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ABSTRACT

To recover 3-D structure from a shaded and textural surface image involving

textures, neither the Shape-from-shading nor the Shape-from-texture analysis is

enough, because both radiance and texture information coexist within the scene

surface. A new 3-D texture model is developed by considering the scene image as the

superposition of a smooth shaded image and a random texture image. To describe the

random part, the orthographical projection is adapted to take care of the non-isotropic

distribution function of the intensity due to the slant and tilt of a 3-D texture surface,

and the Fractional Differencing Periodic (FDP) model is chosen to describe the

random texture, because this model is able to simultaneously represent the coarseness

and the pattern of the 3-D texture surface, and enough flexible to synthesize both

long-term and short-term correlation structures of random texture. Since the object is

described by the model involving several free parameters and the values of these

parameters are determined directly from its projected image, it is possible to extract

3-D information and texture pattern directly from the image without any pre-

processing. Thus, the cumulative error obtained from each pre-processing can be

minimized. For estimating the parameters, a hybrid method which uses both the least

square and the maximum likelihood estimates is applied and the estimation of

parameters and the synthesis are done in frequency domain. Among the texture

pattern features which can be obtained from a single surface image, Fractal scaling

parameter plays a major role for classifying and/or segmenting the different texture



patterns tilted and slanted due to the 3-dimensional rotation, because of its rotational

and scaling invariant properties. Also, since the Fractal scaling factor represents the

coarseness of the surface, each texture pattern has its own Fractal scale value, and

particularly at the boundary between the different textures, it has relatively higher

value to the one within a same texture. Based on these facts, a new classification

method and a segmentation scheme for the 3-D rotated texture patterns are developed.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1. Introduction

An important task in computer vision is the recovery of 3-D scene information

from single 2-D images. However, this is an ill-posed problem [13, 178], because we

have only 2-D information but try to extract 3-D information from it. Therefore, we

need additional information for this missing dimension to recover 3-D scene

information. To date, researchers have suggested two different ways to handle this

lack of information. The first one is the use of shading information in the image

[30,31,73,75,100, 144, 172]. Shading information tells us the direction of the light

source and the surface orientation of the object surface. Thus, by formulating the

reflectance map function which shows scene radiance as a function of the surface

gradient and the distribution of light sources, we can extract 3-D surface information

from image data. The second method is the use of texture information

16, 82, 109, 135,207,221]. Since texture gradients behave like intensity gradients, the

shape of a surface can be inferred from the pattern of a texture on the surface by

applying statistical texture analysis.

However, for describing a natural scene image, each of the above approaches

have their own limitations. Shading information is meaningful only under the

assumption that the surface is smooth enough to have clear radiance information, even
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though this situation is rarely encountered in practice. Thus, instead of having clear

radiance information, the scene image has texture pattern information due to the

complexity of the surface in most cases. This encourages us to study the texture

pattern of a 3-D surface. Therefore, the modeling and analysis of texture patterns

which contain 3-D information of the surfaces will be the main focus of this thesis.

3-D texture analysis involves at least the several following difficulties. First, for

the recovery of 3-D shape from the natural scene, a texture model itself will not be

enough to represent the whole surface, because texture analysis requires the surface to

be relatively complex to have a statistical property. However, some parts of the

surface may not contain clear information about the texture pattern due to dark

shading or bright radiance. In other words, we may have a situation such that the

radiance information is more dominant than the texture information. Therefore, our

model should have an ability to handle both the texture and radiance information at

the same time. Second, since the observed texture image is actually the image

obtained by projecting the surface image to the image plane, this projected random

texture pattern does not have the stationary property any more, even though the

original surface normal image can be represented by a stationary random texture

pattern. Thus, the conventional 2-D texture models under the assumption of

stationarity can not be used. Third, for the classification and texture segmentation

purpose, our model should have a 3-D rotational invariant property, since the

observed texture pattern may have various looks depending on the viewer's direction.

Thus, the classification and/or segmentation scheme for the 3-D rotated texture pattern

should have the flexibility to treat different looking textures as being the same without

losing the accuracy of the processes.

In this thesis, to solve the difficulties discussed above, a composite model of

Shape-from-shading and Shape-from-texture is developed to represent a 3-D surface
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image considering the scene image as the superposition of a smooth shaded image and

a random texture image. The orthographical projection is adapted to take care of the

non-isotropic distribution function due to the slant and tilt of a 3-D texture surface,

and the Fractional Differencing Periodic model is chosen because this model is able to

simultaneously represent the coarseness and the pattern of the 3-D texture surface

with the fractional differencing parameters c, d and the frequency parameters W1, W02.

For the classification and segmentation purpose, these fractional differencing

parameters play an important role, because those parameters are known to be

rotational and scaling invariant. Thus, combining these parameters and directional

frequency parameters in the fractional differencing periodic function, we can have the

flexibility to handle the rotated and projected texture pattern and the accuracy of the

classification. For estimating the parameters, a hybrid method which uses both the

least square and the maximum likelihood estimates is applied and the estimation and

the synthesis are done in frequency domain.

1.2. Modeling Of A Surface Image

Modeling of a 3-D surface image can be broken down into two main categories,

Shape-from-shading and Shape-from-texture. The Shape-from-shading model uses

the reflectance map which shows scene radiance as a function of the surface gradient

and the distribution of light sources to extract 3-D surface information from image

data [30,991. On the other hand, the Shape-from-texture model uses the texture

pattern instead of shading to extract 3-D structure [82, 109, 1351. Since texture

gradients behave like intensity gradients, the shape of a surface can be inferred from

the pattern of a texture on the surface by applying statistical texture analysis.

However, for describing a natural scene image, each of the above approaches has its
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own limitation. The Shape-from-shading model is applicable only under the

assumption that the surface is smooth enough to have clear radiance information,

while the Shape-from-texture model requires the surface to be relatively complex so

that texture information can be extracted. Thus, neither model is suitable to represent

a natural scene, because both radiance and texture information coexist within the

surface of a natural scene. Therefore, a robust technique is needed to handle this

shortcoming. Recently, the fractal scaling parameter was introduced to measure the

coarseness of the surface, and applied to represent the natural scene surface

[47, 132, 151, 173]. However, this fractal model is also not enough to represent the

real 3-D texture image, because even though two surfaces are estimated to have the

same fractal scales, these surfaces can have different texture patterns. Therefore, in

this thesis, the Fractional Differencing Periodic model is chosen to represent the 3-D

surface image, because this model is able to simultaneously represent the coarseness

and the pattern of the 3-D texture surface with the fractional differencing parameters

c, d and the frequency parameters w0, o2.

1.3. Fractional Differencing Model

As mentioned previously, the fractional differencing model has an ability to

simultaneously represent the coarseness [175] and the pattern of the 3-D texture

surface with the fractional differencing parameters c, d and the frequency parameters

0l, w2. Also, it has the property of being flexible enough to synthesize both long-term

and short-term correlation structures of random texture depending on the values of the

fractional differencing parameters [89, 101]. For estimating the parameters,

comparing with the fractional Brownian random process model [151], the fractional

differencing model has a simple estimation scheme sharing the same properties of the
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fractional Brownian process, because while the fractional Brownian process is a

continuous process which follows a certain probability distribution, the fractional

differencing model is a discrete process which has a linear function of parameters. A

hybrid method which uses both the least square and the maximum likelihood

estimates is applied and the estimation and the synthesis are done in the frequency

domain [671.

1.4. Shape From A Shaded And Textured Surface Image

In this thesis, a composite model of Shape-from-shading and Shape-from-texture

is developed to represent a 3-D surface image considering the scene image as the

superposition of a smooth shaded image and a random texture image, that is, the

deterministic function x(11 ,12) and the random function y(11, 12). Then, the

orthographical projection is adapted to take care of the non-isotropic distribution

function due to the slant and tilt of a 3-D texture surface. Thus, the Orthographically

Projected Fractional Differencing Periodic (OPFDP) model is chosen because this

model is able to simultaneously represent the coarseness and the 3-D rotated pattern of

the surface with the fractional differencing parameters c, d, the frequency parameters

c 1, w2, and the relationship between different directions of 3-D surface. Since the

object is described by a model involving several free parameters and the values of

these parameters are determined directly from its projected image, it is possible to

extract 3-D information and texture pattern directly from the given intensity values of

the image without any pre-processing. Thus, the cumulative error obtained from each

pre-processing can be minimized. For estimating the parameters, a hybrid method

which uses both the least square and the maximum likelihood estimates is applied and

the estimation and the synthesis are done in frequency domain based on the local
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patch analysis. By using this model, the integrability problem waich might occur in

spatial domain analysis can be avoided, because only one inverse Fourier transform

needs to be taken at the end of the procedure to get the whole image.

1.5. Classification Of 3-D Rotated Textures

The classification problem can be stated as an allocation of observed texture

image data to the one of the pre-defined texture classes. These texture classes can be

described by texture features, and then texture features can be the parameters in

stochastic model [46, 53, 92], or structural model [142,2161. Thus, the key step in the

classification process is the choice of a set of features which can reduce the dimension

of the image data to a computationally reasonable amount of data. The features should

be simple and easy to extract from the given data while preserving the classifying

information present in the data.

Most classification schemes which have been suggested to date are under the

assumption that the test sample data possesses the same surface orientation as the

training sample data. Thus, if the orientation of test image is different from the

training sample data, for example, in case of a rotated image, the classification

performs poorly. This reduces the flexibility of those classification schemes.

However, most natural texture images which we can encounter in practice are

representing the texture on the 3-D surface, thus, the observed image is a projected

surface image onto the 2-D image plane with a 2-D rotated, or 3-D slanted and tilted

texture pattern. Therefore, sometimes it is desirable for the classification scheme to

have the flexibility that it can classify even rotated or scaled texture to the original

class of it. This is a good indication why it is so important to have the rotational and

scaling invariant features in our model. In this thesis, a classification method which
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can handle arbitrary 3-D rotated samples of textures is developed, i.e., the accuracy of

classification is not affected by the 3-D rotation of the test texture. This classification

scheme is based on a two-level hierarchical structure. In the first level, a 3-D

rotational invariant feature, fractal scale c, is extracted from the first-order fractional

differencing model by applying a least-square estimation method, and this feature is

used to classify the test texture image to a class whose members are sharing a similar

value of fractal scale. And in the second level, the members of the class are further

classified to the final desired subclasses with other texture pattern features, 01 and 0r2,

which are extracted from the second-order projected fractional differencing model by

applying a hybrid method of the least-square estimation and the maximum likelihood

estimation. As a result, this multi-level classification scheme saves a reasonable

amount of processing time without losing the accuracy of the classification.

1.6. Organization Of The Thesis

Various applications of the Fractional Differencing model have been investigated

to represent 3-D texture pattern through this thesis. An important aim of this study is

to develop the mathematical model suitable for the 3-D surface image which the

radiance and texture information coexist in. The Orthographically Projected Fractional

Differencing (OPFD) model developed here performs very well to represent the

texture pattern on the 3-D surface, because of the rotational and scaling invariant

parameters in it. This rotational and scaling invariant property of these parameters has

been successfully applied to segment or classify the rotated and slanted texture plane

in the rest of the chapters.
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The organization of the thesis is as follows. In chapter 2, two different categories

of 3-D surface model, Shape-from-shading and Shape-from-texture, are discussed, and

several typical methods of each categories are compared with their simulation results.

Two projection methods, orthographical and perspective projection, are also presented

to represent the distortion due to the tilt and the slant of the surface. In chapter 3, the

Fractional Differencing model suggested in chapter 2 to represent the 3-D texture is

discussed in detail, and its estimation scheme based on the Least-Square and

Maximum likelihood estimation methods is presented. Chapter 4 presents a composite

model of Shape-from-shading and Shape-from-texture to extract the 3-D structure

from the surface image which contains the radiance information and the texture

information at the same time. This suggested model is directly applied to the given

image without any pre-processing, and as a result of this, the errors which might result

from each pre-processing are not cumulated. In chapter 5, a classification scheme of

the 3-D rotated textures is developed based on the fractal scale. This fractal scale is

known to be a rotational and scaling invariant parameter, and can be extracted by

fitting the given tilted or slanted texture image to the proposed Fractional Differencing

model. A multi-level structure of the classification structure is also introduced to

reduce the processing time. Finally in chapter 7, the conclusion of this study and the

suggested future research are presented.
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CHAPTER 2

MODELING OF A SURFACE IMAGE

2.1. Introduction

Modeling of a 3-D surface image can be broken down into two main categories,

Shape-from-shading and Shape-from-texture. The Shape-from-shading model uses

the reflectance map which shows scene radiance as a function of the surface gradient

and the distribution of light sources to extract 3-D surface information from image

data [30,73,75, 100, 144, 172]. On the other hand, Shape-from-texture model uses the

texture pattern instead of shading to extract 3-D structure [6, 109, 135,207,216, 221].

Since texture gradients behave like intensity gradients, the shape of a surface can be

inferred from the pattern of a texture on the surface by applying statistical texture

analysis. However, for describing a natural scene image, each of the above

approaches has its own limitation. The Shape-from-shading model is applicable only

under the assumption that the surface is smooth enough to have clear radiance

information, while the Shape-from-texture model requires the surface to be relatively

complex so that texture information can be extracted. Thus, neither model is suitable

to represent a natural scene, because both radiance and texture information coexist

within the surface of a natural scene. Therefore, a robust technique is needed to

handle this shortcoming. Recently, the fractal scaling parameter was introduced to

measure the coarseness of the surface, and applied to represent the natural scene

surface 147,132,151, 1731. However, this fractal model is also not enough to
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represent the real 3-D texture image, because even though two surfaces are estimated

to have the same fractal scales, these surfaces can have different texture patterns.

Therefore, in this thesis, the Fractional Differencing Periodic model is chosen to

represent the 3-D surface image, because this model is able to simultaneously

represent the coarseness and the pattern of the 3-D texture surface with the fractional

differencing parameters c, d and the frequency parameters (o1, 02.

2.2. Shape-From-Shading

Pioneering work on the inference of shape-from-shading was done by Horn and

his co-workers [30,99, 1001. To extract 3-D shape from a single 2-D image, they used

the reflectance map, which shows the intensity of the image as a function of the

surface gradient and the illumination direction. (Figure 2.1 shows the relationship

between the different directions and angles.)

pCOS(L sinoL+qsinTL sinaL+cosaL R (p,q) (2.2.1 .a)i(l 1,12) =
P ,2+q2+ 1)1/2

= sinUcostcostLsinaL + sinasintsin'tLsinaL + cosacosoL (2.2.1.b)

where p= -M-l(l1,12), q= a- -H(11,12)

R(p,q) : Reflectance map function

H (11,12) : 3-D shape function from the viewing direction.

,t, a : Tilt, slant of the surface

"tL, 0 L : Tilt, slant of the illumination direction

Here, the relationship between t, o and p, q are



,r tan- (1 ,( o- (2.2.2.a)
p N~p 2+q2 +1

12

S urface Illumination
Normal Direction

Viewing

Direction

Figure 2. 1: Three Different Directions on 3-D) Surface
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p = tanocost, q = tanosint (2.2.2.b)

Figure 2.2-a,b were simulated from the equation (2.2.1), assuming that the slope

values p, q in directions Of 11, 12 and the illumination direction were given.
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... . .: ... ... ....!:! ~ ii : :i i : : ::

.......... ..
.. ::::::... : . .:. ..
...-..:..+ .. .. .. ..::.:............... . .... ..... .: .~:iiiiiii~i

(a) (b)
Figure 2.2: Intensity images of a sphere from the various directions of light
source. (a) aL = O.O,,XL = 0.0 (b) cL = -0.66,,tL = -0.66 [rad]. (Images are

simulated by (2.1.2.1a) and intensity values are normalized between 0 and
255.)

Construction of 3-D shape can be achieved by solving p, q in terms of i(l 1, 12) at

each point, and integrating those values. However, the final integrated shape can be

different from the original shape, due to the cumulation of estimation errors. To avoid

this type of error, Horn and Brooks [100] developed a calculus of variation method to

estimate the surface orientation values, and Pentland [172] suggested local shape

analysis which deals with the only local areas instead of a whole image. However,

Pentland's technique has severe trouble in integrating all local areas. Recently,

Pentland 11691 developed another technique to solve the integrability problem. He
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suggested analysis in the frequency domain, instead of in the spatial domain. By using

this method, the integrability problem can be avoided, because only one inverse

Fourier transform needs to be taken at the end of procedure. However, since the

calculation of convolution is required in the frequency domain to handle simple

multiplication operation of spatial domain, calculation will be complicated. Horn and

Brooks' method was improved by Frankot and Chellappa [761 recently, by adding one

more constraint of the integrability in addition to the smoothness constraint. The

estimation error and the integrability problem can be handled by the image model

suggested in this thesis, because our model has a constraint which is from the texture

pattern and is analyzed in frequency domain.

2.2.1. Estimation Of Illumination Direction

The first step in estimating local surface orientation is the determination of the

illumination direction for the surface, L, and the constant ,Lg for a particular

estimation neighborhood. Estimation methods of illumination direction L were

suggested by Pentland [171], and C-H Lee [144] in different ways.

2.2.1.1. Pentland's Method

Pentland's approach was based under the assumption that the surface normal of

each local patch is isotropically distributed within a scene. Assuming that the

distribution of the surface normal is known and the intensity value is measurable for

different directions within the image, one could estimate the illumination direction L

using a least square estimation procedure [1711. The solution of this approach follow.
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Theorem 2.1: Let di(11, 12) be the first derivative of image intensity at a particular

point in the direction (dl I, dl 2 ), and di be the average value of di over the j-th patch

in direction (dl Ij,dl 2j). Then,

dxI dl1 di21
d&x2 dl 12 d1 22

The proof is in Appendix A.

Theorem 2.2: The illumination directions for 11, 12, 13 direction are

L , L 2 =-, L2 2
L1=k 1 I2=k ,L13 I-Lj 1

2-L, 2
2 .

where k= (di2)-(di)
2

di2 : the average value of di 2 for the whole image.

di: the average value of di for the whole image.

and

XL tn -  ( tL, L = cos-I Lt
TL =tan L13

where 'EL " Tilt angle of illumination direction

TL Slant angle of illumination direction
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The proof is in Appendix B.

Pentland's method is a very good tilt estimator, as well as a very good slant

estimator if the slant is below 40 degrees. However, due to the small variance of

di(11 ,12), this method results in a large error in the slant estimation whenever the slant

is above 50 degrees. This experimental result has been confirmed by Lee [144) and

Ferrie & Levine [73]

2.2.1.2. Lee's Method

Lee suggested a different statistical approach to estimate the illumination

direction [144]. By assuming that the slant (T is uniformly distributed over the sphere

surface, the probability density function for the slant a can be obtained by (sin o)/2 7t.

To determine the expected value of image brightness i(11,l2), we should integrate only

over the illuminated region, because not all of the sphere is illuminated. Thus, the

region of integration should be set based on the foreshortening factor. Also, this

region of integration can be different under the condition when the self-shadowed

area. is included in the computation of the average. If we include the self-shadowed

areas in the computation, we must divide the integral by the whole area, t, of the disc

that is the projection of the hemisphere. If, on the other hand we do not include the

self-shadowed areas, we divide by the area (7r/2 )(l+cOsaL) of the projection of the

illuminated part of the hemisphere. Thus, from the integration, we can get the

expected values of i(1,12) and i 2 (11 ,12) as follows:

Theorem 2.3: The slant of illumination direction OL satisfies
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E[i] = 23 (sinYL+( -- L)COS(YL)
3nt

Eli 2 ] _ (8'i) 2 (l+cOSUL) 2  ,when self-shadowed parts are included8

E[i] = 4cs (sincL+(7-L)COSaL)3n(I+cosCL)

E[i 2 _ 4 (l+cOSYL) ,when self-shadowed parts are not included.

4

where Xgi is constant for the reflectance, and the mathematical expectation is taken

over the whole image.

The proof is in Appendix C.

