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ABSTRACT

To recover 3-D structure from a shaded and textural surface image involving
textures, neither the Shape-from-shading nor the Shape-from-texture analysis is
enough, because both radiance and texture information coexist within the scene
surface. A new 3-D texture model is developed by considering the scene image as the
superposition of a smooth shaded image and a random texture image. To describe the
random part, the orthographical projection is adapted to take care of the non-isotropic
distribution function of the intensity due to the slant and tilt of a 3-D texture surface,
and the Fractional Differencing Periodic (FDP) model is chosen to describe the
random texture, because this model is able to simultaneously represent the coarseness
and the pattern of the 3-D texture surface, and enough flexible to synthesize both
long-term and short-term correlation structures of random texture. Since the object is
described by the model involving several free parameters and the values of these
parameters are determined directly from its projected image, it is possible to extract
3-D information and texture pattern directly from the image without any pre-
processing. Thus, the cumulative error obtained from each pre-processing can be
minimized. For estimating the parameters, a hybrid method which uses both the least
square and the maximum likelihood estimates is applied and the estimation of
parameters and the synthesis are done in frequency domain. Among the texture
pattern features which can be obtained from a single surface image, Fractal scaling

parameter plays a major role for classifying and/or segmenting the different texture




patterns tilted and slanted due to the 3-dimensional rotation, because of its rotational
and scaling invariant properties. Also, since the Fractal scaling factor represents the
coarseness of the surface, each texiure pattern has its own Fractal scale value, and
particularly at the boundary between the different textures, it has relatively higher
value to the one within a same texture. Based on these facts, a new classification

method and a segmentation scheme for the 3-D rotated texture patterns are developed.
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CHAPTER 1
INTRODUCTION AND OVERVIEW

1.1. Introduction

An important task in computer vision is the recovery of 3-D scene information
from single 2-D images. However, this is an ill-posed problem [13, 178], because we
have only 2-D information but try to extract 3-D information from it. Therefore, we
need additional information for this missing dimension to recover 3-D scene
information. To date, researchers have suggested two different ways to handle this
lack of information. The first one is the use of shading information in the image
[30,31,73,75, 100, 144, 172]. Shading information tells us the direction of the light
source and the surface orientation of the object surface. Thus, by formulating the
reflectance map function which shows scene radiance as a function of the surface
gradient and the distribution of light sources, we can extract 3-D surface information
from image data. The second method is the use of texture information
(6,82, 109, 135,207,221]. Since texture gradients behave like intensity gradients, the
shape of a surface can be inferred from the pattern of a texture on the surface by
applying statistical texture analysis.

However, for describing a natural scene image, each of the above approaches

have their own limitations. Shading information is meaningful only under the

assumption that the surface is smooth enough to have clear radiance information, even




though this situation is rarely encountered in practice. Thus, instead of having clear
radiance information, the scene image has texture pattern information due to the
complexity of the surface in most cases. This encourages us to study the texture
pattern of a 3-D surface. Therefore, the modeling and analysis of texture patterns

which contain 3-D information of the surfaces will be the main focus of this thesis.

3-D texture analysis involves at least the several following difficulties. First, for
the recovery of 3-D shape from the natural scene, a texture model itself will not be
enough to represent the whole surface, because texture analysis requires the surface to
be relatively complex to have a statistical property. However, some parts of the
surface may not contain clear information about the texture pattern due to dark
shading or bright radiance. In other words, we may have a situation such that the
radiance information is more dominant than the texture information. Therefore, our
model should have an ability to handle both the texture and radiance information at
the same time. Second, since the observed texture image is actually the image
obtained by projecting the surface image to the image plane, this projected random
texture pattern does not have the stationary property any more, even though the
original surface normal image can be represented by a stationary random texture
pattern. Thus, the conventional 2-D texture models under the assumption of
stationarity can not be used. Third, for the classification and texture segmentation
purpose, our model should have a 3-D rotational invariant property, since the
observed texture pattern may have various looks depending on the viewer’s direction.
Thus, the classification and/or segmentation scheme for the 3-D rotated texture pattern
should have the flexibility to treat different looking textures as being the same without

losing the accuracy of the processes.

In this thesis, to solve the difficulties discussed above, a composite model of

Shape-from-shading and Shape-from-texture is developed to represent a 3-D surface




image considering the scene image as the superposition of a smooth shaded image and
a random texture image. The orthographical projection is adapted to take care of the
non-isotropic distribution function due to the slant and tilt of a 3-D texture surface,
and the Fractional Differencing Periodic model is chosen because this model is able to
simultaneously represent the coarseness and the pattern of the 3-D texture surface
with the fractional differencing parameters ¢, d and the frequency parameters ®;, ;.
For the classification and segmentation purpose, these fractional differencing
parameters play an important role, because those parameters are known to be
rotational and scaling invariant. Thus, combining these parameters and directional
frequency parameters in the fractional differencing periodic function, we can have the
flexibility to handle the rotated and projected texture pattern and the accuracy of the
classification. For estimating the parameters, a hybrid method which uses both the
least square and the maximum likelihood estimates is applied and the estimation and

the synthesis are done in frequency domain.

1.2. Modeling Of A Surface Image

Modeling of a 3-D surface image can be broken down into two main categories,
Shape-from-shading and Shape-from-texture. The Shape-from-shading model uses
the reflectance map which shows scene radiance as a function of the surface gradient
and the distribution of light sources to extract 3-D surface information from image
data [30,99]. On the other hand, the Shape-from-texture model uses the texture
pattern instead of shading to extract 3-D structure [82,109,135]. Since texture
gradients behave like intensity gradients, the shape of a surface can be inferred from
the pattern of a texture on the surface by applying statistical texture analysis.

However, for describing a natural scene image, each of the above approaches has its




own limitation. The Shape-from-shading model is applicable only under the
assumption that the surface is smooth enough to have clear radiance information,
while the Shape-from-texture model requires the surface to be relatively complex so
that texture information can be extracted. Thus, neither model is suitable to represent
a natural scene, because both radiance and texture information coexist within the
surface of a natural scene. Therefore, a robust technique is needed to handle this
shortcoming. Recently, the fractal scaling parameter was introduced to measure the
coarseness of the surface, and applied to represent the natural scene surface
[47,132,151,173). However, this fractal model is also not enough to represent the
real 3-D texture image, because even though two surfaces are estimated to have the
same fractal scales, these surfaces can have different texture patterns. Therefore, in
this thesis, the Fractional Differencing Periodic model is chosen to represent the 3-D
surface image, because this model is able to simultaneously represent the coarseness
and the pattern of the 3-D texture surface with the fractional differencing parameters

¢, d and the frequency parameters ®;, ;.

1.3. Fractional Differencing Model

As mentioned previously, the fractional differencing model has an ability to
simultaneously represent the coarseness [175] and the pattern of the 3-D texture
surface with the fractional differencing parameters c, d and the frequency parameters
;, 0,. Also, it has the property of being flexible enough to synthesize both long-term
and short-term correlation structures of random texture depending on the values of the
fractional differencing parameters [89,101]. For estimating the parameters,
comparing with the fractional Brownian random process model [151], the fractional

differencing model has a simple estimation scheme sharing the same properties of the




fractional Brownian process, because while the fractional Brownian process is a
continuous process which follows a certain probability distribution, the fractional
differencing model is a discrete process which has a linear function of parameters. A
hybrid method which uses both the least square and the maximum likelihood
estimates is applied and the estimation and the synthesis are done in the frequency

domain [67].

1.4. Shape From A Shaded And Textured Surface Image

In this thesis, a composite model of Shape-from-shading and Shape-from-texture
is developed to represent a 3-D surface image considering the scene image as the
superposition of a smooth shaded image and a random texture image, that is, the
deterministic function x(/y,/;) and the random function y(/{,/5). Then, the
orthographical projection is adapted to take care of the non-isotropic distribution
function due to the slant and tilt of a 3-D texture surface. Thus, the Orthographically
Projected Fractional Differencing Periodic (OPFDP) model is chosen because this
model is able to simultaneously represent the coarseness and the 3-D rotated pattern of
the surface with the fractional differencing parameters c, d, the frequency parameters
Wy, n, and the relationship between different directions of 3-D surface. Since the
object is described by a model involving several free parameters and the values of
these parameters are determined directly from its projected image, it is possible to
extract 3-D information and texture pattern directly from the given intensity values of
the image without any pre-processing. Thus, the cumulative error obtained from each
pre-processing can be minimized. For estimating the parameters, a hybrid method
which uses both the least square and the maximum likelihood estimates is applied and

the estimation and the synthesis are done in frequency domain based on the local




patch analysis. By using this model, the integrability problem waich might occur in
spatial domain analysis can be avoided, because only one inverse Fourier transform

needs to be taken at the end of the procedure to get the whole image.

1.8. Classification Of 3-D Rotated Textures

The classification problem can be stated as an allocation of observed texture
image data to the one of the pre-defined texture classes. These texture classes can be
described by texture features, and then texture features can be the parameters in
stochastic model [46, 53,92], or structural model [142,216]. Thus, the key step in the
classification process is the choice of a set of features which can reduce the dimension
of the image data to a computationally reasonable amount of data. The features should
be simple and easy to extract from the given data while preserving the classifying

information present in the data.

Most classification schemes which have been suggested to date are under the
assumption that the test sample data possesses the same surface orientation as the
training sample data. Thus, if the orientation of test image is different from the
training sample data, for example, in case of a rotated image, the classification
performs poorly. This reduces the flexibility of those classification schemes.
However, most natural texture images which we can encounter in practice are
representing the texture on the 3-D surface, thus, the observed image is a projected
surface image onto the 2-D image plane with a 2-D rotated, or 3-D slanted and tilted
texture pattern. Therefore, sometimes it is desirable for the classification scheme to
have the flexibility that it can classify even rotated or scaled texture to the original
class of it. This is a good indication why it is so important to have the rotational and

scaling invariant features in our model. In this thesis, a classification method which




can handle arbitrary 3-D rotated samples of textures is developed, i.e., the accuracy of
classification is not affected by the 3-D rotation of the test texture. This classification
scheme is based on a two-level hierarchical structure. In the first level, a 3-D
rotational invariant feature, fractal scale c, is extracted from the first-order fractional
differencing model by applying a least-square estimation method, and this feature is
used to classify the test texture image to a class whose members are sharing a similar
value of fractal scale. And in the second level, the members of the class are further
classified to the final desired subclasses with other texture pattern features, w; and w,,
which are extracted from the second-order projected fractional differencing model by
applying a hybrid method of the least-square estimation and the maximum likelihood
estimation. As a result, this multi-level classification scheme saves a reasonable

amount of processing time without losing the accuracy of the classification.

1.6. Organization Of The Thesis

Various applications of the Fractional Differencing model have been investigated
to represent 3-D texture pattern through this thesis. An important aim of this study is
to develop the mathematical model suitable for the 3-D surface image which the
radiance and texture information coexist in. The Orthographically Projected Fractional
Differencing (OPFD) model developed here performs very well to represent the
texture pattern on the 3-D surface, because of the rotational and scaling invariant
parameters in it. This rotational and scaling invariant property of these parameters has
been successfully applied to segment or classify the rotated and slanted texture plane

in the rest of the chapters.




The organization of the thesis is as follows. In chapter 2, two different categories
of 3-D surface model, Shape-from-shading and Shape-from-texture, are discussed, and
several typical methods of each categories are compared with their simulation results.
Two projection methods, orthographical and perspective projection, are also presented
to represent the distortion due to the tilt and the slant of the surface. In chapter 3, the
Fractional Differencing model suggested in chapter 2 to represent the 3-D texture is
discussed in detail, and its estimation scheme based on the Least-Square and
Maximum likelihood estimation methods is presented. Chapter 4 presents a composite
model of Shape-from-shading and Shape-from-texture to extract the 3-D structure
from the surface image which contains the radiance information and the texture
information at the same time. This suggested model is directly applied to the given
image without any pre-processing, and as a result of this, the errors which might result
from each pre-processing are not cumulated. In chapter 5, a classification scheme of
the 3-D rotated textures is developed based on the fractal scale. This fractal scale is
known to be a rotational and scaling invariant parameter, and can be extracted by
fitting the given tilted or slanted texture image to the proposed Fractional Differencing
model. A multi-level structure of the classification structure is also introduced to
reduce the processing time. Finally in chapter 7, the conclusion of this study and the

suggested future research are presented.




CHAPTER 2
MODELING OF A SURFACE IMAGE

2.1. Introduction

Modeling of a 3-D surface image can be broken down into two main categories,
Shape-from-shading and Shape-from-texture. The Shape-from-shading model uses
the reflectance map which shows scene radiance as a function of the surface gradient
and the distribution of light sources to extract 3-D surface information from image
data [30, 73,75, 100, 144,172]. On the other hand, Shape-from-texture model uses the
texture pattern instead of shading to extract 3-D structure [6, 109, 135,207, 216, 221].
Since texture gradients behave like intensity gradients, the shape of a surface can be
inferred from the pattern of a texture on the surface by applying statistical texture
analysis. However, for describing a natural scene image, each of the above
approaches has its own limitation. The Shape-from-shading model is applicable only
under the assumption that the surface is smooth enough to have clear radiance
information, while the Shape-from-texture model requires the surface to be relatively
complex so that texture information can be extracted. Thus, neither model is suitable
to represent a natural scene, because both radiance and texture information coexist
within the surface of a natural scene. Therefore, a robust technique is needed to
handle this shortcoming. Recently, the fractal scaling parameter was introduced to
measure the coarseness of the surface, and applied to represent the natural scene

surface [47,132,151,173]. However, this fractal model is also not enough to
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represent the real 3-D texture image, because even though two surfaces are estimated
to have the same fractal scales, these surfaces can have different texture patterns.
Therefore, in this thesis, the Fractional Differencing Periodic model is chosen to
represent the 3-D surface image, because this model is able to simultaneously
represent the coarseness and the pattern of the 3-D texture surface with the fractional

differencing parameters c, d and the frequency parameters ®,, 0.
2.2. Shape-From-Shading

Pioneering work on the inference of shape-from-shading was done by Horn and
his co-workers [30,99, 100]. To extract 3-D shape from a single 2-D image, they used
the reflectance map, which shows the intensity of the image as a function of the
surface gradient and the illumination direction. (Figure 2.1 shows the relationship

between the different directions and angles.)

pCOS Ty SinCy+qsinT, sinG +COS Oy, A

iy,ly)= R(p.q) (2.2.1.a)
1-42 (p2+q2+1)1/2 q
= SiNGCOSTCOST, SinGy, + sinGsinTsinTy, sinc;, + COSGCOSO}, (2.2.1.b)
where = ——a—H(l 1), g= —Q—H(l l7)

R(p,q) : Reflectance map function
H(l,,l7) : 3-D shape function from the viewing direction.
1, ¢ : Tilt, slant of the surface

11, O : Tilt, slant of the illumination direction

Here, the relationship between 1, 6 and p, q are




t=tan"! (1), O =CoS_
p

\]p2+q2+1

)
Surface Illumination
Normal Direction
N/
~ 7~

-~ ~

/|\

-
-~ o
-

Viewing
Direction

Figure 2.1: Three Different Directions on 3-D Surface

11

(2.2.2.a)
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p =tanGcosT, ¢ = tancsint (2.2.2.b)

Figure 2.2-a,b were simulated from the equation (2.2.1), assuming that the slope

values p, q in directions of [, [, and the illumination direction were given.

(a) (b)
Figure 2.2: Intensity images of a sphere from the various directions of light
source. (a) o1 = 0.0, = 0.0 (b) o, = -0.66,7, = -0.66 [rad]. (Images are
simulated by (2.1.2.1a) and intensity values are normalized between O and
255.)

Construction of 3-D shape can be achieved by solving p, q in terms of i(/4,/;) at
each point, and integrating those values. However, the final integrated shape can be
different from the original shape, due to the cumulation of estimation errors. To avoid
this type of error, Horn and Brooks [100] developed a calculus of variation method to
estimate the surface orientation values, and Pentland [172] suggested local shape
analysis which deals with the only local areas instead of a whole image. However,
Pentland’s technique has severe trouble in integrating all local areas. Recently,

Pentland [169] developed another technique to solve the integrability problem. He
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suggested analysis in the frequency domain, instead of in the spatial domain. By using
this method, the integrability problem can be avoided, because only one inverse
Fourier transform needs to be taken at the end of procedure. However, since the
calculation of convolution is required in the frequency domain to handle simple
multiplication operation of spatial domain, calculation will be complicated. Horn and
Brooks’ method was improved by Frankot and Chellappa [76] recently, by adding one
more constraint of the integrability in addition to the smoothness constraint. The
estimation error and the integrability problem can be handled by the image model
suggested in this thesis, because our model has a constraint which is from the texture

pattern and is analyzed in frequency domain.

2.2.1. Estimation Of Ilumination Direction

The first step in estimating lccal surface orientation is the determination of the
illumination direction for the surface, L, and the constant Ap for a particular
estimation neighborhood. Estimation methods of illumination direction L were

suggested by Pentland [171], and C-H Lee [144] in different ways.

2.2.1.1. Pentland’s Method

Pentland’s approach was based under the assumption that the surface normal of
each local patch is isotropically distributed within a scene. Assuming that the
distribution of the surface normal is known and the intensity value is measurable for
different directions within the image, one could estimate the illumination direction L

using a least square estimation procedure [171]. The solution of this approach follow.
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Theorem 2.1: Let di(l,,l,) be the first derivative of image intensity at a particular
point in the direction (dl,, dl,), and di ; be the average value of di over the j-th patch

in direction (dl ljrdllj)' Then,
deg | [y digy)
dey | |dhe din D

[z)'cn 1 dlo |

The proof is in Appendix A.

Theorem 2.2: The illumination directions for 1, 15, I3 direction are

-

1:1, L,

_ _ A / 2 5 2

L= < L= — Ly=~N1-L; “-Li,”.
- ~ 2

where k= \(di®)~(di)

di? : the average value of di 2 for the whole image.

~

di : the average value of di for the whole image.

and

1, 1
T, =tan" (——), OL =cos Ly,
Ly,

where 1, : Tilt angle of illumination direction

o, : Slant angle of illumination direction
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The proof is in Appendix B.

Pentland’s method is a very good tilt estimator, as well as a very good slant
estimator if the slant is below 40 degrees. However, due to the small variance of
di(ly,1,), this method results in a large error in the slant estimation whenever the slant
is above 50 degrees. This experimental result has been confirmed by Lee {144] and

Ferrie & Levine [73]

2.2.1.2. Lee’s Method

Lee suggested a different statistical approach to estimate the illumination
direction [144]. By assuming that the slant ¢ is uniformly distributed over the sphere
surface, the probability density function for the slant 6 can be obtained by (sin 0)/2 &.
To determine the expected value of image brightness i(l;,1;), we should integrate only
over the illuminated region, because not all of the sphere is illuminated. Thus, the
region of integration should be set based on the foreshortening factor. Also, this
region of integration can be different under the condition when the self-shadowed
areas is included in the computation of the average. If we include the self-shadowed
areas in the computation, we must divide the integral by the whole area, =, of the disc
that is the projection of the hemisphere. If, on the other hand we do not include the
self-shadowed areas, we divide by the area (m/2)(14+cosoy) of the projection of the
illuminated part of the hemisphere. Thus, from the integration, we can get the

expected values of i(l;,1,) and i2(11 1) as follows:

Theorem 2.3: The slant of illumination direction G, satisfies
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Elil= %(sinow(n—q)coscl‘)

2
E[£2] = Q—gz—(l+coscL)2 ,when self—shadowed parts are included.

421

Elij= 3n(l+cosor)

(sinop H(m—0 )cosoL)

2
Eli?] = a%)(l-FCOSGL) ,when self-shadowed parts are not included.

where A is constant for the reflectance, and the mathematical expectation is taken

over the whole image.
The proof is in Appendix C.

