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UNSTEADY SEPARATION AND UNSTEADY SHEAR LAYERS
(Task 2)

Principal Investigator: Ho, Chih-Ming

ABSTRACT

The process of engulfing fluids from two streams into the shear region is one of the most
important technical problems in fluid mechanics research. A new entrainment mechanism,
unsteady azimuthal deformation was identified to be more effective than vortex merging in a
two-dimensional flow. This mechanism can make the homogeneous elliptic jet entrain twice
the mass than a cir,'lar jet. During this contract period, the effect of temperature on the
evolution of the three-dimensional jet was studied.

ACCOMPLISHMENTS

The results are briefly summarized here. The detailed information can be found in the
attached papers or in the publication list.

Application of High Entrainment of Elliptic Jets

(Ref. Ho, Austin and Hertzberg, Proc. Asian Fluid Mech. Congress)

The high entrainment of a jet issuing from an elliptic nozzle has been applied in ramjet
combustor and in supersonic jets. The data showed significant improvements in mixing.

Stability Analysis of an Elliptic Jet

(Ref. Koshigoe, Ho and Tubis, AIAA paper No. 87-2733
Koshigoe, Tubis and Ho, Phys. Fluids, 1988)

The azimuthal deformation of the vortices is produced by the self-induction of the asymmetric
distribution of vorticity in a structure. The vortex distortion depends on the stability process.
Both the amplification rate and the phase speed are functions of the azimuthal vorticity
distribution and they also vary with the temperature. When a temperature gradient exists
across the velocity shear with different thickness around the nozzle, the differences in the
growth rate and the phase speed around the nozzle is amplified. Hence, the deformation of
the vortices is accentuated by the temperature gradient and the entrainment is expected to
be modified.

The Hot Jet Facility

We intend to operate the jet in the speed region where the compressibility effect is appreciable
and in the temperature range which is much higher than the room temperature. Many
versions of the modification have been carried out. We were able to increase the jet Mach
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number to about 0.2, 230 ft/sec, by installing three additional blowers. The maximum
operating temperature is about 500'F. The temperature in the stagnation and at exits of
the heaters are monitored by thermistors.

Flow Visualization

There is an appreciable density fluctuation in the hot jet. We then can visualize the en-
trainment process in the hot elliptic jet. A shadowgraph and a Schlieren system were set
up for this purpose. A spark-type light source with micro second duration was used. The
frequency of the light pulse was controlled by the trigger signal and could be varied from a
single pulse up to 1 kHz. We adjusted the pulse rate to match the frame rate of the video
camera and took a movie of the hot jets.

The shadowgraph showed that the initial boundary layer is laminar and vortices roll up
at a downstream location. The spreading in the p; ne containing the minor axis spreads
much faster than in the major axis plane. This is consistent with the measurements. We did
not observe the side jets caused by the absolute instability (Bechert et al., 1988) in either
the still picture or the video movie.

Temperature Fluctuations

The maximum temperature of the jet can reach 500°F. To hold and operate a hot-wire
in a flow of this high temperature is not a trivial job. The time spent in solving this
problem was more than we expected. We need to find a specially high temperature solder
to attach the platinum wire to the steel prongs. The probe body also requires temperature
resistance because part of the probe is inside the flow. The calibration procedures have been
established. The time constant of the wire and the digital frequency compensation technique
were accomplished. The frequency response was extended from 150 Hz to 3000 Hz.

The pdf of temperature fluctuations was measured along the major and the minor axes at
several streamwise locations. When the pdf was compared at corresponding radial locations
in the major and minor axis planes, an interesting feature was found; the pdf in the minor
axis plane was being skewed toward the low temperature side. This result reconfirms the fact
that entrainment of the ambient cold near the minor axis region is more pronounced. The
standard deviation of the pdf indicates the level of temperature fluctuations. The standard
deviations in the minor axis plane are always higher than those in the major axis plane.

KEYNOTE TALKS IN CONFERENCES

1. "Fundamental Aspects of Unsteady Separation", AFOSR Super Maneuverability Ini-
tiative Meeting, Boulder, Colorado, March 11, 1985.

2. "Entrainment and Turbulence Structures", 22nd JANNAF Combustion Meeting, Pasadena,
California, October 11, 1985. 3

3. "Evolution of Coherent Structures and Small Scale Transition in Mixing Layers", Work-
shop on Computational Fluid Mechanics, Institute of Nonlinear Science, University of
California at Davis, Davis, California, July 18, 1986.
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4. "Vortex Evolution and Turbulence Control", 24th JANNAF Combustion Meeting,
Monterey, California, October 5-9, 1987.

5. "Vortex Dynamics of Unsteady Flows", First National Fluid Dynamics Congress,
Cincinnati, Ohio, July 23-25, 1988.

PH.D. THESIS

1. "Small Scale Transition and Preferred Mode in an Initally Laminar Plane Jet" by F.
B. Hsiao.

2. "The Unsteady Aerodynamics of a Plunging Airfoil" by S. H. Chen.
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3. "An Alternative Look at the Unsteady Separation Phenomenon", Recent Advances in
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Vortex deformation in elliptic-core jets from the perspective of linear
instability analysis

Shozo Koshigoe
Code 3892. Naval Weapons Center. China Lake. California 93555-6001

Arnold Tubis
Department of Physics. Purdue University. West Lafayette. Indiana 47907

Chih-Ming Ho
Department of Aerospace Engineering, University of Southern California. Los Angeles. California 90089

(Received 10 August 1987; accepted 17 May 1988)

An attempt is made to identify the underlying mechanisms for the deformation of coherent
structures that occurs in the initial state of axis switching of elliptic-core jets. The generalized
shooting method is applied to jets with elliptic-core regions of constant flow. The analysis
shows that there are three conditions on groups of eigenmodes of elliptic-core jets which are
necessary for the deformation. They are ( 1 ) proper localizations without excessive
overlapping; (2) sufficiently large phase-speed differences; and (3) comparable spatial
amplification rates. The qualitative behaviors of elliptic-core jets in relation to these three
conditions are studied with respect to independent and joint variations of core eccentricity,
azimuthal distribution of momentum thickness, and compressibility.

I. INTRODUCTION of instability modes for elliptic-core jets. '' 0 Furthermore, a

Jets are generic configurations in many engineering de- calculation scheme more general than that used in 2-D

vices. e.g.. ramjet combustors. and they therefore have at- cases" is needed to handle the nonseparable boundary value

tracted attention from numerous researchers. Understand- problem.
ing the entrainment mechanism and developing control One of the most peculiar aspects of elliptic-core jets is

techniques are the key research goals in jet studies. More axis switching,' which is of interest from a fundamental

than a decade ago, effort was concentrated on investigating scientific point of view and for its potential applications. The

small random eddies, but success was limited. Since the evo- initial development of axis switching is characterized by the

lution of large coherent structures' was recognized to be the deformation of coherent structures. This deformation can be

mechanism that determined the mass transfer between associated with the self-induction of the asymmetrical distri-

streams. progress has been very much accelerated. Many bution of vorticity in the jet, which causes differences in

active-control 2 ' as well as passive-control5 techniques have rollup locations. The portions of the elliptic-jet vortical

been developed for manipulating the entrainment process. structures near the major axis roll up slightly further down-

The basic control principle is to enhance the unsteady distor- stream from those near the minor axis. Thus the overall pat-

tion of structures and thereby induce large amounts of mass tern of rolled up structure is deformed. This deformation in

to move across the shear layer. Passive control is especially the elliptic jet is clearly seen in the forced elliptic jets in the

interesting, because no additional energy is required. In the paper' of Ho and Gutmark (see Fig. 1). The analysis of the

case of the elliptic nozzle used by Ho and Gutmark,5 the complete evolution of axis switching is beyond the scope of

entrainment can be approximately ten times higher than that the present work. However, without the deformation of the

for a two-dimensional (2-D) axisymmetric or plane jet. initial large-scale-structure development as just described,

