
NAVAL POSTGRADUATE SCHOOL
Monterey, California

LD
00

N
I

DTIC
G OE ECTE

THESIS
SAFETY ANALYSIS OF

HETEROGENEOUS-MULTPROCESSOR
CONTROL SYSTEM SOFTWARE

by
Janet A. Gill

December, 1990

Thesis Advisor: Timothy J. Shimeall

Approved for public release; distribution is unlimited

91 2 21 040

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

is. REPORTSECURITY.CLASSIFICATION lb. RESTRICIIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISIRBUTION/AVAILABITY OF RERT

Approved for public release; distribution is unlimited.
2b. DECLASSISCCATIONHDOWNGRAINGSCEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORINGORGANIZATIONREPORTNUMBER(S)

6a. NAME OF PERFORMNG ORGANIZATION 6b. OFFICE SYMBOL 7i. NAMEOFMONIURING ORGANIZATION
Naval Postgraduate School (If Applicable) Naval Postgraduae- --School

37 _ •
6c- ADDRESS (city, state, and ZIP code) 7b. ADDRESS (ciy, sae, ad ZIP ca)"

Mon'erey, CA 93943-5000 Monterey, CA g3943 -4000
8a. NAME OF FUNDING)SPONSORING 6b. OFFICE SYMBOL 9. PROCUREMENTNSIRWIMENTMFICATIONNUMBER

ORGANIZATION (If Applicable)

8c. ADDRESS (city, state, and ZIP code) 10. SOURCEOFFUNDING MBERS

PROGRAM PROJECT TASK WORK UNIT
IME NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Class'ifcation)
SAFETY ANALYSIS OF HETEROGENEOUS-MULTIPROCESSOR CONTROL SYSTEM SOFTWARE

12. PERSONAL AUTHOR(S)

Janet A Gill
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, monthday) 15. PAGE COUNT

Master's Thesis FROM 10 December 1990 63

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

17. COSATICODES 18. SUBJECT TERMS (continue on reverse i necesary and idenlyy by block number)

FELD GROU ISUBGROUP Software Safety, Petri Net, Fault Tree, Software Engineering,

I Integrated System Analysis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Fault trees and Petri nets are two widely accepted graphical tools used in the safety analysis of software.

Because some software is life and property critical, thorough analysis techniques are essential. Independently,
Petri nets and fault trees serve limited evaluation purposes. This thesis presents a technique that converts and
links Petri nets to fault trees and fault trees to Petri nets. It enjoys the combinational benefits of both analysis
tools.

Software Fault Tree Analysis and timed Petri nets facilitate software safety analysis in heterogeneous-
multiprocessor control systems. Analysts use a Petri net to graphically organize the selected software. A fault
tree supports a hazardous condition with subsequent leaf node paths that lead to the hazard. Through the
combination of Petri nets and fault trees, an analyst can determine a software fault if he can reach an undesired
Petri net state, comparable with the fault tree root fault, from an initial marking. All transitions leading to the
undesired state from the initial marking must be enabled and the states must be marked that represent the leaf
nodes of the fault tree -ath. (continued)

20. DISIUTION/AVALfABIIIY OFABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[Z uNaASE Nmrr [] SAME AS Rr. DIC USERS Unclassified
22a. NAMEOFRESPMSBLEINDIVIDUAL 22b. TELEPHONE (Indde Am Code) 22k. OFFICE SYMBOL

Timothy J. Shimeall (408) 646-2509 Code CS/Sm
DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CIASSIFICATION OF THIS PAGE

All other editions am obsolete Unclassified

iA

19. It is not the intention of this thesis to suggest that an analyst be replaced by an automated tool. There must
be analyst interaction focusing the analyst's insight and experience on the hazards of a system. This method is
proposed only as a tool for evaluation during the overall safety analysis.

NTIS GRA&I
DTIC TAB
Unannounced Q
justificatio

By-

Distriui

Availability CodeS

lot Special

COPY
ief' rn

/I

Approved for public release; distribution is unlimited.

Safety Analysis of Heterogeneous-Multiprocessor
Control System Software

by

Janet A. Gill
Civilian, Naval Air Test Center, Patuxent River, Maryland

B.S., University of West Florida, 1985

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December, 1990

Author":
Auho:Janet A. Gill

Approved by:: ___
Timothy /Y Shimeall, Thesis Advisor

Kim A. S. Hefner, S nd Reader

Robert B. McGhee, Chairman, Computer Science
Department

s.i11

ABSTRACT

Fault trees and Petri nets are two widely accepted graphical

tools used in the safety analysis of software. Because some software

is life and property critical, thorough analysis techniques are

essential. Independently, Petri nets and fault trees serve limited

evaluation purposes. This thesis presents a technique that converts

and links Petri nets to fault trees and fault trees to Petri nets. It

enjoys the combinational benefits of both analysis tools.

Software Fault Tree Analysis and timed Petri nets facilitate

software safety analysis in heterogeneous-multiprocessor control

systems. Analysts use a Petri net to graphically organize the selected

software. A fault tree supports a hazardous condition with

subsequent leaf node paths that lead to the hazard. Through the

combination of Petri nets and fault trees, an analyst can determine a

software fault if he can reach an undesired Petri net state,

comparable with the fault tree root fault, from an initial marking.

All transitions leading to the undesired state from the initial marking

must be enabled and the states must be marked that represent the

leaf nodes of the fault tree path.

It is not the intention of this thesis to suggest that an analyst be

replaced by an automated tool. There must be analyst interaction

focusing the analyst's insight and experience on the hazards of a

system. This method is proposed only as a tool for evaluation during

the overall safety analysis.

iv

TABLE OF CONTENTS

I. INTRODUCTION .. 1

A. SAFETY-CRITICAL HETEROGENEOUS SYSTEMS 1

B. RISKS OF ERRONEOUS SOFTWARE .. 2

C EVALUATION OF SOFIWARE SAFETY ... 4

D. SOFTWARE FAULT TREE ANALYSIS .. 5

F TIMED PETRI NETS ... 5

F. SFTA AND PETRI NET INTEGRATION/TRANSITION 6

G. SCOPE OF THESIS .. 8

II. CURRENT PETRI NET AND FAULT TREE ANALYSIS

TECHNIQUES ... 9

A. PETRI NET APPLICATIONS AND DEVELOPMENT 9

B. FAULT TREE APPLICATIONS AND DEVELOPMENT 18

C INTEGRATING ANALYSIS TECHNIQUES 24

I II. ANALYSIS TECHNIQUE INTEGRATION .. 28

A. INTRODUCTION ... 28

B. PETRI NET TO FAULT TREE CONVERSION AND
INTEGRATION .. 30

1. Petri Net to Fault Tree Conversion Initiation 3 2

2. Petri Net to Fault Tree Starting Point 3 2

4v

3. Petri Net to Fault Tree Graphical and Tabular
Linkage ... 33

4. Complete Development of the Petri Net Fault Tree
Linkage Table .. 3 5

5. Remedy If No Path to the Unsafe Event is Exposed 3 5

C FAULT TREE TO PETRI NET CONVERSION AND

INTEGRATION .. 38

1. Fault Tree to Petri Net Starting Point 3 8

2. Fault tree to Petri Net Graphical and Tabular Linkage.3 9

3. Petri Net Completion .. 4 1

IV. SUMMARY AND CONCLUSIONS .. 43

A. INTEGRATED ANALYSIS TECHNIQUE .. 43

B. LESSONS LEARNED .. 44

C FUTURE WORK .. 44

D. CONCLUSIONS ... 46

LIST OF REFERENCES ... 47

BIBLIOGRAPHY ... 49

INITIAL DISTRIBUTION LIST .. 52

vi

LIST OF FIGURES

Figure 2.1 Basic Petri Net Structure ... 1 2

Figure 2.2 Basic Petri Net Structure With Tokens Before
Transition Firing .. 1 2

Figure 2.3 Basic Petri Net Structure With Tokens After Transition
F iring .. 1 2

Figure 2.4 Ada Code for Traffic Light Controller 1 4

Figure 2.5 Timed Petri Net for Traffic Light Controller 1 5

Figure 2.6 Fault Tree Symbols .. 20

Figure 2.7 Possible Fault Tree for Traffic Controller 2 1

Figure 2.8 Fault Tree Reflecting Ada Code for Traffic Light
Controller ... 23

Figure 3.1 Petri Net Representing OFP 240 High-Level Code
Segm ent .. 2 9

Figure 3.2 General Petri Net And Fault Tree Graphical and
Tabular Linkage ... 3 1