Thus, the slant 61 can be estimated from above equations by taking the average
value of intensities over the whole image for E[i] and E[i 2]. The tilt of illumination
direction 1, can be also estimated from Theorem 4.1 of [144].

~ J .
E[—i(1,1
[ 3, (11.12)]

L =tan"! (= ) (2.2.1.2.1)
E[sl"'i(ll 12)]
1

Here, the estimated values I:Z(-) are taken over the whole image by taking the average

value of the function.

Lee’s method has several advantages over Pentland’s method. First, calculation
is much simpler, because calculations are required only once over the whole image.
Second, we can calculate the slant of illumination direction directly from two

equations without knowing the value of Au. Experimental results of Lee’s method are
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known to be superior to Pentland’s for the estimation of both tilt and slant. This has
been confirmed by Lee [144] and Ferrie & Levine [73]. Because of these advantages,
Lee’s method was used to determine the illumination direction for the construction of

3-D shape in this thesis.

2.2.2. Estimation Of Surface Orientation

The extraction of 3-D surface orientation from single 2-D images is an ill-posed
problem, because we have only 2-D information but try to extract 3-D information
from it. Therefore, we need additional information for this missing dimension to
recover 3-D scene information. To date, several approaches have been suggested by
researchers to give an additional constraint, such as the integrability, smoothness, etc.

The following sections will discuss several approaches among them in detail.

2.2.2.1. Horn And Brooks’s Method

Horn and Brooks [30, 100] developed a calculus of variation method to estimate
surface orientation. In the presence of noise, the real values may not be the same as
the estimated values that satisfy the image irradiance equation exactly. There will,
however, be a surface that minimizes the integral of the square of the error between
the expected values and the real values. Thus, the search for a function that minimizes
an integral of this error was taken to be the major concern of this calculus of
variations. However, this problem is an ill-posed problem, because there are typically
an infinite number of surface satisfying this equation. Therefore, the equation needs an
additional constraint to have a unique solution. Horn and Brooks proposed the

additional constraint of a smoothness criterion [30]. Surface orientation can be
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obtained by minimizing the following cost function

a2
o1, 01,

2
TG00 RGP @M H (1 ) P25 5 H o)
1

2
o) @221.1)
2

Homn’s method has good estimation results in the presence of noise. However, when
the surface is not relatively smooth enough, the result from this method can possess
the integrability problem. This lack of integrability can be found from the simulation

examples in Section 2.2.3.

2.2.2.2. Chellappa And Frankot’s Method

Frankot and Chellappa’s method [76,78] is based on the calculus of variation
method of Hom and Brooks. However, this method deals with one more constraint
about the integrability. As discussed before, Horn & Brooks added the smoothness
constraint to yield the unique solution, but that method can have the lack of
integrability. Thus, Frankot and Chellappa proposed an additional constraint to
enforce the integrability. This integrability can be achieved by satisfying the following
requirement.

a2 2

_ 3
S o, k) = 5 5D (2222.1)

There are many conceivable ways of enforcing above equation. One of them is the

minimization the following distance measure.
[[«p~Elp)*+(q-Elq))*)dl; dl, (22.22.2)

Let C be the coefficients of the Fourier series expansion of H(1},15), él, and élz be the
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Fourier coefficients for the expectation values of p, q (slopes in directions of 1;.l;).

Then, the above cost function can be minimized by taking

—jon, G, (@)~je, C,, ()
(91, 2+0)122

Clw) = (.3)

Thus, the construction of 3-D shape can be achieved by simply taking the inverse

Fourier transform on C(w).

Frankot and Chellappa’s method is a good estimator of surface orientation.
From the smoothness constraint and enforcing integrability, the general shape of the
3-D object can be obtained. However, due to too much smoothing, the detail

information about the surface may be lost.

2.2.2.3. Pentland’s Method

The Shape-from-shading problem is known to be mathematically equivalent to a
nonlinear first-order partial differential equation in surface elevation. Therefore, it is
very difficult to obtain the closed form solution. For this reason, Pentland [169]
proposed a linear approximation method to estimate the values, using a Taylor series

expansion in p, q variables up to the second order. Thus,

5O
cos2 L Pr+qd)  (22.23.0)

i(1y,1p) = coso +pcosty sinop +qsinty sincy —

The corresponding DFT of i(l;,1,) is as follows. (after deleting the constant term

cosOL)

- . . . CosoL
f ik, k) = costysinoy I, (ky, ko) +sintysinoy f o (ky, ko)~ 5 Fp ®f p+ ¢ ®F )
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(2.2.23.2)

Then,  5(k;.k2) and § q(k;,kz) can be represented as the function of § 1(k;.ky), by the
approximation of the first derivative of H(l;,l3) function. Thus, §i(ki.ky) can be
represented as a function of 4 (k;,k;) only, and the height function H(l;,1;) can be
constructed by simply taking the inverse Fourier transform of the intensity function

i(ly,1).
. k
Tp(kl’kZ) =151n(2nw)fu(k1,k2) (2.2.2.3.3)

Similarly,

k
£ o(k1,ka) =jsin(2n—§—)fxl<k,,k2> (2.2.2.3.4)

Under the condition |p|, |q] < 1, the linear term dominates. Thus,

fi(k1.k) = cost sinop  p(k,kp) + sintysinoL T o (ki k)

k K
= jsincL(sin(zn?‘)coszL + sin(ZKWz)simL)f (K1, ks) (2.2.23.5)

Pentland’s method has a nice mathematical formulation because in frequency domain,
the equation has only one unknown variable. Thus, this equation has a unique
solution. However, the first-order linear approximation yields a big estimation error,
while the second-order approximation requires convolution in frequency domain and
requires too much computation. This results will be confirmed from the examples in

Section 2.2.3.
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2.2.3. Simulation Results

A 128 x 128 real image of a part of a tree in a grass meadow is considered
(Figure 2.3). From this image, the estimation values of the illumination direction o,
1, was determined to be 6y = -1.3384, T, = -4.257899¢-02, by applying Lee’s method.
Following Figure 2.4-a,b show the results of the height functions constructed from
lomn and Brooks’s and Frankot and Chellappa’s algorithms, respectively. From these,
we can see that Frankot’s algorithm gives a nice and smooth height function, while
Horn’s gives a rough surface but detailed information of the surface. The experiments
were repeated for the smoothed part images which were obtained by different sizes of
smoothing windows. These experiments could give the idea of how the smoothing
affects the results. Figure 2.5-a,b,c depict the part images which are smoothed by the
different sizes of window, and Figure 2.6-a,b, Figure 2.7-a,b, and Figure 2.8-a,b also
depict the corresponding height functions from each cases by Horn’s and Frankot’s,
respectively. From these experiments, we can see that for the image smoothed by the
relatively large size of window, Horn’s and Frankot’s are getting closer. Pentland’s
algorithm was not considered here, because of the poor performance from the linear
approximation. Figure 2.9 shows the resulting height function constructed from the

low-frequency linear approximation method of Pentland for Figure 2.5-b.




Figure 2.3 : A digitalized tree image sized by 512 x 512
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Figure 2.4: The height function of Figure 2.3: constructed by (a) Horn’s method,
(b) Frankot’s method: Surface orientation for each pixel was obtained from

minimizing the cost function (2.2.2.1.1) and (2.2.2.2.2), respectively.
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(a)

(b) ©

Figure 2.5: A part of the tree image (Figure 2.3): (a) original, (b) Image obtained
after convoluting a 5 x 5 smoothing window to (a), (c) Image obtained after
convoluting a 9 x 9 smoothing window to (a).




Figure 2.6: The height function of Figure 2.5-a: constructed by (a) Homn’s
method, (b) Frankot’s method: Surface orientation for each pixel was obtained
from minimizing the cost function (2.2.2.1.1) and (2.2.2.2.2), respectively.
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Figure 2.7: The height function of Figure 2.5-b: constructed by (@) Horn’s
method, (b) Frankot’s method: Surface oricntation for cach pixel was obtained
from minimizing the cost function (2.2.2.1.1) and (2.2.2.2.2), respectively.
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(a)

Figure 2.8: The height function of Figure 2.5-¢: constructed by (a) Horn’s
method, (b) Frankot’s method: Surface orientation for each pixel was obtained
from minimizing the cost function (2.2.2.1.1) and (2.2 2.2 2), respectively.
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Closed form solution of the surface orientation

was obtained in the frequency domain by the linear approximation method.

.9: The height function of Figure 2
Pentland’s method(2.2.2.3.1-5)

Figure 2




2.3. Shape-From-Texture

The Shape-from-texture problem has been studied extensively to recover the 3-D
information from a two dimensional image [6, 109, 135, 136, 156,221] since Gibson
first proposed the texture density gradient as the primary basis of surface perception
by humans in 1950. Motivated to simulate human perception, he confines the surfaces
under consideration to only those whose orientations could be easily perceived from
the texture by human eye. However, if the true texture is not isotropic and has a
preferred orientation, it mimics a projected image and thus makes it difficult to detect
the true orientation. Therefore, to formalize the shape-from-texture problem requires a
projection model for the image formation system. Up to now, two kinds of projections
called ‘orthographical projection’ and ‘perspective projection’ have been used in most
of cases. The orthographical projection can be obtained by projecting the object
surface to the image plane parallelly without considering the average distance from
the camera, while in the perspective projection model, the scene depth is relative to
the distance between the object and the camera. Thus, the perspective transformation
yields orthographical projection as a special case when the viewpoint is at a point
infinitely far from the object surface. Another model required to formalize the shape-
from-texture is a random field model. This model should represent the statistical
property of the texture on the surface properly, and its parameter estimation scheme
should exist. Various types of random field models have been proposed to date to
represent the surface covered by texture. Among them, the AR(Auto-Regressive)
model [41, 122] is known to be simple enough to estimate and synthesize the texture
plane whose statistical pattern is isotropically distributed over the plane. Another
noticeable model for the 3-D textured surface is the Fractal model [133,173]. The

fractal model contains a fractal scaling parameter. This fractal scaling parameter can




be a measure of the roughness of the surface and can be considered as a scale and
rotational invariant parameter. However, these models have their own limitations in
representing the true texture surface. The AR model does not have a long-term
persistent memory property, thus, it is not proper for the texture pattern which
contains a long-term memory in a certain direction, such as a tree-bark image. On the
other hand, the Fractal model has only three variable parameters, mean, variance and
fractal scaling. Those are not flexible enough to model the wide range of situations
encounted in practice. This conflict can be solved in the fractional differencing
periodic model which is suggested in this paper. That is, tnc tractional differencing
periodic model contains four parameters, two frequency parameters, which are similar
to the texture pattern parameters in AR model, and two other fractional differencing
parameters, which are corresponding to the fractal scaling parameter in the fractal
model. Therefore, the fractional differencing periodic model gives more flexibility of

modeling.

2.3.1. Projection

As mentioned in previous section, the projection model is basic and necessary to
formalize the shape-from-texture problem to represent the slanted and tilted texture
surface. To date, there are two different projection models which have been used in
most cases. Those are ‘Orthographical projection’ and ‘Perspective projection’. Detail

discussion on these will be given in the following sections.




2.3.1.1. Orthographical Projection

Consider a plane with a texture on it, and take the m;-my coordinate system. Put
a line passing through the origin, and let 1 be the angle made from the m; -axis. Rotate
the plane around the line by angle ¢ and project the rotated plane orthographically

onto the original plane (Figure 2.10).

m; or |,

I,

m; orl,
/

Figure 2.10: Coordinate transformation of the orthographic projection (2.3.1.1.4)

Thus, a new coordinate system from the viewing direction, 1;-1,, can be obtained

from the following two coordinate transformations.

Iy _ {cost —sint | |
LIJ—L“}I cost [ imy| (2.3.1.1.1)

and
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1 0 ||

0 coso | |l (2.3.1.1.2)

Hence, as is well known, the coordinate transformation of the orthographic

projection between the m;-my system and 1, -1, system can be given as follows.

Thus,

)
1P

my
myp

i -1

cost —sint | |1 0 COST —sInT m; "

; . ‘re . e (2.3.1.1.3-a)
sinT cost | [0 coso | |sinT cost ny
[ 2 2 : .

0 ~0s0si —eoees)e -0ST m

COS“T+HCososin“T (I—coso)sintcos 1 (2.3.1.1.3-b)

L(l—coscs).s*in‘ccost sinZT+cosocos2T | |my

Y SR crvees— 1 Y inre o ]
I |sin“T+cosocos“t (coso—1)sintcost | |11 (2.3.1.1.4)

~ coso |(coso—-1)sintcosT cos2t+cososin’t | |12

One grid pattern image (Figure 2.11-a) was considered to demonstrate this

orthogonal projection. The coordinate transformation was taken to this image with

L

o=1, r:% and 6= % 1:—_-—% Figure 2.11-b and Figure 2.11-c depict these

8

transformation respectively.




(b) (©)

Figure 2.11: 2-D grid pattern images: (a) Original, (b) Image obtained after
projecting the image (Figure 2.11-a) orthographically, with 6 = /4 and © = /8 in
(2.3.1.1.4), (c) Image obtained after projecting the image (Figure 2.11-a)
orthographically, with 6 = /4 and 1=-7/8 in (2.3.1.1.4).




2.3.1.2. Perspective Projection

The perspective projection acts like a pinhole camera in that the image results

from projecting scene points through a single point onto an image plane.
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Figure 2.12 : Perspective projection

As in Figure 2.12, if the point of projection corresponds to a viewpoint behind

the image plane and the image occurs right side up, the viewpoint is +f on the z axis,

with z =0 plane being the image plane upon which the image is projected. Thus, as

the image object approaches the viewpoint, its projection gets bigger. In Figure 2.12,

y’, the projected height of the object, is related to its real height y, its position z, and

the focal length f by
y' = (f/f=z)y

Similarly

(2.3.1.2.1)
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X’ = (f/f-z)x (2.3.1.2.2)

The projected image has z=0 everywhere. However, projecting away the z
component is best considered a separate transformation; the projective transform is
usually thought to distort the z component just as it does the x and y. Perspective

distortion thus maps (x, y, z) to

x fy fz
f-z f~z" f—z

x,y,2")=( (2.3.1.2.3)

Notice that the perspective transformation yields orthographical projection as a special
case when the viewpoint is the point at infinity in the z direction. Then all objects are
projected onto the viewing plane with no distortion of their x and y coordinates.
Another point about the perspective transformation is that if z is a known function of
X, y and the surface orientation © and t, the result of the transformations in (2.3.1.2.1D)
and (2.3.1.2.2) is a nonhomogeneous planar texture. This is important because under
orthographical projection a homogeneous texture on a slanted and tilted plane was
transformed to another homogeneous texture due to the linearity of the transformation
(2.3.1.1.4), while under perspective projection it is not a homogeneous texture any
more. Thus, the analysis in the frequency domain by the discrete Fourier transform is

no longer valid.

To overcome this difficulty associated with the perspective projection, we can
approximate the perspective projection by an affine transformation which is suggested
by Aloimonos and Swain [6]. The approximation is done by dividing the projection
process into two steps. The first step is projecting the local plane Q with orientation
given by 6,1 onto the plane T which is parallel to image plane I. This projection is
performed parallel to the ray OG, where G is the center of local plane. The second

step is projecting this plane T perspectively onto the image plane L. Since the plane T
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is parallel to the image plane, this perspective transformation is just a reduction by a
factor of 1/P. Figure 2.13 depicts this relationship.

Thus, the transformation from surface plane coordinate (m;,m;) to image plane
coordinate (1;,l;) with the two step projection process is given by the following affine

transformation [6].

[ ~1+pA q(p+A)

11 _ 1 '\[]+p2 -\j(1+p2)(1+p2+q2) m,

{‘2} “B|_pB qB—p?—1 my (2.3.1.2.4)
| \/l+p2 \/(1+P2)(l+p2+q2) ]

Here, the point (A,B,-1) is the mass center of the image texel, and p, q are the same as
defined in (2.2.1). Therefore, the non-homogeneous texture due to perspective
projection can be approximated by piecewise homogeneous ones, and each local
homogeneous texture patch is easily synthesized by using the above linear affine

transformation.
2.3.2. Random Texture Analysis

For the surface which is covered by a texture pattern, or is relatively complex,
the random field model can be applied over the surface normal plane for
wpproximating the surface image. However, differently from the regular 2-D texture
analysis, 3-D textural surface image analysis can be enhanced by considering the
fractional differencing parameter, (which is the ‘fractal scaling parameter’ in the
terminology of Pentland [173, 176]) which indicates the roughness of the surface, in
addition to the texture pattern. In other words, a 3-D textured surface can be
represented by the fractal scaling and the texture pattern parameters in a certain

random field model. Therefore, the model based on 2-D texture pattern only, such as




A
rd
< ’
v
/ ’ Pad
rd <
- -
7’ P
s -
td
WL
b > T
0 -
/’(
L/
Cd
£ I
—
X

Figure 2.13 : Approximation method of perspective projection
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the Auto-Regressive(AR) model [122], or the model based on 2-D fractional
Brownian motion process with one fractal scaling parameter, such as Pentland’s
model [176], has limited modeling ability. That is because the AR model or the fractal
model can represent only the texture pattern or the roughness of the surface, thus,
either model is not flexible enough to represent the wide range of different texture
patterns encountered in practice, especially non-stationary random texture. This
limitation can be overcome by using the 2-D FDP (Fractional Differencing Periodic)

model which contains both texture pattern and fractal scaling parameters [67].

2.3.2.1. Au.0-Regressive(AR) Model

The autoregressive model is one of the classical short correlation models. This
model is simple but has good modeling performance. Assume that the image intensity
follows the autoregressive model. Let (1;,1;) be an index for the coordinate location
and i(1;,1,) be the i.tensity at the coordinate (1;,1,). Then the auto-regressive model is

represented by the following equation.
il1,12) =07 2(11,1) + {1.1) (232.1.1)

where 0 is parameter vector and z(l;,1;) is a vector which consists of intensities of the
neighbor pixels and unity. { {(1;,1;) } is a two dimensional white noise sequence
with variance p.

For example, in case of the Causal Auto-Regressive (CAR) model as a special
case of the AR model, the parameter vector 0 is 4 x 1 column vector and z(ly,1,) is
another 4 x 1 column vector which contains three causal neighbors and unity as the

elements.
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iy, -1

_ | =Ll
Z(llaIZ) - 1(11-1,12—‘1) (2.3.2.12)

1

Notice that because of the causality of this model, the resulting two dimensional

model has all the convenience of a one dimensional model.

The parameters 0 and p can be estimated by the least squares method. Let 6 and

;3 be the least squares estimators of 6 and p. Then

0= 20y, 1)z, 1) T T 201, 1)idly, 1)) (2.3.2.1.3)
bl Il
and
. T )
p=—5 X [ill;,12) =8 z(1;,15)] (2.3.2.1.4)

1.1
where N is row and column dimensions of the image.

Therefore, because of the simplicities of estimation and synthesis, the AR model
has been used in various applications. However, for the case of 3-D texture surface
representation, this model is not enough to handle long-correlated texture pattern in

some directions such as a tree bark image, because of its short-correlated property.

