their authorizations to other users. Thus, Smith advo-
cates special "need-to-know" mechanisms that are different from mandatory
and discretionary mechanisms. These need-to-know authorizations should be
administratively controlled rather than user-grantable. Categories are nei-
ther appropriate nor sufficient to control need-to-know. As another example,
Davison pointed out in his talk that release markings such as NOFORN are
related in an inverse manner to a lattice (e.g., "US Only" and "US/UK"
combine to "US Only"). Thus, a labeling mechanism will not be adequate
to handle these markings.

Modeling Issues

Bhavani Thuraisingham of MITRE gave a talk called "Security Checking with
Prolog Extensions," in which she used fuzzy logic to develop a fuzzy multi-

2

level relational data model. In her model, each multilevel tuple is marked
with a chi value, that indicates the likelihood that the fact represented by the
tuple is true. She added fuzzy algebra to the relational operators to compute
new chi values for derived tuples. She uses the chi values to control partial
inferences.

Lucien Russell of George Mason University gave a short talk in which
he presented a new data model for multilevel database systems. He feels
that the relational model is not powerful enough to adequately represent
the necessary semantics. In particular, he feels that the relational model
cannot distinguish among the various semantics possible for update, such as
changing a value, changing how a value is represented, changing a version of
the value, changing the classification of a value, and correcting errors. He
suggests a new model in which all relations are binary, containing only the
association of a data attribute with a key attribute, and in which "surrogates"
(system-generated indices) are used to identify the individual associations.

Auditing

In his talk "Support for Auditing in a Secure Database Environment," Sushil
Jajodia of George Mason University presented a temporal model that cap-
tures timestamps for when database operations occurred and also records the
periods of validity for the data values. Mary Schaefer of Trusted Information
Systems gave a talk called "Auditing in a Multilevel Database System" in
which he described a project whose aim is to develop auditing requirements
for multilevel database systems. One requirement they are considering is the
ability to determine where particular data has propagated when all copies
need to be upgraded.

Operating System Support

Catherine Meadows of the Naval Research Laboratory gave a talk called
"Operating System Support of Multilevel Applications," in which she pointed
out that operating system security policies have not been particularly relevant
to multilevel database systems. We have to work too hard; either we struggle
to stay within the limits of the operating system's policy or we struggle to
reimplement operating system functions in a new context. She asked what
approaches to designing operating systems would make life easier for the

3

designers of multilevel database systems. She suggested that perhaps an
operating system should provide a set of security-supporting functions rather
than enforce a particular policy. Then the database system can be free to
enforce its own policy using the security primitives provided by the operating
system without having to duplicate the functionality of the operating system.
Some additional suggestions put forth by the workshop participants were
support for an arbitrary number of levels and categories; the ability to replace
the operating system's lattice structure with another label-based security
structure, possibly not a lattice; an abstract data type for labels; strong
typing; and finer granularity of function. Rae Burns of Kanne Associates
also discussed the support she would like to see from operating systems.
She advocated operating systems that merely provide domain isolation and
strong data typing, rather than providing a file system. Her feeling was that
a database system would not make use of the operating system's file system,
but would manage its own set of objects in a domain separate from the file
system.

The workshop participants also discussed how trusted (in the Bell-
LaPadula sense [2]) subjects can be used in the database system without
invalidating the evaluation of the underlying operating system. The problem
is that the use of a trusted subject in combination with the operating sys-
tem's TCB can introduce new information flows beyond those that can be
discovered by performing a flow analysis on the trusted subject alone; such
flows can be discovered only by performing a flow analysis on the combina-
tion of the trusted subject and operating system TCB, a task that may not
be possible for a database system vendor to do. The group felt that a set
of conditions could be developed that a trusted subject would be required
to meet; these conditions would ensure that no additional flows were intro-
duced by the interaction with the operating system TCB. Such constraints
would be developed by the vendors of the trusted operating systems. It
would then be the responsibility of the database system vendor to show that
the trusted database system does not violate the operating system's trusted
subject constraints.

Vendor Developments

John Campbell of the National Computer Security Center presented the re-
sults and status of the vendor prototype developments being supported by

4

NCSC. These prototypes are being developed by Teradata and by Oracle
Corporation. They are intended to be fully functional, commercial qual-
ity database systems. Teradata's prototypes are database machines, whereas
Oracle's are host-based database systems. Teradata is using the"monolithic"
architecture described in the draft Trusted Database Interpretation, whereas
Oracle is using the TCB subsets approach [3] The currently-funded proto-
types are to be C2 and B1, but Campbell said that NCSC has plans to
fund prototype developments for B3 and Al database systems that would
also include significant new requirements for data integrity, inference con-
trols, denial of service controls, and data distribution. Both vendors have
already delivered C2 prototypes, and both plan to have the C2 enhance-
ments incorporated into their standard products in the summer or fall of
this year. Problems common to both systems were that some system func-
tions, such as bulk data import and system recovery, bypassed the security
controls; more attention will be given to this area. Both vendors are working
with NCSC to develop SQL modifications and extensions to handle selective
auditing, groups, roles, and referential integrity; these will be presented to
the ANSI SQL standardization committee for consideration for incorporation
into ANSI-standard SQL. Campbell noted that Teradata's C2 enhancements
did not add any performance penalty (they have not measured Oracle's per-
formance yet), with the exception that if all auditing options are turned on
there can be up to a fifty percent slowdown. Campbell plans to investigate
storing only summary audit information instead. For the B1 prototypes,
separate audit logs will be required for each level and category.

Other Issues

In his talk "Compartmented Mode DBMS and the Need for Dual Labels,"
Jay Davison of DEC discussed work at MITRE to develop a database system
to run on the Compartmented Mode Workstation. Ronda Henning of Harris
Corporation also discussed work underway at Harris to develop a database
system for the Harris Compartmented Mode Workstation.

One evening was devoted to discussion of recent changes to the TDI; these
are reported elsewhere [4].

5

Flexible Access Controls

Bill Maimone of Oracle Corporation gave a presentation of Oracle's new roles
facility. The approach is apparently motivated by the fact that different com-
mercial customers want to enforce very different security policies. Oracle's
new approach is to have a flexible mechanism that can be used to enforce a
variety of different commercial policies. They wanted to make it easy to add
new users and new applications (with new tables) and correctly set the ta-
ble privileges for them. Their approach groups privileges, rather than users.
A collection of privileges is a role. Roles are first-class objects, and have
owners. Thus, authorized users can grant and revoke privileges to and from
roles. Roles are assigned to users as required for the applications they use,
and roles can be further grouped into meta-roles. The roles are designed by
the application designer. The simplicity in assigning roles to users is that
there is no need for the security officer (or whoever assigns the roles) to know
which tables to grant privileges for.

Bob Baldwin of Tandem Computers described what he calls "policy-based
access controls." These controls consist of rules that govern which subjects
can perform which actions upon which objects. These rules are stored in
a rule table. Baldwin also showed how such rules can be used to express
the Bell and LaPadula model. The group did not react adversely to his
suggestion that Tandem might build a B1 system in this way.

The Homework Problem

Those presenting their approaches to the homework problem included Bill
Maimone of Oracle Corporation, Bob Baldwin of Tandem Computers, Ed
Sturms of TRW, Tom Hinke of TRW, and Paul Stachour of Secure Computing
Technology Corporation.

In the discussion of the homework problem, Gary Smith introduced a
graphical notation he developed to represent multilevel data and their classi-
fications along with an indication of what causes them to be classified. Data
is not generally classified in isolation; for example, the value 17.3 is not clas-
sified in isolation, but its association with its attribute name YIELD, the key I
value "anti-matter" and the key attribute name WEAPON may be classified.
In addition, the existence of the classified data may or may not be classified.
This may have important ramifications on how to design an application so

6

as to adequately protect its classified data, and also on the design of multi-
level database systems to contain that data. As Smith points out, most of
the systems we are designing do not distinguish between when an attribute
value is classified and when the association between the attribute value and
its key value is classified. For example, if an employee's skills are SECRET
whereas the employee name is unclassified, should this mean the skills values
themselves are SECRET, or is their association with a particular employee
SECRET?

One finding of the workshop participants as a result of doing the home-
work problem is the difficulty of enforcing value-dependent security con-
straints. There seemed to be a general consensus that using value-dependent
constraints for mandatory security is unsound. For example, if all salaries
above $75K are SECRET but those below $75K are unclassified, difficulties
arise if all employees are to receive a ten percent raise; either some previously
visible employees disappear from the unclassified salary table, thereby intro-
ducing a covert channel, or the classification rule must be violated. There are
different problems with enforcing value-dependent discretionary rules. For
example, the rule that managers can see the salaries of only their employees is
easily implemented using a view, but systems such as Sybase do not provide
any assurance for views. The absence of a view mechanism to enforce dis-
cretionary policies by all except the Oracle and SoaView systems also made
the following homework problem requirement difficult: project data may
be updated only by that project's secretary. Because most of the systems
under development use relation-level (versus tuple- level or element-level)
discretionary authorizations, most systems can implement this requirement
only by creating a different relation for each project, each of which contains
only a single tuple! Although this may seem to point to the need for tuple-
level access control lists, such a solution would be extremely awkward and
space-consuming. The natural solution is to use a view. The workshop par-
ticipants agreed that this policy requirement of the homework problem was
an entirely realistic one, and they expressed concern that without balanced
assurance such policies cannot be enforced in systems targeted for the higher
evaluation classes.

Conclusions

The workshop participants discussed operating system support for secure
database systems; database system process privilege; mandatory, discre-
tionary, and need-to-know requirements; modeling issues, auditing, and ven-
dor developments. Perhaps the most valuable part of the workshop was
the discussion of the homework problem. The participants' experience of
determining how their secure database systems could support the sample ap-
plication described in the homework problem brought several key issues to
light. The participants discovered that it is important to know what makes
a particular data item classified in order to know how to protect that data in
a secure database system. They also discovered that for most of the systems
under development, the discretionary access controls did not have nearly the
flexibility that the application required. Discretionary access controls on
views are needed, pointing to the need for balanced assurance.

References

[1] National Computer Security Center. Department of Defense Trusted
Computer System Evaluation Criteria. Technical Report DOD 5200.28-
STD, Department of Defense, December 1985.

[2] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified Ex-
position and Multics Interpretation. Technical Report ESD-TR-75-306,
The MITRE Corporation, Bedford, Massachusetts, March 1976.

[3] A first glimpse at the TDI. Data Security Letter, (4), P.O. Box 1593,
Palo Alto, California, August 1988.

[4] Balanced assurance dropped from TDI. Data Security Letter, (10), P.O.
Box 1593, Palo Alto, California, June 1989.

8

SCTC Technical Note

Organizing Secure Applications "by Name"

2nd RADC Secure Database Conference

LOCK Data Views

Prepared by:

Honeywell Inc.
Secure Computing Technology Center

St. Anthony, Minnesota, 55418

August 16, 1989

Prepared for:

Rome Air Development Center
Workshop on Database Security

Bethlehem, New Hampshire
May 16..18, 1989

9

PREFACE

This report entitled 'Organizing Secure Applications "by Name"' describes
one way to organize a secure application such as a Database Managment Sys-
tem. It describes some design tradeoffs considered in the definition of the
design for LOCK Data Views (LDV). It gives the reasoning behind the LDV
style.

The work was supported by Honeywell from IR&D funds and by the per-
sonal time of the author. It is not a part of the Secure Distributed Data Views
(SDDV) contract (contract no: F30602-86-C-0003), nor of any other federal
government contract. It is related to work done on the SDDV and LOCK con-
tracts by the Secure Computing Technology Center (SCTC), Honeywell Inc.

This report describes activity performed by the LDV team studying some
aspects of discretionary security during the period 1 February 1988 through 15
March 1989. The SCTC person on this activity was Paul Stachour.

10

Controlling Secure Applications
using In-the-Name-Of Organization

Paul Stachour, Honeywell SCTC

1. Introduction
In designing and building any secure application, we have a need to con-

trol the flow of information, which is usually done by controlling the flow of data.
The objective of this control is to allow only authorized operations: reading, writ-
ing, and use of metatdata for control. At the same time, one wants to prevent
unauthorized reading, writing, and use of metadata.

In a secure application, one normally considers three kinds of control:
o Mandatory Access Control (MAC) [Levels]

o Discretionary Access Control (DAC) [Users]

o Well-Formed Operations (MGR) [Program Modules as Managers]

The LOCK Data Views (LDV) approach is that all three kinds are useful if
they are properly integrated. The security community generally considers and
studies MAC very diligently. The two other kinds of control are often ignored.
This paper discusses two common varieties of controlling DAC and points out
why LDV chooses the less common "In-The-Name-Of" variety. The effect of
By-Name on MGR and MAC policies is also discussed for completeness; how-
ever, the focus of this paper is on DAC.

2. How to Control DAC
There are two varities of DAC control in general use. They are referred to

in this paper as "On-Behalf-Of" (also known as Behalf, orOBO) and "In-The-
Name-Of" (also know as By-Name, Name, or ITNO).

When writing a secure application, one important question to have
answered is:

Who really did it to what; and where, when and how did it get done.

The key words to be thinking about in getting an answer to the question
are not only "authorized", but "audit". The question is, under what organization
is it easiest to ensure that the DAC controls are properly applied and that audit
data is not compromised, either during preparation or later.
2.1. What Control Organization?

We reject immediately the idea of no control organization. No control
organization would mean no control of writing, thus leading to uncontrolled
change. Neither would there be any control of reading, thus leading to uncon-
trolled disclosure.

11

2.1.1. On-Behalf-Of Organization
The key concept behind the On-Behalf-Of organization is that the work is

done by "something other than a user". The work is done at a user's request,
often by sending a message to some other process. This second process runs
as the agent of the user. That is, as the agent, it acts On-Behalf-Of that user,
though not with the user's authority. It acts with the authority of some pseudo-
user. The initial process hopes that the second process is indeed acting on it's
side, and not performing an illicit activity for which the original process will be
held accountable. That second process must explicitly decide which actions
can be performed for this request of this user and which actions must be disal-
lowed.

2.1.2. In-The-Name-Of Organization
By contrast, when using the In-The-Name-Of organization, the work is

done by the user "directly". All work is done with the authority of the user. Any
action attempted is allowed wherever the user is allowed to perform the opera-
tion. All other operations are automatically disallowed by the underlying sys-
tem.

2.2. Secure Applications: System Breakers?
We digress here to point out that secure applications are often, by their

very nature, system breakers. That is, they break the system's security policy
to enforce one of their own.

Examples of such applications are: mail, meetings, and databases. For
example, many mail systems work by being allowed to open mailbox files (or
even all files) regardless of the discretionary or even mandatory access require-
ments for "normal files". The alternative, fully open mailboxes, databases,
also seems to be a popular, though unacceptablesilly, altemative.

Secure applications need organizations which are secure in all of the MAC,
DAC, and MGR senses. They should not break the system policy, either in
letter or in spirit. If we look at what "secure applications" really do, we see that
they need to enforce the MGR property (e.g., no program can write to mail-
boxes except mail programs) and that the MGR enforcement is generally
absent from operating systems (OSs). Applications often simulate the MGR
property by placing their objects under control of a special userid. Unfortunately,
this means that they then create problems with DAC enforcement, since they
have pre-empted the ordinary DAC enforcement mechanism in order to enforce
their MGR needs.

2.3. Examples-DAC

2.3.1. Example: In-Name-Of Organization-DAC
Let's look at a production-quality DBMS that uses In-the-Name-Of organi-

zation. This is the Multics MRDS (Multics Relationa; Data Store) DBMS. In
MRDS, any user may create a database, and be owner of that database. Each

12

relation in the database has Multics Access Control Lists (ACLs) to provide dis-
cretionary control of data in that relation. Sharing between users is provided by
setting ACLs, either directly or through the MRDS administration interface. All
MRDS databases are stored in ring 3. This gives MGR separation by the rings,
since only trusted MGRs are allowed to place objects in ring 3. This enables
the DAC sharing and separation by the OS (Multics). Note that MAC can still
be done by the Multics Access Isolation Mechanism (AIM), and also enforced
by the OS. Both authorization and audit are easy, since each access to the
database is indeed done by a Multics process with the authority of the logged-in
user.

2.3.2. Example: On-Behalf-Of Organ ization--DAC
Let's look at a production-quality DBMS that uses On-Behalf-Of organiza-

tion. This is the Unix "Uoo" DBMS. Uoo is a fictitious name used to avoid sin-
gling out any one product by name, but matches many of the DBMSs available
on Unix.

Each database is owned by some "separate" user, which is a pseudo-user
representing the DBMS. MGR protection is provided by users all running same
set of setuid programs; those programs have the userid of the DBMS pseudo-
user. Separation between users, thus, cannot be enforced by ACLs on the
database, since the databse must be owner by/ have ACLs appropriate to the
setuid userid, and not that of the requesting user. Therfore DAC sharing and
separation must be enforced by the DBMS, since the requesting-user has no
access to the database. And now, since there is no longer an easy way to
determine who really referenced/updated the data, audit is difficult if not impos-
sible. There is no MAC, but that's somewhat of acceptable since Unix is not a
multilevel OS and we should not strongly criticize an OS for not doing some-
thing that is not one of its objectives.

2.3.3. Example: LOCK-Data-Views Organization-DAC
Let's now turn to the LDV DBMS. The database may be owned by the

database administrator (DBA) or an end-user. DAC is done by setting ACLs to
control the sharing. MGR separation is done by the domain/type mechanism.
Both MGR and DAC sharing and separation are enforced by LOCK TCB. Audit
are authorzation are easy since it is always clear which user is making each
request.

2.4. Examples-MAC

2.4.1. Example: In-Name-Of Organization-MAC
The style used in MRDS is a user process at the real level of the request.

Note that this means that the user is automatically MAC restricted by AIM to
those levels s/he can see.' This means that write-down is seldom required,

There is a related question of whether a user process should be allowed to operate

beyond the cleared level of its user if that process is properly confined. However, the discus-

and, where it is, it can often be restricted to a small amount of control data
within the DBMS. That is, nothing that is written down is directly given to the
user. Access to and determination of existence of the metadata, as well of that
of the data, is easily restricted since it can be stored at levels invisible to partic-
ular users. Audit in this senerio is thus easy.

2.4.2. Example: On-Behalf-Of Organization-MAC
The style that is most likely to be used in in a multilevel Uoo is that of a

daemon process. Notice that the daemon process would be cleared to
database-high, since it must sometimes process at database high.2 The dae-
mon often runs at database-high, since the real level of the user is not known,
not available, or the DBMS organization may require such a level. This means
that a write-down from a high-level process to a low-level object is required
even when not necessary. The daemon has full access to, and and is able to
determine the existence of, metadata that the user should not see. With all the
data and metadata visible, and with little knowledge of the true user and level,
audit becomes difficult.

2.4.3. Example: LOCK-Data-Views Organization-MAC
The style used in LOCK LDV is to have only user, i.e. no daemon,

processes. This means that there are certain portions of the DBMS that can
run "beyond the clearance level of the user". These user processes run "no-
higher-than-necessary". In LDV, write-downs are confined by domains, not by
trusting all code that runs under certain userids. Not only data, but also access
to and existence of metadata is controlled by MAC, DAC, and domains.
Because there is MAC, DAC, and domain enforcement by the TCB, it is our
firm belief that less assurance effort is required than that required with a dae-
mon organization.3 Furthermore, with that enforcement, audit is easy.

2.5. Comparison: Programming Languages / Databases / OS
Let's compare the style of DBMSs with several other things in the comput-

ing environment. The comparison is intended to show a similarity among relia-
bility issues in programming languages, applications, and OSs.

Programming languages have generally been typed. Databases have
been untyped. The typelessness of DBMS has been a boon (no change to
DBMS needed when data characteristics have a small change) and bane (no
enforcement of the data integrity provided by languages such as ALGOL, Pas-
cal, and Ada). On-Behalf-Of is more like untyped data (such as in B) or weakly
typed data (such as in C) while In-The-Name-Of is more like typed data (such

sion is beyond the scope of this document.
2 Note that, in this case, the processing beyond the clearance level of the user exists, but is

concealed.
3 To meet the letter-of-the-criteria, while ignoring its spirit, LDV could replace such user-

processes with daemon processes. However, it would require more code, more assurance, be

14

as in Pascal and Ada).
However, more realistic items for comparison are multi-user applications,

such as Database Management Systems (DBMS), Transaction Processing Exe-
cutives (TPX), and Time-Sharing-Systems (TSS). Note that, in general, DBMS
and TPX have been organized as On-Behalf-Of, while TSS have been organ-
ized as In-The-Name-Of.

The On-Behalf-Of organization has been both a boon (more efficient because
lots of heavy-weight processes do not need to be spawned or switched) and
bane (no-easy enforcement by environment and hardware, enforcement instead
by explicit code) to DBMS and TPX.

3. Conclusion
We choose to run our database LDV In-The-Name-Of because it makes

both authorization and audit easier. It is easier because we use good abstra-
tions for our DAC, MAC, and MGR requirements and appropriate enforcement
mechanisms for each.

We believe that there are four steps of abstraction in computer hardware
and sofware from easy-instructions through stacks & searching, subprograms,
and processes. We understand that most computer hardware and systems
have a hard time handling the second abstraction step, let alone the fourth. We
also understand the performance suffers greatly at each step of the abstraction
if the underlying abstraction is poorly implemented. Nevertheless, we plan to
use the fourth and organize or design using In-the-Name-Of to implement LDV.
After all, hardware, OS, and programming languages abstractions should be
designed to make it easier to write quality, correct, robust code; not to make it
harder to do it right.

harder to understand, and have less performance.

15

MAC, DAC and the Need-to-Know

Gary W. Smith

George Mason University
School of Information Technology and Engineering

Fairfax, VA 22030

The Assertion: The mandatory need-to-know mechanisms (i.e., categories) and discretion-
ary mechanisms (which only implement need-to-know) are not sufficient to meet all user re-
quirements for restricting access to data. Specifically, users require need-to-know
restrictions granted (i.e., controlled) by the organization for which mandatory categories
cannot efficiently be implemented.

The Question: Can current (and planned) database systems provide mechanisms to imple-
ment these restrictions, or are fundamentally new mechanisms needed?

Discussion.

The US government's "need-to-know" policy is well established [DoD85, DoD87]. It
says that even though a user may to trusted (e.g. have the right clearances) to access clas-
sified information, the user must also have a legitimate need (i.e., need-to-know), based
upon operational requirements, to access the information. Enforcing need-to-know is
another area in which operating system principles must be extended to meet the granularity
of database security requirements.

The Orange Book [DoD85] provides a precise description of need-to-know through
the definition of mandatory and discretionary controls, as follows.

In general, no person may have access to classified information unless: (a)
that person has been determined to be trustworthy, i.e., granted a personnel
security clearance --MANDATORY, and (b) access is necessary for the per-
formance of official duties, i.e., the person is determined to have a need-to-
know--DISCRETIONARY. [DoD85]

(Note that the above definition seems to equate need-to-know with discretionary
and that mandatory seems to have to no connection with need-to-know.)

16

The Orange Book also provides the basic guidance for implementing these controls
in the form of mandatory access control (MAC) and discretionary access control (DAC). A
Guide to Understanding Discretionary Access Control in Trusted Systems [DoD87], which we
call the DAC Guide, significantly amplifies the Orange Book guidance.

The Discretionary Security Control Objective in the Orange Book requires that
security policies "include a consistent set of rules for controlling and limiting access based
on identified individuals who have been determined to have a need-to-know for the infor-
mation." Notice that the policy objective does not say who or what determines the
individual's need-to-know. The Orange Book goes on to define a DAC security policy as:

The TCB shall define and control access between named users and named ob-
jects (e.g., files and programs) in the ADP system. The enforcement
mechanism (e.g. self/group/public controls, access lists) shall allow users to
specify and control sharing of those objects by named individuals or defined
groups or both. [DoD85]

The key word in this definition is user. Although the Discretionary Security Control
Objective does not indicate who is to determine need-to-know, the definition of DAC clear-
ly states the user grants DAC to other users or groups. In addition, the DAC Guide goes on
to add that DAC includes the following capability: "a user or process given discretionary ac-
cess to information is capable of passing that information along to another subject." Thus,
the current interpretation for DAC implicitly includes two concepts: the user (as opposed
to the organization) grants access to the data: the user can potentially extent the access
authorization to another subject. This is clearly why many researchers and practitioners con-
sider DAC to be fundamentally flawed.

(It is interesting to note that this interpretation can be traced back to a 1976 docu-
ment which says, "Discretionary security policy allows an individual to extend to another in-
dividual access to a document based upon his own discretion, constrained by
non-discretionary [i.e. mandatory] security policy: that is, discretionary security policy al-
lows an individual to extend access to a document to anyone that is allowed by non-discre-
tionary [mandatory] security to view the document." The source--Volume IV of the
Bell-LaPadula Model [BelLaP76].)

On the other hand, MAC is based upon labels (for users and data objects) that in-
clude both hierarchical classification levels and non-hierarchical categories. In fact, the
non-hierarchical categories implement a formal need-to-know policy by granting an in-
dividual a category as part of his/her security clearance. Notice that MAC categories are
granted to users by the organization. Further, only the organization can grant access based
upon MAC categories and the user cannot extend access authorizations to other users.

Thus, MAC categories and DAC both implement need-to-know requirements. The
first difference is that the user grants DAC (and can extend it to otr'er users) but the or-
ganization formally grants access to MAC categories (and the user cannot extend them to
other users). The second difference is that MAC is implemented using labels and DAC is
implemented using a non-label based mechanism.

These two approaches may be sufficient and appropriate to control need-to-know ac-
cess to operating system objects, but they are not sufficient when dealing with database ob-
jects. A need-to-know policy for database security is required that lies between MAC
categories and DAC. Take the following need-to-know requirement from the financial ac-
counting domain: account executives are authorized to access only their own accounts, i.e.,

17

the accounts to which they are assigned. Further, the organization considers all account
data to be owned by the organization, not by a particular user, in this case the account ex-
ecutive. In this example, access must be controlled based upon the value of data (the ac-
count number or perhaps client) which is essentially a tuple level access control based upon
value. MAC categories cannot easily implement this requirement (at least in any workable
way in an organization with dozens of account executives). Yet it is an example of a real
world database access control requirement. Specifically, a large organization will have
more than 156 account executives, and 156 is the maximum number of MAC categories re-
quired by the Orange Book. Even if "the system" can accommodate the required number of
categories, it is unclear that this approach is manageable.

Another example involves management's access to personnel records: managers are
authorized to review the personnel records only of the employees that are directly in their
chain-of-command. This seems like a simple requirement, but access is now based upon
one's role which includes information not stored in the database. It is fairly easy to grant ac-
cess based upon a comparison of the Department attribute of an employee with the Depart-
ment attribute of the manager. But what about the next higher manager in the
chain-of-command? A database will normally not store the data values necessary to make
this decision. In particular, the access decision is based upon the concept of chain-of-com-
mand, but chain-of-command is not explicitly represented in the database. Large organiza-
tions have hundreds of managers (down to the branch or team supervisor). It should be
obvious that maintaining labels (i.e., using MAC categories) to enforce this requirement
would quickly become unmanageable.

Conclusions

To satisfy the type of need-to-know requirement illustrated by the above examples,
the organization (through the system security officer and/or database security officer) needs
to grant authorization to database objects---for lack of existing terminology we'll call it an
organizational DAC (ODAC)---that implements the need-to-know policy in a way that
MAC cannot. ODAC would have the desirable DAC-like property of implementing a need-
to-know requirement without a formal addition to a user's clearance but would not have the
undesirable properties of being user-granted and having access rights which can be
propagated to other users or groups. ODAC would also have the desirable MAC-like
properties of being organizationally-granted (vs. user-granted) without the restrictions in-
herent in formal categories.

The question rema'-.- :an existing mechanisms provide these (i.e. ODAC)
capabilities? Or must database systems acquire fundamentally new mechanisms?

References

[BelLaP76] Bell, D. E. and LaPadula, L. J., Secure Computer System: Unified Exposition and
MULTICS Interpretation, MITRE Technical Report, March, 1976.

[DoD85] DoD 5200.28.STD, DoD Trusted Computer System Evahlation Criteria (TCSEC),
December, 1985.

[DoD87] NCSC-TG-003, A guide to Understanding Discretionary Access Controls in Trusted
Systems, September, 1987.

18

SECURITY CHECKING WITH PROLOG EXTENSIONS

M.B.Thuraisingham
The MITRE Corporation, Bedford MA, 01730

Abstract

We concentrate on two prolog extensions; fuzzy prolog and object prolog, for security checking in database
systems. Fuzzy prolog will handle uncertain information and also handle inferences when users possess
real-world knowledge. Object prolog handles inferences in object-oriented database systems. We also discuss
the query modification technique implemented by inference engines based on fuzzy prolog and object prolog.

Introduction

Information storage and manipulation have become crucial to the day-to-day activities of many enterprises.
However, protecting the data contained in databases is a difficult task especially because increasingly
imaginative ways are being used to compromise database systems. Although attempts to incorporate security
features into database management systems in general have been successful, these are not sufficient to satisfy
the stringent requirements of military applications. To address this problem, the concept of multilevel security
has been recommended and consequently database management systems are now being designed with this
feature (see for example STAC89). Despite the many advances that have been made, additional problems have
since surfaced. An example of these is the "inference problem" where users pose sets of queries and infer
unauthorized information from the legitimate responses that they obtain (see for example THUR87, MORG87).
Because of the insidious nature of these threats to database security ingenious solutions are needed to overcome
them.

One of the approaches that has been taken to handle the inference problem is to augment a relational
database management system with a logic-based inference engine and a knowledge base. During the query
operation, the inference engine should examine the query, the security constraints which assign security levels to
the data and the responses that have been previously released and determine whether the response released to the
current query will result in security violation. If so the query is either modified or the request is not permitted.

A problem with first-order logic based theorem provers is that it is not straightforward to reason with
probabilities and to detect partial inferences. In database applications it is possible for users to infer partial
information from their knowledge of the real world. Based on this notion, fuzzy relational systems and theorem
provers using fuzzy logic have been developed [MART87]. Such a theorem prover could be used to detect
security violation via partial inferences (the idea of using fuzzy logic was also suggested by Dr.Dorothy
Denning at the 1st RADC Database Security Invitational Workshop held in Menlo Park, CA, May 1988).

Secure relational database systems are not the only systems that are receiving attention. Recently some
attempts have also been made to design secure object-oriented database systems (see for example THUR89a,
THUR89b). This is because, object-oriented systems are being increasingly used for many applications such as
military, CAD/CAM, and process control. For many of these applications it is important that they be secure. As
in the case of relational systems, the object-oriented systems will also have to be protected against security
violations via inference. Theorem provers based on object prolog, prolog extended to include object-oriented
concepts, are being developed [ZANI84]. Such a theorem prover could be used to detect security violations via
inference in object-oriented database systems.

This paper concentrates on the use of two prolog extensions; fuzzy prolog and object-prolog, for secure
query processing. The organization of this paper is as follows. In section 2 we will briefly describe a previous
approach to query modification implemented by first order logic based inference engines. In section 3 we will
describe how fuzzy prolog could be used to detect security violations. Some background information on fuzzy
relations and fuzzy prolog will also be provided. In section 4 we will discuss security checking in
object-oriented systems augmented with inference engines. The paper is concluded in section 5. A more
detailed discussion on logic programming applications in secure query processing is given in [THUR89c].

2. Query Modification in Augmented Relational Database Management Systems

Query modification technique has been used in the past to handle discretionary security and views
(STON741. This technique has been extended to include mandatory security (see for example THUR89d,
KEEF89). In our design of the query processor, this technique will be used by the inference engine to modify
the query depending on the security constraints, the previous responses released and real world information.
When the modified query is posed, the response generated will not violate security. The security policy for
query processing extends the simple property in [BELL75I to include inference. This policy is formalized
below:

19

1. Given a security level L, E(L) is the environment associated with L. That is, E(L) will consist of all
responses that have been released at security level L over a certain time period and the real world information at
security level L.

2. Let a user U at security level L pose a query. Then the response R to the query will be released to this
user if the following condition is satisfied:
For all security levels L* where L* dominates L,
If (E(L*) U R) => X (for any X) Then L* dominates Level(X).
Where A => B means A implies B and level(X) is the security level of X.

The design of the query processor which implements the above policy is shown in Figure 1. Here a
relational database is augmented with an inference engine. The inference engine has access to the knowledge
base which includes security constraints, previously released responses and real world information.
Conceptually one can think of the database to be part of the knowledge base. However, for efficiency reasons
we separate the tm. Logic is used to represent the information in the knowledge base. The user's query is
posed in logic. The inference engine modifies the query. The modified query is translated into relational
languages such as SQL or relational algebra. The relational query is evaluated against the relational database.

We will illustrate the query modification technique with examples. Consider a database which consists of a
relation STUDENT with attributes S# (the key), Name, GPA and Dept. Let the knowledge base consist of the
following rules:

1. Level(YSecret) <-- STUDENT(XY,ZD) and Z > 3.5
2. Level(Y,Top-Secret) <-- STUDENT(X,YZ,D) and D = Physics
3. Level((Y,Z), Secret) <-- STUDENT(X,Y,Z,D)
4. Level(Y,Secret) <-- STUDENT(X,Y,Z,D) and Release(Z,Unclassified)
5. Level(ZSecret) <-- STUDENT(X,Y,Z,D) and Release(Y,Unclassified)
6. Level(X,Unclassified) <-- NOT(Level(X,Secret) or Level(XTop-secret))

The first rule is a content-based constraint which classifies a name whose GPA is more than 3.5 at the
secret level. Similarly the second rule is also a content-based constraint which classifies a name who is in the
Physics department at the top-secret level. The third rule is a context-based constraint which classifies names
and GPA values taken together at the secret level ([LUNT89] states that with "proper database design" it will not
be necessary to handle context-based constraints during query processing. We will show in the next section
that even with "proper database design" there are problems if users have access to real-world information - In
any case, there is no standard rule which prohibits the use of context-based constraints as we have described
above). The fourth and fifth rules are additional restrictions that are enforced as a result of the context-based
constraint specified in rule 3. The sixth rule ensures that the default classification level of a data item isunclassified. drequest

t response

[user interface

[infer~enc e aewledge-)-- re s po nse

request DBMS database

Figure 1 Query Processor

Suppose an unclassified user requests the names in EMP. This query is represented as follows:
STUDENT(X,Y,Z,D) and Level(Y,Unclassified)

The proof procedure of the inference engine can be implemented using either a forward chaining or
backward chaining mechanism. In our design the inference engine uses a backward chaining , iechanism for
query modification. That is, it will start with the query and perform appropriate substitutions for the various
predicates occurring in the query. The following steps will be included in the query modification process:

20

Step 1: STUDENT(X,Y,Z,D) and NOT(Level(Y,Secret) or Level (YTop-secret))
Step 2: STUDENT(X,Y,Z,D) and NOT(((Z > 3.5) or Release(Z,Unclassified)) or (D = Physics))
Step 3: STUDENT(X,YZ,D) and NOT((Z > 3.5) or Release(ZUnclassified)) and NOT(D = Physics)
Step 4: STUDENT(X,YZ,D) and NOT(Z > 3.5) and NOT(Release(Z,Unclassified)) and

NOT(D = Physics)
Step 5: STUDENT(X,Y,Z,D) and Z <= 3.5 and D <> Physics
(Note that since Release(ZUnclassified) is not in the knowledge base, its negation is assumed - this is the
Closed World Assumption).
The modified query is STUDENT(XY,Z,D) and Z <= 3.5 and D <> Physics

3. Security Checking in Fuzzy Systems

3.1 Background on Fuzzy Systems

In [BALD84], concepts in relational databases have been extended to fuzzy systems. Consequently, a
fuzzy relation R(A1, A2 An) where Ai are attributes is defined to be a mapping
CHIR:DlxDlx xDn --> U, U=[0,1I]
where Di is the domain of possible values of Ai. Figure 2 (following [BALD84]) illustrates a fuzzy database.
This database consists of four fuzzy relations LIKES, HIGHPOSITION, EMPLOYEE and WEALTHY. For
example, the fact that Jon likes Jill has a CIE value of 0.7. Therefore the CIE value of Jon does not like Jill is
0.3. If a tuple is not in a relation, then the CHI value for that tuple is 0.0. For example, the CI value of Jon
likes Jack is 0.0. In the relation EMPLOYEE all of the CHI values associated with the tuples are 1.0. Therefore
EMPLOYEE can be regarded as an ordinary relation.

LIKES HIGHPOSITION

namel name2 CHI Title CHI

Secretary 0.1
Jon Jul 0.7 Engineer 0.3
Jon Mary 1.0 Manager 0.5
Jack Fred 0.6 Pirctr
Fred Harry 0.5 Vice-President
Harry Mary 0.2 President 1.0
Mary Jon 0.9

WEALTHY

EMPLOYEE Income CHI

5K 0.1Name Title Income CHII 8K 0.3

12K 0.6
Ion President 20K 1 15K 0.8anry Vice-President 18K 1 18K 0.9

ack Director 15K 1 20K 1.0
ary Manager 12K 1

ill Engineer 8K I
Fred Secretary 5K I

FIGURE 2 - Fuzzy Relations

The relational algebra operators SELECT, PROJECT, UNION, INTERSECTION, DIVIDE, PRODUCT
and JOIN can be extended for fuzzy relations. Below we will only describe the SELECT, PROJECT and JOIN
operators. In the case of the SELECT operation, the tuple selected from the base relation is assigned the CHI
value that the tuple had in the base relation. For the PROJECT operation, for each tuple t in the resulting
relation, the CHI values in the base relation of the tuples which have t as their sub-tuple are examined. The
maximum value of these CHI values is the CHI value assigned to t. For the JOIN operation, the two fuzzy
relations say RI and R2 are joined on the specified common attributes. For each tuple t in the result, the CHI
values of the tuples rl in RI and r2 in R2 used to produce t are examined. The minimum of the two values is
the CII value assigned to t. The discussion for the other operators is given in [BALD84].

21

Figure 3 describes the database of figure 2 as a fuzzy logic program. For each assertion there is a CHI
value associated with it. One can also deduce new fuzzy information from existing fuzzy information. Consider
the following rule:
SENIOR_EMPLOYEE(X) <-- EMPLOYEE(X,Y, -) and HIGHPOSITION(Y)

This rule states that for a person to be a senior employee, he must have a high position. The CHI value for
"an employee P is a senior employee" is computed from the CHI values for "P is in EMPLOYEE" and "P has a
high position". Furthermore, the computation also depends on the assignment of CHI values for the AND
operator. We assume the folowing assignment for the AND, OR and NOT operators.
If C <-- A and B, then CHI(C) = minimum(CHI(A), CHI(B))
If C <- A or B, then CHI(C) = maximum(CHI(A), CHI(B))
If C <-- NOT A, then CHI(C) = 1 - CHI(A).
With the above definitions, it can be shown that the CHI value for" Harry is a senior employee" is 0.9.