Figure 3.3 OFP Root Fault ... 32

Figure 3.4 OFP Petri Net to Fault Tree Cross Diagram 34

Figure 3.5 OFP Basic Petri Net Fault Tree Link Table Without
G ates ... 3 6

Figure 3.6 OFP Basic Petri Net Fault Tree Link Table With Gates 3 6

Figure 3.7 OFP Fault Tree .. 37

Figure 3.8 Petri Net 'and' and 'or' Gates .. 3 9

Figure 3.9 Petri Net Creation from a Fault Tree 40

vii

LIST OF TABLES

TABLE 1 TRANSITIONS LEADING TO HAZARDS IN THE TRAFFIC
LIGHT EXAMPLE ... 16

TABLE 2 PETRI NET, FAULT TREE, AND SEMANTIC FORMAL
DESCRIPTIONS .. 26

viii

ACKNOWLEDGEMENTS

I would first and foremost like to thank Timothy J. Shimeall, my

thesis advisor, for his unfaltering guidance. He was always accessible

and never was at a loss for an appropriate answer, editing comment,

or word of encouragement. Choosing software system safety as my

research area, with Professor Shimeall as my advisor, has proven to

be the best decision of my career at the Naval Postgraduate School

(NPS).

Professor Kim Hefner, my second reader, and Commander Rachal

Griffin were inspiring as instructors and will remain as my

professional role models. They both were always willing to explain

any concept without insult. The sign of genius is to make a difficult

subject simple, not a simple subject difficult.

Commander Hoskins, the Computer Science Curricular Officer,

and Professor McGhee, the Computer Science Department Head, were

always willing to assist on any academic or professional issue and

readily displayed civilian advocacy. Their respective secretaries,

Jean and Shirley, were a tremendous support of my administrative

needs, ranging from the trivial to the complex.

My peers, coming to Monterey from all parts of the United States

and the world, gave me immeasurable friendship and intellectual

support during my tour away from my civilian long-term home base.

The comradery was extremely strong as we met the NPS challenges

side-by-side.

ix

I. INTRODUCTION

A. SAFETY-CRITICAL HETEROGENEOUS SYSTEMS

Many military systems require specialized multiprocessors.

Weapon systems and aircraft control systems are prime examples.

They have complex controlled system architectures that must

operate under tight timing constraints requiring the use of multiple

processors to execute independent control tasks. System developers

may include multiple processors in the initial prototype design or

add them during subsequent upgrades. The system may consist of

many identical processors, but specific control needs require

heterogeneous processors.

"Normally only software that exercises direct command and

control over the condition or state of the hardware components or

can monitor the state of the hardware components are considered

critical from a safety viewpoint." [Ref. 2] Software that controls and

monitors systems, such as missiles or aircraft, is safety-critical.

The use of software in safety-critical flight systems in

multiprocessing environments such as the A6, F18, and the proposed

P7 military aircraft leads to a need to analyze the safety of software.

These intricate multiple-mission systems are susceptible to four

different types of software faults. The first type is an undesired or

unexpected event. The second type is an event occurring out of

sequence. The third type is a specified event failing to occur. The

last type is the magnitude or the direction of an event is wrong.

[Ref. 2] The use of incompletely developed and analyzed software in

safety-critical systems may cause the loss of life, prcperty, or

environmental harm. Formal analysis methodologies executed at all

stages of development, from requirements analysis through

maintenance, help to reduce this loss.

For any given system task the flow of execution of the software

controlling that task may span several processors [Ref. 1]. Flight

systems execute many tasks simultaneously just to keep the craft

airborne and proceeding in a pilot- or automatically-controlled

direction.

B. RISKS OF ERRONEOUS SOFTWARE

Risk is the probability of an accident occurring of a specified

magnitude over a given time period. When the task, like flight

control, involves a risk of human life or property, the analyst

executes an evaluation of the safety of the software in order to avoid

an accident or mishap.

The term "mishap" denotes an unplanned event or series of

events that result in death, injury, occupational illness, damage to or

loss of equipment or property, or environmental. It includes both

accidents and harmful exposures. "A mishap can be thought of as a

set of events combining in random fashion or, alternatively, as a

dynamic mechanism that begins with the activation of a hazard and

flows through the system as a series of sequential and concurrent

events in a logical sequence until the system is out of control and a

loss is produced (the 'domino theory')." [Ref. 4]

2

Safety is a concern when systems are controlling or releasing

energy. such as mechanical, electrical, or chemical. When software is

used in such systems, safety must be insured so the risk to human

life is minimum.

To ensure the safety of software is to prevent mishaps. Software

faults may lead to hazards, and hazards may lead to mishaps;

therefore, evaluation of safety-critical software events is vital.

Software alone is not hazardous, but when the software controls

a system, it becomes as potentially hazardous as the total system. A

failure, malfunction, or design error in the control of hardware

components causes or allows a hazard to occur.

A fault is a software bug. This may lead to an error, a

discrepancy between a computed, observed or measured value or

condition and the true specified, or theoretically correct value or

condition. An error, in turn, may lead to a failure: the termination of

the ability of a functional unit to perform its required function.

[Ref. 5]

Software faults may result from incorrect or incomplete

specifications and requirements, leading to incorrect or incomplete

designs, incorrect programming or coding, or hardware-induced

corruption. Hopefully, a thorough testing program would locate all

faults. In reality, however, the many possible combinations of

sequences makes total fault detection extremely difficult. Also,

analysts only write tests against requirements, so they ma) overlook

incorrect requirements.

3

In the past, analysts did not find many latent software faults

until the prototype was out in the field. Safety-critical systems

cannot afford this delay in fault discovery because once the system is

out in the field, people, property, or the environment may be at risk.

The analyst must execute thorough analysis in the stages before

system delivery to help prevent risk.

A thorough safety analysis is possible because it does not need

to consider all faults, just safety-critical faults. Safety analysis only

evaluates the system for possible faults derived from the

Preliminary Hazard Analysis (PHA).

C. EVALUATION OF SOFTWARE SAFETY

The evaluation of the software safety must trace the flow of

software execution, analyzing the sequential and concurrent

operations performed and determining if the system acts to prevent

or reduce risks. Currently, analysts execute manual analysis using

limited evaluation tools, with substantial cost and opportunity for

analysis errors. Inaccurate results occur readily in systems where

analysts base analysis and design on informal discussions between a

software expert group and a system applications expert group.

MWay analysts depend too much on "corporate knowledge" and not

enough on the use of proven methods of design, analysis, and

testing. Life-, property-, and environment-critical systems urgently

require thorough safety analysis in the software life cycle to avoid

risk to life and property.

4

Leveson [Ref. 7] surveys software safety in terms of why, what,

and how. "A fair conclusion might be that 'why' is well understood,

'what' is still subject to debate, and 'how' is completely up in the air."