2.3.2.2. Fractal Model

In 3-D textural surface image, the fractional differencing parameter, which is
‘fractal scaling parameter’ in the terminology of Pentland [173,176], indicates the
roughness of the surface. That is, as the value of the fractal scaling parameter
increases, the model represents a 3-D surface textured more roughly. Typical 2-D

fractional Brownian motion surface i(l;,l;), which was suggested by Pentland,




satisfies the following relationship. Define Aip, = |i(l12,132) —i(l41,121) 1,

Ar= (2 - 111)? + (32 — 131)? . Then
E(Aiy,) o ArF (2.3.22.1)

The fractal dimension of the fractional Brownian motion surface is then 3-F
[151,46]. However, this model is not proper to present 3-D texture pattern because
the fractal of surface is assumed to be spatially isotropic, thus, the fractional Brownian
motion process with one fractal parameter is not flexible enough to represent the wide
range of different texture patterns encountered in practice, especially non-stationary
random texture. Also, comparing with other model-based model such as AR maodel,
this model is not practical to be used because it is difficult to estimate the fractal

scaling parameter from the given intensity image directly.
2.3.2.3. Fractional Differencing Model

The 1-D Fractional Differencing model was suggested by Hosking [101],
generalizing the well-known ARIMA model of Box & Jenkins [23], which was
originally designed to model a non-stationary random process. This 1-D model was
extended to 2-D case by Kashyap and Lapsa [116] later. A typical second-order
Fractional Differencing Periodic (FDP) model is as follows.

c

i(1,,1) = (1-2cosw; 2; 1+ 2,2y 2

d
- (1=2coswy 2,7 +2,72) 2¢y,1) (2.3.2.3.1)

forly,ly =0,1,....N-1
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The corresponding DFT of this function is

-
Ik, k) =(1—2cosmye N+e N

k k
m—> —j41t—2— _4

-
s(1=2cosmpe . N+e N) 2wk, k), (2.3.2.3.2)

where z; is the delay operator associated with 1;, {(I;,];) is an i.i.d. Gaussian

sequence, and W(k,,k;) is the corresponding DFT.

This model has four different parameters, ¢ and d for the fractal scales and ,
and , for the frequencies of pattern in the direction of 1; and 1,, respectively. Thus,
this model represents the roughness of the surface and the pattern of the texture image
at the same time even with the different values for the direction of 1y, 1, separately.
Also notice that this random process model has the property of being flexible enough
to explain both the long-term and short-term correlation structure of a time series
depending on the values of the fractional differencing parameter ¢, d, and it shares the
basic properties with Fractional Brownian motion defined by Mandelbrot [151]. More
detailed discussion about estimation scheme and synthesis of this model will be given

in the next section.
2.3.3. Simulation Results

For the experiment, one tree bark texture on the surface of a tree is considered
(Figure 2.14-a). As seen from Figure 2.14-a, the pattern of tree bark texture has
different values of frequency and roughness in the horizontal and vertical directions.
Thus, it cannot be represented by either Pentland’s model or a 2nd-order AR model,

because Pentland’s model can have only various fractal scales and a 2nd-order AR
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model has only directional frequencies. Figure 2.14-b,c show the limitation of
Pentland’s Fractal models with fractal scale c=0.9 and c=1.5, respectively, and Figure
2.14-d shows the limitation of a 2nd-order AR model with the directional frequencies

w;=0.25 and ®,=0.025 in direction of m;, m,.

On the other hand, Figure 2.15 shows how well the Fractional Differencing
Periodic (FDP) model fits to the tree bark texture. Here, the directional frequencies
®;, w and the fractal scales ¢, d in FDP model are chosen as 0.25, 0.025, 1.5, 0.8,

respectively.

2.4. Conclusions

Various models to represent 3-D surface have been considered. The Shape-
from-shading model is based on the reflectance map function which shows scene
radiance as a function of the surface gradient and the distribution of light sources to
evtract 3-D surface information. The Shape-from-texture model uses the texture
pattern instead of shading to extract 3-D structure. Then, the fractal model was
discussed considering a fractal scale to represe:t the roughness of the surface. Thus,
several estimation schemes for the direction of the light, the projection methods, and
2-D statistical texture models have been considered. However, for describing a natural
scene image, the above approaches have their own limitations. The Shape-from-
shading model is applicable only under the assumption that the surface is smooth
enough to have clear radiance information, the Shape-from-texture model requires the
surface to be relatively complex so that texture information can be extracted, and the
fractal model with one fractal scaling parameter does not have enough flexibility to
represent the various texture patterns which we can encounter in practice. To give

more flexibility to represent a real surface image and to have an ability to handle the
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Figure 2.13: Synthesized surface shapes over 64x64 sized normal plane patch from
(a) A tree image whose surface is covered by the tree bark texture, (b) Pentland’s
model with the fractal scale ¢=0.9, (¢) Pentland’s model with the fractal scale
¢=15, (d) 2nd-order AR model with the frequency ®;=0.25, ®,=0.025 in
directions of my, ma, respectively.
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Figure 2.14: Surface shapes obtained from Fractional Differencing Periodic model
(2.3.2.3.1): (a) Synthesized surface shape over 64x64 sized normal plane patch
with the frequency ©;=0.25, 0,=0.025 and the fractal scale c=1.5, d=0.8 in

direction of m;, my, (b) corresponding surface image.
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CHAPTER 3
FRACTIONAL DIFFERENCING MODEL
AND ESTIMATION

3.1. Introduction

As mentioned previously, the fractional differencing model has an ability to
simultaneously represent the coarseness and the pattern of the 3-D texture surface
with the fractional differencing parameters ¢, d and the frequency parameters ®;, ;.
Also it Las the property of being flexible enough to synthesize both long-term and
short-term correlation structures of random texture depending on the values of the
fractional differencing parameters [101]. For estimating the parameters, comparing
with the fractional Brownian random process model [151], the fractional differencing
model has a simple estimation scheme sharing the same properties together, because
while the fractional Brownian process is a continuous process which follows a certain
probability distribution, the fractional differencing model is a discrete process which
has a linear function of parameters. A hybrid method which uses both the least square
and the maximum likelihood estimates is applied and the estimation and the synthesis

are done in frequency domain {67, 127].
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3.2. Fractional Brownian Model

Brownian motion is a continuous time stochastic process B (¢) with independent
Gaussian increments and spectral density o 2. Iis derivative is the continuous-time
white noise process, which has constant spectral density. Fractional Brownian motion,
Br(t), introduced by Mandelbrot and Van Ness [151], is a generalization of these
process as follows. Let 0 < F <1 and let by be an arbitrary real number. Define

Br(0)= by,

0
11/2) [ J‘[(t_s)F—l/Z_(_S)F—llzldB(s)

Br(t) - Bp(0) = T’(_F——-I-—_—

!
+ [(e-5)""2aB (s) }, for >0, (3.2.1)
0

and similarly for ¢ < 0. Notice that for F =1/2, this definition becomes that of
classical Brownian motion B (). This Fractional Brownian motion has the following

basic properties [101].

Property 1: Fractional Brownian motion with parameter F, usually 0 < F < 1, is the

(% — F)th fractional derivative of Brownian motion.

Property 2: The spectral density of fractional Brownian motion is proportional to

w—ZF -1 .

Property 3: The covariance function of fractional Brownian motion is proportional

to |k |22,

Thus, the derivative of fractional Brownian motion, B"r(t), may also be thought of as

the (E—F )th fractional derivative of continuous-time white noise, to which it reduces
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1 . . . . . .
when F = 5 One of the possible discrete-time analogues of this continuous-time

fractional noise is discrete-time fractional Gaussian noise, which is defined to be a
process whose correlation function is the same as that of the process of unit

increments ABg(t) = Bp(t) — Bp(t-1) of fractional Brownian motion.

However, the modeling ability of fractional Brownian motion noise has
sometimes been claimed to be inferior to that of other processes such as the high-order
Moving Average (MA) process. This is because of that fractional Brownian model has
only three variable parameters, mean, variance and F, and those are not flexible
enough to model the wide range of randomness encounted in practice. Also, it is
relatively difficult to estimate parameter F and to synthesize with it, because of the
continuous-time process of this model. Therefore, to give more flexibility of
modeling while keeping the same properties as the fractional Brownian model,

Fractional Differencing model will be introduced in the next section.
3.3. Fractional Differencing Model

3.3.1. 1-D Fractional Differencing Model

The 1-D Fractional Differencing model was suggested by Hosking [101],
generalizing the well-known ARIMA model of Box & Jenkins [23], which was
originally designed to model a non-stationary random process. A typical 1-D first-

order Fractional Differencing model is as follows.

y(l)=(1—z")_7€(1) (3.3.1.1)

where z is the delay operator in the direction of /, and {(/) is white Gaussian
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noise.

This random process model has the property of being flexible to explain both
long-term and short-term correlation structures of a time series depending on the
values of the fractional differencing parameter c, and it shares the basic properties

with Fractional Brownian motion defined by Mandelbrot [151].

Theorem 3.3.1.1: The spectral density of { y({) } is s(m)=(251n—;—(n)"‘ for

0<w<T ands(®) =0 as ® — 0, assuming that o¢? = 1.
8 g

C
(Proof) Let B(z)=(1-z"!) 2. Then, s(z) can be written by B (z)B~"(z)o¢2. Thus,
since o§2 = 1, we have s (®) =B (¢/®)B (¢ /). The result follows on substitution of

B(ei® =(1-ei®) 2.

L

Theorem 3.3.1.2: The autocovariance functionof {y(l)} is
R=2 Zsin(E)— = -T(-c), for -1 < < < =, ¢ #0. (3.3.1.2)

2 c 2 2
I'k+1-—=)
2
and the autocorrelation function is given by
F(l—%) Tk +§)

Pr = . (3.3.1.3)

c c
F(—z-) F(k+1~—2-)
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I‘(l—-;—)
Pp = ———— k=71 (3.3.1.4)

c
I‘(?)

(Proof) The autocovariance, if it exists, will be given by

2n
R = [ cosko s(w)dw (3.3.1.5)
0
L
= [2 2 cosk (sinw/2) ™ do. (3.3.1.6)
0

Using the standard formula,

n

. y— T cosam/2
'[sm" x cosax dx =
0

v+a+l v-a+1 ) ’
2 72

(3.3.1.7)

2> 1.y B(
we can get (3.3.1.2). Here, B (-,*) is Beta function. Also, from the definition of the

autocorrelation function, py = —If—. Therefore, (3.3.1.3) follows on substitution of ft’k

and By. As k—seo, I'(k+a)/T'(k+b) can be approximated by k%72, using the standard
approximation derived from Sheppard’s formula. Therefore, it follows that the

autocorrelation is given by (3.3.1.4).

Definition 3.3.1: When ¢ < 0, the Fractional Differencing process (3.3.1.1) has a

short-term memory, and when ¢ > 0, it has a long-term memory.
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From Theorem 3.3.1.1 and 3.3.1.2, when ¢ > 0, the autocorrelation function py is
positive and decays monotonically and hyperbolically to zero as the lag increases, and
the corresponding spectral density s (®) is concentrated at low frequencies: s(w) is a
decreasing function of ® and s(®) — o= as w — 0. Similarly, when ¢ < 0, s(®) is
dominated at high frequencies: s() is a increasing function of ® and vanishes at
® = 0. Therefore, when ¢ <0 or ¢ > 0, the Fractional Differencing process (3.3.1.1)

has a short-term or long-term memory, respectively.

Corollary 3.3.1: The Fractional Differencing process is the discrete version of
fractional white noise process, and shares the basic properties with Fractional

Brownian motion.

(Proof) Brownian motion is a continuous time stochastic process B(t) with
independent Gaussian increments. Its derivative is the continuous-time white noise
process, which has constant spectral density. Fractional Brownian motion, Bf(1), is a

generalization of these processes. Then, Fractional Brownian motion with parameter
. 1 . —_— .
F, usually 0 < F < 1, is equal to the (—2— - F)th fractional derivative of Brownian

motion in Riemann-Liouville sense. The continuous-time fractional noise process is

then the derivative of Fractional Brownian motion, thus it may also be thought of as
the (-2— - F)th fractional derivative of continuous-time white noise. Therefore, the

Fractional Differencing model (3.3.1.1) is the discrete version of this continuous-time
fractional white noise process, and it shares some properties with Fractional Brownian

motion [101].
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3.3.2. 2-D Fractional Differencing Model

In 3-D textural surface image, the fractional differencing parameter, which is
‘fractal scaling parameter’ in the terminology of Pentland [173, 176], indicates the
roughness of the surface, that is, as the value of the fractal scaling parameter
increases, the model represents a 3-D surface textured more roughly. However,
Pentland’s model based on 2-D fractional Brownian motion process with one fractal
scaling parameter has limited modeling ability, because the fractal of surface is
assumed to be spatially isotropic. Thus, Pentland’s model is not flexible enough to
represent the wide range of different texture patterns encountered in practice,
especially for the non-stationary random texture. In other words, this model can tell
how rough the surface is, but can not tell which pattern the surface is covered with.
This limitation can be overcome by using the 2-D Fractional Differencing models as

follows.

3.3.2.1. First-order Fractional Differencing Model

As mentioned in previous sections, Pentland’s fractional Brownian motion model
with one fractal scaling parameter is not flexible enough to present the different
texture patterns. However, even from the first-order Fractional Differencing model,
we could get more flexibility of modeling, because it contains two different fractal
scaling parameters, ¢, d, in directions of /1 and /,. This model does not require the
stationarity of random texture. The typical first-order Fractional Differencing model is

as follows.
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c .4
vl ==z, 2=z 24U (3.3.2.1.1)

forl;,l, =0,1,..,N-1.
The corresponding DFT of this function is

kl ¢ 27;_,‘_2.._ _i

—jM— - -]
Ykik)=(l—e M) 2(-e M) 2W(ki.ko) (3.3.2.1.2)

where z; is the delay operator associated with I;, {(/y,/2) is an i.id. Gaussian

sequence, and W (k 1,k 7) is the corresponding DFT.
3.3.2.2. Second-order Fractional Differencing Periodic Model

The typical second-order Fractional Differencing Periodic (FDP) model is as

follows.

c

y(li,1p) = (1—2c0s0)121“+ z 1_2) 2
_4
- (1=2cosy 297 42272 24U L10) (3.3.2.2.1)
forly,l, =0,1,....,N-1.
The corresponding DFT of this function is
—jan—’ —j4nk—' £

Y(ki,ky)=(1-2cosme N+e N2

ky k; d
~-j2n—- —ja4n— —-—
c(1=2cosmye N +e  N) TWikiky),  (33222)

where z; is the delay operator associated with [;, C(ly,17) is an ii.d. Gaussian

sequence, and W (k ,k7) is the corresponding DFT.
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This model has four different parameters, ¢ and d for the fractal scales and w,
and o for the frequencies of pattern in the direction of /, and /5, respectively. Thus,
this model represents the roughness of the surface and the pattern of the texture image

at the same time even with the different values for the direction of /1, /, separately.

3.3.3. Parameter Estimation

Because of the flexibility and the simplicity of Fractional Differencing model, it
is attractive in modeling various kinds of time series, inclu-“ing 2-D random texture
image. However, the estimation of the fractal scaling parameters ¢, d and the
frequency parameters oy, 0, is difficult and this difficulty further delayed the
application of this model. There have been several approaches for estimating
parameters in various kinds of fractional differencing time series since Hosking
introduced Fractional Differencing model [101]. For example, Granger and Joyeux
[89] approximated this model by a high-order auto-regressive process and estimated
the differencing parameter by comparing variances for each different choice of it.
Lapsa [121] suggested a maximum-likelihood estimator in the frequency domain and
showed the consistency of the estimator. This frequency domain analysis was further
studied by Eom, and a hybrid method of least-squares and maximum-likelihood
estimations was recently proposed to estimate the fractal scaling parameters and the
frequency parameters, respectively [67]. In this thesis, a least-squares or a
maximum-likelihood estimation algorithm will be applied to estimate the parameters,

based on Eom’s algorithm.
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3.3.3.1. First-order Fractional Differencing Model

The estimation of fractal scaling parameters ¢ and d in the first-order fractional
differencing model (3.3.2.1.1) can be done by a simple least-square estimation scheme
in the frequency domain based on a representation of the logarithm of the process
which is linear in the parameters as follows. By applying the logarithm operator to

(3.3.2.1.2), we can obtain

k k
—j2m— —jm—>

d
log] ¥ (k1.k2)l =~Zlogll-e = ¥ | —Zlog1-e ~ M | +log| W (ky ko)l

i

ky
N

c . d . Tko
=—5-10g|251n( )| ——i-logIZSm(—I-V—)l +log|W (kq,k3)|

(3.3.3.1.1)

, fork,k;=0,1,..,.N-1 (3.3.3.1.2)

where aa=—E[log|W (kq,k2)|]1and V(k,ko) =log|W (ky,k2)| + .

Then 8 =(c,d, oc)T can be estimated by minimizing the following cost function.

N-1 {N/ZJ C . 7tk]
JO,0,w)=Y ¥ (ogl|Y(ki,ky| + = log|2sin——|
k=0 ky=0 2 N

Tk
+ —(21 log|25in-7v—2— | + a)? (3.3.3.1.3)
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N-1 N2
=Y Y (log|Y(ky.kp)]| —0TQ (ky,k2))? (3.3.3.1.4)
k1=0 k2=0
Here,
' )
-ilo |2sinf—l|
2 %8 N
Qky,kp) = —1l 9s; nkzl (3.3.3.1.5)
= logl2sin—~=
-1
Thus, the estimated values will be
A aa N-1 N’2J N-1 IN22
le.da)f =(F T 0% kD0 ki, k) I 3 Qky.ko)loglY (ky,kz)])
k=0 k=0 k=0 k=0
(3.3.3.1.6)

3.3.3.2. Second-order Fractional Differencing Periodic Model

The estimation of parameters in the Fractional Differencing Periodic model

(3.3.2.2.1) can be done in the frequency domain [127].

For estimation, all parameters can be estimated directly from the given data
Y (ky,k3), if we can obtain the likelihood function of |Y(ky,k,)|. Then, since the
noise sequence {(/y,/7) is assumed to be white Gaussian, W (ky,k;) and Y (ky.k,)

follow the Rayleigh distribution as in the following theorem.

Theorem 3.3.3.1: The modulus of the DFT of the noise sequence, {|W(ky,k2)]|,

k,=0.1,..N-1, k2=0,1,...,[N/2J} and  {|Y(ky,k2)l,  k;=01,..N-I,




k,=0,1,..., lN /2J } are the white sequences with the following Rayleigh densities.

2W -w?
el =)
Fiwk, k)1 (W)=1 pN pN L, W20
0 , otherwise
2524, k, Y (k1,k2) —s2 1, Y2k, k2)
exp { J
Fivi a1 )= pN? pN2 L Y(k1,k2) 20
0 . Otherwise
where
d
27(,(1 2 2nk, 2
Sk, .k, = | 2c0s( N Y—2coswy | |2cos( N ) —2coso |
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(Proof) Let W(k,,k,) be the DFT of a white noise sequence C{,,1,) with a normal

distribution, that is,

Ly, l2) ~NQ©.,p) for 11, 1z=1,2,...,N (3.3.32.1)

Then, W(k,k,) will follow another normal distribution as follows [27].

Wiki.k2) ~N(N'E[C(11,12)],pN2) (3.3.3.2.2)

~N(@,pN?) (3.3.3.2.3)

and

pN?

Re(W(ky,k2)), Im(W(ky,k3)) ~ N(O, 5

) (3.33.2.4

where Re(W) and Im(W) are the real and the imaginary parts of W(k,k>),

respectively.
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Now, consider the density function of |W(ky,k;)|. Since W(ky,k;) is a

complex, defining W be W (ky,k,),

|W (ky1,k2)| = VRe2(W) + Im2(W) (3.3.3.2.5)
Define ¢ = tan”! (%Wv—;—). Then, we can have the following relations.