In the above discussion, we have assumed that the rule "X is a senior employee if X has a high position"
has a CHI value of 1.0. Note that as in the case of assertions, the rules also could be assigned CHI values.
That is, the fact that X is a senior employee if X has a position could be assigned a CHI value between 0 and 1.
Then the computation of the CHI value for "X has a high position" differs from what we have given above. To
simplify the discussion, we assume that the CHI values assigned to all rules are 1.0.

LIKES(Jon, Jill) <-- (0.7)
LIKES(Jon, Mary) <-- (1.0)

HIGHPOSITION(Secretary) <-- (0.1)
HIGHPOSITION(Engineer) <-- (0.3)

EMPLOYEE(Jon, President, 20K) <-- (1.0)
STUDENT(Harry, Vice-President, 18K) <-- (1.0)

WEALTHY(5K) <- ko.1)
WEALTHY(8K) <-- (0.3)

WEALTHY(20K) <-- (1.0)

Figure 3 - A Fuzzy Prolog Database

3.2 Handling Security Constraints

We will describe how fuzzy logic programming may be used to process queries when security constraints
are present. We will discuss two examples; one which handles a content-based constraint and the other which
deals with a context-based constraint.

Example 1: Content Constraint

Consider the database described in Figure 2. Let the content constraint be as follows:
Anyone in EMPLOYEE who likes a person with a high position is secret.
First it must be decided as to whether a person has to like someone with a high position with a CHI value of I in
order to be classified as secret. Let us assume that the CHI value associated with the constraint should be
greater than 0.0. That is if a person likes someone with a high position with a CIII value greater than 0.0 then
he is classified at the secret level. Note that 0.0 is not a fixed value. This value could be anywhere between 0.0
and 1.0. The security constraint is specified as follows:
Anyone in EMPLOYEE who likes a person with a high position with a CHI value of greater
than 0.0 is secret. 22

This constraint is expressed by the following rule:
Level(X,Secret) <- CHI (REL(X)) > 0.0
where REL(X) is true if X is in EMPLOYEE and X likes someone clever. REL(X) is defined by the following
rule:
REL(X) <- EMPLOYEE(X,- -) and LIKES(XY) and EMPLOYEE(Y,Z,-) and

HIGHPOSITION(Z).
Note that the security constraint itself could be assigned a CHI value. To simplify the discussion we

assume that the CHI value of all security constraints and integrity constraints are 1.0.

Let an unclassified user pose a query to retrieve all names in EMPLOYEE. There are two ways to process
the query. In the first method, the query is decomposed into two sub-queries QI and Q2 where QI requests to
retrieve all names in EMPLOYEE and Q2 requests to retrieve all names in EMPLOYEE which are secret. The
response obtained from the query Q2 is subtracted from the response obtained from the query Q 1. In the
second method the query is modified to a query Q3 which requests to retrieve those names in EMPLOYEE
which are unclassified. We will illustrate how the queries Q1, Q2 and Q3 are processed.

The query QI is expressed as
<-- EMPLOYEE(X, -, -)
This qu1 is resolved with the clauses in the knowledge base and the result generated will be as follows:
Jon
Harry 1.0
Jack 1.0
Mary 1.0
Jill 1.0
Fred 1.0
Note that this query could have been directly evaluated against the fuzzy relational database of figure 2. In this
case the query will be represented as follows:
PROJECTnameEMPLOYEE(name, o,

The query Q2 is expressed as follows:
<-- EMPLOYEE(X, -, -) and Level(XSecret).
This query is resolved with the clauses in the knowledge base. The next step in the derivation is the following:
<-- EMPLOYEE(X, -, -) and CHI(REL(X)) > 0.0.
In the next step, REL(X) will be substituted by
EMPLOYEE(X,- -) and LIKES(X,Y) and EMPLOYEE(YZ, -) and HIGHPOSITION(Z).
At this point the query can be evaluated either against the fuzzy relational database or by continuing with the
resolution process. If the query is to be evaluated against the relational database, then REL(X) will be expressed
by the following expression.
PROJECTxEMPLOYEE(X, -, -) and REL1(X)
where RELI(X) is the following expression:
PROJECTX(LIKES(X,Y) JOINy(REL2(Y))
where REL2(X) is the following expression:

PROJECTx(REL3(X,Y) JOINyHIGHPOSITION(Y))
where REL3(X,Y) is the following expression:
PROJECT(x,y)EMPLOYEE(X,Y,-).
The response for query Q2 is as follows:
REL(Jon) <-- (0.5)
REL(Fred) <-- (0.5)
REL(Harry) <-- (0.2)
REL(Mary) <- (0.9)
Rel(Jack) <- (0.1)
Therefore the response to the original query is: Jill.

The query Q3 will be expressed as follows:
<-- EMPLOYEE(X,-,-) and Level(X,Unclassified).
The knowledge base should have a rule which classifies any data which is not assigned the secret (or top-secret)
level at the unclassified level. From this rule and the other rules in the knowledge base the response to the query
will be "Jill".

Example 2: Context Constraint

In our treatment of context-based constraint. such as names and salary values taken together is classified at
the secret level, we enforced some additional restriction. For example, after the names are released at the
unclassified level, the security level of the correspondig. fary values were upgraded to the secret level.

Similarly after the salary values are released at the unclassified level, the security level of the corresponding
names were upgraded to the secret level. In [LUNT89] an alternative approach to treat context constraints is
proposed as follows: the names and salary values are classified at the unclassified level. But the association
between the names and salary values are classified at the secret level. With this approach, the names as well as
salary values can be released to an unclassified user. Since the user will not know which salary values belong to
which names, he cannot infer secret information. However, if the user has some additional information such as
"Mary earms more than Harry", then from the salary values released, the unclassified user may be able to infer
some secret information. In the following discussion we will show how fuzzy reasoning may be used to detect
such inferences.

Consider the database shown in Figure 4. Here the relations NAME and SALARY are not fuzzy relations.
That is, the CHI value for each tuple in these relations is 1.0. The relations HASHIGHSAL and ISHIGHSAL
are both fuzzy relations. These relations represent the additional knowledge that an unclassified user may have
which will eventually result in this user inferring secret information. The relation HASHIGHSAL specifies the
CHI value corresponding to a name having a high salary. The relation ISHIGHSAL specifies the CHI value
which corresponds to a salary value being a high salary. Let us assume that if an unclassified user can
infer,with a CHI value of greater than 0.6. that a name has a particular salary value, then he has obtained some
unauthorized information. The knowledge base will have the following additional rules.

NAMEANDSAL(N,S) <-- NAME(N) and SALARY(S) and ((CHI(HASHIGHSAL(N) and
ISHIGHSAL(S)) > 0.6) or (CHI(NOT HASHIGHSAL(N) and
NOT ISHIGHSAL(S)) > 0.6))

LEVEL((N,S),Secret) <-NAMEANDSAL(NS)
LEVEL(N,Secret) <-- NAMEANDSAL(NS) and RELEASE(S,Unclassified)
LEVEL(S,Secret) <-- NAMEANDSAL(NS) and RELEASE(N, Unclassified)

NAME SALARY HASHIGHSAL ISHIGHSAL

Name CHI Salary CHI
Name CHI Salary CHI

Jon 1 20K I Jon 0.8 20K 0.2Mary I 40K I Mary 0.4 40K 0.4
60K 1 60K 0.8

FIGURE 4 - Fuzzy Relations for Context Constraint Example

Suppose an unclassified user poses the following queries:
Retrieve the names in the relation NAME. Then both names in the relation Jon and Mary will be returned.
Next, the unclassified user requests to retrieve the salary values in SALARY relation. There are only three
values in the SALARY relation. They are 60K, 40K, and 20K. For each name, salary pair, the inference
engine will compute the CHI value. The result of this computation will be as follows:
Jon 60K .8
Jon 40K .4
Jon 20K .2
Mary 60K .4
Mary 40K .6
Mary 20K .6

If the salary 60K is released, then the unclassified user can infer that Jon's salary is 60K with a CHI value
of 0.8. Since the name Jon has been released to the unclassified user, the value 60K will be secret. That is the
CHI value of the pair (Jon, 60K) belonging to the relation NAMEANDSAL is 0.8. Therefore, the salary 60K
cannot be released. The other two salary values will remain unclassified. Therefore, the values 40K and 20K
will be released to the unclassified user as response to the second query. This user can infer that Jon earns
40K with a CHI value of 0.4, Mary earns 40K with a CHI value of 0.6, Jon earns 20K with a CHI value of 0.2
and Mary earns 20K with a CHI value of 0.6. However, according to the security constraints, the user has not
acquired any secret information.

4. Security Checking in Augmented Object-Oriented Systems

4.1 Concepts in Object-prolog

We assume that the reader is familiar with concepts in object-oriented systems. Description of an
object-oriented data model can be obtained in [BANE87]. In this paper we will describe an extension to an

24

object-oriented database system which is based on object-prolog proposed in [ZANI84]. First we will describe
object-oriented concepts and show how they may be represented in object-prolog. Then we will describe the
security issues.

Let EMPLOYEE be a class with subclasses SENIOREMPLOYEE and JUNIOREMPLOYEE. The
instance variable of EMPLOYEE is Name. The method of EMPLOYEE is Status. Status has no input
parameters. It has one output parameter. The code for Status is shown below:
Sttus(X)
Begin
X :- full-time
end;
The subclasses of EMPLOYEE will inherit the instance variables and methods. However, we assume that the
subclass SENIOR_EMPLOYEE has its own Status method and is defined as follows:
Status(X)
Begin
X := part-time
end;
It is also assumed that the instances of EMPLOYEE are Fred and Jill; the instances of SENIOREMPLOYEE
are Jon and Harry; the instances of JUNIOR_EMPLOYEE are Jack and Mary.

The database described above can be represented in object-prolog as follows:
1.EMPLOYEE(Fred).
2.EMPLOYEE(Jill).
3.SENIOR EMPLOYEE(Jon).
4.SENIOR-EMPLOYEE(Harry).
5.JUNIOR-EMPLOYEE(Jack).
6.JUNIOR-EMPLOYEE(Mary).
7.SENIOR-EMPLOYEE(Name) ISA EMPLOYEE(Name)
8.JUNIOR-EMPLOYEE(Name) ISA EMPLOYEE(Name)
9.EMPLOYEE(Name) with [Status(full-time)].
10.SENIOR EMPLOYEE(Name) with [Status(part-time)].
The clauses 1 to 6 are assertions which specify the instances of the classes. The clauses 7 and 8 specify the
subclass definitions. The clauses 9 and 10 specify the methods.

We will describe how queries may be processed. Suppose a user wants to find out the status of an
employee The query is a message expressed as follows:
EMPLOYEE() : Status(X)?
The answer to the query is
X = full-time.
For the query SENIOREMPLOYEE() : Status(Y), the answer is Y = part-time.
For the query JUNIOREMPLOYEE() : Status(Z), the answer is Z = full-time.

One could include more information into the knowledge base by adding more rules. For example, the
following rule defines the student-status of an employee.
employee-status(Anemp, T) :- Anemp, Anemp : Status(T).
That is, the employee--status of an employee instance is T if the instance is in the database and the Status of that
instance is T. The answer to the query:
employeestatus(EMPLOYEE(Fred), T))? is full-time while the queries employee -status(EMPLOYEE(cat),T)?
and employee -status(EMPLOYEE(Jon),T)? both fail. However, the query
employeestatus(SENIOREMPLOYEE(Jon),T)? is evaluated and the response is 'part-time'.

In the previous example, the query to find the employee.status of a senior employee is evaluated only if
SENIOREMPLOYEE(Name) is substituted for Anemp. One way to ensure that the query is evaluated even if
EMPLOYEE(Jon) is substituted for Anemp is to define sub-objects explicitly in the rule. This is shown below.
employee status(Anemp,T) :- X sub Anemp, X, X:Status(T).
If the query employee status(EMPLOYEE(Jon),T)? is posed, the answer is T = part-time. However, the query
employee status(EMPLOYEE(Cat),T)? still fails.

4.2 Handling Security Constraints

In this subsection we will describe how security constraints may be handled in object-prolog.
Example 1: Introduce an additional method TITLE to the class EMPLOYEE. TITLE returns the title of an
employee instance. The code for TITLE is given below. 25

TITLE(N, T)
Begin
If N = Mary, T = Manager
If N = Fred, T = Secretary
If N = Jill, T = Engineer
If N = Harry, T = Vice-President
If N = Jack, T = Director
If N = Jon, T = President
end;

In the object-prolog representation, TITLE can be represented as a method or as a predicate. We will assume
the latter representation. Therefore the following assertions are added to the knowledge base.
TITLE(JUNIOR EMPLOYEE(Mary), Manager).
TITLE(JUNIOR-EMPLOYEE(Jack), Director).
TITLE(EMPLOYEE(Jill), Engineer).
TITLE(EMPLOYEE(Fred), Secretary).
TITLE(SENIOR EMPLOYEE(Harry), Vice-President).
TITLE(SENIOR-EMPLOYEE(Jon), President).

Let the constraint enforced be the following: An employee whose title is higher than
Vice-President is secret. This constraint is expressed in object-prolog as follows:
Level(Anemp, Secret) :- X sub Anemp, X, TITLE(Anemp, T), T > Vice-President
(Note: (i) The knowledge base has the inequality

Secretary < Engineer < Manager < Director < Vice-President < President
(ii)by having the sub clause sub, the constraint is applicable to any instance of EMPLOYEE,
SENIOREMPLOYEE or JUNIOREMPLOYEE). We also assume that there are additional rules which
ensure that if a piece of data is not secret then it is unclassified.)

Suppose an unclassified user poses a query to retrieve all senior employees. This query will be expressed
as follows:
(SENIOR EMPLOYEE(X), Level(SENIOR EMPLOYEE(X), Unclassified))?
Since Leve(XUnclassified) is equivalent to N(-T(Level(X,Secret)), the query is modified by the inference
engine to the following:
(SENIOR EMPLOYEE(X), TITLE(SENIOREMPLOYEE(X),T), T <= Vice-President)?
The answer to this query is 'Harry'.

Example 2: Let the constraint enforced be the following:
The Status of Jon is secret.

Since Jon is a senior employee, and the status of all senior employees is 'part-time'. If the clauses 3 and 10
(given in the previous subsection) are known to a user, this user can infer secret information. One approach is
to ensure that both clauses cannot be classified at the unclassified level. In the absence of any tool to ensure the
consistency of the knowledge base, some additional constraints are needed if both the clauses 3 and 10 are
classified at the unclassified level. These additional constraints are the following:
Level(SENIOREMPLOYEE(Jon), Secret) :-

. Release((SENIOR EMPLOYEE(): Status(X)), Unclassified)
Level((SENIOR EMPLOYEEO: Status(X)), Secret) :-

Release-SENIOREMPLOYEE(Jon), Unclassified)

That is, once the fact that Jon is a senior employee is released to an unclassified user, the status of all senior
employees become secret. Similarly, once the status of all senior employees is released to an unclas ied user,
the fact that Jon is a senior employee becomes secret. Therefore, if an unclassified user requests for the status
of senior employees after he has obtained the fact that Jon is a senior employee, the method associated with the
superclass employee will be executed. The answer to the query is 'full-time' although the correct answer should
be 'part-time'. If a secret user requests for the status of senior employees after getting the fact that Jon is a
senior employee, the method executed is the one associated with senior employees. The answer returned is
'part-time'.

5. Conclusion

We have focussed on two prolog extensions; fuzzy prolog and object prolog, for security checking in
database systcms. Fuzzy prolog handles uncertain information and inferences when users possess real-world
knowledge. Object prolog handles inferences in object-oriented database systems. We also discussed the
query modification technique implemented by inference engines based on fuzzy prolog and object prolog.

26

References

[BALD84] Baldwin J, and Zhou S., A Fuzzy Relational Inference Language", Fuzzy Sets and Systems, Vol.
14, #2, November 1984, pp. 155-174.

[BANE87] Banerjee J., et al., "Data Model Issues for Object-Oriented Applications", ACM Transactions on
Office Information Systems, Vol. 5, #1, April 1987, pp. 3-26.

[BELL75] Bell D., and LaPadula L., "Secure Computer Systems: Unified Exposition and Multics
Interpretation", Technical Report MTIS AD-A023588, The MITRE Corporation, July 1975.

[KEEF89] Keefe T., Thuraisingham M.B., and Tsai W.T., "Secure Query Processing Strategies", IEEE
Computer, Vol. 22, #3, 1989, pp. 63-70.

[LUNT89] Lunt T.,, "Inference and Aggregation, Facts and Fallacies", Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 1989.

[MART87] Martin T., et al., "The Implementation of Fprolog - A Fuzzy Prolog Interpreter", Fuzzy Sets and
Systems, Vol. 23, 1987, pp. 119-129.

[MORG87] Morgenstern M., "Security and Inference in Multilevel database and Knowledge Base Systems",
Proceedings of the ACM SIGMOD Conference, San Francisco, CA, May 1987.

[STAC89] Stachour P., and Thuraisingham M.B., "Design of LDV - a Multilevel Secure Relational Database
Management System", Accepted for publication in IEEE Transactions on Knowledge and Data Engineering,
1989.

[STON74] Stonebraker M., and Wong E., "Access Control in Relational Database Management Systems by
Query Modification", Proceedings ACM National Conference, New York, NY, 1974.

[THUR87] Thuraisingham M.B, "Security Checking in Relational Database Management Systems Augmented
with Inferefice Engines," Computers and Security, Vol. 6, # 6, December 1987.

[THUR89a] Thuraisingham M.B, "Security in Object-Oriented Database Systems", Accepted for publication in
the Journal of Object-Oriented Programming 1989.

[THUR89b] Thuraisingham M.B., "Mandatory Security in Object-Oriented Database Systems", Proceedings of
the (ACM) Object-Oriented Programming; Systems, Languages and Applications (OOPSLA) Conference, New
Orleans, LA, October 1989.

[THUR89c] Thuraisingham M.B., "Secure Query Processing in Intelligent Database Management
Systems", Proceedings of the 5th Computer Security Applications Conference, Tucson, Arizona, December
1989.

[THUR89d] Thuraisingham M.B., "Towards the Design of a Secure Data/Knowledge Base Management
System", Accepted for publication in Data and Knowledge Engineering Journal, 1989.

[ZANI84] Zaniolo C., "Object-Oriented Programming in Prolog", IEEE Logic Programming Symposium,
1984.

Acknowledgement

The work reported in this paper was supported by the Department of Navy, SPAWAR.

27

MILS Database Design Homework

Homework Problem #2

Title: MLS Database Design

Author:. Gary W. Smith

General: The homework problem involves designing a multilevel secure database to sup-
port Smith Information Systems, Inc. (SI 2).

Design Goals for the Homework Problem:
" Represent (close to) real world complexity both at the schema level and in terms

of data content.
* Populate a database which is a representative sample of the type of departments

and employees of an organization; but the size of the database is still trivially
small (i.e. not sufficient for performance measurement).

" Illustrate the common (most, but not all) secrecy requirements of MLS applica-
tions.

" Provide a (mostly) realistic interpretation of the real world (i.e. only a few con-
trived requirements that stretch reality).

" Require both mandatory access control (MAC) and discretionary access control
(DAC) with extensive use of MAC categories to implement need-to-know re-
quirements.

" Illustrate integrity requirements for update and creation of data.

Security Requirements Included:
* Four Hierarchical-levels (HL).
* 9 Categories (CAT) for MAC need-to-know requirements.
* Data Elements with the following classification levels:

- single HL with no CAT.
- single HL with single CAT
- multiple HL with no CAT
- multiple HL with a single CAT
- multiple HL with multiple CAT

* Classification is based upon one or more of:
- association between attribute name and value (attribute-value pair)
- association between two attribute-value pairs
- association between an attribute-value pair and other (seeming) external

data/information
- attribute name by itself
- all instances of data element are uniformly classified
- instances are classified based a range of values

2/12/89
28

MLS Database Design Homework

- specific instances are classified based upon the content of the data element
- specific instances are classified based upon some external criteria

" Cover story required for selected instances of a data element (used for disinfor-
mation)

" Unclassified and classified data elements used to represent the same entity (un-
classified data element used for accounting purposes in unclassified system)

Rules:

1. The analysis that led to the set of data elements (Attachment B) accurately reflects what
the users want to see. The data (as provided in Attachment E) reflects how the user is will-
ing to see the data (i.e., codes as OK for some data elements but not for others.

2. If you need to create new data elements, want clarification, or have other questions
about the requirements and content of the homework problem, contact the (surrogate)
database security officer (DBSO), (Gary Smith GWSMITH@PENTAGON-
OPTI.ARMY.MIL or GSMITH@GMUVAX2.GMU.EDU or (703) 764-6296 - Email is
preferred).

3. Assume that a particular users' (or class of users) view of the database is determined by
what he or she is authorized to see based upon their security clearance.

4. A planned cover story is used for selected sensitive projects. Users with the proper
clearance should be shown Project-Subject. Users without the proper clearance should be
shown the cover story project subject below:

&QeiaecLSubi Cover Story Project Subject
SOLVER CALS Proposal CALS Proposal
ALPHA HQ Relocation HQ Relocation
ISTAR Neural Net Security Kernel Document Tracking System
EPCOT Autonomous Land Spy Vehicle Personnel System Redesign
BARBER Pentagon Redesign Inventory Control System
GEMINI Presidential Inference Controller Contracts Management System

5. If MAC requirements cannot be implemented with MAC mechanisms, use DAC
mechanisms if available and describe how the DAC mechanisms can meet the intent of the
MAC requirements.

6. Several DAC policies are specified. These policies must be implemented such that they
are controlled by the organization (specifically the DBSO and Assistant DBSO), i.e., they
must have the MAC-like qualities of being organizationally-granted (as opposed to user-
granted) and are not able to be passed along by the users (as in DAC). MAC mechanisms
may be used to enforce these requirements.

7. The intent is to show what capabilities can be provided by the DBMS and its facilities. If
there is a need to go outside the DBMS and its facilities (i.e. to write code) to meet a re-

2q 2/12/8)

MLS Database Design Homework

quirement, then just state that is what you would do--there is no need to write external code-
-we know that this can be done.

Tasks:

1. Design a multilevel secure database to support the security requirements of Smith Infor-
mation Systems, Inc. as documented in attachments A through D.

2. Show the logical schema and physical schema/storage of the data resulting from the
design.

3. Populate a database with the data for employees shown in Attachment E.

4. Generate the database queries in Attachment F.

5. Extra Credit: Include additional security requirements which are documented in Attach-
ment G.

Attachments:
A. Organization Description
B. Database Requirements
C. General Security Policy
D. Security Requirements by Data Element
E. Database Content
F. Database Queries
G. Extra Credit Requirements

2/12/89

30

MLS Database Design Homework

Attachment A

Organization Description

General. The Smith Information Systems, Inc. (SI2 _ pronounced SI squared) is a high tech-
nology company which caters to the most sophisticated needs of the government and the
defense industry. As such, the company conducts research and implements systems which
are highly sensitive in nature. Senior management believes that protecting the
organization's data as one of the most important aspects of company operations.

Organization. The company's organization is fairly typical. It has a President as chief ex-
ecutive officer; two Vice-Presidents which oversee the operations of the organization--one
for headquarters staff and one for projects; headquarters staff departments (Personnel and
Administration, Financial Management, Procurement, and Security); mission departments
(Engineering, Integration, and Operations); personnel are assigned to staff or mission
departments; and a matrix approach is used to allocate personnel to projects.

Department Manpower Summary. The following is a summary of the manpower for each
department (not attached to a project) and project.

Executive Office

President
Executive Secretary
Vice-President for Headquarters Staff
Executive Secretary
Vice-President for Project Management
Executive Secretary
Admin Assistant

Personnel and Administration

Department Manager
Secretary
Personnel Analyst
Management Analyst
Personnel Clerk
Admin Clerk

31 2/12/89

MLS Database Design Homework

Financial Management Project 1 (CALS Proposal)

Department Manager Project Manager
Secretary Secretary
Financial Analyst Procurement Analyst
Financial Clerk Financial Analyst

Personnel Analyst
Security Office Admin Assistant

Department Manager Tech Staff-Eng
Secretary Tech Staff-Ops
Database Security Officer Tech Staff-Int

Assistant DB Security Officer
Security Clerk Project 2 (HQ relocation)

Project Manager
Procurement Department Secretary

Department Manager Admin Assistant
Secretary Financial Analyst
Procurement Analyst Management Analyst
Procurement Clerk

Mission Projects (All other projects)
Engineering Department Project Manager

Department Manager Secretary
Secretary Admin Assistant
Tech Staff Tech Staff-Eng

Tech Staff-Ops
Integration Department Tech Staff-Int

Department Manager
Secretary
Tech Staff

Operations Department

Department Manager
Secretary
Tech Staff

32 2/12/89

MLS Database Design Homework

Attachment B

Database Description

The database must contain data about two basic entities: employees and projects.
The following attributes are required to be in the database. The names adequately describe
the data element. Details of the exact meaning and content of each data element are con-
tained in Attachment D.

Authorized to Update

Employee Entity

Employee-Num Personnel Analyst (Myer) for all
Employee-Name employees
Home-Address Personnel Clerk (Chandler) for
Job-Title employees assigned to HQ Depts
Department Personnel Clerk (Bukowski) for
Assigned-Projects (1 or more) employees assigned to projects

-- and line depts (Eng, Ops, Int)
Salary Executive Secretary
Profit-Share Executive Secretary
Investigative-Status Security Office
Credit Rating Security Office
Skills (1 or more) Security Office
Security-Clearance Security Office

Project Entity

Project-ID The Secretary or Administrative
Project-Name Assistant working for the project
Project-Subject to be updated
Project-Client

Authorized to Create

Employee Entity Personnel Analyst (Myer) and Personnel Clerk (Chandler)
Project Entity DBSO and Assistant DSBO

33

2/12/89

MLS Database Design Homework

Attachment C

General Security Policy

Senior management considers information (data) to be a valuable and important cor-
porate resource. Management is therefore extremely concerned about security of data con-
tained in its automated information systems. Management recognizes that both secrecy
(protection from unauthorized disclosure) and integrity (ensuring the correctness and
protecting from unauthorized modification of data) are part of the computer security
needed. From a secrecy standpoint, the primary concern is protecting classified data
through mandatory access controls, especially need-to-know requirements. But manage-
ment is equally concerned with overclassification. It has proved extremely expensive to ob-
tain clearances for the system high environment previously used. The organization has
made a commitment to an MLS environment. Job responsibilities have been defined to
allow to assignment of the minimum security clearances to as many employees as possible.

Security Policy Statements (PS):

PSI: All data brought under control of the DBMS are considered a corporate resource and
will managed and controlled by the database security officer.

PS2: Access to corporate data must be made only through the DBMS. (I.e., no application
programs can directly access corporate data.)

PS3: Only users which are explicitly authorized (as evidenced by their Security-Clearance,
the proper hierarchical and need-to-know categories if applicable) will be able to access
data (mandatory access control). (See rule 5 for substitution of DAC mechanisms.)

PS4: Overclassification of data is to be avoided.

PS5: Authorization to update data and create data entities will be strictly controlled within
mandatory access controls (PS3) as indicated in Attachment B.

PS6: Unless otherwise specified in a secrecy constraint (see Attachment D) the system
need not hide the existence of classified data in the database.

PS7: The classification of each secrecy constraint and integrity constraint is Unclassified un-
less otherwise stated in another secrecy constraint.

PS8: The fact that there is a cover story for classified projects is classified TS.

PS9: Users attempting queries which are partially unauthorized (e.g. ask for unauthorized
data element to be displayed) will be given as much of the response that is possible within
MAC and DAC requirements.

2/12/89

34

MLS Database Design Homework

PS10: Users attempting queries for which the total response is unauthorized and involve
classifications with MAC categories will be answered with the message "System error--see
your DBSO."

PSll: Users attempting queries for which the total response is unauthorized and do not in-
volve MAC categories will be answered with the message "Unauthorized Query"

Classification Description:

Hierarchical Levels. There is an ordered set of four secrecy levels ranging in level of sen-
sitivity (from low to high) as follows:

" Unclassified (U) - No protection is necessary.
* Company Private (C) - Disclosure would result in minimal damage to the or-

ganization.
• Sensitive (S) - Disclosure would result in significant damage to the organization.
" Truly Sensitive (TS) - Disclosure would result in grave damage to the organiza-

tion.

(Note: the letter abbreviations (i.e., U, C, S, TS) will be used through this document.)

Categories. There are 9 categories which are used to implement need-to-know criteria for
mandatory access control as follows:

* Category A: Credit Rating Information.
• Category J: Indicates Type-I data class.
* Category K: A sub-category of Category J. (Note: Category K and Category L

are disjoint sub-categories of Category J.) * *
" Category L: A sub-category of Category J. (Note: Category K and Category L

are disjoint sub-categories of Category J.) *

" Category Q: Indicates Type-2 data class.
" Category W: Project ISTAR.
* Category X: Project EPCOT.
" Category Y: Project BARBER.
* Category Z: Project GEMINI.
0

* The "disjoint subcategory" requirement is enforced through the assignment of categories

to projects (already done) and is, therefore, not a database design problem.

(Note: the syntax used for representing classifications and clearances in this specification is
TS-XYZ. The levels (C, S, TS) and categories must be used, but the delimiter (in this case
the "dash" can be system dependent.)

35
2/12/89

MLS Database Design Homework

Attachment D

Security Requirements (by Data Element)

The security requirements are stated in terms of secrecy constraints (SC) and integrity con-
straints (IC) applicable to each data element. Also included is a brief description of the
data element.
Employee-Num

Descriptio :: A unique identifier given to each employee upon assignment to the

organization.
SC#1. Employee-Num classification is U for all values in all contexts.
IC#1. Employee-Num is a unique numeric code generated randomly by the system.

Employee-Name
Description: The name of the employee which may not be unique. (For

convenience, the last name is used instead of last name, first name and middle initial)
SC#2. Employee-Name classification is U for all values in all contexts.
IC#2. Employee-Name is a string of characters.

Home-Address
Description: The employee's complete home address. (For convenience, only the
street address is used.)
SC#3. Home-Address classification is U for all values in all contexts.

SC#4. The association of the Home-Address attribute-value pair with the attribute-

values pairs Employee-Name or Employee-Num is protected by the following DAC

requirements: only members of the Executive department and Personnel Analysts

and all other mangers (department or project) are authorized access for all
managers down to front line supervisors; only personnel clerks and the secretary of

the element to which the employee is assigned are authorized access for all other
employees.
IC#3. Home-Address is an alpha-numeric string of characters.

Job-Title
Description: The employee's job title.
SC#5. The association of the Job-Title attribute-value pair with the Employee-

Name or Employee-Num attribute-value pairs is classified C.
IC#4. Job-Title must be one of the following strings of characters: Pres, VP-HO,

VP-PM, Exec Secy, Dept Mgr, Proj Mgr, Tech Staff, DBSO, Ast DBSO, Sec Clk,

36 2/12/89

MLS Database Design Homework

Adm Ast, Per Anal, Pers Clk, Fin Anal, Fin Clk, Proc Anal, Proc Clk, Mgt Anal,

Adm Clk, Secy.

Salary
Description: Provides the. annual salary (in thousands of dollars) of the employee--

does not include bonuses or profit sharing.

SC#6. The association of the Salary attribute-value pair with Employee-Name or

Employee-Num ranges in classification from U to S based upon the following

criteria: Salary < $25K is U; Salary > = $25 and < $75K is C; and

Salary > = $75K is S.

IC#5. Salary is numeric and non-zero.

Profit-Share
Description: Identifies the percentage of salary given to the employee for bonuses

and/or share of profit.

SC#7. The association of the Profit-Share attribute-value pair with the Employee-

Name or Employee-Num attribute-value pairs is classified S with the following DAC
requirements: only the President, Vice Presidents and their Executive Secretaries

are authorized to access.

IC#6. Profit-Share is numeric.

Investigative-Status
Description: Provides a code which represents the current status of ongoing

investigations of the employee.

SC#8. The association of the Investigative-Status attribute-value pair with the

Employee-Name or Employee-Num attribute-value pairs is classified C with

following DAC requirement: only the President, Vice Presidents and members of

the Security Department are authorized access.

IC#7. Two digit alpha-numeric field.

Credit Rating
Description: Indicates the credit rating of the employee.

SC#9. The Attribute name "Credit Rating" is classified S-A. (To hide the

existence of the fact that the organization keeps this type of data on employees.)

SC#10. The association of the Credit Rating attribute-value pair with the

Employee-Name or Employee-Num attribute value pairs is classified TS-A.

SC#11. SC#9 and SC#10 are classified TS-A.

IC#8. One digit numeric code from I to 10.

37
2/12/89

MLS Database Design Homework

Department
Description: Indicates the department to which the employee is assigned.

SC#12. The association of Department attribute name with a value is classified S.
IC#9. An alpha-numeric string from the following list: Exec, Pers, Proc, Fin, Sec,
Eng, Int, Ops.

Skill
Description: Indicates the specific skills (one or more) in which the employee is

qualified.
SC#13. The association of any Skill attribute-value pair with the SI2 organization is
classified S.
SC#14. The association of the Skill attribute-value pair with the Employee-Name

or Employee-Num attribute-value pairs is classified TS.
SC#15. The association of the Skill attribute-value pair with a Project-Name

attribute-value pair is classified at which ever is highest--TS or the classification of
the Project-Name. (E.g. Skill + a S-WZ project is TS-WZ.)
IC#10. An alpha string from one of the following: 3A (laser technician),
5B (neural net design), D7 (robotics engineering), 8F (operations engineering),

C9 (integration engineering).

Assigned-Projects
Description: Indicates the Project-ID of all the projects (one or more) to which

the employee is attached.
SC#16. The Assigned-Project attribute-value pair is Unclassified.
SC#17. The association of Assigned-Project with Project-Name is classified at

the same level as the Project-Name attribute-value pair.

IC#11. Must be numeric from I to 6.

Security-Clearance
Description: Represents the highest hierarchical level to which the employee is

trusted and the categories to which the employee has been granted a need-to-know.
SC#18. The Security-Clearance attribute-value pair is classified at the level of the
hierarchical level of the value. (E.g., a value of TS-ZTQ is classified TS when
combined with the attribute name.)

IC#12. One of hierarchical levels U, C, S or TS followed by the delimiter "-"

followed by zero or more of the following categories: A, J, K, L, Q, W, X, Y, Z.
(No embedded spaces or other punctuation included in the stored value.)

38 2/12/89

MLS Database Design Homework

Project-ID
Description: A ,niQue unclassified code to represent projects
SC#19. The following mapping between is classified S.
Proiect-!D Project-Name Project-ID Project-Name

3 ISTAR 4 EPCOT
5 BARBER 6 GEMINI

IC#13. Must be numeric from 1 to 6.

Project-Name
Description: The unique code name for a project.

SC#20. The Project-Name attribute-value is classified in the range from U to S on
project-by-project basis as follows: SOLVER is C; ALPHA is U; ISTAR is S;
EPCOT is S; BARBER is S; and GEMINI is S.
IC#14. The only authorized values are one of SOLVER, ALPHA, ISTAR,- EPCOT,

BARBER, GEMINI.

Project-Subject
Description: The name of the project which indicates the actual subject of the

effort.
SC#21: The association of the Project-Subject attribute-value pair with the
Project-Name attribute-value pair is classified as follows: SOLVER is C;
ALPHA is U; ISTAR is S-LW; EPCOT is TS-JX; BARBER is TS-KY;

and GEMINI is TS-KQZ.
SC#22: The association of the Project-Subject attribute-value pair with the cover
story project subject is classified at the corresponding level of SC#21.
IC#15: The only authorized values are based upon the Project-Name as

follows: CALS Proposal - SOLVER; HQ Relocation - ALPHA;

Neural Net Security Kernel - ISTAR; Autonomous Land Spy Vehicle - EPCOT;

Pentagon Redesign - BARBER; Presidential Inference Controller - GEMINI

SC#23: IC#15 is classified TS/JKLQWXYZ.

Project-Client
Description: The name of the organization which is the client for the project.
SC#24: The association of the Project-Client attribute-value pair with the Project-
Name is classified at the classification level of the Project-Name.
SC#25: The association of the Project-Client attribute-value pair with this

organization is classified S.
IC#16: The only authorized values are one of A, B, C, D.

