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Tests of these in an optical implementation of associative memory showed performance near the theoret-
ical limit. Theoretical work in support of the optical research resulted in slightly improved versions of
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1 Summary

In this work, the investigators explored neural nets for object recognition and also investigated,
in a subcontractual arrangement with the University of Arizona, hardware issues in the optical
implementation of neural nets.

The approach underlying the design of networks was that of optimization theory to both specify
the problem and the network for its solution. These networks differ considerably from simple pattern
matchers (such as the Hopfield content-addresssable memory) where an iconic version of the pattern
itself is stored. Instead, the network implements a form of model matching in which the model base
is organized as structured graphs, the input data is organized , again by the optimization procedure,
into similarly structured graphs by the neural net, and recognition is accomplished by a form of
graph matching. The model base is organized hierarchically in that both compositional (whole-
part) and specialization (class membership) notions are captured by sparse matrices which serve
as pointer structures in the objective functions. This notion of design allows for a uniform style of
addressing both low-level visual problems and more traditional high-level recognition problems.

Our main experiments were conducted in visual domains involving the recognition of simple
figures. The following questions were pursued via theory and simulation: (1) Can these nets
recognize simple articulated objects when given the important clue of class membership? , i.e. this
subset of parts belongs to this object? Answer: Yes, the so-called labelling of parts when object
identity is known works quite well. (2) How well do they do when this clue is missing? Answer:
Not so well; the simultaneous grouping and recognition is a complex task not well handled by the
approach adopted here.(3) What can be done to improve the optimization algorithm? Answer: We
tried a Langrange multiplier approach to implement hard constraints as wel as mean-field annealing
to escape local minima, Both resulted in improved performance relative to simple descent methods
on penalty function objective functions. (4) Can these nets learn from examples? Answer: Some
initial progress was made in presenting supervised examples of pairs of labelled parts to the net
and updating connections accordingly. A new learning algorithm was invented for this purpose.
The much more difficult question of learning the database was not pursued at all.

For the optics research, we investigated two means of using spatial multiplexing to effect a
4-D interconnect between two 2-D node planes: multifaceted planar holograms and multichannel
incoherent imaging systems. Nonlinearities are implemented electrically after detection of the
light intensity. Much progress was made with the hologram approach. Computational procedures
using random search and error diffusion were implemented in order to calculate the 2-D binary
transparency pattern, and photolithography was used in order to shrink this pattern to a hologram.
As a benchmark, connections for a simple associatice memory were encoded and the optical neural
net performed quite similarly to an equivalent computer simulation.
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2 Introduction

This project grew out of earlier work in which an approach to visual object recognition as an
associative memory problem was pursued. The big problem with this earlier approach is that
objects must be recognized regardless of changes in position, rotation, scaling, and a host of other
deformations. One may store iconic patterns directly in a memory and design such invariances
directly into the connection pattern, but the circuits quickly become complicated. We follow
the approach taken in traditional computer vision systems and store relational models instead of
iconic models into the circuit, and demand that the input data itself be organized into such a
relational structure and optimally matched to the "nearest" model. Relational models are designed
to automatically capture the desired invariances; the perceptual organization of input data into
relational structure proceeds simultaneously with the matching process. Like some associative
memory approaches, this one also uses objective functions for specification of the problem and
design of the circuit.

Early work on optical implmentations was also continued in this grant. The original work fo-

cused on the use of optics for fast recognition of 2-D geometrical patterns independent of scale,
rotation, translation. By stages, the focus shifted toward implementation of neural nets to accom-
plish the same goal, and, by extension, toward the general problem of optical imterconnects.

3 SumMary of Completed Research

Below is a succint summary of accomplishments of the two yeargrant period. Each item is followed
by a reference to an appropriate paper or technical report that gives a more detailed account.