Re(W) = |W(k,,k)]| cosd (3.3.3.2.6)

Im(W)=|W(ky,k2)]| sind ,for|W| >0 (3.3.3.2.7)

Thus, the joint probability density of |W| and ¢ can be obtained from the Jacobian

and the joint probability density of Re(W) and Im(W) as follows.

fiwre(UWL,0)= T fRewy Imw)(Re(W),Im(W)) ,for|W| >0 (3.3.3.2.8)
= W1 frew)(IW | cos9) fimw)(|1W | sino) (3.3.3.2.9)
W ~(ReX(Wy+Im*(W))
LA pN? (3.3.3.2.10)
TpN?
olW| 9w
where Jacobian = aRgéW) a’”éc(pw) (3.3.3.2.11)

dRe (W) dlm(W’)

=L (3332.12)

W1
Therefore, since |W| and ¢ are independent, and the density function of ¢, fo(0), is
1

2n
Fiwi oUW L) =fLw  (UW )fo(9) (3.3.3.2.13)

and
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2w (—wz)
fir W ={NT P ONT wso (33.3.2.13)
0 , otherwise
Now, set
c d
Ttkl 2 27(/(2 2
Sk, k, = |2c0s( ) —2cosmy | |2cos( N ) = 2cos o | (3.3.3.2.14)
Then, we can have
1Y (k1k2)] = 5k,0," IW (K kD)] (3.3.3.2.15)

Thus, the density function of |Y(k,,k2)] can be represented by following

equations.
S v, a1 V) =8k,k, Fiwek, k)1 Gk, ok, Y (K15K2)) (3.3.3.2.16)
2524 1, Y ki k2) / —s24, 4, Y 2k 1,k 2) ;
ex
= pN2 p pN2 s Y(kl,k2)20
0 , otherwise

From these probabilistic properties, the estimation of parameters can be done by
a hybrid method of Least Square and Maximum Likelihood estimations, which was
suggested by Eom [67]. For LS estimaiion, if the values of parameters w;, w, are set,

then 6 = (¢,d, o) can be estimated by minimizing the following cost function.

Nt [Nxz

c 2nk
JO.0,w)=Y Y (log|Y(ky.ka| + = logl|2cos
k=0 k,=0 2

1
—2cosw |




63

d ﬂkz 2

+ 3 log|2cos —2cos | + o) (3.3.3.2.17)
N-1 ‘_N/2J . ,

=% 3 (loglY(ky,k2)| —6°Q(ky,k2)) (3.3.3.2.18)
k=0 k=0

where o= —E [log | W(k1,k2)]], 0 = (c,d, o).

Here,
-
-1 2Kk1 1
> log|2cos —2coswy |
Qky,k2)= | -1 Tk, (3.3.3.2.19)
- log|2cos —2coson |
~1

Thus, the estimated values will be
N-1 N2 N2

A An - N-1
lc,d,a]T=(Z > Q(kl,kz)Q’(kx,kz))'l(Z Y. Q(ky.ko)log Y (ky,k2)]
k=0 k,=0 k=0 k,=0

(3.3.3.2.20)

Also, ML estimators of ®;, ®; can be calculated by maximizing the log-

likelihood function L (Y ;0,®, ) with o estimated from above.

N1 [N/ZJ N2

V-1 N2
L0on0)= 3 3 logl¥(k1.ka)| - T 3 log(P=—)
k=0 k=0 k=0 k,=0
¢ N-l 2mk N2 2k,
+ =N Y log|2(cos —coswy)| +dN Y log|2(cos —costy) |
2 oo k,=0




-t

pN?2

v V2] 2mk, ¢ 2nk, d ,
Y Y |2(cos ~ —cosmy)| * |2(cos —costn)| - |Y(ky,k9)]
k=0 k,=0

(3.3.3.2.21)

where p is a variance of {(/,/7) and can be estimated by the following equation

in mean square sense.

- 1 - n?
= o v=20- (3.3.3.2.22
P=NToP (v 6N? / )

where v is Euler’s constant (= 0.5772157) [67].

Therefore, the estimation scheme can be summarized as follows:

(Estimation Algorithm)

Step 3:

Step 4:

Step 5:

. . T
: Choose resonant frequencies ®;, o, in the range of [0,7].

: With the given values of w; and ,, estimate c, d, and a by LS estimation

algorithm (3.3.3.2.20).

Using a, compute the estimate of the variance of p, {(/,,l,), by equation

(3.3.3.2.22).

Using the estimates ¢, d and p found in Steps 2 and 4, maximize the

likelihood function given by (3.3.3.2.21) with respect to ®; and w,.

Using the estimates ®; and w;, repeat Step 2 to Step 4 until the estimates

have no significant change in successive iterations.
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3.4. Conclusions

In this chapter, various types of Fractional Differencing model have been
considered and compared with the Fractional Brownian model. The Fractional
Brownian model has been used for measuring the roughness of a surface by
researchers. However, the modeling ability of Fractional Brownian motion noise is
limited, because this model has only three variable parameters, mean, variance and
fractal scale F, thus, those are not enough to model the wide range of randomness
encounted in practice. Also, it is relatively difficult to estimate the fractal scale F' and
to synthesize with it, because of its continuous-time process. To give more flexibility
of modeling keeping the same properties of Fractional Brownian motion process, the
Fractional Differencing model is suggested. The Fractional Differencing model is a
discrete version of the Fractional Brownian model. Thus, this model shares the same
properties of the Fractional Brownian process and has a relatively simple structure. In
this model, Fractal scale can have two different values in the directions of x and y, and
this gives more flexibility for modeling non-isotropic distributed random texture.
Additionally, this model can be extended to the second-order of process to provide
another pair of frequency parameters ®;, ;. Using this 2nd-order Fractional
Differencing model, the roughness and the texture pattern of a surface can be
represented simultaneously. Parameter estimation schemes for each model are also
developed based on the least-square estimation and the maximum likelihood

estimation.
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CHAPTER 4
SHAPE FROM A SHADED AND TEXTURED
SURFACE IMAGE

4.1. Introduction

An important task in computer vision is the recovery of 3-D scene information
from single 2-D images. 3-D analysis of an image can be broken down into two main
categories, Shape-from-shading and Shape-from-texture. The Shape-from-shading
technique uses the reflectance map which shows scene radiance as a function of the
surface gradient and the distribution of light sources to extract 3-D surface
information from image data [99,144,172]. On the other hand, the Shape-from-
texture analysis technique uses the texture pattern instead of shading to extract 3-D
structure. Since texture gradients behave like intensity gradients, the shape of a
surface can be inferred from the pattern of a texture on the surface by applying

statistical texture analysis [6, 135,206, 221].

However, for describing a natural scene image, each of the above approaches has
its own limitation. The Shape-from-shading technique is applicable only under the
assumption that the surface is smooth enough to have clear radiance information,
while the Shape-from-texture technique requires the surface to be relatively complex
so that texture information can be extracted. Thus, neither technique is suitable to

recover 3-D structure information from a natural scene, becausc both radiance and
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texture information coexist within the surface of a natural scene. Therefore, a robust
technique is needed to handle this shortcoming. Recently, the fractal scaling
parameter was introduced to measure the coarseness of the surface, and applied to
represent the natural scene surface [176]. However, this fractal model is not enough
to represent the real 3-D texture image, because even though two surfaces are
estimated to have the same fractal scales, these surfaces can have different texture

patterns.

In this chapter, a composite model of Shape-from-shading and Shape-from-
texture is developed to represent a 3-D surface image considering the scene image as
the superposition of a smooth shaded image and a random texture image. The
orthographical projection is adapted to take care of the non-isotropic distribution
function due to the slant and tilt of a 3-D texture surface, and the Fractional
Differencing Periodic model is chosen because this model is able to simultaneously
represent the coarseness and the pattern of the 3-D texture surface with the fractional
differencing parameters ¢, d and the frequency parameters ®;, ®,, and it has the
property of being flexible enough to synthesize both long-term and short-term
correlation structures of random texture depending on the values of the fractional
differencing parameter ¢ and d. Since the object is described by a model involving
several free parameters and the values of these parameters are determined directly
from its projected image, it is possible to extract 3-D information and texture pattern
directly from the given intensity values of the image without any pre-processing.
Thus, the cumulative error obtained from each pre-processing can be minimized. For
estimating the parameters, a hybrid method which uses both the least square and the
maximum likelihood estimates is applied and the estimation and the synthesis are
done in frequency domain based on the local patch analysis. By using this model, the

integrability problem which might occur in spatial domain analysis can be avoided,
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because only one inverse Fourier transform needs to be taken at the end of procedure

to get the whole image.

The organization of this chapter is as follows. In section 4.2, we introduce the
image model i(/1,/7) which is obtained by superposing the deterministic function
x(l1,1) and the random function y(/1,/7), and the relationship between the different
directions of a 3-D surface. In section 4.2.1-3, an estimation scheme for the
illumination direction, the modified reflectance map function for x(/y,/5), and the
orthographically projected Fractional Differencing Periodic function for y(l,/;) are
introduced. Section 4.3.1 outlines the estimation scheme for the parameters in the
composite model. Section 4.3.2 then discusses some simulation results carried out to
demonstrate the performance of the proposed algorithm, followed by Section 4.4

which concludes the paper.

4.2. Model Of 3-D Texture Surface Image

The surface shape is usually defined in terms of the viewer’s coordinate system.
This system has axes /, [, /3 with the /3 axis in the viewing direction. The observed
intensity function i(/,/,) of local shape of a 3-D surface can be considered as the
sum of a deterministic function x(!/y,/,), and a statistical random function y(l;,l,),
whose expected value is zero:

(I 1) =x{,0)+y(y,15) 4.2.1)
and
Efidy, 1) =x(1,17) (4.2.2)

Thus, x(/,[7) can be simply estimated by smoothing, i.e., taking the average of

intensity values in the proper size of window. Then y(l/,/;) can be estimated by
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subtracting this function from the original image i(/y,/7). Figure 4.1 shows this
superposition in a simple 1-D case. Note that these intensity functions do not
represent the actual shape of image, because the shading variations are caused by
changes in surface orientation relative to the illumination direction L. Therefore,
x(ly,12) and y(/,l,) need to be projected to the illumination direction to extract the
shape information.

Let 6., 7, be the slant and tilt of illumination direction L in the coordination
system with [, [9, [3. The direction L. induces a coordinate system with axes

i1, i, i3, and this is derived from the following transformation.

i COSG;,CO8T, €OosOrsinTy, —sinTy, | |/
ir| = —sinTy, COSTp 0 12 (4.2.3)
i3 singy costy  sinogsint;, cosoy, | |3

Here, i+ is the illumination direction L, and /3 is the viewing direction.

The surface normal, N, is another important direction of 3-D geometry. If we
define a new coordinate system with axes, m mj m3, having the m3-axis in the
surface normal dircction, these axes can be derived from the coordinate system of
viewing direction, i.e., Iy, {7, I3, by using a coordination transform similar to the

above with different values of tilt t and slant .

[ COSOCOST COsSOSIinNT —sint ml.!
l;|=| -sint cosT 0 |(m2 (4.2.4)
[3 $inocosT sinosint coso m3J

Refer Figure 2.1 for the relations hetween these three different directions and the four
different tilt and slant parameters, 6z, T;, ©, and 1.
Let x'(my,m,) and y’(m,m,) be a deterministic and a random function

respectively, defined on the surface normal image plane, ie., m3=0. Then,




i)

Figure 4.1: Superposition of a random and a deterministic functions in 1-D case.
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z’(my,m>,), defined as the sum of these two functions, is merely the depth function z ,
observed from the surface normal. However, note that y'(mi,m») is not the rotated
function of y(/4,/,) but the projected function of y(/, »{2) to the m—m, plane so that
they may satisfy the superposition property. Figure 4.2 depicts these relations

between functions.

4.2.1. Modcl Of The Deterministic Component x

As discussed before, a 3-D surface image can be considered to be the
superposition of a texture image and a smooth shaded image. This smooth shaded
image can be represented by the deterministic function x(/; J2). Thus, if the
illumination direction values for the whole image are given, the surface orientation
parameters slant, ¢, and tilt, T, can be estimated from x(/1,/,) representing a smooth
surface by Shape-from-shading analysis.

Pioneering work on the inference of shape-from-shading was done by Horn [99]
and his co-workers. To extract the 3-D shape function H(-,*) from a single 2-D image,
they used the reflectance map, which shows the intensity of the image as a function of
the surface gradient and the illumination direction.

Peos Ty sinoy,+¢sin T, sinGy +¢0sG;, A

R (24?412

R(p.q) (4.2.2.1)

where  R(p,q) : Reflectance map function

0 dJ
=9 D g =-2H
P 011 /I([],t"_), q 812 (111!2)

H(ly,17) : 3-D shape function from the viewing direction.

T, ©f, - Tilt, slant of the illumination direction
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1

/,l1

x(ly,12)

y'(my,my)

E[y'(ml,mz)lz 0

orx’(my,m,)

Figure 4.2: 3-D Geometry of the functions x, y, x’, y".

y(1.12)

Ely(;,12)]=0




Here, from the relationship between the tilt 1, the slant ¢ of the surface and p, q

1,9 -1 1
t=tan" (=), 0=C08§ —————— (4.2.2.2.a)
p \]p2+q2+1
p = tanccost, ¢ =tanosint , 4.2.2.2.b)

we can modify (4.2.2.1) to the function of o, 1, o, and T, as

x(l1,1,) = sinocostcost, sing;, + sinGsintsint, singy, + cOSGCOSCy, (4.2.2.3)

Construction of 3-D shape can be achieved by solving o, T in terms of x(/,,/,) at
each point, and integrating those values. However, this approach needs the solutions
of at least two difficult problems. First, this is an ill-posed problem because there are
two unknown parameters and only one equation to be solved. Thus, we need an
additional constraint to have a unique solution. Second, the final integrated shape can

be different from the original shape, due to the cumulation of estimation errors.

To get a unique solution, the calculus of variation methods were used by
minimizing the estimation error after adding one constraint for the smoothness [100]
or integrability [76]. To handle the cumulative error, Pentland [172] suggested local
shape analysis which deals with only the local areas instead of a whole image.
However, Pentland’s technique has severe trouble in integrating all local area surface
information. Recently, Pentland [169] developed another technique for solving the
integrability problem. He suggested analysis in the frequency domain, instead of in
the spatial domain. By using this method, the integrability problem can be avoided,
because only one inverse Fourier transform needs to be taken at the end of the
procedure. However, since the calculation of a convolution is required in the
frequency domain to handle a simple multiplication operation in the spatial domain,

calculation will be complicated. In this paper, these ill-posed and the integrability
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problems will be handled by an additional constraint from the texture pattern and

frequency domain analysis, respectively. (This will be discussed in detail later.)

4.2.2. Model Of The Random Component y

The random component y(/1,/,) of the intensity function i(/;,/,) can not be
simply obtained by taking coordinate transformation to y’(my,m;), defined on the
surface normal plane image. Because the random function y(/y,/,) was assumed to be
a 2-D random function, whose expectation value, E [y (/,{2)], is zero, to satisfy the
superposition properties, this function should rather be considered as the function
obtained after projecting v'(m,m ) to the viewer’s direction (as shown in Figure 4.2).
Thus, if we can model y’(m,m;) properly, y(/y,/,) will be obtained by projecting

this to the viewer’s direction L.

4.2.2.1. Fractional Differencing Periodic Model For y’(m;,m;)

The random function y’(m,m,), defined on the surface normal plane tmage, can
be approximated by a 2-D random field model, which is distributed over the surface
normal plane (as shown in Figure 4.1). Note that since this model is based on a 2-D
texture model, it will fit the plane surface more than any other shape of surface. Thus,
we apply this model to the local shape of the image because the local shape will be

closer and closer to the plane surface when we take a smaller patch.

Among the various random field models, the Fractional Differencing Periodic
model is chosen to represent this random texture surface in this chapter. This random

process model has the property of being flexible enough to explain both long-term and
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short-term correlation structures of a time series depending on the values of the
fractional differencing parameter ¢, that is, when ¢ < 0, the fractional differencing
process has a short-term memory, and when ¢ > 0, it has a long-term memory
(Theorem 3.3.1). Also it shares the basic properties with Fractional Brownian motion

defined by Mandelbrot [151] (Theorem 3.3.2).

In 3-D textural surface image, the fractional differencing parameter, which is
‘fractal scaling parameter’ in the terminology of Pentland [173,176], indicates the
roughness of the surface, that is, as the value of the fractal scaling parameter
increases, the model represents a 3-D surface textured more roughly. However,
Pentland’s 2-D model with one fractal scaling parameter has limited modeling ability,
because the fractal of surface is assumed to be spatially isotropic. Thus, Pentland’s
model is not flexible enough to represent the wide range of different texture patterns
encountered in practice, especially non-stationary random texture. In other words, this
model can tell how rough the surface is, but can not tell which pattern the surface is
covered with. This limitation can be overcome by using the 2-D Fractional
Differencing Periodic model as follows [67].

c

yi(my,my)=(1-2cosw; 2’ 1+ 2", 72) 2

d
- (1=2cosw, 2'2"+z'2"2)——2_C'(m1,mz) (4.2.3.1.1)
form,m; =0,1,....N-1.
The corresponding DFT of this function is
-J 2R l —/4n-kJ- -
Yk, ka)=(1-2cosane Ve N ?
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k
—j'lrr—2 —j41t—i 4

-(1-2coswge N4e  N) ZWikikp), (423.1.2)

where z’; is the delay operator associated with m;, {'(m,,m,) is an i.id.

Gaussian sequence, and W'(k,k>) is the corresponding DFT.

This model has four different parameters, ¢ and d for the fractal scales and w,;
and w, for the frequencies of pattern in the direction of m; and m,, respectively.
Thus, this model represents the roughness of the surface and the pattern of the texture
image at the same time even with the different values for the direction of m, m;,

separately.

4.2.2.2 Orthographically Projected Fractional Differencing Periodic Model For

y(llsIZ)

The statistical model of the intensity function y(/,,/,) cannot be simply obtained
by rotating the coordinate axes because the expected values of both y’(m,m3) and
y(ly.l;) must be zero over the planes to satisfy the superposition properties.
Therefore, such a function y(/,,/,) that satisfies this requirement can be obtained by
projecting function y’(my,m2) orthographically to the viewer’s image plane. Figure
4.2 shows this projection.

A new coordinate system of the orthographically projected image from the
viewing direction, /,-l,, can be obtained from the following two coordinate

transformations.
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I costT —sint | |71
I'2| " |sint cost | |m2]| (4.23.2.1)

and

hi_ 1 0 I
[]7 [0 coso| |1 (4.23.2.2)

Here, 7 is the angle between m and [’| axes and © is the rotational angle based on

1'y-axis (Refer Figure 2.10).

Hence, the coordinate transformation of the orthographic projection between the

m-my system and [ -/, system can be given as follows [110].

r -1
Iy | _ |cost —sint{ {1 O COST —sint mj (4.2.32.3)
[y sinT cost | [0 coso | |sinT costT m; e

L

| cos?t4cososin®T (1-cosG)sintcost | |71 4.2.3.2.4)
(1—cosO)SinTeosT sin2T+cosocos2T | |72 I
Thus,
M. ] .

my| 1 sin?T+cosocos? T (coso—1)sintcost | |11 (42.32.5)
n; cosG |(coso—1D)sintcost cos?t+cososin’t | ({2  ~ 7T o

A more detailed discussion on the orthographical projection and some examples
to demonstrate this projection were given in section 2.3.1.1 (Figure 2.11).

As a result of the coordinate transform (4.2.3.2.5), the model of intensity
function y(/{,l2) can be obtained from the Fractional Differencing Periodic model of
vi(my,my) as follows.