39 2/12/89

ML.S Database Design Homework

40 2/12/89

MLS Database Design Homework

Attachment F

Database Queries

Recurring Reports

Report RR1
Description: Listing of home addresses

Data Elements Displayed: Employee-Num, Employee-Name, Home-Address

Sorted By: Employee-Name

User Requesting Query: Myer (Per Anal)

Report RR2

Description: Listing of job titles

Data Elements Displayed: Employee-Name, Job-Title

Sorted By: Employee-Name

User Requesting Query: Chandler (Per Clk)

Report RR3
Description: Listing of job titles and departments

Data Elements Displayed: Employee-Name, Job-Title, Department

Sorted By: Employee-Name within Department

User Requesting Query: Bukowski (Per Clk)

Report RR4
Description: Listing of all employee salaries

Data Elements Displayed: Employee-Name, Salary

Sorted By: Employee-Name

User Requesting Query: Bukowski (Per Clk)

Report RR5
Description: Listing of all employee salaries and profit shares

Data Elements Displayed: Employee-Name, Salary, Profit-Share

Sorted By: Employee-Name

User Requesting Query: Bukowski (Per Clk)

Report RR6
Description: Listing of employees with Investigative-Status not equal to "IA"

Data Elements Displayed: Employee-Name, Investigative-Status

Sorted By: Employee-Name within Investigative-Status code

Requested By: Bukowski (Per CIk)

2/12/89

41

MLS Database Design Homework

Report RR7
Description: Listing of employees with Credit-Rating other than "1"
Data Elements Displayed: Employee-Name, Credit-Rating
Sorted By: Employee-Name

User Requesting Query: Thomas (Sec Clk)
Report RR8

Description: Listing of all employees with specific skills
Data Elements Displayed: Employee-Name, Skills

Sorted By: Employee-Name
User Requesting Query: Kelley (Per Dept Mgr)

Report RR9
Description: Listing of employees assigned to projects
Data Elements Displayed: Employee-Name, Assigned-Project

Sorted By: Employee-Name

User Requesting Query: Smith, E. (Adm Ast, Exec Dept)
Report RR10

Description: Listing of all employees' security clearances
Data Elements Displayed: Employee-Name, Security-Clearance
Sorted By: Employee-Name

User Requesting Query: Thomas (Sec Clk)
Report RRI1

Description: Listing of projects
Data Elements Displayed: Project-ID, Project-Name

Sorted By: Project-ID

User Requesting Query: Thomas (Sec Clk)
Report RR12

Description: Listing of all project subjects
Data Elements Displayed: Project-ID, Project-Name, Project-Subject
Sorted By: Project-ID

User Requesting Query: Falbo (Sec Secy)

Report RR13
Description: Listing of all project subjects
Data Elements Displayed: Project-ID, Project-Name, Project-Subject

Sorted By: Project-ID
User Requesting Query: Kelley (Per Dept Mgr)

42
2/12/89

MLS Databas. Design Homework

Report RR14

Description: Listing of project clients

Data Elements Displayed: Project-Name, Project-Client

Sorted By: Project-Name

User Requesting Query: Brimer (DBSO)

Adhoc Queries

Report AQI
Description: Listing of home addresses for all employees

Data Elements Displayed: Employee-Name, Home-Address

Sorted by: Employee-Name

User Requesting Query: Chandler (Per Clk)
Report AQ2

Description: Listing of home address for all employees

Data Elements Displayed: Employee-Name, Home-Address

Sorted by: Employee-Name

User Requesting Query: Mahoney (Proc Dept Secy)
Report AQ3

Description: Listing of home address for Procurement Department employees

Data Elements Displayed: Employee-Name, Home-Address

Sorted By: Employee-Name
User Requesting Query: Mahoney (Proc Dept Secy)

Report AQ4
Description: Listing of home address for Financial Department employees

Data Elements Displayed: Employee-Name, Home-Address

Sorted By: Employee-Name

User Requesting Query: Wolcott (Fin Clk)
Report AQ5

Description: Listing of employees with salary above 50K

Data Elements Displayed: Employee-Name, Salary

Sorted By: Employee-Name
User Requesting Query: Rodriquez (Fin Anal)

Report AQ6
Description: Listing of employees with salary above 50L
Data Elements Displayed: Employee-Name, Salary, Profit-Share

Sorted By: Employee-Name

User Requesting Query: Rodriquez (Fin Anal)

43 2/12/89

MLS Database Design Homework

Report AQ7
Description: Listing of investigative status other than "IA"

Data Elements Displayed: Employee-Name, Investigative-Status

Sorted By: Employee-Name

User Requesting Query: Bender (Exec Secy)
Report AQ8

Description: Listing of employee data for the Engineering Department

Data Elements Displayed: Employee-Name, Job-Title, Credit-Rating

Sorted By: Employee-Name

User Requesting Query: Kelley (Per Dept Mgr)

Report AQ9
Description: Listing of employee data for Operations Department

Data Elements Displayed: Employee-Name, Job-Title

Sorted By: Employee-Name
User Requesting Query: Wolcott (Fin Clk)

Report AQ10
Description: Listing of employee data

Data Elements Displayed: Employee-Name, Job-Title, Department

Sorted By: Employee-Name

User Requesting Query: Wolcott (Fin Clk)

Report AQ1l
Description: How many employees have Skill "C9" ?

Data Elements Displayed: number

Sorted By: n/a

User Requesting Query: Thomas (Sec Clk)
Report AQ12

Description: Listing of Skills for employees assigned to projects

Data Elements Displayed: Employee-Name, Skill, Project-Name

Sorted By: Employee-Name within Project-Name

User Requesting Query: Brimer (DBSO)

Report AQ13
Description: Listing of skills for employees assigned to Project-Name equal ISTAR

Data Elements Displayed: Employee-Name, Skill

Sorted By: Employee-Name

User Requesting Query: Brimer (DBSO)

44 2/12/89

MLS Database Design Homework

Report AQ14
Description: Listing of skills for employees assigned to Project-ID equal 3
Data Elements Displayed: Employee-Name, Skill

Sorted By: Employee-Name

User Requesting Query: Brimer (DBSO)
Report AQ15

Description: Listing of employees assigned to Project-Name equal GEMINI
Data Elements Displayed: Employee-Name, Project-Name

Sorted By: Employee-Name

User Requesting Query: Brimer (DBSO)

Report AQ16
Description: Listing of employees assigned to Project-ID equal 6
Data Elements Displayed: Employee-Name

Sorted By: Employee-Name

User Requesting Query: Brimer (DBSO)
Report AQ17

Description: Listing of skills of employees assigned to Project-Name = SOLVER
Data Elements Displayed: Employee-Name, Skill

Sorted By: Employee-Name

User Requesting Query: Brimer (DBSO)
Report AQ18

Description: Listing of employee data
Data Elements Displayed: Employee-Name, Department, Security-Clearance

Sorted By: Employee-Name

User Requesting Query: Myer (Per Anal)
Report AQ19

Description: List of project clients
Data Elements Displayed. Project-Client

Sorted By: Project-Client

User Requesting Query: Brimer (DBSO)
Report AQ20

Description: Listing of project subjects
Data Elements Displayed: Project-Name, Project-Subject

Sorted By: Project-Name

User Requesting Query: Wood (Proj Mgr, Proj 5)

45 2/12/89

MLS Database Design Homework

Attachment G

Extra Credit

Implement the following security requirements:

El: Managers can only see the Salary of their immediate subordinates. (Note that the com-
pany is too large to use MAC categories to meet this requirement.)

E2: Managers can only see the salary of ALL their subordinates (i.e., VP can see Salary of
all employees subordinate to the managers the VP directly supervises. (Note: same con-
straint as El-cannot use MAC categories to meet this requirement.)

E3: Only the Executive Secretary for the President (Opel) or Executive Secretary of the
VP-HQ (Flippin) can update Salary and Profit Share for employees of all HQ Staff Ele-
ments.

E4: Only the Executive Secretary for the President (Opel) or Executive Secretary of the
VP-PM (Bender) can update Salary and Profit Share for employees of all Projects and Line
Departments (Engineering, Integration and Operations).

ES: The existence of the project GEMINI is extremely sensitive--so sensitive that any as-
sociation between the text string "GEMINI" and this organization is classified TS.

E6: Map all of the data objects used in your design/implementation into the Trusted
Database Interpretation (TDI) concepts of stored, encapsulated, and named objects.

E7: What is the minimum security clearance needed by the database designer?

46 2/12/89

Report on the Homework Problem

Gary W. Smith

George Mason University
School of Information Technology and Engineering

Fairfax, VA 22030

One of the most beneficial parts of the First RADC Database Security Workshop
proved to be Rae Burn's Homework problem [Burn89]. It dramatically illustrated to the
workshop participants some of the challenges in designing a multilevel database. Many of
these challenges related to the application-dependent nature of designing databases as op-
posed to the abstract nature of operating system requirements. The primary motivation be-
hind developing the Homework Problem for the 2nd Workshop was that papers and
presentations on database security always use examples which are trivial. Many times it is
difficult to really understand how a particular technique or approach works and more im-
portantly, the implications of more complex requirements.

The homework problem involves designing a multilevel secure database. The design
goals were:

* Represent (close to) 'eal world complexity both at the schema level and in terms
of data content.

* Populate a database which is a representative sample of the type of departments
and employees of an organization; but the size of the database is still trivially
small (i.e. not sufficient for performance measurement).

* Illustrate the common (most, but not all) secrecy requirements of MLS applica-
tions.

* Provide a (mostly) realistic (but unclassified) interpretation of the real world (i.e.
only a few contrived requirements stretch reality).

* Require both mandatory access control (MAC) and discretionary access control
(DAC) with extensive use of MAC categories to implement need-to-know re-
quirements.

* Illustrate integrity requirements for update and creation of data.

General security policies were also stated that had a significant bearing on the
design. Examples include:

PSI: All data brought under control of the DBMS are considered a corporate
resource and will be managed and controlled by the database security officer.

PS4: Overclassification of data is to be avoided.

47/48

PS5: Authorization to update dqta and create data entities will be strictly con-
trolled within mandatory access controls (PS3) as indicated in Attachment B.

PS6: Unless otherwise specified in a secrecy constraint (see Attachment D),
the system need not hide the existence of classified data in the database.

PS7: The classification of each secrecy constraint and integrity constraint is
Unclassified unless otherwise stated in another secrecy constraint.

Security Requirements Included:
* Four Hierarchical-levels: U, C, S, and TS.
" 9 Categories for MAC need-to-know requirements.
" Data Elements with the following classification levels:

- single hierarchical level with no categories.
- single hierarchical level with single category.
- multiple hierarchical levels with no categories.
- multiple hierarchical levels with a single category.
- multiple hierarchical levels with multiple categories.

" Classification is based upon one or more of:
- association between attribute name and value (attribute-value pair)
- association between two attribute-value pairs
- association between an attribute-value pair and other (seeming) external

data/information
- attribute name by itself

- all instances of data element are uniformly classified
- instances are classified based a range of values

- specific instances are classified based upon the content of the data element
- specific instances are classified based upon some external criteria

" Cover story required for selected instances of a data element (used for disinfor-
mation)

" Unclassified and classified data elements used to represent the same entity (un-
classified data element used for accounting purposes in unclassified system)

Tasks:

1. Design a multilevel secure database to support the security requirements of Smith Infor-
mation Systems.

2. Show the logical schema and physical schema/storage of the data resulting from the
design.

3. Populate a database with the data for employees.

4. Generate a set of test database queries.

49

Homework Results.

The schema for the homework problem, as shown in Figure 1, is used to illustrate
the basic types of secrecy constraints and how the various DBMSs approached the solution.
The syntax and meaning of the graphical technique used to display the schema is provided
below.

The basic constructs of the model are shown in Figure 2. There are three types of
objects: abstract objects (circles) represent objects of interest in the application; attributes
(rectangles) represent characteristics of an abstract object; and identificates (egg-shaped)
represent a special type of attribute--one that serves to identify the abstract object. An iden-
tificate is either a key (i.e., uniquely identifies the abstract object) or a near-key (i.e., a non-
unique attribute that can be used to identify the abstract object most of the time). An
association, which is the relationship between two abstract objects or between an abstract
object and one of its attributes/identificates, is shown as a line connecting two objects. Bold
lines and text are used to indicate classified objects and associations. The classification
level(s) are shown next to the object.

There are two major entities of interest in the application domain: Employee and
Project. Throughout this paper, attributes will be referenced by combining the abstract ob-
ject name (e.g., Employee) with the attribute name (e.g. Name) when necessary to provide
an unambiguous name (e.g., Employee.Name). Relations will use the following syntax: rela-
tion-name (attribute-I, attribute-2, ... , attribute-n) followed by a classification level for the
relation (e.g., U, C, S, or TS).

Number

[Job-Title ID

Peal.Subj (U-TS+)

Creit(-A)Client (s)

SSecurity Or TS)

Figure 1: Conceptual Data Model

50

Unclassified Classified

Abstract 0()
Object 0S)

Identificate (l (U-P)

Attribute I(U,S)

Association (S)

External Project Project (C)
Identifier

Figure 2: Secrecy Constructs

Database Management Systems. The approaches used by four DBMSs will be discussed in
this report.

Sybase Secure SQL Server--a product available from Sybase and jointly developed with
TRW. Sybase has two secure products underway: one is aimed at satisfying a BI level of
trust 3nd one is aimed at satisfying a B2 level of trust. The Sybase standaid DBMS (non-
secure) has been on the market for several years. One secure version (aimed at B1) runs on
top of the Ultrix operating system. It uses MAC labels on tuples and provides DAC on rela-
tions. The B2 secure version runs on bare hardware. All remaining references to Sybase in
this paper refer to the BI version which was used to implement the homework problem and
presented at the workshop.

Al Secure DBMS (ASD)--a prototype trusted DBMS built by TRW. ASD is assumed to run
on top of a trusted operating system (currently ASOS-the Army Secure Operating System).
ASD uses tuFle-level MAC and relation-level DAC.

LOCKData Views (LDV)--a prototype trusted DBMS designed by Honeywell. A special
prototype of the Honeywell design of a trusted DBMS was used to demonstrate an im-
plementation of the homework problem. LDV is designed to run on Honeywell's LOCK
operating system.

Oracle--a prototype trusted DBMS designed by Oracle Corp. Oracle uses the TCB subset
approach similar to SRI's SeaView design specifications and will run on top of a variety of
trusted operating systems up to Al. It offers MAC labeling down to the element level and
DAC on views and relations.

TRW (using Sybase), Oracle, and LDV implemented the homework problem, in-
cluding loading the database and executing the queries. ASD did a paper design without
any implementation.

51

Possible modifications to Tandem Computers' operating system to implement the
homework problem were also presented at the workshop. Since the Tandem solution is de-
pendent on the Tandem-unique architecture and mechanisms (which space does not allow
to be presented here), it will not be discussed in this report.

GeneralApproach. The general approach taken by all DBMSs, to one degree or another,
was to decompose a relation by security level into multiple relations--either vertically or
horizontally or both. For example, the following simple employee relation

Employee (Employee-Number, Employee-Name, Job-Title, Salary)

where number is the key, name is always U, job-title is always C, and salary is either U, C or
S, would be decomposed vertically into three relations:

Employee-Name (Employee-Number, Employee-Name) U

Employee-Job-Title (Employee-Number, Job-Title) C

Employee-Salary (Employee-Number, Salary) U, C, S

Employee-Salary is still multilevel, but would be decomposed horizontally by
security level into three relations, each containing instances of Employee-Salary at the same
level:

Employee-Salary-U (Contains all U instances of Employee-Salary)

Employee-Salary-C (Contains all C instances of Employee-Salary)

Employee-Salary-S (Contains all S instances of Employee-Salary)

Figure 3 graphically shows this decomposition concept. For Sybase and ASD, the
vertical decomposition is a part of the logical database design seen by the user; however, no
horizontal decomposition is necessary since row-level labeling is the basis for the DBMS to
enforce MAC. The SeaView and Oracle approach requires all data objects to be of a single
security level so that the underlying operating system can enforce MAC. However, the logi-
cal database design seen by the user is multilevel; the decomposition, vertically and horizon-
tally, is accomplished by the DBMS and is transparent to the user. DAC authorizations on
the multilevel view of the database are automatically inherited by the decomposed rela-
tions. In LDV, the amount of vertical decomposition seen by the user is a function of
database design; multilevel relations or single-level relations or both are available to the
database designer to model the application domain.

Specific Approaches. The following sections describe design solutions for requirements
(policies and constraints) of the homework problem.

Access to DBMS-Managed Data. PS2: Access to corporate data must be made only through
the DBMS. (I.e., no application programs can directly access corporate data.) This policy is
essential in order to ensure that the DBMS has complete control of the database. All the
DBMSs rely on the underlying operating system to enforce this separation. Sybase relies on
Ultrix. ASD uses a combination of storing all data at the system-high security level and in-
tegrity constraints to enforce this requirement. LDV uses the typing and domain
mechanisms of the LOCK operating system. Oracle uses whatever mechanisms are avail-

52

Employee

Number(U) Name(U) Salary(U-S) Job-Title(C)

Vertical
Decomposition

Name S L .
Number Name (U) Number I Salary I(U)

Salary HorizontalDecomposition a -

Number [__r]U-)Number Falary)C

Job-Title Salary-S

Number Job-Title (C) Number Salary](S)

Figure 3. Decomposition by Security Level

able in the underlying operating system. In the case of the SeaView project it would be the

ring domain architecture of the GEMSOS operating system:

Uniformly Classified Attribute. Secrecy Constraint (SC)# 12: The association of Department
attribute name with a value is classified S. The Department attribute of the Employee en-
tity is used to illustrate the case in which all instances of an attribute are uniformly clas-
sified--in this example all instances of attribute Department are classified S.

The approach used by ASD and Sybase for this requirement was to vertically decom-
pose the Department attribute into a separate relation, rather than putting it into one of the
Employee relations:

Department (Employee-Number, Employee-Department) S

Oracle included Department in a multilevel relation, but would automatically
decompose into the above relation. LDV included the Department attribute in a base rela-
tion, Employee-Base (Employee-Number, Employee-Name, Department, Salary. Security
Clearance). One capability that LDV has is to specify a default, or minimum, security level
for an attribute in the data definition language. In this case, LDV can enforce the fact that
all instances of Department are classified S by establishing the maximum and default
security level as S. The same is true for SeaView. Sybase provides a minimum security
level.

Classified Attribute--Conditional on Content. SC#20: The Project-Name attribute-value is
classified in the range from U to S on a project-by-project basis as follows: SOLVER is C;
ALPHA is U; ISTAR is S; EPCOT is S; BARBER is S; and GEMINI is S. Where uniform
classification of an attribute requires vertical decomposition, conditional classification of an

53

attribute requires both vertical and horizontal decomposition (transparent to the user) for
Oracle. (A full SeaView implementation would use classification constraints to assign the
correct security level.) Since ASD and Sybase use tuple-level labeling, they can distinguish
between security levels within a relation and need not horizontally decompose. The
security level for each tuple is based upon the user's logon level at the time the tuple is
entered; thus the security depends upon the user knowning enough to be logged in at the ap-
propriate security level.

Uniformly Classified Association. SC#5: The association of the Job-Title attribute-value pair
with the Employee- Name or Employee-Num attribute-value pairs is classified C. The ap-
proach as proposed by [Lunt89] could be used by ASD, Oracle, and Sybase to meet this re-
quirement to add an additional data element, e.g., Employee-Code, and use three relations:

Employee-Name (Employee-Number, Employee-Name) U

Job-Title (Employee-Code, Job-Title) U

Employee-Job-Title (Employee-Number, Employee-Code) C

The only way to associate Employee-Number with Job-Title is to go through the
Employee-Job-Title relation, which is classified C.

The LDV approach has just one relation, Employee-Title (Employee-Number, Job-
Title) which is classified U. With this approach, a user can protect the association by stating
a context constraint that the DBMS uses to enforce the fact that the association of the two
data elements is classified. This approach keeps" history files of previous queries to detect
when returning data will allow a user to make a sensitive association.

Conditionally Classified Association. SC#6: The association of the Salary attribute-value
pair with Employee-Name or Employee-Number ranges in classification from U to S based
upon the following criteria: Salary < $25K is U; Salary > = $25 and < $75K is C; and
Salary > = $75K is S. The conditions for classification are based upon a range of values.
Taking the same approach at the logical level as taken with uniform classification, a clas-
sified association that is conditional appears the same as a uniformly classified association--
three relations are required:

Employee (Employee-Number, Employee-Name) U

Employee-Salary (Employee-Number, Employee-Code) U, C, S

Salary (Employee-Code, Salary) U

However, both Sybase and ASD implemented this constraint with a single relation
containing Employee-Number and Salary in which the classification of each row is based on
the value of Salary. This approach protects the association, but does not allow Salary, by it-
self, to be retrieved at the U level--which was the intended requirement stated by the
homework problem.

Oracle took a different approach since it is able to restrict access based on views
which are protected by DAC. The Employee relation has Employee-Number and Salary
(in addition to other attributes). An additional relation, Salary-Authorization, is created
which contains a key attribute, called Label (representing a security level), and the attribute

54

Maxsal (representing the maximum salary for that security level). In this case Salary-
Authorization would contain these three tuples:

LABEL MAXSAL
Unclass 25000
Confidential 75000
Secret NULL (means there is no known limit)

Several views are then used to restrict access as described below:Salaries alone can
be accessed through the salary view:

SELECT Salary from Employee

Employee numbers alone can be accessed through the emp-num view:

SELECT employee-number from Employee

Employee numbers together with salaries must be accessed through the emp-sal view:

SELECT Employee-Number, Salary from Employee
WHERE Salary < -- (SELECT nvl(Maxsal, Employee-Salary)

from Salary-Authorization
WHERE label = :user-label)

The nvl function, nvl(x,y) returns x if x is not null and y if x is null. The current logon
security level of the user's process is :user label.

All users would be granted privileges to select from the three views, but not from the
base tables. The salary and emp-num views would return the same values for any user, but
the emp-sal view would return only those emp-sal pairs that the user is allowed to see.

Classified Attribute and Association. SC# 13: The association of any Skill attribute-value
pair with the organization is classified S. SC# 14: The association of the Skill attribute-
value pair with the Employee-Name or Employee-Number attribute-value pairs is classified
TS. These constraints are logically the same as a simple classified association. The fact that
the base security level for Skill is S rather than U does not change the problem or the form
of the solution--it only changes the security level of the Skills relation. The relations are:

Employee (Employee-Number, Employee-Name) U

Employee-Skills (Employe, Numer, Skill-Number) TS

Skills (Skill-Number, Skill) S

Classified Name. SC#9: the Attribute name "Credit Rating" is classified S-A. (This con-
straint is intended to hide the fact that the organization keeps this type of data on
employees.) This constraint is an example of classified "meta-data." All systems allow meta-
data to be classified. In fact, meta-data is treated like any other data and is stored in rela-
tions. In the case of Sybase and SeaView, all of the meta-data about a relatiGn (relation
name and column names) are classified at the same level. Thus, the Credit-Rating attribute
must be vertically decomposed into a separate relation classified at S-A.

55

Classified Association between two attributes. SC# 15: The association of the Skill attribute-
value pair with a Project-Name attribute-value pair is classified at which ever is highest--TS
or the classification of the Project-Name. A database design could be generated to imple-
ment this constraint as follows:

Employee (Employee-Number, Employee-Name, Project-ID) U

Project (Project-ID, Project-Name) U, C, S

Skills (Skill-Number, Skill) S

Employee-Skills (Employee-Number, Skill-Number) TS

A constraint between attributes of two different entities (or columns of two different
relations) is potentially insecure if there is another relationship between the two entities.
In particular, a database design for the homework problem, as stated, is not inherently in-
secure. The association between Employee-Skills and Project-Name is TS even though the
association of an Employee and Project-Name is U-S based upon the classification of
Project-Name. The design is secure because the association between Employee and
Employee-Skill is TS. If on the other hand, the Employee/Employee-Skill association was
S, the design would be inherently insure--TS data (the association between Employee.Skill
and Project.Name) could be easily derived by combining the unclassified association be-
tween Employee and Project-Name (which is U-S) with the S association between
Employee and Employee-Skill.

AdditionalAccess Restrictions. Several additional constraints on access were stated that
went beyond normal MAC requirements. These constraints were the biggest challenges.
They are difficult to implement in a straightforward manner.

ReadAccess to an attribute. SC#8: the association of the Investigative-Status attribute-value
pair with the Employee-Name or Employee-Number attribute-value pairs is classified C with
following access requirement: only the President, Vice Presidents and members of the
Security Department are authorized access.

For the systems that only provide DAC on relations, this constraint can be imple-
mented by further decomposing the Investigative-Status into a separate relation. Before
this decomposition all associations which were classified C could be in the same relation:

Employee (Employee-Number, Employee-Name) U

Employee-Number-Code (Employee-Number, Employee-Code) C

Employee-Job-Title-Invest (Employee-Code, Job-Title, Invest-Status) U

To satisfy this constraint, the Employee-Job-Title-Invest relation would be decom-
posed into the following:

Job-Title (Employee-Code, Job-Title) U

Employee-Invest-Status (Employee-Code, Invest-Status) U

For systems which also provide DAC on views, the logical decomposition is not re-
quired. Different views can be established for different users--the attribute is not available
in the views for those who are not allowed access, but is for the others. Oracle is also im-

56

plementing a "role" mechanism, whereby access to views can be based upon a user's as-

signed role.

Read Access to an Attribute--Conditional on External Criteria. SC#4: the association of the
Home-Address attribute-value pair with the attribute-values pairs Employee-Name or.
Employee-Num is protected by the following access requirements: only members of the Ex-
ecutive department and Personnel Analysts and all other managers (department or project)
are authorized access for all managers down to front line supervisors; only personnel clerks
and the secretary of the element to which the employee is assigned are authorized access
for all other employees.

This constraint is even more difficult when DAC is applied at the table level. In es-
sence all relations that contain employee data, for ASD there are six relations, must be
duplicated--one set contains data on managers, the other set contains data on all other
employees. With this solution, queries about employees will require joins across two sets of
relations.

Sybase did not implement this constraint but proposed three possible solutions: use
a complex stored procedure; add an extra field containing the type of employee, and a
stored procedure could use the field to enforce access; and assign mandatory categories.
Using procedures adds the need to consider the relative security of the procedures. In
Sybase, procedures are not named objects and thus access to procedures is not enforced as
part of the security policy.

The Oracle approach would use views to enforce the constraint and not require logi-
cal decomposition. In Oracle, views are named objects and thus access to views is enforced
as part of the security policy.

Update Access to an Attribute--Conditional. Two extra credit constraints were stated relat-
ing to update: E3-Only the Executive Secretary for the President (Opel) or Executive
Secretary of the VP-HQ (Flippin) can update Salary and Profit Share for employees of all
HQ Staff Elements; E4-Only the Executive Secretary for the President (Opel) or Executive
Secretary of the VP-PM (Bender) can update Salary and Profit Share for employees of all
Projects and Line Departments (Engineering, Integration and Operations).

Once again, if DAC is applied to relations, then multiple sets of tables containing
employee data must be generated--one set for HQ Staff Elements and one for projects and
line departments. The proliferation of sets of employee relations, especially if there is a dif-
ferent criteria for read versus update access, is a serious problem.

If DAC on views is used to implement this constraint, then updating through views
must be allowed--a capability that is not allowed in most current relational DBMSs (but is
theoretically possible in some cases).

Miscellaneous Requirements.

Cover Story. A cover story was required for the subject of a project. The approach taken to
model the cover story in the database schema (Figure 1) was to provide two attributes:
Real-Subject, with each instance classified TS and one or more categories; and Subject,
which was an unclassified cover story. The attribute name, Real-Subj, was classified TS to

57

meet the requirement that the fact that there was a cover story for a project's subject was
TS.

Alternately, each DBMS can use its polyinstantiation capability to provide a U tuple
(the cover story) and a TS + tuple (the real subject) for each project.

Hiding the Existence of Classified Data. PS6: unless otherwise specified in a secrecy con-
straint the system need not hide the existence of classified data in the database. All four sys-
tems automatically polyinstantiate when instances of data are attempted to be inserted at a
different security level than already exists in the database.

Behavior Issues. (PS9-11) How the system would respond to unauthorized behavior
received minimal discussion. This is an important subject because it is critical to under-
stand the policies that are implicitly implemented in a DBMS as well as those that are ex-
plicitly implemented.

Conclusions

The first conclusion by those participating in the Homework problem was that it was
challenging to implement and it was a meaningful effort. The results clearly indicate that
there are significant differences between the DBMSs reviewed.

The DBMSs differ in how much decomposition the user sees. This has a direct im-
pact on the complexity forced upon the user. LDV and Oracle provide logical multilevel
relations, whereas ASD and Sybase require vertical decomposition by security level. At a
lowfer level, transparent to the user, LDV and Oracle must further decompose horizontally,
whereas ASD and Sybase need not further decompose (but this is transparent to the user).
There was some question about the performance impact of all this decomposition. The
database community advocates this kind of "normalization" as part of effective database
des gn. It is too early to tell what, if any, performance degradation will be experienced and
how much can be attributed solely to decomposition for security reasons.

The previous conclusion related to design considerations to implement MAC re-
quirements. Restrictions that are value-dependent, which were stated as DAC require-
ments, had a greater impact on those systems which only provide DAC on relations.
Relations must be further decomposed based upon the access criteria for read and update--
if they are different. The resulting fragmentation of relations is unpleasant at best. Provid-
ing DAC on views which restrict access avoids the additional decomposition. This solution
appears to be acceptable for read permissions, but all of the ramifications of updating
through views are not apparent at this time.

All the systems automatically polyinstantiate data either for intentional cover stories
or for inadvertent/malicious attempts to update data that already exists in the database at a
higher security level.

One issue the Homework Problem attempted (unsuccessfully) to introduce related
to the behavior of the DBMS when faced with apparent or real unauthorized behavior by
the user. This is an important issue, because as these DBMS are developed, the policies on
how the DBMS should respond to unauthorized behavior is imbedded in the implementa-
tion. Yet how the DBMS responds is a policy issue, and the response to the user for the
same action may need to be different, depending upon which data is involved in the un-

58

authorized action. The relative flexibility that a DBMS provides the security officer (and
users) to implement effective security policies for an application domain is an issue that re-
quires additional attention in the research community.

References

[Burn89] Bums, R., The Homework Problem, In Research Directions on Database Security,
Lunt, T. F. ed., Springer-Verlag, 1989.

[Lunt89] Lunt, T. F., Aggregation and Inference: Facts and Fallacies, Proceedings of the
1989 IEEE Symposium on Security and Privacy, May, 1989, pp. 102-109.

59

Database Design with
Row Level MAC and Table Level DAC

Thomas H. Hinke
TRW Defense Systems Group

One Space Park
Redondo Beach, Calif. 90278

1 Abstract

This paper describes an exercise in which the mandatory and discretionary security
policy of TRW's Al Secure DBMS prototype (ASD) was used to address the Homework
Problem #2 [Smith89] presented at the Second RADC Database Security Workshop.

2 Introduction

TRW's ASD is a prototype trusted database management system that TRW is building
to satisfy the highest level of security. In the absence of a finalized Trusted Database
Interpretation (TDI), TRW has structured the system to satisfy the requirements of
DoD 5200.28-STD (the Orange book) [DoD85] and TRW's interpretation of what can
be expected in an approved TDI. Currently ASD represents a research prototype and
not a product.

ASD is a relational DBMS that supports the SQL language. It enforces both
mandatory access control (MAC) and discretionary access control (DAC). The gran-
ularity of control for MAC is the row - meaning that each row in a relation or table
can have its own distinct security level label. The granularity of control for DAC
is the whole table, meaning that each table can have its own distinct DAC access
requirements.

The data dictionary is stored within ASD tables and comes under the ASD security
policy. The data dictionary can thus be stored with any level of protection from
unclassified to system high, the highest level of classification provided by ASD.

60

3 Support for the Homework Problem

This section presents the database design for using ASD to support the security re-
quirements of the homework problem.

Each table is shown as table-name(field-namel, field-name2, ... field-nameN).

The following headquarters department tables contain information from the fol-
lowing departments: Personnel and Administrations, Financial Management, Procure-
ment, and Security. For each of the headquarters department tables the DAC update
restrictions are that only the Personnel Analyst (Myers) and the Personnel Clerk
(Chandler) can update these tables. The headquarters department tables include:

" Name (Employee-number, Employee-name) - The rows are unclassified. DAC
read is public.

" Management-Addresses (Employee-number, Address) - The rows are unclas-
sified. DAC read is limited to the Executive Department, Personnel Analyst
(Myers) and all managers

* Assigned-Project (Employee-number, Project) - The classification of the rows
are U, C or S depending upon the project. DAC read is public.

" Job-Title (Employee-number, Job-title) - The classification of the rows are C.
DAC read is public.

" Department (Employee-number, Department) - The classification of the rows
are S. DAC read is public.

" Assigned-Projects (Employee-number, Project) - The classification of the rows
are U, C or S depending upon the project. DAC read is public.

" Non-Management-Department X-Addresses (Employee-number, Project)
- The rows are unclassified. There exists one of these tables for each of the
four headquarters departments. DAC read is Personnel Clerk (Chandler) for
each table and the department secretary for the table that contains the non-
management employees for the secretary's department.

The next group of tables support the projects and line departments. The DAC
update restrictions applying to all of these tables is that only the Personnel Analyst
(Myers) and the Personnel Clerk (Bukowski) can update the tables. The reason that
these tables are distinct from the previous headquarters department tables is that the
Personnel Clerk that has update access to these tables (i.e. Bukowski) is different from
the Personnel Clerk that has update access to the headquarters department tables.

The project and line department tables include:

61

" Name (Employee-name, Employee-number) - The rows are unclassified. DAC
read is public.

" Management-Addresses (Employee-number, Address) -.The rows are unclas-
sified. DAC read includes the Executive Department, Personnel Analyst and all
managers.

" Assigned-Projects (Employee-number, Project) - The classification of a row
is U, C or S depending upon the project. DAC read is public.

" Job-Title (Employee-number, Job-title) - Classification of the rows is C. DAC
read is public.

* Department (Employee-number, Department) - The classification of the rows
is S. DAC read is public.

" Non-Management-Addresses (Employee-number, Project) - The rows are
unclassified. There exists one of these tables for each of the projects and line de-
partments, requiring eight such tables. DAC read is Personnel Clerk (Bukowski)
for each table and the department or project secretary for the table that contains
the non-management employees for the secretary's department or project.

The following set of tables have distinct DAC read and update requirements for
each table.

" Salary (Employee-number, Salary) - The classification of a row is U, C or S
based on amount of salary. DAC update is Executive Secretary. DAC read is
public.

* Profit-Share (Employee-number, % Salary) - The classification of the rows is
S. DAC update is Executive Secretary. DAC read is President, Vice-president
and their Executive Secretaries.

" Investigative-Status (Employee-number, Investigative-status) - The classifi-
cation of the rows is C. DAC update is Security Officer. DAC read is President,
Vice-president and members of the Security Department.

" Credit (Employee-number, Credit-rating) - Classification of the rows is TS-
Category A. DAC update is Security Office. DAC read is public. Data dictionary
entries for this table are classified at S-Category A.

" Skills (Employee-number, Skill) - The classification of the rows is TS. DAC
update is Security Office. DAC read is public.

• Clearance (Employee-number, Security-clearance) - The classification of the
rows is U, C, S or TS depending upon the level of the clearance. DAC update
is Security Office. DAC Read is public.

62

The following tables contain information about projects. Each table is to be up-
dated by the secretary of the respective project. With table level DAC, these would
have to be handled with one set of tables for each project and only a single row in all
but the Project-Subject table. An alternative is to designate a single update authority
to perform all of the DAC update access, and have only one set of tables supporting
all projects. The table set that would exist for each project is as follows:

Project-Subject (Project-Id, Subject) - For each project, there exists two rows
in the table. One row, represents an unclassified description of the project in
which the Project-identifier is a unclassified and the Subject is the unclassified
cover story. The second row associated with each project contains the Project-
Identifier and the actual Project-subject which ranges from unclassified to TS-
Compartmented. ' DAC update is the secretary of the project. DAC read is
public.

" Project-Name (Project-Id, Project-name) - This table contains rows that are
classified S, since the association of Project-ID with Project-name is classified S.
DAC update is the secretary of the project. DAC read is public.

* Project-Client (Project-Id, Project-client) - Since the association of Project-
Client with the organization is classified S, all of the rows are classified S. This
overrides the requirement that the project-client association is to be classified
a the same level as the project name since S dominates the classification of all
project names. DAC update is the secretary of the project. DAC read is public.

4 Conclusions

As exhibited by the database design presented in this paper, a secure DBMS that
supports table level DAC and row level DAC can be used to support a database
such as the homework problem that has fairly stringent DAC requirements. The only
situation in which row level DAC would have been a useful feature is with respect to
the project information, since each project secretary was to have update privilege for
their respective projects. However, for this database design, this was handled quite
adequately with single row tables. We believe that the added overhead required to
have a small number of single row tables is preferable to having DAC on each row of
every table.

'Note that there appears to be some conflict in the requirements of the problem. Security Policy
Statement 8 indicates that the fact that there is a cover story for classified projects is TS. However, the
fact that the cover story is unclassified and the classification of Project-Subject ranges from U to TS-
Compartmented means that for a project with a subject that is classified less than TS, the authorized
user can infer that cover stories exist, and this inference can be made at less than the TS level.

63

References

[Smith89] Smith, Gary W., Homework Problem #2 - Title: MLS Database Design,
Second RADC Workshop on Database Security, Bethlehem, New Hamp-
shire, May 1989.

[DoD85] Department of Defense Trusted Computer System Evaluation Criteria. U.S.
Department of Defense. DOD 5200.28-STD. December 1985.

64

)LS Implementation Using the Sybase Secure SQL Server

Melody F. O'Brien
Edward D. Sturms

TRW Federal Systems Group
2750 Prosperity Avenue

Fairfax, VA 22031

1. Introduction

TRW and Sybase have been involved in the research and development
of a commercial, multilevel secure relational DBMS since 1985.
This research has produced the Sybase Secure SQL Server, a product
aimed at satisfying the class B2 level of trust found in both the
DoD Trusted Computer Systems Evaluation Criteria and its expected
companion document for databases, the Trusted Database
Interpretations.

This paper presents TRW's solution to a real-world problem
involving multi-level security. This problem was written by Gary
W. Smith and presented as a homework problem entitled "MLS Design$'.
TRW took the initiative to implement the MLS Design requirements
in an existing multi-level secure relational database management
system, the Sybase Secure SQL Server. The Sybase product provides
all of the security and integrity features needed to solve this
problem.

The requirements stated in the MLS Design problem contained a
variety of integrity and security constraints. The system
requirements include assigning security labels to single as well
as pairs of attributes. To satisfy this requirement using a
relational DBMS with row-level security presents a challenge to
the database designer. In addition, security requirements based
on a range of values in a field, and discretionary access based on
the value of a field, are also included in the problem. Integrity
constraints on lists of values and classifications of requests
associated with string values, such as the company name, are
introduced. As a result of the mixture of requirements listed in
the assignment, TRW chose to approach the problem by first
satisfying the requirements for security of the data, then
implementing the integrity constraints. This ordering is also used
throughout this paper.

The objective in solving this problem was to allow as many users
as possible to have access to as much data as possible without
violating security constraints. Integrity constraints apply to the
entry and update of data, rather than its access. In some cases,
our implementation uses upward classification of the data for
single attributes to prevent disclosure of sensitive data.

65

Alternate methods which prevent this are discussed in the paper.
However, these alternatives require strict enforcement of user
access methods and to some extent restrict system flexibility. For
these reasons, the classifications of some attributes have been
increased to satisfy the overall requirements.

2. Overview of Required Secure BQL Server Components

The Sybase Secure SQL Server provides many features which support
both database security and integrity. Users perform queries and
updates to the database through any user terminal connected to a
host accessing the server via the network. There are two dedicated
trusted interface terminals for each server: the System Security
Officer Trusted Interface (SSOTI), and the User Trusted Interface
(USERTI). The System Security Officer (SSO) controls all
security-related operations in the Secure SQL Server via the SSOTI,
such as creating user accounts and granting maximum login levels.
Only users with SSO privileges may use this terminal. The USERTI
is available to all users and provides such options as changing
passwords and granting and revoking discretionary access control
to databases and tables. Users with System Administrator (SA)
privileges, as granted by the SSO, have additional options
available to them via the USERTI, including managing system
resources. The separation of roles for security and administrative
tasks prevents any one user from having complete control over the
system.