Thus, the slant GL can be estimated from above equations by taking the average

value of intensities over the whole image for E[i] and E[i 2 ]. The tilt of illumination

direction "CL can be also estimated from Theorem 4.1 of [144].

[ a2 i(l1,12)]

tL 1) tan-]) (2.2.1.2.1)E[ -- 11 W(1,12)]

Here, the estimated values Q(.) are taken over the whole image by taking the average

value of the function.

Lee's method has several advantages over Pentland's method. First, calculation

is much simpler, because calculations are required only once over the whole image.

Second, we can calculate the slant of illumination direction directly from two

equations without knowing the value of Xjgt. Experimental results of Lee's method are
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known to be superior to Pentland's for the estimation of both tilt and slant. This has

been confirmed by Lee [144] and Ferrie & Levine [73]. Because of these advantages,

Lee's method was used to determine the illumination direction for the construction of

3-D shape in this thesis.

2.2.2. Estimation Of Surface Orientation

The extraction of 3-D surface orientation from single 2-D images is an ill-posed

problem, because we have only 2-D information but try to extract 3-D information

from it. Therefore, we need additional information for this missing dimension to

recover 3-D scene information. To date, several approaches have been suggested by

researchers to give an additional constraint, such as the integrability, smoothness, etc.

The following sections will discuss several approaches among them in detail.

2.2.2.1. Horn And Brooks's Method

Horn and Brooks [30, 100] developed a calculus of variation method to estimate

surface orientation. In the presence of noise, the real values may not be the same as

the estimated values that satisfy the image irradiance equation exactly. There will,

however, be a surface that minimizes the integral of the square of the error between

the expected values and the real values. Thus, the search for a function that minimizes

an integral of this error was taken to be the major concern of this calculus of

variations. However, this problem is an ill-posed problem, because there are typically

an infinite number of surface satisfying this equation. Therefore, the equation needs an

additional constraint to have a unique solution. Horn and Brooks proposed the

additional constraint of a smoothness criterion [30]. Surface orientation can be
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obtained by minimizing the following cost function

ff(i(lI,l 2 )-R(p;q))2 +X-(( a-2 H(11,12) 2 +2( a2H(11,12) ) 2

+(--22 H(11,12))2)di1dl2 (2.2.2.1.1)

Horn's method has good estimation results in the presence of noise. However, when

the surface is not relatively smooth enough, the result from this method can possess

the integrability problem. This lack of integrability can be found from the simulation

examples in Section 2.2.3.

2.2.2.2. Chellappa And Frankot's Method

Frankot and Chellappa's method [76,78] is based on the calculus of variation

method of Horn and Brooks. However, this method deals with one more constraint

about the integrability. As discussed before, Horn & Brooks added the smoothness

constraint to yield the unique solution, but that method can have the lack of

integrability. Thus, Frankot and Chellappa proposed an additional constraint to

enforce the integrability. This integrability can be achieved by satisfying the following

requirement.

a2  a2

-H(11,12)-l2 H(,1 2 ) (2.2.2.2.1)

There are many conceivable ways of enforcing above equation. One of them is the

minimization the following distance measure.

fJ((p-E[p]) 2+(q-E[ql) 2 )dll dl2  (2.2.2.2.2)

Let C be the coefficients of the Fourier series expansion of H(11,12), C1, and C12 be the
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Fourier coefficients for the expectation values of p, q (slopes in directions of I1,12).

Then, the above cost function can be minimized by taking

-jo) = C1, ((0)-J" 2 C12 (o)
(I, 2 +"2 2

Thus, the construction of 3-D shape can be achieved by simply taking the inverse

Fourier transform on C0).

Frankot and Chellappa's method is a good estimator of surface orientation.

From the smoothness constraint and enforcing integrability, the general shape of the

3-D object can be obtained. However, due to too much smoothing, the detail

information about the surface may be lost.

2.2.2.3. Pentland's Method

The Shape-from-shading problem is known to be mathematically equivalent to a

nonlinear first-order partial differential equation in surface elevation. Therefore, it is

very difficult to obtain the closed form solution. For this reason, Pentland [1691

proposed a linear approximation method to estimate the values, using a Taylor series

expansion in p, q variables up to the second order. Thus,

cosaL (p2 q2)
i(1,12) COSaL+pcostLsinaL+qsintLsin (2.2.2.3.1)

The corresponding DFT of i(11 ,12) is as follows. (after deleting the constant term

COSaL)

COSUL

ti(k ,k2 ) COS'tLsinaLrp(klk 2 )+s intLSi1G JLq(k I,k 2 )  2 ( Dp ®tp+tq 0q)

II || I ! ! ml~l~lliiiimll n nu n n m m n n . . . ..2
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(2.2.2.3.2)

Then, fp(kl,k 2 ) and i"q(kl,k2) can be represented as the function of f '(kj,k 2 ), by the

approximation of the first derivative of H(11 ,12) function. Thus, fi(kl,k 2 ) can be

represented as a function of ttj(kl ,k2 ) only, and the height function H(11,12) can be

constructed by simply taking the inverse Fourier transform of the intensity function

i(11 ,12).

k,
tp(kj ,k2 ) = jsin(2nt-)f 1(kj,k 2 ) (2.2.2.3.3)

N

Similarly,

fq(kt ,k 2 ) = jsin(2 t-2 )-,(ki ,k2 ) (2.2.2.3.4)

Under the condition Ipl, Iqi < 1, the linear term dominates. Thus,

fi(k1 ,k 2 ) COStLsinGLrp(kl ,k 2 ) + sin'tLsinaLfq(kl ,k 2 )

k, k2
jsinUL(sin( 2 7t--)costL + sin(27t-- -)sint)f 1(kl ,k 2) (2.2.2.3.5)

Pentland's method has a nice mathematical formulation because in frequency domain,

the equation has only one unknown variable. Thus, this equation has a unique

solution. However, the first-order linear approximation yields a big estimation error,

while the second-order approximation requires convolution in frequency domain and

requires too much computation. This results will be confirmed from the examples in

Section 2.2.3.
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2.2.3. Simulation Results

A 128 x 128 real image of a part of a tree in a grass meadow is considered

(Figure 2.3). From this image, the estimation values of the illumination direction 0 L,

'tL was determined to be 0 L= -1.3384, tL= -4.257899e-02, by applying Lee's method.

Following Figure 2.4-a,b show the results of the height functions constructed from

Aorn and Brooks's and Frankot and Chellappa's algorithms, respectively. From these,

we can see that Frankot's algorithm gives a nice and smooth height function, while

Horn's gives a rough surface but detailed information of the surface. The experiments

were repeated for the smoothed part images which were obtained by different sizes of

smoothing windows. These experiments could give the idea of how the smoothing

affects the results. Figure 2.5-a,b,c depict the part images which are smoothed by the

different sizes of window, and Figure 2.6-a,b, Figure 2.7-a,b, and Figure 2.8-a,b also

depict the corresponding height functions from each cases by Horn's and Frankot's,

respectively. From these experiments, we can see that for the image smoothed by the

relatively large size of window, Horn's and Frankot's are getting closer. Pentland's

algorithm was not considered here, because of the poor performance from the linear

approximation. Figure 2.9 shows the resulting height function constructed from the

low-frequency linear approximation method of Pentland for Figure 2.5-b.
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Figure 2.3 A digitalized tree image sized by 512 x 512
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(a)

Figure 2.4: The height function of Figure 2.3: constructed by (a) Horn's method,
(b) Frankot's method: Surface orientation for each pixel was obtained from
minimizing the cost function (2.2.2.1.1) and (2.2.2.2.2), respectively.
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(b)

Figure 2.4, continued
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(a)

(b) (c)

Figure 2.5: A part of the tree image (Figure 2.3): (a) original, (b) Image obtained
after convoluting a 5 x 5 smoothing window to (a), (c) Image obtained after
convoluting a 9 x 9 smoothing window to (a).
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(a)

Figure 2.6: The height function of Figure 2.5-a: constructed by (a) Horn's
method, (b) Frankot's meihod: Surface orientation for each pixel was obtained
from minimizing the cost function (2.2.2.1.1) and (2.2.2.2.2), respectively.
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(b)

Figure 2.6, continlued
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(a)

Figure 2.7: The height function of Figure 2.5-b: constructed by (a) Horn's
method, (b) Frankot's method: Surface orientation fo(r each pixel was obtaiuid
from minimizing the cost function (2.2.2.1.1) and (2.2.2.2.2), rc~pccowvcy.
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(b)

Figure 2.7, continued



a'.,

(a)

Figure 2.8: The height function of Figure 2.5-c: constructed by (a) Horn's
method, (b) Frankot's method: Surface orientation for each pixel was obtained
from minimizing the cost function (2.'."1. 1) and (2.2 2.2 2), respectively
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(b)

Figure 2.8, continued.
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Figure 2.9: The height function of Figure 2.5-b, which was constructed by
Pentland's method(2.2.2.3.1-5): Closed form solution of the surface orientation
was obtained in the frequency domain by the linear approximation method.
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2.3. Shape-From-Texture

The Shape-from-texture problem has been studied extensively to recover the 3-D

information from a two dimensional image [6, 109, 135, 136, 156,221] since Gibson

first proposed the texture density gradient as the primary basis of surface perception

by humans in 1950. Motivated to simulate human perception, he confines the surfaces

under consideration to only those whose orientations could be easily perceived from

the texture by human eye. However, if the true texture is not isotropic and has a

preferred orientation, it mimics a projected image and thus makes it difficult to detect

the true orientation. Therefore, to formalize the shape-from-texture problem requires a

projection model for the image formation system. Up to now, two kinds of projections

called 'orthographical projection' and 'perspective projection' have been used in most

of cases. The orthographical projection can be obtained by projecting the object

surface to the image plane parallelly without considering the average distance from

the camera, while in the perspective projection model, the scene depth is relative to

the distance between the object and the camera. Thus, the perspective transformation

yields orthographical projection as a special case when the viewpoint is at a point

infinitely far from the object surface. Another model required to formalize the shape-

from-texture is a random field model. This model should represent the statistical

property of the texture on the surface properly, and its parameter estimation scheme

should exist. Various types of random field models have been proposed to date to

represent the surface covered by texture. Among them, the AR(Auto-Regressive)

model [41, 122] is known to be simple enough to estimate and synthesize the texture

plane whose statistical pattern is isotropically distributed over the plane. Another

noticeable model for the 3-D textured surface is the Fractal model [133, 1731. The

fractal model contains a fractal scaling parameter. This fractal scaling parameter can
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be a measure of the roughness of the surface and can be considered as a scale and

rotational invariant parameter. I lowever, these models have their own limitations in

representing the true texture surface. The AR model does not have a long-term

persistent memory property, thus, it is not proper for the texture pattern which

contains a long-term memory in a certain direction, such as a tree-bark image. On the

other hand, the Fractal model has only three variable parameters, mean, variance and

fractal scaling. Those are not flexible enough to model the wide range of situations

encounted in practice. This conflict can be solved in the fractional differencing

periodic model which is suggested in this paper. That is, tmc tractional differencing

periodic model contains four parameters, two frequency parameters, which are similar

to the texture pattern parameters in AR model, and two other fractional differencing

parameters, which are corresponding to the fractal scaling parameter in the fractal

model. Therefore, the fractional differencing periodic model gives more flexibility of

modeling.

2.3. 1. Projection

As mentioned in previous section, the projection model is basic and necessary to

formalize the shape-from-texture problem to represent the slanted and tilted texture

surface. To date, there are two different projection models which have been used in

most cases. Those are 'Orthographical projection' and 'Perspective projection'. Detail

discussion on these will be given in the following sections.
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2.3.1.1. Orthographical Projection

Consider a plane with a texture on it, and take the nil -m2 coordinate system. Put

a line passing through the origin, and let T be the angle made from the ml -axis. Rotate

the plane around the line by angle Y and project the rotated plane orthographically

onto the original plane (Figure 2.10).

m2 or 1,

112

G
l'1

Sml or12

Figure 2.10: Coordinate transformation of the orthographic projection (2.3.1.1.4)

Thus, a new coordinate system from the viewing direction, 11 -12, can be obtained

from the following two coordinate transformations.

I1 [cost -sint ri 1
Lt C Hn costr ML2 (2.3.1.1.1)

and
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Hence, as is well known, the coordinate transformation of the orthographic

projection between the m1 -M2 system and 11-12) system can be given as follows.

[ ost -sin't iF () -ost -SintJ- 1 Im 1a
L12i - int cosT 11 OS ,o~j in, COST] mn2 j(231.-)

CO2 -coscsin 2 x (l-cosCY)sinxcosT (2.31.13-1
-(cos(5)sinTcost sin 2 T+CSTO ~oao 2 T J~2J(231.-b

Thus,

[inn 2 [nT+cosGcos2 t (cosa-1 )sinccostl [1'] (2.3.1.1.4)
m2J cosO L(o I)Sintcost cos2T+cos~ysin 2 T L121

One grid pattern image (Figure 2.11 -a) was considered to demonstrate this

orthogonal projection. The coordinate transformation was taken to this image with

it Rt 7C It
-Y T= - and (T T,'=--. Figure 2.11-b and Figure 2.11-c depict these

8 4 84

transformnation respectively.



(a)

(b) (c)

Figure 2.11: 2-D grid pattern images: (a) Original, (b) Image obtained after
projecting the image (Figure 2.11 -a) orthographically, with a = 7r/4 and 'c = 7r/8 in
(2.3.1.1.4), (c) Image obtained after projecting the image (Figure 2.11-a)
orthographically, with a = t/4 and t = -t/8 in (2.3.1.1.4).
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2.3.1.2. Perspective Projection

The perspective projection acts like a pinhole camera in that the image results

from projecting scene points through a single point onto an image plane.

y

, - - - (x,y,z)

~" "'y')

- IK
z

, f

x

Figure 2.12 Perspective projection

As in Figure 2.12, if the point of projection corresponds to a viewpoint behind

the image plane and the image occurs right side up, the viewpoint is +f on the z axis,

with z = 0 plane being the image plane upon which the image is projected. Thus, as

the image object approaches the viewpoint, its projection gets bigger. In Figure 2.12,

y', the projected height of the object, is related to its real height y, its position z, and

the focal length f by

y' = (f/f-z)y (2.3.1.2.1)

Similarly
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X' = (f/f-z)x (2.3.1.2.2)

The projected image has z = 0 everywhere. However, projecting away the z

component is best considered a separate transformation; the projective transform is

usually thought to distort the z component just as it does the x and y. Perspective

distortion thus maps (x, y, z) to

(x' y, Z') fx fy fz) (2.3.1.2.3)(xyz'= f_ zf-z' f-z

Notice that the perspective transformation yields orthographical projection as a special

case when the viewpoint is the point at infinity in the z direction. Then all objects are

projected onto the viewing plane with no distortion of their x and y coordinates.

Another point about the perspective transformation is that if z is a known function of

x, y and the surface orientation a and t, the result of the transformations in (2.3.1.2.1)

and (2.3.1.2.2) is a nonhomogeneous planar texture. This is important because under

orthographical projection a homogeneous texture on a slanted and tilted plane was

transformed to another homogeneous texture due to the linearity of the transformation

(2.3.1.1.4), while under perspective projection it is not a homogeneous texture any

more. Thus, the analysis in the frequency domain by the discrete Fourier transform is

no longer valid.

To overcome this difficulty associated with the perspective projection, we can

approximate the perspective projection by an affine transformation which is suggested

by Aloimonos and Swain [61. The approximation is done by dividing the projection

process into two steps. The first step is projecting the local plane Q with orientation

given by a,,t onto the plane T which is parallel to image plane I. This projection is

performed parallel to the ray OG, where G is the center of local plane. The second

step is projecting this plane T perspectively onto the image plane I. Since the plane T
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is parallel to the image plane, this perspective transformation is just a reduction by a

factor of 1/P. Figure 2.13 depicts this relationship.

Thus, the transformation from surface plane coordinate (mi ,m2 ) to image plane

coordinate (11,12) with the two step projection process is given by the following affine

transformation [6].

-l+pA q(p+A)

1 i (1+p2)(1+p 2 +q2)(..124
1] = f pB qB-p2-1 2 (2.3.1.2.4)

l-++p N(l+p2 )(l+p 2+q2)

Here, the point (A,B,-1) is the mass center of the image texel, and p, q are the same as

defined in (2.2.1). Therefore, the non-homogeneous texture due to perspective

projection can be approximated by piecewise homogeneous ones, and each local

homogeneous texture patch is easily synthesized by using the above linear affine

transformation.

2.3.2. Random Texture Analysis

For the surface which is covered by a texture pattern, or is relatively complex,

the random field model can be applied over the surface normal plane for

',pproximating the s-rface image. However, differently from the regular 2-D texture

analysis, 3-D textural surface image analysis can be enhanced by considering the

fractional differencing parameter, (which is the 'fractal scaling parameter' in the

terminology of Pentland [173, 176]) which indicates the roughness of the surface, in

addition to the texture pattern. In other words, a 3-D textured surface can be

represented by the fractal scaling and the texture pattern parameters in a certain

random field model. Therefore, the model based on 2-D texture pattern only, such as
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y
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z

Figure 2.13 : Approximation method of perspective projection



the Auto-Regressive(AR) model [1221, or the model based on 2-D fractional

Brownian motion process with one fractal scaling parameter, such as Pentland's

model [1761, has limited modeling ability. That is because the AR model or the fractal

model can represent only the texture pattern or the roughness of the surface, thus,

either model is not flexible enough to represent the wide range of different texture

patterns encountered in practice, especially non-stationary random texture. This

limitation can be overcome by using the 2-D FDP (Fractional Differencing Periodic)

model which contains both texture pattern and fractal scaling parameters [671.

2.3.2.1. A'.,o-Regressive(AR) Model

The autoregressive model is one of the classical short correlation models. This

model is simple but has good modeling performance. Assume that the image intensity

follows the autoregressive model. Let (11,12) be an index for the coordinate location

and i(11 ,12) be the i,'tensity at the coordinate (11,12). Then the auto-regressive model is

represented by the following equation.

i(11,12) = OTz(I1,12) + (11,12) (2.3.2.1.1)

where 0 is parameter vector and z(01,12) is a vector which consists of intensities of the

neighbor pixels and unity. { (11,12) } is a two dimensional white noise sequence

with variance p.

For example, in case of the Causal Auto-Regressive (CAR) model as a special

case of the AR model, the parameter vector 0 is 4 x 1 column vector and z(01,12) is

another 4 x 1 column vector which contains three causal neighbors and unity as the

elements.
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W(1,12-1)

z(1 1,12 ) = i(111,12) (2.3.2.1.2)

Notice that because of the causality of this model, the resulting two dimensional

model has all the convenience of a one dimensional model.

The parameters 0 and p can be estimated by the least squares method. Let 0 and

p be the least squares estimators of 0 and p. Then

=I Z z(l1 ,12 )z( 1, 12 )T - [ Z z(11 ,12 )i(11,12)] (2.3.2.1.3)
11,12 11,12

and

p [i(l 1 ,12 ) - 0 z(11 ,1 2 )] 2  (2.3.2.1.4)
N 2

where N is row and column dimensions of the image.

Therefore, because of the simplicities of estimation and synthesis, the AR model

has been used in various applications. However, for the case of 3-D texture surface

representation, this model is not enough to handle long-correlated texture pattern in

some directions such as a tree bark image, because of its short-correlated property.

2.3.2.2. Fractal Model

In 3-D textural surface image, the fractional differencing parameter, which is

'fractal scaling parameter' in the terminology of Pentland [173, 1761, indicates the

roughness of the surface. That is, as the value of the fractal scaling parameter

increases, the model represents a 3-D surface textured more roughly. Typical 2-D

fractional Brownian motion surface i(11,12), which was suggested by Pentland,
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satisfies the following relationship. Define Ai, = I i(112 ,122 ) - i(111 ,121 ),

Ar = (112 - 111)2 + (122-121)2. Then

E(Ai&r) - ArF (2.3.2.2.1)

The fractal dimension of the fractional Brownian motion surface is then 3 - F

[151,461. However, this model is not proper to present 3-D texture pattern because

the fractal of surface is assumed to be spatially isotropic, thus, the fractional Brownian

motion process with one fractal parameter is not flexible enough to represent the wide

range of different texture patterns encountered in practice, especially non-stationary

random texture. Also, comparing with other model-based model such as AR model,

this model is not practical to be used because it is difficult to estimate the fractal

scaling parameter from the given intensity image directly.