[Ref. 7]

Analysts may combine multiple analysis techniques to evaluate

safety. This thesis presents one integration method of "how"--the

combination of SFTA and Petri net analysis techniques--in this thesis.

D. SOFTWARE FAULT TREE ANALYSIS

Leveson and Harvey [Ref. 6] developed Software Fault Tree

Analysis (SFTA). Hardware system analysts use Fault Tree Analysis

(FTA) to analyze a system in the context of its environment and

operation. They find credible sequences of events that can lead to a

specified hazard. Leveson and Harvey derived SFTA from FTA to

analyze systems containing software components. The fault tree is a

graphic representation of parallel and sequential combinations of

events and system states that result in the occurrence of the

predefined hazard. The events and states can be associated with

component failures, human errors, or any other pertinent events and

states that can lead to the hazard. A fault tree represents the logical

interrelationships of events and states that lead to the hazard.

E. TIMED PETRI NETS

Murata [Ref. 8] and Leveson/Stolzy [Ref. 9] state that timed Petri

nets describe time-critical events in multiprocessor control

5

applications and determine if safety-critical states are reachable

during normal execution.

The analyst models a system in terms of conditions and events

with Petri nets. "If certain conditions hold, then an event or 'state

transition' will take place resulting in other (or the same) conditions

taking place." [Ref. 2]

In the past, analysts mainly used Petri nets to evaluate

performance and correctness. Researchers are currently proposing

that analysts can achieve timing more readily with Petri nets than

with fault trees.

F. SFTA AND PETRI NET INTEGRATION/TRANSITION

SFTA and timed Petri nets are integrated in this thesis to

facilitate software safety analysis in heterogeneous-multiprocessor

control systems. These techniques are equivalent in expressive

power; analysts can facilitate both techniques by allowing one

technique to use the information about the system expressed by the

other technique. [Ref. 1]

Analysts use a Petri net to graphically organize the selected

software code. A fault tree explicitly supports a hazardous condition

root node with subsequent leaf node paths that lead to the hazard.

Through the combination of Petri nets and fault trees, an analyst can

determine a software fault if each preconditional node in an entire

fault tree path links to one or more Petri net transitions and states.

Drawing on the specific A-6E example developed in McGraw's

thesis [Ref. 10], Shimeall, McGraw, and Gill [Ref. 1], describe a general

6

technique for integrating these two analysis techniques. It uses a

semantic model for information sharing between the techniques

during the analysis. This model consists of three classes of objects:

states, transitions, and linkages. The states contain information on

conditions existing during program execution. Transitions contain

information on actions performed during program execution, and

reference the states that lead to and result from the transitions.

Transitions also include timing information, indicating the enabling

and firing times of the actions, along with deadlines after which the

action stops. The state references in the transitions allow for any

combination of states. The linkages contain information on undesired

events. In general, the states and transitions contain information for

the generation of Petri nets, and the linkages contain additional

information for the generation of fault trees.

The semantic model forms the basis for automated support of

the safety analysis process by allowing the analyst to rapidly and

easily shift between techniques. The analyst may use Petri nets to

describe the system architecture, shift to fault trees to describe the

hazards associated with the system and the events that may lead to

the hazards, then shift back and forth between Petri nets and fault

trees to analyze those events. Each analysis technique may easily use

the results obtained by the other technique. [Ref. 1]

This thesis expands on the Shimeall, McGraw, and Gill work by

delineating a stepwise methodology for converting Petri nets to fault

trees and fault trees to Petri nets. Graphical, as well as tabular,

7

linkages describe the Petri net/fault tree relationship and multi-step

conversions.

G. SCOPE OF THESIS

The main research and development for this thesis suggests a

methodology for integrating timed Petri net analysis and SFTA to

analyze software system safety. Chapter II provides an overview of

the background information researched and synthesized with

original thought to create the proposed integrated safety analysis

technique. Chapter III delineates a step-by-step Petri net to fault

tree and fault tree to Petri net conversion and linkage process.

Chapter IV discusses a summary of the research executed to develop

the proposed integrated technique, the technique itself, and an

analysis of its effectiveness as a safety-analysis technique. Chapter

IV also presents recommendations for further study in the field of

safety-analysis-technique integration.

8

II. CURRENT PETRI NET AND FAULT TREE ANALYSIS

TECHNIQUES

This chapter surveys Petri net and fault tree research. Analysts

may use any of several analysis techniques for a safety evaluation of

a software system. However, the author selected Petri nets and fault

trees for the proposed integrated method of safety analysis because

first, they are the most mature, and.second, analysts have used them

in analysis for a relatively long time. Researchers have focused a

great deal on these two graphical representations. Also, the

individual qualities of Petri nets and fault trees interleave well into a

single, effective analysis technique.

This survey describes some possible application areas of Petri

nets and fault trees, giving both the strong and weak points of each

analysis technique and describing a detailed graphical and textual

representation of general Petri nets and fault trees.

A. PETRI NET APPLICATIONS AND DEVELOPMENT

Carl Petri [Ref. 11] created Petri nets in the 1960s. Researchers

have made many enhancements since then. Murata [Ref. 8] surveys

current Petri net properties and techniques thoroughly. "Petri nets

are a promising analysis tool for describing and studying information

processing systems characterized as being concurrent, asynchronous,

distributed, parallel, non-deterministic, and/or stochastic." [Ref 8]

9

Petri nets are a graphical and mathematical tool that apply to

many software systems. Some possible areas of applications are

modeling and analysis of distributed-software systems, concurrent

and parallel programs, multiprocessor memory systems,

asynchronous circuits and structures, compiler and operating

systems, and other discrete-event systems. Additional interesting

applications are local-area networks, neural networks, and decision

models. [Ref. 8]

Analysts use Petri nets to graphically represent a system,

explicitly reflecting the concurrent or parallel activities of the

system.

A Petri net is graphically represented as a directed graph with

two kinds of nodes: places and transitions. It is textually

represented as a five-tuple. The set of places, textually represented

as P [Ref. 8] and drawn as circles, indicates the conditions or values

present during program execution. The set of transitions, textually

represented as T [Ref. 8] and drawn as bars or boxes, indicates the

events that occur during program execution. Arcs join the places and

the transitions as shown in Figure 2-1 [Ref. 10]. The arcs leading to a

transition represent a precondition or an input and the arcs leading

from a transition represent a postcondition or an output. These arcs

are textually represented as a flow relation, F [Ref. 8], with weight,

W, indicating what flows must be present for a transition to occur.

10

A marking, the presence of tokens in a subset of the places in

the net, indicates the current state of the system. The M0 set in the

five-tuple [Ref. 81 represents the system initial state.

When a transition fires, indicating a change in the system state,

it consumes a token from each of the input arcs, and generates a

token on each of the output places. A transition leading from one set

of places to another is enabled to fire when all of the places leading

into the transition contain tokens [Ref. 10] (See Figure 2-2 [Ref. 8]).

Each transition potentially enables further transitions as shown in

Figure 2-3. If more than one transition is enabled at once, a non-

deterministic choice is made as to which transition fires [Ref. 1].

The importance of this non-deterministic firing representation is

that in real life, events do not purely happen sequentially. A

discrete event can occur at any time that all of its preconditions have

been met. One example is driving a car from point A to point B.

There are many mechanical and maneuvering events that can take

place between point A and point B. Some events have a particular

order. The driver must turn the ignition key before the engine

starts. Many events can happen concurrently. The driver may apply

pressure to the accelerator and turn the wheel at the same time. He

may execute many non-deterministic decisions while getting from

point A to point B and Petri nets can represent these decisions well.