Many of the Secure SQL Server features are utilized in the
implementation of the MLS Design problem. As previously mentioned,
the Sybase Secure SQL Server provides mandatory and discretionary
access controls within its environment. Thus, the system managers
of the various parts of the system may enforce controls on the data
that users are able to access or update. Integrity controls in the
system reduce the possibility of incorrect data being entered into
the system. The Sybase Secure SQL Server ensures both the physical
and logical integrity of the data.

2.1. Mandatory Access Control

The Sybase Secure SQL Server provides mandatory access control on
a row-level basis. Each record within the system has a security
label associated with it, and all mandatory access controls are
strictly enforced based on record labels. This model covers all
of the records in the database, including metadata in the data
dictionary. Whez- a user creates a table in the Secure SQL Server,
the system stores the schema information about that table in
records in system tables. These records are labeled with the
security level of the user. The side effect of this model is that
it creates a minimum access level for the table. As a result,
users granted discretionary access to a table must be logged in at
or above the level at which that table was created in order to know
that the table and its attributes exist. If a user does not have
discretionary access to a table, then all requests referencing the
table result in a 'table not found' message. All tables, including

66

system tables, are protected from general user access by mandatory
and discretionary controls.

User accounts are created and granted a maximum security login
level via the SSOTI. This maximum login level for the user is
made up of two parts: a hierarchical level from 1 to 16, and a
combination of up to 64 non-hierarchical compartments. "System
high" is considered login level 16, with compartments 1 through 64.
Again, when a login account is created, information is stored as
a record in a system table. These user records are labeled system
high and contain information about the current state of the account
such as username, password, maximum login security level, and roles
(i.e., SA or SSO).

The homework problem requires 4 hierarchical levels and 9
compartments, all of which have been assigned equivalent
hierarchical and compartmental values in the Sybase Secure SQL
Server as listed below. Throughout this paper, the hierarchic
level will be referred to by its alphabetic code and compartments
by their numeric code:

Hierarchical Levels

ilomewofk Problem Code Svba Secure SOL Server

Unclsfte U 1
Company Prvate C 2
Snsot S 3
TrUy Sensitive TS 4

Compartments

Hommork Problem Syban Secure SOL Ssrver

A 1
J 2
K 3
L 4
aO 5
W 6
X 7
Y a
z 9

Each record of data within the Sybase Secure SQL Server is assigned
a security label corresponding to the login level of the user who
created or most recently updated the record. Thus, if a piece of
data is to remain classified TS with compartment 1, then users must
make sure that they modify that data while logged in at (TS-1).
Otherwise, the record will be polyinstantiated, producing two

67

similar records with different labels.

Users logged in at or above the security level of a table, and
having been granted discretionary select access for a table, will
be able to select all records in that table labeled at or below
their current hierarchical login level and with any subset of
compartments that they chose upon logging in. For example, a user
logged in at TS-1,2 will be able to see all U, C, and TS data with
compartments 1 only, 2 only, both 1 and 2, or no compartments.

2.2 Discretionary Access Control

Discretionary access is granted to users in the Secure SQL Server
via the USERTI. Users owning objects, such as databases or tables,
may grant other users, or groups of users, access to those objects
via this interface. Discretionary access for databases consists
of whether or not the user may use the database. Discretionary
access for tables consist of any combination of select, insert,
update, and/or delete permissions on tables for each individual
user. Once a user has access to a table(s), he/she will also be
able to execute any of the views or stored procedures that
reference the table(s).

2.3 Groups

Related users may be assigned to groups. This feature has many
practical uses, such as assigning all members of a department to
a single group. Then, if the department is to be granted
discretionary access to a table, such as select access to tablel,
the table owner can quickly give the department access to the table
by granting the group select access. All users of a database are
members of that database's "public" group.

2.4 Rules

Rules are not part of the Sybase Secure SQL Server Trusted
Computing Base (TCB) but can be used as additional integrity
controls on the data. Rules specify what data users are or are not
allowed to enter in a particular column of a table. They should be
created at system low (level U with no compartments) to guarantee
access for all fields, although this is not required. Once
created, a rule can be "bound" to a field at the creation level of
the table containing the field. Because of the way in which rules
are created, the same rule may be bound to many different fields.
Rules are used to perform integrity checks for values entered into
a field and are checked each time an attempt is made to insert or
update information in the field bound to the rule.

2.5 Views

Views are not part of the TCB but can be used to aid user access
to data, and provide an alternate way of looking at the data in one
or more tables. This definition may include reducing the data that
the user of the view may see as well as joining tables so that the

68

user can obtain a wider range of data than is available from just
one table. However, since the view is not part of the TCB, it
should not be used to restrict access to data. If a view
implements a join of two or more tables, each resulting row will
have a "high water mark" of the highest hierarchical level and the
union of all of the compartments of all of the joined rows. If the
user's login level does not dominate the resulting high watez mark,
then the record will not be displayed to the user. Obviously, this
similar phenomenon occurs when a user performs a join of two or
more tables without using a view.

Access to a view is not restricted; instead, access to the base
tables are controlled. Users with access to all of the objects
referenced in a view can successfully use the view. The reasoning
behind this feature is that if a user has access to all of the
objects mentioned in a view, then they already have the ability to
reproduce the results of the view.

2.6 Stored Procedures

Stored procedures are collections of SQL statements and optional
control-of-flow statements stored in the database under a user-
defined name. The first time a stored procedure is executed, it
is compiled and its execution plan is stored, so that subsequent
execution will be faster. This allows frequently needed activities
to be performed almost instantaneously by the server. Stored
procedures were used in our implementation to develop the recurring
reports and ad-hoc queries. As in the case for views, there is
no discretionary access control mechanism applied to stored
procedures. The stored procedure will execute as long as the user
has discretionary and mandatory access to the objects referenced
to the stored procedure.

3. Data Structures

There are two main entities required by the homework problem: the
employee entity and the project entity. In order to satisfy the
requirements stated in the homework problem, each entity was broken
down to the attribute level.

3.1 Employee Entity

According to the homework problem, the employee entity consists of
the employee number, name, home address, job title, salary, profit
share, investigative status, credit rating, department, skills, and
assigned projects. The field contents are as follows:

o emp no - a unique identifier given to each employee upon
assignment to the organization

o emp name - the name of the employee
o home addr - the street address of the employee
o jobtitle - the employee's job title
o salary - the annual salary of the employee in thousands of
dollars

69

o profit share - the percentage of salary given to the
employee for bonuses and/or share of profit

o investstat - the code representing the current status of
ongoing investigations of the employee

o creditrating - the credit rating of the employee
o dept - the department to which the employee is assigned
o skill - a specific skill in which the employee is qualified
o project-no a project to which the employee has been assigned

There may be more than one skill or project-no field per emp no.

The homework problem also requested a field called
securityclearance, which contained the maximum hierarchic level
and all of the compartments to which that user was to have access.
However, the Sybase Secure SQL Server maintains this information
automatically, and once login accounts are created for users in the
system, their maximum login level is also stored in a system table.
Users are allowed to log in at or below their maximum clearance
level.

The homework problem required some of the attribute-value pairs to
be classified at a different security level than other
attribute-value pairs. In the Sybase system, the smallest entity
that can be classified is a record. To meet the requirements of
attribute level classifications, the employee entity must be
divided into several different sub-entities, with the primary key
being the employee number, so that the sub-entities may be
classified at different levels. By joining tables together, the
correct joined classification is automatically generated by the
system.

For example, the attributes empname and dept are classified at
(U), the attribute-value for the employee name by itself is
classified (U), and the department attribute-value is classified
(S). If this information was stored in one record, the record
would necessarily be labeled (S). This would over-classify the
employee name attribute-value. In order to allow users to access
the employee name data at login level (U), this data must be
separated from the department data which is classified (S).
Therefore, the employee name must be placed in a table classified
.), while the department data is placed into a separate table and
labeled (S). Since the existence of the department attribute is
classified (U), the department table was created at (U) so that its
attribute name would be available to users logged in at (U).

One unique index was placed on the employee table to prevent
multiple empno values in the unique empno field. Unique indexes
in the Secure SQL Server require the seclabel field to be included
in the definition of the unique index.

3.2 Project Entity

The project entity is comprised of a project id, project name,
project subject, and project client. The description of the

70

contents of each field are as follows:

o proj id - the unique unclassified code used to represent
each project

o proj name - the unique code name for a project
o proj~subject - the name of the project which indicates the

actual subject of the effort
o proj client - the name of the organization which is the
client of the project.

There may be more than one project performing work for the same
client.

Two unique indexes were required to assure the uniqueness of the
project id and the project name data. One unique index was placed
on projectid and one on project-name.

The drawings below indicate the relationship between the tables.
The bolded field names are fields which occur in more than one
table and may be used to perform joins with other tables. The
project-no field in the assignedprojects table can be joined with
the projid field of any of the project tables in order to access
information regarding projects to which an employee is assigned.

71

Employee Entity Table Structure
(U) Employee (U) Adres

oo bw Imp-no amp-Mt =CJ e-Mlm h6o&-d
U _ _ St U 1681

(U) Jobitle (U) Salary
aec-bew emp-no jo-Iit mr.labe oMP-no lw

C lee Toch Soaf S in _ o

(U) ProfitShare (U) InvesStatus

30c-bel mp-no Pm "u" IMP-no hlss

S 168 30 C Is I C

(S-1) Credlt_.Ratlng (U) Skill
e-kibel Imp-no awcl do~ael Imp-so a

TS-1 168 1 Is 165 BO

(U) Department (U) Assigned_Projects

ucjabel 8mm;no dop ec-abel I MP-no pMjCLno
U 168 EMo U 168 3

U 354 Exc U 168 I

Project Entity Table Structure
(U) PrJectD (U) ProjectName

s[e-Itl ProLd [Uc_lhb proLId pmLrwIe

U 1 U 1 SOLVER
U 3 S 3 ISTAR

(U) ProjectClient (U) ProjectSubject[o-ae proLld prdie ncb projjd pra~ma
U 1 A U 1 [CALS 1
U 3 e U 3 OK. Trwil *M

-Sj6.4,6 3 NUWu NoSsc. Kams3

4. Sybase Secure SQL Server Implementation

4.1 Mandatory Access Controls

The following charts indicate the mandatory access, creation, and
data levels for each table. Data levels for ranges of data must
be maintained by the user, unless external code is used. The chart
below indicates the mandatory access level/creation level and data
entry level. The mandatory access level indicates the minimum
login level required to gain access to a table and its attributes.
The mandatory access level is the same as the level at which the
table was created.

72

EMPLOYEE ENTITY

Mandatory Access/
Table Name Creation Level Data Level
----------------- -------------- -----------------
employee U U
address U U
job-title U C
salary U U if salary < 25

C if 25 <- salary < 75
S if salary >= 75

profit-share U S
investstatus U C
creditrating S-1 TS-1
department U S
skill U TS
assignedjprojects U U

PROJECT ENTTTY

Mandatory Access/
Table Name Creation Level Data Level

project id U U
project_name U SOLVER (C)

ALPHA (U)
ISTAR (S)
EPCOT (S)
BARBER (S)
GEMINI (S)

projectsubject U CALS Proposal (C)
HQ Relocation (U)
Neural Net Security Kernel

(S-4,6)
Autonomous Land Spy Vehicle

(TS-3,7)
Pentagon Redesign (TS-3,8)
Presidential Inference

Controller (TS-3,5,9)

4.2 Discretionary Access Controls

Discretionary access controls were required by the homework problem
to maintain a "need to know" policy for employee data. As a
result, certain users and groups were allowed certain types of
discretionary access to specific tables. The groups execsec,
execmgr and secdept were formed to respectively group the executive
secretaries, executive managers, and security department. The
following table lists a representative sample of the discretionary
access control requirements implemented on the Secure SQL Server.
Although 'delete' is also a discretionary access that can be
granted, it was not mentioned in the homework problem so it is not

73

depicted in the table below.

EMPLOYEE ENTITY

Table Name Select Insert Update

employee public myer myer
address public myer myer
job-title public myer myer
department public myer myer
assignedprojects public myer myer
salary execsec myer execsec

execmgr
profitshare execsec myer execsec

execmgr
invest-status execmgr myer secdept

secdept
creditrating public myer secdept
skill public myer secdept

PROJECT ENTITY

Table Name Select Insert Update
project-----d publ
project_id publicproject-name public
projectsubject public
projectclient public

4.3 Integrity Constraints

Many integrity constraints were imposed by the requirements listed
in the homework problem. However, none were beyond the scope of
the Secure SQL Server's capabilities. To force a field to only
contain a value from a distinct subset of possible values, a rule
was created and then bound to the column which was supposed to
follow the rule. The following commands are examples of the types
of rules used to enforce integrity.

Since the employee number field is a positive number, a rule was

created to force emp_no to be positive:

create rule posnum as @empno > 0

Then, the rule was bound to the employee table's empno field:

bind rule posnum to employee.empno

Another requirement by the homework problem constraining the values
that could be contained in the dept table was satisfied by the
rule:

create rule deptname as @dept in ("EXEC", "PERS", "PROC"I,
"FIN", "SEC", "ENG", "INT", "OPS")

74

bind rule deptname to department.dept

Although only two rules are mentioned in this paper, a variety of
different rules were incorporated into the implementation.

5. Design Variations

All but a few of the security and integrity constraints were able
to be implemented in our system. In any relational system, there
are several alternatives to any implementation. The following
variations were used in the Sybase implementation.

5.1 Security Constraints

The homework problem requested that the classification of each
user's maximum login level be classified at its hierarchic level,
excluding the compartments. The Sybase Secure SQL Server handles
all classifications internally. Each user's login account
information is labeled system high. Thus, the desired
functionality was not implemented. Other portions of the
assignment requested that the classification of a record's security
level be different than its security level. As mentioned above,
the classification of the security level of any record is the
classification of the record.

The requirements state that discretionary access control be placed
on the address table based on an employee's title and/or
department. For example, only managers, personnel clerks, and
department secretaries should be granted discretionary access to
the address table, since they are the only ones allowed to see
information of this kind. Beyond simple access restriction to the
table, the homework problem requested that certain users be given
access to only portions of the data in the table. There are a
variety of approaches to this problem:

(1) Create a stored procedure based on the current database
structures which determines whether or not the user is
allowed access to the information. However, this stored
procedure would be fairly complex and the users would be
forced to use stored procedures when accessing certain
attribute-value pairs.

(2) Add an extra field to the table containing the address
information for each employee, indicating the type of
person within the company that is allowed to access that
person's address (e.g., a value of 'I' imply that this
person is a member of the "management group" which is
allowed to see any other manager's address). A stored
procedure could then (a) check the value of the
employee's code field and compare it to the code field
of the requestor, and (b) verify that the requestor is
the secretary of the department to which they belong.

75

(3) Assign the address information additional compartments,
depending on the characteristics of the employee, to
which only acceptable users will be granted access. This
also involves granting additional compartments to each
user with access.

Any one of these approaches can be used to satisfy the intent of
the homework problem.

Another security constraint imposed on the system throughout the
homework problem is data aggregation. Two different attributes may
result in a higher classification than either of the two individual
attribute-values require by themselves. This introduces a popular
problem among secure relational databases in which a piece of data
selected by itself is not really sensitive, but when selected with
another piece of individually non-sensitive data, produces a
sensitive result. As an example from the homework problem,
consider the instance in which the employee name by itself is
classified (U), and the employee's job title is classified (U),
but in association with each other they are classified (C). Using
two tables with the primary key empno to satisfy this requirement,
one of the following scenarios results:

(1) Both dttributes are singly classified at (U), causing
their association to be classified at (U);

(2) The employee name is classified (U), and the job title
data is classified (C), causing the join to be classified
(C) but resulting in the loss of job title data to users
logged in at security level (U).

Thus, further controls must be imposed upon the system to satisfy
all of the requirements. The complete answer to the problem
presents a third solution, which requires a third intermediate
table and an extra field:

(3) A third intermediate table can be created, containing
employee numbers and an associated employee code. The
job title table then consists of the employee code and
the code's job title. Users wishing to associate the
employee name with the job title will be forced to go
through the intermediate employee code table, which is
classified at (C). This method provides complete
resolution of the security constraints placed on these
two field.

A pictorial mapping of the third option listed above is depicted
below. The field 'high-watermark' represents the resulting system
classification of the joined row:

76

Option (3)
() Employee (U) Employse_Code
S..be *"-no n, MW " . iMpVcde

U M84 j S'mn, jU 354 1984

(U) JobTltnle
ucea smp. ibJke

C 19 4 PM

Resulting Join:

high watermark empno empname jobtitle

C 354 smithg pres

The homework problem requires that data security levels be
maintained based on the value of an attribute. As depicted in
section IV, the salary data security level is dependent on the
value of the field. Currently, the users will have to verify that
they are logged in at the correct level in order to update the
data. Additional code can be implemented to check the user's login
level against the value of the data in order to guarantee that
inserts and updates take place at the correct login level.

The security constraints listed in the homework problem indicate
a need to classify the classification of the security level of an
attribute (such as creditrating) at a different level than that
at which the attribute is classified. Our system classifies the
classification of an attribute at the same level as its actual
security level, which is the level of the table containing the
attribute.

A "cover story" implementation is requested by the homework
problem, which displays a cover story project subject to users
without the proper clearance. Users with the proper clearance will
have access to both the "real story" and the "cover story". The
requirements state that the association of the projsubject
attribute-value with the projname attribute-value pair is
classified at varying levels, depending on the pair. This task was
accomplished by placing the project name data in one table with its
respective security classifications, and then placing the project
subject data into another table with its respective
classifications. The high water mark of the association also
happens to be the security level of the project subject. However,
the system requirements call for implementing a cover story for the
above-mentioned association if a user is not logged in at the
minimum required level to see the information. This was
implemented by classifying the cover story for each project at
system low, and classifying the actual projsubject at its required

77

level. Thus, users selecting the projsubject at an incorrect
level will obtain the cover story. Users logged in at the correct
level will see both the real projsubject information as well as
the cover story projsubject.

The homework problem requires some integrity constraints to have
specific classifications. Integrity constraints are normally
created at system low and bound to the necessary table at the
creation level of the table. However, if necessary, a rule can be
created at the creation level of a table in order to have it
classified at the same level as a table's attribute. Thus,
integrity constraints on an attribute may be classified at or below
the level of an attribute (which is determined by its containing
table) but not above the level of the attribute. As an example,
the integrity constraint on the association of the projsubject and
proj name data is classified at a higher level (TS-2,3,4,5,6,7,8,9)
than any of the data contained in the two fields (see section 4.).

5.2 Integrity Constraints

The MLS Design project required that the system generate unique
random numeric codes for employee number values. The "uniqueness"
of the value was implemented by imposing a unique index on the
employee table. The "randomness" of the value can be done by
external software, but was not implemented.

The homework problem required that integrity checks be performed
on fields allowing combinations of values and presented the data
as a list of values separated by commas in one field. In order to
perform integrity checks on data that may contain one or more
values, the data separated by commas (as in the skill table,
"5BD7,8F") was split into a separate table, with multiple entries
allowed per primary kty. As an example, a rule was created for the
skill field in the skill table to restrict the valid values for
skill codes as follows:

create rule skills as @skill in ("3A", "5B", "D7", "8F", "C9")

bind rule skills to skill.skill

As a result, each entered skill value can be checked against the
rule bound to the skill table. This occurs for both the skill and
assigned projects employee data. The first drawing below indicates
the resulting implementation.

m_ jin- I em~m U

TS 753 S W I TV C,B 5
TS 753 a

The integrity constraint on the projsubject field is that it is
based on a mapping from the projname to the projsubject field.

78

This can be accomplished by verifying that only authorized
personnel can update that data. The table owner of this table can
prevent all but authorized personnel from being granted access to
this table, thus restricting the improper update of the data in the
table. In this manner, each skill entered into its own field can
be checked against the valid values for that field.

6. Conclusions

This paper presented TRW's solution to the MLS Design homework
problem written by Gary Smith. The Sybase Secure SQL Server
provides the means to successfully implement the security and
integrity requirements as stated in the MLS Design homework
problem. This paper provides examples of variations from the
requirements in order to demonstrate the flexibility of our system
to adapt to difficult, real-world system constraints.

Various components of the Sybase Secure SQL Server were discussed,
including the methods by which mandatory and discretionary access
controls are implemented in the system. The concepts of groups,
rules, views, and stored procedures were also discussed.

79

SCTC Technical Note

Secure Database Homework Problem #2

2nd RADC Secure Database Conference

LOCK Data Views

Prepared by
Honeywell Inc.

Secure Computing Technology Center
St. Anthony, Minnesota, 55418

May 15, 1989

Prepared For:
Rome Air Development Center

Workshop on Database Security
Franconia, New Hampshire

May 16..18, 1989

80

PREFACE

This report entitled "Homework #2" describes a sample database,
as it might be designed, if defined for Lock Data Views (LDV). It
gives the logical and physical schema and reasoning behind the LDV
style. It shows sample queries from an LDV prototype against a sample
database. This sample database and associated policies and require-
ments were provided by Gary W. Smith, for use at the 2nd RADC RADC
Workshop on Database Security.

The work was supported by Honeywell from IR&D funds, and is not a
part of the Secure Distributed Data Views (SDDV) Contract (contract
no: F30602-86-C-0003), nor of any other Federal Government Contract.
It is related to work done on the SDDV and LOCK contracts by the
Secure Computing Technology Center (SCTC), Honeywell Inc.

This report describes activity performed by the LDV team on the
Homework Problem during the period 1 February 1989 through 15 May
1989. The SCTC personnel were Paul Stachour and Dan Thomsen

SDB#2: LDV Database Design Prepared:May 15, 1989

81

CHAPTER 1

Introduction

This report describes the design of a sample database for a Mul-
tilevel Secure relational Database Management System (MLS/RDBMS), LOCK
Data Views (LDV), being designed to run on the Honeywell LOgical
Coprocessor Kernel (LOCK) Trusted Computing Base (TCB) [HONE87]. This
chapter presents an overview of the LDV design of the Gary W. Smith
Homework Problem, and the LDV approach towards solution.

1.1. Problem Statement

Within the Department of Defense (DoD), the number of computer-
ized databases containing classified or otherwise sensitive data is
increasing rapidly. Access to these databases must be restricted and
controlled to limit the unathorized disclosure, or malicious modifica-
tion, of data contained in them. Present DBMSs do not provide ade-
quate mechanisms to support such control. Penetration studies have
clearly shown that the mechanisms provided even by "security enhanced"
database systems can be bypassed, often due to fundamental flaws in
the systems which host the DBMS. This has led to a reliance on a
number of techniques for isolating sensitive database information.
These include physical protection, "system high" operation, and use of
manual techniques for data sharing. These actions are very costly and
detrimental to operational utility and flexibility.

1.2. Why a Sample

It is easy to write a paper design to solve almost any problem.
The "proof" of the design is whether the design is capable of solving
real problems, or whether it is merely a paper tiger. In this report,
we present the LDV design for a database that is held to be represen-
tative of the kinds of databases that exist in the secure database
user community. LDV should be measured on how well it can do realis-
tic security requrements and associated database schema, such as this
homework problem. In the final analysis, LDV can only be measured by
how a prototype or real implementation meets the needs of both data-
base programmers and end users.

1.3. Report Outline

This report is organized as follows. Chapter 2 presents Task 1:
Database Design. Chapter 3 presents Task 2: Database Schema. Chapter
4 presents Task 3: Database Population. Chapter 5 presents "Task 4:
Database Queries. Chapter 6 summarizes the LDV work and this example.

SDB#2: LDV Database Design Prepared:May 15, 1989

82

CHAPTER 2

Task 1: Database Design

Designing a database depends not only on the user, but on the
underlying system capablities. In this database design, we use the
following two items from LOCK.

/*
* The "Strings" that are the classification levels are NOT defined
* by the DBMS, but are reflected upwards to it by the underlying TCB,
* which will translate them to internal level-ids where appropriate.
* This includes determination of the dominates relation.
*/

/*
* The "Names" appearing as authorization identifiers are those of
* "Groups" to which individuals may belong. Assignment of individuals
* to a group is a LOCK TCB function. Authorization of groups to access
* relations is a LDV DB function. A user belongs to one default
* group. There is a LOCK command (changegroup) to allow a user
* to change his group (if authorized), and thus his "role" as seen
* by the LDV database sub-system.

The approach taken by the LDV team is to define the base rela-
tions of the database with an understanding of the security require-
ments, and to provide a view on top of those' base relations that
reflects the visability desired by the external customer. Accord-
ingly, we define the view (as seen by the external user), the rela-
tions (as seen by the DBA), the security constraints (as seen by the
DBSSO), and finally the security constraints on the security con-
straints (as seen by the DBSSO). As LDV was not designed to handle
integrity constraints, (1] they are not defined in this document except
as they fall out "naturally" from the LDV style. (2]

Wherever tables belonging to the LDV database system are shown,
they are identified by the initial string "DB$", such as DBSRELATIONS.

2.1. View Definitions

83

SDB#2: LDV Database Design Prepared:May 15, 1989

/*

* Views Definitions
* May be done by DBA (Database Administrator)
*/

create view EMPLOYEE (
(
Employee-Num
Employee-Name

Home-Address
Job-Title
Department
Assigned-Projects
Salary
Profit-Share
Investigative-Status
Skills
Security-Clearance

)
as select
EMPLOYEE-BASE. Employee-Num
Employee-Name
EMPLOYEE-ADDRESS. Home-Address
EMPLOYEE-TITLE. Job-Title
EMPLOYEE-BASE. Department
Salary
EMPLOYEE-PROFIT. Profit-Share
EMPLOYEE-INVESTIGATIVE. Investigative-Status
Security-Clearance

from
EMPLOYEE-BASE,
EMPLOYEE-ADDRESS,
EMPLOYEE-TITLE,
EMPLOYEE-PROFIT,
EMPLOYEE- INVESTIGATIVE,
EMPLOYEE-CREDIT

where
EMPLOYEE-BASE. Employee-Num - EMPLOYEE-ADDRESS.Employee-Num and
EMPLOYEE-BASE.Employee-Num - EMPLOYEE-TITLE.Employee-Num and
EMPLOYEE-BASE. Employee-Num - EMPLOYEE-ADDRESS. Employee-Num and
EMPLOYEE-BASE. Employee-Num - EMPLOYEE-PROFIT. Employee-Num and
EMPLOYEE-BASE. Employee-Num - EMPLOYEE-INVESTIGATIVE. Employee-Num and
EMPLOYEE-BASE. Employee-Num - EMPLOYEE-CREDIT. Employee-Num

2.2. Record Definitions

Honeywell Secure Computing Technology Center

84

SDB#2: LDV Database Design Prepared:May 15, 1989

/*

* Record Definitions
* May be done by DBA (Database Administrator)*/

/* Employee Record */
create table EMPLOYEE-BASE

maximum level TS
default level U

(

Employee-Num decimal(3)
maximum level U
default level U
unique

Employee-Name character(12)
default level U

/* DAC restriction: Home-Address *
/* DAC restriction: Job-Title */
Department character(3)

default level S
/* Multi-Value Column: Assigned-Projects */
Salary decimal(4)

default level U
/* DAC restriction: Profit-Share */
/* MAC restriction: Investigative-Status */
/* MAC restriction: /* Multi-Value Column: Skills */
Security-Clearance character(10)

primary key Employee-Num

/* Project Record */
create table PROJECT

maximum level TS
default level U

Project-Id decimal(2)
default level U

Project-Name character(10)
default level U

Project-Subject character(30)
default level U
maximum level TS-KQZ

Project-Client character(3)
default level S
maximum level S

primary key Project-Id

Honeywell Secure Computing Technology Center

85

SDB#2: LDV Database Design Prepared:May 15, 1989

/* Multi-Attribute Project within Employee */
create table EMPLOYEE-PROJECT

maximum level TS
default level U

Employee-Num decimal(3)
default level U

Assigned-Project decimal(2)
maximum level U
minimum level U

primary key Employee-Num

/* Multi-Attribute Skill within Employee */
create table EMPLOYEE-SKILL

maximum level TS
default level U

Employee-Num decimal(3)
default level U

Skill-Code character(2)
default level S

primary key Employee-Num

/* DAC restriction upon Home-Address within Employee */
create table EMPLOYEE-ADDRESS

maximum level U
default level U

(
Employee-Num decimal(3)

default level U
unique

Home-Address character(12)
default level U

primary key Employee-Num

Honeywell Secure Computing Technology Center

86

SDB#2: LDV Database Design Prepared:May 15, 1989

/* MAC restriction upon Job-Title within Employee */
create table EMPLOYEE-TITLE

maximum level C
default level U

Employee-Num decimal (3)
default level U
unique

Job-Title character (12)

primary key Employee-Num

/* DAC restriction upon Profit-Share within Employee */
create table EMPLOYEE-PROFIT

maximum level U
default level U(

Employee-Num decimal (3)
default level U
unique

Profit-Share decimal (3)
default level U

primary key Employee-Num

/* MAC restriction upon Investigate-Status within Employee */
create table EMPLOYEE-INVESTIGATIVE

maximum level C
default level U(

Employee-Num decimal (3)
default level U
unique

Investigative-Status character (2)
default level C

primary key Employee-Num

Honeywell Secure Computing Technology Center

87

SDB#2: LDV Database Design Prepared:May 15, 1989

/* MAC restriction upon Investigate-Status within Employee */
create table EMPLOYEE-CREDIT

maximum level S-A
default level U(

Employee-Num decimal(3)
default level U
unique

Credit-Rating decimal(1)
default level S-A

primary key Employee-Num

2.3. Security and Integrity Assertions

/*

* DAC Security Assertions
* Must be done by DBSSO (Database System Security Officer)
*/

2.3.1. Row Insertions: Record Creation

grant insert
on EMPLOYEE
to PersonnelAnalyst

grant insert
on EMPLOYEE
to PersonnelClerk

grant insert
on PROJECT
to DBSO

grant insert
on PROJECT
to AssistantDBSO

2.3.2. Update Integrity

2.3.2.1. Project Update

Honeywell Secure Computing Technology Center
Pq

SDB#2: LDV Database Design Prepared:May 15, 1989

grant update
on PROJECT
to Secretary

where
select Project-Num from Project

select Project-Num from EMPLOYEE-BASEg
where Project-Num = [user project-num]

2.3.2.2. Employee Selection

grant select (Employee-Num, Home-Address)
on EMPLOYEE-ADDRESS
to ExecutiveDepartment

grant select (Employee-Num, Home-Address)
on EMPLOYEE-ADDRESS
to PersonnelAnalyst

grant select (Employee-Num, Home-Address)
on EMPLOYEE-ADDRESS
to Manager

grant select (Employee-Num, Home-Address)
on EMPLOYEE-ADDRESS
to Secretary

2.3.2.3. Employee Update

grant update (Investigative-Status, Credit-Rating, Security-Clearance)
on EMPLOYEE
to SecurityOffice

grant update
on EMPLOYEE-SKILL
to SecurityOffice

grant update (Salary, Profit-Share
on EMPLOYEE
to ExecutiveSecretary

Honeywell Secure Computing Technology Center

89

SDB#2: LDV Database Design Prepared:May 15, 1989

grant update (Employee-Num,
Employee-Name,
Home-Address,
Job-Title,
Assigned-Projects

on EMPLOYEE
to PersonnelAnalyst

grant update (Employee-Num,
Employee-Name,
Home-Address,
Job-Title,
Assigned-Projects

on EMPLOYEE
to PersonnelClerk
where ...

2.3.3. Security Assertions

/*

* MAC Security Assertions
* Must be done by DBSSO (Database System Security Officer)
*/

DAC Security Assertions not provided in this prototype.[3]

2.3.3.1. SC#I

This constraint is met by the fact that the field Employee-
Num in the record EMPLOYEE-BASE has an attribute that speci-
fies that the maximum-level is U and the default-level is U.
Since it is used as a join-key, thus any operation upon it
through the EMPLOYEE table must also have the (U,U) attri-
butes.

[1] Our research shows that security and integrity constraints pro-
vide pulls in opposite directions. Enforcing one often means giving
up on the other. An example is an airplane flight with a SECRET car-
go. Allowing a U user to add cargo will overload the plane; denying
the U user will provide strong-suspecion of SECRET cargo.

(2] Some of the integrity constraints are much better given as
type-constraints or mapping rules in programming languages than as
values along with object within a database. One way in which this can
be done is defined in (AdaSQL].

Honeywell Secure Computing Technology Center
90

SDB#2: LDV Database Design Prepared:May 15, 1989

2.3.3.2. SC#2

This constraint is met by the fact that the field Home-
Address in the record EMPLOYEE ADDRESS has an attibute that
specifies that the maximum-level is U and the default-level

is U.

2.3.3.3. SC#3

This constraint is met by the fact that the field Home-
Address in the record EMPLOYEEADDRESS has an attibute that
specifies that the maximum-level is U and the default-level
is U.

2.3.3.4. SC#4

LDV does not handle context based on DAC policies. It is
felt that this should be a combination of OS/TCB and DBMS
enforcement.

2.3.3.5. SC#5

assert security SC5a to
select Employee-Num,

Job-Title
from EMPLOYEE-TITLE
level C

/* Note: subsumed in above due to database design */
assert security SC5b to

select Employee-Name
from EMPLOYEE-BASE

Job-Title
from EMPLOYEE-TITLE
level C

(3] There are many ways to do DAC.
The general consensus (from our observations of existing systems)
is that they are implemented as explicit code in the DBMS.
We would prefer to do DAC via ACLS on the files, and have
enforcement done by the underlying TCB.
Whether this can be done under the letter-of-the-iaw
according to the criteria is a question under discussion.

Honeywell Secure Computing Technology Center

91

SDB#2: LDV Database Design Prepared:May 15, 1989

2.3.3.6. SC#6

assert security SC6a to
select Salary,

Employee-Num
from EMPLOYEE-BASE

where Salary >- 25
and Salary < 75

level C

assert security SC6b to
select Salary,

Employee-Num
from EMPLOYEE-BASE

where Salary >- 75
level S

Note that Employee-Name "falls out" as well, due to the way the DBA

designed the datbase, and so need not be explicitly specified.

2.3.3.7. SC#7

assert security SC7 to
select Employee-Num,

Profit-Share
from EMPLOYEE-PROFIT
level S

2.3.3.8. SC#8

assert security SC8a to
select Employee-Num,

Investigate-Status
from EMPLOYEE-INVESTIGATIVE
level C

/* security SC8b, that of Employee-Name, is automatic by
this design, since Employee-Num is needed to do the join.

*/

2.3.3.9. SC#9

assert security SC9a to
select *

from DB$RELATIONS
where Table Name - "EMPLOYEE-CREDIT"

level S-A

Honeywell Secure Computing Technology Center

92

SDB#2: LDV Database Design Prepared:May 15, 1989

assert security SC9b to
select *

from DB$ATTRIBUTES
where TableName - "EMPLOYEE-CREDIT"

level S-A

assert security SC9c to
select *

from DB$PRIMARYKEYS
where TableName - "EMPLOYEE-CREDIT"

level S-A

2.3.3.10. SC#10

assert security SC10 to
select Employee-Num,

Credit-Rating
from EMPLOYEE-CREDIT
level TS-A

2.3.3.11. SC#11

assert security SCl to
select *

from DB$CLASSIFICATION CONSTRAINTS
where ConstraintName - "SC9a"
or ConstraintName - "SC9b"
or ConstraintName - "SC9c"
or Constraint-Name - "SC10"
or Constraint-Name - "SCl1"

level TS-A

2.3.3.12. SC#12

SC#12 is inherent from the database design, where the de-
fault level for all the values of the attribute department
is set to "S".

2.3.3.13. SC#13

SC#13 is inherent from the database design, where the de-
fault level for all the values of the attribute Skill-Code
is set to "S".

Honeywell Secure Computing Technology Center93

SDB#2: LDV Database Design Prepared:May 15, 1989

2.3.3.14. SC#14

assert security SC14 to
select Employee-Num,

Skill-Code
from EMPLOYEE-SKILL
level TS-A

2.3.3.15. SC#15

assert security SC15a to
select Employee-Num,

Skill-Code
from EMPLOYEE-SKILL

Employee-Num,
Assigned-Project

from EMPLOYEE-PROJECT
Project-Id,
Project-Name

from PROJECT
level TS

assert security SC15b to
select Employee-Num,

Skill-Code
from EMPLOYEE-SKILL

Employee-Num,
Assigned-Project

from EMPLOYEE-PROJECT
Project-Id,
Project-Name

from PROJECT
levol level (PROJECT.Project-Name)

This is the kind of context constraint where LDV shines.
Given the way LDV is built, the constraint will be enforced
no matter what the time-difference between the various portions
of the retrieval.

2.3.3.16. SC#16

SC#16 is inherent from the database design, where the de-
fault level for all the values of the attribute Assigned-
Projects is set to "U".

2.3.3.17. SC#17

Honeywell Secure Computing Technology Center

94

SDB#2: LDV Database Design Prepared:May 15, 1989

assert security SC17 to
select Assigned-Project

frcm EMPLOYEE-PROJECT
Project-Name

from PROJECT
level level(PROJECT.Project-Name)

SC#17 falls out since by our schema design,
the level of the Project-Name is stored in such a way
that the desired level is automatically enforced.

2.3.3.18. SC#18

assert security SC18 to
select Security-Clearance

from EMPLOYEE-BASE
level level(EMPLOYEE-BASE.Security-Clearance)

2.3.3.19. SC#19

assert security SC19 to
select Project-Id, Project-Name

from PROJECT
where Project-Id >-3
and Project-Id <- 6
level S

2.3.3.20. SC#20

assert security SC20a to
select Project-Name

from PROJECT
where Project-Name - "SOLVER"
level C

assert security SC20b to
select Project-Name

from PROJECT
where Project-Name - "ALPHA"
level U

Honeywell Secure Computing Technology Center

95

SDB#2: LDV Database Design Prepared:May 15, 1989

assert security SC20c to
select Project-Name

from PROJECT
where Project-Name - "ISTAR"
or Project-Name - "EPCOT"
or Project-Name - "BARBER"
or Project-Name - "GEMINI"
level S

2.3.3.21. SC#21

SC#21 and SC#22 are a cover-story vs real-value setup.

assert security SC21a to
select Project-Name,

Project-Subject
from PROJECT
where Project-Name - "SOLVER"
level C

assert security SC21b to
select Project-Name,

Project-Subject
from PROJECT
where Project-Name - "ALPHA"
level U

assert security SC21c to
select Project-Name,

Project-Subject
from PROJECT
where Project-Name - "ISTAR"
level S-LW

assert security SC21d to
select Project-Name,

Project-Subject
from PROJECT
where Project-Name - "EPCOT"
level TS-JX

assert security SC21e to
select Project-Name,

Project-Subject
from PROJECT
where Project-Name - "BARBER"
level TS-KY

Honeywell Secure Computing Technology Center

96

SDB#2: LDV Database Design Prepared:May 15, 1989

assert security SC21f to
select Project-Name,

Project-Subject
from PROJECT
where Project-Name - "GEMINI"
level TS-KQZ

In reality, we would set the data at their actual levels, and create

an unclassifed cover story, as we show in the prototype.