Let
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c d
y(lq,12) = (1=2coswz, "1+ 2,72) 2 (1-2coswy 257 +2572) 24(14,15) (4.2.3.2.6)

where 2, z, are the delay operators, corresponding to / and /5, respectively.
By the definition of DFT, W(k,,k,) corresponding to white noise sequence {(/;,/;)

18

N-1 N-1

Wikik)= Y ¥ CU1.l2) €¥P[—J—(m1k1+m2k2)] (4.2.3.2.7)
m;=0 m,=0
and, from (4.2.3.2.5),
N-1N-1
Wkik)= T T LI expl-j [((sinz~c+coscscos%)kl
1,20 1,=0

+ (coso — 1)sintcostk ) + ((coso — 1)sinTcostk

+ (cos2T + cososin® Dk )l )] (4.2.3.2.8)

Thus, asin | 111}, we can define

$in°T + cosGcos’T (coso = 1)sinTcost

2y =2", cose 2’5 cose (4.2.3.2.9a)
(cosg - l)sinTcosT cos T + cososin®t

1= e g s (4.2.3.2.9b)

and

1 . ) .

ny= [(sIn“T + cosocos 1)k + (coso — 1)sintcostk, ], (4.2.3.2.10a)

(O

ny= [(coso — )sintcostk + (cos?t +cososinzt)k2] (4.2.3.2.10b)

-

CONO

Thus, from the orthographical projection, we can set
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Wiky,k2)=W'(ny, ny) (4.2.3.2.11)

Therefore, with these relations, we can have the projected version of Y’(k;, k),

which is DFT of y(/1,/4) as follows.

Y(kqi,k;)=(1-2cosm;e N te Ny2

_jmlt it -%
{(1=2costye ~ N +e Ny 2TW(kiky) (4.2.3.2.12)
Note that the fractal scaling parameters ¢ and d remain same as the ones before

projecting because of their scaling invariance property [101, 125].
4.3. Projected Texture On The 3-D Surface

As discussed in previous chapters, the intensity function of an image, i(/y,/7),
can be represented by the sunerposition of a deterministic function x(/y,l,)y and a
random function y(/,l,). Therefore, if we can estimate all parameters, that is, 0, T for
the surface orientation and ¢, d, ®;, ®, for the pattern of texture from the intensity
function z directly, then we can get better estimates than the ones from the separate
procedures for each x and y function. It is obvious that the estimation error from one
procedure will cause another estimation error, thus, the errors will be cumulated. For
that reason, in this chapter, a composite model of Shape-from-shading and Shape-
from-texture wil! be discussed.

Consider the reflectance map function (4.2.2.3) for x and the 2-D

orthographically projected Fractional Differencing Periodic model (4.2.3.2.6) for y.

Then the intensity function z can be represented by
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i(ly,l,) = g[sinccostcost, sinGy, + sincsinTsinT; sinc;, + cosocosoy

c d
+(1—2coscolzfl+zfz) 2 (1=2coswyz3t +232) 2E(,,1,) (4.3.1)
where € is the normalization factor, and z; and z, are same as defined by

(4.2.3.2.92) and (4.2.3.2.9b), respectively.

Here, notice that the normalization factor € should be multiplied to the
reflectance map function R (o, 1), because R(0,71) is the normalized function which has
maximum value 1. Because our model is based on the assumption that each patch is a
slanted and tilted plane, the value of the deterministic function x(/,1;) is a constant
over each patch, the best guess of the value of € is the maximum value among the
average intensities of the patches,

NN

1 .
£= Maximum |—= Y ¥ ii(/1,09)] 4.3.2)
izl..-.M N 2 Il=1 IZZ=]

where, M : Total number of patches in the whole image.
N’ : Size of the patch

i;(*,*) : Intensity function of the i-th patch.

Therefore, the value of € can be estimated from the whole image, before the actual
procedure on each patch. Thus, we assume € to be given, just as the illumination

directions o, ;.

The DFT of (4.3.1) will be

I(ky.kg)=X(ky,kg) +Y(ky.kp) (4.3.3)

=N 2El SINOCOSTCOST, $iNGy + sinOsintsint sino,, + cosocoscy [6(k 1,k ;)
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n n n
1 c - 27|:_2_ 2 d

A P . .
—j2R—  —jAR— —jAn— -
Ny Z(-2cosme Ne N TWkyko)

+ (1-2cosw; € N e

(4.3.4)
where n,, ny are same as defined by (4.2.3.2.10a), (4.2.3.2.10b), and
Jif ki,ky=0
Sy kpy={ 1 43.5)
0 ,otherwise

4.3.1 Estimation Of The Parameters ¢, d, w;, w;, G, T

The estimation of parameters in this projected Fractional Differencing Periodic
model (4.3.4) can be done in the frequency domain, modifying the techniques
suggested in [127]. This frequency domain analysis has an advantage over the spatial
domain analysis. Since we need only to take the inverse Fourier transform to get the
whole image at the end of procedures, we can avoid the integrability problem which
might occur in spatial domain analysis when the estimated surface orientation from

each local shape has an error.

For estimation, all parameters can be estimated directly from the given data
I(ky,k,), if we can obtain the likelihood function of [Y(k,k;)|, from the

relationship
Yk, k) =1(k ko) —X(ky,kj). (4.3.1.1)

Then, since the noise sequence C'(m,m,) is assumed to be white Gaussian,

W (k,k2)and Y (k,k;) follow the Rayleigh distribution as in the following theorem.
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Theorem 4.3.1: The modulus of the DFT of the noise sequence, {|W(ky,k2)|,

k1=0,1,...N-1, k2=0,1,..., [N/ZJ} and {1Y(kq1,k2)], k1=0,1,...N-1,

k,=01,..., lN 2 J } are the white sequences with the following Rayleigh densities.

2W -w?
= exp{ — )
Fiwk, ki (W)=1 pN pN , W20
0 , otherwise
252 1, Yk, ko) ( —s24 Y2k ko) ;
ex
Sy, o ()= pN? P pN? , Y(ky,k) 20
0 , Otherwise
where
¢ 4
21tn 2 27n, 2
Skok, = 12¢cos( N ) —2coswy| |2cos( N ) —2cosmy, |

(Proof) Let W'(ky,k3) be the DFT of a white noise sequence {’(m;,m;) with a normal

distribution, that is,
{'(m;,my) ~N@©,p) ,for m;,m;=1,2,...,N (4.3.1.2)
Then, W’(k;,k;) will follow another normal distribution as follows [26].

W’(k;, ko) ~ N(N-E[{’(my,my;,pN?) (4.3.1.3.a)

~ N(0,pN?) (4.3.1.3.b)

and
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2
Re(W’(k;,kp)), Im(W’(ky,k2)) ~ N(O, Bl;— (4.3.1.4)

where Re(W’) and Im(W’) are the real and the imaginary parts of W’(k;,kp),
respectively.

Define new coordinate systems, (ly,1;) and (n},n;), which can be obtained from
the coordinate transformations (4.2.3.2.5), (4.2.3.2.10). Thus, based on the new
coordinate systemn, a new noise sequence {(l;,l;) which has the corresponding DFT,
W(ki,k,), can be defined. As defined before, since the density function of
Re(W'(k;,kp)) or Im(W’(k{,k;)) follows a normal distribution and the coordinate
transformations are the linear transformations, the density function of
Cdy,12),Re(W(k;,ky)) will follow the same normal distributions to the ones of

C’(my,my), Re(W’(ky,ky)). Thatis,
L) = N@O,p) for Il =1,2,...N (4.3.1.5)
and

pN?

Re(W(ny,ny)), Im(W(ny,ny)) ~ N, —2—) (4.3.1.6)

Now, consider the density function of |W(n;,nz)|. Since W(ny,n;) is a complex,

defining W be W(ny,ny),

|W(n,.n)] = VRe2(W) + Im2(W) 4.3.1.7)
Define ¢ = tan™! (M—)). Then, we can have the following relations.
Re(W)
Re (W) = {W(n,n3)| cosd (4.3.1.8.a)
Im(W) = |W(n(,ny)| sind for|W| >0 (4.3.1.8.b)

Thus, the joint probability density of |W’| and ¢ can be obtained from the Jacobian
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and the joint probability density of Re(W’) and Im(W’) as follows.

f|W|¢(|W|,¢)=mfke(W)nn(W)(Re(W)Jm(W)) Jdfor|[W| >0 (4.3.1.9.3)
= Wl re(wy(IW [€080) fimwy(| W]sind) (4.3.1.9.b)
~(RA(W)+Im*(W))
- |W|ze PN (4.3.19.¢)
pN

| alWl  9IW|
where Jacobian = aRgéW) al"a‘((bw) (4.3.1.10.2)

ORe(W) JIm(W)

1

—— (4.3.1.10.b)

Therefore, since |W| and ¢ are independent, and the density function of ¢, fo(9), is

1
2n’
Fiwpo(IWIL,phi) = f 1w (IW[)fs(0) (4.3.1.11)
and
2W__ (—wz)
Siw(W)=19pN2~ P pNZ2 " W20 (4.3.1.12)
0 , otherwise
Now, set
¢ d
21ng 2 2nn, 2
Sk,,k, = |2c08( N )—2cos®; | |2cos( N ) — 2cosm; | (4.3.1.13)

Then, from the definition of n;, (2.3.2.10), we can have
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1Y(ky k) | = s,k I Wik ko) (4.3.1.14)

=Sk, TW(ng,ng)| (4.3.1.15)

Thus, the density function of |Y(k;,k;)| can be represented by following

equations.
£1 Y00k 1 ) = Sk kg Fiwikg ko)t (igk, Y (K1,K2)) (4.3.1.16)
284, k, Y(ki,k2) : =524, Y2 (k1 ko)
= o P N Y(kiky) 20
0 , otherwise

From these probabilistic properties, the estimation of parameters can be done by
a hybrid method of Least Square and Maximum Likelihood estimations, which was
suggested by Eom [67]. For LS estimation, if the values of the illumination direction
oL, T, and the normalization factor € are given, and parameters ®;, (;, C, T are set,

then 9 = (c,d,oc)T can be estimated by minimizing the following cost function.

et [N/:’.J
JO,0,0)= Y Y (log|lk;,ky)~N2g[sinocostcostysinoy,
k1=0 k2=0

+sinosintsinty sinop +cosocosoy 19(kq, ko) |

c 2x[(sin?1+cosocos2 1)k, +Hcoso—1)sintcostks |
+ — log|2cos — 2coswy |
2 Ncoso
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2n[(coso—1)sintcostk; +(cosz‘t+coscsin21:)k2] 2
—2cosw, | + o)

+ % log|2cos

Ncoso
(4.3.1.17)
N-1 lejl
=¥ ¥ (loglltky,kp) - N2g[sinccosTcosTy sinoy +sinosinTsint, sinoy
k1=0 k2:0
+c0s0coso 18k, k) | — 0T Q(ky,kp))? (4.3.1.18)
where o = ~E|log | W(ky,k2) 1], 8= (c,d, )T
Here,
-1 21t[(sin2 T+COSO'COSZ1:)k1 +(coso—1)sintcostk; ]
— log| 2cos — 2cosw |
2 Ncoso
Qlky,k2) = | 1 21[(coso-1)sintcostk; +(cos2T+cososin®T)k; ]
— log|2cos — 2cosun |
2 Ncoso
-1
(4.3.1.19)

Thus, the estimated values will be

N1 [N/z nop N2

[e.d, ol =(Y 3 Qi k)Q (ki ko)) (T X Qlky ko)log| Zeky kz)

kI:() k2=0 k]=0 k2=0
- Nze[sin(scos‘tcostL sino +sinosintsinTy sinop +cosccosop 16(k;,kz) ) (4.3.1.20)

Also, ML estimators of (oi, ®,, 0, T can be calculated by maximizing the log-

likelihood function L(Y;0,®;,;) with o estimated from above.
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N1 N2 .
L(Y;8,@,ap)= ¥ ¥ log|l(k;,kp)-N2g[sinccostcosty sinoy,
k1=0 k2:0

N-1 N/ZJ pN2
+ sinosintsintg_singy, + cosocoso Jo(k ko) |~ ¥ Y log( 5
k=0 k=0

)

¢ N-1 27 (sin®t4+cosocos? 1)k +(coso—1)sinTcostk, ]
+ —N ¥ log|2(cos
2 k=0 Ncoso

— cosmy )|

anJ 2r[(coso—1)sintcostk; +(Cosz’t+cososin2't)k2]

+dN log|2(cos ~ Cos®
3::0 glate Ncoso 2l
1 N [N/zJ 21t[(sin2t+cosocoszt)k1+(coso~1)sintcos‘tkzl ¢
-— > 12(cos — coswy) |
PN® 20 k=0 Ncoso
27| (coso—1)sinTcosTk; +(cos2T+cososin2 1)k, | d
* | 2(cos - cosy) |

Ncoso
« Ik, ko )—N2e[sinocos'tcos'cLsincL+sincsintsintLsincsL+cosocoscL]8(k1 Jk2)| 2
(4.3.1.21)

where p is a variance of {(1;,];) and can be estimated by the following equation
in the mean square sense.
2

~ 1 - n
= —ex -200— — (4.3.1.22)
p=zexp {7 el

where 7y is Euler’s constant (= 0.5772157) [67].

Therefore, the estimation scheme can be summarized as follows:
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(Estimation Algorithm)

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Estimate the illumination direction oy, 1 and the normalization factor €

from the whole image, by (Theorem 4.2.1) and (4.3.17), respectively.

) . n
For each patch, choose resonant frequencies w;, ®; in the range of [O,?],

and the surface orientation parameters G, T in the range of [-—72£,-72£].
With the given values of w;, ®;, ¢ and 1, estimate ¢, d, and o by LS
estimation algorithm (4.3.1.20).

Using &, compute the estimate of the variance of p, {(l;,l;), by equation

(4.3.1.22).

Using the estimates C, dand 6 found in Step 3 and 4, maximize the likelihood

function given by (4.3.1.21) with respect to »;, ®,, 0, and 1.

Using the estimates ), ,, 6 and T, repeat Step 3 to Step 5 until the

estimates have no significant change in successive iterations.

The results from computer simulation will be discussed in the next section.

4.3.2 Experimental Results

4.3.2.1. 3-D Texture On A Sphere Surface

In this experiment, a whole image which contains the shade and texture on a 3-D

sphere surface was constructed using our proposed 3-D texture model, and this was

compared with the images which were obtained by either applying the reflectance map

function or by projecting the texture pattern only. Since our model is a composite of
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the Shape-from-shading and the Shape-from-texture models, the constructed image
will look more natural than the ones from either the Shape-from-shading or the
Shape-from-texture technique. For this experiment, the texture pattern was chosen as
the Fractional Differencing Periodic model (4.2.3.2.6) with the parameter values,
®; =0.2, w; =0.2, ¢=0.8, and d = 0.8. From the given illumination direction o, 11,
and the surface orientations of sphere, ¢, 1, the 3-D surface of a sphere covered by the
chosen texture pattern was synthesized. Here, the illumination direction was chosen as
o, = -0.66, 1, =-0.66, and the surface orientations o(iy,iy), 1(ij,ip) of the (iy,iz)th

patch was given by

dH (13,1,)/01,

-1
tan —— Il .
o(iy,iz) = (DH(ll,lz)/ah e JfH(l,1p) 263 4.32.1)
0 ,otherwise
and
. 1
[6{0 1)
T(iy,ig) = \N@HRL) s i, + @HRL iy + 1 iEH(L L) 2 63(432.2)
0 ,otherwise

where the heig! t function H(1y,1;) is given by
H{, ) =152 =12 -1,2 (4.3.2.3)

In this experiment, each 3-D texture pattern was synthesized on 32 x 32 pixel sized
planar patch, and 16 x 16 pixel sized patch was taken from the center. The complete
image of sphere (512 x 512) was obtained by adjoining these 16 x 16 pixel sized
patches. Figure 4.3-a,b show the 3-D shape of a hemisphere and the corresponding
sphere image obtained by the reflectance map function (4.2.2.3) with the parameter
values o =-0.66, 1, =-0.66, €=100 (4.3.2), and Figure 4.4 shows the

orthographically projected texture image based on the given sphere surface with
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equation (4.2.3.2.6). Finally, with the composite model of the projected texture image
and the reflectance map function (4.3.1), an image of 3-D texture on the surface of a

sphere was synthesized (Figure 4.5).

Here, Figure 4.3 and Figure 4.4 illustrate that neither the Shape;from-shading nor
the Shape-from-texture technique is suitable for representing the natural scene. Figure
4.3 does not contain any detail information about the surface pattern, while Figure 4.4
does not contain any shade. Thus it is difficult to see the sphere in either Figure 4.3 or
Figure 4.4. Figure 4.5, however, illustrates the sphere image with texture pattern on
its surface clearly, thus shows our model’s capability to represent the 3-D textural

surface.

4.3.2.2. Parameter Estimation

From this experiment, we want to show how accurate the estimated results are.
Since each small patch is assumed to be a tilted and slanted texture plane and the
whole image is obtained by adjoining these patches, our proposed 3-D texture model
will it each small image patch and the surface orientation parameter will be estimated
based on each patch. Thus, in this experiment, we will consider single patches of
texture patterns which represent the tilted and slanted texture planes. From these
patches the parameter values of the model (4.3.1) will be estimated by the proposed
estimation scheme, and compared with the true values. For this experiment, three
different 2-D texture patterns sized 64 x 64 were generated by equation (4.3.1) with
the different values of parameters w;, w,, ¢, and d. Then, the projected images of the
slanted and tilted texture planes were synthesized with the different values of the
surface orientation G, T in equation (4.3.4), and zero mean white Gaussian noise with

variance 10 was added to each image. The values of the illumination direction G, T




(b)

Figure 4.3: Sphere images: (a) Height function of a sphere obtained by
equation (4.3.2.3) (b) Image obtaincd by the reflectance map function
(4.2.2.3) with e=100 (4.3.2), 5, = =0.66, 1, = —0.66
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Figure 4.4: Image obtained after projecting texture image orthographically
to the sphere surface. (Background texture pattern is generated by
Fractional Differencing Periodic model (2.3.2.6) with w;=0.2, ®;=0.2,
c=0.8, d=0.8)




]

Figure 4.5: Image of 3-D texture on the surface of a sphere (Image is
generated by the composite model (4.3.1) with o1, = —0.66, 1, = —0.66)
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. . . T T . .
and the normalization factor € was given by —, —, and 100, respectively. Thus, since

8’ 4
the intensity value of a plane surface will be constant all over the patch, the
deterministic part of equation (4.3.4) was considered as a constant, and added to the
random field part. For the estimation, the hybrid method of Least Square and

Maximum Likelinood estimation, which was discussed in previous section, was used

to estimate parameters.

Figure 4.6-a shows one of the 2-D texture pattern which was generated by
equations (4.2.3.2.6)-(4.2.3.2.12) with the values of w;, o, c, d as 0.2, 0.2, 0.8, 0.8,

respectively, and Figure 4.6-b shows the projected image of the version of Figure 4.6-
a tilted and slanted by % and —g— respectively. As can be seen from Figure 4.6-a and

Figure 4.6-b, due to the slanting, the distance between the dark spots along the normal
direction of the tilted axis (the tilted axis is the North-west to South-east diagonal)
reduces considerably (thus producing almost a continuous dark band along that
direction in Figure 4.6-b). Here, the 2-D texture model does not fit the pattern in
Figure 4.6-b, since this pattern has a non-isotropic random texture distribution due to
the tilt and slant. Note that this synthesis technique does not require an interpolation
after projecting. Because the white Gaussian random noise will still be white Gaussian
noise after projecting, the random noise as input data can be generated for the
projected model directly. From these three different 3-D texture patches, we have
estimates close to the t-ue values. [Table 4.1] Also shown in the parentheses are
absolute deviations from the true values. Therefore, we can say that the height
function and the texture pattern of whole image can be estimated properly from this

local patch estimation process.