Schadow and Gutmark 6 tested this type of passive control in there would be no axis switching.

a ramjet combustor and found significant improvement in In this paper, we analyze the spatial instability modes of

the combustion efficiency. elliptip-core jets in order to demonstrate the essential under-

Instability analysis offers a great deal of insight into the lying mechanisms which cause the initial vortex deforma-

development of free shear layers. Many properties of the tion. The generalized shooting method,' 3 based on both inte-

coherent structures in a,2-D flow can be predicted from in- gral and differential equations, is used for the calculations

stability calculations. Even experiments in turbulent mixing since it has been found to be more practical to apply than the

layers7 have demonstrated that fine details of the eigenfunc- Helmholtz integral equation formulation.9 Some of the for-

tions can be well determined from the analysis. Crighton" mal and numerical aspects of calculations are reviewed in

examined the instability of an elliptic vortex-sheet jet. How- Sec. 1I for convenience of discussion in the later sections.

ever. the vortex-sheet approximation is only valid for low (For more details, see Ref. 13.) In Sec. III. the instability

wavenumtkrs. In the three-dimensional (3-D) elliptic-jet modes for incompressible flows are studied as the limit of

case. new features, e.g., aspect ratio and distribution of the compressible flows in order to clearly assess the effects of

momentum thickness. are introduced into the problem and compressibility later in Sec. IV.

provide a new domain of applicability of instability calcula- Three conditions on groups of eigenmodes are identified

tions to the design of passive controls. There are four classes as necessary for vortex deformation in elliptic-core jets.

2504 Phys. Ftuis 31 (9), Seotemoer 1968 0031-9171/88/092504-14$01 90 :) 1988 Ameman IntItU4 Of Physics 2504



x 7,

and a is the local sound speed, which is related to the time
averaged temperature T and density , by

a =, a,T/T) , (6)

where a, T0, and , are the sound speed. temperature. and
flow density at the origin of the coordinates, respectively. It

- is assumed that the temperature and the mean velocity are
related according to the Busemann-Crocco law, "

WO. W. W,

(7)

where 77, = T,/T), T, = T(vx' - x ), M,4 = W,,'a,
and y is the ratio of the specific heats.

For a given w, the solution of Eq. (3) with p finite and
-0 for x" -.-.v- -- x, yields the corresponding eigenvalue
wavenumber (Re'a}) and spatial growth rate ( - lm~a,}).

We assume elliptic-core jets whose mean flows W(r.b)
(r.6: polar coordinates) have the symmetry properties

W(r,4,+ )=W(r,6) = W(r,,r- 6). (8)

The general classification of eigenmodes for this type of
mean flow is discussed in Refs. 9-1l. In this paper. we will
consider in detail only the behavior of the eigenmodes of the
+ + or ce,, symmetry class, for which

FIG. I. Initial development region (i) and subse,.zent axis-switching re- p(r, r - 6) =p(rb) =-p(rr + 6). (9)
gion (s) of a forced elliptic jet in the major axis (a) and minor axis (b) For circular jets. this class corresponds to the individual 6
planes. dependences cos 2m6, m = 0,1,2..... In general. for jets with

mean flows satisfying Eq. (8), the + -eigenmodes may be

These conditions'are studied in Sec. III in relation to the jet- represented as

core eccentricity and azimuthal distribution of momentum p ini(r,i) = t A2n(r)cos2md, n=,2,3.
thickness, and in Sec. IV in relation to jet compressibility. In ,, . o

Sec. V. streak-line patterns are plotted for flow regimes rang- (10)
ing from low subsonic to supersonic in order to demonstrate Simple orthogonality relations among the eigenmodes
explicitly the initial deformation. of Eq. (3) do not exist. However, we can apply the biortho-

gonal relations 5-'- derived in the Appendix to extract a par-
ticular eigenmode from a general + + expansion of p.

II. STABILITY ANALYSIS FOR ELLIPTIC JETS1 3 The spatial coordinates, D and 0, are used to specify the
We express the velocity profile of a 3-D straight jet in an mean flow are indicated in Fig. 2. The core region. with

inviscid compressible fluid with incremental pressure p and W = W o constant, is bounded by the ellipse shown. The Car-
density p as tesian coordinates (x,,y,) of a point on this ellipse are

U = W(.y)&2 + u, (1)

where We. is the jet mean flow velocity I W> 0) and u is the
fluctuating velocity associated with spatial instabilities. Ap-
plication of the linearized momentum and mass-conserva-

tion equations and the assumed (zt) dependence,

e ~f (2) X

y ie ld s o

(V2 - a' )p -.4 Vp.V In [f"/1/a(w - aW)21 = 0, (3)

where CORE REGION W =4

S= a:{ I - [ (owla - IV) la] 1 }. (4)[ FIG.. Spatial coordinates used to specify the mean flow W(D.). as de-

, is the time averaged pressure (assumed to be independent scribed in the text. The crosshatched region in the first quadrant. where

of position), ;V W! is non-negligible. is the effective calculational domain for Eq. (3

2505 Phys. Fluis, Vol. 31. No. 9. Sootemer 1988 Koshigoe, Tubs. and HO 2505



U-VELOCITY CONTOURS ,, U-VELOCITY CONTOURS

(a)~ (C)I

S0.50 L. 0.50 FIG. 3. Contour plots of the magnitude and
>" ! 0'50 -. ,"phase of the eigenfuncttons for the stream-

_ wise-fluctuation-velocity component u:. for
0.50,0 ____ " frequency w = 5.4. /B = 2. and specifica-01 0 ," . t tion 0.02/002 for the momentum thickness

0 0.50 1 1.50 2 0 0.50 1 1.50 2 variation [the first and second rumbers refer

X/L X/L to the momentum thickness along the major
1 and minor axes. respectively; 8,, and c, areK-.(b) (d)I found from Eq. (14) 1. The magnitudes ( (a)

',..,* . and (c)I and phases [(b) and (d)I corre-

"7 spond to the most unstable eigenmode of the."0.50 - +'-.. . . .0 -'- + -and - class. respectively. The solid

W. > and dashed lines represent positive and nega-F"'tive phase contours.

0i
0 0.50 1 1 .50 2 0 0.50 1 150 2

X/L X/L

x, = Nro cos 0, D, (9) = 9(8) In[ (1 - W)IW,]. (13)

y, = (I/v r)sin 0, (I1) In Eq. (13) W, is a number close to unity. All velocities,

where r = A /B. with A and B being the lengths of the semi- lengths, and temperature are nondimensionalized by W, L,

major axis and semiminor axis, respectively; 8 is the elliptic and To, respectively. For the calculations of this paper, we

coordinate angle: and x, and y, are nondimensionalized by have used the momentum thickness function,

L =- A-B. A given point x = (xy) outside this ellipse is then e(9) = 00[ 1 + cS(9)/S('/2) ], (14)

specified by D. the distance from the point to the ellipse where c, is a constant for controlling the azimuthal variation
along a line perpendicular to the ellipse and 9, the elliptic of momentum thickness and S(9) is the arclength along the
coordinate angle of the point on the ellipse intersected by this curve c from (x, ( 0 ), y, (0)) to (x, (9), y, (0)).
line. In applying finite difference techniques to the solution

By using the symmetry relations of Eq. (9), the compu- of Eq. (3), the crosshatched region of the x-y plane in Fig. 2
tation region for Eq. (3) may be effectively reduced to that is thus transformed to a rectangular region of the 9-D plane.
contained in the first quadrant (crosshatched in Fig. 2). The
same reduction of the computation region holds for the other IlI INSTABILITY MODES FOR INCOMPRESSIBLE
symmetry classes. .FLOWS

Calculations were done using the mean flow

( D +D,90)) In order to assess the effects of compressibility, we first
W(D,O) I - tanh( - I , (12) investigate the behavior of the spatial instability eigenmodes

-0) when the flow is considered to be incompressible.

where 1(9) is the momentum thickness and D, (9) is given In Figs. 3 and 4, contour plots are shown for magnitude
by I u. I and' phase 0, of the streamwise-velocity-fluctuation

U-VELOCflY CONTOURS U-VELOCITY CONTOURS

(a) (c)

.50 0.50
FIG. 4. Contour plots for the magnitude and
phase of u. for the same conditions as in Fig.