2.3.3.22. SC#22

This falls out naturally from the LDV design since the user will not
know that there is a cover story until they are at the level where
they can see the real story.

2.3.3.23. SC#23

assert security SC23 to
select *

from DB$INTEGRITY CONSTRAINTS
where Constraint Name - "IC15"

level TS-JKLQWXYZ

2.3.3.24. SC#24

assert security SC24 to
select Project-Name,

Project-Client
from PROJECT
level level(PROJECT.Project-Name)

This falls out naturally from the LDV design since the Project-Name is
stored at the level of Project-Name, you will not be able
to combine it with anything unless you are at that level.

2.3.3.25. SC#25

SC25 is done by classifying all values of the rroject-Client
attribute at "S" or higher. This is done with the
"default level S" classification at the definition of the
Project-Client attribute.

2.3.4. Integrity Assertions

The LDV SQL Language definition includes limited integrity
enforcement. This is not in the prototype.

Honeywell Secure Computing Technology Center

97

SDB#2: LDV Database Design Prepared:May 15, 1989

2.3.4.1. IC#1

Unique handled by database design. Randomly generated must
be done by application.

2.3.4.2. IC#2

Allowed values handled by database design.

2.3.4.3. IC#3

Alphanumeric not enforced by LDV. This is a language
typedef question not handled by SQL.

2.3.4.4. IC#4

Enumerations not enforced by LDV. This is a language
typedef question not handled by SQL.

assert integrity 1C4 IMMEDIATE to
EMPLOYEE-TITLE:

not(
(EMPLOYEE-TITLE.Job-Title - "Pres") and
(EMPLOYEE-TITLE.Job-Title - "VP-HQ") and
(EMPLOYEE-TITLE.Job-Title - "VP-PM" and
(EMPLOYEE-TITLE.Job-Title - "ExecSecy") and
(EMPLOYEE-TITLE.Job-Title - "DeptMgr")and
(EMPLOYEE-TITLE.Job-Title - "TechStaff") and
(EMPLOYEE-TITLE.Job-Title - "DESO") and
(EMPLOYEE-TITLE.Job-Title - "AstDBSO")and
(EMPLOYEE-TITLE.Job-Title - "SecClk") and
(EMPLOYEE-TITLE.Job-Title = "AdmAst")and
(EMPLOYEE-TITLE.Job-Title - "PerAnal")and
(EMPLOYEE-TITLE.Job-Title - "PersClk")and
(EMPLOYEE-TITLE.Job-Title - "FinAnal")and
(EMPLOYEE-TITLE.Job-Title - "FinClk")and
(EMPLOYr.E-TITLE.Job-Title - "ProcAnal")and
(EMPLOYEE-TITLE.Job-Title - "ProcClk")and
(EMPLOYEE-TITLE.Job-Title - "MgtAnal")and
(EMPLOYEE-TITLE.Job-Title - "Adm Clk")and
(EMPLOYEE-TITLE.Job-Title - "Secy"

on
insert to EMPLOYEE-TITLE,
update to EMPLOYEE-TITLE

violation action abort

Honeywell Secure Computing Technology Center

98

SDB#2: LDV Database Design Prepared:May 15, 1989

2.3.4.5. IC#5

Numeric values handled by database design. Allowed numeric
values not enforced by LDV. This is a language typedef
question not handled by SQL.

assert integrity IC5 IMMEDIATE to
EMPLOYEE-BASE

not (
(EMPLOYEE-BASE.Salary > 0)

on
insert to EMPLOYEE-BASE,
update to EMPLOYEE-BASE

violation action abort

2.3.4.6. IC#6

Numeric values handled by database design.

2.3.4.7. IC#7

Alphanumeric not enforced by LDV. This is a language
typedef question not handled by SQL.

2.3.4.8. IC#8

Numeric values handled by database design. Allowed numeric
values not enforced by LDV. Allowed numeric values enforced
by database typedef.

2.3.4.9. IC#9

Honeywell Secure Computing Technology Center

99

SDB#2: LDV Database Design Prepared:May 15, 1989

Enumerations not enforced by LDV. This is a language
typedef question not handled by SQL.

assert integrity 1C9 IMMEDIATE to
EMPLOYEE-BASE:

not
(EMPLOYEE-BASE.Department - "Exec") and
(EMPLOYEE-BASE.Department - "Pers") and
(EMPLOYEE-BASE.Department - "Proc") and
(EMPLOYEE-BASE. Department - "Fin") and
(EMPLOYEE-BASE.Department - "Sec") and
(EMPLOYEE-BASE.Department - "Eng") and
(EMPLOYEE-BASE.Department - "Int") and

*(EMPLOYEE-BASE.Department - "Ops")

on
insert to EMPLOYEE-BASE,
update to EMPLOYEE-BASE

violation action abort

2.3.4.10. IC#10

Enumerations not enforced by WDV.
This is a language typedef question
not handled by SQL.

assert integrity IC10 IMMEDIATE to
EMPLOYEE-SKILL:

not(
(EMP1LOYEE-SKILL.Skill Code - "3A") and
(EMPLOYEE-SKILL.Skill Code - "5B") and
(EMPLOYEE-SKILL.SkillCode - "D7") and
(EMPLOYEE-SKILL.Skill Code - "8F") and
(EMPLOYEE-SKILL.SkillCode - "C9")

on
insert to EMPLOYEE-SKILL,
update to EMPLOYEE-SKILL

violation action abort

2.3.4.11. IC#11

Honeywell Secure Computing Technology Center

100

SDB#2: LDV Database Design Prepared:May 15, 1989

Numeric values handled by database design. Allowed numeric
values not enforced by LDV. This is a language typedef
question not handled by SQL.

assert integrity ICI IMMEDIATE to
EMPLOYEE-PROJECT

not (
(EMPLOYEE-PROJECT.Assigned-Project >- 1) and
(EMPLOYEE-PROJECT.Assigned-Project <- 6)
)

on
insert to EMPLOYEE-BASE,
update to EMPLOYEE-BASE

violation action abort

2.3.4.12. IC#12

Enumerations not enforced by LDV. This is a language
typedef question not handled by SQL.

Application (at appropriate security level) may validate by
call to an appropriate OS subroutine, such as the LOCK
createobject.

2.3.4.13. IC#13

Numeric values handled by database design. Allowed numeric
values not enforced by LDV. This is a language typedef
question not handled by SQL.

assert integrity IC13 IMMEDIATE to
EMPLOYEE-PROJECT

not (
(EMPLOYEE-PROJECT.Assigned-Project >- 1) and
(EMPLOYEE-PROJECT.Assigned-Project <- 6))

on
insert to EMPLOYEE-BASE,
update to EMPLOYEE-BASE

violation action abort

Note that this is identifical to IC#11, and the one-write
rule tells us that this should be a language typedef and not
an database integrity constraint.

2.3.4.14. IC#14

Honeywell Secure Computing Technology Center
101

SDB#2: LDV Database Design Prepared:May 15, 1989

Enumerations not enforced by LDV. This is a language
typedef question not handled by SQL.

assert integrity IC14 IMMEDIATE to
PROJECT:

not ((PROJECT.Project-Name - "SOLVER"
and (PROJECT.Project-Name - "ALPHA")and

(PROJECT.Project-Name - "ISTAR")and
(PROJECT.Project-Name - "EPCOT") and
(PROJECT.Project-Name - "BARBER") and
(PROJECT.Project-Name - "GEMINI")

on
insert to PROJECT, update to PROJECT

violation action abort

2.3.4.15. IC#15

Mappings not enforced by WDV. This is a language typedef
question not handled by SQL.

This item was ambiguously worded in the homework. It has
been done here in terms of both cover and real names. Since
the constraint itself is classified, this is not a leak.

assert integrity IC15 IMMEDIATE to
PROJECT:

not
(PROJECT.Project-Name - "SOLVER" and
PROJECT.Project-Subject - "CALS Proposal") and

(PROJECT.Project-Name - "ALPHA" and
PROJECT.Project-Subject - "HO Relocation") and
(PROJECT.Project-Name - "ISTAR" and
PROJECT.Project-Subject - "Document Tracking System") and
(PROJECT.Project-Name - "EPCOT" and
PROJECT.Project-Subject - "Personnel System Redesign")and
(PROJECT.Project-Name - "BARBER" and
PROJECT.Project-Subject - "Inventory Control System") and
(PROJECT.Project-Name - "GEMINI" and
PROJECT.Project-Subject - "Contracts Management System") and
(PROJECT.Project-Name - "ISTAR" and
PROJECT.Project-Subject - "Neural Net Security Kernal") and
(PROJECT.Project-Name - "EPCOT" and
PROJECT.Project-Subject - "Autonomous Land Spy Vehicle") and
(PROJECT.Project-Name - "BARBER" and
PROJECT.Project-Subject - "Pentagon Redesign") and
(PROJECT.Project-Name - "GEMINI" and
PROJECT.Project-Subject - "Presidential Inference Controller

on
insert to PROJECT,
update to PROJECT

violation action abort

Honeywell Secure Computing Technology Center

102

SDB#2: LDV Database Design Prepared:May 15, 1989

2.3.4.16. IC#16

Enumerations not enforced by LDV. This is a language
typedef question not handled by SQL.

assert integrity IC16 IMMEDIATE to
PROJECT:

not
(PROJECT.Project-10.lient - "A") and
(PROJECT.Project-Client - "B") and
(PROJECT.Project-Client - "C") and
(PROJECT.Project-Client - I'D") and

on
insert to PROJECT,
update to PROJECT

violation action abort

Honeywell Secure Computing Technology Center

103

CHAPTER 3

Task 2: Database Schema

3.1. Schema for a MultiLevel Secure Database

LDV works by splitting the logical view of the employee-base
relation [Figure 1] into several files [Figure 21. Each time a user
accesses one of the files while doing a query a tuple is added to the
history relation. Each tuple contains the user's name, level, and the
file he accessed. The history relation is something that was invented
for the prototype. While it seems to be a viable solution, in an
actual implementation we plan to explore other possibilities for stor-
ing the history information.

A brief explanation of the figures. Each box signifies a file.
The file name appears above the box. The file is stored at the level
indicated to the left of the box. The context constraint level for
each file is expressed in round parenthesis after the file name. SID
stands for a system generated ID. SIDS are used when the normal key
can not be stored in the same file due to context constraints. The
context constraints for the files in the relation are written
separately below the boxes.

3.2. Schema Comments

In preparation of the data for project-subject and the associated
cover-story, for the cover story it is unclear what level to make the
real subject attributes. We put each project-subject in a file at the
level it should be classified at, and the cover story at Unclassified.
For the CALS proposal subject we also created a cover story at Unclas-
sified even though none was given. The cover story is CALS - COVER
STORY. In LDV it will also be possible for the user to specify that
the security level of the tuple be shown, so that he can distinguish
between the cover stories and the real stories. However, in the Proto-
type we do not have this feature. To simulate this feature we have
added the level of the project-subject to the character string of the
actual project-subject.

In LDV, we currently cannot provide a cover-story in the case
where both the cover and the real item are at the same security level.
We are not sure that such a feature would be needed or useful.

SDB#2: LDV Database Design Prepared:May 15, 1989

104

SDB#2: LDV Database Design Prepared:May 15, 1989
TS

Employee-base u

TS

Project u_________________________

TS
Employee-project u _________[mnlomeeNum Poi

U I -,U

TS
Employee-skill u _________

U
Employeeaddress U________I okeNumI meadn

C
Employee-tItle u ________

U

Employee-profit u_________

C
Employee-investgate U_________

S-A

Employee-credit u_________
Em~xmtdumC(edtMlng

U S-A

Honeywell 105 Secure Computing Technology Center

I IJ

ILI

E, E

0 0

Lu W U uL w wU

C o 0

E E

00

E F. 0

0Y)

0. 0 E E

6.

((D

0 1i
E

w w

.10

0. CLC L La
.0 .0.0.

um I-

o No

0. . C

C

0 0

0

100.

CHAPTER 4

Task 3: Database Population

4.1. Selection of Database System

Before one can populate a database, unless one is just using
something such as flat-files and searching programs such as "awk", one
needs to have a database system to use. For this work, we chose to
build upon a database system called INQUIRE[HELD88], developed at the
University of Minnesota for a class in designing databases. INQUIRE
is written in common-lisp, we use a version under KCL on sun worksta-
tions. INQUIRE provides relational operators, an interface to file-
storage, and the ability to store and process relations as lisp-lists.

4.2. Preparing the Database

After doing the logical and physical database design just
presented, the relations, files, and corresponding linkages were
hand-crafted into INQUIRE. If this had been a fully implemented data-
base rather than a prototype, the database (LDV) would had done the
decomposing from conceptual to internal (physical) schema.

4.3. Preparing the Inquiry System

A set of lisp-functions were then written to act on top of the
INQUIRE basic retrieval and relational operators. These provided for
storing and retrieving data into/from INQURE.

4.4. Populating the Database

The data provided by the homework problem were then hand-entered
into INQUIRE using the facilities built. No problems were encouted
during entry, but we did note that there were no entries corresponding
to the "always unclassified" salary, i.e., that less-than 25K. We
also noted that there were duplicates in the employee-number field.
These were for employees in different compartments at the same level.
We suspect this was to check for the conflict between uniqueness and
level-separation, forcing polyinstantiation.[1]

[1] Since our prototype database was done with only 4 levels, we
did not test this case, and made the numbers unique.

SDB#2: LDV Database Design Prepared:May 15, 1989

108

CHAPTER 5

Task 4: Database Queries

5.1. The LDV Prototype

The LDV prototype provides several commands unique to a secure
database. There are commands to tell what compartment and what the
level the user is currently running in. There is also a command the
will erase the history file. The erase-history command is provided
so that for testing purposes the database can be reinitialized. In
LDV the erase-history command will be available only to the DBSSO, and
might be selective in its operation as to what portions of history are
erased.

The LDV prototype has just a few relational operators. INQUIRE is
rich in operators, and in the future we hope to add more of them to
the prototype. For the time being, the operations are: project,
select, join, count, and sort.

Notice that for the cases where the attribute does not exist, or
the attribute is above the users level, or attributes the user is not
allowed to see becase of context constraints, the same message is
returned.

Attribute ATTRIBUTE-NAME does not exist
in relation RELATION-NAME.

We present here the queries, as we provided them to our proto-
type, and the responses that it returned.

5.2. Recurrinq-Reports

>(urms)
Welcome to the LDV Prototype.

LDV> level

Level is SECRET

LDV> erase-history

This is a command that only the System Security
Officer (SSO) will be able use.

LDV> ;RR1: S
(sortrel

(project

SDB#2: LDV Database Design Prepared:May 15, 1989

I09

SDB#2: LDV Database Design Prepared:May 15, 1989

(njoin
(project employee-base '(Employee-Num Employee-Name))
employee-address)

'(Employee-Num Employee-Name Home-Address)
)
'(Employee-Name)

EMPLOYEE-NUM EMPLOYEE-NAME HOME-ADDRESS
--
369 ANDERSON 13th St
135 BECKER Joyce St
1 BENDER Crush St
573 BOURKE Maple St
476 BRIMER Munson Rd
249 BRINKER Hull Rd
309 BRINDLE Taney St
255 BUKOWSKI East Ave
266 CARPEN Maple St
356 CARR Farms Ct
254 CHANDLER Greeley Rd
982 CHASE Taylor Rd
694 CLARK 20th St
794 CURRAN Laurel Rd
985 DAILEY Main St
479 DELANEY Cherry St
189 DENNY Kirby St
850 DOYLE Eads St
432 EBERT Main St
956 ECKHOF Crosly Rd
754 EPPLEY King St
975 FALBO Birth St
168 FISHER Green Rd
231 FLIPPIN Hill St
930 GIBSON Cloud Dr
456 HALL Clifton Rd
324 HILL Maple St
649 HUTCHINSON Wilson St
793 JACKSON Sadler Rd
375 JORDAN Lear Rd
876 KELLEY Manor Rd
123 KHOSLA Oak St
91 KLAREN Ligth Rd
650 KNOLL Gregg Ct
693 KOLLER Joyce Rd
431 LANGE 37th St
435 LEVY Minton St
853 MACCAULEY Elk Pt
487 MAHONEY Sutter Rd
955 MARSHALL Shore Rd

Honeywell Secure Computing Technology Center

110

SDB#2: LDV Database Design Prepared:May 15, 1989

186 MCALLISTER Briar Rd
632 MCINTOSH 6th Rd
765 MITCHELL Gypsey St
521 MYER Lynn Ct
308 MYERSON Filmore Rd
368 NAUROZ Sterling
409 OBERLY Pierce St
256 OPEL Lee Hwy
791 OTTENBERG 24th St
857 PERKINS Yoakum St
980 POLANCO Hunter Rd
965 POLANKA Ripley Rd
753 PYLE Prince St
43 REYNOLDS Landess St
678 RODRIGUEZ Ripley Rd
931 SHANNON Essex Ct
870 SIEBEL Rose St
156 SMALL Terry Rd
206 SOUSA Pekay St
167 SPIRITO 14th St
391 STROTHER Dover St
675 Smith E. Rolling St.
354 Smith G. 17th St
239 Smith R. Jordan Rd
489 Smith S. River Rd
145 THOMAS Peake St
545 TUCKER 34th St
378 URSINI Essec Ct
572 WALTERS Eaton St
624 WILLIAMS Burke Ct
286 WOLCOTT 9th Rd
795 WOOD 25th St
520 YANCEY Motley St
398 ZUZACK Arden Rd

LDV> : The style of the prototype is such that the attributes of a relation
; must be explicitly listed. Otherwise the prototype attempts to
; let the user see all the attributes at or below his level. Often this
; violates other security constraints so not all the tuples are released.
; The end result is that not all the tuples are returned to the user unless
; the user specifies the attributes explicitly. Note both types of queries
; are secure, they just return different results.

; RR2: S
; This query shows what happens when the attributes are not specified.
(sortrel

(project
(njoin employee-base employee-title)
'(Employee-Name Job-Title)

)
'(Employee-Name)

)

Honeywell Secure Computing Technology Center

ill

SDB#2: LDV Database Design Prepared:May 15, 1989

EMPLOYEE-NAME JOB-TITLE

ANDERSON Secy
BUKOWSKI Per Clk
CHANDLER Per Clk
CHASE Proc Clk
DELANEY Proc Anal
ECKHOF Adm Ast
HALL Fin Anal
HUTCHINSON Adm Ast
KHOSLA Adm Clk
LEVY Secy
MACCAULEY Mgt Anal
MAHONEY Secy
MYER Per Anal
NAUROZ Secy
PERKINS Secy
REYNOLDS Per Anal
RODRIGUEZ Fin Anal
SMALL Proj Mgr
TUCKER Fin Anal
WILLIAMS Mgt Anal
WOLCOTT Fin Clk
YANCEY Dept Mgr
ZUZACK Proc Anal

LDV> ;RR3: S
(sortrel

(project
(njoin

(project employee-base '(Department Employee-Name Employee-Num))
employee-title

)
'(Department Employee-Name Job-Title)

)
(Department Employee-Name)

--
DEPARTMENT EMPLOYEE-NAME JOB-TITLE

ENG CURRAN Proj Mgr
ENG DOYLE Tech Staff
ENG FISHER Tech Staff
ENG GIBSON Tech Staff
ENG MCINTOSH Secy
ENG OTTENBERG Dept Mgr
ENG SHANNON Tech Staff
ENG SPIRITO Tech Staff
ENG URSINI Tech Staff
ENG WOOD Proj Mgr

Honeywell Secure Computing Technology Center

112

SDB#2: LDV Database Design Prepared:May 15, 1989

EXEC BENDER Exec Secy
EXEC CARR VP-PM
EXEC FLIPPIN Exec Secy
EXEC OPEL Exec Secy
EXEC SIEBEL VP-HQ
EXEC Smith E. Adm Ast
EXEC Smith G. Pres
FIN HALL Fin Anal
FIN NAUROZ Secy
FIN POLANKA Dept Mgr
FIN RODRIGUEZ Fin Anal
FIN TUCKER Fin Anal
FIN WOLCOTT Fin Clk
INT BRIMMER Secy
INT BRINDLE Tech Staff
INT CARPEN Proj Mgr
INT EPPLEY Tech Staff
INT KNOLL Tech Staff
INT MYERSON Tech Staff
INT OBERLY Tech Staff
INT PYLE Tech Staff
INT SOUSA Proj Mgr
INT Smith S. Dept Mgr
OPS BOURKE Tech Staff
OPS CLARK Tech Staff
OPS DENNY Tech Staff
OPS JACKSON Secy
OPS JORDAN Tech Staff
OPS KOLLER Tech Staff
OPS MARSHALL Dept Mgr
OPS Smith R. Proj Mgr
OPS WALTERS Tech Staff
PER ANDERSON Secy
PER BECKER Adm Ast
PER BUKOWSKI Per Clk
PER CHANDLER Per Clk
PER DAILEY Adm Ast
PER EBERT Secy
PER ECKHOF Adm Ast
PER HUTCHINSON Adm Ast
PER KELLEY Dept Mgr
PER KHOSLA Adm Clk
PER KLAREN Secy
PER LANGE Secy
PER LEVY Secy
PER MACCAULEY Mgt Anal
PER MCALLISTER Adm Ast
PER MYER Per Anal
PER PERKINS Secy
PER POLANCO Adm Ast
PER REYNOLDS Per Anal
PER SMALL Proj Mgr
PER STROTHER Secy

Honeywell Secure Computing Technology Center

113

SDB#2: LDV Database Design Prepared:May 15, 1989

PER WILLIAMS Mgt Anal
PROC CHASE Proc Cik
PROC DELANEY Proc Anal
PROC MAHONEY Secy
PROC YANCEY Dept Mgr
PROC ZUZACK Proc Anal
SEC BRIMER DMSO
SEC FALBO Secy
SEC HILL Dept Mgr
SEC MITCHELL Ast DBSO
SEC THOMAS Sec Cik

LDV> ; RR4: S
; Bukowski (Per Cik) ;SECRET NULL
(sortrel

(project employee-base '(Employee-Name Salary))
'(Employee-Name)

--
EMPLOYEE-NAME SALARY

ANDERSON 35
BECKER 60
BENDER 45
BOURKE 80
BRIMER 100
BRIMMER 35
BRINDLE 80
BUKOWSKI 55
CARPEN 110
CARR 125
CHANDLER 55
CHASE 55
CLARK 80
CURRAN 110
DAILEY 60
DELANEY 80
DENNY 80
DOYLE 80
EBERT 35
ECKHOF 60
EPPLEY 80
FALBO 35
FISHER 80
FLIPPIN 45
GIBSON 80
HALL 80
HILL 90
HUTCHINSON 60
JACKSON 35
JORDAN 80

Honeywell Secure Computing Technology Center

114

SDB#2: LDV Database Design Prepared:May 15, 1989

KELLEY 90
KHOSLA 55
KLAREN 35
KNOLL 80
KOLLER 80
LANGE 35
LEVY 35
MACCAULEY 80
MAHONEY 35
MARSHALL 90
MCALLISTER 60
MCINTOSH 35
MITCHELL 90
MYER 75
MYERSON 80
NAUROZ 35
OBERLY 80
OPEL 45
OTTENBERG 90
PERKINS 35
POLANCO 60
POLANKA 90
PYLE 80
REYNOLDS 75
RODRIGUEZ 80
SHANNON 80
SIEBEL 125
SMALL 110
SOUSA 110
SPIRITO 80
STROTHER 35
Smith E. 70
Smith G. 150
Smith R. 110
Smith S. 90
THOMAS 35
TUCKER 80
URSINI 80
WALTERS 80
WILLIAMS 80
WOLCOTT 55
WOOD 110
YANCEY 90
ZUZACK 80

LDV> ;RR5: S
(sortrel

(project
(njoin

(project employee-base ' (Salary Employee-Name Employee-Num))
employee-profit

'(Employee-Name Salary Profit-Share)

Honeywell Secure Computing Technology Center

115

...

SDB#2: LDV Database Design Prepared:May 15, 1989

)
'(Employee-Name)

EMPLOYEE-NAME SALARY PROFIT-SHARE

ANDERSON 35 10
BECKER 60 20
BENDER 45 20
BOURKE 80 30
BRIMER 100 30
BRIMMER 35 10
BRINDLE 80 30
BUKOWSKI 55 5
CARPEN 110 50
CARR 125 125
CHANDLER 55 5
CHASE 55 5
CLARK 80 30
CURRAN 110 50
DAILEY 60 30
DELANEY 80 20
DENNY 80 30
DOYLE 80 30
EBERT 35 20
ECKHOF 60 30
EPPLEY 80 30
FALBO 35 15
FISHER 80 30
FLIPPIN 45 15
GIBSON 80 30
HALL 80 20
HILL 90 45
HUTCHINSON 60 30
JACKSON 35 10
JORDAN 80 30
KELLEY 90 35
KHOSLA 55 5
KLAREN •35 30
KNOLL 80 30
KOLLER 80 30
LANGE 35 20
LEVY 35 20
MACCAULEY 80 20
MAHONEY 35 10
MARSHALL 90 40
MCALLISTER 60 20
MCINTOSH 35 10
MITCHELL 90 25
MYER 75 20
MYERSON 80 30

Honeywell Secure Computing Technology Center

116

SDB#2: LDV Database Design Prepared:May 15, 1989

NAUROZ 35 10
OBERLY 80 30
OPEL 45 25
OTTENBERG 90 40
PERKINS 35 20
POLANCO 60 30
POLANKA 90 35
PYLE 80 30
REYNOLDS 75 20
RODRIGUEZ 80 20
SHANNON 80 30
SIEBEL 125 95
SMALL 110 50
SOUSA 110 50
SPIRITO 80 30
STROTHER 35 30
Smith E. 70 20
Smith G. 150 150
Smith R. 110 50
Smith S. 90 40
THOMAS 35 10
TUCKER 80 20
URSINI 80 30
WALTERS 80 30
WILLIAMS 80 20
WOLCOTT 55 0
WOOD 110 50
YANCEY 90 35
ZUZACK 80 20

LDV> ;RR6: S
(sortrel

(where
(project

(njoin
(project employee-base ' (Employee-Name Employee-Num))
employee-investigate

)
'(IS Employee-Name)

)
'(not (equal IS 'IA))

)
'(IS Employee-Name)

IS EMPLOYEE-NAME

lB ECKHOF
1B FISHER
1B MACCAULEY
lB POLANKA

Honeywell Secure Computing Technology Center

117

SDB#2: LDV Database Design Prepared:May 15, 1989

1C KOLLER
iC SPIRITO
IC STROTHER
IC Smith E.
IC YANCEY

LDV> exit
NIL

> (urmts)
Welcome to the LDV Prototype.

LDV> level

Level is TOPSECRET

LDV> ;RR7: TS
(sortrel

(where
(project

(njoin
(project employee-base '(Employee-Name Employee-Num))
employee-credit

)
'(Employee-Name CR))

'(not (equal CR 1))
)
'(Employee-Name)

EMPLOYEE-NAME CR

CHANDLER 2
ECKHOF 2
FISHER 4
KOLLER 2
MARSHALL 3
MITCHELL 4
NAUROZ 2
POLANCO 2
REYNOLDS 2
SOUSA 2
Smith E. 3
Smith S. 2
WOLCOTT 3

LDV> ;RR8: TS
(sortrel

(project
(njoin

(project employee-base '(Employee-Name Employee-Num))

Honeywell Secure Computing Technology Center

118

SDB#2: LDV Database Design Prepared:May 15, 1989

employee -skill

(Employee-Name Skill-Code)

(Employee-Name)

)- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -

EMPLOYEE-NAME SKILL-CODE

BOURKE 8F
BRINDLE D7
BRINDLE C9
BRINDLE 5B
CARPEN C9
CARR C9
CLARK 8F
CLARK 3A
CURRAN C9
CURRAN SB
DENNY 8F
DENNY 3A
DOYLE 8F
EPPLEY C9
EPPLEY 3A
FISHER C9
FISHER 8F
GIBSON D7
GIBSON C9
JORDAN 8F
KNOLL C9
KOLLER 8F
KOLLER 5B
MARSHALL 8F
MYERSON D7
MYERSON C9
OBERLY C9
OTTENBERG C9
PYLE C9
PYLE 8F
PYLE 5B
SHANNON D7
SHANNON 8F
SIEBEL 8F
SOUSA D7
SOUSA C9
SPIRITO 8F
SPIRITO SB
Smith G. C9
Smith S. C9
URSINI C9
WALTERS D7

Honeywell Secure Computing Technology Center

119

AUDITING IN SECURE DATABASE MANAGEMENT SYSTEMS

Sushil Jajodia
Shashi K Gadia

Gautam Bhargava
Edgar H. Sibley

ABSTRACT

Existing databases make a distinction between the current and the past data.
A logical structure exists only upon the current data to allow its retrieval
through a query language. Any old information is either deleted or stored in
the form of a log. Such an "audit trail" has an ad hoc structure and gen-
erally cannot be queried. In this paper, we describe a database activity
model that imposes a uniform logical structure upon the past, present, and
the future data. Moreover, there is never any loss of essential information
in this model, thus providing a convenient mechanism for not only recording
but a complete reconstruction of every action taken in the database at the
same time.

Sushil Jajodia and Edgar Sibley are with the Department of Information Systems and Systems
Engineering, George Mason University, Fairfax, Virginia 22030-4444.
Shashi Gada and Gautam Bhargava are with the Department of Computer Science, Iowa
State University, Ames, Iowa 50011.

120

1. INTRODUCTION
It is well known that in situations where the data is sufficiently sensitive, an audit

trail becomes a necessity. Audit trails are normally used to retain superceded data
and thus they preide a way to assign responsibility and accountability for events that
take place in the system. Unfortunately, existing database systems treat only the
current data in a systematic manner. The old information spooled to the log has an ad
hoc structure and cannot be queried. We need a schema that defines the structure of
this data and a query language which will enable us to interrogate the log so that any
particular purpose could be efficiently achieved [2].

In this paper, we describe a database activity model that imposes a uniform logi-
cal structure upon the past, present, and the future data. Moreover, there is never any
loss of essential information in this model, thus providing a convenient mechanism for
not only recording but a complete reconstruction of every action taken in the database
at the same time.

The organization of this paper is as follows. We argue in Section 2 for the need
for our database activity model, and the two sections that follow contain some nota-
tion and definitions. Section 5 contains the description of our model. We have chosen
an informal approach to introduce our model here. Section 6 shows how we may res-
trict access to the database. Finally, Section 7 summarizes the paper and lists some
challenges that face us.

2. AUDIT REQUIREMENTS
Reference [3] contains a detailed discussion of audit requirements in trusted sys-

tems. In the Trusted Computer System Evaluation Criteria [1], the accountability con-
trol objective is stated to be as follows:

"Systems that are used to process or handle classified or sensitive informa-
tion must assure individual accountability whenever either a mandatory or
discretionary security policy is envoked. Furthermore, to assure accounta-
bility the capability must exist for an authorized and competent agent to
access and evaluate accountability information by a secure means, within a
reasonable amount of time and without undue difficulty."

Existing databases clearly fail to meet the above objective. The central point of
this paper is to propose a new data model called the database activity model which not
only meets this objective, but provides a convenient mechanism for recording and con-
trolling accesses to the database at the same time.

2.1. NEED FOR TWO TIME DIMENSIONS
In an auditable system, there must be a mechanism for a complete reconstruction

of every action taken. This requires at least two time dimensions: one time dimension
to order every operation against an object and a second time dimension to to times-
tamp values of objects with their periods of validity in the real world [4,8] (see also
[9, 10]). This second time dimension is different from the first time dimension since

121

an earlier value of an object may be corrected later in time.
As an example, suppose we have a relation called EMPLOYEE having two attri-

butes NAME and SALARY. Suppose we inserted the tuple (Smith, 25K) on 11/85.
On 2/86, we discovered an error in Smith's salary and made a retroactive change to
30K. Now, in an auditable system we have in mind, it is possible to overwrite errors,
but records are kept of any errors that are corrected. Thus, we need to retain both
facts in the database:

1. Smith's salary was known to be 25K from 11/85 to 2/86.
2. On 2/86, a change was made to the salary from 25K to 30K, and this change was

retroactive.
If we simply change the salary from 25K to 30K, we lose the second fact that an

error was discovered in Smith's salary on 2/86, a change was made, and this change
was retroactive. On the other hand, if we just change the value of the first time
parameter from 11/85 to 2/86, we lose the the first fact that the salary was known to
be 25K from 11/85 to 2/86.

Therefore, we need two different time parameters to describe above situation.
We call the first time dimension the transaction time, the time at which the informa-
tion is stored in the database and the second time dimension the valid time, the time
when the information in the database is valid.

3. THE INTERVAL NOTATION

Let S be a linearly ordered set. By the closed interval [ab], we mean the set {x E
S : a < x < b}. A half-open interval is of the form [ab) or (a,b] and denotes the set {x
E S : a < x < b} or the set {x E S : a < x < b}, respectively. Finally, an open interval
(a, b) is the set {x E S : a < x < b). In this paper, we take S to be either the set of
natural numbers or the real numbers. In this case, we denote by [a,oo) the set {x E S•
x>a}.

4. THE RELATIONAL MODEL
We work in the context of the relational model of data. A relation scheme R is a

collection of attributes. K is said be a key of R if the functional dependency K -- R
holds and if K does not contain a proper subset K" such that K" -- R holds. A rela-
tional scheme R is a collection {R R,..., I,, } of relation schemes, and a database r over
R is a set of relations {rr,..., } such that each ri is a relation over Ri. We assume that
transactions are used to create, modify, delete, and retrieve data from the database
relations in r.

4.1. SECURITY CLASSIFICATION OF DATA ITEMS
In our model, a user accesses the databases by executing a transaction, and the

security level of a data item in the database takes on the level of the transaction that
modifies it or creates it. The mandatory security is enforced by allowing a transaction
to complete if its security level dominates the security level of all data that it affects.

122

5. THE DATABASE ACTIVITY MODEL

Let R be a relational scheme. The database activity scheme over R is a triple
<D,shadow,Q-Log> where

* For every relational scheme R in R, there is a two-dimensional temporal relation
(as illustrated in Figure 1) in D. It encapsulates the complete history of each and
every modification made to a value of an attribute in R.

" For every r in r, there is a relation shadow (r) in Shadow. Shadow (r) records the
circumstances surrounding the updates made to r.

* Q -Log is a single relation. It is essentially a log of all queries.
We describe each of these in detail next.

5.1. THE TWO-DIMENSIONAL TEMPORAL RELATIONS

We will describe a two-dimensional temporal relation [6,7] that incorporates the
concept of time at the logical level of design and use it to represent the two time
dimensions. It uses time intervals in the range [Ooo), called the valid time, to times-
tamp a value with its period of validity in the real world, giving rise to a historical rela-
tion. Since our knowledge of history changes with time requiring updates to the his-
torical database, another time dimension in the interval [0,now], called the transaction
time, is used to capture history of operations on objects, where the symbol now is used
to denote the changing value of the current time. In this way, our changing knowledge
of the real world is modeled through two dimensional timestamps, and [0,now] x [0,oo)
serves as the universe of time. The resulting relation is called a two -dimensional tem-
poral relation. An example of a two-dimensional temporal relation is shown in Figure
1.

NAME SALARY DEPT

[8,now] x [11,oo) John [8,53)x [11,oo) 15K [8,40) x [11,oo) Toys
[53,now] x [11,49] 15K [40,now] x [11,441 Toys

[53,now] x [50, oo) 20K [40,now] x [45, oo) Shoes

[48, now] x [48,oo) Doug [48, now]x [48,oo) 20K [48, now] x [48,oo) Auto

Figure 1. A two-dimensional temporal relation

Let us consider the values taken by the attribute SALARY for the employee John
in Figure 1. The semantics of the values is that "there was a transaction posted at
time 8 declaring John's salary to be 15K from time 11 onwards, but another transac-
tion that was posted at time 53 updated John's salary to be 15K from time 11 to 49 and
20K from time 50 onwards."

For our example in section 2.1, the two-dimensional temporal relation is given in
Figure 2.

123

NAME SALARY
[11/85,now] x [11/85,oo) Smith [11/85,2/86)x [11/85,o) 25K

[2/86,now] x [11/85,oo) 30K

Figure 2. The two-dimensional temporal relation for the example in Section 2.1

It is easy to verify that the temporal relation given in Figure 2 cleanly and accu-
rately models the situation described in Section 2.1.

Thus, we see that the reexamination of historical data is possible in a two-
dimensional temporal relation, and this allows corrections to be made as necessary
(but still retains the fact and data associated with the original "estimate" or "observa-
tion" for future query and examination). Moreover, the database may carry predic-
tions of future operations or values; e.g., the data may contain the required list of
actions for the following weeks, such as times and places of any meetings, personnel
actions to be made, etc.

5.2. SHADOW AND QUERY RELATIONS

Our model maintains for each two-dimensional temporal relation, a relation
called a shadow relation that records information about all updates to the relation and
a relation called a query-log relation which is essentially a log of all queries concerning
the relation.

More formally, let R be a relation scheme in R, and let K be the key for R. Then
the attributes of shadow (R) are the key K, the transaction time (TI), the transaction
security level (TSL), the authorizer of the transaction (AUTHORIZER), the user of
the transaction (USER), and the reason for executing the transaction (REASON). See
Figure 3.

The Query -Log relation is the relation containing a log of all the queries. It has
the following attributes: the query (QUERY), the query time (IT), the query security
level (TSL), and the maker of the query (USER). See Figure 4.

One interesting property is that once we supplement the two-dimensional tem-
poral relations by the shadow and query-log relations, the transaction log can be
restored from these three relations. There is never any loss of essential information,
and therefore, we have the complete audit trail concept. We illustrate this next by way
of an example.

Suppose our database consists of a single relation scheme EMP with attributes
NAME, SALARY, and DEPT such that the attribute NAME is the key. Suppose for
each update, we wish to keep track of the following audit information: transaction
time (T, transaction security level (TSL), who authorized the update (AUTHOR-
IZER), user making the update (USER), and reason for the update (REASON). For
each query, we store the query (Q-id), time of the query (Tr), transaction security
level (TSL), and user making the query (USER). Consider the following sequence of

124

transactions:

T1. TT = 8; TSL = S; User = Mark
insert (NAME: [11,oo) JOHN; SALARY: [11,oo) 15K; DEPT: [11,oo) Toys)
with (Authorizer =Don; Reason=New Employee);

T2. TT = 40; TSL = IS; User = Ryne.
modify (NAME: [11,oo) JOHN) to (DEPT: [11,44] Toys, [45,oo) shoes)
with (Authorizer=Don; Reason = Reassignment);

T3. Tr = 42; TSL = S; User = Vance.
01: What is John's salary?