2.3.2.3. Fractional Differencing Model

The 1-D Fractional Differencing model was suggested by Hosking [101],

generalizing the well-known ARIMA model of Box & Jenkins [23], which was

originally designed to model a non-stationary random process. This 1-D model was

extended to 2-D case by Kashyap and Lapsa [116] later. A typical second-order

Fractional Differencing Periodic (FDP) model is as follows.

C

i(l1,1 2 ) = (l-2cos(ozj-1+ zj- 2 ) 2

d
- (1-2cosO02 zE-I+z2- 2 ) 2 (l1,12) (2.3.2.3.1)

for 11,12 = 0,1 ...... N-1.
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The corresponding DFT of this function is

k, k1  c

I(kl,k 2 ) = (1-2cosole n + e N ) 2

k2  k2  d
-j2n - -j4n-- _

S(1-2cos0ae N + e N ) 2 W(kl,k 2 ), (2.3.2.3.2)

where zi is the delay operator associated with li, (11,12) is an i.i.d. Gaussian

sequence, and W(kl ,k2 ) is the corresponding DFTI.

This model has four different parameters, c and d for the fractal scales and 0h

and o)2 for the frequencies of pattern in the direction of 11 and 12, respectively. Thus,

this model represents the roughness of the surface and the pattern of the texture image

at the same time even with the different values for the direction of 11, 12 separately.

Also notice that this random process model has the property of being flexible enough

to explain both the long-term and short-term correlation structure of a time series

depending on the values of the fractional differencing parameter c, d, and it shares the

basic properties with Fractional Brownian motion defined by Mandelbrot [151]. More

detailed discussion about estimation scheme and synthesis of this model will be given

in the next section.

2.3.3. Simulation Results

For the experiment, one tree bark texture on the surface of a tree is considered

(Figure 2.14-a). As seen from Figure 2.14-a, the pattern of tree bark texture has

different values of frequency and roughness in the horizontal and vertical directions.

Thus, it cannot be represented by either Pentland's model or a 2nd-order AR model,

because Pentland's model can have only various fractal scales and a 2nd-order AR
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model has only directional frequencies. Figure 2.14-b,c show the limitation of

Pentland's Fractal models with fractal scale c--0.9 and c=1.5, respectively, and Figure

2.14-d shows the limitation of a 2nd-order AR model with the directional frequencies

3--0.25 and o2=0.025 in direction of MI, m2 .

On the other hand, Figure 2.15 shows how well the Fractional Differencing

Periodic (FDP) model fits to the tree bark texture. Here, the directional frequencies

Cw1, o)2 and the fractal scales c, d in FDP model are chosen as 0.25, 0.025, 1.5, 0.8,

respectively.

2.4. Conclusions

Various models to represent 3-D surface have been considered. The Shape-

from-shading model is based on the reflectance map function which shows scene

radiance as a function of the surface gradient and the distribution of light sources to

ev tract 3-D surface information. The Shape-from-texture model uses the texture

pattern instead of shading to extract 3-T) structure. Then, the fractal model was

discussed considering a fractal scale to rrprese.,t the roughness of the surface. Thus,

several estimation schemes for the direction of the light, the projection methods, and

2-D statistical texture models have been considered. However, for describing a natural

scene image, the above approaches have their own limitations. The Shape-from-

shading model is applicable only under the assumption that the surface is smooth

enough to have clear radiance information, the Shape-from-texture model requires the

surface to be relatively complex so that texture information can be extracted, and the

fractal model with one fractal scaling parameter does not have enough flexibility to

represent the various texture patterns which we can encounter in practice. To give

more flexibility to represent a real surface image and to have an ability to handle the
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Figure 2.13: Synthesized surface shapes over 64x64 sized normal plane patch from
(a) A tree image whose surface is covered by the tree bark texture, (b) Pentland's
model with the fractal scale c=0.9, (c) Pentland's model with the fractal scale
c=1.5, (d) 2nd-order AR model with the frequency 01-0.25, o2)O--0.025 in
directions of il, rn2 , respectively.



smooth surface and the textured surface simultaneously, the Fractional Differencing

model was suggested in this chapter.

151

27 !

63 0

(a) (b)

Figure 2.14: Surface shapes obtained from Fractional Differencing Periodic model
(2.3.2.3.1): (a) Synthesized surface shape over 64x64 sized normal plane patch
with the frequency co0=0.25, o)2=0.025 and the fractal scale c=1.5, d=0.8 in
direction of MI, M2 , (b) corresponding surface image.
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CHAPTER 3

FRACTIONAL DIFFERENCING MODEL

AND ESTIMATION

3.1. Introduction

As mentioned previously, the fractional differencing model has an ability to

simultaneously represent the coarseness and the pattern of the 3-D texture surface

with the fractional differencing parameters c, d and the frequency parameters (01, (02.

Also it Ias the property of being flexible enough to synthesize both long-term and

short-term correlation structures of random texture depending on the values of the

fractional differencing parameters [1011. For estimating the parameters, comparing

with the fractional Brownian random process model [151], the fractional differencing

model has a simple estimation scheme sharing the same properties together, because

while the fractional Brownian process is a continuous process which follows a certain

probability distribution, the fractional differencing model is a discrete process which

has a linear function of parameters. A hybrid method which uses both the least square

and the maximum likelihood estimates is applied and the estimation and the synthesis

are done in frequency domain [67, 1271.
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3.2. Fractional Brownian Model

Brownian motion is a continuous time stochastic process B (t) with independent

Gaussian increments and spectral density -2 . Its derivative is the continuous-time

white noise process, which has constant spectral density. Fractional Brownian motion,

BF(t), introduced by Mandelbrot and Van Ness [151], is a generalization of these

process as follows. Let 0 < F < 1 and let b0 be an arbitrary real number. Define

BF(0) = b0,

0

BF(t) - BF(0)- 1(F 1/2) f t(t-s)F-1/2 - (_s)F-112 1dB (s)

I

+J(t-s)"-112 dB(s)}, for t > 0, (3.2.1)
0

and similarly for t < 0. Notice that for F = 1/2, this definition becomes that of

classical Brownian motion B (t). This Fractional Brownian motion has the following

basic properties [ 1011.

Property 1: Fractional Brownian motion with parameter F, usually 0 < F < 1, is the

I(T - F)th fractional derivative of Brownian motion.

Property 2: The spectral density of fractional Brownian motion is proportional to

-2F-1

Property 3: The covariance function of fractional Brownian motion is proportional

to Ik 12F-2.

Thus, the derivative of fractional Brownian motion, B'F(t), may also be thought of as

the (--F)th fractional derivative of continuous-time white noise, to which it reduces
2
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1
when F -. One of the possible discrete-time analogues of this continuous-time

2

fractional noise is discrete-time fractional Gaussian noise, which is defined to be a

process whose correlation function is the same as that of the process of unit

increments ABF(t) = BF(t) - "F(t-1) of fractional Brownian motion.

However, the modeling ability of fractional Brownian motion noise has

sometimes been claimed to be inferior to that of other processes such as the high-order

Moving Average (MA) process. This is because of that fractional Brownian model has

only three variable parameters, mean, variance and F, and those are not flexible

enough to model the wide range of randomness encounted in practice. Also, it is

relatively difficult to estimate parameter F and to synthesize with it, because of the

continuous-time process of this model. Therefore, to give more flexibility of

modeling while keeping the same properties as the fractional Brownian model,

Fractional Differencing model will be introduced in the next section.

3.3. Fractional Differencing Model

3.3.1. I-D Fractional Differencing Model

The 1-D Fractional Differencing model was suggested by Hosking [101],

generalizing the well-known ARIMA model of Box & Jenkins [23], which was

originally designed to model a non-stationary random process. A typical 1-D first-

order Fractional Differencing model is as follows.

C

y(l) = (1-z - ') 2 (3.3.1.1)

where z is the delay operator in the direction of 1, and C(1) is white Gaussian
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noise.

This random process model has the property of being flexible to explain both

long-term and short-term correlation structures of a time series depending on the

values of the fractional differencing parameter c, and it shares the basic properties

with Fractional Brownian motion defined by Mandelbrot [151].

1
Theorem 3.3.1.1: The spectral density of ( y (1) is s (o)) = (2sino)-c for

0 < co)<_ i and s (co) = C c as wo 0, assuming that (%= 1.

C

(Proof) Let B (z) = (1-z - 1) 2. Then, s (z) can be written by B (z)B- 1 (z)o 2 . Thus,

since 2 1, we have s (w) = B (e J)B (e-J'). The result follows on substitution of

C
B (ej w° ) = (I - e- j °) 2

Theorem 3.3.1.2: The autocovariance function of (y (1)) is

F(k+C
2+- 7tc 2 -cfr11<_

Pk = 2 c sin(2) • [(1-c), for -1 < £ < c #0. (3.3.1.2)
F(k+l- 2 ) 2 2

2

and the autocorrelation function is given by

cF-(I- 2 )  r-(k+ 2 )

Pk = 2 (3.3.1.3)
c c

F2) 2(k+l-

2nmmn Tnnnmnnmmnmm mmn
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C

Pk - • k _-1 (3.3.1.4)

r(-c)
2

(Proof) The autocovariance, if it exists, will be given by

2n

f= J coskco s(co)dw (3.3.1.5)
0

R C

f J 2 2 coskco (sino/2)- c d~o. (3.3.1.6)
0

Using the standard formula,

n ic cosan/2f sinV-x sx dx= coa2
0 = 2v B v+a+l v-a+l (3.3.1.7)0 2 - • v -B( ,2 - )2 ' 2

we can get (3.3.1.2). Here, B(-,') is Beta function. Also, from the definition of the

autocorrelation function, Pk = -R. Therefore, (3.3.1.3) follows on substitution of Rk

p0
and pR. As k--o, F(k+a)/F(k+b) can be approximated by ka - b, using the standard

approximation derived from Sheppard's formula. Therefore, it follows that the

autocorrelation is given by (3.3.1.4).

Definition 3.3.1: When c < 0, the Fractional Differencing process (3.3.1.1) has a

short-term memory, and when c > 0, it has a long-term memory.
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From Theorem 3.3.1.1 and 3.3.1.2, when c > 0, the autocorrelation function Pk is

positive and decays monotonically and hyperbolically to zero as the lag increases, and

the corresponding spectral density s (co) is concentrated at low frequencies: s (Co) is a

decreasing function of o and s (wo) -*- as (o - 0. Similarly, when c < 0, s (W) is

dominated at high frequencies: s (co) is a increasing function of (o and vanishes at

co = 0. Therefore, when c < 0 or c > 0, the Fractional Differencing process (3.3.1.1)

has a short-term or long-term memory, respectively.

Corollary 3.3.1: The Fractional Differencing process is the discrete version of

fractional white noise process, and shares the basic properties with Fractional

Brownian motion.

(Proof) Brownian motion is a continuous time stochastic process B (t) with

independent Gaussian increments. Its derivative is the continuous-time white noise

process, which has constant spectral density. Fractional Brownian motion, BF(t), is a

generalization of these processes. Then, Fractional Brownian motion with parameter

F, usually 0 < F < 1, is equal to the (I - F)th fractional derivative of Brownian
2

motion in Riemann-Liouville sense. The continuous-time fractional noise process is

then the derivative of Fractional Brownian motion, thus it may also be thought of as

1
the (T - F)th fractional derivative of continuous-time white noise. Therefore, the

Fractional Differencing model (3.3.1.1) is the discrete version of this continuous-time

fractional white noise process, and it shares some properties with Fractional Brownian

motion [1011.
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3.3.2. 2-D Fractional Differencing Model

In 3-D textural surface image, the fractional differencing parameter, which is

'fractal scaling parameter' in the terminology of Pentland [173, 176], indicates the

roughness of the surface, that is, as the value of the fractal scaling parameter

increases, the model represents a 3-D surface textured more roughly. However,

Pentland's model based on 2-D fractional Brownian motion process with one fractal

scaling parameter has limited modeling ability, because the fractal of surface is

assumed to be spatially isotropic. Thus, Pentland's model is not flexible enough to

represent the wide range of different texture patterns encountered in practice,

especially for the non-stationary random texture. In other words, this model can tell

how rough the surface is, but can not tell which pattern the surface is covered with.

This limitation can be overcome by using the 2-D Fractional Differencing models as

follows.

3.3.2.1. First-order Fractional Differencing Model

As mentioned in previous sections, Pentland's fractional Brownian motion model

with one fractal scaling parameter is not flexible enough to present the different

texture patterns. However, even from the first-order Fractional Differencing model,

we could get more flexibility of modeling, because it contains two different fractal

scaling parameters, c, d, in directions of 11 and 12. This model does not require the

stationarity of random texture. The typical first-order Fractional Differencing model is

as follows.
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c d

y(11,12)=(1-Z 1 ) 2 (-z 2 ') (1,12) (3.3.2.1.1)

for 11 ,12 
= 0,1 ...... N-1.

The corresponding DFT of this function is

-j 2n c -j 2n d
Y(kl,k 2 )=(l-e N) 2 (le N 2 W(k 1 ,k 2 ), (3.3.2.1.2)

where zi is the delay operator associated with Ii , (11,12) is an i.i.d. Gaussian

sequence, and W(k 1 ,k 2) is the corresponding DFT.

3.3.2.2. Second-order Fractional Differencing Periodic Model

The typical second-order Fractional Differencing Periodic (FDP) model is as

follows.

C

y(l 1,1 2)=(1-2coso1zI- + z 2

d

- (1-2cosoc2 z2-1+z2
- 2 ) 2 (11,12) (3.3.2.2.1)

for 11 ,12 = 0,1 ...... N-1.

The corresponding DFT of this function is

Y(k 1,k 2 ) = (1-2coscoe +e N) 2

-jk 2 - k2  d

- (1-2cosco2e +e N ) 2 W(kI,k 2), (3.3.2.2.2)

where zi is the delay operator associated with Ii , (,12) is an i.i.d. Gaussian

sequence, and W(k 1,k 2) is the corresponding DFT.
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This model has four different parameters, c and d for the fractal scales and (01

and o2 for the frequencies of pattern in the direction of 1I and 12, respectively. Thus,

this model represents the roughness of the surface and the pattern of the texture image

at the same time even with the different values for the direction of 11, 12 separately.

3.3.3. Parameter Estimation

Because of the flexibility and the simplicity of Fractional Differencing model, it

is attractive in modeling various kinds of time series, inclu,4ing 2-D random texture

image. However, the estimation of the fractal scaling parameters c, d and the

frequency parameters oh, cj is difficult and this difficulty further delayed the

application of this model. There have been several approaches for estimating

parameters in various kinds of fractional differencing time series since Hosking

introduced Fractional Differencing model [101]. For example, Granger and Joyeux

[89] approximated this model by a high-order auto-regressive process and estimated

the differencing parameter by comparing variances for each different choice of it.

Lapsa [121] suggested a maximum-likelihood estimator in the frequency domain and

showed the consistency of the estimator. This frequency domain analysis was further

studied by Eom, and a hybrid method of least-squares and maximum-likelihood

estimations was recently proposed to estimate the fractal scaling parameters and the

frequency parameters, respectively [67]. In this thesis, a least-squares or a

maximum-likelihood estimation algorithm will be applied to estimate the parameters,

based on Eom's algorithm.
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3.3.3.1. First-order Fractional Differencing Model

The estimation of fractal scaling parameters c and d in the first-order fractional

differencing model (3.3.2.1.1) can be done by a simple least-square estimation scheme

in the frequency domain based on a representation of the logarithm of the process

which is linear in the parameters as follows. By applying the logarithm operator to

(3.3.2.1.2), we can obtain

el -j 2n d-j 2rtk n

logIY(kl,k 2 ) =-C logl 1-e I -dlog I1-e NI +logIW(kl,k 2)l
2 2

c irkI d . k2=--log 2sin(- )I --- log 2sin(- )I +logIW(kl,k 2 )1
2 N 2 N

(3.3.3.1.1)

c ikl d irk 2=--log 12sin(- -) -- o 2s - a + +V (k ,k2)
2 N 2 N

,for k1 ,k 2 =0,1,...,N-1 (3.3.3.1.2)

where a = -E[logI W (k 1,k 2) I ] and V (k 1,k 2) = log I W (k 1 ,k 2 )I + .

Then 0 = (c,d, a)T can be estimated by minimizing the following cost function.

N-I [N/2J C 7EkI
J(0,01,(02)= 1 (logIY(k 1,k 2 1 + - logl2sin- I

kj=O k2 =0 2 N

d -o 2 + C)2
2 log I 2sin I c4 (3.3.3.1.3)
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N-1 [N/2J

= X E (loglY(kl,k2)1 -TQ(kl,k 2))2  (3.3.3.1.4)
k1 =O k2 =O

Here,

2 log Isin- - I

Q(kk 2)= -1 log 12sin Tk2 1 (3.3.3.1.5)

2 N
-1

Thus, the estimated values will be

N-1 [N121 N-I [NI2J[ c~,&lr( Q(ki,kE)Q(kl,kE))- (y E' . Q(ki,kElgYk,))
k1=0 k2-O k-O k2--O

(3.3.3.1.6)

3.3.3.2. Second-order Fractional Differencing Periodic Model

The estimation of parameters in the Fractional Differencing Periodic model

(3.3.2.2.1) can be done in the frequency domain [127].

For estimation, all parameters can be estimated directly from the given data

Y(k 1,k 2), if we can obtain the likelihood function of IY(kl,k 2)I. Then, since the

noise sequence (l1,12) is assumed to be white Gaussian, W(kl,k 2) and Y(kl,k 2 )

follow the Rayleigh distribution as in the following theorem.

Theorem 3.3.3.1. The modulus of the DFT of the noise sequence, (IW(kl,k 2)1,

k i = 0, -1, k 2 =O,1,..., [N/2J} and (IY(kl,k 2)1, kI=O, ... ,N-l,
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k 2 =0,1,..., [N/2]) are the white sequences with the following Rayleigh densities.

F 2W -W2

2W exp ( -2~

fjW(k1 .k2)1(W)= N e p , W > 0

L, otherwise

2s2klk 2 Y(kl,k2) -s2kl,k 2 Y2(k I,k2)

fIY(k .k 2)l (Y) = pN 2  exp pN 2  , Y(k 1,k 2) 0

0 otherwise

where

c d
2tk 1  2 tk 2  2

skj.k 2 = 12cos(- ) - 2cosco1 I 12cos(- ) - 2cos0o21

(Proof) Let W(k 1 ,k 2 ) be the DFT of a white noise sequence ( 1,12) with a normal

distribution, that is,

W(l,12)-N(O,P) ,for 11,12 = 1,2,...,.N (3.3.3.2.1)

Then, W(k 1,k 2) will follow another normal distribution as follows [27].