0.50 1 1.50" 2 0 ( 1. The magnitudes [ (a) and (c) I and phasesS1(b) and (d) I correspond to the most unsta-
X/L XIL bleeigenmodesoftthe - + and + - class.

I 1 respectively. Most unstable eigenmodes of

(b) (d) variouscassaeimle o l subsequent
- .;" -- -- - figres, unless otherwise stated.

o0 - 0.50 -_.. ,.s

0 0.50 1 1.50 2 0 0.50 1 1.50 2
XIL XIL
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U-VELOCITY CONTOURS U-VELOCITY CONTOURS

(a)l (c)~

z' 0.sa00.50 FIG. 3. Contour plots of the magnitude and
.50 phase of the eigenfunctions for the stream-

Iwise-fiuctuation-velity component u.. Cor
frequency w = 5.4. A 1B8 2. and spectfic3-

a1 0 , , ,, tion 0.02/0.02 for the momentum thickness
0 0.50 1 1.50 2 0 0.50 1 1.50 2 variation ( the first and second numoers refer

X/L X/L to the momentum thickness along the major
____________________________and minor axes, respectively: 0,, and c, are

(b)i 1 (d)J found from Eq. (14) 1. The magnitudes [ (a)

and (c) I and phases [ (b) and (d) I :orre-

~0.50- -0 .50 ~ Z + -- and -- class, respectively- Thesolid
and dashed lines represent positive and nega.

k tive phase contours.

01 0'6*-'
0 0.50~ 1 1.50 2 _0 0.50 1 1.50 2

X/L X/L

, Vro Cos 9, D, (9) = 9(9) In( (I - W)/W] (13)

Y, (I/V70)sin e, II In Eq. (13) W, is a number close to unity. All velocities,

where r, = A /B, with A and B being the lengths of the semi- lengths, and temperature are nondimensionalized by W,, L,
major axis and semiminor axis, respectively; 9 is the elliptic and To, respectively. For the calculations of this paper. we
coordinate angle; and x, and y, are nondimensionalized by' have used the momentum thickness function,

L = ,;AB. A given point x = (xy) outside this ellipse is then (E) (8) = 0, [ I +r cS(8)/IS(iw2) 1, (14)
specified by D, the distance from the point to the ellipse where c, is a constant for controlling the azimuthal variation
along a line perpendicular to the ellipse, and 9, the elliptic of momentum thickness and S(O9) is the arclength along the
coordinate angle of the point on the ellipse intersected by this curve c from (x, (0), y, (0)) to (x, (9), y, (0)).
line. In applying finite difference techniques to the solution

By using the symmetry relations of Eq. (9), the compu- of Eq. (3), the crosshatched region of the x-y plane in Fig. 2
tation region for Eq. (3) may be effectively reduced to that is thus transformed to a rectangular region of the 9-D plane.
contained in the first quadrant (crosshatched in Fig. 2). The
same reduction of the computation region holds for the other

C 13 111. INSTABILITY MODES FOR INCOMPRESSIBLEsymmetry clSes. 1 LW
Calculations were done using the mean flowFLW

( /D+ D,(9)\] In order to assess the effects of compressibility, we first
W(D.9) 11 - tanh (' I (12) investigate the behavior of the spatial instability eigenmodes

21 2E)(0) ) when the flow is considered to be incompressible.
where 0(0) is the momentum thickness and D, (9) is given In Figs. 3 and 4, contour plots are shown for magnitude
by uI and phase ih. of the streamwise-velocity-fluctuation

U-VELOCITY CONTOURS U-VELOCITY CONTOURS

(a) (c)

~0.50 C1 0.50

FIG. 4. Contour plots for the magnitude and
00 050 0________________________ phase of u. for the same conditions as in Fig.

0 5 01 0.5 1T10e magitdes I(a) and (c) Ianidphases
0J 0 .0 1 1 5 .0 1 1 5 b n d I correspond to the m ost unsta-

X/L XILbleeigenmodesofthe - + and + - class.
1 respectively. Most unstable eigenmodes of

(b) -- . d) vazrim classes are implied for all subsequent

01 0 .0 0.50 1 1.50 2 0 0.50 1 1-50 2
X/L X/L
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A 125. fl = 0 r - 2 f 4

0.58 0.60 0.62 0.64 0.66 W!
-5.6 ;

; ( 1 )

(2 ' 16) -- 5.5- -01-2
(1 2 1Z0 5

(1 .20002002 2 0.0210M0 I 0.02/0o2 002/0.
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(1 4) 25- -
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-5 .

0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57
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0 L0
FIG. 6. Core eccentrcity dependence of the eigenvalues which track from 0 025 0 75 25 025 C 75 i 2! C 25 C 75 1 25
those of the m = 0 (circle). 2 (pius). and 4 (triangle) modes ofa circular- X/L X'L XIL

corejet for w = 5.4 and 0.02/0.02. in the negative-of-the-growth rate (a,).
phase speed (C,). and wavelength (.) plane. The numbers in parentheses FIG. 7. Contour plots of lu for the evolution of the m = 0 ( a)-i c ). M = 2
are for A 1B. (d)-(f. and m = 4 (g)-(i) modes of a circular-core jet ( A/B = I ) for

= 5.4 and variation of momentum thickness specified by 0.02/0.02.0.02
0.022. and 0.02/0.024 from top to bottom

lar-jet mode, an analogy to the situation for the eigenfunc-
tions. has phase speeds which are intermediate with respect
to the phase-speed extremes of the + + 0 and + + 2 greatly reduced and the higher modes have significant re-
modes. The spatial growth rates for this mode are compara- ductions in the spatial growth rates. Therefore. the three
ble. to those of the other two modes. The essential behavior of conditions are not satisfied for this case. and the possibility
the three eigenmodes can be summarized by three condi- of simulating the elliptic-jet behavior (the effects of core ec-
tions:( I) proper localizations of eigenfunctions without ex- centricity) using circular-core jets with nonuniform mo-
cessive overlapping; (2) sufficiently large differences in mentum thickness distributions is remote.
phase speeds, and (3) comparable spatial growth rates. Ful-
fillment of these three conditions by the eigenmodes may be - 5.6; (0

associated with the deformation in the initial state of the axis
switching of elliptic-core jets. This point will be demonstrat- - 5.4 (1 (0)

(201
ed in Sec. V. -5.2- (30) -(0 

(0
B. Effects of azimuthal distribution of momentum5 (10)
thickness

The Kelvin-Helmholtz instability is associated with a (10)
vorticitv maximum in the velocity profile. In a 2-D shear -4.8- (20)

layer, the value of the maximum vorticity is a constant in the -

transverse direction. However, this is not true in a 3-D flow. (20) (30)-.' /'
The azimuthal variation of the momentum thickness will -4.4
certainly influence the characteristics of the instability h
modes and can be used as an extra flow control property for - 4.2'
manipulating the instabilty waves. (30)