T"4. IT = 48; TSL = IS; User = Rick
insert (NAME: [48,oo) Doug; SALARY: [48,oo) 20K; DEPT. [48,oo) Auto)
with (Authorizer =Joe; Reason =New Employee);

T5. IT = 53; TSL = S; User = Dameon.
modify (NAME: [11,oo) JOHN) to (SALARY: [11,49] 15K, [50,oo) 20K)
with (Authorizer = Don; Reason = Promotion);

T6. TT = 54; TSL = S; User = Andre.
Q1: What is John's salary?

T7. IT = 55; TSL = S; User = Mitch.
Q2: What is John's department?

T8. iT = 56; TSL = S; User = Don.
Q3: Who made enquiries about John's salary?

T9. iT = 58; TSL = IS; User = Paul.
Q2: What is John's department?

Corresponding to these transactions, the two-dimensional temporal relation is
given in Figure 1. Figures 3 and 4 give the resulting shadow and query-log relations,
respectively.

125

NAME TI TSL AUTHORIZER USER REASON
John 8 S Don Mark New Employee
John 40 "IS Don Ryne Reassignment
Doug 48 TS Joe Rick New Employee

John 53 S Don Damon Promotion

Figure 3. The shadow relation

QUERY TT TSL USER
Q1: John's SALARY 42 S Vance

Q1: John's SALARY 54 S Andre
Q2: John's DEPT 55 S Mitch

Q3: USER ID of Q1 56 S Don
Q2: John's DEPT 58 IS Paul

Figure 4. The query-log relation

It is easy to verify that that all the transactions can be completely restored using
the three relations in our database activity model: The values of the key NAME in the
two-dimensional temporal relation (Figure 1) and in the shadow relation (Figure 3)
set up a logical correspondence between the tuples in the two relations. By including
the transaction time, the logical correspondence can be refined to a one-to-one
correspondence between all the updates to the temporal relation and the tuples in the
shadow relation. As a result, the transactions T1, T2, T14, T5 can be completely
restored from the relations in Figures 1 and 3. The transactions T3, T6 - T19 can be
completely restored from the relations in Figures 1 and 4. Finally, using the transac-
tion time iT, we can order all nine transactions to obtain the original sequence of
transactions.

6. RESTRICTING ACCESS TO THE DATABASE

Since our database activity model contains information about the complete
activity in the database system, we next consider how we may restrict user access to
the database.

6.1. SECURITY LEVEL OF TRANSACTIONS
The addition of the security level of the transaction during an operation on the

database allows the incorporation of still further concepts of tagging the data with its
security level at the object level. In our model, the data takes on its security level

126

because of the level of authority implied by the transaction creating or modifying the
elements of the object. Thus, an object is itself not classified, but its parts carry
different (possibly time-variant) security constraints. As a consequence, the response
to a query or update transaction is dependent on the security level of the system user
or the level at which the user is operating, in conjunction with the security policy that
applies at the time of the operation.

In our example, this means that Andre's query about John's department (see
transaction T7) will not succeed (since security level of 17 is secret (S), while the tran-
saction 14 which made the most recent update to the DEPT was at the top secret
(TS) level). On the other hand, Paul who makes the same query in transaction T9 will
be given the right answer since security level of T 9 is same as that of T4.

The preceeding paragraph raises an interesting policy question requiring careful
examination. What should be the answer to the query T77? Should the system give the
last entry at the secret level, namely toys? Or should the system say "not available?"
Another system response might be to say "no such person." Does this mean the sys-
tem can or cannot give John's current salary to Andre which was updated at the secret
level by transaction Ts? This interaction between the query language, the time, and
the security policy appears to be complex and needs further examination.

6.2. THE USER HIERARCHY
A second way we limit access of a user is by filtering the database through a user

hierarchy defined as follows.

The Master user. The master user has access to the whole database (e.g. Figure
1) and enjoys the power to query errors and updates in the database.

The History user. This user only sees information filtered through the time
domain now x [Ooo), and thus has access to only the most up-to-date knowledge of the
history of objects (e.g. the relation in Figure 5). Errors which have been corrected are
not available to the historical user. Such a user can ask questions of historical nature
such as "When did Tom's salary increase?"

NAME SALARY DEPT
[11,oo) John [11,49] 15K [11,44] Toys

[50,oo) 20K [45, co) Shoes
[48,oo) Doug [48,oo) 20K [48,oo) Auto

Figure 5. The two-dimensional temporal realation as seen by a history user

The Snapshot user. The filter in this case is the time domain now x now, and
this user sees precisely what is available to a traditional user in databases (e.g. see Fig-
ure 6 below). In our framework such a user lies at the lowest level of the user hierar-
chy.

127

NAME SALARY DEPT

John 20K Shoes

Doug 20K Auto

Figure 6. The two-dimensional temporal relation as seen by a snapshot user

The Audit user. This user sees the data filtered through the time domain {(tt'):
t' < t}, does not have the concept of future (since t < now), and only sees the actions
taken by the organization. Since the rest of the world is only affected by the actions
that have been taken by the organization, this user can deal with the public relations
and legal aspects of the enterprise.

The Rollback Snapshot User. This user sees the data filtered through the time
domain t x t' for fixed values of t and t'. Like the snapshot user, this user sees a
snapshot relation, with the difference that this user can see a snapshot at any point in
the past, present, or the future. As an example, a rollback snapshot user will be given
the snapshot in Figure 7 for the time domain 8 x 11 and the snapshot in Figure 8 for
the time domain 48 x 50.

NAME SALARY DEPT

John 15K Toys

Figure 7. The two-dimensional temporal relation
filtered through the time domain 8 x 11

NAME SALARY DEPT

John 15K Shoes
Doug 20K Auto

Figure & The two-dimensional temporal relation
filtered through the time domain 48 x 50

7. SUMMARY AND CHALLENGES

Our new model seems to be a building block for a general-purpose database sys-
tem that holds the promise for a perfect logical organization of past, present, and
future data. This aspect of our model can be exploited further to allow automatic
regeneration and review of events that occur in the database system to detect and

128

discourage security violations. Furthermore, our model ahows access to the database
via transactions which maps quite well to the model proposed recently by Clark and
Wilson [5], and it appears that there would be a high degree of compatability between
our model and the object-oriented data model. To harness the promise of our model,
further theoretical advances have to be made, and then a prototype has to be
developed. It is presumed that this will lead to further investigation of the audit trail
capabilities in answering questions dealing with possible breaches and other problems.

References

1. Department of Defense Trusted Computer System Evaluation Criteria, August
15, 1983.

2. Report of the Invitational Workshop on Integrity Policy in Computer Information
Systems, October 27-29, 1987.

3. A Guide to Understanding Audit in Trusted Systems, National Computer Secu-
rity Center, June 1, 1988.

4. L A. Bjork, Jr., "Generalized audit trail requirements and concepts for database
applications," IBM Systems Journal, vol. 14, no. 3, pp. 229-245, 1975.

5. David D. Clark and David R. Wilson, "A comparison of commercial and Military
computer security policies," Proc. IEEE Symp. on Security and Privacy, pp. 184-
194., 1987.

6. Shashi K. Gadia, "A homogeneous relational model and query languages for
temporal databases," ACM Tran. on Database Systems, vol. 13, no. 4, pp. 418-448,
December 1988.

7. Shashi K. Gadia and Chuen-Sing Yeung, "A generalized model for a relational
temporal database," Proc. ACM SIGMOD Int'L Conf. on Management of Data,
pp. 251-259, June 1988.

8. V. Lum, P. Dadarn, R Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner, and J.
Woodfil, "Desigining DBMS support for the temporal dimension," Proc. ACM
SIGMOD Int'l Conf. on Management of Data, pp. 115-130, May 1987.

9. Richard Snodgrass and Ilsoo Ahn, "Temporal databases," IEEE Computer, vol.
19, no. 3, pp. 35-42, September 1986.

10. Richard Snodgrass, "The temporal query language TQuel," ACM Trans. on Data-
base Systems, vol. 12, no. 2, pp. 247-298, June 1987.

129

Secure DBMS Auditor:
Audit in Trusted Database Management System Environments

Trusted Information Systems is pleased to respond to the Task Order Request from
Rome Air Development Center for Statement of Work PR NO. B-9-3610, dated 15
February 1989, "Secure DBMS Auditor".

INTRODUCTION

Currently, there are few database management systems or prototypes that provide all
of the trust features and assurances associated with any one class of DOD 5200.28-STD,
the Department of Defense Trusted Computer System Evaluation Criteria (TCSEC) or of its
derivative interpretations and guidelines. Some requirements in these documents tend to go
considerably beyond current industry standards and practice for database management
systems. Others are unique to multilevel security applications, an area where there is very
little published DBMS experience.

However, this is not to say that there is no experience in the field. Many
commercial database management systems implement features and mechanisms to limit and
control access by authorized and unauthorized users. These features and mechanisms have
traditionally included limitations on modes of access (e.g., constraints on queries) by users
to defined subsets (views) of databases. These constraints, largely employing discretionary
rather than mandatory access controls, have not just addressed which users may observe or
modify portions of a database or its definition, but have additionally addressed issues such
as semantic integrity, data consistency, and transactional atomicity.

In addition, legal and operational requirements have often necessitated the
implementation of recording, logging and joumaling mechanisms. These mechanisms have
often served dual interests: on the one hand they have provided a means of associating a
date and time, and often a designated person, with designated database transactions
(especially with every nodification or update to the database); on the other hand, the
mechanisms have provided means for selective rollback and recovery from various
malformed transactions and database updates, as well as diagnosis of the causes of certain
losses of database integrity.

To many database administrators, the traditional database management system
recording, logging and journaling mechanisms produce the data that would be of interest in
an audit trail. However, there is little collected experience in the use of such transaction
recording data for the express purpose of detecting attempted or successful violations of
access control policies and constraints.

130

The 18 November 1988 draft of the Trusted DBMS Interpretation of the TCSEC
(TDI) does not prescribe the specific data structures or user actions' that need to be
audited, nor is it particularly enlightening in its interpretation of database audit tool
requirements or of the techniques needed for the analysis of audit data. Rather, after
reproducing the base TCSEC audit requirement, it states (for class Al):

The objects referred to we the DBMS objects specified in the security policy.
Events. in the case of a DBMS. are interpreted as being individual operations
performed by the DBMS (e.g., updates. retrievals, inserts) and not just the invocation
of the DBMS. Individual operations performed by the TCB. if totally transparent to
the user. need not be audited.

Where the TCB subset concept is employed, a TCB subset may maintain its
own security audit log, distn from that maintained by mome privileged TCB subsets,
or it may utilize an audit interface provided by a different TCB subset allowing the
audit records it generates to be processed by that TCB subset.

Where the TCB subset concept is employed, responsibility for auditing events
that may be used to exploit covert channels need not be allocated to the TCB subset
containing the channel. but must be allocated to that subset or a more privileged subset
provided that the criterion is met for the composite TCB as a whole.

If the TCB subset uses different user identifications than a more-privileged
subset, there shall be a means to associate audit records generated by different TCB
subsets for the same individual with each other, either at the time they are generated or
at some later time.

Any TCB subset wherein events may occur that require notification of the
security administrator shall be able to: 1) detect the occurrence of these events: 2)
initiate the recording of the audit trail entry; and 3) initiate the notification of the
security administrator. The ability to terminate these events may be provided in either
the TCB subset within which they occur or in the TCB subset(s) where actions that
lead to the event were initiated.

The above interpretation is based on the definition of 'object' that is given in the
trusted DBMS (TDBMS) policy model, subject to the detailed discussion in Appendix I of
the draft TDI. The draft TDI's interpretation of 'object' and audit may not be sufficiently
well-defined to capture the significance of context to the sensitivity of information as they
apply to the database management context. In part, this may be because the draft TDI
only associates sensitivities and classifications with static containers of data rather than
with dynamic attributes of derived information.

'rhe draft TDI, like the TCSEC, imposes individual accountability requirements that require the ability to
associate security-relevant events with the specific user on behalf of whom they occur. However, the draft
TDI also hints that certain server-based architectures may be acceptable, even though strict compliance with
the individual accountability requirement may not be possible. The issue is identified briefly in the Internal
Servers Guideline.

2To be fair, it should be pointed out that the draft TDI allows for the treatment of a view definition as a
classified object. A view definition is an association between data elements and many database management
systems use view definitions as a means of controlling access to information. At present, there is controversy
over whether view definitions should be treated as classified objects and. if so. what the relationship should
be between their classification and that of the base data elements that comprise the view. However, it
appears that a subject would be consuained from observing the contents of a view unless the subject were
permitted to observe the individual data entities that would cmmrri.n' the view. This latter constraint could
conceivably have different properties for dynamically coellrued %'ws hain for fl'e retrieval of statically-
defined views, and may be of interest both for imposing consistency on actual access control mediation and
for completeness of audit information.

131

In traditional TCSEC Division A and Division B systems it is important that all
access paths to a specific object be mediated consistently. While this should be the case
with respect to database objects, it need be noted that every view is equivalent to the
evaluation of some query. It appears that the draft TDJ would treat the classification of a
query as the least upper bound of the classifications of the containers of data structures
referenced in the evaluation of the query, while there remains the possibility that the
equivalent defined view may be found to be of a different classification. The draft TDI
does not particularly address the classifications or sensitivities of semantic interrelationships
between the objects of a database or database view. Some would claim that it is from
these interrelationships between database elements, rather than from the containers of the
referenced data that is derived the actual sensitivities or security classifications of the
referenced information.

Because of these issues, it appears that there may be justification for associating the
text of each query with the other audit trail data generated by the trusted database
management system's evaluation of the query.

It is often the case that the interrelationships are the basis for entries in the backup
and recovery logs. The TDI's audit rationale appears to leave as optional the decision of
whether the security audit and integrity recovery logs be integrated or maintained
separately:

.... The emphasis of the audit criterion is to provide individual accountability
for actions by user. The goal is not the sane as that for a conventional DBMS log
supportig backup and recovery. The security audit log need not, therefore, be
integrated with a conventional DBMS audit log, although the tCB may provide
mechanisms that ae useful for the purposes of backup and recovery as wel....

Hence, it appears that the goals of associating accountable actions with identified
users and those of preserving the semantic integrity of databases are not necessarily at
odds, and there is no explicit restriction on seeking to extend the audit and logging
technologies used in current DBMS practice. However, it also seems that the questions of
how and what to audit are unsettled research issues.

132

The ROLES Facility
Bill Maimone

Oracle Corporation

ABSTRACT

The ROLE facility extends the SQL data language to simplify
the management of system and object privileges in user applica-
tions. A ROLE defines a group of privileges which can be
assigned to users and other roles. The syntax and semantics of
the ROLE facility are given along with an explanation of design
decisions and open issues.

L Introduction
The security facilities described in the ANSI SQL database language require users to maintain a record of all privileges
needed to run each application so that they can be granted when users become authorized for an application, or revoked
when the authorization is withdrawn. They also require that privileges on each database table be granted or revoked
individually. This presents a significant management burden if a database supports even a modest number of users,
applications, and tables. In practice, this burden often results in poor management and hence poor security. Roles are
designed to make the process of privilege allocation more manageable and hence more secure.

Roles also support the reassignment of responsibility for security management without the significant complications
that currently exist If a user is responsible for database security and is replaced by a new user, the current SQL security
facilities require that all privileges granted by the old user be granted again by the new user and then revoked by the
old user. Again, this presents a significant burden which can result in poor security management.. This paper describes
a roles facility as a solution to these problems.

A role can be considered a group of privileges. For example, all of the database privileges needed by an application
can be granted to a role. To authorize a user to run the application, all that need be done is grant the role to the user.
Similiarly, to withdraw this authorization the role would simply be revoked from the user.

In addition to supporting the granting of roles to users, roles may be granted to other roles. This enables, for example,
an Accounting.Clerk role to be defined which can contain the roles AccountsPayableClerk, Accounts_Receiv-
able.-Clerk, and GeneralLedger..Clerk.

The remainder of this paper describes the proposed syntax and semantics of the role facility proposed to ANSI SQL
(X3H2) committee in X3H2-89-171 and planned for the next release of the ORACLE RDBMS.

1I. CREATING ROLES
The CREATE ROLE command is used to create a role as follows:

CREATE ROLE rolename

This command defines the name of a new role, owned by the user who creates it, with no object or system privileges.
Each role name must be different from all other role or user names in the systems. Since role names and user names
share a database-wide name space, a user must have a specific system privilege to create a role.

CREATE ROLE MANAGER
CREATE ROLE PAYROLLCLERK

IL. Granting Privileges to Roles
Once a role has been created, the GRANT command is used to assign system and object privileges to it. The syntax is
similar to that of the existing GRANT to users, except that the WITH GRANT OPTION cannot be used. When granting
to a user, the WITH GRANT OPTION allows the grantee to propagate privileges to other users. The GRANT OPTION

133

for roles is not provided because it would significantly complicate the algorithm for REVOKE while adding little
marginal benefit.

GRANT UPDATE ON EMPLOYEES TO PAYROLL._CLERK
GRANT ALL ON EMPLOYEES TO MANAGER, DIVISIONMANAGER
GRANT CREATE TABLE TO MANAGER

The user does not have to own or have been GRANTED the role to assign privileges to it, but must have GRANT
OPTION on any privilege in order to grant the privilege to a role.

IV. Granting Roles to Users and Roles
Once a role has been created, it can be assigned to users other than the owner with a GRANT command. The GRANT
command can also be used to "nest" roles within other roles, so that creating the privileges for a job that combines the
requirements of several job functions can be a simple one-step process. The following is the syntax for this form of the
GRANT command to grant the named roles to a group of other roles and/or users.

GRANT ROLE(S) rolenarne [,rolenarne]...
TO [user I role] [, user J role]...
[WITH ADMIN OPTION]

If the user is not the owner of the role, he previously must have been granted a role WITH ADMIN OPTION in order
to grant it to another user. The user need not have been assigned the role receiving the GRANT. In other words, to
GRANT role A to role B, you must own or have ADMIN OPTION on role A, but not necessarily on role B.

The user granting a role may either have been granted the ADMIN OPTION directly as a user, or have been granted a
role that contains this option. For example, suppose that user Zarla owns a role called AP_CLERK that includes
SELECT, INSERT, and UPDATE privileges on the EMPLOYEE table. User Bill CREATES a role called
GENCLERK, but lacks any privileges on the EMPLOYEES table. Carla can assign AP_CLERK to GENCLERK
as follows:

GRANT ROLE APCLERK TO GEN_CLERK WITH ADMIN OPTION

Through this role, Bill now has the privileges that he lacked as a user. He may also grant the role APCLERK, but not
its individual privileges, to other users. Circularity of role assignments is not permitted. For example, Bill would get
an e= if he tried the following command:

GRANT ROLE GENCLERK TO APCLERK

A role GRANTED to another role is its subset, and two roles cannot both be subsets of one another.

V. Revoking Roles

The REVOKE command is used to remove privileges or roles from users or roles. The syntax used to remove privileges
from roles is:

REVOKE object_.priv [,object-privi ...
ON [owner.]object
FROM ROLE[S] rolename [,rolename]

In order to REVOKE privileges from a role, a user must either own the object for which those privileges are defined,
or have the privileges on the object via the WITH GRANT OPTION. The named privileges will immediately be
removed from the role wherever it is assigned. To continue with the preceding example, Carla can decide to REVOKE
UPDATE and INSERT from the role APCLERK.

REVOKE UPDATE, INSERT ON EMPLOYEES FROM ROLE APCLERK

Bill's role of GENCLERK would automatically lose these privileges.

The syntax to REVOKE a role from a user is similar.

REVOKE ROLE[S] rolename [,rolename]...

134

FROM rolename I user [, rolename I user]...

A user must either own or have ADMIN OPTION on the role being revoked, but not on the role(s) being revoked from.
Unlike GRANT OPTION, ADMIN OPTION has no hierarchy based upon who granted privileges to whom; with
ADMIN OPTION, a user with ADMIN on a role can REVOKE that role from anybody except its owner.

Only "top layer" roles may be revoked, e.g. if user A has been granted role B and role B has been granted role C, role
B can be revoked from user A, implicitly revoking role C. Role C can be revoked from role B; this will apply not just
to user A but to all users in the system with role B. Role C, however, cannot be directly revoked from user A
independently of role B.

VI. Dropping Roles

Roles can be eliminated by using the DROP command. A user must own a role to DROP it. When a role is dropped,
all users and other roles to which it has been assigned will lose access to it, and its definition will be removed from the
system. The syntax is simply:

DROP ROLE rolename

VII. Enabling and Disabling Roles

The roles assigned to a user can be enabled or disabled for a given session or part of a session. This means that a role
which is required for a given task can be "turned on" at the commencement of the task and "turned off" when it is
finished. This feature allows tighter control of the usage of role privileges. The syntax to enable or disable a roles is:

ALTER SESSION [ENABLE I DISABLE] ROLE[S] [role~list I ALL]

This command applies to the user issuing it for the duration of the current logon session. The user must previously have
been GRANTed or own the role in order to enable it; the role must currently be enabled in order to be disabled. A role
is automatically enabled for the owner when created. The CREATE USER and ALTER USER commands can define
the default enabled roles for a given user.

VUL Viewing Roles Status

The user can determine his current roles and privileges through four new non-updatable data dictionary views.

The view USERROLES displays all roles created by the user. This view is parameterized so that each user sees only
his own roles.

The view ALL.ROLES displays all roles present in the database. This view is available only to a database administrator.

The view SESSIONROLES displays all roles granted to the user, and indicates whether each is currently enabled or
disabled in the current session.

The view SESSIONPRIVILEGES displays all system privileges currently available to the user. This is the union of
all system privileges granted to the user and all currently enabled roles.

Other views allow a user to display privileges on his objects granted to roles and users.

IX. Open Questions

Should roles own objects? If a role represents an application, it follows that a role might sensibly own all of the objects
used in that application. It is unclear what privileges allow a user to create an object in a role or even a sub-role.

X. Summary

The roles facility simplifies the administration of system and object privileges in the SQL database language by grouping
sets of privileges into a new object. Roles can be used to group together the set of privileges required to run an application
so that the administrator can more easily manage both users and applications. The simplicity and flexibility offered by
the roles facility facilitates better control over privileges and therefore leads to a more secure system.

135

DAC Mechanisms in Trusted Database
Management Systems

Ronda R. Henning
Harris Corporation

P.O. Box 98000
Melbourne, FL 32902

July 2, 1989

Abstract

Discretionary access controls have often been considered a very weak security mech-
anism. However, database management systems use discretionary access controls as
an integral part of their data integrity mechanisms and as an important flexibility
feature. In a discussion at the Workshop on operating system/database management
system dependencies, the issues involved in high assurance discretionary controls were
addressed. This paper summarizes the key points of this discussion.

1 Introduction

Discretionary access controls in secure operating systems are considered easily circum-
ventable and, as a result, relatively untrustworthy. Yet they do provide the notion of
"ownership" of data in a trusted system. In a database management system, the owner-

ship of data becomes a more critical issue. Individual databases may be owned by separate

departments. Within those departments, only certain individuals may be granted the ca-

pability to modify, delete, create, or read data. These capabilities may be expressed as
view specifications, relation, record, or data item access controls, or as content-dependent

constraints.
Are such mechanisms sufficient, or do additional mechanisms need to be employed to

provide the granularity of protection desired and the functionality to support user-defined
applications?

136

2 Basic Operating System Controls

The basic discretionary access control mechanisms in conventional trusted operating sys-
tems can be defined as access control lists, group definitions, and role definitions. A brief
overview of each is included for completeness.

2.1 Discretionary Access Control Lists

Discretionary access control lists are collections of users or groups of users and their associ-
ated access modes. Most trusted operating systems use the access modes of read/write/execute,
where the modes are defined as:

" Read - access to contents of a file, without the capability to modify them. Read
access allows a user to examine the data, but does not allow data modifications.

" Execute - access to a file, without the capability to examine or modify the contents.

" Write - access to a file, with the capability to append data or to modify the present
contents.

There are variations on these basic access control modes. Some systems support a
control access mode which is used to limit propagation of access rights. If a system supports
control mode, a user can only grant his access modes to another user if he has been granted
control mode access. Other systems support access modes that allow for modification of
existing files, and creation or deletion of files.

2.2 Group Definitions

Users performing a similar function or working on a given project are often logically
grouped together on a computer system. This simplifies the job of the system admin-
istrator when it is necessary to add/delete users from the system. Simply removing a user
from a given group that has been established may remove that user's capability to access
the group's data. (If the user has been granted access to the data from various groups, all
such access rights must be traced and revoked.)

2.3 Role Definitions

Roles can be used to define a given user's privileges and authorizations. A role can be as
all-inclusive as system administrator or security officer, or as narrow as "read-only user
of non-sensitive personnel data". A user assumes a given role either by virtue of being in
a particular group or by being granted specific access rights and privileges by the system
security officer or system administrator.

137

3 Are These Mechanisms Sufficient?

Is judicious use of the discretionary access control mechanisms of an operating system suf-
ficient for the discretionary access control requirements of a database management system?
The consensus answer was no. There are several deficiencies in operating system discre-
tionary access control mechanisms that make them insufficient for a trusted database man-
agement system. The problems with operating system security mechanisms in a database
management environment are that they do not provide a fine granularity of control over
data and they do not currently incorporate robust, flexible discretionary security mecha-
nisms.

4 Defining DBMS DAC Requirements

Since operating system discretionary access controls are insufficient, what comprises the
set of DAC mechanisms in a trusted database management system? The group discussed
the DAC mechanisms considered sufficient for a DBMS. These included access modes,
auditing, content-dependent controls, and view specifications.

4.1 Access Modes

The group consensus was that access modes as supported in SQL are the minimal dis-
cretionary access control mechanisms required in a trusted database management system.
These modes include:

" insert,the ability to add data;

" delete, the ability to remove data;

" select, the ability to retrieve data;

" update, the ability to modify existing data;

" grant, the ability to propagate access modes to other users;

* revoke, the ability to rescind access modes of other users.

In a database management system, the operating system's discretionary access modes
may be used to provide an interface to the file system. They do not provide sufficient
granularity of control for a database management system to effectively restrict user access.
The additional flexibility of SQL access modes is necessary to allow a finer degree of control.

138

4.2 Audit Modes

Transaction journals for rollback/recovery in database management systems usually do
not include the detailed data access activity information required for security auditing
activities. Assuming that trusted database management systems improve their auditing
capabilities, it will be necessary to examine the audit logs for possible compromises. These
audit examination techniques must be considered as part of the discretionary access control
mechanisms in the database management system.

All users must have write access to the audit logs to record their security-relevant
activities. Security officers and system administrators require read access to the data for
examination purposes. The volume of data which must be examined is defined by the
granularity of the audit as specified by the security officer. Audit reduction techniques
must be developed to allow the security officer to select items of interest.

Another concern with audit data is delegation of audit responsibilities. In this scenario,
reduction of the audit log would allow a given group's administrator to be responsible for
monitoring of his group's audit records. This approach assumes that the security officer
would delegate this responsibility to the group administrators, who in turn would be
responsible for reporting problems to the security officer for further examination.

4.3 Content-dependent DAC

Discretionary controls that are content-dependent appear to offer a good mechanism to
control some types of information. For example, if only one value for a given data item is
considered sensitive, it would be a simple matter to write a contents check to ensure that
the sensitive value is not inadvertently compromised.

This approach, however, does provide a very large covert channel opportunity bea-
cause a filtering technique is used to produce the final query result. One must search the
database and select the requested information, considering it as an intermediate result.
The intermediate result must be scanned to determine if a given data element is sensitive,
and if so, remove it from the final result returned to the user. The filter mechanism can
easily be exploited by cooperating users. The preferred approach to content-dependent
discretionary access control is a view mechanism. This avoids the problems associated
with filters, and ensures that the retrieved data contains only what was requested by the
user and allowed by the security policy of the database.

4.4 View Specification

Views have been considered one of the more flexible security mechanisms in a database
management system. They have been proposed as an alternative mechanism for content-
dependent security. The current view definition languages do not support security con-
straints. One of the areas for additional research is whether or not view definition languages
need to support security specifications.

139

5 Assurance and Discretionary Mechanisms

There has been considerable debate as to whether the assurance requirements for discre-
tionary access controls evolve upward through the Trusted Computer System Evaluation
Criteria's (1) levels of trust. Beyond the C2-level, there are no new assurance requirements
for discretionary access controls.

Since this is the case there is a question as to whether a model must be generated
for discretionary access controls. If discretionary access control mechanisms demonstrate
no information flow between mandatory sensitivity levels or trusted path communication
that would effect sensitivity labels, they should not need a formal model. The extent of a
model for discretionary access control mechanisms should be limited to an informal model.
Predicted results must be explicitly stated. The model must state the expected result of
discretionary access control operations and describe exceptions precisely.

6 The Role of DAC

The last point in the discussion was the proper place for discretionary access control
mechanisms in the context of trusted database management. To date, discretionary access
controls are not considered a covert channel in a trusted system. The discussion concluded
that discretionary access control mechanisms should be treated as a component of object
disclosure, and that it should be sufficient to demonstrate that a discretionary access
control check has been completed with the expected results. To enforce greater assurance
requirements on discretionary access control mechanisms would be excessive due to the
inherently untrustworthy nature of discretionary mechanisms.

7 Conclusion

The discretionary access controls in conventional operating systems are not sufficient for
database management systems. Additional mechanisms are required to provide a finer
granularity of access control and the more flexible mechanisms desired for user-specified
data management applications. However, to enforce a high degree of assurance on these
mechanisms is not appropriate due to the inherent vulnerabilities of discretionary security
mechanisms.

This paper has presented a brief summary of the discussion of discretionary access
control mechanisms in database management systems. More research is required to de-
termine the appropriate balance between the mandatory access control mechanisms and
the discretionary access control mechanisms in a multilevel trusted database management
system.

140

8 Bibliography

(1). Department of Defense, Trusted Computer System Evaluation Criteria, DOD-STD-
5200.28, December 1985.

141

Operating System Support of Multilevel Applications

Catherine Meadows
Judith Froscher

Center for Secure Information Technology
Code 5540

Naval Research Laboratory
Washington, DC 20375

The approach to DBMS security currently followed by most of those designing

multi-level applications is to build a DBMS on top of a multilevel secure operating
system enforcing a separation security policy. Although some trusted code may be

implemented as part of the application, in general the application operates within the

confines of the operating system policy, and relies on the operating system to enforce

that policy. The benefit of this approach is that the application designers do not

have to go through the expensive process of designing and implementing multi-level

access controls; these are already provided by the operating system. However, the

fact that the designers are constrained by the underlying operating system policy

means that, in cases where the application policy does not agree with the operating

system policy, the operating system controls must be largely circumvented, reimple-

mented, or used in ways that do not support the operating system security policy.

The degree to which they can be used selectively is limited.

This is not surprising, since the needs of a secure DBMS and a secure operating
system, although similar, also differ in many ways. It has been pointed out by

Spooner [171 that a DBMS deals with (and hence a secure DBMS must protect) logi-
cal objects, while an operating system deals with physical objects. Thus the

designers of a secure DBMS face the problem of mapping the logical protection
objects of the DBMS down to the physical protection objects of the operating system.

As would be expected, many features of the DBMS objects do not map very well.
These include the smaller granularity and greater interrelatedness of the protected

objects, which create needs for such functionb as aggregation management, multilevel
updates. and integrity constraints across security levels: protection based on informa-

tion content as well as physical location in the system: and the need for auditing of
complex events.

Some of these features can be built independently of the underlying operating

system. This is the approach behind what is usually referred to as "TCB subsetting"

115]. One example is the approach taken to discretionary and mandatory security by

the SeaView project [4]: mandatory access control is provided by the underlying
operating system, while discretionary control is provided by the trusted DBMIS.

Other examples are provided by the various inference detection and classification gui-

(lance systems that have been proposed or are under development [6 i1]. These

142

features provide guidance in the enforcement of a security policy, but are not respon-
sible for the implementation of it, and thus can be considered independently of the
underlying operating system.

Other functions can be forced to operate within the confines of the operating
system policy. An example of this would be a secure DBMS whose discretionary
access controls were only applied to relations and enforced by the underlying operat-
ing system, thus gaining assurance and ease of implementation at the sacrifice of
functionality. Other, more sophisticated examples, are provided by the Hinke-
Schaefer model [7] and the SeaView secure DBMS [3], in which multilevel relations
are decomposed into single-level relations, which are then protected by the underly-

ing operation system. In this case it is performance, not functionality, that is
affected. Although all these solutions have the property that the mapping of DBMS
protection objects to operating system protection objects is clone at a cost, either to
performance or functionality, they do show that DBMS and operating system secu-
rity policies can be made to correspond at least to a limited extent.

Many features, however, seem to be neither independent of the underlying
operating system or implementable within its confines. These include functions that
would be managed in part by the user interface, which is usually considered too com-
plex to design and verify according to the requirements of multilevel security. Such
functions include trusted display and manipulation of multilevel data and tools for
facilitating multi-level updates. Since these involve code that operates over several
different levels of data, the underlying secure operating system. whose main purpose
is to grant or deny access to objects based on security labels, does little to assist in its
management. For the same reason they cannot operate independently of the operat-
ing system security policy. Thus the current paradigm of multilevel security requires
the designer to model and implement such code as trusted subjects and verify that it
does not violate the security policy of the system. Not surprisingly, the task of build-
ing such complex functions as trusted subjects is considered beyond the state of the
art. Yet the fine granularity and greater interdependence of DBMS objects may
make such features necessary. This may become even more the case when complex
labeling and aggregation and inference policies are enforced.

Another set of features that may come into conflict with an underlying operat-
ing system security policy are those associated with complex data structures such as
may be used in an object-oriented DBMS. For example. in [18] Spooner points out
the difficulties that may arise when inheritance is used in a secure object-oriented
database management system. both when high-level objects inherit from low-level
objects, and low-level objects inherit from high-level objects. The clasification of
data in complex objects may also cause problems. If data in a complex object can
only be accessed via some other data in that object. and the data used for access is
classified at a higher level than the data being accessed, the security policy of the
underlying operating system may be violated. Such a problem was encountered in

143

the modeling of containers for the NRL Secure Military Message System described by
Meadows and Landwehr in [11]. In some cases, a container may be classified at a
higher level than the data it contains, but data may be conveniently accessed only
via that container. This would be the case, for example, in a Secret message that
contains some unclassified paragraphs. Finally, the methods associated with objects
in an object-oriented system create the new problem of mapping to subjects in a
secure operating system. In a relational DBMS, operations on data are defined in
terms of such actions as "read", "insert", and "update", which map in a straightfor-
ward way to the actions taken by subjects in a secure operating system. The actions
taken by methods in an object-oriented system may be too complex to map to the
"read", "write", and "execute" by which subject actions are defined in most secure
operating systems.*

It is too early to claim that object-oriented systems cannot be implemented on
top of secure operating systems as they exist today. Indeed, work is already being
done in developing mappings of the requirements of secure object-oriented DBM4Ss to
policies enforced by secure operating systems [10]. However, the problems we have
listed are causes for concern.

It is unrealistic to expect that operating systems can be changed so that the
security policy for a multi-level DBMS can be implemented completely by the under-
lying operating system. The fine granularity and the logical interdependencies of the
data managed by the DBMS makes this impossible. However, we believe that it is
realistic to expect that secure operating systems can be designed so that they provide
greater support for DBMS security, and so that DBMS security requirements.
although they may not be enforced by the underlying operating system, at least do
not violate its security policy.

The chief cause of conflict appears to be that secure operating systems are built
to enforce separation of data. Any application that requires sharing of data at
different security levels must be treated as a trusted subject; thus the operating sys-
tem provides little assistance in its management. However. secure DBMSs require,
not only separation, but controlled sharing of data. Thus we need operating systems
to provide better support of controlled sharing.

Some support of controlled sharing can be gained by providing closer manage-
ment of code that is trus-,ted to write down or across security levels or provide
security-relevant functions. Designer, of secure operating systems have to some
extent been moving in this direction. One example is the assured pipelines of the
LOCK operating system [2]. An assured pipeline may allow subjects to write across
security levels. but it restricts the paths along which information can travel. In [2]
an example is given of a secure labeler implemented as such a pipeline. The pipeline

* We are grateful to Sushil Jajodia for pointing this out to us.

144

consists of two object types, labeled and unlabeled data. and two modules, the labeler
and the output module. The labeler accepts unlabeled data only and produces
labeled data that cannot be modified, while the output module will accept labeled
data only. More complex pipelines have been used to implement various security-
relevant parts of the LOCK Data Views system [5], a secure DBMS intended to run

on top of the LOCK operating system. These include pipelines that handle responses
to queries and updates, and manage metadata.

A more specialized example of operating systems providing closer management
of trusted code is the auditing subsystem provided by the MITRE Compartmented
Mode Workstation (CM\'V) [131. The auditing subsystem not only provides an audit-
ing capability for the CMXV, but also manages and stores audit trails of applications
(such as DBMSs) that are trusted to do their own auditing.

A degree of control similar to that of LOCK may be achieved in the GEMSOS
operating system, although by a more circuitous route. In GEMSOS [14], subjects
are given two labels, one which specifies the highest level at which it can read. and
the other which specifies the lowest level at which it can write, with untrusted sub-
jects having read labels equal to write labels, and trusted subjects having read labels
that strictly dominate the write labels.* This allows one to give trusted code permis-
sion to write across no more security levels than is necessary for it to do its job. By
creating a large range of security and integrity levels, one can use such double labels
to achieve a fine grain of control. For example, Lee [8] and Shockley [16] show how
such labels can be used to enforce the Clark/\'Vilson integrity policy. Note. however.
that this degree of control is achieved at the cost of using secrecy and Biba integrity
labels for purposes other than they were intended. This means that some extraneous
features are included (for example, the lattice hierarchy) that may make evaluation
more difficult.

Another area in which operating systems can provide better support for data-
base security is in the provision of primitive trusted functions that can be used to
manage sharing of data at different security levels. Some of the functions that could
be provided and that would have an impact on security are discussed by Spooner in

[17]. These include process control, memory management. file management, correct
physical I/O, buffer management. recovery and transaction management, interrupt
handling, and network services. These functions will often be responsible for manag-
ing pro,.esses or data at different security levels. Some work. but not enough, has
been (lone on the provision of such functions in secure operating systems. For exam-

pie. in [7] Hinke and Schaefer provide algorithms for secure process s.nichronization.
These are presented in the context of' a sec.ire DBN[S. but there is no reason that
they could not be provided by the operating system. For example, GEMSOS

* A similar labeling system is introduced by Bell in 111.