W(k 1,k 2 ) - N(N'E [C(/ 1,12)],pN 2 ) (3.3.3.2.2)

- N(0,pN 2 ) (3.3.3.2.3)

and

N2 )
Re(W(k 1,k 2 )), Im(W(k 1,k 2)) - N(0, p (3.3.3.2.4)

'2

where Re(W) and Im(W) are the real and the imaginary parts of W(kl,k2),

respectively.
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Now, consider the density function of IW(kl,k 2 )I. Since W(k 1 ,k2 ) is a

complex, defining W be W (k1 , ,k2 ),

I W (k l,k 2 )1 = -Re 
2 (W) + 1M2 (W) (3.3.3.2.5)

Define =tan- ( k -W)). Then, we can have the following relations.
Re(W)

Re (W) = I W(k1, k 2 )1 cosO (3.3.3.2.6)

Im(W)= IW(ki,k2)I sin4 ,forIWl >0 (3.3.3.2.7)

Thus, the joint probability density of I W I and 0 can be obtained from the Jacobian

and the joint probability density of Re(W) and Im(W) as follows.

f ~ ~ Jcba IW 0W10 fRe(W hn(W) (Re (W),Im(W)) ,for IWI > 0 (3.3.3.2.8)

= I W IfRc:(W)(I W ICOSO) flM(W)(I W Isin4) (3.3.3.2.9)

= 7tpN e pN 2  (3.3.3.2.10)

DIWI alwl
where Jacobian = aRe (W) alm (W) (3.3.3.2.11)

aJRe (W) alm (W')

1 (3.3.3.2.12)

Therefore, since IW Iand 4 are independent, and the density function of 4,f,4,is
I

2it'

and
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2W__p -w2

f IW I(W) {PNNeXP(PN2) 0 (3.3.3.2.13)

0 otherwise

Now, set

c d2i2k:k2irk 2

Sklk 2 = 12cos( n - 2cosco1 I 12cos( N 2coso)2 2 (3.3.3.2.14)

Then, we can have

I Y(kl,k 2)1 = Sk,.k 2
- I W(kl,k 2)1 (3.3.3.2.15)

Thus, the density function of I Y(kl,k 2)1 can be represented by following

equations.

flY(k,.k)I (Y) = Sk1 .k2 flw(k.k 2 )I (Sklk 2Y(kl ,k 2 )) (3.3.3.2.16)

2s 2k .k2 Y(kl ,k 2 ) -s2k,.k 2 Y2(kl,k 2 )

= pN 2  exp pN 2  ,Y(k 1 ,k 2) > 0

, otherwise

From these probabilistic properties, the estimation of parameters can be done by

a hybrid method of Least Square and Maximum Likelihood estimations, which was

suggested by Eom [671. For LS estimation, if the values of parameters (01, (2 are set,

then 0 = (c,d, x)"' can be estimated by minimizing the following cost function.

N-i LNI2I C 2tkI
J(0,oI,W2 )= (logIY(k 1,k 2 I + -1logl2cos -2coscolI

k=--O k2=0 N
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d 2tk 2 +a2+-log I2cos - -2cos C2I 1c) (3.3.3.2.17)
2 N

N-i [N12]jT )Y, I (logIY(kl,k 2)1 oT(k,,k2 ) (3.3.3.2.18)
kj=O k2=0

where ct=-E[logI W(kj,k 2)I], 0=(c,d,ct)T.

Here,

-1 27rk1
-log I2cos - - 2coscol 12 N

Q(k 1,k2) -1 2(33..219
-log I2cos - - 2coso(j(33..219

2 N

Thus, the estimated values will be

,d..T .N-1 [N12] N-I LNr~J
kj=0 k2=0 kj=O k2=-O

(3.3.3.2.20)

Also, ML estimators Of (1, (02 can be calculated by maximizing the log-

likelihood function L (Y;O, 0 1, w2) with &~ estimated from above.

N-i [N12] .. [N/2J N2

k1410 k,2=O k,=() k2=0

C N-I 2nk I [N12J 2irk 2+ - N Z log I2(co- N coso 1) I +±dN Y, log 12(cos- -osco2)1
2 N0 k,2=ON
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1 N-I [NI2j 2tk, c 27tk 2  d 2
.. -N k I _I 12(cos N cosco) I12(cos--cos(02)I IY(kk 2)
pN2 k=0 k 2--O N

(3.3.3.2.21)

where p is a variance of (1i ,12) and can be estimated by the following equation

in mean square sense.

^ 1 / 2
p= - 262 (3.3.3.2.22)

N 2 exp (y-a 6N2

where y is Euler's constant (= 0.5772157) [671.

Therefore, the estimation scheme can be summarized as follows:

(Estimation Algorithm)

Step 1: Choose resonant frequencies (ol, w2 in the range of [0,2-

'2

Step 2: With the given values of o, and 2, estimate c, d, and cx by LS estimation

algorithm (3.3.3.2.20).

Step 3: Using ox, compute the estimate of the variance of p, (/1,12), by equation

(3.3.3.2.22).

Step 4: Using the estimates , d and p found in Steps 2 and 4, maximize the

likelihood function given by (3.3.3.2.21) with respect to o1 and 02.

Step 5: Using the estimates co, and co2 , repeat Step 2 to Step 4 until the estimates

have no significant change in successive iterations.
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3.4. Conclusions

In this chapter, various types of Fractional Differencing model have been

considered and compared with the Fractional Brownian model. The Fractional

Brownian model has been used for measuring the roughness of a surface by

researchers. However, the modeling ability of Fractional Brownian motion noise is

limited, because this model has only three variable parameters, mean, variance and

fractal scale F, thus, those are not enough to model the wide range of randomness

encounted in practice. Also, it is relatively difficult to estimate the fractal scale F and

to synthesize with it, because of its continuous-time process. To give more flexibility

of modeling keeping the same properties of Fractional Brownian motion process, the

Fractional Differencing model is suggested. The Fractional Differencing model is a

discrete version of the Fractional Brownian model. Thus, this model shares the same

properties of the Fractional Brownian process and has a relatively simple structure. In

this model, Fractal scale can have two different values in the directions of x and y, and

this gives more flexibility for modeling non-isotropic distributed random texture.

Additionally, this model can be extended to the second-order of process to provide

another pair of frequency parameters (o1, o)2. Using this 2nd-order Fractional

Differencing model, the roughness and the texture pattern of a surface can be

represented simultaneously. Parameter estimation schemes for each model are also

developed based on the least-square estimation and the maximum likelihood

estimation.
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CHAPTER 4

SHAPE FROM A SHADED AND TEXTURED

SURFACE IMAGE

4.1. Introduction

An important task in computer vision is the recovery of 3-D scene information

from single 2-D images. 3-D analysis of an image can be broken down into two main

categories, Shape-from-shading and Shape-from-texture. The Shape-from-shading

technique uses the reflectance map which shows scene radiance as a function of the

surface gradient and the distribution of light sources to extract 3-D surface

information from image data [99, 144, 1721. On the other hand, the Shape-from-

texture analysis technique uses the texture pattern instead of shading to extract 3-D

structure. Since texture gradients behave like intensity gradients, the shape of a

surface can be inferred from the pattern of a texture on the surface by applying

statistical texture analysis [6, 135,206, 221 I.

However, for describing a natural scene image, each of the above approaches has

its own limitation. The Shape-from-shading technique is applicable only under the

assumption that the surface is smooth enough to have clear radiance information,

while the Shape-from-texture technique requires the surface to be relatively complex

so that texture information can be extracted. Thus, neither technique is suitable to

recover 3-D structure information from a natural scene, becausc both radiance and



67

texture information coexist within the surface of a natural scene. Therefore, a robust

technique is needed to handle this shortcoming. Recently, the fractal scaling

parameter was introduced to measure the coarseness of the surface, and applied to

represent the natural scene surface [176]. However, this fractal model is not enough

to represent the real 3-D texture image, because even though two surfaces are

estimated to have the same fractal scales, these surfaces can have different texture

patterns.

In this chapter, a composite model of Shape-from-shading and Shape-from-

texture is developed to represent a 3-D surface image considering the scene image as

the superposition of a smooth shaded image and a random texture image. The

orthographical projection is adapted to take care of the non-isotropic distribution

function due to the slant and tilt of a 3-D texture surface, and the Fractional

Differencing Periodic model is chosen because this model is able to simultaneously

represent the coarseness and the pattern of the 3-D texture surface with the fractional

differencing parameters c, d and the frequency parameters 01, Wo2, and it has the

property of being flexible enough to synthesize both long-term and short-term

correlation structures of random texture depending on the values of the fractional

differencing parameter c and d. Since the object is described by a model involving

several free parameters and the values of these parameters are determined directly

from its projected image, it is possible to extract 3-D information and texture pattern

directly from the given intensity values of the image without any pre-processing.

Thus, the cumulative error obtained from each pre-processing can be minimized. For

estimating the parameters, a hybrid method which uses both the least square and the

maximum likelihood estimates is applied and the estimation and the synthesis are

done in frequency domain based on the local patch analysis. By using this model, the

integrability problem which might occur in spatial domain analysis can be avoided,
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because only one inverse Fourier transform needs to be taken at the end of procedure

to get the whole image.

The organization of this chapter is as follows. In section 4.2., we introduce the

image model i(11 ,12) which is obtained by superposing the deterministic function

X(1 ,12) and the random function y(ll, 12), and the relationship between the different

directions of a 3-D surface. In section 4.2.1-3, an estimation scheme for the

illumination direction, the modified reflectance map function for x(l1 ,12), and the

orthographically projected Fractional Differencing Periodic function for y(I 1,12) are

introduced. Section 4.3.1 outlines the estimation scheme for the parameters in the

composite model. Section 4.3.2 then discusses some simulation results carried out to

demonstrate the performance of the proposed algorithm, followed by Section 4.4

which concludes the paper.

4.2. Model Of 3-D Texture Surface Image

The surface shape is usually defined in terms of the viewer's coordinate system.

This system has axes 11, 12, 13 with the 13 axis in the viewing direction. The observed

intensity function i(1,1 2 ) of local shape of a 3-D surface can be considered as the

sum of a deterministic function x(11 ,12 ), and a statistical random function y(l1l,12),

whose expected value is zero:

i(1,1 2) =x(11 ,12 ) +Y(11, 12) (4.2.1)

and

Eli(11 ,12)1 =x(11,12) (4.2.2)

Thus, x(1 1 ,1)) can be simply estimated by smoothing, i.e., taking the average of

intensity values in the proper size of window. Then y(l1 , 2) can be estimated by
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subtracting this function from the original image i(l 1 ,12 ). Figure 4.1 shows this

superposition in a simple 1-D case. Note that these intensity functions do not

represent the actual shape of image, because the shading variations are caused by

changes in surface orientation relative to the illumination direction L. Therefore,

X(l 1 ,1 2 ) and y(l1,12) need to be projected to the illumination direction to extract the

shape information.

Let O,, TL be the slant and tilt of illumination direction L in the coordination

system with 11, 12, 13. The direction I, induces a coordinate system with axes

i 1, i2, 3 , and this is derived from the following transformation.

i - COSTLCOS'tL cosOLsintL -sinTL 11
i2 = -sinr L COS' L 0 12 (4.2.3)
i3 sin LCOSTL sincyLsinrL COSTL 13

I lere, i3 is the illumination direction L, and 13 is the viewing direction.

The surface normal, N, is another important direction of 3-D geometry. If we

dcfine a new coordinate system with axes, in1 , M2, M 3 , having the m 3 -axis in the

surface normal direction, these axes can be derived from the coordinate system of

viewing direction, i.e., 11, 12, 13, by using a coordination transform similar to the

above with different values of tilt t and slant Y.

[11 -cosacost cosasinT -sint m I
12 -sinc cosT 0 MO2 (4.2.4)
13 sincycost sinvsint coso 3

Refer Figure 2.1 for the relations between these three different directions and the four

different tilt and slant parameters, GL, TL, a, and r.

Let x'(rnl,mn2 ) and y'(rn1 ,m 2 ) be a deterministic and a random function

respectively, defined on the surface normal image plane, i.e., rn3 =0. Then,
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Y(li)

Figure 4. 1: Superposition of a random and a deterministic functions in 1-D case.



z'(m 1 ," 2 ), defined as the sum of these two functions, is merely the depth function z,

observed from the surface normal. However, note that y'(m ,m 2) is not the rotated

function of y(I ,2) but the projected function of y(l ,12) to the m 1-r 2 plane so that

they may satisfy the superposition property. Figure 4.2 depicts these relations

between functions.

4.2.1. Model Of The Deterministic Component x

As discussed before, a 3-D surface image can be considered to be the

superposition of a texture image and a smuoth shaded image. This smooth shaded

image can be represented by the deterministic function x(11 ,12 ). Thus, if the

illumination direction values for the whole image are given, the surface orientation

parameters slant, y, and tilt, r, can be estimated from x( 1,12) representing a smooth

surface by Shape-from-shading analysis.

Pioneering work on the inference of shape-from-shading was done by IHorn 1991

and his co-workers. To extract the 3-D shape function H(.,.) from a single 2-D image,

they used the reflectance map, which shows the intensity of the image as a function of

the surface gradient and the illumination direction.

pcOS'rLsin GL+qsincL sin L+COS L 4 R ( q) (4.2.2.1)

X ( 1 1  
22 ) =+ 1)1/2

where R(p,q) : Reflectance map function

P= a- /I(lj,12), q = a-- H (1l,12)

11(11,12) : 3-D shape function from the viewing direction.

'L, GYL : Tilt, slant of the illumination direction
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13
12

m 2
A 

/
Y(i1112)

,

Figure 4.2: 3-D Geometry of the functions x, y, x', y'



Here, from the relationship between the tilt "t, the slant Y of the surface and p, q

tan- ' (1), ( = Cos-1 1 (4.2.2.2.a)
P P Tp+q2+l

p = tanocost, q = tanasin , (4.2.2.2.b)

we can modify (4.2.2.1) to the function of a, t, GL, and XL as

x (11,12) = sinocostcosELsinaL + sinasintsinLsinaL + coscacosaL (4.2.2.3)

Construction of 3-D shape can be achieved by solving a, r in terms of x(U1 ,12) at

each point, and integrating those values. However, this approach needs the solutions

of at least two difficult problems. First, this is an ill-posed problem because there are

two unknown parameters and only one equation to be solved. Thus, we need an

additional constraint to have a unique solution. Second, the final integrated shape can

be different from the original shape, due to the cumulation of estimation errors.

To get a unique solution, the calculus of variation methods were used by

minimizing the estimation error after adding one constraint for the smoothness [100]

or integrability [76]. To handle the cumulative error, Pentland [172] suggested local

shape analysis which deals with only the local areas instead of a whole image.

However, Pentland's technique has severe trouble in integrating all local area surface

information. Recently, Pentland [169] developed another technique for solving the

integrability problem. He suggested analysis in the frequency domain, instead of in

the spatial domain. By using this method, the integrability problem can be avoided,

because only one inverse Fourier transform needs to be taken at the end of the

procedure. However, since the calculation of a convolution is required in the

frequency domain to handle a simple multiplication operation in the spatial domain,

calculation will be complicated. In this paper, these ill-posed and the integrability
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problems will be handled by an additional constraint from the texture pattern and

frequency domain analysis, respectively. (This will be discussed in detail later.)

4.2.2. Model Of The Random Component y

The random component Y(11,12) of the intensity function i(1,1 2 ) can not be

simply obtained by taking coordinate transformation to y'(m1 ,m 2 ), defined on the

surface normal plane image. Because the random function Y(l,12) was assumed to be

a 2-D random function, whose expectation value, E [y (11,12)], is zero, to satisfy the

superposition properties, this function should rather be considered as the function

obtained after projecting y'(mim 2 ) to the viewer's direction (as shown in Figure 4.2).

Thus, if we can model y'(ml,m 2 ) properly, y(l1, 12) will be obtained by projecting

this to the viewer's direction L.

4.2.2.1. Fractional Differencing Periodic Model For y'(m1 ,m 2 )

The random function y'(m 1,m 2 ), defined on the surface normal plane image, can

be approximated by a 2-D random field model, which is distributed over the surface

normal plane (as shown in Figure 4.1). Note that since this model is based on a 2-D

texture model, it will fit the plane surface more than any other shape of surface. Thus,

we apply this model to the local shape of the image because the local shape will be

closer and closer to the plane surface when we take a smaller patch.

Among the various random field models, the Fractional Differencing Periodic

model is chosen to represent this random texture surface in this chapter. This random

process model has the property of being flexible enough to explain both long-term and
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short-term correlation structures of a time series depending on the values of the

fractional differencing parameter c, that is, when c < 0, the fractional differencing

process has a short-term memory, and when c > 0, it has a long-term memory

(Theorem 3.3.1). Also it shares the basic properties with Fractional Brownian motion

defined by Mandelbrot 11511 (Theorem 3.3.2).

In 3-D textural surface image, the fractional differencing parameter, which is

'fractal scaling parameter' in the terminology of Pentland [173,1761, indicates the

roughness of the surface, that is, as the value of the fractal scaling parameter

increases, the model represents a 3-D surface textured more roughly. However,

Pentland's 2-D model with one fractal scaling parameter has limited modeling ability,

because the fractal of surface is assumed to be spatially isotropic. Thus, Pentland's

model is not tlexible enough to represent the wide range of different texture patterns

encountered in practice, especially non-stationary random texture. In other words, this

model can tell how rough the surface is, but can not tell which pattern the surface is

covered with. This limitation can be overcome by using the 2-D Fractional

Differencing Periodic model as follows [671.

C

y'(m"1,m 2 )=(l-2cos0)iz' -I +z' 
2) 2

d

(1-2cosi 2 z 2 +z -2) 2 '(rn 1 ,m 2 ) (4.2.3.1.1)

form 1,m 2 = 0,1 ...... N-I

The corresponding DFT of this function is

Y" (k l k I )=(-2cos(ol e IV+ e- 4N-- 2-



76

k2  k2  d-j 2i - -j 4it- --

(1-2coso2e -jN +e N 2 W'(kI,k 2 ), (4.2.3.1.2)

where z"i is the delay operator associated with mi, '(mrn2 ) is an i.i.d.

Gaussian sequence, and W'(k1 ,k 2 ) is the corresponding DFT.

This model has four different parameters, c and d for the fractal scales and 0)1

and w2 for the frequencies of pattern in the direction of m, and M 2 , respectively.

Thus, this model represents the roughness of the surface and the pattern of the texture

image at the same time even with the different values for the direction of mI, m 2

separately.

4.2.2.2 Orthographically Projected Fractional Differencing Periodic Model For

Y (11, 12)

The statistical model of the intensity function Y(l1,l2) cannot be simply obtained

by rotating the coordinate axes because the expected values of both y'(m1,m 2 ) and

Y( 1,12) must be zero over the planes to satisfy the superposition properties.

Therefore, such a function Y(lIl,12) that satisfies this requirement can be obtained by

projecting function y'(m ,m2 ) orthographically to the viewer's image plane. Figure

4.2 shows this projection.

A rnew coordinate system of the orthographically projected image from the

viewing direction, 11-12, can be obtained from the following two coordinate

transformat ions.
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1 cost -sinT [ln 1 (4.2.3.2.1)

2 SinT COST m 2 J
and

~(' ~sG]L~I(4.2.3.2.2)

Here, T is the angle between m I and I', axes and a is the rotational angle based on

l', -axis (Refer Figure 2.10).

Hence, the coordinate transformation of the orthographic projection between the

m I-n 2 system and 11-12 system can be given as follows [1101.

2 =  sint cost f cosa sint cost J Ln2 (4.2.3.2.3)

cos2 T+cososin t (1-coso)sintcosT't a1
(1-coso)sintcosr sin 2 T+COSaTCOS 2 T 1 2 (4.2.3.2.4)

Thus,

[in1  ~~ 1 sin 2 t~cOSCOS2 T (coscy-lI)sintcosT 1H 42325
n2j coso [(cosa-l)sintcost cos2r+cososin 2t L'1

A more detailed discussion on the orthographical projection and some examples

to demonstrate this projection were given in section 2.3.1.1 (Figure 2.11).

As a result of the coordinate transform (4.2.3.2.5), the model of intensity

function v(1, 1,) can be obtained from the Fractional Differencing Periodic model of

y'(m ,fn-) as follows.

Let
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c d

Y(1I,12) = (1-2cosolz 1-I+ z -2) 2 (1-2cosO 2 Z2-1+z2- 2 ) 2 (/1,12) (4.2.3.2.6)

where z 1 , z 2 are the delay operators, corresponding to 11 and 12, respectively.