We now investigate the effect of azimuthal variation of -4
the momentum thickness on the eigenmode behaviors. For 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0 57

A/B = I the contour plots of Fig. 7 show that, for all three cD

modes. the location of maximum streamwise velocity fluctu-
ations coincides with the location of the minimum thickness. FIG. 8. The evolution (with changes in the momentum thickness azimuthal

In contrast to the situation for elliptic jets. there is no indica- dependence) of the m = 0 (circle). 2 (triangle). and 4 (plus) modes of a
tion of polarization of eigenmode activities among the three circular-core jet (A/B = I ) for w = 5.4. in the negative-of-the-growth rate

(a,). phase-speed (C.) plane. The numbers in parentheses are the values
modes. Furthermore, the associated variations of the eigen- for the percentage change in momentum thickness specification 1 101-
values in Fig. 8 show that the phase-speed differences are change-0.02/0.022. etc.)
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FIG. 9 Contourplotsofu., for the - - 0, -,- 2.and - -4eigenmodes (from toptobottomofthefigure) for0.02/0.024 (a)-(c).0.02/0.02 d)-(f-.
0.0240.02 (g)- o. and w = 5.4,. A/B 2.

The effects of azimuthal variation of momentum thick- -5 (

ness on eigenfunctions for A /B = 2 are given in Fig. 9. The
contour plots for :u.I are displayed for momentum thick- -4.50-

nesses (0.02. 0.024) along the (major, minor) axes (a). It is -

seen that the spatial concentrations of the eigenfunctions are a -4 -

shifted toward the major axis where the momentum thick- -3.50
ness is minimal. For the reverse situation, with momentum
thicknesses (0.024, 0.02) along the (major, minor) axes (c), -3,
it is found that the eigenfunction concentrations are shifted 0.62 0.66 0.70 0.74
toward the minor axis [compare with the uniform momen-
tum thickness case (0.02, 0.02) (b)]. Thus the effects of -_.
momentum thickness can be used to modify the eigenfunc- (bi

tion properties associated with the core eccentricity. The 1o- - 5.5o
calization characteristics (condition I) among the eigen- ./ ,

modes still exist for these momentum thickness variations - -5,

(maximum variation 20%). However, a further increase in -

the variation can destroy the validity of condition 1, with all -4.50 1 k

of the significant eigenfunction activities becoming concen- 4
trated near the region of minimum momentum thickness. 0.46 0.50 0.54 0.58
Note also that the localizations of eigenfunctions with mo-
mentum thicknesses (0.02/0.024) show polarizations more _5

distinct than those for the reverse situation with the momen- (c)I
tum thicknesses (0.024/0.02). Therefore, increasing mo- -4.50-
mentum thickness along the major axis while keeping the -

momentum thickness along the minor axis constant appears ; -4L .
to lead to an invalidation of condition 1. A similar situation -

is 'found in the behaviors of corresponding eigenvalues, -3.50•
which will be discussed in the following. - 41

In Fig. 10, we show the variation of the eigenvalues of -3 ... 50.42 0.46 0.50 0.54
the modes for A 1B = 2 when (major, minor) axis variations Cp
of the momentum thickness are changed from (0.02, 0.024)
to (0.024.0.02) in 5% increments at three different frequen- FIG. 10. Eigenvalues for the + +0(solidline), + + 2(dottedline),and
cies (below, at, and above the frequency of maximum ampli- + + 4 (dashed line) eigenmodes of a jet with A /B = 2 in the negative-cf-

the-growth rate (a,). phase-speed (C) plane. fora = 3.6 (a), 5.4 (b), andfication). 7.2 (c).Thevanationsofmomentumthicknessesare0.02/0.024(0).0.02/
are clearly different for different frequencies. However, it is 0.023 (x), 0.02/0.022( + ), 0.02/0.02 1(A), 0.02/0.02(0). 0.021/
seen that for all frequencies considered, the eigenvalues for 0.02(71. 0.022/0.02(g), 0.023/0.02{*), 0.024/0.02(4).
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FIG. 11. The negative-of-the-growth-rate (a,) and phase speed (C,) ver-
sus frequency for eigenmodes corresponding to A B = 2; + + 0.0.02/ Fig. 11 that selection of frequency (e.g., choice of 5 or 6 for0.02 (dashed line); -- + 0. 0.02/0.021 (dotted line); -- -+ 2, 0.02/0.02
(solid line); and -,- 2. 0.02/0.021 (dash-dot line). 2 /) does not alter the above findings for the eigenvalue beha-viorsofthetwomodes, + +Oand + + 2 (e.g., thephase-

speed difference between two modes shown in Fig. 6 is very
nearly independent of frequency).

the - + 0(2) mode are most sensitive to variations of mo- IV. STABILITY MODES IN COMPRESSIBLE FLOWS
mentum thickness in the neighborhood of either axis. At the In studying the effects of compressibility, the value yfor
most amplified frequency (b), it is found that increasing the the ratio of specific heats is assumed to be 1.4, and we only
momentum thickness along the minor axis and keeping the consider the homogeneous temperature case, with T, = 1 in
momentum thickness along the major axis constant in- Eq. (7), and (uniform) momentum thickness 0.02. In Fig.
creases the phase-speed difference between the + + 0 and 12, the spatial growth rates ( - a,) and phase speeds C, are
-t- + 2 modes, whereas the reverse situation for the azi- plotted as functions of o forthem = 0 mode of a circular jet
muthal momentum thickness along the major axis constant for Mach numbers 0, 1.0, 1.5, and 1.75. Michalke'" investi-
increases the phase-speed difference between the + +0 gated the effect of Mach number on the instability of circular
and -+- + 2 modes. whereas the reverse situation for the azi- jets. It is not possible to quantitatively compare our results
muthal momentum thickness distribution decreases the with this jet since the jet parameter (the ratio of jet radius to
phase-speed difference. These variations in azimuthal mo- the momentum thickness) and the Mach numbers used in
mentum thickness distribution increase the differences in the two calcuiations are different. However, the effects of
growth rates for the eigenmodes, however. Increasing the Mach number on the qualitative behaviors of the spatial
momentum thickness along the minor axis creates less growth rates are similar. The frequencies for the most ampli-
change in the difference in the spatial growth rates among fled modes for M, I, 1, and 1.75 are approximately
the eigenmodes than the reverse case (e.g., comparison equal to 5.0, 3.8, and 2.9, respectively. In Fig. 13, contour
between the cases (0.02/0.024) and (0.024/0.02) shows plots of I u, are given for elliptic-core (A 1B = 2) modes
that the difference in the spatial growth rates for the first + + 0, 2, and 4, with M, = I (a)-"c), 1.5 (d)-(f), and
case is about halfof that for the second case]. Thus increas- 1.75 (g)-(i) for a = 5.0, 3.8, and 2.9, respectively. It is in-
ing the momentum thickness along the major axis appears to teresting to seethat, with increasing eccentricity, the eigen-
invalidate conditions 2 and 3 for the deformation. In Fig. 11, functions tracking from the m = 0(2) circular-core modes
the eigenvalue variations are given for a continuum of w become more localized toward the major (minor) axis.
values for momentum thicknesses of (0.02, 0.02), and (0.02. These trends are just the opposite of those for incompressible
0.021) along the (major, minor) axes. It is apparent from flow [see Figs. 5(a)-5(f) and Figs. 9(d) and 9(e) ].A simi-
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F:-:; '-,,nour iots of u. f'or - - -0. - 4 4eigenmodes (f'rom op tobotom inthe figure) for flow Mach number, = l (a)-(c). [.5(d)-
f : i -. i' _nd 4 8 = 2. 0.02/0.02. The frequency corresponding to maximum amplification is used for each flow Mach number.