Using timed Petri nets allows the incorporation of timing information

into the analysis. Real-time embedded-system analysis requires

11

ti

tz

Figure 2-1 Basic Petri Net Structure

ti

tz

Figure 2-2 Basic Petri Net Structure With Tokens Before

Transition
ti

tz

Figure 2-3 Basic Petri Net Structure With Tokens After

Transition

12

timing analysis. Even basically correct software actions that occur

too early or too late can lead to unsafe conditions. [Ref. 9]

Analysts add a minimum time function and maximum time

function to the above five-tuple Petri net description to define the

time frame boundaries within which a firing can occur.

Safety analysis determines if the net can reach an unsafe state.

A human can make an unsafe decision outside of the system, such as

pulling out into ongoing traffic, but the hardware and software

system should not allow a hazard to be reachable.

In the safety analysis [Ref. 9], if an unsafe event (represented by

a transition) can be reached from the initial marking M0, corrections

need to be made. If it is possible that a marking will eventually

cause a transition to be enabled, the transition is reachable from the

marking. Analyzing a system can be complex, but the Petri net aids

in the visual understanding of event ordering and results.

Figure 2-4 [Ref. 12] contains Ada code for the control of a traffic

light. A Petri net can represent all system states and transitions

relating to the software algorithms. Figure 2-5 depicts the timed

Petri net associated with the Ada code in Figure 2-4.

Table 1 describes the transitions representing events that could

cause the hazard of both the East/West and the North/South cars

entering the intersection at the same time. These descriptions reflect

the erroneous activity of the East/West light while the North/South

car may enter the intersection.

13

1 procedure traffic is
2 type direction is (east, west, south, north);
3 type color is (red, yellow, green);
4 type light.type is array (direction) of color;
5 lights : light-type :r (green, green, red, red);
6 task type sensor-task is
7 entry initialize (mydir : in direction);
8 entry car.comes;
9 end sensor-task; -

10 se sor : array (direction) of sensor-task;
11 task controller is
12 entry notify (dir : in direction);
13 end controller;
14 task body sensor.task is
15 dir : direction;
16 begin
17 accept initialize (mydir : in direction) do
18 dir := oydir;
19 end initialize;
20 loop
21 accept carcomes;
22 if (lights(dir) /a green) then
23 controller.notify (dir);
24 end if;
25 end loop;
26 end sensor.task;
27 task body controller is
28 begin
29 loop
30 accept notify (dir : in direction) do

31 case dir is
32 when east I west c

33 lights : (green, green, red, red); delay 5.0;
34 lights (yellow. yellow, red, red); delay 1.0;
35 lights : (reO, red, green, green);
36 when south I north =>
37 lights :z (red, red. green, green); delay 5.0;
38 lights : (red red. yellou., yellow); delay 1.0;
39 lights (green, green, :ed, red);

40 end case;
41 end notify;
42 end loop;
43 end controller;
44 begin
45 for dir in east..north'loop
46 sensor(dir).initialize (dir);

47 end loop;
48 end traffic;

Figure 2-4 Ada Code for Traffic Light Controller

14

T through
2 p2Tintersection

car~~~~~o arivscaeenfWrced

E/W~~~e delay5de dla

T
15

Table 1 TRANSITIONS LEADING TO HAZARDS IN THE
TRAFFIC LIGHT CONTROLLER

ORIGINATION TRANSITION DESTINATION

P2 Car at E/W E/W car runs light P1 E/W car through
intersection

P3 E/W light yellow Light broken- P1 E/W car through

Stuck on yellow intersection

P4 E/W light green Light broken- P1 E/W car through

Stuck on green intersection

P5 E/W light red Light broken- E/W car runs light

Stuck on red

P4 E/W light green > 5 second delay P 3 E/W light yellow

from green to yellow

P3 E/W light yellow >1 second delay P 5 E/W light red

from yellow to red

P4 E/W light green >6 second delay P5 E/W light red

from green to red

P5 E/W light red Light prematurely P4 E/W light green

green

16

If an analyst can follow a hazardous-condition path within the

software code during Petri net analysis, the system will have to be

modified. Software safety analysts only seek software controlled

errors.

Time is critical in this specific example. Software developers

determined the delay times for light changes by hard-coding these

changes in lines 32 through 39 of the selected Ada code. If a light is

functioning, but is delayed on green or yellow too long, or turns

green prematurely, a hazard exists and the software code needs to be

corrected.

Consider the last item in Table 1, the East/West light turning

prematurely green and allowing the two perpendicular cars in the

intersection at the same time. The initial markings for Figure 2-5

could be in first in P5, indicating the E/W light is red, second in pg,

indicating the North/South light is green, tnd third in Pt , indicating

a car is at the North/South intersection.

Because P4 can be reached prematurely while the North/South

light is going through its timing sequence, modifications must be

made to the software system. One possible scenario that exposes a

hazard is: 1) A North/South car approaches the intersection and its

signaling turns the North/South light green. 2) An East/West car

approaches the intersection, finds the East/West light red, signals for

green, and waits. 3) A second North/South car approazhes the

intersection, checks the light, and sees green. This North/South car

enters the intersection, but as it is entering, the East/West light turns

17

green. The undesired result is that one North/South car and one

East/West car are in the intersection at the same time.

The drawback in using Petri nets for analysis is that they are

difficult and time consuming to analyze. To generate the entire

reachability graph from Petri nets consumes exponential space and

time. [Ref. 10]. Integrating this analysis method with the more

specific fault tree approach to analysis may make evaluation simpler

and potentially save time and money while maintaining order,

concurrency, and timing.

B. FAULT TREE APPLICATIONS AND DEVELOPMENT

Researchers created Fault Tree Analysis (FTA) in the 1960s for

analyzing hardware. Electrical and/or mechanical systems needed a

way to analyze safety. Researchers then created Software Fault Tree

Analysis (SFTA) in the early 1980s to evaluate applications and

systems software. [Ref. 6]

The safety analyst conducts a Preliminary Hazard Analysis

(PHA) of the software first. PHA seeks to find potential hazards

involved in the execution of a system. The analyst then places these

hazards into severity categories He then employs SFTA to point out

single-point failure modes and guide further design in the most

fruitful direction for hazard elimination and reduction [Ref. 12].

Certification personnel may use SFTA to examine already-developed

software.

An undesired event, or hazard, could occur due to environmental

conditions, human error, or component failure. The fault tree depicts

18

the logical interrelationship of these basic events that lead to the

hazard. SFTA works backward and tries to prove that the hazard

cannot be reached. [Ref. 6]

A fault tree developer takes the root node and abstractly

establishes sets of possible conditions, or leaf nodes, that lead to the

root node.

"Proof by contradiction is conveniently used in SFTA since the

goal of the analysis is to prove that the software will not permit

some event." [Ref. 12] If the analysis can prove a contradiction to the

loss (root) event then the event cannot happen as a single-point

failure within the software. If the initial software or system state

starts a possible series of events that lead to the root event, then the

system developers need to alter the software or system design to

prevent the root event [Ref. 1].

Leveson and Harvey [Ref. 61 list and describe the relevant fault

tree symbols used in SFTA. These graphical representations are

shown in Figure 2-6. Fault trees are textually represented by N, the

set of nodes, and G, the set of 'and' and 'or' gates.

One possible hazard description resulting from a PHA done on

the high-level Ada code in Figure 2-4 [Ref. 12] is that both a car from

the North/South direction and a car from the east/west direction can

enter the intersection at the same time. Figure 2-7 portrays

probable scenario nodes that could lead to this root node.

19

The rectangle indicates an event to be analyzed furdier.