145

provides the eventcounts and sequencers that could be used to implement these func-
tions, although it does not provide the functions themselves. As another example
[121, Parenty discusses the means by which multilevel inter-process communication
via shared files could be implemented in a multi-level Unix system. Such a function
would be needed by a secure DBMS that builds a multilevel data structure out of
single-level objects, but is not provided by most secure Unix systems under develop-
ment.

The reason such trusted functions are not provided by most secure operating
systems is not because we do not know how to implement them. For example. the

techniques presented in [7] have been available for the last fifteen years. Rather. the
lack of such functions seems to be due to the fact that their inclusion would expand
the TCB beyond the limits of what is considered possible to evaluate. Thus what is
required is. not only more research into the design of trusted functions and the
management of trusted code, but more research into means of designing and evaluat-
ing TCBs so that trusted functions can be inserted without making the evaluation
process intractable.

At present, all evaluated products enforce essentially the same security policy,
and none support a methodology for adding and evaluating trusted functions. But
attempts to produce trusted applications. SDBMSs in particular, have revealed, both
that the enforcement of a simple, generic security policy does not satisfy the more
complex security requirements of most applications, and that trusted functions are
required for an application to do its job. Thus, what we appear to need is not a sim-
ple operating system that rigorously enforces a single security policy, but a system
that provides a set of trusted functions that can be combined and extended so that
the application builder can verify that the result enforces the security policy of the
application. In order to achieve this goal, we need ways of implementing and
evaluatir.g operating system components that could be combined to form a TCB that
enforces an application system security policy. Additionally, a sound theory must be
developed to allow designers to rigorously demonstrate that the system TCB built
out of those components enforces the apr.lication security policy. In other words.
what we need is not only TCB subsets, but TCB "slices".

In conclusion, we believe that not all security requirements of a multilevel data-
base management system can be satisfied by relying on the security mechanisms of
an underlying operating system. The nature of the objects protected differs too
widely. However, we do believe that secure operating systems can provide more sup-
port than they do now, both by providing more trusted functions for the manage-
ment of data at different security levels, and by providing more operating system
management and control of trusted functions supplied by the application designer.
Moreover, the implementation of these features is currently within the state of the

art: the area in which research still needs to be done is in how they can be indepen-
dently implemented and evaluated so that they can be composed to form a TCB that

146

demonstrably enforces an application-dependent security policy.

References

1. D. E. Bell, "Secure Computer Systems: A Network Interpretation," in Proceed-
sngs of the Second Aerospace Computer Security Conference: Protecting Intel-
lectual Property, pp. 32-39, AIAA, Washington, DC, 1986.

2. W. E. Boebert and R. Y. Rain, "A Practical Alternative to Hierarchical
Integrity Policies," in Proceedings of the 8th Annual National Computer Seen-
rity Conference, pp. 18-27, NBS/NCSC, 1985.

3. D. E. Denning, T. F. Lunt, R. R. Schell, M. Heckman. and W. Shockley, "A
Multilevel Relational Data Model," in Proceedings of the 1987 IEEE Sympo-
sium on Security and Privacy, pp. 220-23,4, IEEE Computer Society pres,
Washington, DC, 1987.

4. D. E. Denning, T. F. Lunt, R. R. Schell, \V. R. Shockley, and M. Heckman.

"The SeaView Security Model," in Proceedings of the 1988 IEEE Symposium
on Security and Privacy, pp. 218-233, IEEE Computer Society Press, Washing-

ton, DC, 1988.

5. J. T. Haig.., P. D. Stachour, P. A. Dwyer, E. 0. Onuegbe, and B. M. Thurais-
ingham, "Secure Distributed Data Views: Final Technical Report for a Data-
base magement System, Volume 5: Implementation Specification," Report A005
on RADC contract F30602-86-C-0003, Honeywell Systems and Research Center.

May 1989.

6. T. Hinke, "Inference Aggregation Detection in Database Management Systems.
in Proceedings of the 1988 IEEE Symposium on Security and Privacy, pp. 96-

106, IEEE Computer Society Press, Washington, DC.

7. T. H. Hinke and M.. Schaefer, "Secure Data Management System," RADC-TR-
75-266, Rome Air Development Center, November 1975.

8. T. M. P. Lee, "Using Mandatory Integrity to Enforce "Commercial" Security."
in Proceedings of the 1988 IEEE Symposium on Security and Privacy, pp.
140-146, IEEE Computer Society Press. Washington, DC, 1988.

9. T. F. Lunt, R. R. Schell, WV. R. Shockley, and D. Warren, "Toward a Multilevel
Relational Data Language." in Fourth Aerospace Computer Security Applica-
tions Conference, pp. 72-79. IEEE Computer Society, \Vashington. DC, 1988.

10. T. F. Lunt. "Secure Distributed Data Views: Identification of Deficiencies and
Directions for Future Research." A007: Final Report. Vol. 4. SRI International.

Menlo Park. CA, January 31,1989.

11. C. A. Meadows and C. E. Landwelir. "Designing a Trusted Application Using
an Object-Oriented Data Model." in Research Directions in Database Security.

ed. T. F. Lunt, to appear.

147

12. T. J. Parenty, "The Incorporation of Multi-Level IPC into UNIX," in Proceed-
ings of the 1989 IEEE Symposium on Security and Privacy, pp. 94-09, IEEE
Computer Society Press, Washington, DC, 1989.

13. J. Picciotto, "The Design of an Effective Auditing Subsystem," in Proceedings
of the 1987 IEEE Symposium on Security and Privacy, pp. 13-22, IEEE Com-
puter Society Press, Washington, DC, 1987.

14. R. R. Schell, T. F. Tao, and M. Heckman, "Designing the GEMSOS Kernel for
Security and Performance," in Proceedings of the 8th National Computer Secu-
rity Conference, pp. 108-119, NBS/NCSC, 1985.

15. W. R. Shockley and R. R. Schell, "TCB Subsets for Incremental Evaluation," in
Proceedings of the Third Aerospace Computer Security Conference: Applying
Technology to Systems, pp. 131-130, AIAA, 1987.

16. W. R. Shockley, "Implementing the Clark/Wilson Integrity Policy Using
Current Technology," in Proceedings of the 11th National Computer Security
Conference, pp. 29-37, NBS/NCSC, Baltimore. MD, 1988.

17. D. L. Spooner, "Relationships Between Database Security and Operating Sys-
tem Security," in Database Security: Status and Prospects, ed. C. E. Landwehr,
pp. 149-158, North-Holland, Amsterdam, 1988.

18. D. L. Spooner, "The Impact of Inheritance on Security in Object-Oriented
Database Systems," in Database Security II, Status and Prospects, ed. C. E.
Landvehr, pp. 141-150, North-Holland, Amsterdam, 1989.

19. M. B. Thuraisingham, "Security Checking in Relational Database Management
Systems Augmented with Inference Engines," Computers & Security, vol. 6, no.
6, pp. 470-492, December 1987.

148

AN INTERIM REPORT ON THE DEVELOPMENT OF SECURE DATABASE
PROTOTYPES AT THE NATIONAL COMPUTER SECURITY CENTER

John R. Campbell
National Computer Security Center
Office cf Research and Development

98000 Savage Road
Fort George G. Meade, Maryland 20755-6000

301-859-4488

INTRODUCTION

This paper describes work that is being done by the
National Computer Security Center with two database vendors to
build a series of secure, full-functioned, commercial quality,
database management system (dbms) prototypes. The security
being added is consistent with the Trusted Computer System
Evaluation Criteria (TCSEC or "Orange Book") [3). A goal is to
add Orange Book security to existing, widely-used state-of-art
database management systems. A high level of integrity is also
required. Specifically covered here are results to-date
obtained from the initial task of the projects, the development
of two secure database management system prototypes at the class
C2 (Controlled Discretionary Access Security Level).

WHY THESE PROTOTYPES

The Trusted Database Interpretation (TDI) [4] is an
interpretation of the TCSEC for database management systems much
in the same way as the recently published Trusted Network
Interpretation (TNI) [8] described the TCSEC relationship to
networks. The prototypes provide research to support the
development of the TDI. Systems ratable at the B2 and Al levels
had been built during the writing of the TCSEC to show that the
TCSEC was implementable. Similarly, these prototypes are being
developed to demonstrate that the requirements of the TDI are
implementable. As was pointed out in a February, 1989 Software
Technology Service Newsletter, the building of the prototypes
allows us to develop the TDI in a real, live situation. Further,
the DOD-vendor community at large will have a tested criterion
instead of a policy that is just a paper standard [7).

The second reason why these prototypes are being built is to
show that not only are the interpretation of the TCSEC
requirements implementable but that they are realistic for full-
blown commercial quality systems. Many papers have been written

149

and basic proof-of-concept prototypes have been built. However,
there still remains a number of unanswered questions. Can you,
for example, install security in a full database management
system and still maintain adequate performance and high
integrity?

System structure affects organization structure. How should
organizations be restructured so that secure database management
systems, with added functionality, can be effectively and
advantageously used by the organization? What new roles must be
created? What must be audited? The likelihood of being
overwhelmed with huge amounts of audit information is certain,
unless the audit system is carefully planned and unless adequate
tools are provided to examine and reduce this information. Dr.
Carl Landwehr indicated in (5] that the most secure database
system in the world will not be effective in practice, if it
places unreasonable constraints or demands upon the systems's
operators and users or if it unacceptably degrades system
performance.

The third reason why these prototypes are being built is
that NSA, DoD and the Intelligence Community use many commercial
database management systems and would greatly benefit from being
able to purchase commercial off-the-shelf secure systems. The
alternative is to support the expensive process of inhouse system
development and maintenance of one-of-a-kind applications. Also,
commercial systems are built for user ease of use. Specialized
systems, while doing the job, are often difficult to use and
require unique training.

DATABASE MACHINES AND HOST-BASED DBMSs

The prototypes are broken into two type of architectures,
namely, database machines and host-based database management
systems. In each, prototypes are or will be built which we
believe are dbms implementations of the C2, Bl, B3 and Al levels
of the TCSEC. In addition to these security requirements, we are
addressing data integrity, including referential integrity,
inference, aggregation and denial of service. We are looking at
what the Strategic Defense Initiative calls "Security *"', that
is, control of data access, data integrity and system
availability.

The first prototype approach using database machines is of
interest because the physical isolation lends itself to enhanced
database security. These are computers are dedicated to database
management system functions. The disks containing the database

150

are hung off these computers and host computers access the
database computer or database machine to obtain data. Only
identification, authentication and query information need to be
regularly sent from a host to the database machine and only
answers need to be returned. Because of this physical isolation,
the operating system of a host does not have the opportunity to
attack the database management system as it could if both
database and operating system coexisted on one computer. Also,
since the database machine has only the database function, its
operating system assumes fewer functions and can therefore be
smaller and more efficient. Large amounts of data can be handled
as some machines have parallel architectures. Some are fault
tolerant. Some are modular, which means that their capacity and
performance can easily be expanded and increased, without the
need for changing system software. In the database machine we
selected, up to 1024 processors can be connected together for
linear performance. Whether six or 1024 are used, the same
software is used, thus giving the user great flexibility.

The second experimental approach, host based database
management systems is also interesting. These are the general
purpose computers, the IBM PC/AT, the VAX or the IBM 3090. These
database systems are widely used, with over 90% of mainframes,
and most mini and microcomputers using them. Some of these
database systems are distributed; data can be stored in multiple
locations and yet appear to be local to the user. Also, some
database systems can use the power of parallel processors and
other advanced architectures.

STATUS

Work on both prototypes is underway. Teradata, Corp., with
the National Computer Security Center, is using the database
machine approach to develop "C2" and "Bi" level prototypes.
Changes have been made in the areas of authentication, audit,
system I/O privileges and docw -itation. A "C2" prototype was
delivered in August of 1988 anL, after it passed extensive
testing, was accepted as a contract deliverable. Teradata has
elected to incorporate these security modifications into its
standard release 4.0 of their commercial product. They have
scheduled release of this product sometime this summer.
Deficiencies preventing a "Bi" level of trust have been defined
and research is now being conducted to propose how these
deficiencies can be corrected.

Oracle Corporation is using the host-based database
management system approach to develop both "C2" and "Bi"

151

prototypes. A deficiencies report enumerating what must be
changed to bring the DBMS into compliance with the TCSEC and TDI
for the first prototype has been delivered. This prototype, at
the "C2" level, is expected in May, 1989 and will be on a VAX
using the VMS operating system. A second discretionary prototype
is scheduled for delivery in July, 1989 and will run on the
GEMSOS operating system on a Gemini Computer. Developing two
prototypes gives us the opportunity to explore how differing
hardware architectures and operating systems affect secure dbms
development. Also, both will be used as initial steps in the
development of the "Bl" prototypes. The VMS prototype will be
used as a basis for SE/VMS prototype and the "C2" GEMSOS
prototype will be used as a starting point for the "Bl" GEMSOS
prototype. The first "Bl" prototype is expected to be delivered
will be delivered in April of 1990, and will be integrated into
SE/VMS. The final mandatory prototype using GEMSOS will be
delivered in June of 199u.

We believe that the Oracle "Bl" prototype will actually be
in the Bl-B3 range, if the current balanced assurance theory is
accepted in the TDI and on the further study of the structure of
the Oracle code. In any case, in all prototypes we are
developing, the underlying operating system must be at least the
same level of certification as the database system.

OBSERVATIONS

Deficiencies

Current commercial versions of both DBMS approaches were
examined to improve security. A number of potential security
problems were found in each and these have been or are being
corrected by the vendors. It is interesting to note that both
current commercial versions had security deficiencies due to
system routines. These routines, because of ease-of-use or
performance considerations, bypassed security procedures [1,2].
One routine was a bulk data loading routine. The second routine
enabled a system programmer to fix a system that had crashed. It
is suspected that most commercial DBMSs have such commands and
therefore these commands would be easy tools to compromise data
stored in the database management systems.

SOL Modifications

SQL, the language, is used by both vendors to access the
databases. Both the number of SQL keywords and SQL functionality

152

was necessarily expanded to support the secure versions. SQL
command extensions that support group access controls, that
support the ability to selectively audit actions (based on the
identity of the user performing the action), and that support
inter-record dependency constraints, (i.e., referential
integrity), have been added.

Teradata introduced the BEGIN LOGGING and END LOGGING
commands to permit the system administrator to control auditable
actions. The "Action-name" or "ALL" commands specify the type of
accesses that will be logged and gives the system administrator
control over the depth of auditing.. These are the same
functions on which an access right can be granted. The action-
names are given for completeness:

CHECKPOINT DROP DATABASE INSERT
CREATE DATABASE DROP MACRO MACRO
CREATE MACRO DROP TABLE RESTORE
CREATE TABLE DROP USER SELECT
CREATE USER DROP VIEW TABLE
CREATE VIEW DUMP UPDATE
DATABASE EXECUTE USER
DELETE GRANT VIEW

A "WITH TEXT" option saves the text of the command which caused
the audit log entry. FIRST, LAST and EACH commands specify the
frequency with which log entries will be made. On an END LOGGING
statement, if the object name is a database or user and is
followed by ".*", all logging rules on all objects in the
database or user will be modified as specified.

To restrict a user to a subset of the hosts connected to the
database machine, new SQL statements were added:

GRANT LOGON ON ALL (or Hostid,Hostid,...) TO, and
REVOKE LOGON ON ALL (or Hostid,Hostid,...) TO
An optional WITH NULL PASSWORD phrase is available. This permits
logons without a password string from a specified community
(host).

Oracle modifications include added support for group access
controls by establishing the "role" mechanism. Privileges can
be granted to roles and then roles can be granted to users or
other roles. SQL statements are provided to CREATE and DROP
roles. Two forms of GRANT commands are specified: one to assign
privileges to roles, the other to assign roles to individuals or
other roles. Two REVOKE commands are provided to revoke
assignments made by the GRANT commands. Finally, additions are
made to the AUDIT commands to permit auditing of the CREATE ROLE,
DROP ROLE, GRANT and REVOKE commands. The AUDIT commands

153

themselves may be audited and NOAUDIT used to turn off the audit
function.

A new AUDIT command (Form III) was created to support
auditing of all actions by individual users. This command also
supports the auditing of specific actions by individuals, for
example, only GRANT and REVOKE commands. This feature reduces
the amount of audit data collected. A NOAUDIT (Form III) command
is used to partially or completely reverse the effect of a
previous AUDIT (Form III) command.

Inter-record Dependency Constraints are supported by
implementing referential integrity as defined in the proposed
ANSI SQL standard x3.135.1-198s, "Database Language SQL -
Addendum Ill. A CREATE TABLE command is used to define the table
constraints that specify referential integrity.

One of the requirements of Audit is the need to move data
from, say, disk to tape, when the disk becomes full. When this
happens we must record the fact that it has happened. Therefore,
to satisfy the need to audit the deletion of an audit trail, a
new SQL command called PURGE AUDIT TRAIL that users with DBA
privilege can use to remove data from the audit trail, was added.
This command copies records from the audit trail into another
table, deletes the records from the audit trail, and then adds a
new audit trail entry to record that this command was evoked.
Thus the act of deleting the audit trail is of itself an
auditable action and is logged (audited) after successful
deletion of the audit trail. Assurance that these controls work
must be at a sufficiently high level.

It i suspected that multilevel control will require a
substantial expansion of SQL keywords and/or the functionality
listed here.

Audit

Even where the object is a record, the number of audit
records generated under mandatory access control can be very
large. Therefore the use of summary records is suggested for
each subject/table/hierarchical level/compartment combination.

Discretionary Access Control

As described above, Oracle has proposed the use of "roles"
in the enforcement of Discretionary Access Control (DAC). A
"role" has assigned to it a set of capabilities such as read
and/or write access to one or more tables. Users are then
assigned to one or more roles.

154

Development Strategy

Development-Release Cycles

Both vendors have integrated security developments into
their regular product release cycles. Security enhancements are
targeted for specific releases. One vendor schedules all work on
a particular module, whether security or not, at a particular
time and by a particular team.

Subsetting v. Monolith Design ADroaches

Teradata is using a monolith approach where database
management system and operating system will be evaluated as one
entity. For a database machine, where the operating system is
designed to only support the database system, and therefore can
be of minimal size, this approach is prudent.

Oracle is using a TCB subsets approach, where access control
is shared between the operating and database systems.
Specifically, the operating system is providing mandatory access
control and both operating and database systems are providing
discretionary access control. The subsetting approach is
reasonable a host-based system design. The underlying operating
system, once certified, does not have to be recertified until it
is "changed". Oracle interfaces with many systems. It would be
very costly, both in time and other resources, for a dbms vendor
to obtain certification and recertification for the many
dbms/operating system combinations possible.

Performance

Performance of the first Teradata prototype, when contrasted
with the former standard version, appears to be little affected
except for audit. If all auditing mechanisms are turned on, and
in a worst case scenario consisting primarily of read accesses,
the overhead due to auditing could be high. The use of summary
audit records, especially under mandatory access control, to
decrease this cost, has been suggested. Using this procedure, one
record would be generated for each subject and
relation/hierarchical level/compartment combination of an object.
This record would keep an access-attempted count.

Future

Both projects are working on "Bl"-level prototypes. Future
research will include the distributed database environment in
which DBMSs must "support local ownership and management of data;
not require users to know where the data is physically stored;
not require users to know if data relations are fragmented or

155

duplicated somewhere in the network; support distributed query
processing and distributed transaction management; permit
hardware, operating system, and network independence, and...
permit transparent access of data between dissimilar DBMSs on a
network. This last rule means vendors first would have to agree
on a standard version of SQL " [6]. To do all this, securely,
and with data integrity, is a challenging, yet interesting,
task.

SUMMARY

This paper briefly describes the initial work being done to
secure two series of database management system prototypes. Why
full-functioned, commercial quality DBMSs, the architecture of
the DBMSs being examined, development plans, and progress and
observations made are discussed. A likely place to look for
problems, SQL changes being made for the "C2" versions and
suggested modifications to the audit record, are described.
Development strategies, performance observations and future plans
were then outlined. A great deal of progress has been made,
future progress is likely and success is expected.

REFERENCES

1. "CDRL A013: The Discretionary Modification Plan and Cost
Assessment", Contract #MDA904-88-C-6009.

2. "Deliverable A006, The Final Security Modification Plan/Pre-
Assessment Report", Contract #MDA904-87-C-6009.

3. Department of Defense Trusted Computer System Evaluation
Criteria, DOD 5200.28-STD, December 1985.

4. Draft "Trusted DBMS Interpretation of the DOD Trusted
Computer System Evaluation Criteria", National Computer
Security Center, November 18, 1988.

5. Landwehr, C.E., "Database Security: Where Are We?", Database
Security: Status and Prospects, C. E. Landwehr, ed., North-
Holland, 1988.

6. "Look Ahead", Datamation, March 1, 1989, p. 11.

7. Software Technology Service, February, 1989.

8. Trusted Network Interpretation of the Trusted Computer

156

System Evaluation Criteria, NCSC-TG-005, July 31, 1987.

Version 890406

157

SOME REMARKS ON INFERENCE CONTROLLERS

T. Y. LIN

Department of Computer Science
California State University, Northridge

Northridge, California 91330

1. INTRODUCTION

In this paper we examine three approaches to the Inference and
Aggregation problems in multilevel relational database system.
The first approach that we will examine is Morgenstern's ap-
proach [Morg87], (Morg88]; call it Method 1. The second approach
is Ford Aerospace's proposal; call it Method 2 [Buck89a-c]. The
third is studied by present author; call it Method 3 [Lin89a-b].

2. METHOD 1

2.1 Goal

The theory is designed to protect a rather general inference
problems on multilevel database:

(1) Inference as logical process of proving and deriving
conclusions from some given facts and rules.

(2) Inference in the information theoretical sense.

2.2 Quantitative Inference Model

2.2.1 Universe of Discourse:

All entities, attributes, relationships, constraints, and rules
that are of interests. The information involved are not only from
the stored database but also include user's knowledge that may
not be stored in the database. The traditional database schema is
a subset of this universe [Morg87].

2.2.2. Inference Function INFER is expressed by entropy. The
function is denoted by INFER(x --- > y), where x is an aggregate
and y represents information that can be inferred from x.

2.2.3. Core and SOI: A collection of primitive data is called
core and all the information that can be inferred from the core
is called SOI, Sphere of Inference.

2.2.4. Inference Channel: An inference channel is an aggregate of
core from which an inference is made. An inference channel exits

158

if the security classifications of all objects in the core are

less than or non-comparable with that of SOI.

2.2.5. The solutions:

1. If the inference channel consists of one object, then
simply raise the classification level of this object.

2. The data object within this aggregate would be released in
a controlled manner.

3. Introduce the noisy to the data that is released from this
aggregates.

4. Monitor the channel.

2.3 Discussions

1. The notion of SOI in 2.2.3 is too general. For example, let
core be the axioms of Euclidean Geometry, then some mathe-
maticians may still work on SOI(core) [Any theorems in geometry
is in SOI]. The actual determination of SOI may take an impracti-
cal length of time. However, in [Morg87] but not in [Morg88],
Morgenstern did provide an algorithm for finding SOI at schema
level. We believe that some limit on the territory of inference
should be included in the model. In -this respect [Morg87]
(presume that schema level is the only territory of SOI? or some
generalization) is better than [Morg88]. Basically this is
theoretical model. It is more interested in the existence problem
of inference channels than the actual identification and removal
of such channels.

2. In correcting an inference channel Method 1 may raise the
classification level of some objects. This may send "ripples
across" the whole model. This problem is mentioned [Morg98, pp.
245], but no solution is offered in the model.

3. METHOD 2

This approach is a modification of Method 1 with emphasis on the
real world problem. The multilevel database is assumed to be the
SeaView developed by SRI [Denn86a-b], [Denn87a-c], [Denn88a-b],
[Lunt88a-c], [Lunt89].

3.1 Goal

The system is designed to protect following types of inferences:

(1) Related Data and
(2) Indirect Access

According to Hinke, there are four types of inferences: missing

159

data, vanishing data, indirect access and related data [Hink88].
Since SeaView has protection on first two problems, so Method 2
focus on the last two inferences.

3.2 Probabilistic Knowledge Model

3.2.1 Universe of Discourse:

(1) Information store in the multilevel database.
(2) Information that is not presented in the database:

(2.1) Knowledge that an unclassified user possesses.
(2.2) Knowledge that is to be protected [Bucz89c,pp.20].

3.2.2. Semantic Data Model:

The database is represented by Semantic Model. It is used to find
the indirect access inference and to assist in building the prob-
abilistic inference networks by providing ranges for the core
parameters.

3.2.3 Probabilistic Inference Networks

The development of the network consists of two phases:

(1) Experts identify information that is to be protected: The
security classification policy is-elaborated by top-down fashion.
The top-level categories are used as starting point to identify
parameters relevant to the security classification policy.

(2) The system update the probability based on probabilities
supplied by experts and inference propagation equation.

3.2.4 Knowledge Base System

(1) Knowledge base:

(1.1) A basic semantic model to represent the database.
(1.2) Probability inference networks are used to relate

the objects of the underlying database to object to
be protected under the system security policy.

(2) Rule base:
Rules for knowledge acquisition and storage of knowledge
Rules for detecting indirect access inferences
Rules for detecting related data inferences
Rules for communicating results back to user

(3) Inference Engine

3.3 Discussions

1. The idea is excellent, however, the proposed framework do not
guarantee that probability inference network always construc-

160

table. Current theories on probability inference networks usually
needs some restriction or conditions on the structure of net-
works. For example, J. Pearls developed his network on acyclic
networks [Pear86). PROSPECTOR's assumption is basically equiv-
alent to that the network is a tree (DuHaNi76], [YaVaPeHoKe86].
Since this project is an application, the special circumstance
surrounding the particular application may imply that all prob-
ability inference networks are constructable; however, no such
proof is supplied. The paper exhibits such constructions by some
examples and, however, has no general theorems to support such
general constructions.

This presentation is just an opposite to Method 1. The scheme is
very practical, however, the exposition does not provide a solid
theoretical foundation on its methodology. Without a theoretical
foundation, each project has to prove its own existence theorem
on the probabilistic inference networks; constructability is not
apparent to the readers.

2. As remarked in Method 1, reclassification of security level of
an object may have ripple effect through whole the networks; no
discussion is provided for this side effect.

3. If Method 2 has no defects, it actually can solve more than
the stated goals: indirect access and related data. In fact, it
is rather general, it can solve the general inference problems.

4. The universe of discourse is basically the same as Method 1.
However, it may worthwhile to remark here that one should not be
too ambitious about user's knowledge, for example, his inferred
knowledge may be more than what the system can infer.

4. METHOD 3

4.1 Goal

The system is designed to

(4.1) Detect Aggregation and
(4.2) Protect the Inference on Aggregation

Note the aggregation here is more than usual aggregation; it is
an algebraic aggregation. Hence it includes some indirect access
and related data channels. For some systems security algebra may
include "security join" which related to indirect access and some
related data channels.

4.2 Aggregation

For a multilevel database, every data in the database has been
assigned a security classification which reflects the real world

161

security classification; such security class is called real-world
security class. Some data are derived data, some are primitive
data (atomic facts). We will assign a second security class to
these data; they are called algebraic security class. First, we
will assign the algebraic security class of primitive data the
real-world security class. Then we will assign the algebraic
security class of a derived data the class that is derived from
the security algebra. Note that every derived data is defined by
an expression in the relational algebra, hence its security class
can be computed by the corresponding expression in the security
algebra [Lin89b].

Let us set up some notations. Let E a derived data (that repre-
sents a view or an entity). Then, E can be expressed by

E = f(El,...Ek)

where El, E2,...Ek are primitive data. If the real world security
class of E is not agree with the algebraic security class com-
puted by security algebra, then the pair (E;El,E2,...Ek) is an
aggregation (see [Lin89b]). An aggregation is called simple, if
none of its subexpressions are aggregations.

4.3 Solutions

4.3.1 Simple Aggregation

The solutions of such aggregations have been well discussed in
the [Dill88], [Hink88], [Lunt89a], [Sayd87]. Basically the solu-
tions for simple aggregations can be classified into two types
[Lin89]:

(1) The original aggregation problem

E = f(El,...Ek)

can be transformed to a new expression

E = g(Fl,F2,...Fh)

so that the pair E;Fl,F2,...Fh is not an aggregation. Such simple
aggregation is called a fake aggregation. Examples are "context
dependent" aggregation which can be removed by appropriate
database design, see [Lunt89].

The primitive data E1,E2,...Ek in the original database are
removed and replaced by Fl,F2,...Fh. In other words, part of the
core is changed -- The new set of primitive data which includes
Fi, i=1,2,..h but has no Ei, i=l,..k is a result of intelligent
data design [Lunt89].

(2) This is the type of simple aggregation that no transformation

162

exists; it is a true aggregation problem.

Let E = f(El,E2,...Ek) be a true simple aggregation. Then the
solution of E is to

(2.1) Add the database a new primitive fact E
(2.2) Remove El, E2,...Ek from the original primitive data set
(2.3) The release of any of El, E2,..., Ek are handled by a

special procedure which is processed by SSO or a special
mechanism.

4.3.2 General Solution

The general aggregation is solved by induction on the "level" of
aggregation [Lin89b].

5. COMPARISONS

5.1 Method 1:

(1) Theory: A complete general theory.
(2) Application: Impractical in applications.
(3) Scope: Very General.
(4) Solution: Inference channels are detected, however, no

solution is guaranteed.

5.2 Method 2:

(1) Theory: An incomplete theory. The constructability of
probabilistic inference network for its applications are
demonstrated by examples, but not in general theory.

(2) Application: If the probability inference networks exists,
then it is a beautiful frameworks for applications.

(3) Scope: Together with SeaView, solve all the inference
channels identified by Hinke (Hink88). In fact Method 2
can identify more general inference channels than the
indirect access and related data channels.

(4) Solution: Inference channels are detected, however, no
solution is guaranteed.

5.3 Method 3:

(1) Theory: The theory provides a complete solution to the
algebraic aggregation. Algebraic aggregation includes the
some indirect access (Lin89b, Example 2.3) and related data
channels [Lin89b, Example 5.6]. The theory has potential to
solve the two inference channels completely; more work
needs to be done.

163

(2) Application: Applicable to any multilevel database system.

(3) Scope: It is more general than classical aggregation and
inference problem. The algebraic aggregation includes some
indirect access and related data. It has a highly potential
to solve all the inference channels identified by [Hink88].

(4) Solution: A complete solution for inference on algebraic

aggregation is presented.

6. CONCLUSIONS

Defending against inference attacks is one of the most fascinat-
ing area of computer security. However, one should realize its
limit. For example, many mathematical theorems, which do not
employ mathematical induction in the proofs, are inferred from
the axioms of that branch of mathematics. So, it is unreasonable
to build a defense against such type of inference. A reasonable
approach is to identify some "immediate/easy inference" problems
such as identified by [Hink88] and then build a defense system
against such inference attack. Method 1 is too general. Method 2
has identified their limited targets, however, the actual
mechanism (if it works) is applicable to a fairly general type of
inference problems which is beyond their stated targets; so it
might be too general. On the other hands, the idea of merging
the uncertainty reasoning with Database Security itself is an ex-
citing idea; it will attract a lots of attention. Method 3 limits
itself to a special type of inference problem, so it has a strong
result. Note that the mechanism is built on algebraic aggregation
(it is more general than usual aggregation problem). Method 3
with proper generalization, such as "Semantic Aggregation" has a
high potential to give a complete solution to the related data
and indirect inference problems; it seems one of the most effec-
tive approaches on the inference channels identified by [Hink88].

ACKNOWLEDGE

This research was supported by the U. S. Air Force, Rome Air
Development Center (RADC), under SRI's Subcontract C-12537. I am
indebted to both RADC and SRI for making this work possible.

REFERENCES

[Buck89a] L. J. Buczkowski, E. L. Ferry, and D. H. Lee. Database
Inference Controller -- Draft Top-level design, July 1989, Ford
Aerospace Corp.

[Buck89b] L. J. Buczkowski. Database Inference Controller,
Proceedings of IFIP WGll.3 Workshop on Database Security Septem-

164

ber 5-7, 1989

(Buck89c] L. J. Buczkowski, E. L. Perry, and D. H. Lee. Database
Inference Controller--Final Technical Report, September 1989,
ford Aerospace Corp.

(Denn76] D. E. Denning. A Lattice Model of Secure Information
Flow, Communications of the ACM, Vol. 19, No. 5, May 1976, pp.
236 - 243.

[Denn86a] D. E. Denning. The Inference Problem in Multilevel
Database systems, In the Proceeding of the National Computer
Security Center Invitational Workshop on Database Management
Security, June 1986.

[Denn86b] D.E. Denning, S.G. Akl, M. Heckman. T.F. Lunt, M.
Morgenstern, P.G. Neumann, and R.R. Schell. View for Multilevel
Database Security, Proc. IEEE Symposium on Security and Privacy,
1986.

[Denn87a] D.E. Denning, T.F. Lunt, R.R. Schell, M. Heckman and
W.R. Shockley, A Multilevel Relational Data Model, Proc. 1987
IEEE Symposium on Security and Privacy, 1987.

[Denn87b] D.E. Denning, T.F. Lunt, R.R. Schell, M. Heckman and
W.R. Shockley, "The SeaView Formal Security Policy Model", Com-
puter Science Laboratory, SRI International, July, 1987.

[Denn88a] D.E. Denning, T.F. Lunt, R.R. Schell, W.R. Shockley,
M. Heckman, The SeaView Security Model, Proc. 1988 IEEE Symposium
on Security and Privacy, 1988.

[Denn88b] D.E. Denning, T.F. Lunt, P.G. Neumann, R.R. Schell,
M. Heckman and W.R. Shockley, "Security Policy and Policy Inter-
pretation for a Class Al Multilevel Secure Relational Database
System", Computer Science Laboratory, SRI International, Aug.
1988.

[Dill88] Dillaway et al. Security Policy Extensions for a
Database Management System. Interim report A002. Honeywell Sys-
tems Research Center and Corporate System Development Division,
may 1988.

(DuHaNi76] R. 0. Duda, P. E. Hart and N. L. Nilsson. Subjective
Bayesian methods for a rule-base inference system. In Proceeding
of 1976 National Computer conference, vol 45, pp.1075-1082, 1976

[Hink88] T. H. Hinke. Inference Aggregation Detection in Database
management systems, In Proceedings of the 1988 IEEE Symposium on
Security and Privacy, April 1988.

[Lin89a] T. Y. Lin, L. Kerschberg and R. Trueblood. Security Al-

165

gebra and Formal Models, Proceedings of IFIP WGIl.3 Workshop on
Database Security September 5-7, 1989

[Lin89b] T. Y. Lin, Commuative Security Algebra and Aggregation,
Proceedings of Second RADC Workshop on Database Security, 1989

[Lunt88a] T.F. Lunt, R.A. Whitehurst, The SeaView Formal Top
Level Specifications, Computer Science Laboratory, SRI Interna-
tional, Feb. 1988.

[Lunt88b] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman
and W. R. Shockley, Element-Level Classification with Al As-
surance, Computers & Security, Vol. 7, No. 1, 1988, pages 73-82.

[Lunt88c) T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman,
D. Warren, A Near-Term Design for the SeaView Multilevel
Database System, Proceedings 1988 IEEE Symposium on Security and
Privacy, 1988.

(Lunt89] T. F. Lunt. Aggregation and Inference: Facts and Fal-
lacies, Proceedings 1989 IEEE Symposium on Security and Privacy,
1989.

(Morg87] Mathew Morgenstern. Security and Inference in Multi-
level Database and Knowledge-base systems, ACM International con-
ference on Management of Data (SIGMOD-87), May 1987

[Morg88] Mathew Morgenstern. Controlling Logical Inference in
Multilevel Database Systems, Proceedings 1988 IEEE Symposium on
Security and Privacy, 1988.

[Pear86] Judea Pearl. Fusion, Propagation, and Structuring in
Belief Networks, Artificial Intelligence 29(1986), 241-288

[Sayd87] 0. S. Saydjari, J. M. Beckman and J. R. Leaman, Lock-
ing Computers Securely, Proc. 10th National Computer Security
Conference, Sept. 1987, National Bureau of Standards/ National
Compu _r Security Center, pp. 129-141, 1987. Advances in Computer
System Security, Vol. 3, edited by Rein Turn, pp. 207- 219, 1988.

[Yag86] R. M. Yadrick, D. S. Vaughan, B. M. Perrin, P. D. Holden,
K. G. Kempf. Evaluation of uncertain inference models I:
PROSPECTOR. IN Lemmer and L. N. Kanal Uncertainty in Artificial
Intelligence, pp.333-338, Elsevier Science Publishers, 1988.

166

COMMUTATIVE SECURITY ALGEBRA AND AGGREGATION

T. Y. Lin

Department of Computer Science
California State University
Northridge, California 91330

ABSTRACT
One of the difficulty in aggregation problems is that there is no
proper framework to express the problems properly. The security
algebra, introduced by his colleagues and present author,
provides a succinct theory to express the aggregation problems in
database security. Aggregation has been phrased vaguely as a col-
lection (set theoretical?) of atomic facts. In terms of security
algebras, aggregation is defined to be an entity described by an
algebraic expression (in the relational algebra) of individual
data. The theory indicates that the efforts in various projects
have been devoted to solve only the "simple" types of aggrega-
tion problem; simple is used in the sense of structure theory of
algebra. Some complex aggregations are constructed for illustra-
tions. In this paper, the aggregation problems (simple and
complex) are formalized. In terms of the formalism, a complete
solution of the aggregation problems are presented. In this
paper, only the content dimension is addressed. Moreover, non-
commutative aggregation problems are not discussed (the usual ag-
gregation problems are all belonged to the commutative type ag-
gregation problems. See forthcoming papers.

1. INTRODUCTION

Inference in general and aggregation in particular have attracted
considerable interests [Denn86a-b], [Denn87a-c], [Denn88a-b]
(Dill87], [Hink88], [Lunt89a], [Stac88], [SuOz87], (SuOz89]. One
of the difficulty is that there is no proper framework to express
the problems properly. For example, aggregates have been referred
vaguely as a collection; is it set theoretical collection? Most
likely not; in [Lunt89a], Lunt considered the problem of joint
attributes. A proper formulation of a problem is almost always a
necessary step toward any significant progress. The security
algebra, introduced by his colleagues and present author
[Lin89b], provides a succinct theory to formulate the aggregation
problems in database security. Aggregation, intuitively, is an
"algebraic collection", more precisely, an entity E defined by an
algebraic expression (of a relational algebra) operating on a
collection of data. The aggregation problem then is the problem

167

of dealing with the possibility of inferring the information of
an aggregate from that of individual data.