95

(a) (b)

Figure 4.6: 2-D texture images: (a) Image obtained from (4.2.3.2.6) with
w;=0.2, 0,=0.2,c=0.8,d=0.8 (b) Projected image of the tilted and slanted
version of Figure 4.6-a by -n/4 and /8, respectively
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Table 4.1: True parameter values and the estimated parameter values of the
projected Fractional Differencing Periodic model (4.2.3.2.6): The random noise
sequence as input data for each synthesized texture patch of size 64x64 was
generated from white Gaussian noise with zero mean and variance 10. Estimated
values were obtained from these synthesized images by equations (4.3.1.8)-
(4.3.1.13).

True Values
Patches
(O (0} C d o T
Patch 1 02 710271708 1038 0.4 0. 78
Patch2 | 02 | 02 | 04 | 0.8 | 078 | 0.78
Patch3 | 02 | 04 | 06 | 0.8 | 0.2 0.6

Estimated Values
Patches

~ ~ - ~
A

W (073 C d o T
Patch T 0.204 0.208 0.803 0.807 0.393 0.744
(0.004) | (0.008) | (0.003) [ (0.007) | (0.007) { (0.036)
Patch 2 0.219 0.232 0.357 0.716 0.812 0.673

(0.019) | (0.032) | (0.043) | (0.084) | (0.032) | (0.107)
Patch 3 0.191 0.378 0.620 0.589 0.299 0.598

(0.009) | (0.022) | (0.020) | (0.211) | (0.099) | (0.002)




4.3.2.3. Tree Image

A 512x512 real image of a part of a tree, which contains shade and texture on
surface was considered (Figure 4.7-a). From the whole image, the estimation values of
the illumination direction o, 1, were determined to be (}L =-1.3384, %L =—().0426,
by applying Lee’s method. Then, for this experiment, several local patches of size
32x32 were taken from the tree surface, and the parameter values were estimated by
applying our projected Fractional Differencing Periodic model (4.3.1) and estimation
scheme (4.3.1.7)-(4.3.1.13). Average estimated values of the parameters were
obtained as w; = 0.486, 0, = 0.053, ¢ = 1.394, d = 0.762. A Synthesized tree surface
image with the given illumination direction was constructed by projecting this texture
pattern on a cylinder surface (Figure 4.7-b). This image looks very similar to the
original tree image, and shows the ability of our model to represent a non-stationary

texture pattern such as a tree bark on tree surface.

4.4. Conclusions

In this chapter, a composite model of Shape-from-shading and Shape-from-
texture based on a 2-D orthographically projected Fractional Differencing Periodic
model was developed to represent a 3-D surface image which contains information
about both radiance and texture. This composite model has several advantages over
the conventional approaches. First, as compared to the Shape-from-shading
techniques, this model always gives unique and more accurate solutions for the
surface orientation parameter values, because of the additional constraint from the
texture function part. Also, by using this analysis, the integrability problem which

might occur in spatial domain analysis can be avoided, because only one inverse
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(a) (b)

Figure 4.7: Tree images: (a) A 512x512 original image of a part of a tree. (b) A
synthesized tree image: Local patch size is 32x32, and each 3-D texture pattern
was synthesized by the composite model (4.3.1) with the illumination direction G,
= -1.3384, 1 =-0.0426 and w; = 0.486, wy = 0.053, c = 1.394, d = 0.762 for the
random part. 16x16 pixel sized patch was taken from the center of it. The
complete image of cylinder (512x512) was obtained by adjoining these 16x16
pixel sized patches.




Fourier transform needs to be taken at the end of procedure to get the whole image.
Second, as compared to the Shape-from-texture techniques, the Fractional
Differencing model has the property of being flexible enough to explain both the
long-term and the short-term correlation structure of the texture pattern, thus, it has a
superior ability to model different textures encountered in practice. The
orthographical projection adds the additional flexibility to represent the 3-D rotated
texture due to the slant and the tilt of a surface normal plane. The estimation scheme
for the parameters was based on the hybrid method of least square and maximum

likelihood estimations.
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CHAPTER §
CLASSIFICATION OF
3-D ROTATED TEXTURES

5.1. Introduction

Texture classification has been the focus of interest to many researchers
[53,92,126,216]. The classification problem can be stated as allocation of an
observed texture image data to the one of the pre-defined texture classes. These
texture classes can be described by texture features, and then texture features can be
the parameters in stochastic [53,92,126] or structural models [216]. Thus, the key
step in classification process is the choice of a set of features which can reduce the
dimension of the image data to a computationally reasonable amount of data.
Preferable featuies should be those that are simple and easy to extract from the given

data while preserving the classifying information present in it.

Most of classification schemes which have been suggested up to date are under
the assumption that the test sample data possesses the same surface orientation as the
training sample data. Thus, if the orientation of test image is different from the
training sample data, for example, in case of a rotated image, the classification
performs poorly. This reduces the flexibility of those classification schemes.
However, most of natural texture images which we encounter in practice represent the

texture of 3-D surfaces. Thus, the observed image is a projected surface image onto
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the 2-D image plane with a 2-D rotated, or 3-D slanted and tilted texture pattern.
Therefore, it is desirable that the classification scheme have the flexibility to classify
even rotated or scaled texture to the original class of it. This is a good indication why
it is so important to have the rotational and scaling invariant features in our model.
Up to date, several approaches have been reported for the rotational invariant
classification scheme [53, 126]. However, those approaches have their own limitations
of classification. Khotanzad’s method [126] is based on the four different discrete
directions instzad of an arbitrary angle of the rotational direction, thus, with this
classification scheme, the rotated texture pattern with an arbitrary angle can not be
classified. Cohen’s model [53] uses a coordinate transformation for the rotation and
the slant of texture surface, and a ML estimation method is adapted to extract the
texture pattern parameters in an AR model and the surface orientation parameters
simultaneously. However, because of the complexity of the estimation scheme and the
limitation of AR model to represent the surface, this approach may not be practical. In
this chapter, a multi-level classification method which can handle arbitrary 3-D
rotated samples of textures is developed based on fractional differencing models with
a fractal scaling parameter. Since the fractal scale is known to be a rotational and
scaling invariant parameter, the accuracy of classification will not be affected by 3-D
rotation of the test texture, by using these models. In first level of classification, the
textures are classified by the first-order Fractional Differencing model with a fractal
scale parameter, and in second level, classification is completed with the additional
frequency parameters of the second-order Fractional Differencing periodic model.
This multi-level classification scheme has at least following advantages over the
conventional approaches [46,53,126]. First, since the fractal scale parameter of the
first-order Fractional Differencing model can be estimated by a simple Least-square

estimation method, the processing time can be dramatically reduced. Second, the
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ambiguity, which may be caused by using only one classification parameter,
particularly when the values of parameter are close enough for the different textures,
can be removed by considering the additional parameters in second-order model. Even
though the estimation scheme for these additional parameters is based on ML
estimation, the classification process is much simpler compared with other approaches
based on ML estimation, e.g. Cohen’s [53], because only a small number of texture
patterns in same sub-class, which is already classified based on the fractal scale value

in first level, need to be classified.

The organization of this chapter is as follows. In section 5.2, the 3-D rotated
texture is defined by the linear coordinate transformations. Section 5.3 introduces the
Fractional Differencing model with a fractal scaling parameter to represent the rotated
and slanted texture surface, and section 5.4 discussed its parameter estimation scheme
based on LS and ML estimation methods. In section 5.5, a multi-level 3-D rotational
invariant classification scheme is introduced. Section 5.6 then discusses some
simulation results carried out to demonstrate the performance of the proposed

algorithms, followed by section 5.7 which concludes this chapter.

5.2. 3-D Rotated Texture

To represent a 3-D rotated texture, we need two different sets of coordinate
transformations. First one is the 2-D rotational coordinate transformation and second
one is the orthographical projection coordinate transformation. The 2-D rotational
coordinate transformation is needed to represent a texture image rotated on the 2-D
image plane, and the orthographical coordinate transformation is needed to represent
an orthographically projected texture surface onto the image plane due to the slant and

tilt of texture surface. Here, notice that for the image whose texture pattern is
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distributed isotropically over the surface without any directional trend, the 2-D
rotational coordinate transformation is not required, because the 2-D rotation will not

affect the pattern of the texture.

The coordinate system (I’1,/’;) which is rotated on the image plane through an
angle 0 clockwise can be obtained from the original coordinate system (/;,/7) by the

following simple coordinate transformation.

1} _ lcos® —sin®| |/1
{l'z}_ [sine cos® | |I5] - (5.2.1)

And a texture surface plane slanted and tilted by ¢ and © can be represented by the
orthographical projection. First, take the m,-m, coordinate system over the surface
plane. Put a line passing through the origin, and let T be the angle made from the m -
axis. Rotate the plane around the line by angle ¢ and project the rotated plane
orthographically onto the image plane. Thus, a new coordinate system from the
viewing direction, [,-I5, can be obtained from the following two coordinate

transformations.

I _ |cost —sint) |M1
[112}_ Lin‘t cost | |mqy | (5.2.2)

Li_11 o ||h
[12}— [O coso] [112] : (G23)

Hence, as is well known [110)], the coordinate transformation of the orthographic

and

projection between the m |-m, system and [ -/, system can be given as follows.

-1
Iy| _ Jeost =sint| |1 0 COST —sint my
[l ]_ sinT cost | [0 cosO | |sinT cost mj (5.2.4a)




_ |cos?t+cososin®t (1—coso)sintcost | [m1
(1—coso)sintcost sin?1+cosocos?t | {m2
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(5.2.4b)

Therefore, a texture plane coordinate system (I”y,/”,) obtained after rotating,

slanting and tilting with arbitrary angles can be represented by combining both 2-D

rotational coordinate transformation (5.2.1) and the orthographical projection

coordinate transformation (5.2.4) as follows.

Il

’ i . . R
1" cosB —sind | | cos?t+cososin?t (1—coso)sintcost | |71
"y sin@ cosB | |(1-coso)sintcost sin®t+cosocosit | [m2

1w }
v
where
I = cosB(cos?t + coscsinz‘t) — sinB(1—cos0)sinTcost
Il = cosB(1—cosG)sinTcost — sin@(sin?t + cosOCos21T)

11 = sinB(cos®T + cososin?1) + cosB(1—coso)sinTcost

IV = sinB(1—coso)sintcostT + cosO(sin?t + cosocosz*c)

(5.2.5a)

(5.2.5b)

(5.2.6a)

(5.2.6b)

(5.2.6¢)

(5.2.6d)

One grid pattern image (Figure 5.1-a) was considered to demonstrate these coordinate

transformations. The coordinate transformation was taken to this image with 6 =n/8 ,

o=m/4, and T=-n/8. Figure 5.1-b, Figure 5.1-c, and Figure 5.1-d depict a 2-D

rotational coordinate transformation, a orthographical projection coordinate

transformation, and both coordinate transformations, respectively.




105

(@) (b)

(©) (d)

Figure 5.1: 2-D grid pattern images: (a) Original image, (b) Image obtained after
rotating the image(Figure 5.1-a) on the image plane with 8 =7/8 in (5.2.1), (¢)
Image obtained after projecting the image(Figure 5.1-a) orthographically, with
o=m/4 and T=-n/8 in (5.2.4), (d) Image obtained after projecting the already
rotated image(Figure 5.1-b) orthographically, with 6 = /4 and T = -n/8 in (5.2.5).
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5.3. Fractional Differencing Model With One Fractal Scaling Parameter c.

All features considered in this chapter for the classification purpose can be
obtained by fitting a two-dimensional parametric random field models to the given
texture. There are various kinds of random field models suggested up to date
(4,41,56,85,116], and each random field model has its own advantage and
disadvantage based on the purpose of the process. Among the various random field
models, the fractional differencing models with one fractal scaling parameter are
chosen in this study because of its following properties. First, the fractal scaling
parameter ¢ is known to be a rotational and scaling invariant parameter, thus, with this
parameter we have the flexibility to handle the rotated, slanted, and tilted texture
surface. Second, unlike the other fractal model based on the fractional Brownian
process, this model has a simple estimation scheme, such as least mean square
estimation for the parameter ¢. Third, with the second order periodic model, this
model has good performance in texture synthesis and its ability to simultaneously
represent the coarseness and pattern of texture surface with the fractal scaling
parameter ¢ and directional frequency parameters ®;, ®p, respectively. Thus,
comparing these parameter values, we can classify the texture patterns properly even
though some texture patterns share% the same value of one of those parameters.
Typical first-order and second-order fractional differencing models with one fractal
scaling parameter will be as follows, respectively.

c

y(mymy) ==z )(1-2"1)] 2 {my,my) (53.1)

and
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c
y(my,mp) =[(1-2cos 0,2, +2,72)(1-2coswp29  +2272)] 2{(my.my)  (5.3.2)
form,,m,=0,1,..,N-1.

The corresponding DFTs of these functions are

k
_j 2n—2 __C_

ky
—joam—
Ykiky) == ¥ )l=e M) ZW(kyko) (53.3)

and

j
Y(ki,ko)=[(12coswe N+e V)

k; ky ¢
—jan— —jan—— -Z
‘(1-2cosmpe = N4e ' N TW(k,.ky), (5.3.4)

where z; is the delay operator associated with m;, {(m,m5) is an i.i.d. Gaussian

sequence, and W (k 1,k ) is the corresponding DFT.

Note that this random function y (m;,m>) is defined on the surface normal plane
because this model is based on a 2-D texture model. Thus, it will fit the texture
pattern which is isotropically distributed over the plane and this isotropically
distributed texture pattern can be obtained by viewing from the surface normal
direction. Then, the model for the 3-D rotated texture pattern can be obtained by
applying the 2-D rotational and the orthographical projection coordinate

transformations.
5.3.1. Rotated And Projected Fractional Differencing Model

The random function y’(/1,/;), defined on the viewing direction image plane,

can be obtained by projecting y (m,m3) onto the image plane orthographically. On
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the other hand, the rotated random function y”(/,,/5) can be obtained by rotating the
original coordinate axes through the angle 0. Thus, if /; and [, are the axes
transformed from m; and m, based on T and o, from the coordinate transformation
for the orthographical projection (5.2.4), we can have the following first or second-

order model.

Y1) =1(1-2 ) (1=, T 1.02) (5.3.1.1)
or

c

y(ly,07) = [(1—2cosm1z',—‘+z'1-2)(1—2cosco2z'2-1+z'2-2)]7§(11,12) (5.3.1.2)
forl,,l,=0,1,..,N-1,

where z’; is the delay operator associated with /;, and {(/1,l5) is an ii.d. Gaussian

sequence.

By the definition of DFT, W’(k,k,) corresponding to white noise sequence
CUi,ly)is
N-1 N-1

Wik k)= 3 X C(11,12)6’XP[—j—(m1k1+m2k2)] (5.3.1.3)
m =0 m,=0

and, therefore from the coordinate transformation (5.2.4),

N-1 N-1
Wik k)= X C(ll,lz)exp[—J
m,=0 m,=0

[((sm T+c0sGCos>T)k |

+ (cosG—1)sintcostk ;)! 1 +((coso—1)sinTcostk

+ (cos>t+cososin? )k )l 1] (5.3.1.4)

Thus, we define
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sin?T + cosocos?t (cosG — 1)sintcosT

Z’l =2 cose Zq cosG (5.3.1.5a)
(coso — 1)sintcost cos?T + cososin®T

2’2 =21 cose ) cose (5.3.1.5b)

and

! S [(sinz‘r + cosocos%)kl + (coso — 1)sinTcostk, ], (5.3.1.6a)

ny= L - [(coso — 1)sinTcostk + (cos2t + cososin2‘c)k2] (5.3.1.6b)

Then, from the orthographical projection, we can set
Wi(ky,ky)=W(ny, na). (5.3.1.7)

Therefore, with these relations, we can have the projected version of Y(k,k3),

which is the DFT of y’({1,/,) as follows.

, --j21t—nNL —j21tiN2— —%— ,
Y'(ky,ky)=1[(1-e )(1-e )] 2 Wky,ko) (5.3.1.8)
or
-jn— —j4n-n4
Y'(ky,ky) =[(1-2cosme = N +e” M)
it _jamlr LS
{(1-2cosage ~ N +e N 2Wikiky) (5.3.1.9)

On the other hand, the random function y”(l;,l/5), rotated version of y(/,,[2), can be
obtained by the coordinate transformation (5.2.1) and setting y”(/1,12) = y(I'1,1"2).
c

Y1) = (=2 (A=2"2H) 27U 0) (5.3.1.10)

or
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c
Y(1,00) = [(C=2cosm 2”427 H(1=2cos w27 4277 2 L7(14,12)(5.3.1.11)

where z”; is the delay operator in direction of {’; and {”(/,,l;) is an i.i.d Gaussian

noise sequence.

Like earlier, from the definition of DFT, we now define

2"} =z, 0007,5in0 (5.3.1.12a)

2"y = 7,587 jcosd (5.3.1.12b)
and

n’y = cosBk+sinbk, (5.3.1.13a)

n’y = —sinBk+cos0k, (5.3.1.13b)

Thus, the rotated version of Y (k,k5), which is DFT of y”(/1,/,) is

n
— 2T —

j it L
Y7k ko)=[(-e N )l-e N 2W7kyko) (5.3.1.14)

or

j
Y7kykp)=[(1-2costme N +e  N)

n’ n’
—j21:—2 -jarn 2 <

(1=2cosape -~ N +e N ZW7kiky) (5.3.1.15)
where W”'(k,k,) is the corresponding DFT of {""(11,1,)

Finally, the above two coordinate transformations, the 2-D rotational and the
orthographical projection coordinate transformations, can be combined to get the
model for the texture pattern obtained after rotating, and slanting the plane with a tilt
angle. Thus, the random function y”’(/,/,), which represents the texture pattern

obtained after rotating and slanting, can be represented by
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YUl == (=2 207 Uh1) (5.3.1.16)

or

4

e =1

)’”’(11,12) - [(1‘26‘05(1)12 | +Zu11-—2)(1_2C0sw22nr2-l+an2—-2)‘| 2 c’”(l],lz)

(5.3.1.17)

where z”; is the delay operator in direction of I”; and {"’(/1,{;) is an i.i.d. Gaussian
i y Op i

noise sequence.