By the definition of DFT, W(kl,k 2 ) corresponding to white noise sequence C(l,12)

is

N-I N-I 21T
V(kl,k2)= Y Z (1,12) exp[-j--(m kt+m 2 k 2 )J (4.2.3.2.7)

m 1 =0 m 2 =0

and, from (4.2.3.2.5),

N-I N-I 2
W(kl,k 2 ) = I (1,12) exp [-j N [((sin 2 t + cosocos2 t)k l

11=0 12=0 Ncos

+ (coso - 1)sintcostk 2 )11 + ((cosa - 1)sintcosTk1

+ (cos2 T + cososin2 t)k 2)12 1) (4.2.3.2.8)

Thus, as in I1 I, we can define

sinI T + CosOCos 2 
1 (coso - I)sintcosT-

z'2 I(4.2.3.2.9a)

(cosa - 1 )sinTcosT cos2T + cososinz

Z 7, Coso • COSO (4.2.3.2.9b)

and

n = I(si'-2T + cosocos 2 t)k + (coso - 1)sin'TcosTk 2l, (4.2.3.2.1Oa)COSOJ

nl2 I I(coso - I )sinTcostkI + (cos2 T + cossin2 t)k. 1 (4.2.3.2.10b)

Thus, from the orthographical projection, we can set
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W(k 1,k 2 ) = W'(n 1 , n 2) (4.2.3.2.11)

Therefore, with these relations, we can have the projected version of Y'(k,k 2),

which is DFT of y(l1,12) as follows.

_ n _j4nl C

Y(k 1,k 2 ) = (1-2coscile W+ e N)

n 2 d

•(1-2coso 2e J2R U +e j 4
In) 2 W(k 1,k 2 ) (4.2.3.2.12)

Note that the fractal scaling parameters c and d remain same as the ones before

projecting because of their scaling invariance property [101,125].

4.3. Projected Texture On The 3-D Surface

As discussed in previous chapters, the intensity function of an image, i( 1,12),

can be represented by the su'nerposition of a deterministic function x(ll,1 2) and a

random function y(l1,12). Therefore, if we can estimate all parameters, that is, a, '[ for

the surface orientation and c, d, w0, )2 for the pattern of texture from the intensity

function z directly, then we can get better estimates than the ones from the separate

procedures for each x and y function. It is obvious that the estimation error from one

procedure will cause another estimation error, thus, the errors will be cumulated. For

that reason, in this chapter, a composite model of Shape-from-shading and Shape-

from-texture wil! be discussed.

Consider the retlectance map function (4.2.2.3) for x and the 2-D

orthographically projected Fractional Differencing Periodic model (4.2.3.2.6) for y.

Then the intensity function z can be represented by
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i (l , 12) = E[sincoscos'rL sinL + sinsintsin L sinOL + COS(5COSOL]

c d

+ (1-2coscwlzj-t+z 2 ) 2 (l2coso2 z-l+z 2 ) 2 (11,12) (4.3.1)

where e is the normalization factor, and z l and z 2 are same as defined by

(4 .2.3.2. 9 a) and (4.2.3.2.9b), respectively.

Here, notice that the normalization factor E should be multiplied to the

reflectance map function R(Y,T), because R(Y,,t) is the normalized function which has

maximum value 1. Because our model is based on the assumption that each patch is a

slanted and tilted plane, the value of the deterministic function x(11 ,1 2 ) is a constant

over each patch, the best guess of the value of £ is the maximum value among the

average intensities of the patches,

1N' N'E = Maximum [ - .I i Ul1, 12)] (4.3.2)

where, M Total number of patches in the whole image.

N'• Size of the patch

ii(,) : Intensity function of the i-th patch.

Therefore, the value of E can be estimated from the whole image, before the actual

procedure on each patch. Thus, we assume E to be given, just as the illumination

directions GL, TL-

The DFT of (4.3.1) will be

I(k 1 ,k 2 ) = X (k 1 ,k 2 ) + Y(k 1 ,k 2 ) (4.3.3)

2r, sinlcos'tcostLsinaL + sinysintsintLsinTL + COS(YCOSOLJ6(k I,k 2 )
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'-1 C nj27t. njit 2  d-j 27c-- -j 47C -- -  -j 2n -l-- -j 4/ n -T- d
+ (1-2cosol-e N+e ) 2 (1-2cosco)2 e +e N) 2 W(k 1 ,k 2 )

(4.3.4)

where n 1, n2 are same as defined by (4.2.3.2.10a), (4.2.3.2.10b), and

8(k ,Iif k,k2=0 (4.3.5)
( otherwise

4.3.1 Estimation Of The Parameters c, d, WI, 02, , "t

The estimation of parameters in this projected Fractional Differencing Periodic

model (4.3.4) can be done in the frequency domain, modifying the techniques

suggested in [ 1271. This frequency domain analysis has an advantage over the spatial

domain analysis. Since we need only to take the inverse Fourier transform to get the

whole image at the end of procedures, we can avoid the integrability problem which

might occur in spatial domain analysis when the estimated surface orientation from

each local shape has an error.

For estimation, all parameters can be estimated directly from the given data

I(kI,k2), if we can obtain the likelihood function of IY(kl,k 2)l, from the

relationship

Y(kI,k 2) =I(kI,k 2)-X(kI,k 2). (4.3.1.1)

Then, since the noise sequence '(mn,m 2 ) is assumed to be white Gaussian,

W(k I,k 2) and Y(kl,k 2) follow the Rayleigh distribution as in the following theorem.
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Theorem 4.3.1: The modulus of the DFT of the noise sequence, [IW(kl,k 2 )l,

....N -1, k 2 =O,l,..., [N/21} and (IY(k 1 ,k 2 )1, kI=0,1,...,N-1,

k 2 =O,l.. [N/2 J} are the white sequences with thefollowing Rayleigh densities.

02W -w2
flw(k,,k 2)I(W)= N---- exp{-p -2-  , W>O

[0 , otherwise

{25k)"~-,k exp { }
fIY(kk 2 A (Y) p 2pN 2  

, Y(k,k 2) 0

0 ,otherwise

where

c d
27rn 2 2rn 2  2

sk,,k2 = 12cos(- ) - 2coso 1 I 12cos( )- 2cosw2 I

(Proof) Let W'(kl ,k2 ) be the DFT of a white noise sequence '(m1 ,m2 ) with a normal

distribution, that is,

'(ml,m 2)-N(0,p) ,for MI,m 2 
= 1,2,...,N (4.3.1.2)

Then, W'(k ,k2 ) will follow another normal distribution as follows [261.

W'(ki ,k2 ) - N(N'E['(m ,m2),pN 2 )  (4.3.1.3.a)

- N(O,pN 2 ) (4.3.1.3.b)

and
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N 2 )

Re(W'(kl ,k2)), Imn(W'(kl ,k2 )) - N((, -- (4.3.1.4)

where Re(W') and lm(W') are the real and the imaginary parts of W'(kl,k2),

respectively.

Define new coordinate systems, (11,12) and (nl,n 2 ), which can be obtained from

the coordinate transformations (4.2.3.2.5), (4.2.3.2.10). Thus, based on the new

coordinate system, a new noise sequence (11,12) which has the corresponding DFF,

W(kl,k 2 ), can be defined. As defined before, since the density function of

Re(W'(kl,k 2)) or lm(W'(kl,k 2 )) follows a normal distribution and the coordinate

transformations are the linear transformations, the density function of

(11,l2 ),Re(W(kI,k 2 )) will follow the same normal distributions to the ones of

'(m1 ,m2 ), Re(W'(kl ,k2 )). That is,

(11,12)- N(0,p) ,for 11,12 = 1,2,..., N (4.3.1.5)

and

2 )(4.3.1.6)Re(W(n ,n2)), hin(W(n ,2)) - N(0, N(4316

Now, consider the density function of IW(nl,n 2 )1 . Since W(nl,n 2) is a complex,

defining W be W(nl,n 2 ),

I W(ni ,n 2)1 = Re 2 (W) + hn 2 (W) (4.3.1.7)

Define ¢ = tan- (im(W) ). Then, we can have the following relations.
Re(W)

Re(W) = IW(n 1,n2)1 cosO (4.3.1.8.a)

h1(W) = IW(n 1,n 2 )1 sino ,forIW I >0 (4.3.1.8.b)

Thus, the joint probability density of I W'J and 0 can be obtained from the Jacobian
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and the joint probability density of Re (W') and Im(W') as follows.

fiw II WI A) = JaoIa -fRe-(w)Imw)(Re(W),Im(W)) ,forl WI > 0 (4.3.1.9.a)

= 1W IfR,.(w)( 1W IcosO) flm(W)( JW IsinO) (4.3.1.9.b)

-(Re 2 (W)4IM2NW))
_ WI p

e rN N (4.3.1 .9.c)

I aiwi aiwi
where Jacobian = R(W) alm(W) (431.10 )

a4e() Dl()

1 (4.3. 1.10. b)

1W!

Therefore, since I W I and 4) are independent, and the density function of 4,f(),is

1
271'

f I w I W1, phi) =f I wIW I )fo() (4.3.1.11)

and

fI (W) = exp( -N ,W > 0 (4.3.1.12)PNpN 2

fiw 2W 0 ,otherwise

Now, set

c d
27tn T 2ntn2  2

Sk,k 2 = 12cos(- )-2coscol I 12cos(- )-2coS(02 1 (4.3.1.13)
N N

Then, from the definition of ni, (2.3.2.10), we can have
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IY(k,k 2 )I = Sk,k 2  I W(kl,k 2 )I (4.3.1.14)

-Sk,,k 2  IW'(nl,n 2)I (4.3.1.15)

Thus, the density function of I Y(kl,k 2 )l can be represented by following

equations.

fj Y(ki,k 2)J (Y) = SkIk 2 fI W(k1,k2)1 (Sk k2 Y(kl,k2)) (4.3.1.16)

2s 2 k,,k2 Y(kl,k 2 ) -S 2 kk 2 Y
2 (kl,k2)

1= pN2 exp pN 2  Y(kl,k2)

otherwise

From these probabilistic properties, the estimation of parameters can be done by

a hybrid method of Least Square and Maximum Likelihood estimations, which was

suggested by Eom [67]. For LS estimation, if the values of the illumination direction

;L, 'TL and the normalization factor F are given, and parameters o1, (02 , T are set,

then 0 = (c,d,(X)T can be estimated by minimizing the following cost function.

N-I [N/2J
J(O, 0) 1 ,o)2) = I I (loglI(kl,k 2 )-N 2 [sinacostcosTLsinmL

k1 =O k2=O

+sin(sintisin'L sin(aL+COS(COS(L]8(kl ,k 2 )1

c 2n[(sin 'T+cosGcos2 r)kj+(cosY-1)sintcostk 21 - 2cos0) I
+ T log12cos Ncoso
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+d log I 2cos 2it[(coscr- )sinTcostkl +(cos2-T+cosaysin 2 )k2] cS0 I+O)
+2 Ncoso cs 2  )

(4.3.1. 17)

N-ILN/1 logI~k , 2 ) _ N~[sinaCOStCOStLsinaL+sinasintsinTLsinaTL

k,=O k2--()

+COSGCOSOYLI 6(kI ,k2 ) I - )T Q(k1 ,k2 ))2  (4.3.1.18)

wherea= -E log IW(k,k 2)1 1,0=c,d,a)T

H-ere,

-.1 2it[(sin 2 T-icos(Ycos2 r)kj+(cosa-1) siriTcosrk2  2os,
-logl2cos Ncosaj

Q(k , k2 ) = -1 lg 2 2[(cosa-l1)sintcosrk 1 +(coS 2 +coscsin 2 )k2 l 2CS2
lo2 2o Ncosa coY

(4.3.1. 19)

Thus, the estimated values will be

k1 [N/2] NN2]

NI Q(k 1 ,k2 )QT(kj,k 2 ))l 1_, Q(kl,k 2 )logiZ(ki,k 2 )
kjOk2=0 kj=O k2=0

- N 2 F[si n(YcostCOSTL siflYL +sin aTi ncsi nrLsi nGL+'OS(YCOSaL I(k I, k2 ) 1) (4.3.1.20)

Also, MIL estimators of co1, o 2 , a, t can be calculated by maximizing the log-

likelihood function L(Y;O,o 1 ,w2) with at estimated from above.
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N-I [N/2j2
L(Y;0,coi ,o2) = 1 1 logjII(k1 ,k2)-N E[sinYCOS'TCOSTLsinUL

kj=O k2 =0

+ siflasifltifltLsiflaL + COS0COSaL]6(kl ,k2) - [N/2] ,2)

kj=O k2 =0

+ - 1 o (o 27r{(sin 2 t+cosaYcos 2 )kj+(cos(Y-l)sinccosrk2 1*2 NYlo 2c NcosF -coso 1 )J

+ N/2 2 lo7I2 c 2r(cosa-lI )sin tcosTk I+(cos2 T+cosasin 2 )k2 l o~ 2
k2NI ogj(o Ncosa CS0)

1 N-i [N/2J 2n[(sin2 T+CoscYcos 2 )k1 +(cos(Y-I)sinrcosck21
2 12(cos Ncos(Y - COSo)J

PN2 k14I0 k2 =0

2 74 2(coscY- I)sin'rcosrkj +(cos 2 'T+cos~sin 2 ,C)k2] O(0) d

* I 2(cos Ncoso oc 2

*II(k1 , k2 )-N 2 4sinaTcostcostLsinaTL+SinosintsintL sifaL+COSaCCOSOL]I (k , k2) 12

(4.3.1.21)

where p is a variance Of 0(1 ,12) and can be estimated by the following equation

in the mean square sense.

p =- exp ( y- 2 a--- 6 (4.3.1.22)

where Y is Euler'-, constant (= 0.5772157) [671.

Therefore, the estimation scheme can be summarized as follows:
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(Estimation Algorithm)

Step 1: Estimate the illumination direction aL, 't L and the normalization factor e

from the whole image, by (Theorem 4.2.1) and (4.3.17), respectively.

Step 2: For each patch, choose resonant frequencies col, owz in the range of [0,2]
'2

and the surface orientation parameters , c in the range of T , ].

Step 3: With the given values of cl, w2, a and r, estimate c, d, and a by LS

estimation algorithm (4.3.1.20).

Step 4: Using &, compute the estimate of the variance of p, (11,12), by equation

(4.3.1.22).

Step 5: Using the estimates e, d and p found in Step 3 and 4, maximize the likelihood

function given by (4.3.1.21) with respect to ol, o, a, and t.

Step 6: Using the estimates (o1, (02, a and t, repeat Step 3 to Step 5 until the

estimates have no significant change in successive iterations.

The results from computer simulation will be discussed in the next section.

4.3.2 Experimental Results

4.3.2.1. 3-D Texture On A Sphere Surface

In this experiment, a whole image which contains the shade and texture on a 3-D

sphere surface was constructed using our proposed 3-D texture model, and this was

compared with the images which were obtained by either applying the reflectance map

function or by projecting the texture pattern only. Since our model is a composite of
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the Shape-from-shading and the Shape-from-texture models, the constructed image

will look more natural than the ones from either the Shape-from-shading or the

Shape-from-texture technique. For this experiment, the texture pattern was chosen as

the Fractional Differencing Periodic model (4.2.3.2.6) with the parameter values,

w, = 0.2, o2 = 0.2, c = 0.8, and d = 0.8. From the given illumination direction aL, TL,

and the surface orientations of sphere, a, c, the 3-D surface of a sphere covered by the

chosen texture pattern was synthesized. Here, the illumination direction was chosen as

CY. = -0.66, t = -0.66, and the surface orientations a(i1 ,i2 ), 'T(il ,i2 ) of the (i1 ,i 2 )th

patch was given by

tan- oH(l1,12)/12 '

a(i1 ,i2) = OH(11,12 )/1 1  ,if H(11,12 ) 63 (4.3.2.1)

,otherwise

and

cOS_ 1

't(il ,i2 ) = .(DH/I 1)2 1 .i 2 + (aH/012) 2 1 i.i 2 + 1 ,if H(I1 ,12 ) 63 (4.3.2.2)

L ,otherwise

where the heig! t function H(11 ,12) is given by

H(11,12) = 152 _i 2 - 122 (4.3.2.3)

In this experiment, each 3-D texture pattern was synthesized on 32 x 32 pixel sized

planar patch, and 16 x 16 pixel sized patch was taken from the center. The complete

image of sphere (512 x 512) was obtained by adjoining these 16 x 16 pixel sized

patches. Figure 4.3-a,b show the 3-D shape of a hemisphere and the corresponding

sphere image obtained by the reflectance map function (4.2.2.3) with the parameter

values GL =-0.66, 1L =-0.66, £= 100 (4.3.2), and Figure 4.4 shows the

orthographically projected texture image based on the given sphere surface with
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equation (4.2.3.2.6). Finally, with the composite model of the projected texture image

and the reflectance map function (4.3.1), an image of 3-D texture on the surface of a

sphere was synthesized (Figure 4.5).

Here, Figure 4.3 and Figure 4.4 illustrate that neither the Shape-from-shading nor

the Shape-from-texture technique is suitable for representing the natural scene. Figure

4.3 does not contain any detail information about the surface pattern, while Figure 4.4

does not contain any shade. Thus it is difficult to see the sphere in either Figure 4.3 or

Figure 4.4. Figure 4.5, however, illustrates the sphere image with texture pattern on

its surface clearly, thus shows our model's capability to represent the 3-D textural

surface.

4.3.2.2. Parameter Estimation

From this experimcnt, we want to show how accurate the estimated results are.

Since each small patch is assumed to be a tilted and slanted texture plane and the

whole image is obtained by adjoining these patches, our proposed 3-D texture model

will fit each small image patch and the surface orientation parameter will be estimated

based on each patch. Thus, in this experiment, we will consider single patches of

texture patterns which represent the tilted and slanted texture planes. From these

patches the parameter values of the model (4.3.1) will be estimated by the proposed

estimation scheme, and compared with the true values. For this experiment, three

different 2-D texture patterns sized 64 x 64 were generated by equation (4.3.1) with

the different values of parameters (0, (2, c, and d. Then, the projected images of the

slanted and tilted texture planes were synthesized with the different values of the

surface orientation a, t in equation (4.3.4), and zero mean white Gaussian noise with

variance 10 was added to each image. The values of the illumination direction 0 L, tL
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(a)

Figure 4.3: Sphere imnages. (a) Hleight function of a sphere obtained by
equation (4.3.2.3) (b) Image obtained by the reflectance map function
(4.2.2.3) with -= 100) (4.3.2), -0.66, t11 = -0.66
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Figure 44 Image obtained after projecting texture image orthographically
to the sphere surface. (Background texture pattern is generated by
Fractional Differencing Periodic model (2.3.2.6) with ol--0. 2 , o2--0.2,
c=0.8, d =0.8)
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Figure 4.5: Image of 3-D texture on the surface of a sphere (Image is
generated by the composite model (4.3.1) with aL = -0.66, 'CL = -0.66)
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and the normalization factor E was given by -- ,-, and 100, respectively. Thus, since

the intensity value of a plane surface will be constant all over the patch, the

deterministic part of equation (4.3.4) was considered as a constant, and added to the

random field part. For the estimation, the hybrid method of Least Square and

Maximum Likelihood estimation, which was discussed in previous section, was used

to estimate parameters.