The circi indicates a basic fault event or primary
failure of a component. It requires no further

development, and its probability of occurrence is

derived from the generic rate of the part.

The house is used for events which normally occur in

tihe system. It represents the continued operation of the

component, and its probability is the reliability of the

part.

The diamond is used for non-primal events which are

not developed further for lack of information or

insufficient consequence.

The ov l is used to indicate a condition. It defines the

state of dhe systcm that permits a fault sequence to

occur. It may be normal or result from failures.

The AND gate serves to indicate that all input events

are required in order to cause the output event.

The OR gate indicates that one or more of the input

events are required to produce the gated events.

Figure 2-6 Fault Tree Symbols

20

EfW Car go through Intersection
at the same time N/S Light Green

Run Spurious greeni Spuriousylo

BJW IE/W E/W Lightj WNtl EILight. NoS5Sec

Broken Re ed Operatin Green ren peratin Green to

and

No Green, Rd
Or Yellow jed

Operating Impaient

Figure 2-7 Possible Fault Tree for Traffic Light Controller

21

For fault tree development and evaluation for other hazards, the

analyst should expand on the remainder of the root nodes derived

from the PHA in order of priority.

A spurious yellow or green light being displayed in the

North/South direction while a green light is displayed in the

East/West direction are two conditions that would support the

possibility of two cars coming from perpendicular directions being in

the intersection at the same time.

Figure 2-8 [Ref. 121 expands on Figure 2-7 by detailing and

tailoring the fault tree to examine the traffic-light program for the

presence of spurious light conditions that enable two perpendicular

cars to be in an intersection at the same time. The selected Ada code

determines the timing of the light changes in lines 32 through 39.

System developers hard-coded delay times for light changing.

Because the high-level code allows at least one path from the

initial system state to the hazard, the Ada code supports the fault

tree and is hazardous.

"The above fault tree analysis demonstrates that the above Ada

code could contribute to the hazard (i.e., two cars, traveling at right

angles to one another, are present in the intersection at the same

time) if two successive rendezvous occur with the east or west sensor

tasks and the north sensor task checks the state of the lights

immediately prior to the second rendezvous". [Ref. II] Eliminating

this hazard requires changes to the code or controller.

22

t la and cast
or intersection

N~OW)I car tutls
as east Cal

tnttrs inttrseetou

Sensor (L)
in tendezvous and

sti erv)at lin 24 en te.

Eof o

Body~t3 oftrl

Takuecauses fallure tf cas

< 8 > faalure

a Ev Jocr
binesatmetsc4 i h rsM)ht

Cfrie pastr hghcs

Figure ~i 2-810 Falgrerecin d oe for Trafclih
Cntrollerf lhn

34 cause

SFTAs are limited as the only tool used for analyzing the software

safety of a system. Fault trees are a static analysis technique.

Timing analysis requires dynamic analysis. [Ref. 7] "They can,

however, detect software logic errors and multiple failure sequences

that may have essential information that can be shared with Petri

net analysis". [Ref. 10]

C. INTEGRATING ANALYSIS TECHNIQUES

The software system safety research community has established

integrating multiple system reliability analysis techniques over the

past few years. Researchers developed one technique, the Hybrid

Automated Reliability Predictor (HARP) [Ref. 13] in 1986. It

integrates fault tree notation with the Markov Chain. "HARP

converts the dynamic fault tree model notation into a Markov Chain

and solves the Markov Chain using a standard well known numerical

integration algorithm." [Ref. 14]

For many applications, analysts may use either software fault

trees or timed Petri nets to evaluate safety critical behaviors of the

control software [Ref 1]. Petri nets explicitly model the structure of a

control system and the events during the execution of the control

system. The semantics of those events and the resulting conditions

are only represented abstractly. In fault trees, the semantics of the

conditions and events are explicitly described, but the structure that

gives rise to those events is dealt with abstractly [Ref. 1].

Shimeall, McGraw, and Gill [Ref. 1] argue for an integration of

these two analysis techniques that gives the analyst different views

24

of the system. Analysts should not consider Petri nets and fault

trees to be alternate techniques, but complimentary to one another.

Leveson and Stolzy [Ref. 9] use Petri nets and FTA in conjunction

with one another. Developing a complete reachability graph from the

Petri nets representing a system is time consuming and difficult;

however, the evaluation is simpler when Petri nets only describe the

key portions of a system. [Ref. 9] The safety analyst only needs to

consider life-, property-, or environment-critical portions of the

high-level code in the analysis.

The SFTA system state information, represented as the

preconditional leaf nodes to a specific root fault discovered in the

PHA reduces the massive nature of Petri net analysis [Ref. 10]. Fault

trees address one specific undesired event at a time, breaking the

system analysis down into multiple discrete safety issues.

McGraw [Ref. 10] analyzes a real-time software example that is

the upgrade of the A-6E operational flight program (OFP 240). China

Lake controls and directs the new program, OFP 250. McGraw

represents a key portion of this system with a Petri net and a fault

tree.

Shimeall, McGraw, and Gill [Ref. 1] define the semantics of a

linkage relation for a Petri net and a fault tree. They construct the

semantic model shown in Table 2 by joining the separate formal

descriptions presented previously and adding the linkage relation.

This linkage represents the logical relationship between fault tree

nodes with Petri net places and transitions. Textually there are three

25

Table 2 PETRI NET, FAULT TREE, AND SEMANTIC FORMAL

DESCRIPTIONS

Timed Petri Nets:
tpn= <P, T, F, W, E. DA I >P = (P,,P2,.--.,P,.) places

T {t, f2, ---, 4) transitions
F9 (P xT) U(T xP) flow relatio,
W: F " {1,23,...) weight (tokens on each. flow)
E = {e, e2', ... , el) cllillg tinles
D = {d,, d2,..., dk) deadline timres
Mo : P - {1,2,3,...) initLinl nrking

Fault Trees:
fi = < N, G,S, C,R>
V = { 1, 1'2, ..., nj) nodes (fault/failure statements)

G = {q,,g2, j g e'cs (logical connections)
S = {s $2, s ... ,s;} shaIpes (analysis role)
C C (N x N) dld relat, 01
1R E N root node

Semantic NMoclcl
sm = < L, fpvn, f >
L C (P U T) x G x X linkgc rdai.-ion

Constraints
PnT= 0. PuT -
V 1 5 i < k. e 0 DAd,> DAd, > ,i
Vi, 1 < i < j,.Y, E {anl,or. ,1,ll)
Vi, 1 5 i 5 j, 5, E {box, house. li moicil. circleoval)
Icl= j - I
Vi,1 < i <j.

(ni R = 1{(nl,,,7,) E Cs.. q 5 5 j A q # i)I= 1)A
(ni =R* ((n.,n,)E C.-.. 5l 15jAq i)l = O)

Vy, y E (P U T),Vn,n E A,
(3g, g E {and,or, nutl),(j, n) E L)*

26

elements: 1) the union of Petri net P, places, and T, transitions, 2) G,

the linkage containing 'and' , 'or', or 'null' gates, and 3) the fault tree

N, nodes that define a Petri net fault tree linkage.

Chapter III expands on this work by describing the conversion

from a Petri net to a fault tree, the conversion from a fault tree to a

Petri net, and the formal linkage relationship between the two. Once

the analyst identifies the places and transitions that may lead to the

root event, he incorporates them into the linkage relation [Ref. 1].

Integrating, converting, and linking Petri net and fault tree

analysis techniques in order to evaluate selected software code may

reduce the development and maintenance efforts by reducing

redundant analysis.