And finally we define

27 =g, g, (5.3.1.18a)
27y =z, Mg, {5.3.1.18b)
where
T = olso [cose(sinz'c + COSO‘COSZT) — sinB(cos 6 — 1)sintcost], (5.3.1.19a)
c
T, = colsc [sinG(sin21 + cosocoszt) + cosB(cos S — 1)sintcost], (5.3.1.19b)
Ty = S [cosB(coso — 1)sintcost — sinG(cosz‘t + coscsinz't)], (5.3.1.19¢)
COos:
Ty = L S [sinB(cos o — 1)sinTcost + cosG(cos21 + cososinz't)] (5.3.1.19d)
cos
and
n”’1 =Tk, +Tiks, (5.3.1.20a)
n”z =Tatky + Tk, (5.3.1.20b)

Thus, we get the rotated and projected version of Y(k,,k;), which is DFT of
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rrs

y“(l,,1,) as follows.

nll nl'
. 1 2 c
—j2n——o

—_ I —  ——
Yk, ky) = [(i—e 7N Y(1—e TN )N 2 W (ky.ky) (5.3.1.21)

or

j
Y”(ky1.ky) = [(1=2coswe N +e” V)

A2 n c
_Jzn._

_.j41t____ —_
‘(1-2costme = N +e " N ) TWky,ky) (5.3.1.22)

where W”’(k1,k) is the DFT of y"’(11,15).
5.3.2. Fractal Scale As A 3-D Rotational Invariant Parameter

As shown in the previous section, the random texture y (m,m3) defined on the
surface normal plane can be viewed as the different random texture depending on the
viewing direction. And this different looking random texture can be represented by the
coordinate transformations with the surface orientation angles o, T and the rotation
angle 0. Thus, the original function y (m,,m,) is transformed to another function,
such as y’, y”, y’”, after rotating or slanting the texture plane. However, even after
rotated and slanted, the transformed random texture function shares the same value of
the fractal scaling parameter ¢ with the original texture function y. This rotational and
scaling invariant property of fractal scaling parameter ¢ plays an important role for
our classification purpose. In other words, by estimating and comparing this rotational
and scaling invariant fractal scale parameter, we classify the same but different
looking textures due to the 3-D rotation to the same class. Following example (Figure
5.2) is given to demonstrate this 3-D rotational invariant property of the fractal scaling

factor ¢. In this example, all texture patterns are synthesized with different values of
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o, T, and O but same values of w;, 0,, and ¢ based on the transformed second-order
fractional differencing periodic models (5.3.2, 5.3.1.2,11,17). Figure 5.2-a, b, c, d
depict the original texture pattern with @; =0.2, w, =0.2, and ¢ = 0.8, the rotated
texture with 6 = /4, the orthographically projected texture with T=n/8 and ¢ = -w/4,
and the rotated and projected texture with 8 = n/4, 6 = —n/4, and T = /8, respectively.
From this example, we can see that all texture patterns are same to human eyes, even
though those are projected from the different viewing directions. However, this
similarity can not be caught by the conventional 2-D stochastic model-based
approaches such as AR model [41,125], facet model [179], etc., but can be caught by
the fractal scaling parameter ¢ in fractional differencing model, because all texture
patterns in Figure 5.2 shares the same value of c. A detailed discussion on the
estimation method of parameter ¢ and the classification method with this parameter

will be given in the next two sections.

5.4. Estimation Of Parameters

There have been several approaches for estimating parameters in various kinds
of fractional differencing time series since Hosking introduced Fractional
Differencing model [101]. For example, Granger and Joyeux [89] approximated this
model by a high-order auto-regressive process and estimated the differencing
parameter by comparing variances for each different choice of it. Lapsa [121]
suggested a maximum-likelihood estimator in the frequency domain and showed the
consistency of the estimator. This frequency domain analysis was further studied by
Eom, and a hybrid method of least-squares and maximum-likelihood estimations was
recently proposed to estimate the fractal scaling parameters and the frequency

parameters, respectively [67]. In this section, a least-squares or a maximum-
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(@) (b)

(c) (d

Figure 5.2: (a) A original texture pattern image with w; =0.2, w; =0.2, and
¢ =0.8 in (5.3.2). (b) Image obtained after rotating the image(Figure 5.2-a) on the
image plane with ® =n/4 in (5.3.1.2). (¢) Image obtained after projecting the
image(Figure 5.2-a) orthographically, with o =-n/4 and T=7/8 in (5.3.1.7). (d)
Image obtained after projecting the already rotated image(Figure 5.2-b)
orthographically, with 6 =-n/4 and 1= n/8 in (5.3.1.11).




likelihood estimation algorithm based on Eom’s algorithm will be applied to estimate

the parameters in the first-order or the second-order fractional differencing model.

5.4.1. Estimation Of Parameter ¢ In The First-order Fractional Differencing

Model

The estimation of fractal scaling parameter ¢ in the un-transformed first-order
fractional differencing model (5.3.1) can be done by a simple least-square estimation
scheme in the frequency domain based on a representation of the logarithm of the
process which is linear in the parameters as follows. By applying logarithm operator

to (5.3.1), we obtain

log|Y (ky,ko)| =—§[log| 1-e

c . Tk . Tk,
= —Ellog | 2sm(—-ﬁ—)| + logIZSm(T) |1+ log|W(ky,k2)l

(5.4.1.1)

7tk2
N

c . Tky .
=——2—[log|25m(—1—v—)| + log | 2sin( MNI—a+Viky,kp)

, for ky,ky =0,1,..,N~1 (5.4.1.2)

where a.=—E[log |W (k{,k2) |} and V (ky,kp) =log| W (kq,k;)] + ot

Thenn = (¢, o)' can be estimated by minimizing the following cost function.
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N-1 N-1 Ttk
Jmenen= 33 Gogl¥ k2|+—nog|2sm——|
k=0 k=0
. Tky 2
+ log| 2sin N {1+ a) (5.4.1.3)
N-1 N-1 r 5
=Y X (loglY(ky,k2)| =" Q(ky,k2)) (5.4.1.4)
k=0 k,=0
Here,
1 doe |25 nky 9si nk;
Qky,kq) = |7 Uogl2sin—r| +log|2sin——1) | (5.4.1.5)
-1

Thus, the estimated values will be
N-1 N-1 N-1 N-1

lc, 0117‘(2 > Q*k1,k)QT k1, k)Y T Qky.kloglY (ky,ka)]).

k,=0 k=0 k1 =0 k,=0

(5.4.1.6)

5.4.2. Estimation Of Parameters ®;, ®,, ©, 7, 0 In The Projected Second-Order

Fractional Differencing Periodic Model

Consider the transformed fractional differencing periodic model obtained after

rotating and projecting (5.3.1.17) and its DFT as follows.

—jzni —j41tnT'l—
Yk ,ky) = [(1-2cosw; e N te )
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nll nll
-jamt —jan—t -

(=2cosme N +e N ZW7kyky) (5.42.0)

where W' (k,k) is the DFT of y”’({1,/2) in (5.3.1.17) and n”; is same as defined in

(5.3.1.20).

Then, the estimation of parameters in (5.3.1.17) can be done in the frequency domain,

modifying the techniques suggested in previous section.

For estimation, all parameters can be estimated directly from the given data
Y”(ky,k4) (5.3.1.22), if we can obtain the likelihood function of |Y(k1,k2)|. Then,
since the noise sequence {”’(/1,/,) is assumed to be white Gaussian, W”'(k,k3) and
Y”(k,,kp) follow the Rayleigh distribution as in Theorem 4.3.1. From these
probabilistic properties, the estimation of parameters can be done by a hybrid method
of Least Square and Maximum Likelihood estimations, which was suggested by Eom

[67]. For LS estimation, if parameters ®;, w,, G, T, 0 are set, then N = (c, o)’ can be

estimated by minimizing the following cost function as described in section 5.4.1.

N-1 N-1 . c 2rn"y
JM,o;,m)= Y Y (log|Y " (ki,k2)|+= (log|2cos —2cosw; |
ky=0 k=0 2
n112 2

+ log| 2cos —2cosmy | )+ o) (5.4.2.2)
N-1 N-1 . T )

=Y 3 Uog|Y"(kyi,ka)| —M"Q(ky.k2)) (5.4.2.3)
k,=0 ,=0

where o= —E [log |W"”(k1,k2)11,m = (c, o).

Here,
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” ’”

-1 2rn”y 2nn"’;
Q1 ka)= |5 (log|2cos —2cosw | +log|2cos - 2cos0y |
-1
(5.4.2.4)
Thus, the estimated values will be
r NoIN- . N-1 N-1 .
lcof =(¥ Y Q1 k2)Q k1 kY (Y T Ok ko)log |Y™(ky,k2)))
k=0 k=0 k=0 k,=0

(5.4.2.5)

Also, ML estimators of ®), w2, G, 7, 0 can be calculated by maximizing the log-

likelihood function L (Y ;n, @, ;) with a estimated from above.

N-1 N-1 ” N-1 N-1 2
LY Mw,0)=3Y ¥ log|Y” k)l - ¥ Z"’g(
klzo k2=0 kl—O k2—0

N-1 2 ’” N-1 2 124

Tn nn
5N( Y log|2(cos : —coswy)| + Y log|2(cos 2 —cosay)|)
k=0 k,=0
1 N ]N 1 2 ”1 27tn”1
- T Y ¥ (2cos —coswy )| * | 2(cos —cosmy) |)¢
Y ky=0 k,=0
1Yk y k)] (5.4.2.6)

where p is a variance of {"'(/,,/;) and can be estimated by the following

equation in mean square sense.

~ ] ~  n?
=1 expfy—20— " (5.4.2.7)
Pz lY 6N? J

where v is Euler’s constant (= 0.5772157) [67].
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Therefore, the estimation scheme can be summarized as follows:

(Estimation Algorithm)

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Choose resonant frequencies ®;, w, in the range [0,7/2], the surface
orientation parameters ©, T and the rotational parameter 6 in the range
[-m/2,7/2].

With the given values of ®;, w,, 0, 1, and 0, estimate ¢ and o by LS

estimation algorithm (5.4.2.5).

Using a, compute the estimate of the variance of {"(/1,/5), p, by equation

(5.4.2.7).

Using the estimates ¢ and ;3 found in Step 2 and 3, maximize the likelihood

function given by (5.4.2.6) with respect to ®;, ®,, G, T, and 6.

Using the estimates @y, @y, C, T, and D, repeat steps 2 1o 4 until the estimates

have no significant change in successive iterations.

5.5. Multi-level 3-D Rotational Invariant Classification Scheme

In this section, a two-level hierarchical classification structure is developed to

classify the 3-D rotated texture patterns. In first level of classification scheme, a 3-D

rotational invariant feature c is extracted from the input image data based on the first-

order fractional differencing model (5.3.1), and this fractal scale feature is used to

classify the textures to the classes whose members are sharing similar value of fractal

scaling parameter c. In second level, each class is divided to the final desired

subclasses based on two other texture pattern features, ®; and w;, and in each class

assigned in first level, the input texture image is classified further in more detail with
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the features w;, w, which is extracted based on the rotated and projected fractional
differencing periodic model (5.3.1.16). Figure 5.3 shows this hierarchical structured
classification scheme. Notice that it is possible for some textures to belong to the
different classes simultaneously, depending their variance values of ¢. For this
classification scheme, the images are separated into test and training sets. The class of

textures and the number of classes in training set is assumed to be known a priori.

This multi-level classification structure has several advantages over the
conventional classification methods. First, this algorithm can save the processing time
to classify the texture images. Because this algorithm uses a least mean square
estimation to get t!.. .actal scaling feature c in first-level, the processing time will be
reduced compariug with the method which is relying on only a maximum likelihood
estimation techniques. MLE algorithm requires long computational time because of its
iterailon scheme to get the maximum value from the likelihood function. And second,
comparing with the classification methods which have only one feature parameter c,
the more accurate classification can be achieved by this algorithm. In other words,
even for the case that two texture images have close values of fractal scale (roughness
of the surface) but those are same patterns of texture, this algorithm has the ability to
classify the textures based on the estimated values of parameters ®;, @, in second
level of this classification structure. A more detailed discussion on each level of

classification scheme will be given in following sections.

5.5.1. The First-Level Of Classification

In this level, the different 3-D rotated texture images are classified into the M
different classes depending on their estimated values of the fractal scale. As discussed

in section 5.3.2, this fractal scaling feature is a rotational and scaling invariant feature,
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Input Texture Images

First Level :

Second Level :

w;=aj W;=an Wy=ay wy=az
wy=h wy=b 1, Wy=b7) wy=by

Figure 5.3: Two-level hierarchical classification structure
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and represents the roughness of the texture plane surface. In other words, if we
consider a first-order fractional differencing model, the transformed image function
¥”(l1,17) obtained after rotating and projecting (5.3.1.16) will have same fractal scale
as the original function y (m,m,) (5.3.1). Therefore, if we want to estimate the fractal
scale ¢ only, we do not need to apply the transformed function but only need to apply
the original function which does not contain the rotation parameter 0, or the surface
orientation parameters 1, G in it. Therefore, the estimation of ¢ parameter can be done

by a simple least-square estimate method described in section 5.4.1.

Actual classification is achieved by applying a distance classifier d (c,i), which
measures a weighted distance between the extracted feature of test image denoted by
¢ and the mean feature of each of M classes. Then the texture is classified to class A;

for which such a distance is minimum. That is,

i* = minimumd(c,i), i=1,...M (5.5.1.1)
where
. [¢ - &l
d(c,iy= — (5.5.1.2)
Y [0}
j=1

and ¢; and [oczl(i) correspond to the sample mean and variance of the feature ¢ in

class A;, respectively.

Then, it should be noticed that class A; could consist of several different texture
classes in the case that the different textures share the same fractal scale (the
roughness of the surface), but have different patterns. This means that sometimes,
checking the fractal scale only is not enough to distinguish the different patterns of
texture. Thus, we need an additional classification scheme to distinguish these even in

the same class A;. This additional classification will be done in second level of
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classification structure. Here, the number of first-level classes M is chosen
considering the sample means and variances of the fractal scale ¢ of the sample
texture images. For example, if two different texture patterns have close enough

2+ Gcz] of one

sample means of fractal scale each other, such that the range [¢ — O,
texture is overlapped with the other, these two texture patterns could be classified to
the same class in first-level. Thus, it should be noticed that it is possible for a texture

to belong to several different classes simultaneously, depending its value of c.
5.5.2. The Second-Level of Classification

This second-level of classification is an optional procedure. If one fractal scale
feature is enough to classify the texture in first-level, in other words, if the class A; in
first-level contains only one member in it, our classification could be terminated in
first-level. On the other hand, if the class has several members in it, the classification
is continued to the second-level. In second-level, the textures which were already
classified to the same class in first-level are split to the different sub-classes, based on
the values of pattern features w;, W, in the second-order fractional differencing
periodic function (5.3.1.21). Thus, the estimation of those parameters can be
completed by a Maximum Likelihood Estimation (MLE) technique discussed in
section 5.4.2, and these extracted features denoted by fl(k) = {&)1 (k),(;oz(k)} are used
for further classification by measuring another weighted distance between these
features and the mean feature of each of the N subclasses in a particular class A;.
Similarly to the first-level,

n (k
k* = minimum d(@° k), k=1,..N (5.5.2.1)
k

where
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k
a@¥ 0= ¥ {%‘_fj)—] (5.52.2)
f=one, Y [cP1P
j=1
and f( © and [szl(k) correspond to the sample mean and variance of subclass (k)
features, respectively. Here, it should be noticed that since we have at most several
subclasses from a first-level class, we need to compare only a small number of
subclasses to complete the classification, instead of checking the feature distance of
whole other texture classes. Thus, we can save the total processing time of
classification by using this multi-level structure. Therefore, from this multi-level

classification method, we could get the accurate classification and save the processing

time at the same time.
5.6. Experimental Resuits

For these experiments, nine different classes of texture were taken from
Brodatz’s standard texture album [28] for the training set. These are, namely,
grass[D9], tree bark[D12], straw[D15], herringbone weave{D17], woolen cloth[D19],
calf leather[D24], beach sand[D29], water[D37], and raffia[D84]. Figure 5.4 shows

the 256x256 original texture images of these.

For the actual training, sixteen 64x64 sized sample image data were taken for
each different texture pattern, and the sample mean and variance of parameters, ¢, @y,
and w, were obtained for each texture class, based on the first and second-order
fractional differencing models [Table 5.1]. As we can see from Table 5.1, fractal
scale ¢ itself is not enough to classify the different textures, because some of textures
have similar values of ¢, even though they are different texture patterns. This is the

teason why the classification will be completed in second level by considering
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(a) (b) (c)

(&) (h) (i)

Figure 5.4: 256x256 original texture images of training set: (a) grass (b) tree bark
(¢) straw (d) herringbone weave (e) woolen cloth (f) calf leather (g) beach sand (h)
water (i) raffia
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additional parameter values of ®,, w,. As mentioned before, since the estimation of ¢
can be done by simple Least-square estimation and the estimation of w;, @, can be
done by Maximum Likelihood estimation, the two-level hierarchical classification
structure induces the reasonably reduced processing time preserving the accuracy of
the classification. Based on these sample mean and variance values, the number of
classes for the first level of classification, M = 5, were determined. The following table
[Table 5.2] shows the final classes for the first level of classification, and the
corresponding sample mean and variance . { each class. Notice that the herringbon
weave texture belongs to the class 2 and 3, because of its high value of variance.
Then, for the second level of classification, subclasses can be taken as the members of

each class based on the different values of ®; and ;.

5.6.1. 2-D Rotated Texture Case

In this experiment, the test input images were taken from the 2-D raffia textures
rotated by various angle Os (Figure 5.5). Then, each 64x64 texture was classified by
the proposed multi-level classification scheme. For the first level, the fractal scale
parameter ¢ was extracted based on the first-order Fractional Differencing model
(5.3.1), and the parameters, ®; and ,, were extracted from the second-order
Factional Differencing periodic model (5.3.1.11). Actual classification of the test
images was done in each level by comparing weighted distances (5.5.1.1-2, 5.5.2.1-2)
between the extracted features and the data base. The classification results are
presented in Table 5.3. Table 5.3 shows the parameter values extracted from each
rotated texture pattern and the demostrates the perfect result of classification based on

these values.
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Table 5.1: The sample mean and variance of parameter ¢, W;, W;: 16 64x64
sample image data are taken for each different texture classes, and the parameter
values are extracted from the first and second-order fractional differencing models
(5.3.1-2).

Textures C w w,
'] o? X o? x o2
grass 1.209 | 0.057 | 0.744 | 0.078 | 0.636 | 0.082
tree bark 1.530 { 0.073 | 0.691 | 0.199 | 0.601 { 0.324
straw 0.923 | 0.053 | 0.387 | 0.068 | 1.209 | 0.070
herringbone weave | 1.003 | 0.072 | 1.263 | 0.114 | 1.175 | 0.167
woolen cloth 0.809 | 0.024 | 0.852 | 0.095 | 0.793 | 0.098
calf leather 1.064 | 0.044 | 1.175 | 0.114 | 0.935 | 0.122
beach sand 1.195 | 0.038 | 0.665 | 0.107 | 0.571 | 0.129
water 1.074 | 0.055 | 0.083 | 0.064 | 0972 | 0.132
raffia 1.547 | 0.062 | 1.042 | 0.153 | 0.988 j 0.165

Table 5.2: Database of the first level of classification. ¢; and 0,-2 are the sample
mean and the variance of class i, respectively.

Class Textures C; o;?
1 woolen cloth 0.809 | 0.024
2 straw, herringbon weave 0.963 | 0.063
3 herringbon weave, calf leather, water | 1.047 | 0.055
4 grass, beach sand 1.202 | 0.045
5 tree bark, raffia 1.539 | 0.067
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Figure 5.5: 64x64 raffia texture images rotated by 6s: (a) 6 =20° (b) 8 = 40° (¢)
8=60° (d) 6 =80° (e) 6= 100° (f) 8 = 120° (g) © = 140° (h) B = 160° (i) B = 180°
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Table 5.3: Classification results from the 2-D rotated texture images. (Result
indicates the result class after applying 2-level classification method.)