Figure 4.6-a shows one of the 2-D texture pattern which was generated by

equations (4.2.3.2.6)-(4.2.3.2.12) with the values of 01, cO2, c, d as 0.2, 0.2, 0.8, 0.8,

respectively, and Figure 4.6-b shows the projected image of the version of Figure 4.6-

7E Ita tilted and slanted by - 4 and ---, respectively. As can be seen from Figure 4.6-a and

Figure 4.6-b, due to the slanting, the distance between the dark spots along the normal

direction of the tilted axis (the tilted axis is the North-west to South-east diagonal)

reduces considerably (thus producing almost a continuous dark band along that

direction in Figure 4.6-b). Here, the 2-D texture model does not fit the pattern in

Figure 4.6-b, since this pattern has a non-isotropic random texture distribution due to

the tilt and slant. Note that this synthesis technique does not require an interpolation

after pi-ojecting. Because the white Gaussian random noise will still be white Gaussian

noise after projecting, the random noise as input data can be generated for the

projected model directly. From these three different 3-D texture patches, we have

estimates close to the tv-ue values. [Table 4.1] Also shown in the parentheses are

absolute deviations from the true values. Therefore, we can say that the height

function and the texture pattern of whole image can be estimated properly from this

local patch estimation process.
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(a) (b)

Figure 4.6: 2-D textire images: (a) Image obtained from (4.2.3.2.6) with
ol1 =0.2, 0=0.2,c=0.8,d=0.8 (b) Projected image of the tilted and slanted

version of Figure 4.6-a by -7r/4 and n/8, respectively
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Table 4.1: True parameter values and the estimated parameter values of the
projected Fractional Differencing Periodic model (4.2.3.2.6): The random noise
sequence as input data for each synthesized texture patch of size 64x64 was
generated from white Gaussian noise with zero mean and variance 10. Estimated
values were obtained from these synthesized images by equations (4.3.1.8)-
(4.3.1.13).

True Values
Patches

(1 c d T a tPac 02 0.2 0.8 0.8 0.4 03.78
Patch 2 0.2 0.2 0.4 0.8 0.78 0.78
Patch 3 0.2 0.4 0.6 0.8 0.2 0.6

Estimated Values
Patches

atch 0.20T 0.208 0.8D3 U.807 .393 0.744
(0.004) (0.008) (0.003) (0.007) (0.007) (0.036)

Patch 2 0.219 0.232 0.357 0.716 0.812 0.673
(0.019) (0.032) (0.043) (0.084) (0.032) (0.107)

Patch 3 0.191 0.378 0.620 0.589 0.299 0.598
(0.009) (0.022) (0.020) (0.211) (0.099) (0.002)
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4.3.2.3. Tree Image

A 512x512 real image of a part of a tree, which contains shade and texture on

surface was considered (Figure 4.7-a). From the whole image, the estimation values of

the illumination direction (YL, CL were determined to be (YL = -1.3384, t L = -0.0426,

by applying Lee's method. Then, for this experiment, several local patches of size

3232 were taken from the tree surface, and the parameter values were estimated by

applying our projected Fractional Differencing Periodic model (4.3.1) and estimation

scheme (4.3.1.7)-(4.3.1.13). Average estimated values of the parameters were

obtained as co, = 0.486, (02 = 0.053, c = 1.394, d = 0.762. A Synthesized tree surface

image with the given illumination direction was constructed by projecting this texture

pattern on a cylinder surface (Figure 4.7-b). This image looks very similar to the

original tree image, and shows the ability of our model to represent a non-stationary

texture pattern such as a tree bark on tree surface.

4.4. Conclusions

In this chapter, a composite model of Shape-from-shading and Shape-from-

texture based on a 2-D orthographically projected Fractional Differencing Periodic

model was developed to represent a 3-D surface image which contains information

about both radiance and texture. This composite model has several advantages over

the conventional approaches. First, as compared to the Shape-from-shading

techniques, this model always gives unique and more accurate solutions for the

surface orientation parameter values, because of the additional constraint from the

texture function part. Also, by using this analysis, the integrability problem which

might occur in spatial domain analysis can be avoided, because only one inverse
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(a) (b)

Figure 4.7: Tree images: (a) A 512x512 original image of a part of a tree. (b) A
synthesized tree image: Local patch size is 32 32, and each 3-D texture pattern
was synthesized by the composite model (4.3.1) with the illumination direction aL
= - 1.3384, CL = -0.0426 and co, = 0.486, (02 = 0.053, c = 1.394, d = 0.762 for the
random part. 1616 pixel sized patch was taken from the center of it. The
complete image of cylinder (512x512) was obtained by adjoining these 1616
pixel sized patches.
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Fourier transform needs to be taken at the end of procedure to get the whole image.

Second, as compared to the Shape-from-texture techniques, the Fractional

Differencing model has the property of being flexible enough to explain both the

long-term and the short-term correlation structure of the texture pattern, thus, it has a

superior ability to model different textures encountered in practice. The

orthographical projection adds the additional flexibility to represent the 3-D rotated

texture due to the slant and the tilt of a surface normal plane. The estimation scheme

for the parameters was based on the hybrid method of least square and maximum

likelihood estimations.
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CHAPTER 5

CLASSIFICATION OF

3-D ROTATED TEXTURES

5.1. Introduction

Texture classification has been the focus of interest to many researchers

[53,92,126,2161. The classification problem can be stated as allocation of an

observed texture image data to the one of the pre-defined texture classes. These

texture classes can be described by texture features, and then texture features can be

the parameters in stochastic [53,92, 126] or structural models [216]. Thus, the key

step in classification process is the choice of a set of features which can reduce the

dimension of the image data to a computationally reasonable amount of data.

Preferable featuies should be those that are simple and easy to extract from the given

data while preserving the classifying information present in it.

Most of classification schemes which have been suggested up to date are under

the assumption that the test sample data possesses the same surface orientation as the

training sample data. Thus, if the orientation of test image is different from the

training sample data, for example, in case of a rotated image, the classification

performs poorly. This reduces the flexibility of those classification schemes.

However, most of natural texture images which we encounter in practice represent the

texture of 3-D surfaces. Thus, the observed image is a projected surface image onto
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the 2-D image plane with a 2-D rotated, or 3-D slanted and tilted texture pattern.

Therefore, it is desirable that the classification scheme have the flexibility to classify

even rotated or scaled texture to the original class of it. This is a good indication why

it is so important to have the rotational and scaling invariant features in our model.

Up to date, several approaches have been reported for the rotational invariant

classification scheme [53, 126]. However, those approaches have their own limitations

of classification. Khotanzad's method [126] is based on the four different discrete

directions instead of an arbitrary angle of the rotational direction, thus, with this

classification scheme, the rotated texture pattern with an arbitrary angle can not be

classified. Cohen's model [53] uses a coordinate transformation for the rotation and

the slant of texture surface, and a ML estimation method is adapted to extract the

texture pattern parameters in an AR model and the surface orientation parameters

simultaneot~sly. However, because of the complexity of the estimation scheme and the

limitation of AR model to represent the surface, this approach may not be practical. In

this chapter, a multi-level classification method which can handle arbitrary 3-D

rotated samples of textures is developed based on fractional differencing models with

a fractal scaling parameter. Since the fractal scale is known to be a rotational and

scaling invariant parameter, the accuracy of classification will not be affected by 3-D

rotation of the test texture, by using these models. In first level of classification, the

textures are classified by the first-order Fractional Differencing model with a fractal

scale parameter, and in second level, classification is completed with the additional

frequency parameters of the second-order Fractional Differencing periodic model.

This multi-level classification scheme has at least following advantages over the

conventional approaches [46, 53, 1261. First, since the fractal scale parameter of the

first-order Fractional Differencing model can be estimated by a simple Least-square

estimation method, the processing time can be dramatically reduced. Second, the
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ambiguity, which may be caused by using only one classification parameter,

particularly when the values of parameter are close enough for the different textures,

can be removed by considering the additional parameters in second-order model. Even

though the estimation scheme for these additional parameters is based on ML

estimation, the classification process is much simpler compared with other approaches

based on ML estimation, e.g. Cohen's [53], because only a small number of texture

patterns in same sub-class, which is already classified based on the fractal scale value

in first level, need to be classified.

The organization of this chapter is as follows. In section 5.2, the 3-D rotated

texture is defined by the linear coordinate transformations. Section 5.3 introduces the

Fractional Differencing model with a fractal scaling parameter to represent the rotated

and slanted texture surface, and section 5.4 discussed its parameter estimation scheme

based on LS and ML estimation methods. In section 5.5, a multi-level 3-D rotational

invariant classification scheme is introduced. Section 5.6 then discusses some

simulation results carried out to demonstrate the performance of the proposed

algorithms, followed by section 5.7 which concludes this chapter.

5.2. 3-D Rotated Texture

To represent a 3-D rotated texture, we need two different sets of coordinate

transformations. First one is the 2-D rotational coordinate transformation and second

one is the orthographical projection coordinate transformation. The 2-D rotational

coordinate transformation is needed to represent a texture image rotated on the 2-D

image plane, and the orthographical coordinate transformation is needed to represent

an orthographically projected texture surface onto the image plane due to the slant and

tilt of texture surface. Here, notice that for the image whose texture pattern is
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distributed isotropically over the surface without any directional trend, the 2-D

rotational coordinate transformation is not required, because the 2-D rotation will not

affect the pattern of the texture.

The coordinate system (1'1,1'2) which is rotated on the image plane through an

angle 0 clockwise can be obtained from the original coordinate system (11,12) by the

following simple coordinate transformation.

I] [COSO -sinO] (5.2.1)l'21 = [sin0 cos0 J 2(521

And a texture surface plane slanted and tilted by a and t can be represented by the

orthographical projection. First, take the m I-m 2 coordinate system over the surface

plane. Put a line passing through the origin, and let t be the angle made from the m I -

axis. Rotate the plane around the line by angle Y and project the rotated plane

orthographically onto the image plane. Thus, a new coordinate system from the

viewing direction, 11-12, can be obtained from the following two coordinate

transformations.

COS] - sintotJmJ (5.2.2)

and

12oso 1l2 (5.2.3)
[I] = [A1 coa] "I~] (523

Hence, as is well known [1101, the coordinate transformation of the orthographic

projection between the M I-M 2 system and 11-12 system can be given as follows.

[11 [ost -sinTi 0 1ost -sinti ' (5.2.4a)
12J Lin't COSost] coin ti ST 2j



104

[osT+cosasin 2T (l-coso)sinTcostjEi (..b

(co sa)sinrcos-T sin 2 T+cosGcos 2 T 2 (5.2.4b)

Therefore, a texture plane coordinate system (1"1 ,1"2) obtained after rotating,

slanting and tilting with arbitrary angles can be represented by combining both 2-D

rotational coordinate transformation (5.2.1) and the orthographical projection

coordinate transformation (5.2.4) as follows.

Ii 1 [osO -sinO I cJos 2 -I-cosaysin 2 ' (1--cosa)sintcosT lmi
[2 -[inO cosO _[_1Cosa) sintcos-T sin 2 T.cosarcos 2 tr J~ 2  (5.2.5a)

IVA ;~ (5.2.5b)

where

I = coso(cos 2 + cososin 2 ) - sin9(1--cosa)sinxcosT (5.2.6a)

HI cos0(1-cosa)sintcosr - sinG(sin 2 T + cosacos 2 C) (5.2.6b)

III =sinO(cos 2 + cosasin 2 ) + cos6(1-coso)sinccost (5.2.6c)

IV =sin0(l-cosa)sintcost + cos0(sin 2 T + COSMcOS2 C) (5.2.6d)

One grid pattern image (Figure 5. 1-a) was considered to demonstrate these coordinate

transformations. The coordinate transformation was taken to this image with 0 = I/

a= it/4, and r = -nt/8. Figure 5. 1-b, Figure 5. 1-c, and Figure 5. 1-d depict a 2-D

rotational coordinate transformation, a orthographical projection coordinate

transformation, and both coordinate transformations, respectively.
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Figure 5.1: 2-D grid pattern images: (a) Original image, (b) Image obtained after
rotating the image(Figure 5.1-a) on the image plane with 0 = n/8 in (5.2.1), (c)
Image obtained after projecting the image(Figure 5.1-a) orthographically, with
a = it/4 and T = -7T/8 in (5.2.4), (d) Image obtained after projecting the already
rotated image(Figure 5.1-b) orthographically, with Y = n/4 and c = -n/8 in (5.2.5).
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5.3. Fractional Differencing Model With One Fractal Scaling Parameter c.

All features considered in this chapter for the classification purpose can be

obtained by fitting a two-dimensional parametric random field models to the given

texture. There are various kinds of random field models suggested up to date

[4,41,56,85,1161, and each random field model has its own advantage and

disadvantage based on the purpose of the process. Among the various random field

models, the fractional differencing models with one fractal scaling parameter are

chosen in this study because of its following properties. First, the fractal scaling

parameter c is known to be a rotational and scaling invariant parameter, thus, with this

parameter we have the flexibility to handle the rotated, slanted, and tilted texture

surface. Second, unlike the other fractal model based on the fractional Brownian

process, this model has a simple estimation scheme, such as least mean square

estimation for the parameter c. Third, with the second order periodic model, this

model has good performance in texture synthesis and its ability to simultaneously

represent the coarseness and pattern of texture surface with the fractal scaling

parameter c and directional frequency parameters col, co2, respectively. Thus,

comparing these parameter values, we can classify the texture patterns properly even

though some texture patterns sharei the same value of one of those parameters.

Typical first-order and second-order fractional differencing models with one fractal

scaling parameter will be as follows, respectively.

C

y(m 1 ,m 2 ) = [( l-z -1 )(l-z2
- )1 2 -(m 1 ,m 2 ) (5.3.1)

and
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C

y(ml,m 2 ) = [(1-2cosOz1-I+zj- 2 )( l-2coso2z2 -1+z2- 2 )] 2 t(m I,m 2 ) (5.3.2)

for M 1,m2 = 0, 1,...,N-1.

The corresponding DFTs of these functions are

k1 _-j2 __ c

Y (k ,k2) = [(1-e- Nv )(1-e N )] 2 W(k ,k2), (5.3.3)

and

kjin-k , k ,

Y (k I,k2 ) = [(1-2coswole- -je )

k - k2  c

- (l-2coso 2e-jE2t-N+e N N 2 W(kl,k 2 ), (5.3.4)

where zi is the delay operator associated with mi, (m1,m 2) is an i.i.d. Gaussian

sequence, and W (k 1,k2 ) is the corresponding DFT.

Note that this random function y (n 1 ,m2 ) is defined on the surface normal plane

because this model is based on a 2-D texture model. Thus, it will fit the texture

pattern which is isotropically distributed over the plane and this isotropically

distributed texture pattern can be obtained by viewing from the surface normal

direction. Then, the model for the 3-D rotated texture pattern can be obtained by

applying the 2-D rotational and the orthographical projection coordinate

transformations.

5.3.1. Rotated And Projected Fractional Differencing Model

The random function y'(11,12), defined on the viewing direction image plane,

can be obtained by projecting y(m 1 ,m 2 ) onto the image plane orthographically. On
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the other hand, the rotated random function y "(11,12) can be obtained by rotating the

original coordinate axes through the angle 0. Thus, if 11 and 12 are the axes

transformed from m I and m 2 based on r and (y, from the coordinate transformation

for the orthographical projection (5.2.4), we can have the following first or second-

order model.

y'(l1,12) = [(1-z'I-')(1-z'2- 1)1 W 112) (5.3.1.1)

or

C

y'(11,12 ) = [(1-2cosolz'5-+z'l-2 )(1-2cosco 2z'2-1 +Z'2- 2)] 2 (11,12) (5.3.1.2)

for 11,12 =0,1,...,N-1,

where z'i is the delay operator associated with li, and V(11,12 ) is an i.i.d. Gaussian

sequence.

By the definition of DFT, W'(kl,k 2) corresponding to white noise sequence

t'(/ 1,12 ) is

N-1 N-1 .21cW'(kl,k2)= Z I C'(11 ,12)exp[-j-5-(mIkI+m 2 k 2 )] (5.3.1.3)

M 1 --O M2--O 
N

and, therefore from the coordinate transformation (5.2.4),

N-I N-I 2n

W'(kl,k 2)= , I '(l1 ,l )exPI-i 2o [((sin 2 t+cosacos 20k,
M 1 --0 M2--0

+ (cosa- I )sinrcostk 2)11 +((cost-1 )sinrcosrk1

+ (cos2"t+cosasin 2t)k 2 )12]] (5.3.1.4)

Thus, we define
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sin 2x + coSOCOS 2 t (coso - !)sintcost

Z os iZ 2 Cosa (5.3.1.5a)

(cosa - 1)sintcost cos2
.t + cososin2

lt

Z'2 Z I cosa Z2 Coso (5.3.1.5b)

and

n [(sin 2 t + cosacos 2 )k 1 + (cosa - 1)sin Tcostk 2j, (5.3.1.6a)
Cosa

1 2*

n 2  1 [(cosa - 1)sin'tcos-tkI + (cos 2 + cosasin 2)k 2] (5.3.1.6b)
cosa

Then, from the orthographical projection, we can set

W'(k ,k 2 ) = W(n 1, n2 ). (5.3.1.7)

Therefore, with these relations, we can have the projected version of Y(kl,k 2 ),

which is the DFT of y'(l1, 12) as follows.

_ nn . n2 c

Y'(k 1,k2) = [(1-e )(1-e N 2)]-2W'(kl,k 2) (5.3.1.8)

or

' n, nj4t,

Y'(kl,k 2) = [(1-2cosCOle )

-j 2rt- -j 4n - c

•(1-2coso2e N+e 2 2 W'(kI,k 2) (5.3.1.9)

On the other hand, the random function y"(11,12), rotated version of y(l 1,12), can be

obtained by the coordinate transformation (5.2.1) and setting y"(11,12) = Y(l'W ,l'2)-

C

Y"(11,12)= (1-Z"l-')(1-z"2-1 )1 2 C"(l1,12) (5.3.1.10)

or
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C

y"(11 ,1,)) =[(,-2coswIz "7' +zf " 1
2 )( 1-2 cos 02Z "21 +Z"2 -2 )1 2 C"(11,l2)(5.3.1.1 1)

where z""i is the delay operator in direction of I', and C""(11 ,12) is an i.i.d Gaussian

noise sequence.

Like earlier, from the definition of DPI', we now define

z 1,1= z IS 2sn (5.3.1.12a)

Z002 = Z1 -S ino 2 cSO (5.3.1.12b)

and

n,= cosOk I+si nOk 2  (5.3.1.13a)

n2= -sin0k I+c,-)s~k2  (5.3.1.13b)

Thus, the rotated version of Y(k 1 ,k2 ), which is DFT Of Y"(1 1,12) is

-j 2, .j2n C

Y"(k I,k 2 ) = [(1-e N -)(1-e )FTW'(k,k 2 ) (5.3. 1. 14)

or

Y"(k, ,k2 ) = [(1-2cosle N + e N)

.(1-2coso2 e nN + e 2j N W"(kl,k 2 ) (5.3.1.15)

where W"(k I,k2 ) is the corresponding DVI' Of C"(1l1,1 2 )

Finally, the above two coordinate transformations, the 2-D rotational and the

orthographical projection coordinate transformations, can be combined to get the

model for the t(.xture pattern obtained after rotating, and slanting the plane with a tilt

angle. Thus, the random function Y"...(11,12), which represents the texture pattern

obtained after rotating and slanting, can be represented by
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C

y "l1, 12) =  RI1-Z'"J-1 -I)(1- z*'2- 1)]  2 ('"(l11, 12) (5.3.1.16)

or

C

Y ."(l1,12) = [(1-2cos oiz'"- I +z '" 1-2)( 1-2cos0 2 z"' 2 -1 +z 2-2)] 2 "'(11,12)

(5.3.1.17)

where z'"i is the delay operator in direction of 1"i and ?"'(l1,12) is an i.i.d. Gaussian

noise sequence.