27

III. ANALYSIS TECHNIQUE INTEGRATION

A. INTRODUCTION

This thesis presents an analysis technique that integrates

software fault tree analysis (SFTA) and timed Petri nets to facilitate

software safety analysis in heterogeneous-multiprocessor control

systems. The combination of Petri nets and fault trees in software

safety analysis provides a greater convenience than using either

individually.

The purpose for integrating Petri nets and fault trees is to

enhance software safety analysis. The integrated technique melds

the use of the Petri net representation of system events and the

explicit fault representation and diagnosis in fault trees for a

synergistic effect.

The example analyzed here proves that the design of a change in

the flight control system of the A-6 fighter/bomber prevents an

important hazard, inadvertent missile launch during practice

[Ref. 10]. The Petri net in Figure 3-1 (taken from McGraw [Ref. 10])

represents a high level control flow of the proposed upgrade to the

Grumman A-6E Operational Flight Program (OFP 240).

The analyst must make a decision whether to begin the safety

analysis with Petri net or fault tree development. The analyst

creates the Petri net to organize and partially order the events that

occur during system execution. This visual representation of events,

via transitions and states, simplifies the the analyst's understanding

28

Comm~anid 1~ 12 Coilri g111ion 13 S.1o
Riised EFniclud Selected

(PCS Discrete) (ACU) (IMPI/ACU)

P1 12 P3

14 Staition ScI)!
to AIU

Non-Pricticc,
Comman~nd
Selected

P6 jr Statiion
17 - RceCtCC

MA/L-AiNU(CU1M)
(BCS) Coniiind clilal

Reaidy 19 Iv

110U (MU)) DIPn Rco qc

Fiur It1 Ptr Net2 R preetn O 4 Hg-evlCd

Sent Segment1

(fISUSTA29

of individual software algorithms and their interaction for those

system evaluators inexperienced or experienced with computer

programming. When analysts pictorially organize activity paths, it is

easier to point out system problems that may lead to hazards. This is

especially true when there is concurrency or timing of action.

Leveson and Stolzy [Ref. 9] explain Petri net development. A

conversion from a Petri net to a fault tree and a linkage between the

two is described in Section B. The analyst establishes a fault tree to

Petri net graphical and tabular linkage, as in Figure 3-2, while he is

creating the fault tree from a Petri net.

The analyst executes fault tree development first in the

proposed conversion and integration method if the system chosen for

analysis is independent, synchronous, localized, serial, deterministic,

or non-stochastic. The analyst tailors a fault tree to its top event that

corresponds to some particular system hazard, detailing the events

and conditions that lead to the hazard. [Ref. 1]

B. PETRI NET TO FAULT TREE CONVERSION AND

INTEGRATION

The dynamics of Petri nets aids the analyst in the understanding

and evaluation of complex systems. However, Petri nets only

abstractly represent the semantics of the events and conditions.

Should the analysis require explicit representation of the semantics,

the analyst may choose to convert the Petri net to a fault tree and to

pursue the analysis utilizing fault tree techniques. This section

details the steps used in Petri net to fault free conversion.

30

t 6

I 16

t 15

n 2 I
11)1

dt
1and

t~~
144lln

p null n 1

15
1 3

Figure 3-2 General Petri Net and Fault Tree Graphical and

Tabular Linkage

31

1. Petri Net to Fault Tree Conversion Initiation

Initiate a conversion from a Petri net to a fault tree b y

choosing a root fault derived from the Preliminary Hazard Analysis

(PHA) of the high level code. The example root fault, nj (Practice

Command Causes Actual Effect), in Figure 3-3, is one of several root

faults that could result from a PHA on OFP 240.

Practice Command

II Causes AcILal
Effect

Figure 3-3 OFP Root Fault

2. Petri Net and Fault Tree Starting Point Link

The selected root fault provides a starting point for the link

between the Petri net and fault tree. Once the analyst has selected

the root fault, he associates it with the set of Petri net places and

transitions that may immediately lead to the root fault. For the OFP

240 example the fault tree root fault condition node, n1 (Practice

Command Causes Actual Effect) in Figure 3-2 corresponds to the

resultant transition, t16 (Command Executed), in Figure 3-1. The

effect being analyzed is the firing of the weapon prompted by the

executing command. While working backward in the Petri net, the

analyst develops and supports subsequent fault tree nodes by

working downward in the fault tree, as delineated in the next step.

32

3. Petri Net to Fault Tree Graphical and Tabular Linkage

Link the fault tree to the Petri net by working backward in

the Petri net. This is done to see if the initial marking of the Petri

net is reached by linking new nodes in the fault tree to the Petri net

places and transitions they relate to. Figure 3-4 exemplifies a

graphical cross linking of a portion of the related existing Petri net

and newly created fault tree segments respectively. Note that the

fault tree node n2 (AIU Executes Live Command) also relates to the

Petri net transition t16 (Command Executed(STA)). This node and

transition both indicate the execution of the command to fire the

weapon. The later fault tree node n5 (Command Sent From ACU)

corresponds directly to the Petri net transition t14 (Pulse Propagated)

as the analyst works back up the Petri net. Two fault tree nodes, n9

(Command Enabled) and n1 0 (Arm Switch Signal On) are

preconditions to n5 . The fault tree node n9 links to the Petri net

transition t9 (Command Ready). The other node required before a

command is sent, n 0 (Arm Switch Signal On) , is analogous to the

P N I place P15- P15 indicates that a firing pulse is ready to for

propagation due to the prerequisite condition of the landing gear

being up.

This linkage can also be represented in tabular notation as

shown in Figure 3-5, reflecting the Petri net to the fault tree

relationship. Once a Petri net and fault tree are initially created and

33

MA/PRAC(SCS)

PrAcice Comman MALNUt
n Causes Actual S)6

1Effect P

Comman

Figure~ ~ ~ ~~1 31 OF eriNtt FutTreCos iga

34 edyAI

linked, each fault tree has one or more linked corresponding portions

of the Petri net identified in the Petri net fault tree (PNFT) Linkage.

4. Complete Development of the Petri Net Fault Tree

Linkage Table

Indicate the appropriate type of gate 'and', 'or', or 'null' in the

PNFT Linkage table. Use 'and' or 'or' when two or more Petri net

places and transitions relate to a single fault tree node and a null

when a single Petri net place or transition relates to a single fault

tree node. Figure 3-6 shows the gate relationships for the example

segment. Sometimes the table does not reflect a complete linkage.

Figure 3-7 represents the fully developed fault tree.

5. Remedy If No Path to the Unsafe Event is Exposed.

If it is not possible to work back to the beginning of the Petri

net, exposing a potential path to the unsafe event, do further analysis

and take at least one modification measure. Execute this

modification by expanding the fault tree, adding conditions, or

making an assumption and seeing where the assumption leads to in

the Petri net.

The software design itself may prevent a thorough backtrack,

reaching the root fault, from occurring even if there is a

single-component failure. This prevention may be determined by

comparing the conditions expressed in the fault tree with those

represented by the initial marking of the Petri net.

If it is necessary to extend the fault tree, integrate the nodes into an

expanded fault tree FTE. An existing fault tree leaf may become a

35

P]a . i''I .i bol I Node

p2; 114
t I' II.

2'?., l.i

l. . I 11:,

I IJ

ill ,,:,
I' :. ,,,
[' II II I I

Figure 3-5 OFP Basic PNFT Link Table Without Gates

1i /''. . t~,, (:Il ' ,)l

A,,d 117

2 111dl It

111.

Figure 3-6 OFP Basic PNFT Link Table With Gates

36

E cltc cmlal

12AIU ExccuLcs13 Aim Swvitch 14wcapoii Ready
~2 Live Comma~nd "3 pm is ha c for 14 Comniaild

ISi-nIiI
On

37

FTE predecessor to the newly created nodes or a new expanded node

lineage stemming from the root node may develop as the analysis

proceeds.