We implemented two networks for simple object recognition and performed analysis and

simulation experiments. Each of these successfully matched simple stick figures to a database
of models. It was able to find multiple objects and specializations of objects. One version
[6] used an unconstrained optimization technique for net dynamics; the other incorporated
"Lagrange multiplier neurons" to implement hard constraints [17]. In each case, the difficult
task was made tractable by hand coding the input data into relational structures suitabl6 for
matching. The resulting objective functions were quadratic and the net worked well.

o A more difficult version of the above task was attempted. Again, the idea is recognize simple
stick figures, but now the network, as part of the optimization process, had to group input
sticks into potentially meaningful relational structures. This resulted in 5th-order objective
functions. While success of the network was limited, much was learned. Results are reported
in [1], [10], [121, and [8].

o A version involving recognition of 3D objects was completed. This [18] network recognizes
3D-stick figures from a 2D projection.

o Photolithographic multifacetted holograms for optical neural net interconnects were fabri-
cated for an associative memory problem. The optical results were compared to results from
a simulation program written to model sources of error in the optical scheme. Results showed
[i1 , [13] close agreememt with theory.
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In support of the optical effort, we completed a study on performance of outer-product asso-
ciative memories. One result [21 showed that versions with self interconnects perform better
than those without; another [4] showed that a version with positive only interconnects can
be made to perform well. Both of these results have ramifications for optical schemes.

" An additional study on optimal architectures for outer product associative memories was
completed [16]. A universal architecture that makes optimally efficient use of hardware is
proposed in this study.

" Though learning hasn't been a major theme of the work, some progress was made in initial
studies for learning distance metrics in the graph matching networks mentioned above. In
an unrelated study, a fast, general purpose, supervised learning algorithm based on CMAC
models was devised [14] [15]. On a popular test case, it greatly outperforms backprop.

" The object recognition system was applied to a real doain of industrial parts. [3]

" We tried mean-field annealing optimization on these networks with some success. [3]

" A network for model-based segmentation of signals was devised. The idea was to address the
grouping problem in a simplified setting. (Work described later in this report.)

" The beginnings of learning schemes were applied to the recognition nets. (Workdescribed
later in this report.)
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4 Discussion

The work splits into three categories: networks for model matching, optical implementations, and
analyses of associative memory. The optical work was carried out as a subcontract at the University
of Arizona and is discussed in a self-contained section.

4.1 Networks for model matching

We describe here qualitatively our model match networks. Quantitative details can be found in (I
or in the attached reprints.

Neural net tasks for visual recognition is often thought of as a variant of some simple pattern
matcher, such as the the Hopfield associative memory or a simple perceptron. These schemes are
limited in two ways: "objects" are represented iconically instead of in the more efficient manner of
relational structures, and there is no provision for efficiency in search by using notions of hierarchy.
Of course, both of these ideas are common in traditional computer vision, but here, we propose a
way of incorporating these crucial notions into a neural-net paradigm.

We introduce an optimization approach for solving problems in computer vision that involve
multiple levels of abstraction. Specifically, our objective functions can include compositional hier-
archies involving object-part relationships and specialization hierarchies involving object-class rela-
tionships. The advantage of hierarchical organization is that it makes the search process involved
in image interpretation easier to express and more efficient. The large class of vision problems that
can be subsumed by this method includes traditional model matching, perceptual grouping, dense
field computation (regularization), and even early feature detection which is often formulated as a
simple filtering operation. This raises the possibility of solving within a single vision system both
low-level and high-level problems in a uniform manner.

Our approach involves casting a variety of vision problems as inexact graph matching problems,
formulating graph matching in terms of constrained optimization, and using analog neural networks
to perform the constrained optimization.

Our extension of graph-matching to model-based object recognition involves regarding one of
the graphs as a "model" graph, which is supposed to represent the knowledge of shapes within the
system, and the other graph as a "data" graph which is obtained from the current input data to the
system. The model-side nodes are simply called "models" and data-side nodes are called "frames"
(denoted Fi), which are collections of analog neurons representing parameters of an object (and are
denoted Fi,, where s indexes the parameters of a single frame). The instantiation of a model in
the image is expressed by "turning on" a match neuron Ma, between a model of and its matched
Frame Fi. We will refer to such a network of frames and models as "Frameville".

The incorporation of a compositional hierarchy and a specialization hierarchy on the model
side is achieved via graph-arcs called INA links and L34 links respectively. The objective function
includes terms representing a simultaneous match of a model to an object (on the data side) and
the parts of the model to parts of the object in a consistent fashion. An objective function may be
inherited through the LS links from a model to its specializations and there may be an incremental
objective function for each of the specializations. Numerical parameters are represented by using
analog neurons and the verification of metrical relationships involving these parameters is achieved
by corresponding consistency terms in the objective function.