lar switch in the behavior of the corresponding eigenvalues is given in the minor and major axes respectively. The param-
ween in Fig. 14. The switching in the behavior of the eigen- eter values used were A/1B = 2, w = 5.4, and Vf, = 0. Using

modes occurs approximately at Mach number 0.45 as shown Eqs. ( I ) and (2), we followed the procedure of Michalke "'
in Fig. 15. It is clearly shown in Fig. 13 that the eigenfunc- and set the maximum u-component magnitude equal to
cton localizations decrease for all three modes as flow Mach 0.0005 at z = 0. It is interesting to see how the difference in
number increases. This tendency to invalidate contdition I is modal phase speeds is manifested in the resulting streak-line

icombined with one to invalidate condition 3 (due to the patterns.

dominant growth rate of the - - 4 mode as shown in Fig. The location of a particle in the minor axis plane is gov-
14). These result (see Sec. V) in a gradual decrease of rollup erned by the equations

melcation ressdifference in streak-line patterns as flow Mach dy~. tU+ ~. 1a

number~f inrae.-=-YU+CC,1a

V. STREAK-LNE PATTERNS 0dx . .c., 8b)

Since the eigenfunctions and the corresponding eigen- dt

values are known, it is possible to calculate the streak-line where c.c. denotes complex conjugate and the right-hand
patterns issued from all azimuthal locations in order to dem- sides are theyv and z components of the total velocities. Simi-
onstrate the deformation seen in Fig. 1. However, it would lar equations are obtained for the x and z coordinates of the
require normous computing efforts to accomplish this. particle position vector. The integration of the particle tra-
Therefore. we do the more manageable calculation of streak- jectory equations was -done using a fourth-order Runge-
line patterns emanating from the minor and major axis Kutta method, with the calculational domain limited in the z
planes. Another simplification in the calculation is due to the direction by the requirement that the maximum of the! dis-
assumption that the in-phase forcing jet selects a linear comi- turbance not exceed unity. For discussion of the extent of
bination of fluctuation-of-velocity eigenmodes of the + validity of the linear stability theory for streak-line calcula-
class. The coefficients of the eigenmodes may be obtained tions, see Refs. 19 and 2 1.
from the biorthogonal relations given in the Appendix. Mi- It is clear from Figs. 16 and 17 that the difference in
chalke " calculated the streak-line patterns for a plane shear phase speeds is reflected in the difference of the roilup ioca-
layer with a tanh velocity profile, and found the tendency of tions, with the rollup location in the semimajor plane being
the streak lines to roll up. Monkewitz' ° calculated the vorti- further downstream from that in the semiminor plane. The
city contours at the locations where the vortex merging oc- rollup locations in the semiminor and major planes are at
.curred by taking subharmonic resonance into consideration. approximately twice22 the wavelength of the dominant

In Figs. 16 and 17. we alive the results of streak-line modes [the dominant modes are shown in Figs. 9(d) and
calculations with time steps equal to a quarter of the period. 9 (e), respectively ]. The difference in the roilup locations
based on superpositions of the previously discussed - + persists in the case of.W4,, = 1. as can be seen in Figs. 18 (a)
modes of an elliptic jet. The projections of the streak lines are and 18(b). The delays in the rollup locations relative to
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Cl)
- 2.5

M= 1.5 FIG. 15. Core eccentricity dependence of the eigenvalues which track from

r2 those of the m = 0 (circle) and 2 (cross) modes of a circular-core jet with
-2.4- 0.02/0.02 for Mach number M,, = 0.45. in the negative-of-the-growth rate

13 (a,). phase-speed (C.) plane. The numbers in parentheses are the values of

- 2.3 A B/5. The triangles indicate that the evolution tracks intersect and are thus
232r 

1  indistinguishable with respect to their initial (1) points.

(b) C-22-
-21"-'O-c 2 those in Figs. 16 and 17 are a result of the suppression of the

growth rates due to the compressibility of the flow. The
-2 1 _-streak-line patterns for Mf = 1.75 are shown in Figs. 18(c)

and 18(d). As was discussed in Sec. IV, the difficulties in
- Zoi- satisfying conditions 1 and 3, associated with the gradual

loss of eigenfunction concentrations and of comparable am-

0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 plification rates among the eigenmodes (due to the domina-
Co tion of + + 4 mode growth rate), with increasing Mach

number, result in the progressive decrease of the rollup loca-
tion difference as seen in Figs. 16-18.

VI. CONCLUSIONS
0= 1.75 [An attempt has been made to identify the underlying

-218- .23 mechanisms for the deformation of coherent structures in
the initial stage of axis switching of elliptic-core jets. The

-i 7 - generalized shooting method' 3 was applied to the spatial in-
stability analysis. The calculational results showed that in-

'-, creasing core eccentncity gives rise to three distinctive fea-
()" tures of groups of instability modes: (1) proper localization

, without excessive overlapping; (2) sufficiently large differ-
t21 ences in phase speeds; and (3) comparable amplification

rates. These features were then identified as mechanisms for
- 4LQ the deformation of coherent structures by means of streak-

line calculations. We thus consider them as conditions on the
-13' . instability modes of elliptic-core jets, which are generallyT49 0 50 0.51 0.52 0.53 0.54 0.55s 0.56

40 0required if deformation of coherent structures is to occur.
Co

The qualitative behaviors of elliptic-core jets in relation
to these three conditions were studied with respect to inde-

FIG. 14. Core eccentricity dependence of the eigenvalues which track from pendent and joint variations of core eccentricity, azimuthal
thoseof them =0 (circle). 2 (cross).and4(triangle) modesofacircular- distribution of monientum thickness, and compressibility.
corejet with 0.02/0.02. for Mach number Me = I (a).. i. 5 (b). 1.75 (c). in The possibility of simulating elliptic-core jet behavior with
the negative-of-the-growth rate (a.), phase-speed (C.) plane. The
numbers in parentheses are the valuesofA /B. The frequency corresponding circular-core jets having nonuniform momentum thickness
ro maximum amplification is used for each flow Mach number. wasshown to be remote. It was found that increasing the

2512 Phys. Fluids. Vol. 31, No. 9. September 1988 Kosfigoe. Tubis, and Ho 2512



4
I I . a .'

I A )

0 0 ' a 01 0 0 00 0 P: 0 0 ' 00000 ._.0 u g .. . ... . . -

" 
'" (a)

<,. x x 4 ,[
! ,

0.801
S 0a 0.4 0.6 0.8 1.2 1.4

I t

0.950

o i:,bo 0ooo oooo : 0 0 .A ' + (b)
Y 0.90 0-2- I Ib

0)o)t ... .f ... C ' . ... A ,. <,AA A ** ... .. ''- 0'

I 0 <>

085

0.00________ FIG. 16. Streak-line patterns in the minor
0 0.2 0.4 0.6 0.8 12 4 axis planeofan ellipuc-corejet with A

B -2. 0.02/0.02. for w 5.4 and Mach
number M, =0.

cooo .boooo o ,.<o o o > A**0 *,*
1

0A (C)

':/°">'~ <"°''>>°< < K";' 3i'
0.80

0 0.2 0.4 0.6 0.8 1. .1

)0030000000000000 00c::0 2 0 08

7 02 04 00 0.8 1 12 1 4

z

2513 Phys. Fluids, Vol. 31, No. 9, Septemrber 1988 Kostugoe. Tubis, and Ho 2513



0 a0 -Z 0 -"0 ! 0 -D
X La

I

1.55 T1

0 0.2 0.4 0-6 0.8 1 1.2 1.4

170

16 __ ____ _

AC,

1.5 ~OO____FIG. 17. Streak-line patrsin the major
02axis of an elliptic core with A/1BS 2. 0.02/

1.50 0. .02, foro (a .4 and Mach numberf, =0.
0 0 A 0.6 0.8 .2t.