The evolved FTE thus becomes the basis for a FTE to execute

Petri net PNE conversion. Execute the conversion from the FTE to a

PNE by linking the additional FTE nodes to their associated PNE places

and transitions.

If the Petri net has not changed except to reflect the FTE,

merely collate the links. Otherwise, establish the links to the new

places or transitions in the Petri net and collate the links.

Simultaneously create an expanded Petri net fault tree PNFTE

Linkage reflecting the relationships between the FTE and the PNE.

Determine their associated type of gates 'and', 'or', or 'null'. Execute

this cyclic conversion as many times as necessary during analysis.

C. FAULT TREE TO PETRI NET CONVERSION AND

INTEGRATION

Fault trees are are well suited to initially describe a system that

is ordered or deterministic. During the analysis, should concurrency

or timing issues arise, the analyst may elect to proceed using Petri

net techniques. This section details the steps involved in converting

fault trees to Petri nets.

Figure 3-8 shows the 'and' and 'or' relationships of transitions

and places in Petri net analysis.

38

1. Fault Tree and Petri Net Starting Point Link

The root fault of the fault tree provides a starting point for

the development of a partial Petri net and link between the fault

tree and the Petri net. Figure 3-9 depicts the fault tree root fault

condition node, n1 (Practice Command Causes Actual Effect) as

creating P, of the Petri net. The hazard being analyzed is the firing

of a weapon during a simulated weapon use. While working top-

down in the fault tree develop subsequent transitions and places in

the Petri net, as delineated in the next step.

Event I

(a) AND Gate b RGt

Event 2 And

Figure 3-8 Petri Net 'and' and 'or' Gates

2. Fault Tree to Petri Net Graphical and

Tabular Linkage

Work downward in the fault tree to create the Petri net. For

each node in the tree, create a place in the Petri net to represent the

condition. Use transitions to represent the combinations indicated by

the gates in the fault tree. Create linkage elements with null gates to

represent the relationships. In Figure 3-9 the fault tree node n2

(AIU Executes Live Command) creates P2. This condition indicates

the execution of the command to fire the weapon. Fault tree node n5

39

n2 Ip 2

and

n P

and

nn

Figure 3.9 Petri Net Creation from a Fault Tree

40

(Command Sent From ACU) creates P3, the propagation of a pulse.

Two fault tree nodes, n9 (Command Enabled) and n 10 (Arm Switch

Signal On) are preconditions to n5 . Fault tree node n9 (Command

Enabled) creates P4 , command ready state. The other node required

before a command is sent, fault tree node ni 0 (Arm Switch Signal

On).creates P5. P5 indicates that a firing pulse is ready for

propagation due to the prerequisite of the landing gear being up.

Once the analyst creates a Petri net and links it to the fault

tree, the net must be augmented before any analysis may be

performed. The next step guides this augmentation.

3. Petri Net Completion

The initial Petri net generated from the fault tree will be

incomplete. Fault trees only contain events and conditions

specifically related to the root fault and omit all other functional

behavior. This omitted behavior must be added to the Petri net

before Petri net safety analysis can proceed.

Leveson and Stolzy [Ref. 9] describe how a Petri net may be

derived from a software system. In this case, the derivation is

focused on the gaps in the initial Petri net. As the Petri net is

completed, the analyst may need to combine and rearrange nodes

generated from the fault tree. As this is done, the linkage relation

must be modified to reflect the change. Further inspection of

analysis may reveal that the added portions of the Petri net relate to

portions of the fault tree. In that case, the analyst must include

41

these connections in the linkage relation, modifying 'null' gates to

'and' or 'or' gates as needed.

The derived and expanded Petri net may then be used for

safety analysis as described by Leveson and Stolzy [Ref. 9]. The

results of this analysis lead to the generation of new fault tree nodes

as described in Section B.

42

IV. SUMMARY AND CONCLUSIONS

A. INTEGRATED ANALYSIS TECHNIQUE

The work described in this thesis integrates Software Fault Tree

Analysis (SFTA) and timed Petri nets to facilitate software-safety

analysis in heterogeneous-multiprocessor control systems. The

integrated technique uses Petri nets for ordering events and

conditions across multiple processors, explicitly representing

concurrent and sequential events. This allows for simpler fault tree

analysis, or use of techniques such as those of Leveson and Stolzy

[Ref. 9], who describe Petri net analysis for concurrency errors and

time-related errors.

The recording of analysis logic, explicitly representing the

semantics of the events and conditions that lead to a hazard, requires

SFTA. Petri nets explicitly show combinations of events and

conditions but the semantics behind those events and conditions are

abstracted away. The integrated technique uses fault trees for

analyzing non-sequential (or non-local) sequences of conditions that

lead to a hazard, where several parts of the system must coordinate

for the hazard to occur. This part of the analysis is derived from that

of Leveson and Harvey.

A stepwise methodology is presented for converting a fault tree

into a Petri net or converting a Petri net into a fault tree, then linking

the two together for an integrated analysis. The order of technique

43

usage is dependent on the particular software being analyzed.

During Petri net to fault tree conversion, the analyst establishes a

fault to a Petri net linkage while he is creating the fault tree from the

Petri net. Inversely, he establishes a Petri net to fault tree linkage

while he is creating the Petri net from the fault tree during fault tree

to Petri net conversion.

The resulting integrated linkage relation eases the iterative

conversion between the two analysis techniques. This relation links

information in one representation to fields of the other

representation.

B. LESSONS LEARNED

This thesis uses a formal basis to the integrated analysis

technique. This formal basis is useful as it clarifies information

content in the unions representations and provides a vocabulary to

discuss conversion and linkage. An initial, informal, conversion

sketch is created, then formalized and restructured around the

formalization.

Multiple views of analysis information are stressed. The

multiplicity of views gives the analyst a broader view of the analysis

process, allowing him to both detect more subtle problems in the

software and to identify problems in the analysis itself. The

multiplicity occurs across two dimensions: presentation of technique

(graphic and textual) and technique usage (Petri nets or fault trees).

44

Graphic and textual views are essentially equivalent and

complimentary. The graphic view provides detail and connection

focus.

The integration of SFTA and Petri net analysis also gives the

analyst two complementary views of the system. The use of the

system's organizational representations in the Petri net and the

explicit fault representation and diagnosis in the fault tree are

melded for a synergistic effect. The Petri net provides organization

and emulation, whereas the fault tree provides combination and

logic.

C. FUTURE WORK

The first recommendation stemming from the work done in this

thesis is to automate the integrated software-safety analysis method

presented. An analyst shoul. not be replaced by an automated tool.

An analyst interaction focusing the analysts insight and experience

on the hazards of a 'ystem. This method is proposed only as a tool

for evaluation during the overall safety analysis. Tools exist for Petri

net (P-Nut) and fault tree (SFTAT) analysis. A means to tie these

tools together is suggested in this thesis.

Other modeling techniques that lend themselves well to

integration need to be explored (such as PHA, Markov Chains, and

FMEA). Individually, safety-analysis techniques have weaknesses

that may be better addressed by other techniques. The integration

of two or more analysis methods may well help to reduce life,

45

property, and environmental losses due to hazard-inducing software

by utilizing their combined advantages.

D. CONCLUSIONS

Software faults must not cause hazards after a system is in the

field. Loss of life or property can result from hazardous software

used in real-life environments. Analysts should make every effort to

find all safety-critical software faults before the developer delivers

the system to the users. Integrated analysis methods should

enhance early fault discovery by focusing on the key safety-critical

portions of the software and avoiding redundant analysis.