A multilevel relational database system is a system that con-
tains information with different levels of sensitivity. In such a
relational database system every entity (object, view) specified
by a query should have a sensitivity level or security class-
ification. Since every query in database can be described by a
relational algebra, we can use the corresponding security algebra
to compute the security classification of the entity. Now, the
problem arises if the computed classification is different the
actual classification assigned to this entity. In fact, this is
one of the criteria that are used to detect the existence of ag-
gregation problem. The central theme of this paper is to study
and solve the usual aggregation problem through commutative
security algebras. Non-commutative type of aggregation problems,
which have not been discussed in the literature, will be reported
in the forthcoming papers.

Security algebras are "derived" algebras of (extended) relational
algebra. A relational algebra is called an extended relational
algebra if the BUILT-IN functions, such as SUM(ADDITION), COUNT,
MULTIPLICATION, and some other mathematical and string functions
as part of the relational algebraic operations on the data. One
of the novelties of current paper is that we view data as gener-
ators of the relational algebra. Every single data is regarded as
a view (or relation) with single attribute and single value; it
is called primitive data. Therefore any view (virtual table) is
generated by these primitive data through the operations UNION
and PRODUCT - See Proposition 2.4. Using this, a security algebra
is constructed from the relational algebra using UNION and
PRODUCT (by duality the INTERSECTION). In other words, we con-
struct a security algebra which is (1) a subset of complete lat-
tice, and (2) there is an algebraic homomorphism from the rela-
tional algebra (with operations:UNION and PRODUCT) to the lattice
(with operation:l.u.b); the operations UNION and PRODUCT are
"mapped" to g.l.b.; by duality, the INTERSECTION is "mapped" to
g.l.b.. Depending on individual applications, this homomorphism
[StMc77] may be able to extended to include the "mapping" of

(1) BUILT-IN functions to operations in Security Algebra,
(2) JOIN to multiplication (an operation in m-lattice), or
(3) All operations to g.l.b.;This is Denning's lattice model.

Case (2) is deferred to future work. Note that the multiplication
may not be commutative, so this is in the territory of (non-
commutative) security algebra. See forthcoming paper.

From this formalism, we inductively revise the set of primitive
data, and solve all the aggregation problems completely for the
multilevel database.

168

This author would like express his sincere thank to Teresa Lunt
for her encouragement in this investigation and the arrangement
of the research grant.

2. EXTENDED RELATIONAL ALGEBRA

A relational database consists of a collection of primitive data
(e.g.,values of attributes). Intuitively, a sub-collection (e.g.,
a tuple, a sub-relation or a view) of these primitive data
usually represents an entity, which is either a real-world en-
tity (e.g., a department of a corporation) or an association
among entities (e.g., between manager and employees). Any query
in a relational database represents an entity. The data
(i.e.,virtual table) that describe the entity is called a view.
We will use entity or view interchangealy. A query is definable
via relational algebra, so an entity o; a view is an expression
of a (extended) relational algebra cperating on the primitive
data. (See examples below).

The usual relational operations are [Date86]

(1) SELECT,
(2) PROJECT,
(3) PRODUCT,
(4) JOIN,
(5) DIVIDE,
(6) UNION, INTERSECTION, and DIFFERENCE,

In most commercial products, the SQL always support some mathe-
matical or string functions, such as maximum, sum, string length
and etc. [Date86]. We would like to include all these built-in
functions as part of relational operations whenever appropriate.
So we include

(7) BUILT-IN FUNCTIONS.

We shall call such algebra as Extended Relational AlQebra.

The set of information represented by a database can be regarded
as the set of all entities (views) describable by queries or
relational algebra. Using the notation of [Lin89], such set will
be denoted by CO. Note that the set CO contains elements, tuples,
relations, sub-relations and, in general views. In other words,
CO is the set of all views definable by (extended)relational al-
gebra operating on the primitive data (atomic facts); we will
refer to this set CO as the set of informations, the set of en-
tities or the set of views.

Let E be an entity and Al, A2,..., An be the primitive data that
define the entity. Then E can be expressed by

169

(2.1) E = f(Al, A2, ...,An)

where f is an expression of extended relational algebra.

Example 2.1 Let the entity E be a committee represented by the
relation COMMITTEE. Let Al, A2,,An (Smith, Anderson,..) be
its members represented by tuples in the relation. Then

E = A1 U A2 U U An

where U is the UNION of the extended relational algebra.

COMMITTEE

membername city status classification

Smith Rome 100 SECRET
Anderson Athens 500 SECRET
Johnson London 200 CONFIDENTIAL
Kennedy Berlin 499 TOP SECRET
1oover Paris 400 TOPSECRET

Example 2.2 Let the entity E be the TOTAL number of US-TROOPS in
Europe. Let Al, A2. ,An be the numbers of troops (atomic
facts) in the cities Xl, X2,... Xn. Then

E = Al + A2 + + An

(2331 = 755 + 345 + 231 + 500 + 500)

where + is the SUM in the extended relational algebra [Lin89a).

US-TROOPS

cityname numbertroops classification

Rome 755 SECRET
Athens 345 SECRET
London 231 CONFIDENTIAL
Berlin 500 TOP SECRET
Paris 500 TOPSECRET
TOTAL(in Europe) 2331

Example 2.3 Let E be a relation E(emp#, name, address, salary
.....). Let Al = NAME(emp#, name), A2 = ADDRESS(emp#, address),
A3 = EMPSALARIES(emp#, s#), A4 = SALARIES(s#, salary),....

E = Al # A2 # A3 # A4 # An

where # is the JOIN of the relational algebra.

170

Although there are six types of operations in the relational al-
gebra, they are not the "minimal set of operations". Here, mini-
mal set of operations means the minimum types of operations that
are required to generate all possible information CO from primi-
tive data (elements) in a relational database.

Proposition 2.4 The minimum set of relational operations are

(1) PRODUCT
(2) UNION

Proof: SELECT is a description of a subset of a relation; we can
use the UNION of tuples to describe the subset. PROJECT is a
description of a "sub-columns" of a relation that can be obtained
by taking a Cartesian product on a subset of original attributes.
JOIN and DIVIDE are both describable by SELECT and PROJECT. IN-
TERSECTION and DIFFERENCE are methods of describing subsets of a
relation; they can be expressed by the UNION of tuples.

Remark: Obviously, to get the minimum set of extended relational
operations

(3) BUILT-IN FUNCTIONS

are needed to be included.

Example 2.5 Let E be a relation

file-name cityname numbertroops classification

Rome-file Rome 755 SECRET
Athens file Athens 345 SECRET
London-file London 231 CONFIDENTIAL
Berlin file Berlin 500 TOP SECRET
Paris file Paris 500 TOPSECRET
EUROPE-file Europe 2331

Then E can be constructed from the elements as follows:

Each of the following four elements: Rome file, Rome, 755, SECRET
are four informations in CO. The product of this four elements
form a tuple of E, i.e.,

tuplel = Romefile X Rome X 755 X SECRET

which is an information in CO.

Similarly, we can form

tuple2 = Athens-file X Athens X 345 X SECRET

171

tuple3 = Londonfile X London X 231 X CONFIDENTIAL

The UNION of these tuples form the relation E.

This illustrates how a relation or view can be built from primi-
tive data via minimum set of operations.

Definition 2.6 An entity (view) can be represented by an expres-

sion

E = f(Al,A2. , An)

where f is an expression of minimum set of operations and Al,A2,
.... An are primitive data. The expression is called a defining
expression of E and the data a defining primitive data.

3 SECURITY CLASSIFICATION MAPS

In this section, we -iill investigate two security classifications
maps: one is the real world security classification. The other is
derived from the primitive data and the structure of a commuta-
tive security algebra.

3.1 Real World Security Classifications

In a multilevel database system, each entity (atomic fact, view)
is assigned a security classification. The goal is to assign
the security classes to all entities so that they reflect the
real-world classifications. Let us assume that such a security
classifications has been assigned to the multilevel database sys-
tem under consideration.

As in [Lin89b], let the set of all information stored in the mul-
tilevel database system be denoted by CO. We partition the set of
information CO into disjoint equivalence classes according to
their security classification: Two data dl and d2 are equivalent,
denoted by dl = d2, if they have the same security classification
(i.e., CL(dl)=CL(d2)). This equivalence relation partitions CO
into disjoint classes, and the set of these disjoint classes is
denoted by CO/=. Let SC be the poset of security classifications
and NP be the natural projection that maps the element to its
equivalent class. The security CLassification map CL induces an
one-to-one map ED (EmbeDding) from CO/= to SC. That is, we have
the following "commutative diagram":
[Two ways of traveling from CO to SC will give us the same
result: CL(co) = ED(NP(co)), where co is a typical member of the
set CO.]

172

CL

Co ---------------- > SC

NP

EDCO/=

For future references, let us summarize our notations as follows:

(CL-l) CL is the security map which assigns every entity a
security class to represent the real world security class
of an entity.

(CL-2) Let x be an entity, then the security class CL(x) is
denoted by [[x]], i.e., CL(x) = [[x]]

(CL-3) SC is the poset of security classes and is identified
with CO/=.

3.2 Algebraic Security Classifications

In the real world security classification, the security class of
an entity may or may not reflect the algebraic structure of the
relational algebra. In this subsection, we will base on the real
world security classification of primitive data to construct a
new security classification on CO, which reflects the algebraic
structure of the relational algebra. Namely, we will define
another security classification map, which is a homomorphism
(StMc77] from the relational algebra to the security algebra.
Note that given a relational algebra, there may have more than
one security algebras. Our approach is applicable to any security
algebra.

First, we need to extend the poset SC to a lattice, by the stand-
ard embedding theorem. Let us quote from [Birk60, pp. 58,
Theorem 12] the following:

Theorem 3.1 Any poset can be embedded in a complete lattice, so
that inclusion is preserved, together with all g.l.b. and l.u.b.
existing in the poset.

Remark: This lattice structure is not the lattice of [Denn76]; it
is a pure mathematical theorem. We will call this lattice LSC the
enveloping lattice of the poset SC.

Let LSC be the complete lattice in Theorem 3.1. Let the new
security map ACL be called Algebraic CLassification Map. Recall
that the real world security class is denoted by double brackets
[[]] and Algebraic security class by single bracket[].

First we define the map ACL on primitive data.

ACL(Ai) = [[Ai]] for all primitive data Ai.

173

that is [Ai] = [[Ai]] for all primitive data.

Proposition 3.2 If the ACL can be extended to a homomorphism (its
existence is exhibit in Section 4)

ACL: CO ---- > LSC,

then the new security class of a general entity E,

E = f(AI,A2,..An),

can be defined by

ACL(E) = [f]([Al],[A2],..[An])

where f is an expression in relational algebra and ff] is the
corresponding expression of f in LSC.

Proof: This follows immediately from the meaning of homomorphism.

Remark: There can be more than one such ACL, depending on how

much structure is imposing on CO.

Let us summarize our notations:

(ACL-l) ACL is the security map which assigns
(1) every primitive entity a security class of real world

security class.
(2) every general entity by its algebraic structure.

(see Proposition 3.2)
(ACL-2) Let x be an entity, then the security class ACL(x) is

denoted by [x], i.e., ACL(x) = [x]
(ACL-3) LSC is the enveloping lattice of SC.

4. SECURITY ALGEBRA

4.1 Security Algebra

In [Lin89], we show that a relational operation induces an opera-
tion on SC if the security map CL satisfies Denning's axiom for
that operation. The induced algebraic structure on SC is called
security algebra.

A security algebra consists of three objects:

(1) A relational algebra RA which is the set of information CO
together with certain operations, denoted by *r* (Usually,
it is a subset of the extended relational operations).

(2) A security algebra SA which is a poset SC or its extension
together with certain operations, denoted by *s* (e.g.,

174

l.u.b. and g.l.b.)

(3) A homomorphism H: RA ---- > SA, which is a security
classification map satisfying the following property:

[dl *r* d2] = [dl] *s* [d2], for all *r* in RA

where di is in RA and H(di) = [di] is in SA, for i = 1,2; *r*
and *s* represent the corresponding pair of operations in RA and
SA respectively.

In other word, the following diagram holds:

relational operator (*r*)
RA X RA ------------------------------ > RA

H H

\ / security operator (*s*) \ /
SA X SA -------------------------------- > SA

where *r* represents every operation in the particular subset
(under consideration) of the (extended) relational operations.

Definition 4.1 A security algebra is said to be commutative if
dl *s* d2 = d2 *s* dl.

Remark: Ther. are real needs for non-commutative case. See
forthcoming paper.

There are 3 common commutative security algebras in usual rela-
tiona'l database (More precisely, there are six; in each case,
either one uses relational algebra or extended r-lational
algebra).

Case 1. For general systems, the minimum set of operations,
namely, UNION and PRODUCT are mapped to l.u.b. of LSC; by duality
INTERSECTION it mapped to g.l.b. (See Section 4 for the construc-
tion of this security algebra).

For extended relational algebra, the BUILT-IN FUNCTIONs, SUM
(ADDITION) and MULTIPLICATION are mapped to l.u.b..

Case 2. For some systems, the relational operations are mapped
into a multiplicative lattice LSC, where UNION and PRODUCT are
mapped to l.u.b. and JOIN is mapped to a multiplication; by
duality INTERSECTION is mapped to g.l.b. -- This case is differed
to later papers.

175

Case 3. For some systems, we impose Denning's axiom on every ex-
tended relational operations. Namely, UNION, PRODUCT, JOIN, SUM
(ADDITION) and MULTIPLICATION including all BUILT-IN FUNCTIONs
are all mapped to g.l.b.; this is the classical lattice model of
Denning.

4.2 Case 1 -- A Commutative Security Algebra

In this section we will construct a security algebra for rela-
tional database. Namely the Case 1. in Section 4.1.

From 4.1, we need to construct RA, SA and H.

RA is the set CO of informations together with the minimum set of
operations, UNION, PRODUCT and INTERSECTION. SA, a subset of LSC,
and H will be constructed together.

Let the security class of all the primitive data be defined by
real world classifications: For all primitive data Ai,

H(Ai) = [Ai] = [[Ai]].

Let E be an entity (view) which is defined by the primitive data
Al, A2., An via minimal set of operations (see 2.4):

E = f(A1,A2,..An)

Then, the security class of the expression f(A1,A2,..An) can be
defined by

[fo)] = [f]([AI],[A2],..[An])

where [f] is the expression obtained from f by replacing

(1) Ai by [Ai], and
(2) UNION and PRODUCT by l.u.b., #, of LSC.
(3) INTERSECTION by g.l.b., *, of LSC.

Obviously [f] is an expression in LSC. So [f(] is an element of
LSC.

Proposition 4.2 [f]([Al].,[A2],..,[An])=l.u.b.([Al],[A2],..[An])

Proof: The expression f is a union of all the tuples in the view
(virtual table) E. Each tuple, say (tl,t2,...,tk) is mapped to

[tl]#[t2]# ...#[tk]

Note that UNION is also mapped to #. Therefore

f(AI,A2,...,An)

176

is mapped to

[Al]#[A2]#...#(An] = l.u.b.([AI],(A2],..[An])

This proved the proposition.

Definition 4.3 The homomorphism H is defined by

H(E) = [E] = g.l.b.([fo): for all f which defines E).

As in Proposition 3.2 H(E) exists, since LSC is a complete lat-
tice.

As in Section 3, we will use ACL to denote H.

Proposition 4.4 The map ACL: CO ---- > LSC satisfies Denning's
axiom for the operations in the minimum set of operation, that
is, the following diagram is commutative:

relational operator
CO X CO ------------------------------ > CO

ACL ACL
Denning's Axiom

\ / security algebra operator \ /
CO/= X CO/= ---------------- > CO/= [a sublattice

of LSC]

where relational operator is in the minimum set of operations
namely, UNION and PRODUCT.

Proof: Let El and E2 be two entities in CO. Let g be a relational
operation in the minimum set. Then the new entity E3

E3 = g(El,E2)

has the new security class

ACL(E3) = [E3] = g.l.b.{[f(]: for all f defines E3)
[go], since g is a particular f

On the other hand ACL(E3)= [E3] 2 [El] and [E2], since all the
defining primitive data of E3 contains the defining primitive
data of El and E2.

Therefore [E3] = l.u.b.([El), [E2]). In other words, for any
relational operator in the minimum set, the induced security
operator is the least upper bound operator of the lattice LSC.
Therefore the diagram above is commutative.

In fact, the proof give us more than Denning's axiom. It give us

177

the following theorem.

Theorem 4.5 Let LSC be the enveloping lattice of the security
poset SC. Let CO be the set of all entities(views)in a relational
database. Let ACL be the security map, then the security algebra
induced from the minimum set of operations, is a sublattice of
LSC.

Proof: In the proof of previous proposition, we show that [E3] =
[g(El,E2)]=l.u.b.([El),[E2]), where g is in the minimum set
operations. This shows that the operation in the security algebra
CO/= is the lattice operation. QED.

Although in this theorem only the operations in the minimum set
of operations (i.e., UNION and PRODUCT) are mapped into security
algebra; by the duality of lattice, INTERSECTION is mapped to the
greatest lower bound in LSC.

Under this general ACL, JOIN may not satisfy Denning's axiom. If
for some system JOIN does satisfy Denning's axiom, then , as we
remarked in [Lin89], JOIN may induce a new operations in LSC,
which gives LSC the multiplicative lattice structure (or simply
m-lattice) [Birk60, pp.200]. Since the algebraic nature of m-
lattice is not well presented for computer science, we will not
impose the m-lattice structure into LSC at this time, and defer
the study to later papers.

Example 4.6 Let R be a relation which is a full set of Cartesian
product of three attributes domains. Let R = D1 X D2 X D3, which
is a relational expression. Apply the ACL to R, we have

[R] = [D1] # [D2] # [D3]

This is an expression in security algebra.

Example 4.7 Let E be the following relation (see Example 2.5)

filename city-name numbertroops classification

Rome file Rome 755 SECRET
Athens file Athens 345 SECRET
London file London 231 CONFIDENTIAL
Berlin file Berlin 500 TOP SECRET
Paris file Paris 500 TOP-SECRET
EUROPEfile Europe 2331

We will assume the value in the classification field indicates
the security class of the tuple, we also assume that every field
in the tuple has same classification of the tuple. For example

[Romefile]= [Rome]=[755]=[SECRET] = SECRET

178

Then, we can compute the security class of E by the defining

expression:

E = tuplel U tuple2 U U tuple6

= Rome file X Rome X 755 X SECRET
U Athens file X Athens X 345 X SECRET
U London-file X London X 231 X CONFIDENTIAL

Now, the expression is mapped to the following expression in the
security algebra:

[E] = [Romefile] # [Rome] # [755] # [SECRET]
[Athens_file] # [Athens] # [345] # [SECRET]
[London_file] # [London] # [231] # [CONFIDENTIAL]

= SECRET # SECRET # SECRET # SECRET
CONFIDENTIAL # CONFIDENTIAL # CONFIDENTIAL# CONFIDENTIAL
TOPSECRET # TOPSECRET # TOPSECRET # TOPSECRET

= TOPSECRET

5. AGGREGATION

5.1 What is Aggregation ?

According to [Lunt89],

(1) "The aggregation problem arises whenever some collection of
facts has a classification strictly greater than that of the in-
dividual facts forming the aggregate".
(2) "To qualify as an aggregation problem, it must be the case
that the aggregate class strictly dominates the class of every
subset of the aggregate"

Our notion of aggregation is basically the same as hers, however,
the formulation is slightly different. We consider aggregation as
a pair, the collection and the individual facts. Roughly, the ag-
gregation problem exist if and only if the classification of the
collection is strictly greater than that of the individual facts.
Moreover, a collection here is not merely the set theoretical
collection, in fact, any algebraic expression is an aggregate --
See below.

An aggregation that satisfies (2) is called simple aggregation;
here simple conforms the common usages in abstract algebra; no
sub-aggregate exists. (e.g., A simple abelian group is an abelian

179

group that has no abelian subgroup). Lunt and many others have
good strategies to solve these simple aggregation problems
(Dill88], (Hink88], (Lunt89a], (Sayd87]. If we incorporate their
solutions to our procedure, then we solve all the aggregation
problems in a relational database.

Let E be the collection of Al, A2, An. Then the pair

(5.1) E; Al, A2. An

is an aggregation.

Suppose B, a sub-collection of E, consists of Al, A2,...Ak and k
< n. Then, the entity can be expressed by

E = B U A(k+l) U U An.

The consideration of B induces two new aggregations; one of them
is the pair

(5.2) E; B, A(k+l),... An.

and another is

(5.3) B; Al, A2. , Ak

In [Lunt89a], Lunt considered (5.1) and (5.3) as one problem. In
our approach (5.1), (5.2) and (5.3) are three individual
problems, however, the procedure will naturally take care of
three problems at the same time.

Roughly, every non-primitive entity is an aggregation; the entity
and the defining primitive data (see 2.6) is the pair for an ag-
gregation.

Definition 5.1 Let E be an entity and E = f(El,E2,...,Ek) is an
expression in the extended relational algebra. Then E is a rela-
tive aggregation problem if and only if

[[E]] <> [f](([El]],[[E2]],...,[[Ek]J)

where <> means not equal, [f] is the induced expression of f in
the security algebra contained in LSC.

Recall that [[E]] is the security classification reflecting the
real world data. The security classification map is CL, i.e.,
CL(E)=([E]]. See CL-l, CL-2 and CL-3 in Section 3.1. Note that
for primitive data [[Ai]] = [Ai].

If we apply the Definition 5.1 to the defining expression of E,
then we have

180

Definition 5.2 Let E be an entity. Then E = f(Al,A2,...,An).

is an absolute aggregation problem if and only if

[[E]] <> [E] = [f]([Al],[A2],....An]).

Definition 5.3 Let E be an entity. Then E = f(El,E2,...,En) is
a simple (relative) aggregation problem if and only if

(1) E is an aggregation
(2) All sub-entities E' = f'(Ej,...,Ek), which are entities

represented by proper sub-expressions of f, are not
aggregation problems, in other words,

[[E']] = [f'](([Ej]],...,[[Ek]]),

for all proper sub-expressions f' of f.

Here "simple" conforms the usages of abstract algebra; for ex-
ample, a simple abelian group means no abelian subgroups.

Example 5.4 Let R be a relation which is a whole set of Cartesian
product of two attributes domains. Let R = NAME X SALARY, which
is a relational expression. Apply the ACL to R, we have

[R] = [NAME] # [SALARY]

The security classes of individual fields may be

[NAME] = [SALARY] = UNCLASSIFIED

By computation rules of # in LSC, we have

[R] = UNCLASSIFIED # UNCLASSIFIED
= UNCLASSIFIED

In reality, one may assigned R a higher classification, e.g.,
[(R]] = SECRET. Thus there is an aggregation problem. -- Merely
upgrading R can only shut off the data flow but not the inference
flow.

Example 5.5 (see Example 2.2) Let the entity E be the TOTAL
number of US-TROOPS in Europe. Let Al, A2.,An be the numbers
of troops (atomic facts) in the cities X1, X2,... Xn. Then

E = Al + A2 ++ An
(2331 = 755 + 345 + 231 + 500 + 500)

where + is the SUM in the extended relational algebra.

Apply ACL to the extended relational expression, we have

[E] = [Al] + [A2] ++ [An]

181

([2331] = [755] + [345] + [231] + [500] + [500])

Let us express the problem in terms of field names (the first
field value as tuple name), we have

EUROPE.troop_number = Rome.troop_number + Athens.troopnumber
+ London.troopnumber + Berlin.troopnumber + Paris.troop_number

Apply ACL to the expression, then the induced expression in
security algebra is
(Security class of individual field is the same as its tuple)

[EUROPE.troopnumber] = [Rome.troop_number]
[Athens.troop_number] # [London.troopnumber]
[Berlin.troop_number] # [Paris.troopnumber]
= SECRET # SECRET # CONFIDENTIAL # TOPSECRET # TOPSECRET
= TOPSECRET, by properties of #

However, in real life we may downgrade the EUROPE.troopnumber to
UNCLASSIFIED for news release.

Remark: This type of aggregation appears as an "inverse aggrega-
tion inference", it is an aggregation in our formulation. Let us
consider the following situation: If the entity E is the pair
(TOTAL, COUNT) of total number of US-troops and the number of
locations, for example

E = (Al,l) + (A2,1) + + (An,l)

Then, issues queries and obtained the following answers:

(2331, 5) = (755,1) + (345,1) + (231,1) + (500.1) + (500,1)
(1831, 4) = (755,1) + (345,1) + (231,1) + (500.1)
(1331, 3) = (755,1) + (345,1) + (231,1)
(1100, 2) = (755,1) + (345,1)
(755, 1) = (755,1)

One can find the individual number of right hand side by solving
the system of simultaneous equations using only left hand side
information. This an over simplified version of statistical in-
ference.

This type of aggregation are important in statistical inference.

For general discussions see [Ting89], [Matl89].

Example 5.6 Sensitive Association.

[[Smith]] = [Smith]= UNCLASSIFIED
[[500000]] = [5000000]= UNCLASSIFIED

The security class of sensitive association can be expressed in
the security algebra by

182

(Smith X 500000] = [Smith] # (500000]
= UNCLASSIFIED # UNCLASSIFIED
= UNCLASSIFIED

However, in real world, one would like to assign

[[Smith X 500000]] = SECRET

So this is an aggregation problem.

It is important to observe here that we are not handling the
product of name list and salary list. We are handling individual
name and his/her salary. The solution to this problem is to give
up the primitive data Smith and 500000 and to adopt a new primi-
tive data, the pair Smith X 500000; so this pair is not a derived
data of lower data [Smith or 500000 is no longer lower data].
The releasing of these two data is controlled by SSO (SeaView) or
some other mechanism (LDV [Dill88], [Stac88]).

Example 5.7 "Complex" or "Multilevel" aggregation problem.

[[AI]]=[[A2]]=...[[An]]= UNCLASSIFIED
[[(Al, A2)]] = CONFIDENTIAL
[[(Al, A2, A3, A4)]] = SECRET
[[(Al, A2, A3, A4, A5, A6)]] = TOPSECRET

Here {Al,A2) is a simple aggregation, (Al, A2, A3, A4) and (Al,
A2, A3, A4, A5, A6) are "complex" aggregations. However, they can
be transform to relative simple aggregations.

5.2 Solutions to Simple Aggregation Problems

Various proposals and efforts to settle the aggregation problems
have been well discussed in the (Dill88], (Hink88], [Lunt89a],
[Sayd87]. Basically the solutions to simple aggregations can be
classified into two types:

(1) The original aggregation problem

E = f(El,...Ek)

can be transformed to a new expression

E = g(Fl,F2,...Fh)

so that the pair E;F1,F2,...Fh is not an aggregation. We will
call such simple aggregation a fake aggregation.

(1.1) The primitive data E1,E2,...Ek in the original database are
removed and replaced by Fl,F2,...Fh (Lunt89, pp. 104].

183

(2) This is the type of simple aggregation that no transformation
exists; it is a true aggregation problem. The solution to this
type of problems usually is one of the following

(2.1) Upgrade the primitive data and SSO controls the releasing
of upgraded data. (SeaView)

(2.2) Arrange a special mechanism to control the release of
primitive data (LDV).

Intrinsically, both approaches are the same from our point of
view, LDV automates the sanitizing process, while SeaView entrust
the control to SSO (They do have their differences which do not
concern us {Lunt89]). So, we summarize the solution (SeaView and
LDV) by formalizing it as follows:

Let E = f(El,E2,...Ek) be a true simple aggregation. Then the
solution of E is to

(2.1) Add the database a new primitive fact E
(2.2) Remove El, E2,...Ek from the original primitive data set
(2.3) The release of any of El, E2,..., Ek are handled by a

special procedure which is processed by SSO or a special
mechanism.

Remark: (2.3) need more study, current solution offered either by
SeaView or LDV is not very satisfactory. Morgenstern's proposal
may be useful here [Morg88].

5.3 Detecting and Solving Aggregation Problems

Let Q be a query to a relational database. Let E be the view that
answers Q. The entity E can be expressed by

E = f(Al,A2.,An)

where f is an expression of the extended relational algebra
operating on the primitive data. The procedure for detecting and
solving the aggregation problem will proceed inductively as
follows:

We will present the induction rather informally; leave the
rigorous proof to serious readers.

ASSUMPTION: All true simple aggregation problems are solved.
(See 5.2)

Let us set up some notations: Any proper sub-expression f' of f
defines a sub-entity E'. Recall that real world security class is
represented by [[]].

We can induct on the number of levels of aggregations.

184

Induction Assumption: All aggregations in which the level of the
aggregation of its expression tree is less than k are all solved.

1. For the expression tree of f, the system examines all its sub-
trees bottom up. Note a subexpression corresponds to a subtree of
the expression tree of f

2. If (E']=[[E']] for all proper sub-expressions, then E is a
simple aggregation. By assumption, it is solved.

3. Let f' be the first sub-expression such that [E'] <> [[E']],
then E' is a simple aggregation. By assumption it is solved.
Namely, the primitive data of f', say Al, A2, ... Ak (this
representation does not lost the generality) are removed and
E' is added to the primitive data list.

4. So the new expression for E is

E = g(E',A(k+l),...,An)

where E' is the simple true sub-aggregation.

5. If [[E]] = [g]([[E']],[[A(k+l)]],...,[[An]]) then
the original aggregation problem is solved.

6. If [[E]] <> [g](((E']],((A(k+l)]],...,[[An]]) then
the original aggregation problem is reduced to g.

7. By induction, g can be solved (the level of g is less than k).

8. This complete the induction.

Example 5.8 Al, A2. A6 have the following classifications:

[AI]=[A2]=... [An]=[[Al]=[A2]]=... [[An]]= UNCLASSIFIED
[[(Al, A2)]] = CONFIDENTIAL
[[(Al, A2, A3, A4, A5, A6)]] = CONFIDENTIAL

Here (Al,A2) is a simple aggregation.

1. First evaluate E12 = Al U A2 and we find

[[E12]] <> g.l.b. ([Al], [A2])

where [[E12]] = CONFIDENTIAL and [Al]=[A2]=UNCLASSIFIED. So E12
is a true simple aggregation.

2. Apply the solution, we have

E = (E12, A3, A4, A5, A6)

185

3. Evaluate E =E12 UA3 UA4 U UA5 UA6 and we find

[[EJ] = g-l-b. ([E12J, [M3], [A4])

where [[E]] = [E12]= CONFIDENTIAL, [A1J=(A2J= UNCLASSIFIED.

So, E, with this new expression, is not an aggregation.

4. This solves the aggregation problem.

Example 5.9 The solution for Example 5.7:

[Al]=[A2]=...[(An]=([Alfl=[A2]]=... [[An]]= UNCLASSIFIED
[[(Al, A2))] = CONFIDENTIAL
[[(Al, A2, A3, A4)]] = SECRET
[[(Al, A2, A3, A4, A5, A6)]] = TOPSECRET

Here (Al,A2) is a simple aggregation, (Al, A2, A3, A4) and
(Al, A2, A3, A4, A5, A6) are "complex" aggregations.

1. First evaluate E12 = Al U A2 and we find

[[E12]] <> g.l.b.. ([Al], [A2])

where [[E12]] = CONFIDENTIAL and [Al]J=[A2]=UNCLASSIFIED. So E12
is a true simple aggregation.

2. Apply the solution, we have

E = (E12, A3, A4, A5, A6)

3. Evaluate E1234 = E12 U A3 U A4 and we find

[[E1234]] <> g.l.b. (([E12]], [A3], [A4])

where ([E1234]]=SECRET, [[E12]]=CONFIDENTIAL, [Al]=[A2]= UNCLASS-
IFIED.

So E1234 is a true simple aggregation.

4. Apply the solution, we have

E = (E1234, A5, A6)

5. Evaluate E = E1234 U AS U A6 arnd we find

[[E]] <> g.l-b. ([E1234), (AM], [A6])

where [(E]]=TOP_SECRET, [[E123]]=SECRET, (El2]=CONFIDENTIAL, [Al]=

(A2] = UNCLASSIFIED.

186

So E is a true simple aggregation.

The solution is that E is the only primitive data for E. All the
sub-data can only be released by SSO or special mechanism. If we
apply Lunt's solution, then

Al and A2 will have three aggregation labels

for belonging to three aggregations, and

A3 and A4 will have two aggregation labels

for belonging to two aggregations, and

A5 and A6 will have one aggregation labels

for belonging to one aggregation.

It is not clear that LDV's mechanism can solve this problem.

6. CONCLUSIONS AND FUTURE WORKS

Based on the current solution proposed by various projects, a
general procedure is developed to detect and solve the aggrega-
tion problems. The solution is complete in the sense all aggrega-
tions are detected and the problems are reduced to classical
solutions.

However, the classical solution may not be very satisfactory in
the light of Example 5.9. Moreover, the current aggregation
problems have only addressed the commutative case. In a non-
commutative case, the situation is more complex. The knowledge of
individual data is not necessary allow one to infer the informa-
tion of aggregation unless the individual data is in the
"correct" order. For example, a text message of thousand words is
not necessary compromised if an uncleared person knows every word
of the message in alphabetical order. In the forthcoming paper we
will report on this type of problem.

ACKNOWLEDGE

This research was supported by the U. S. Air Force, Rome Air
Development Center (RADC), under SRI's Subcontract C-12537. I am
indebted to both RADC and SRI for making this work possible.

REFERENCES

187

[Denn76] D. E. Denning. "A Lattice Model of Secure Information
Flow", Communications of the ACM, Vol. 19, No. 5, May 1976, pp.
236 - 243.

(Denn86a) D. E. Denning. The Inference Problem in Multilevel
Database systems, In the Proceeding of the National Computer
Security Center Invitational Workshop on Database Management
Security, June 1986.

[Denn86b] D.E. Denning, S.G. Aki, M. Heckman. T.F. Lunt, M.
Morgenstern, P.G. Neumann, and R.R. Schell. View for Multilevel
Database Security, Proc. IEEE Symposium on Security and Privacy,
1986.

[Denn87a] D.E. Denning, T.F. Lunt, R.R. Schell, M. Heckman and
W.R. Shockley, A Multilevel Relational Data Model, Proc. 1987
IEEE Symposium on Security and Privacy, 1987.

(Denn87b] D.E. Denning, T.F. Lunt, R.R. Schell, M. Heckman and
W.R. Shockley, "The SeaView Formal Security Policy Model", Com-
puter Science Laboratory, SRI International, July, 1987.

[Denn88a] D.E. Denning, T.F. Lunt, R.R. Schell, W.R. Shockley,
M. Heckman, The SeaView Security Model, Proc. 1988 IEEE Symposium
on Security and Privacy, 1988.

[Denn88b] D.E. Denning, T.F. Lunt, P.G. Neumann, R.R. Schell,
M. Heckman and W.R. Shockley, "Security Policy and Policy Inter-
pretation for a Class Al Multilevel Secure Relational Database
System", Computer Science Laboratory, SRI International, Aug.
1988.

[Dill88] Dillaway et al. Security Policy Extensions for a
Database Management System. Interim report A002. Honeywell Sys-
tems Research Center and Corporate System Development Division,
may 1988.

(Gass88) M. Gasser, Building A Secure Computer System, Van
Nostrand Reinhold Company, 1988.

[Gogu84] J. A. Goguen and J. Meseguer, Unwinding and Inference
Control, Proc. 1984 IEEE Symposium on Security and Privacy, 1984.

[Hink88] T. H. Hinke. Inference Aggregation Detection in Database
management systems, In Proceedings of the 1988 IEEE Symposium on
Security and Privacy, April 1988.

[Lin89a] T. Y. Lin, A Generalized Information Flow Model and
Role of System Security Officer, Database Security: Status and
Prospects II, edited by C. E. Landwehr, North Holland, 1988.

[Lin89b] T. Y. Lin, L. Kerschberg and R. Trueblood. Security Al-

188

gebra and Formal Models, Proceedings of IFIP WGll.3 Workshop on
Database Security September 5-7, 1989

[Lunt88a] T.F. Lunt, R.A. Whitehurst, The SeaView Formal Top
Level Specifications, Computer Science Laboratory, SRI Interna-
tional, Feb. 1988.

[Lunt88b] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman
and W. R. Shockley, Element-Level Classification with Al As-
surance, Computerr & Security, Vol. 7, No. 1, 1988, pages 73-82.

[Lunt88c] T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman,
D. Warren, A Near-Term Design for the SeaView Multilevel
Database System, Proceedings 1988 IEEE Symposium on Security and
Privacy, 1988.

[Lunt89a] T. F. Lunt. Aggregation and Inference: Facts and Fal-
lacies, Proceedings 1989 IEEE Symposium on Security and Privacy,
1989.

[Matl89] N. Matloff and P. Tendick, The "Curse of Dimensionality"
in Database Security, Database Security: Status and Prospects II,
edited by C. E. Landwehr, North Holland, 1988.

[Morg87] Mathew Morgenstern. Security and Inference in Multi-
level Database and Knowledge-base systems, ACM International con-
ference on Management of Data (SIGMOD-87), May 1987

[Morg88] Mathew Morgenstern. Controlling Logical Inference in
Multilevel Database Systems, Proceedings 1988 IEEE Symposium on
Security and Privacy, 1988.

[Sayd87] 0. S. Saydjari, J. M. Beckman and J. R. Leaman, Lock-
ing Computers Securely, Proc. 10th National Computer Security
Conference, Sept. 1987, National Bureau of Standards/ National
Computer Security Center, pp. 129-141, 1987. Advances in Computer
System Security, Vol. 3, edited by Rein Turn, pp. 207- 219, 1988.

[Stac88] Stachour et al, Secure Distributed Data Views --
Implementation Specifications. Interim Report A005. Honeywell
Systems Research Center and Corporate system Development Divi-
sion, May 1988

[StMc77] Donlod F. Stanat and David F. McAllister: Discrete Math-
ematics in Computer Science, Prentice-Hall, Inc., Englewood
Cliffs, N. J. , 1977

[SuOz87] T. Su, and G. Ozsoyoglu, Data Dependencies and In-
ference Control in Multilevel Relational Database Systems,IEEE
Symposium on Security on Security and Privacy, Oakland, CA, April
1987

189

[SuOz89] T. Su and G. Ozsoyoglu, Multivalued Dependency In-
ferences in "'iltilevel Relational Database Systems, Proceedings
of IFIP WG11., Workshop on Database Security September 5-7, 1989

[Ting89] I. T. Leong and T. C. Ting. An analysis of Database
Security with queries for High Order statistical Information,
Database Security: Status and Prospects II, edited by C. E.
Landwehr, North Holland, 1988.

190