I 70

1.65 o

I I F

. A 0 0 0 0 0 I 0 0 a 1 0 010 0 0 0

so , A a a A a. a a 41 a a T,4 4 d--t:10 (C)

_ _ _ _ _ _ _ 0 1 * I

I so0 0.2 0.4 0. 0.8 i 1.2 1.4

170

000 000 0 00 00 0 o30 00 0 oo
0

)

0 0 c 000, x

X160 a A aa A (di
* w F /+I - - I'-f- + -00 0.2 04 06 ". I 13 1.4

z

2514 Phys. Flukds. Vol. 31, No. 9. SsptMOMO 1966 Koshigos. Tubis, and Ho4 2514



Y o0000O0000600000000000 00000000fr

00>oO000 0000000 000000000

o0.4 0.8 1.2 1.6 2

1.70

8 5

,d6o

X 55 - __..___.X XX XOKXX_ XX" X

FIG. 18. Streak-line patterns in the minor axis
1 50 plane forMVf0 = I (a). M,4 = 1.75 tIc). and inl

0 0.4 0.8 L.2 1.6 2 the major axis plane for . = I1(b) and 1.7 5
(d). of an elliptic-core jet with A 1B 2.0.02/'

1 0.02.

J, 95

Y aoa - --, - ,-- (C)

0

0.85

0.80
0 5 1 .5 3 3.5

* 70

165

X .90 prpl

0 0. 1 -Z53 .

_ _ _ __ _

momentum_ thcns ertemjrai hl epn h ae.Fnly twssonta h feto h opes

momentum thickness near the maor axis hale keed the paper.y inally deeiote athow tehanitheseffeo the ompx efrs-

invalidate the above-mentioned conditions. The possibility mation. Without the presence of the shock structures, our
of realization of nonaxis switching elliptic-core jets is now analysis showed that the deformation will not occur above
under experimental investigation using the findings in this the flow Mach number 1.75. Therefore we estimate 1.75 as
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o 0 W (l- ,"f-)
0 o(l -M 2 ) 2(1 - M")VWV (A2)

whi 2 + (chla)M - ( W/-)V -V W - - J

which is independent of a,. It follows from Eqs. (Al) and (A2) that

p4 = ap7, (A3)

wp + 2 W V W.Vp = a .Wp, (A4)

and

a p 
3

Elimination of p' and p' from Eqs. (A3)-(AS) then yields Eq. (3) for p.
The adjoint form of Eq. (Al) is
L ' (w) lp ' ) = a., W( I -- Af ) "-') ", (A6)

where ,P' ) is the adjoint column vector whose components, , ', and P', satisfy the boundary conditions. ,7 '0 for

X" -'-7- y ; and L - (w) is the adjoint matrix operator,
F 0 0 V2W+(g?21a)M+V[(W/ )V ]I

L -(a) = 0 W(l -M 2 ) - W . (A7)

W( I - -V2(1 -M-)VW -2wM 2

It is easily verified that the lhs of the equation, f oh a + a - 2

(,'"L(o) ,pn) - (p"!L -(w))) a

= (a, -a,,)(p'!W(l -M")l1b'), (A8) a'ajVWf2 (

vanishes, where (V! is the row vector transpose of lp'), and (w - a,W) (w) - a., W)'

(r'L(w) ip") If we now assume the general expansion

f f_ 'I= =dx~f . dy P-iL~j(W)pj:, etc. (A9) p(X) = . o ap(X), (A 12)

This follows from the fact that the area integral of the lhs of we may use Eq. (A 10) to determine the expansion coeffli-

Eq. (A8) may be converted into a (vanishing) integral over cients a,., as

the infinite boundary of the region of integration. Thus, for f dxf dy L( W -)p(x)
a. e a_, the second factor on the rhs of Eq. (A8) vanishes. a, = . (A 13)

Using Eqs. (A3)-(A7), this result may be expressed as

f dx f dypL(*-) =0(A0)

where 'G. L. Brown and A. Roshko. in Turbulent Shear Flow. AGARD-CP-3
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ABSTRACT in engineering devices involving chemical reaction,
it is important to be able to control the mass transfer between
two streams of fluids. Ho and Gutmark [11 used a small aspect
ratio elliptic jet which can significantly enhance the
entrainment. This efficient passive control technique is due to
the unsteady deformation of 3-D vortical structures caused by
self-induction.

1.Passive and Active Control of Free Shear Layers
The possibility of controlling the mass transfer in the

transverse direction of a shear layer is important in improving
the efficiency of devices with chemical reaction. In a
two-dimensional flow, the coalescense of the vortical
structures in the shear layer was identified to be the main
entrainment mechanism [21. If the vortex merging is
prohibited, the growth of the mixing layer is stopped or even
decreased [3]. On the other hand, if the shear layer is
actively perturbed by the subharmonics of the most amplified
frequency, multiple vortices will merge simultaneously [4].
The growth of the shear layer is increased.

The spatial development of the shear layer is extremely
sensitive to the initial perturbations or the boundary
conditions. The alternative approach of controlling the
enhancement is to change the upstream boundary condition of the
shear layer. Ho and Gutmark (1, 5] found that a jet with an
elliptic nozzle can entrain much more fluid than that of a
circular or a plane jet (Fig. 1]. This passive control method
is even more advantageous for engineering applications, because
no delicate forcing arrangement is required. More importantly,
they identified a n~w entrainment mechanism; the self-induction
of an elliptic vortex ring makes the structure switch its axis
orientation, the vortex element near the minor axis moves
outward and makes a large amount of ambient fluid move into the
jet near the minor axis region. This concept c~n be
generalized and used in other flow configurations, such as
combustion chamber.

2.Applications in Combustion
The ramjet is a device which can be benifited by the

entrianment contal technique. There is a short distance from
the flame holder to the exhaust nozzle. Combustion needs to be
accomplished during a short residence time and combustion



instability has been a troublesome problem. The advantages of
using an elliptic jet in the ram.jet has been shown to be
phenomenal. Schadow et al. [61 used a 3:1 elliptical nozzle
in a jet with combustion. They found that the centerline
temperature increased sharply a short distance from the
elliptic nozzle. At the end of the jet potential core, the
temperature
was much higher than that of a circular jet [Fig. 21.

The combustion instability problem was alivated by using
another type of asymmetric nozzle. They used a triangular
nozzle and injected fuel near the tips of the triangle [7]. In
this way, the fuel is mixed by the small eddies near the tips
and the large structures do not trigger the combustion
instability.

3.Supersonic Asymmetric Jet
The spreading rate of a supersonic shear layer is much

slower than that of a subsonic flow and the combustion
efficiency of supersonic flame is hindered by the low
mixing rate. Actually, this is the most pressing problem in
developing a hypersonic aircraft. In a preliminary experiment,
we found that the small aspect ratio rectangular nozzle could
enhance the entrainment as it did in the subsonic flow [8].