And finally we define

7 T""1 = 7. 1T1 zT 12  (5.3.1.18a)

't I21 2 2
Zt" 2 =z 1 1 2  {5.3.1.18b)

where

1

11 = [cosO(sin 2t + cosMcos 2 ) - sinO(cosa - 1)sin'cosr], (5.3.1.19a)
cosCF

1

T12 = [sinO(sin2 T + coscos2 t) + cosO(cosa- 1)sintcosf], (5.3.1.19b)cosaY

1
T2= [cosO(cosaI - 1)sintcost - sinO(cosZ't + cosasin2 t)], (5.3.1.19c)

cosar

1
T2 [sinO(cosa - 1)sintrcost + cosO(cos2 t + cosasin2 t)] (5.3.1.19d)

cosa

and

n", = T11k + T 12k 2 , (5.3.1.20a)

n"2 = T 2 1kI + T 22 k2  (5.3.1.20b)

Thus, we get the rotated and projected version of Y(k1 ,k 2), which is DFT of
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y "(11, ,l2) as follows.

n H 1n 2 C

Y.'(kl ,k 2 ) = [(i-e N )(1-e -j2N-)]-2 W'(kl,k2) (5.3.1.21)

or

-)2,t - -jn 4 e----

Y"'(k 1 ,k 2 ) = [(1-2cosoN1 e N

-- .n2 -4,n"2 c-j2it--- -j4r-

.(1-2coso 2e N + e N )j 2 W"'(k1 ,k 2 ) (5.3.1.22)

where W"(k 1 ,k2 ) is the DFT ofy"'(11 ,12 ).

5.3.2. Fractal Scale As A 3-D Rotational Invariant Parameter

As shown in the previous section, the random texture y (M 1,m2 ) defined on the

surface normal plane can be viewed as the different random texture depending on the

viewing direction. And this different looking random texture can be represented by the

coordinate transformations with the surface orientation angles Y, "t and the rotation

angle 0. Thus, the original function y(m 1 ,m2) is transformed to another function,

such as y', y", y"', after rotating or slanting the texture plane. However, even after

rotated and slanted, the transformed random texture function shares the same value of

the fractal scaling parameter c with the original texture function y. This rotational and

scaling invariant property of fractal scaling parameter c plays an important role for

our classification purpose. In other words, by estimating and comparing this rotational

and scaling invariant fractal scale parameter, we classify the same but different

looking textures due to the 3-D rotation to the same class. Following example (Figure

5.2) is given to demonstrate this 3-D rotational invariant property of the fractal scaling

factor c. In this example, all texture patterns are synthesized with different values of
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y, t, and 0 but same values of wl, 02, and c based on the transformed second-order

fractional differencing periodic models (5.3.2, 5.3.1.2,11,17). Figure 5.2-a, b, c, d

depict the original texture pattern with ol = 0.2, o = 0.2, and c = 0.8, the rotated

texture with 0 = it/4, the orthographically projected texture with t = 7r/8 and Y = -7c/4,

and the rotated and projected texture with 0 = n/4, Y = -n/4, and t = t/8, respectively.

From this example, we can see that all texture patterns are same to human eyes, even

though those are projected from the different viewing directions. However, this

similarity can not be caught by the conventional 2-D stochastic model-based

approaches such as AR model [41,125], facet model [179], etc., but can be caught by

the fractal scaling parameter c in fractional differencing model, because all texture

patterns in Figure 5.2 shares the same value of c. A detailed discussion on the

estimation method of parameter c and the classification method with this parameter

will be given in the next two sections.

5.4. Estimation Of Parameters

There have been several approaches for estimating parameters in various kinds

of fractional differencing time series since Hosking introduced Fractional

Differencing model [101]. For example, Granger and Joyeux [89] approximated this

model by a high-order auto-regressive process and estimated the differencing

parameter by comparing variances for each different choice of it. Lapsa [1211

suggested a maximum-likelihood estimator in the frequency domain and showed the

consistency of the estimator. This frequency domain analysis was further studied by

Eom, and a hybrid method of least-squares and maximum-likelihood estimations was

recently proposed to estimate the fractal scaling parameters and the frequency

parameters, respectively [671. In this section, a least-squares or a maximum-
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(a) (b)

(c) (d)

Figure 5.2: (ai) A original texture pattern image with (ol 0.2,o 0.2, and
c = 0.8 in (5.3.2). (b) Image obtained after rotating the image(Figure 5.2-a) on the
image plane with 0 = 7c4 in (5.3.1.2). (c) Image obtained after projecting the
irnage(Figure 5.2-a) orthographically, with (; = -nt/4 and r = nr/8 in (5.3.1.7). (d)
Image obtained after projecting the already rotated image(Figure 5.2-b)
orthographically, with (T = -7r/ 4 and t z- n8 in (5.3. 1.11).



likelihood estimation algorithm based on Eom's algorithm will be applied to estimate

the parameters in the first-order or the second-order fractional differencing model.

5.4.1. Estimation Of Parameter c In The First-order Fractional Differencing

Model

The estimation of fractal scaling parameter c in the un-transformed first-order

fractional differencing model (5.3.1) can be done by a simple least-square estimation

scheme in the frequency domain based on a representation of the logarithm of the

process which is linear in the parameters as follows. By applying logarithm operator

to (5.3.1), we obtain

k, k,
C l -j2n- -j2it--

logIY(kl,k 2) =--[logl -e N I+ logl -e N II+logIW(kt,k2 )1
2

c 7Ek 1 7tk 2=-2[log 12sin( ) I +log 12sin(-- ) I I + log IW(kl,k 2 )l

(5.4.1.1)

c ntk, t k 2
= -[log 12sin(--)I +log 12sin(- I ] - c + V(kt,k 2 )

fork 1 ,k 2 =0,1,...,N-1 (5.4.1.2)

where (= -ElogI W (k1 ,k 2 ) I] and V(kl,k 2 ) = log IW(kl,k 2)l + .

Then q = (c, cx) "' can be estimated by minimizing the following cost function.
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N-I N-1 C irkIJ ('q,W1t02)=  (log IY (k 1,k2l + .2 [log I2sin N
k,=0 k2=0

7rk 2
-log 2sin- I1+c) 2  (5.4.1.3)

N

N-I N-1
E E (logIY(kl,k2)I-1 T Q(kl,k2))

2  (5.4.1.4)
k1=0 k2=O

Here,

I~- ik1  i rk 2 1
Q(k ,k2) = (log I 2sin- I + log I 2sin 1)"Q~1,k)= 2lg N N I.(5.4.1.5)

[ -1J

Thus, the estimated values will be

N-I N-1 N-1 N-1[ ', IT'= (Y Y ] (kl,k2)a(kl1,k2))-l , Y' (kl,k2)log1Y(kl,k2)1).

k1--O k2=0 k,-- k2 _-O

(5.4.1.6)

5.4.2. Estimation Of Parameters (01, 02, a, t, 0 In The Projected Second-Order

Fractional Differencing Periodic Model

Consider the transformed fractional differencing periodic model obtained after

rotating and projecting (5.3.1.17) and its DFT as follows.

-j2n nI -j4,n_1
Y.'(ki ,k 2 ) = [(1-2cosl e N+ e N
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J2t2  nt2 C

•(1-2coso2e N+ e 2 W"'(kl,k 2) (5.4.2.1)

where W.'(k 1 ,k 2) is the DFI of y.'(1 1 ,12 ) in (5.3.1.17) and n" i is same as defined in

(5.3.1.20).

Then, the estimation of parameters in (5.3.1.17) can be done in the frequency domain,

modifying the techniques suggested in previous section.

For estimation, all parameters can be estimated directly from the given data

Y.'(k 1 ,k 2 ) (5.3.1.22), if we can obtain the likelihood function of IY(k 1 ,k 2 )1. Then,

since the noise sequence ."'(11,12) is assumed to be white Gaussian, W"'(k 1,k 2) and

Y'"(kl,k 2 ) follow the Rayleigh distribution as in Theorem 4.3.1. From these

probabilistic properties, the estimation of parameters can be done by a hybrid method

of Least Square and Maximum Likelihood estimations, which was suggested by Eom

1671. For LS estimation, if parameters c1, (o2 , 0, 0 are set, then 11 = (c, (X)T can be

estimated by minimizing the following cost function as described in section 5.4.1.
N-1 N-1 2nn"lN-i N-i ~c ____ 2cos01 I

JOIJOIA0m2)= I I (logIY.'(k 1 ,k2 )I+- (logl2cos- N----
k1 =O k 2=O 2

27tn"2 2coso I) + a) 2

+ log l s- 2 (5.4.2.2)
N

N-I N-I

I I (log IY.'(k 1 ,k2)I -TITQ(kIk 2))2  (5.4.2.3)
k1 0 k2=0

where o = -E liog I W"'(k 1 ,k 2 )l ], TI = (c, a)T.

Here,
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i-1 17n 22tn" 2Q ) (logI 2cos- - 2cos ot I + logl2cos - 2coso2 IQ~1k) 7 (olcs N N
1. -1

(5.4.2.4)

Thus, the estimated values will be

T N-1 N-1 N-I[C,&T= I y I Q(kl,k2 )QT (k , k2)) - ( I_ I Q Q(k l,k2)og I Y'".(kl,k2)1)
k=0 k 2=0 k 1 --0 k2=0

(5.4.2.5)

Also, ML estimators of ol, (2, 7, ,t, 0 can be calculated by maximizing the log-

likelihood function L(Y;Tl,c 1,ot 2 ) with ox estimated from above.

N-I N-1 N-1 N-1 pN 2
L (Y -T, wl, .w2)= I I log IY.(l ,k2)l - I Y,109( 2

k1=0 k2=0 kj=0 k2--0

C N-I 27tn"1  N-1 2n"2+ N( logI 2(cos -cosol) I + I log 12(cos -coso2) I)2 k=0 N k2 =0 N

1 N-1 N-1 2irn"1  2irn"1
- - " X I (12(cos coso 1)" 12(cosN -Ucoso2 )I)c9N 2  Il0k= N NpN k1 =O k2 =0

SI Y "(k1, k 2)12  (5.4.2.6)

where p is a variance of "'(11,12) and can be estimated by the following

equation in mean square sense.

N=-exp [ y- 2ox- 6N} (5.4.2.7)

where y is Euler's constant (= 0.5772157) [67].
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Therefore, the estimation scheme can be summarized as follows:

(Estimation Algorithm)

Step 1: Choose resonant frequencies .0 , o2 in the range [Ox/2], the surface

orientation parameters y, t and the rotational parameter 0 in the range

[-7r/2,70/21.

Step 2: With the given values of col, ", a, x, and 0, estimate c and aX by LS

estimation algorithm (5.4.2.5).

Step 3: Using &, compute the estimate of the variance of "'"(11,12), p, by equation

(5.4.2.7).

Step 4: Using the estimates j and p found in Step 2 and 3, maximize the likelihood

function given by (5.4.2.6) with respect to ol, o2, a, t, and 0.

Step 5: Using the estimates 01, (W2, a, T, and 0, repeat steps 2 to 4 until the estimates

have no significant change in successive iterations.

5.5. Multi-level 3-D Rotational Invariant Classification Scheme

In this section, a two-level hierarchical classification structure is developed to

classify the 3-D rotated texture patterns. In first level of classification scheme, a 3-D

rotational invariant feature c is extracted from the input image data based on the first-

order fractional differencing model (5.3.1), and this fractal scale feature is used to

classify the textures to the classes whose members are sharing similar value of fractal

scaling parameter c. In second level, each class is divided to the final desired

subclasses based on two other texture pattern features, (a, and "r, and in each class

assigned in first level, the input texture image is classified further in more detail with
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the features 031, w2 which is extracted based on the rotated and projected fractional

differencing periodic model (5.3.1.16). Figure 5.3 shows this hierarchical structured

classification scheme. Notice that it is possible for some textures to belong to the

different classes simultaneously, depending their variance values of c. For this

classification scheme, the images are separated into test and training sets. The class of

textures and the number of classes in training set is assumed to be known a priori.

This multi-level classification structure has several advantages over the

conventional classification methods. First, this algorithm can save the processing time

to classify the texture images. Because this algorithm uses a least mean square

estimation to get t'..-. 4ctal scaling feature c in first-level, the processing time will be

reduced compar'ig with the method which is relying on only a maximum likelihood

estimation techniques. MLE algorithm requires long computational time because of its

iter. ion scheme to get the maximum value from the likelihood function. And second,

comparing with the classification methods which have only one feature parameter c,

the more accurate classification can be achieved by this algorithm. In other words,

even for the case that two texture images have close values of fractal scale (roughness

of the surface) but those are same patterns of texture, this algorithm has the ability to

classify the textures based on the estimated values of parameters (01, 02 in second

level of this classification structure. A more detailed discussion on each level of

classification scheme will be given in following sections.

5.5.1. The First-Level Of Classification

In this level, the different 3-D rotated texture images are classified into the M

different classes depending on their estimated values of the fractal scale. As discussed

in section 5.3.2, this fractal scaling feature is a rotational and scaling invariant feature,
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Input Texture Images-"

First Level Class 1 Class 2 Class 3....

Second Level ... Subclass Subclass Subclass
In 22

ol1  -a 11 (01 =a In (,01 =a 21 co, =a 22

02=b 11  -02=b In (02 =b 21  w2=b 22

Figure 5.3: Two-level hierarchical classification structure
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and represents the roughness of the texture plane surface. In other words, if we

consider a first-order fractional differencing model, the transformed image function

Y"(l1,12) obtained after rotating and projecting (5.3.1.16) will have same fractal scale

as the original function y (m 1,m 2) (5.3.1). Therefore, if we want to estimate the fractal

scale c only, we do not need to apply the transformed function but only need to apply

the original function which does not contain the rotation parameter 0, or the surface

orientation parameters t, T in it. Therefore, the estimation of c parameter can be done

by a simple least-square estimate method described in section 5.4.1.

Actual classification is achieved by applying a distance classifier d(c,i), which

measures a weighted distance between the extracted feature of test image denoted by

e and the mean feature of each of M classes. Then the texture is classified to class Ai

for which such a distance is minimum. That is,

i minimum d(c,i), i = 1 ....... M (5.5.1.1)

where

d(c,i)= M (5.5.1.2)

j=1

and F/ and [(Yc2] (i) correspond to the sample mean and variance of the feature c in

class Ai, respectively.

Then, it should be noticed that class Ai could consist of several different texture

classes in the case that the different textures share the same fractal scale (the

roughness of the surface), but have different patterns. This means that sometimes,

checking the fractal scale only is not enough to distinguish the different patterns of

texture. Thus, we need an additional classification scheme to distinguish these even in

the same class Ai. This additional classification will be done in second level of
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classification structure. Here, the number of first-level classes M is chosen

considering the sample means and variances of the fractal scale c of the sample

texture images. For example, if two different texture patterns have close enough

sample means of fractal scale each other, such that the range [F- a, 2 ,E+ ac 2] of one

texture is overlapped with the other, these two texture patterns could be classified to

the same class in first-level. Thus, it should be noticed that it is possible for a texture

to belong to several different classes simultaneously, depending its value of c.

5.5.2. The Second-Level of Classification

This second-level of classification is an optional procedure. If one fractal scale

feature is enough to classify the texture in first-level, in other words, if the class Ai in

first-level contains only one member in it, our classification could be terminated in

first-level. On the other hand, if the class has several members in it, the classification

is continued to the second-level. In second-level, the textures which were already

classified to the same class in first-level are split to the different sub-classes, based on

the values of pattern features (01, (02 in the second-order fractional differencing

periodic function (5.3.1.21). Thus, the estimation of those parameters can be

completed by a Maximum Likelihood Estimation (MLE) technique discussed in

section 5.4.2, and these extracted features denoted by Q() = [ i ,02 } are used

for further classification by measuring another weighted distance between these

features and the mean feature of each of the N subclasses in a particular class Ai.

Similarly to the first-level,

k* minimum d( k)k), k = ],...,.N (5.5.2.1)

k

where
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d(2(k) ,k)= v k [{-f ) (5.5.2.2)

j =1

and /k) and [/2](k) correspond to the sample mean and variance of subclass (k)

features, respectively. Here, it should be noticed that since we have at most several

subclasses from a first-level class, we need to compare only a small number of

subclasses to complete the classification, instead of checking the feature distance of

whole other texture classes. Thus, we can save the total processing time of

classification by using this multi-level structure. Therefore, from this multi-level

classification method, we could get the accurate classification and save the processing

time at the same time.

5.6. Experimental Results

For these experiments, nine different classes of texture were taken from

Brodatz's standard texture album [281 for the training set. These are, namely,

grass[D9], tree barkID 12], straw[D 15], herringbone weave[D 17], woolen cloth[D 191,

calf leather[D24], beach sand[D29], water[D37], and raffia[D84]. Figure 5.4 shows

the 2 56 x25 6 original texture images of these.

For the actual training, sixteen 6 4x6 4 sized sample image data were taken for

each different texture pattern, and the sample mean and variance of parameters, c, (t1,

and o02 were obtained for each texture class, based on the first and second-order

fractional differencing models [Table 5.1]. As we can see from Table 5.1, fractal

scale c itself is not enough to classify the different textures, because some of textures

have similar values of c, even though they are different texture patterns. This is the

ieason why the classification will be completed in second level by considering
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additional parameter values of col, o2. As mentioned before, since the estimation of c

can be done by simple Least-square estimation and the estimation of wol, co2 can be

done by Maximum Likelihood estimation, the two-level hierarchical classification

structure induces the reasonably reduced processing time preserving the accuracy of

the classification. Based on these sample mean and variance values, the number of

classes for the first level of classification, M = 5, were determined. The following table

[Table 5.21 shows the final classes for the first level of classification, and the

corresponding sample mean and variance, f each class. Notice that the herringbon

weave texture belongs to the class 2 and 3, because of its high value of variance.

Then, for the second level of classification, subclasses can be taken as the members of

each class based on the different values of o and o2.

5.6.1. 2-D Rotated Texture Case

In this experiment, the test input images were taken from the 2-D raffia textures

rotated by various angle Os (Figure 5.5). Then, each 64x64 texture was classified by

the proposed multi-level classification scheme. For the first level, the fractal scale

parameter c was extracted based on the first-order Fractional Differencing model

(5.3.1), and the parameters, coI and o)2, were extracted from the second-order

Factional Differencing periodic model (5.3.1.11). Actual classification of the test

images was done in each level by comparing weighted distances (5.5.1.1-2, 5.5.2.1-2)

between the extracted features and the data base. The classification results are

presented in Table 5.3. Table 5.3 shows the parameter values extracted from each

rotated texture pattern and the demostrates the perfect result of classification based on

these values.
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Table 5.1: The sample mean and variance of parameter c, t)w, o: 16 64 x64
sample image data are taken for each different texture classes, and the parameter
values are extracted from the first and second-order fractional differencing models
(5.3.1-2).

Textures c (OI

xF a 2  - a 2  - a 2

grass 1.209 0.057 0.744 0.078 0.636 0.082
tree bark 1.530 0.073 0.691 0.199 0.601 0.324
straw 0.923 0.053 0.387 0.068 1.209 0.070
herringbone weave 1.003 0.072 1.263 0.114 1.175 0.167
woolen cloth 0.809 0.024 0.852 0.095 0.793 0.098
calf leather 1.064 0.044 1.175 0.114 0.935 0.122
beach sand 1.195 0.038 0.665 0.107 0.571 0.129
water 1.074 0.055 0.083 0.064 0.972 0.132
raffia 1.547 0.062 1.042 0.153 0.988 0.165

Table 5.2: Database of the first level of classification. E/ and ai2 are the sample
mean and the variance of class i, respectively.

Class Textures c" Gi2

1 woolen cloth 0.809 0.024

2 straw, herringbon weave 0.963 0.063
3 herringbon weave, calf leather, water 1.047 0.055
4 grass, beach sand 1.202 0.045

5 tree bark, raffia 1.539 0.067
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Table 5.3: Classification results from the 2-D rotated texture images. (Result
indicates the result class after applying 2-level classification method.)