Further research in all areas of software-safety is required to

prevent hazards as early as possible in the development and

maintenance life-cycle of people-, property-, or environment-critical

software.

46

LIST OF REFERENCES

1. Shimeall T. J., McGraw, R. J., and Gill, J. A., "Software Safety
Analysis in Heterogeneous Multiprocessor Control Systems".
1991 Proceedings Annual Reliability and Maintainability
Symposium, Orlando, Fl, January 1991.

2. Software Safety Handbook, H. Q. AFISH/SSH 1-1, Norton Air
Force Base, CA, 5 September 1985.

3. Petersen, D., Techniques of Safety Management, McGraw-Hill,
New York, 1971.

4. Malasky, S. W., System Safety Technology and Application,
Garland STPM Press, New York, 1982.

5. Software Engineering Standards, The Institute of Electrical and
Electronics Engineers, New York, 1984.

6. Leveson, N. G., and Harvey, P. R., "Analyzing Software Safety",
IEEE Transaction Software Engineering, SE-9, pp. 569-579,
5 September 1983.

7. Leveson, N. G., "Software Safety: Why, What, and How",
Computing Surveys, vol. 18 no. 2, pp. 125-163, June 1986.

8. Murata, T., "Petri Nets: Properties, Analysis and Applications",
Proceedings of the IEEE, Vol. 77, No. 4, pp. 541-580, April 1989.

9. Leveson, N. G. and Stolzy, J. L., "Safety Analysis Using Petri
Nets", IEEE Transactions on Software Engineering, vol. SE-13, no.
3, March 1987.

10. McGraw, Richard J., Petri Net and Fault Tree Analysis:
Combining Two Techniques for a Software Safety Analysis on an
Embedded Military Application, M.S. Thesis, Naval
Postgraduate School, Monterey, CA, December 1989.

47

11. Peterson, J. L., Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

12. Cha, Stephen S., Leveson Nancy G., and Shimeall, Timothy J.,
"Fault Tree Analysis Applied to Ada", Proceedings of the Tenth
International Conference on Software Engineering, Singapore,
1988.

13. Dugan, Joanne B., Trivedi, Kishor S., Smotheman, Mark K., and
Geist, Robert M., "The Hybrid Automated Reliability Predictor",
Journal of Guidance, Control, and Dynamics, vol. 9, no. 3,
May-June 1986.

14. Howell, Sandra V., Bavuso, Salvatore J., and Haley, Pamela J., "A
Graphical Language for Reliability Model Generation", 1990
Proceedings Annual Reliability and Maintainability Symposium,
Atlanta, GA, January 1990.

48

BIBLIOGRAPHY

Connolly, Brain, "Software Safety Goal Verification Using Fault Tree
Techniques: A Critically Ill Patient Monitor Example", Proceedings of
IEEE Compass '89, Gaithersburg, MD, pp. 18-29, June 19-23, 1989.

Griggs, J. G., "A Method of Software Safety Analysis", Proceedings of
the Safety Conference (Denver, CO), vol. 1, part 1, System Safety
Society, Newport Beach, CA, pp. III-D-1 to III-D-18, 1981.

Ericson, C. A., "Software and System Safety", Proceedings of the 5th
International System Safety Conference (Denver, CO), vol. 1, part 1,
System Safety Society, Newport Beach, CA, pp. III-B-I to III-B-1,
1981.

Gloss, D. S., and Wardle, M. G., Introduction to Safety Engineering,
Wiley, NY, 1984.

Hammer, W., Handbook of System an Product Safety, Prentice-Hall,
Inc., 1972.

Harvey, Peter Randall, "Fault Tree Analysis of Software", M. S. Thesis,
University of California, Irvine, CA, 1982.

Konakovsky, R., "Safety Evaluation of Computer Hardware and
Software", Proceedings of COMPAC ' -. IEEE, NY, pp. 559-564, 1978.

Leveson, Nancy G., Building Safe Software, Computer Science
Technical Report NO. 86-14, University of California, Irvine, CA,
February 1986.

Leveson, N. G., and Stolzy, J. L., "Using Fault Trees to Find Design
Errors in Real Time Software", AIAA 21st Aerospace Science Meeting,
Reno, NV, January 10-13, 1983.

Mclntee, J. W., Fault Tree Techniques As Applied to Software (Soft
Tree), Technical Report, USAF, March 1983.

49

McKinlay, Archibald, "Software Safety Handbook", Proceedings of
IEEE Compass '89, Gaithersburg, MD, pp. 14-19, 19-23 June 1989.

Merlin, P. M. and Farber, D. J., "Recoverability of Communication
Protocols Implications of a Theoretical Study", IEEE Transaction on
Communications, Vol. COM-24, pp. 1036-1043, September 1976.

Neumann, Peter G., "The Computer-Related Risk of the Year:
Misplaced Trust in Computer Systems", Proceedings of IEEE Compass
'89, Gaithersburg, MD, pp. 9-13, June 19-23, 1989.

Petri, C., Kommunikation mit Automaten, Ph.D. dissertation,
University of Bonn, West Germany, 1962.

Razouk, R. R., A Guided Tour of P-NUT, Technical Report Number
86-05, Department of Information and Computer Science, University
of California, Irvine, March 1986.

Roland, H. E. and Moariarity, B., System Safety Engineering and
Management, Wiley, NY, 1983.

Rolandelli, C., Shimeall, T. J., Genung. C., and Leveson, N., Software
Fault Tree User's Manual, Technical Report 86-06, University of
California, Irvine, February 1986.

Taylor, J. R., Logical Validation of Safety and Control System
Specifications Against Plant Models, Technical Report RISO-M-2292,
Risoe National Laboratory, Roslilde Denmark, May 1981.

Thomas, Jeffery C., and Leveson, Nancy G., Applying Existing Safety
Design Techniques to Software Safety, Computer Science Technical
Report, University of California, Irvine, CA, September 1981.

Vesely, W. E., Goldberg, F. F., Roberts, N. H., and Haasl, D. F., Fault Tree
Handbook, NURREG-0492, U. S. Nuclear Regulatory Commission,
January 1981.

Weik, Martin, "Computer Dictionary", IEEE Computer Society
Standards Committee, ed., IEEE Computer Society, 1976.

50

A-6E Operational Flight Program E 250, Mini-PPS, Revision B, Naval
Weapons Center, China Lake, CA, 93555, 23 June, 1989.

A-6E 4 PI Developmental Flight Program, E 544.06, Math Flows Draft,
Naval Weapons Center, China Lake, CA, 93555, 17 May , 1989.

MIL-STD-1553B (DOD), Specification Control , Missile
C-115241A(AIU), Program Performance Specification (PPS) for
A-250, NWC-2478-250 Revision C, Naval Weapons Center, China
Lake, 1 June 1989.

MIL-STD-1679 (DOD), Control Missile C-11524/A (AIY) and Ballistics
Computer Set, CP-1391/ASQ-155A (BCS), Interface Design
Specification (IDS), NWC-2482-250, Revision A. Naval Weapons
Center, China Lake, CA, 93555, 1 August 1989.

51

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943

3. Department Chairman, Code CS I
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

4. Professor Timothy J. Shimeall, Code CS/Sm 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

5. Professor Kim A. S. Hefner, Code MA/Hk I
Math Department
Naval Postgraduate School
Monterey, California 93943

6. Mr. Bob F. Westbrook (Code 31) 1
Naval Weapons Center
China Lake, California 93555

7. Mr. Werner Hueber (Code 3104) 1
Naval Weapons Center
China Lake, California 93555

8. MS Janet A. Gill (Code FW532JG) 5
Naval Air Test Center
Patuxent River, Maryland 20670

52