In general, the supersonic flows spread slower than that
of subsonic flows. However, the entrainment improvement of the
rectangular nozzle over the circular nozzle is about the same
for both supersonic and subsonic jets in the far downstream
locations. Near the Nozzle, the variations of the
cross-section area ratios, indicating the shear layer
spreading, are similar for supersonic and subsonic cases.
Hence, we expect that the supersonic rectangular jet will
entrain more mass than that of a supersonic circular jet in the
region near the nozzle.
4.Asymmetric Jet in Confinement

Most of the combustion is taking place inside . confined
space. The entrainment process is very different from a shear
layer in the free space. As has been pointed out in our
previous findings (1] the unsteady evolution of the vortex
structures can engulf the fluids into the mixing region. We
used a 2:1 aspect ratio rectangular jet in a confined
environment. The deformation of the vortical structures was
found to be much more convoluted than those in a free jet.
These deformations are produced by the local 3-D shear layer
and the induction of the image vortex. In other words, a
properly designed confinement should be able to facilitate the
mixing process.
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SEARCH FOR CHAOS IN FREE SHEAR FLOWS
THE CASE OF THE WAKE-SHEAR LAYER

(Task 3)

Co-Principal Investigators: L. G. Redekopp, P. Huerre, and C.-M. Ho

STATUS OF RESEARCH EFFORT

1 Local and Global Instabilities

Many flows of technological interest such as jets, wakes, mixing layers, boundary layers,
etc. are spatially-developing (i.e., the mean velocity profile is non-uniform in the streamwise
direction). In the past three years, we have been able to develop a general theoretical
framework to describe these flows from a hydrodynamic stability perspective. The status of
recent theoretical and experimental efforts by our group and other teams has been reviewed in
[15] (numbers in brackets refer to respective publications listed at the end of the report). Our
approach differs markedly from previous work: instead of examining the spatial development
of downstream-going waves at a given external real frequency, we argue that one must first
determine the absolute/convective nature of the local instability at each streamwise station.
If the entire flow is locally convectively unstable, as in spatial mixing layers, boundary
layers, constant-density jets, flat-plate wakes, etc., the classical method mentioned above is
appropriate. However, when a sufficiently large region of absolute instability exists within
the flow domain, as in bluff body wakes, low density jets, capillary jets, etc., one must
resort to a global mode description which includes upstream and downstream-going waves of
unknown complex frequency. The global mode frequency and its spatial structure are then
obtained by solving an eigenvalue problem in the streamwise direction.

Simplified amplitude evolution models, such as the Ginzburg-Landau equation, have
proved to be extremely useful to test these new theoretical concepts. We have shown on
these models that the onset of global instability results from a well-defined sequence of
bifurcations [2,61. Detailed stability analyses of wakes behind bluff bodies have confirmed
that the same scenario is observed experimentally in bluff-body wakes [7,8]. The effects of
forcing on global mode dynamics have also been studied on the basis of simplified models:
it has been demonstrated that the optimal station for the excitation of global modes is
located well upstream of the point of maximum absolute growth rate 14,11]. Furthermore,
the application of a forced evolution model to the description of the preferred mode in
homogeneous jets has led to surprisingly good results: the predicted Strouhal number of 0.225
compared very favorably with the measured value of 0.25 [11,31. This led us to conclude that
the preferred mode in jets is a weakly-damped global mode which is selectively destabilized
by extremely low levels of external noise. Finally, a study of the secondary instabilities
arising in some amplitude equations has indicated that primary and secondary instabilities
may have a distinct absolute/convective character within the same flow [1].

As briefly alluded to earlier, hydrodynamic stability calculations of wake profiles [7,8]
have also been carried out to determine whether absolute/convective instability concepts are
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pertinent in real flows. These studies have revealed that a region of local absolute instability
exists in the near wake behind bluff bodies when the Karman vortex street is self-sustained.
As the Reynolds number is decreased below critical, the absolutely unstable region persists,
but it is too small to lead to a self-sustained global mode. In this case, the flow may be locally
unstable, but there is no spatially-coherent, temporally-periodic structure characteristic of
the Karman vortex street.

A much closer link between local and global properties has been established within the
WKBJ approximation for a general class of partial differential equations in one spatial di-
mension [9,10]. Rigorous mathematical results have been derived. In particular, a simple
frequency selection criterion has been proposed: the global mode frequency is given by the
value of the absolute frequency wo(Xo) at the stationary point X, such that (dwo/dX)x. = 0.
This provides an explicit relationship between global and local characteristics. It is striking
that the global frequency only involves a single streamwise location in the complex X-plane.

2 Spatial chaos: model studies

In convectively unstable flows, interactions between different modes lead to a radically dis-
tinct type of dynamics. In contrast with absolutely unstable flows, one expects a great
sensitivity to external perturbations. We have conducted an asymptotic study of the inter-
action between the sinuous and varicose modes in wake-shear layers when the critical layer
is dominated by viscous effects [5]. The complex amplitudes of each mode have been shown
to be governed by a system of coupled subharmonic resonance equations. A numerical in-
vestigaton of the resulting dynamical system has revealed a great variety of possible spatial
vorticity distributions as the forcing frequency is gradually increased. In all cases the flow
is time periodic but spatial chaos can be generated for specific ranges of forcing frequencies.
The nature of the spatial disorder is highly intermittent: the sinuous mode dominates the
evolution but localized bursts of the varicose mode occur randomly in space. This inter-
mittency has been used to advantage to derive an analytical one-dimensional map relating
successive peaks of the varicose mode.

3 Spatial chaos: experimental studies

3.1 The water channel

The wake-shear layer water channel was assembled and preliminary testing occurred during
the current contract period. The facility has a splitter plate which divides the stagnation
and contraction sections allowing control of the two independent streams which merge down-
stream of the splitter plate in the test section. A major modification of the trailing edge
of the splitter plate was necessary after early tests revealed that local separation caused a
high level of random disturbances. The original trailing edge was made of fiberglass and
the tapper angle was larger than prescribed in the original design. We have replaced the
last section of the splitter plate with a trailing edge made of precision machined brass. The
local separation problem was found to be eliminated. The speeds in the streams on both
sides of the splitter plate can be independently controlled for flow speeds up to 1 ft/sec.
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Suction or blowing from the trailing edge is also possible to provide independent control of
the wake component of the velocity profile for the purpose of investigating various types of
instabilities and mode interactions.

3.2 Instrumentation

A powerful new type of instrument, a Particle Displacement Image Velocimeter (PDIV),
will be used to measure the velocity field. The PDIV instrument provides a measurement
of several thousands of velocity vectors at one time. With this capability, it is possible
to investigate the spatial chaos problem in that the instantaneous spatial structure of the
velocity field can be obtained as a function of time.

All components of the PDIV system have been received. We experienced a problem
with the SUN computer which was subsequently found to arise from an incompatible disk
controller. Fortunately, we managed to resolve this problem in the first week of December.
The whole system is now functioning and should be in operating condition by January.

3.3 Experimental Results

When both streams have the same speed, a wake flow is produced downstream of the trailing
edge of the splitter plate. The arrangement of coherent structures was observed to be of the
Karman vortex street type. They were counter-rotating and asymmetrically placed. When
the velocity difference between the two streams was increased, a mixing layer eventually
formed. All the structures rotated in the same direction. There must be a velocity-ratio
range such that both the Karman mode and the mixing-layer mode compete. We placed a
pulsed hydrogen bubble wire in the flow and visualized the vortex patterns from the streak
lines. When the velocity ratio is close to zero (i.e., strong wake influence), the vortices shifted
from the wake type to the mixing layer type intermittently. Whenever, the wake type vor-
tices prevailed, the thickness of the sheared region increased. A hot-film probe was used
to measure the passage frequency of the vortices. Based on the time-averaged spectrum,
only one peak could be identified. In other words, the flow was temporally periodic, but
the vortex arrangement exhibited significant spatial variability. We further found that the
phenomenon described above only occurred over a very narrow range of velocity ratios.