Angles c [} 0y Result
20 1.523 | T.132 | 1.098 rafha
40 1.517 | 1.144 | 1.102 | raffia
60 1.535 | 1.138 | 1.119 raffia
80 1.537 | 1.142 | 1.120 | raffia
100 1.532 | 1.139 | 1.118 | raffia
120 1.529 | 1.138 | 1.120 | raffia
140 1.527 | 1.135 | 1.097 | raffia
160 1.533 | 1.140 | 1.113 | raffia
180 1.525 | 1.133 | 1.099 | raffia

5.6.2. Orthographically Projected Texture Case

Six 64x64 test input images were taken in this experiment from the herringbon
weave textures projected orthographically from the various tilted and slanted texture
surface (Figure 5.6). Then, each texture was classified by the proposed multi-level
classification scheme. Like in previous experiment, for the first level, the fractal scale
parameter ¢ was extracted based on the first-order Fractional Differencing model
(5.3.1), and the parameters, ®; and ,, were extracted from the second-order
Factional Differencing periodic model (5.3.1.2). The parameter values extracted from
each projected texture pattern and the classification results from this experiment are
presented in Table 5.4. Here, notice that the first test texture was assigned to Class 3
for the first level, and misclassified to the calf leathre texture, because these two

texture patterns share the close values of parameters.
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Table 5.4: Classification results from the orthographically projected herringbone
weave texture images. (Result indicates the result class after applying 2-level
classification method.)

o A

Angles Wy Result
t1=0%c6=15" | O [.18Y 1. calt Teather
1=0°6=30° 1.012 | 1223 | 1.102 | herringbone weave
1=0°0=45° | 1.055 | 1.218 | 1.096 | herringbone weave
1=45°,0=15° | 0980 | 1.197 | 1.113 | herringbone weave
1=45°,6=30° | 1.023 | 1.209 | 1.100 | herringbone weave
1=45°, 06=45° | 1.046 | 1.207 | 1.108 | herringbone weave

Sy
£

(a) (b)

(d) (e) 4y

Figure 5.6: 64x64 herringbon texture images projected orthographically from the
various tilted and slanted texture surface (t, ¢ are the tilted and slanted angles): (a)
1=0° 0= 15°(b) 1=0° 6=30° (c) t1=0° 6 =45° (d) T=45° 0=15° (e) 1=45°,
0 =30°(f)1=45° 06=45°




404

5.6.3. Rotated And Projected Texture Case

In this experiment, six 64x64 test input images were taken from the straw
textures rotated and projected orthographically from the various tilted and slanted
texture surface (Figure 5.7). Like in previous experiments, for the first level, the
fractal scale parameter ¢ was extracted based on the first-order Fractional Differencing
model (5.3.1), and the parameters, w; and ,, were extracted for the second level of
classification from the second-order Factional Differencing periodic model (5.3.1.17).
The classification results from this experiment are presented in Table 5.5. Table 5.5
shows the parameter values extracted from each rotated and projected texture pattern

and demonstrates the perfect result of classification based on these values.

5.7. Conclusions

A new multi-level classification technique was proposed to classify the 3-D
rotated texture surface. Unlike most classification schemes which have been suggested
to date, this classification method can handle arbitrary 3-D rotated samples of textures,
1.e., the accuracy of classification is not affected by the 3-D rotation of the test texture.
The proposed multi-level classification scheme consists of two levels of classification
procedure. In the first level of classification, a 3-D rotational invariant feature ¢
(fractal scale) in the first-order Fractional Differencing model was extracted, and
based on this value, the test data image was classified to a certain class. In the second
level, each class was divided to the final desired subclasses based on two other texture
pattern features, w; and @,, which were extracted from the second-order Fractional
Differencing periodic model. Then the input texture image was classified further in

detail with these two pattern features. This multi-level classification has several




Table 5.5: Classification results from the rotated and orthographically projected
straw texture images. (Result indicates the result class after applying 2-level
classification method.)

Angles c W W, Result
g=0",71=0",0=15" 0914 | 0.365 | 1.18Y straw
9=45°1=0° 6=30° 0.932 | 0.371 1.224 straw
0=90° t=0° c=45° 0.928 | 0.373 1.218 straw

0=0°1=45°.6=15" | 0918 | 0.368 | 1.156 | straw
0=455 1=455 6=30° | 0.922 | 0375 | 1.191 | straw
0=90° 1=45° 6=45° | 0.927 | 0377 | 1.202 | straw

(a) (b) (©)

(d) (e) 4

Figure 5.7: 64x64 straw texture images rotated and projected orthographically from
the various tilted and slanted texture surface (0, 1, O are the rotated, tilted and slanted
angles.): (a) 8=0°, 1=0° 0=15° (b) 8=45° 1=0° 6=30° (c) 6=90°, 1=0°,
0=45°(d) 0=0° 1=45° 6=15° (e) 8=45° 1=45° 6=30° (f) 6 =90°, 1 =45°,
o =45°
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advantages over the conventional one-level classification methods. First, since this
algorithm uses a simple LS estimation to get the fractal scale ¢ in first level, the
processing time of the classification is reduced comparing to the methods that rely on
only ML estimation. Second, from the additional texture patterns w;, ®; in second
level, the more accurate classification can be achieved compared to the classification
methods which have only one feature parameter ¢. As a result of a series of
experiments involving the differently oriented samples of natural textures, it is
concluded that these combined features make possible for this multi-level
classification method to have a strong class separability power for arbitrary oriented

3-D texture patterns.
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CHAPTER 6
CONCLUSION AND
FUTURE RESEARCH

6.1. Conclusions

The modeling and analysis of texture pattern of a three dimensional surface have
been investigated. Since 3-D natural scene image contains both radiance and texture
information, 3-D texture analysis can not be done by either shading analysis or texture
analysis only. Also, the distortion of the regular texture pattern due to the 3-D surface
orientation makes it difficult to analyze 3-D texture by the conventional stationary
random field texture model. Thus, in this thesis, 3-D surface model which can handle
both shading and texture information and 3-D texture analyses which are not affected

by 3-D surface orientation have been emphasized.

The contribution of the research can be summarized as follows. First, the
orthographically projected fractional differencing model was introduced to represent
the orthographically projected texture pattern due to the 3-D surface orientation. This
model has an ability to synthesize a long-correlated or a short-correlated random
texture with various values of fractal scale parameters ¢ and d, and the roughness and

the distorted texture pattern of the 3-D surface simultaneously.

Second, the estimation scheme of the parameters of the orthographically

projected fraciional differencing model was developed based on a hybrid method of
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the least mean square and maximum likelihood estimations. For the estimation of the
fractal scaling parameter, this estimation scheme is much simpler than the fractional
Brownian process based model’s, because of its discrete process. Rotational and
scaling invariant properties of the parameters were presented. Thus, even after
performing several linear coordinate transformations, all Gaussian assumptions of

random noise were preserved.

Third, a composite model of the Shape-from-shading and the Shape-from-texture
has been proposed to represent a natural scene which contains both shading and
texture information, considering the scene as the superposition of a deterministic
function and a random texture. Surface orientations and the illumination direction
were extracted directly from a single natural scene image without any pre-processing.
This avoids the possible error cumulation from each process step. Also, comparing
with the conventional Shape-from-shading techniques, this composite model gives
unique and more reliable soluiions for the surface orientation parameter values,

because of the additional constraint from the texture function part.

Fourth, a multi-level 3-D rotational invariant classification scheme has been
developed, based on the first and second-order fractional differencing models. Multi-
level structure of this classification consists of two hierarchical levels. In the first
level, the fractal scale which is known to be a rotational and scaling invariant
parameter was extracted from the first-order fractional differencing model, and with
this value, preliminary classification has been done. In the second level, the more
detailed classification has been achieved with additional texture pattern parameters
from the second-order fractional differencing model. This hierarchical structure could
reduce the total processing time from the simple least mean square estimation scheme
for the first level, and at the same time, it could preserve the accuracy of the

classification from the second level of classification.




6.2. Suggestions For Future Research

In addition to the pattern analyses of the texture on 3-D surface, which are

developed in this thesis, several related works can be suggested as follows.

6.2.1. Neural Network Analysis For The Global Optimization Problem

In the maximum likelihood estimation procedure, the optimization routine
maximizes the likelihood function. Since our likelihood function is a complicated
non-linear function and the existing approximation techniques for getting the
maximum value from the non-linear function require a great many iterations, the
computational time is enormous. Recently, based on the parallel processing structure
of the computer, some researchers claim that neural network analysis is one of the
promising techniques for reducing the computational time for optimization [163].
Therefore, investigating the applicability of neural network analysis to the

maximization of the likelihood function will be valuable.

6.2.2. Modified Scheme Of The Shape From Shading And Texture
Method With Weighting Factor

The proposed composite model of the Shape-from-shading and the Shape-from-
texture does not have any weighting factor between both 3-D analysis techniques.
However, in situation that the radiance information is more dominant than the texture

information, or in the reverse situation, the estimated surface orientations from the
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Shape-from-shading or Shape-from-texture technique only can be more reliable.
Therefore, if we have a proper criterion to select either technique or the proposed
composite model to represent the part of the surface image ¢uta, we may improve the
results. One of the possible way to do this will be given by checking the fractal scale
of the surface. In [176], Pentland described the fractal scaling factor as a measure of
the roughness of surface. That is, if the fractal scale ¢=0, it represents the smooth
surface with gentle random undulations. In contrast, the surface with fractal scale ¢>0
are not perceived as smooth, but rather as being rough or three-dimensionally
textured. Thus, by checking the estimated value of c, it can be possible to make

decision which technique should be preferred.

6.2.3. High Resolution Analysis For The Texture Pattern

Our proposed texture model in chapter 4 is based on local patch analysis. In the
simulation part of this thesis, we used a 16 x 16 sized patch taken from the center of a
32 x 32 sized patch to build the whole image. There is a minimum requirement on the
size of each patch for being able to extract meaningful statistical information from the
patch. This is the bottleneck for the high resolution analysis. Since the elementary
unit for surface orientation is a single patch (we assume each patch to be a plane and
consequently the values for the surface orientation parameters G, T are constants over
the patch), the end result is a low resolution analysis. Therefore, we need to develop a
high resolution scheme based on a single pixel instead of a complete patch. Therefore,
if we can develop a pixel based model, the synthesis of 3-D texture can be done by

just adopting the surface orientation parameter values recursively for each pixel.
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6.2.4. Robust Estimation For The Contaminated Gaussian Noise Case

The estimation procedure which is proposed in this thesis is based on the
assumption that the input noise has a pure Gaussian distribution. However, in the real
world, pure Gaussian noise does not exist. Therefore, even if we have noise which is
made of Gaussian noise mixed with a small portion of other distributed noise, our
estimation will not give the right estimated values for the parameters. Therefore, it is

favorable to develop a robust estimation scheme for this situation.

6.2.5. Boundary Detection Of The Mixed 3-D Textures With Fractal Scale

And Knowledge-Based Post-Cleaning Process

The natural scene image does not contain a pure 2-D texture pattern which can
be represc¢ited by the isotropically distributed random texture model, but a projected
pattern on the 3-D surface. For example, in Figure 2.2 (tree image), the tree bark
pattern around the boundary between the tree and the lawn ground looks more dense
than the pattern in the middle of the tree. This makes it difficult to apply the
conventional 2-D texture model to get the texture boundary the different textures.
However, this 3-D texture boundary can be detected using fractal scaling parameter in
fractional differencing model which has been proposed through this thesis because the
fractal scale parameter is known to be a rotational and scaling invariant parameter and
its value 1s considered as a measure of the roughness of surface. Thus, we can have the
same value of the fractal scale within same 3-D texture pattern, and the higher value
of the fractal scale around the texture boundary [46,173]. Then, the fractal scale

image can be generated by applying a proper size of window to the oﬁginal image,
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and the texture boundary can be obtained by thresholding the values of fractal scale in
the fractal scale image. Also, this texture boundary image can be improved by
deleting false boundaries, correcting wrong boundary directions, and linking the lost
boundaries. This post-processing can be done by applying a knowledge-based
reasoning process to the obtained boundary image. Here, a set of rules for
knowledge-based algorithm can be constructed from the prior knowledge that the
texture boundaries are continuous and closed. This boundary detection technique is

being developed in detail.
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Appendix A

Proof of Theorem 2.1

Intensity function x(/,,/,) can be represented by the following equation.

.((11,[2):}.}1(L'N) (A.1)

where,  Ap: albedo (constant for the rcfle<iness)
L: the illumination direction vector

N: the surface normal vector

Thus, when (/1,/,) defines the image plane from the viewing direction, the first

derivative of image intensity in the direction (dl,dl5), dx(l1,l5) is

dx = Au(dL-N + L-dN) (A.2)
Assuming L is constant,

dx = A(L-dN) (A3)

Notice that dN, the change in N, is perpendicular to N as it lies in the tangent plane to

N, and isotropically distributed as same as N is. Thus

E(Y dN)=0 (A.4)
1,1,
and
E (dx) = MU(LE (dN)) (A.5)
“AW(L;, dNy, + Ly, dNy, +L;,dN}.) (A.6)

where (dN(, ,dNy,,dNy.) are the average values of change in the surface normal in

image direction (dl,dl7) and L=(L;, »Li,,L4,) is the illumination direction. That is,
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~ 1 n -~ 1 n
dNy, = —3dN,. dNy, = —2dNy, (A.T)

Since dN,, =0,
E (dx) = MLy, dNy, + Ly, dN,) (A.8)

Then, introducing dr, which may be thought of as the expected magnitude of dN, that

is, as E(|dN}),

A ~

dNy, =l,dr, dNy, =lpdr (A.9)

where 1, 2+1,2=1 and [1/1=dNy,/dN,,=dx; /dx;,, defining (dx;,.dx;,) to be the
differential step in the image along which dx was measured.

Thus, defining [:,lzluL,ldr and £12=ka12dr, we can have the following linear

regression model, from (A.7),(A.8) and (A.9).
dey | fany diy)
dx, dly din||L,

(A.10)
Ly,

i, bdl'l,, dl 3

where cfx,- is the average value of dx over the i-th patch in direction (dlq;,dlq).
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Appendix B

Proof of Theorem 2.2

If we denote the matrix of directions (dl,;,dl;) by B, and let BT indicate the

transpose of B, then the solution (A.10) in Appendix A is the following least-square

estimator.
_
dxy
[:[ (2X2
S =@"TB7T| (B.1)
Ly, .
dx,

Here, notice that the above solution is a normalized one. Thus, in order to get the

actual values of (L;,Ly,,L;,), we need to calculate the value of Apdr properly.
E (dx?)= E W22 (Ly, dNy, + Ly, dNy, +L;,dN;,)?) (B.2)
2,2, 2,00 2 2.0 2 2 25 2 5
=\ % (LI, lel +L12 d[\/[2 +L[3 dN13 +2L11L11dN1ldN12
+ 2L11L13dN11dN13 + 2L12L[3dN12dN13) (B.3)

where (dl\?,l ,di\?,z,dﬁlz) are the average values of (dN;,,dN,,,dNy,).

~ 2 ~ 2
Since Var(dN,,) = Var(dN,,) = dr? for sphere model, dNV; = 1,2dr?+ar?, dN;, =

12%dr?+ dr?, and dNy, = dr?,
E (dx?) = N2u(Ly 21 2driedr ey 2 (1) dr P +dr )

+Ly,2dri 2Ly Ly LpdrY) (B.4)
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= N2 Ly, H oLy, ) odr i+ (g, 2+ 2L, Pdr ) (B.5)
If the illumination direction vector L is counted as a unit vector, that is, L; ‘2 + L 12 +
L,?=1,
E (dx?) =~ N2 (1 Ly, +oLy, ) dri+dr?) (B.6)
Also, from (2.2.1.1.7),(2.2.1.1.8), and (2.2.1.1.9),

E (dx)? ~ (MuAN), Ly +dN; L))
= (M Ly, + oLy, )dr )

= A2p2 (1 Ly +l oLy )P dr? (B.7)
Thus,
E (dx?)—E (dx)* =A\*u2dr? 8 k2 (B.8)

Therefore, from the definitions of l:,l , l:, ,» and the equation L,lz + L,zz + L,z2 =1, the

illumination direction can be calculated as follows.

L, b 2y 2
L1,= T, L12= —E—-, L13= 1_LI, —L12 (B,9)

And, from the relation between the x-y-z coordinate system and the angular coordinate
system, we can represent the illumination direction with its tilt and slant angles, 1,

0. Thus,

L,
T = tan”! (—;—Z-), o = cos'lL,3 (B.10)
L,
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Appendix C

Proof of Theorem 2.3

Let 6, be the phase angle between the viewing direction V and the illumination
direction L, y be the incident angle between the illumination direction and the surface
normal direction, and 1 be the emittance angle between the viewing direction and the
surface normal direction. Then

V-L=coso;, L-N=cosy, and V-N=cosn (C.1)
Intensity function x(/,,/,) can be represented by the following equation.
x(11,12) =AU(L-N) =Apcosy, when cosy 20. (C.2)

Then, for each of surface patches, to determine the expected value of image intensity,
we need to average x(/1,/7), and, to determine the expected value of image intensity

squared, we need to average x%(14,15) over the image of a hemisphere.

Notice that since not all of the hemisphere is illuminated, we should integrate
only over the illuminated region, to avoid areas where cosy is negative. A suitable
spherical coordinate system can be erected with the equator in the plane containing L
and V, with the pole at right angles to this plane, namely at O, defined to be a unit
vector orthogonal to the plane containing L and V. Let latitude be T measured from
the equator, while longitude is G, measured along the equator from the point V toward
L. Therefore, the point L has longitude oy and zero latitude. Simple spherical

trigonometry using a triangle with comners V, N, and O, yields
COST] = COST COSO (C.3)

and from a similar triangle with corners L, N, and O, we can obtain
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cosy = cosT cos (G — Op) (Ca

The illuminated half of the sphere runs from ¢ = -n/2+6;, to 0 =+n/2+0;, while the
visible half goes from 6 =-mn/2 to 6 =+n/2 and the infinitesimal element of area is

costdodr.

The integrals that we are interested in are of the form

w2 w2
[ | f(o,7)cosn costdodt (C.5)
-2 “7U2+0'L

where the cosn term compensates for the foreshortening due to the projection of the
spherical surface into the image. We need this factor because we are using a
coordinate system on the hemisphere, but are seeking an average over the image of
the hemisphere. If we include self-shadowed areas in the computation of the average,
we must divide the integral by the whole area, =, of the disc that is the projection of
the hemisphere, on the other hand, if we do not include self-shadowed areas, we
divide by the area (m/2)(1+cosoy) of the projection of the illuminated part of the

hemisphere.

Thus, from (C.2) and (C.4),

E (x) = AuE (cosy)

= AULE (cosT cos (0 — ©L)) (C.6)

Here, to get the value of E (cosy), we need to evaluate the integral

2 w2

B, = _[ j (cosM cosy) cost dodT (C.7
‘TC/2 —7(/2+OL
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2 w2
= I j (cosT cosO)(cosT cos (0—0)) cosT dodr (C.8)
-2 -m2+0y,
/2 w2
= J‘cos3m”c f cos (6—G1) coso dC (C.9)
-n/2 —/2+0,,
2
= —g—(sino,‘+(7r—0L)coso,_) (C.10)
Therefore,
L 2h
Ex)= W(.s‘m(SL+(7t—(5L)cosGL), (C.11)
or
. 4Au .
E(x)= ————————(sino +(n— '080L), C.12
(x) 3Tt(]wL(l.()mL)(sm LHm—0L)cosOL) (C.12)

depending on whether we average over all image regions, including self-shadowed

parts, or not.

Similarly, to get the value of E (x?), we need to evaluate the integral

n/2 w2
B, = _[ J' cos cos2q/ cost dodt (C.13)
-2 -ni2+oy
2 w2
= J _[ (cos T cOsT)(cosT cos (001 )) cost dodt (C.14)

n2 -0y

2 w2

= J costtdrt j cosz(o—GL)coso do (C.15)
w2 T2+0,
n 9

= _}?( 14+cos0;)” (C.16)

Therefore,
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2
E(?)= %l-)—(lircosol_)z, (C.17)

or

2
E(x?)= %Q—(Hcosq), (C.18)

depending on whether we average over all image regions, including self-shadowed

parts or not.
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