Angles c (o1  Result
20 17523 -T713 1.098 rattia
40 1.517 1.144 1.102 raffia
60 1.535 1.138 1.119 raffia
80 1.537 1.142 1.120 raffia
100 1.532 1.139 1.118 raffia
120 1.529 1.138 1.120 raffia
140 1.527 1.135 1.097 raffia
160 1.533 1.140 1.113 raffia
180 1.525 1.133 1.099 raffia

5.6.2. Orthographically Projected Texture Case

Six 64 ×64 test input images were taken in this experiment from the herringbon

weave textures projected orthographically from the various tilted and slanted texture

surface (Figure 5.6). Then, each texture was classified by the proposed multi-level

classification scheme. Like in previous experiment, for the first level, the fractal scale

parameter c was extracted based on the first-order Fractional Differencing model

(5.3.1), and the parameters, (ol and o2, were extracted from the second-order

Factional Differencing periodic model (5.3.1.2). The parameter values extracted from

each projected texture pattern and the classification results from this experiment are

presented in Table 5.4. Here, notice that the first test texture was assigned to Class 3

for the first level, and misclassified to the calf leathre texture, because these two

texture patterns share the close values of parameters.
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Table 5.4 Classification results from the orthographically projected herringbone
weave texture images. (Result indicates the result class after applying 2-level
classification method.)

Angles - Result
T = 01, c= 15" 199 U. T1.89~ -T.D7- calf leatFe-r
= 0',(Y= 30' 1.012 1.223 1.102 herringbone weave
t=0 0 , = 450  1.055 1.218 1.096 herringbone weave
= 450, c~= 150 0.980 1.197 1.113 herringbone weave
= 450, = 300 1.023 1.209 1.100 herringbone weave
= 450, = 450 1.046 1.207 1.108 herringbone weave

.. ..... ........... M~~4

... 
. .. ..

M WM

(a) (b) (c)

AM.

~-

W ....... .. . w .....

(d) (e)(f

Figure 5.6: 6464 herringbon texture images projected orthographically from the
various tilted and slanted texture surface (,c, a are the tilted and slanted angles): (a)

t=00, (Y = 150 Nb z = 0', aY = 30' (c) 'r 00, a = 450 (d) t 450, ( = 150 (e) t 450,

a=300 Mf 45 0 , 450
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5.6.3. Rotated And Projected Texture Case

In this experiment, six 64 x64 test input images were taken from the straw

textures rotated and projected orthographically from the various tilted and slanted

texture surface (Figure 5.7). Like in previous experiments, for the first level, the

fractal scale parameter c was extracted based on the first-order Fractional Differencing

model (5.3.1), and the parameters, co, and o2, were extracted for the second level of

classification from the second-order Factional Differencing periodic model (5.3.1.17).

The classification results from this experiment are presented in Table 5.5. Table 5.5

shows the parameter values extracted from each rotated and projected texture pattern

and demonstrates the perfect result of classification based on these values.

5.7. Conclusions

A new multi-level classification technique was proposed to classify the 3-D

rotated texture surface. Unlike most classification schemes which have been suggested

to date, this classification method can handle arbitrary 3-D rotated samples of textures,

i.e., the accuracy of classification is not affected by the 3-D rotation of the test texture.

The proposed multi-level classification scheme consists of two levels of classification

procedure. In the first level of classification, a 3-D rotational invariant feature c

(fractal scale) in the first-order Fractional Differencing model was extracted, and

based on this value, the test data image was classified to a certain class. In the second

level, each class was divided to the final desired subclasses based on two other texture

pattern features, cut and co2, which were extracted from the second-order Fractional

Differencing periodic model. Then the input texture image was classified further in

detail with these two pattern features. This multi-level classification has several
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Table 5.5: Classification results from the rotated and orthographically projected
straw texture images. (Result indicates the result class after applying 2-level
classification method.)

Angles c Result
6 Ou,t 0', a15' 779IT2 1 TEW straw
0=450 ,t= 0', (;30' 0.932 0.371 1.224 straw
0 900 , t- 0', cy45' 0.928 0.373 1.218 straw

S0 0 ',t=45', (T=15' 0.918 0.368 1.156 straw
O 450 ,,=45', (Y= 30' 0.922 0.375 1.191 straw
0 900, tc 45',(Y= 450 0.927 0.377 1.202 straw

N.... ."*.**.*.

0 &.

M..

(a) (b) (c)
.i ... ... .i

.................. ...........~

(d) (e)(f

Figure 5.7: 64 x64 straw texture images rotated and projected orthographically from
the various tilted and slanted texture surface (0, t, ar are the rotated, tilted and slanted
angles.): (a) =o00, r =0 0 , (Y= 150 (b) 0 =450, 'r= 00 , a30' (c) 0 =900, 'C= 0 0 ,
c= 450 (d) 0 = 00, 'r=450, ( = 150 (e) 0=450, c = 450,a 300 (f) 0 = 900, t=450,

(T =45 0
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advantages over the conventional one-level classification methods. First, since this

algorithm uses a simple LS estimation to get the fractal scale c in first level, the

processing time of the classification is reduced comparing to the methods that rely on

only ML estimation. Second, from the additional texture patterns W1, (o2 in second

level, the more accurate classification can be achieved compared to the classification

methods which have only one feature parameter c. As a result of a series of

experiments involving the differently oriented samples of natural textures, it is

concluded that these combined features make possible for this multi-level

classification method to have a strong class separability power for arbitrary oriented

3-D texture patterns.
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CHAPTER 6

CONCLUSION AND

FUTURE RESEARCH

6.1. Conclusions

The modeling and analysis of texture pattern of a three dimensional surface have

been investigated. Since 3-D natural scene image contains both radiance and texture

information, 3-D texture analysis can not be done by either shading analysis or texture

analysis only. Also, the distortion of the regular texture pattern due to the 3-D surface

orientation makes it difficult to analyze 3-D texture by the conventional stationary

random field texture model. Thus, in this thesis, 3-D surface model which can handle

both shading and texture information and 3-D texture analyses which are not affected

by 3-D surface orientation have been emphasized.

The contribution of the research can be summarized as follows. First, the

orthographically projected fractional differencing model was introduced to represent

the orthographically projected texture pattern due to the 3-D surface orientation. This

model has an ability to synthesize a long-correlated or a short-correlated random

texture with various values of fractal scale parameters c and d, and the roughness and

the distorted texture pattern of the 3-D surface simultaneously.

Second, the estimation scheme of the parameters of the orthographically

projected fractional differencing model was developed based on a hybrid method of
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the least mean square and maximum likelihood estimations. For the estimation of the

fractal scaling parameter, this estimation scheme is much simpler than the fractional

Brownian process based model's, because of its discrete process. Rotational and

scaling invariant properties of the parameters were presented. Thus, even after

performing several linear coordinate transformations, all Gaussian assumptions of

random noise were preserved.

Third, a composite model of the Shape-from-shading and the Shape-from-texture

has been proposed to represent a natural scene which contains both shading and

texture information, considering the scene as the superposition of a deterministic

function and a random texture. Surface orientations and the illumination direction

were extracted directly from a single natural scene image without any pre-processing.

This avoids the possible error cumulation from each process step. Also, comparing

with the conventional Shape-from-shading techniques, this composite model gives

unique and more reliable soluiions for the surface orientation parameter values,

because of the additional constraint from the texture function part.

Fourth, a multi-level 3-D rotational invariant classification scheme has been

developed, based on the first and second-order fractional differencing models. Multi-

level structure of this classification consists of two hierarchical levels. In the first

level, the fractal scale which is known to be a rotational and scaling invariant

parameter was extracted from the first-order fractional differencing model, and with

this value, preliminary classification has been done. In the second level, the more

detailed classification has been achieved with additional texture pattern parameters

from the second-order fractional differencing model. This hierarchical structure could

reduce the total processing time from the simple least mean square estimation scheme

for the first level, and at the same time, it could preserve the accuracy of the

classification from the second level of classification.
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6.2. Suggestions For Future Research

In addition to the pattern analyses of the texture on 3-D surface, which are

developed in this thesis, several related works can be suggested as follows.

6.2.1. Neural Network Analysis For The Global Optimization Problem

In the maximum likelihood estimation procedure, the optimization routine

maximizes the likelihood function. Since our likelihood function is a complicated

non-linear function and the existing approximation techniques for getting the

maximum value from the non-linear function require a great many iterations, the

computational time is enormous. Recently, based on the parallel processing structure

of the computer, some researchers claim that neural network analysis is one of the

promising techniques for reducing the computational time for optimization [163].

Therefore, investigating the applicability of neural network analysis to the

maximization of the likelihood function will be valuable.

6.2.2. Modified Scheme Of The Shape From Shading And Texture

Method With Weighting Factor

The proposed composite model of the Shape-from-shading and the Shape-from-

texture does not have any weighting factor between both 3-D analysis techniques.

However, in situation that the radiance information is more dominant than the texture

information, or in the reverse situation, the estimated surface orientations from the
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Shape-from-shading or Shape-from-texture technique only can be more reliable.

Therefore, if we have a proper criterion to select either technique or the proposed

composite model to represent the part of the surface image data, we may improve the

results. One of the possible way to do this will be given by checking the fractal scale

of the surface. In [ 176], Pentland described the fractal scaling factor as a measure of

the roughness of surface. That is, if the fractal scale c=0, it represents the smooth

surface with gentle random undulations. In contrast, the surface with fractal scale c >0

are not perceived as smooth, but rather as being rough or three-dimensionally

textured. Thus, by checking the estimated value of c, it can be possible to make

decision which technique should be preferred.

6.2.3. High Resolution Analysis For The Texture Pattern

Our proposed texture model in chapter 4 is based on local patch analysis. In the

simulation part of this thesis, we used a 16 x 16 sized patch taken from the center of a

32 x 32 sized patch to build the whole image. TLhere is a minimum requirement on the

size of each patch for being able to extract meaningful statistical information from the

patch. This is the bottleneck for the high resolution analysis. Since the elementary

unit for surface orientation is a single patch (we assume each patch to be a plane and

consequently the values for the surface orientation parameters y, r are constants over

the patch), the end result is a low resolution analysis. Therefore, we need to develop a

high resolution scheme based on a single pixel instead of a complete patch. Therefore,

if we can develop a pixel based model, the synthesis of 3-D texture can be done by

just adopting the surface orientation parameter values recursively for each pixel.
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6.2.4. Robust Estimation For The Contaminated Gaussian Noise Case

The estimation procedure which is proposed in this thesis is based on the

assumption that the input noise has a pure Gaussian distribution. However, in the real

world, pure Gaussian noise does not exist. Therefore, even if we have noise which is

made of Gaussian noise mixed with a small portion of other distributed noise, our

estimation will not give the right estimated values for the parameters. Therefore, it is

favorable to develop a robust estimation scheme for this situation.

6.2.5. Boundary Detection Of The Mixed 3-D Textures With Fractal Scale

And Knowledge-Based Post-Cleaning Process

The natural scene image does not contain a pure 2-D texture pattern which can

be represt'ited by the isotropically distributed random texture model, but a projected

pattern on the 3-D surface. For example, in Figure 2.2 (tree image), the tree bark

pattern around the boundary between the tree and the lawn grouid looks more dense

than the pattern in the middle of the tree. This makes it difficult to apply the

conventional 2-D texture model to get the texture boundary the different textures.

However, this 3-D texture boundary can be detected using fractal scaling parameter in

fractional differencing model which has been proposed through this thesis because the

fractal scale parameter is known to be a rotational and scaling invariant parameter and

its value is considered as a measure of the roughness of surface. Thus, we can have the

same value of the fractal scale within same 3-D texture pattern, and the higher value

of the fractal scale around the texture boundary [46, 173]. Then, the fractal scale

image can be generated by applying a proper size of window to the original image,
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and the texture boundary can be obtained by thresholding the values of fractal scale in

the fractal scale image. Also, this texture boundary image can be improved by

deleting false boundaries, correcting wrong boundary directions, and linking the lost

boundaries. This post-processing can be done by applying a knowledge-based

reasoning process to the obtained boundary image. Here, a set of rules for

knowledge-based algorithm can be constructed from the prior knowledge that the

texture boundaries are continuous and closed. This boundary detection technique is

being developed in detail.
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Appendix A

Proof of Theorem 2.1

Intensity function x(1,l2) can be represented by the following equation.

x(l 1 ,12) = X I(L'N) (A.1)

where, X.t.: albedo (constant for the rcfle,.:ness)

L: the illumination direction vector

N: the surface normal vector

Thus, when (11,12) defines the image plane from the viewing direction, the first

derivative of image intensity in the direction (dl ,d12 ), dx(11 ,2) is

dx = ?4.(dL-N + L-dN) (A.2)

Assuming L is constant,

dx = X4i(LdN) (A.3)

Notice that dN, the change in N, is perpendicular to N as it lies in the tangent plane to

N, and isotropically distributed as same as N is. Thus

E( dN) = 0 (A.4)

and

E (dx) = Xt(L.E (dN)) (A.5)

=Xg(aldl, +Lja2 dNl +l 3 dNl3 ) (A.6)

where (dlAt, ,dN1 2,dlNt3 ) are the average values of change in the surface normal in

image direction (dl ,d12 ) and L=(L ,Lt2 ,L1 ) is the illumination direction. That is,



159

d/1  = ln (A.7)
-Xj dN1 , dA112 = I l,

Since dNl3 = 0,

E(dx) -- (Lj dlVh +L,2d/Vt2 )  (A.8)

Then, introducing dr, which may be thought of as the expected magnitude of dN, that

is, as E(IdNI),

dNl =lIdr, dNl2 
= 12dr (A.9)

where 1,2+122=1 and 1 / 12=dl It /cId 2--dx11 /dX1 2 , defining (dx/,,dxt2) to be the

differential step in the image along which dx was measured.

Thus, defining L11=XpL 1dr and LI=XpL12 dr, we can have the following linear

regression model, from (A.7),(A.8) and (A.9).

dX dlj d121

&2 di ~ 12 dl:22 H(~0 (A.IO0)

dI= d 2 I-I

where dxi is the average value of dx over the i-th patch in direction (dl I ,dl2).

U
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Appendix B

Proof of Theorem 2.2

If we denote the matrix of directions (d1i,dl2) by 13, and let 13T indicate the

transpose of 13, then the solution (A.10) in Appendix A is the following least-square

estimator.

dxl

Vw PT& (B. 1)

Here, notice that the above solution is a normalized one. Thus, in order to get the

actual values of (L,1 ,L12,L13 ), we need to calculate the value of Xgdr properly.

E(dr2 ) = E (X2 2 (L dN1 , + L 2dN 2 + L 3dV,3 )2 ) (B.2)

2A2 2A2 2A A 2

=x2 2 (Ll2 dil12 + L122d,.Z + L1 3 2dl 3 + 2Lt1L12dN1 dvl 2

+ 2L1 L 3d 1 dNll d 3 + 2L2 L 1 3 dNl 2dNl 3 ) (B.3)

where (dN,, ,dlV 2 ,dN1 3 ) are the average values of (dl,dN ,dI2 ,dN3)
^2 2d2d 2 '

Since Var(dNt,) = Var(dN/2) = dr2 for sphere model, dlv 2 - t2 dr2 +dr2 , dN,2 =

122dr2+ dr 2, and d!v1 3 = dr 2,

E (dx2 ) = 2 p3(L, 1
2 (/ 1

2 dr 2 +dr 2 )+L12
2 (12

2 dr 2 +dr2 )

+L132 dr2 +2Ll LI21112dr2 ) (B.4)
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X2 12 ((11LI, +1 2L12 )2 dr2+(L11 2+L 12
2 +L13

2 )dr2 ) (B.5)

If the illumination direction vector L is counted as a unit vector, that is, L1, 2 + L1 2
2 +

L12
2  1,

E (dx2 ) _ X2 p2((11L +12L) 2dr 2+dr2 ) (B.6)

Also, from (2.2.1.1.7),(2.2.1.1.8), and (2.2.1.1.9),

E ( (X) 2 d L1,+d 1 2L1 2 ))2

((I L, +1l 2L 2)dr)2

X2 p(1 L 1+12L12 )2 dr2  
(B.7)

Thus,

E(dX 2  ) ,2gt2 dr 2 A k2  (B.8)

Therefore, from the definitions of/1t,,/S 2, and the equation L,1 2 + L1' 2 + L12
2 = 1, the

illumination direction can be calculated as follows.

L, Lt2 1-Lt, 2 -L 2 2 (B.9)
L11= k' L, 2= k , L1 3=

And, from the relation between the x-y-z coordinate system and the angular coordinate

system, we can represent the illumination direction with its tilt and slant angles, "tL,

TL. Thus,

'tL = tan - l -), -L (B.10)

iL,

UEW
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Appendix C

Proof of Theorem 2.3

Let aL be the phase angle between the viewing direction V and the illumination

direction L, xV be the incident angle between the illumination direction and the surface

normal direction, and r" be the emittance angle between the viewing direction and the

surface normal direction. Then

V'L = cosaL, L'N = cosyf, and V-N = cosTj (C. 1)

Intensity function x(1 1 ,12 ) can be represented by the following equation.

x(1 1,12) -= Xg(L.N) = ?gcosxV, when cosw > 0. (C.2)

Then, for each of surface patches, to determine the expected value of image intensity,

we need to average x(11 ,12), and, to determine the expected value of image intensity

squared, we need to average x 2(11,12) over the image of a hemisphere.

Notice that since not all of the hemisphere is illuminated, we should integrate

only over the illuminated region, to avoid areas where cosy is negative. A suitable

spherical coordinate system can be erected with the equator in the plane containing L

and V, with the pole at right angles to this plane, namely at 0, defined to be a unit

vector orthogonal to the plane containing L and V. Let latitude be t measured from

the equator, while longitude is y, measured along the equator from the point V toward

L. Therefore, the point L has longitude 3 L and zero latitude. Simple spherical

trigonometry using a triangle with comers V, N, and 0, yields

cos'q = cos't coso (C.3)

and from a similar triangle with corners L, N, and 0, we can obtain



163

cosy = cos't cos (T - TL) (C.4)

The illuminated half of the sphere runs from a = -r/ 2 +aL to r = +x/2+OL, while the

visible half goes from Y = -n/2 to Y = +t/2 and the infinitesimal element of area is

costdad't.

The integrals that we are interested in are of the form

V2 rt/2f f f(y,t) cosTq cost daydt (C.5)

-irt2 -nt/ 2 +OL

where the cosrj term compensates for the foreshortening due to the projection of the

spherical surface into the image. We need this factor because we are using a

coordinate system on the hemisphere, but are seeking an average over the image of

the hemisphere. If we include self-shadowed areas in the computation of the average,

we must divide the integral by the whole area, it, of the disc that is the projection of

the hemisphere, on the other hand, if we do not include self-shadowed areas, we

divide by the area (7E/ 2 )(I+cosaL) of the projection of the illuminated part of the

hemisphere.

Thus, from (C.2) and (C.4),

E (x) = X .E (cosyN)

= XpLE (cost cos (a - (;L)) (C.6)

Here, to get the value of E (cosy'), we need to evaluate the integral

rt/2 7V2

B -= f f (cosrl cosy) cost dadt (C.7)
-n/2 -n/ 2+oL
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u/2 IV2

f f (COST coscv)(cost Cos (O-OL)) cost dcYdT (C.8)
-rT/2 -n/2 4-a,

n/2 Vt2

= f cos3"dT f cos (aT-YL) coscr da (C.9)
- tl2-2+at

3(sin CLI+(r-VL)COS(TL) (C. 10)

Therefore,

E x) (sin L+(rt-L)cosaL), (C.11)
3t:

or

E (x) =- 4t (sinaL+(7r-aL)COSaL), (C.12)
31r( l +cos aL)

depending on whether we average over all image regions, including self-shadowed

parts, or not.

Similarly, to get the value of E (x2 ), we need to evaluate the integral

r/2 w2

B2 f f cost] cos2 V cost dadt (C.13)
-n/2 -n/2*c1t

n/2 r/2

f J (co t COSC)(COSt COS (a-aL)) 2 cost dcYdT (C. 14)
nE2 -7/24 t

Tc/2 IV2

f Cos T ( c os2 ((-(L)coscr d(y (C. 15)
mT/2 -t2+oG1

(I+COSIL)2  (C.16)
8

THierefore,
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E (x2 ) = 8 (I+COSL) 2 ,  (C. 17)

or

E (X2 ) = ( 4 2 (l+cosGL), (C.18)

depending on whether we average over all image regions, including self-shadowed

parts or not.

• • • • mU
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