PUBLICATIONS

1. Huerre, P. "On the Absolute/Convective Nature of Primary and Secondary Instabil-
ities", In "Propagation in Far From Equilibrium Systems", ed. J. E. Wesfreid et al.,
pp. 340-353, Berlin, Springer-Verlag, 1988.

2. Chomaz, J. M., Huerre, P. and Redekopp, L. G., "Models of Hydrodynamic Resonances
in Separated Shear Flows", Proceedings of the Sixth Symposium on Turbulent Shear
Flows, Toulouse, France, September 7-9, 1987, pp. 3.2 1-6.

3. Monkewitz, P. A., Huerre, P. and Chomaz, J. M., "Preferred Modes in Jets and Global
Instabilities", Bulletin of the American Physical Society, Vol. 32, p. 2051, 1987.

3



4. Chomaz, J. M., Huerre, P. and Redekopp, L. G., "Sensitivity of External Excitations,
Absolute and Convective Instabilities in Spatially-Developing Systems", Bulletin of the
American Physical Society, Vol. 32,*p. 2071, 1987.

5. Sauire, J. and Huerre, P., "Spatial Chaos and Nonlinear Interactions in Wake-Shear
Layers", Bulletin of the American Physical Society, Vol. 32, p. 2071, 1987.

6. Chomaz, J. M., Huerre, P. and Redekopp, L. G., "Bifurcations to Local and Global
Modes in Spatially-Developing Flows", Physical Review Letters, Vol. 60, pp. 25-28,
1988.

7. Monkewitz, P. A. and Nguyen, L. N., "Absolute Instability in the Near-Wake of Two-
Dimensional Bluff Bodies", Journal of Fluids and Structures, Vol. 1, pp. 165-184, 1987.

8. Monkewitz, P. A., "The Absolute and Convective Nature of Instability in Two-Dimensional
Wakes at Low Reynolds Numbers", Physics of Fluids, Vol. 31, pp. 999-1006, 1988.

9. Huerre, P., Chomaz, J. M. and Redekopp, L. G., "A Frequency Selection Criterion
in Spatially Developing Flows", Bulletin of the American Physical Society, Vol. 33, p.
2283, 1988.

10. Djordevic, V. D. and Redekopp, L. G., "Linear Stability Analysis of Nonhomentropic,
Inviscid Compressible Flows", Phys. Fluids, Vol. 31, pp. 3239-3245, 1988.

11. Pavithran, S. and Redekopp, L. G., "The Absolute-Convective Transition in Subsonic
Mixing Layers", Phys. Fluids A, Vol. 1, pp. 1736-1739, 1989.

12. Djordjevic, V. D. and Redekopp, L. G., "Nonlinear Stability of Subsonic Mixing Layers
with Symmetric Temperature Variations", Proc. Roy. Soc. London, Series A, Vol. 426,
pp. 287-330, 1989.

13. Chomaz, J. M., Huerre, P. and Redekopp, L. G., "A Frequency Selection Criterion in
Spatially Developing Flows", accepted for publication in Studies in Appl. Math.

14. Chomaz, J. M., Huerre, P. and Redekopp, L. G., "Effect of Nonlinearity and Forcing on
Global Modes", In Proceeding. of "New Trends in Nonlinear Dynamics and Pattern-
forming Phenomena. The Geometry of Nonequilibrium". ASI Series B, eds. P. Coullet
and P. Huerre. Plenum, New York/London, (in press).

15. Huerre, P. and Monkewitz, P. A., "Local and Global Instability in Spatially Developing
Flows", Annual Rev. Fluid Mech., Vol. 22, pp. 473-537, 1990.

INVITED TALKS

1. "Dynamique des Structures Coherentes et Ondes d'Instabilite dans les Ecoulements
Cisailles", P. Huerre, Special Seminar, Universite d'Orsay, Paris, France, September
11, 1987.

4



2. Spatio-Temporal Dynamics in Free Shear Flows", Invited Lecture, P. Huerre, 40th
Annual Meeting of the Division of Fluid Dynamics, American Physical Society, Eugene,
Oregon, November 24, 1987.

3. "Large-Scale Dynamics in Free Shear Flows", P. Huerre, Nonlinear Science Seminar,
University of California, Santa Barbara, January 22, 1988.

4. "Local and Global Evolution of Instability Waves in Free Shear Flows, P. Huerre, Fluid
Mechanics Seminar, California Institute of Technology, Pasadena, January 29, 1988.

5. "Local and Global Evolution of Instabilities in Free Shear Flows", P. Huerre, Seminar
in Fluid Dynamics, University of California, San Diego, February 23, 1988.

6. "Global Instability and Chaos in Free Shear Flows", P. Huerre, Department of Me-
chanical and Materials Engineering Seminar, Washington State University, Pullman,
March 9, 1988.

7. "Spatial Chaos and Sensitivity to Forcing in Wake Shear Layers", J. Sauliere, Special
Seminar, Department of Aerospace Engineering, University of Southern California,

April 8, 1988.

8. "Tutorial on Convective and Absolute Instability", P. Huerre, Center for Turbulence
Research Summer Program, NASA Ames/Stanford University, Stanford, California,
July 6, 1988.

9. "Global Modes in Spatially-Developing Flows", L.G. Redekopp, NATO Advanced Re-
search Workshop on "New Trends in Nonlinear Dynamics and Pattern-Forming Phe-
nomena: The Geometry of Nonequilibrium", Institut d'Etudes Scientifiques de Cargise,
Corsica, France, August 2-12, 1988.

10. "Structures Coherentes et Ondes d'Instabilit6 dans les Ecoulements Cisaills", P. Huerre,
Seminar, D~partement de M~chanique, Ecole Polytechnique, Palaiseau, France, Decem-
ber 21, 1988.

11. "Hydrodynamic Instabilities in Free Shear Flows: Spatio-Temporal Descriptions", P.
Huerre, Invited Lectures, DARPA/URI Winter School in Fluid Dynamics, Institute
for Nonlinear Science, University of California, San Diego, January 9-11, 1989.

12. "Absolute/Convective Instability and Global Modes in Spatially-Developing Flows",

P. Huerre, AIAA 2nd Shear Flow Control Conference, Tempe, Arizona, March 13-16,
1989.

13. "Absolute/Convective Instabilities and Global Resonances in Spatially-Developing Flows",
P. Huerre, Invited Lecture, March Meeting of the American Physical Society, St. Louis,
Missouri, March 21, 1989.

5



14. "Nature of Bluff-Body Near-Wake Instabilities", P. Huerre, Lead-off Talk, ONR Ac-
celerated Research Initiative on bluff body wake dynamics, Lehigh University, Penn-
sylvania, May 23, 1989.

15. Open Flow Instabilities", P. Huerre, Invited Lecture, Sixth Taylor-Vortex Flow Work-
ing Party, Universit6 Libre de Bruxelles, Bruxelles, Belgium, May 30, 1989.

PROFESSIONAL PERSONNEL

Dr. C. M. Ho: Co-Principal Investigator.
Dr. P. Huerre: Co-Principal Investigator.
Dr. L. G. Redekopp: Co-Principal Investigator.
Dr. M. Rossi: Research Associate.
Ms. D. Wallace: Research Assistant.
Mr. G. Vance: Research Assistant.

6