In order to perform perceptual organization, the data-side compositional hierarchies must be
dynamic. To achieve this we introduce dynamic ina links on the data side. The ina links connect
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Figure 1: The task in Stickville Image at left shows objects among noise sticks. The goal is tofind all instances of objects in the model base in a manner independent of of translation rotation
scale and some distortion. Two instances of plane and one of mammal are found as shown at right.
Objects are abstracted by parameters of a main part (heavy line).

more and less abstract frames, and their evolution corresponds to a search for a perceptual organi-
zation consistent with the m. del graph. Specialization is implicitly achieved by the simultaneous
match of a frame to a model and to one of its LS4 specializations.

4.2 Experimental results

The Frameville approach described above is quite general; implementations for specific domains isa design problem requiring some care. Here, we describe some specific implementations.
The earliest effort was in a domain, Stickville, in which the problem was to recognize simple

stick figures in a 2-D image. Accounts are found in 16] and [17).
Figure 1 illustrates the problem; we are given a clutter of sticks and we must find objects among

them. An object is an assemblage of connected sticks (parts) whose internal geometry satisfies model
demands. We must find all instances of a given object and there may also be present more thanone kind of object. An object must be found in a manner invariant to translation, rotation, scaling;a certain amount of distortion or missing parts is to be tolerated too. Through incorporation of an1S4 hierarchy, Stickville finds general classes of objects ( e.g. it locates a plane ) and their specific
subclasses ( specifically a jet ).

A low-level frame is associated with a single stick and stores the end points of the stick. In
Stickville, we use a mainpart abstraction; the parameters of a single designated stick summarizes
the entire assemblage of sticks constituting an object. At the fixpoint, high level frame is matched to
a stick identified as a mainpart. The parameters of this mainpart need not be computed so the slotsin these frames need not be represented by analog neurons as in full-blown Frameville. A second
restriction applies here. The ina matrix is assumed constant through the use of a connectedness
hueristic: If two sticks i and j are attached,then inai, = 1 else it is zero. The only remaining
dynamic variables are the match neurons M.

In Stickville, a match metric compares relative quantities of a data stick pair i,j to ideal values
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Figure 2: Definitions in Stickville (a) A stick figure of a plane, and its representation as a graph
with ina links. (b) A plane model and its representation as a graph with asymmetric 1N4 links.
(c) Parameters characterizing the relationship between two data sticks.

associated with model pair c,6. The relative quantities are (ri,8ij,qij) defined as relative size,
relative angle, and position of attach point for stick pair i,j. Since the slots for any frame pair
Fi, Fj are known a priori, we may precompute (rii, Oq, q 3) and hence the entire metric HO,#(Fi, Fj).
In Stickville, all of the metrics are thus precomputed. Figure 2 shows an assemblage of sticks and
its ina representation, the model to which it should match and its N representation, and a stick
pair with its relative coordinates. In figure 2b , the mainpart of plane is fuselage; the corresponding
data stick in Fig 2a is stick 4.

A successful recognition of two jets is shown in Fig. 3 in terms of the match matrix. The result
here used the unconstrained optimizatin method, though [17] shows results using the constrained
method. Though the objective here is quadratic with only the M's variable), the constraints were
of order 3 when expressed as penalty terms.

It is interesting to note that the experiments were quite successful and that Stickville could
almost always correctly find objects for the size of problems ( about 10 models) considered. In
[171, the results of experiments are analyzed in some detail. On the other hand, the problem was
made "easy" by restricting the search so that no dynamic grouping of data was needed (ie. ina
was constant) and no dynamic computation of analog parameters was done. Stickville showed that
the formidable combinatorial matching problem could be solved.

Given that success, the next escalation was to try a domain that included dynamic grouping
and computation of abstractions, i.e. a full-blown Frameville. A Description in detail is found in
[101

Figure 4 shows the problem. Input data consists of vertical or horizontal unit-length sticks.
The net must find instances of T-juctions (e.g. sticks 1-2-3 ) or L-junctions (e.g. sticks 5-6-7) amid
extraneous sticks and label the parts as well as compute parameters summarizing each object. The
simplicity of the problem is misleading; why not use a matched filter for example? The problem is
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Plane *000000000 Plano O000000000
Left-Wing 0000000000 Lef-Wing 0000000000
Righ-Wwg 00®0000000 Right-Wing 0000000000, ®000eO000 , .,ooooeoooo
et..wing 0000000000 Jet-Left-Wn 0000000000

Je.-Rght-.Wng 00 0 0000 @ 00 e.t-Righ-Wing 00 @ 0000 000
Right-Tail 000®0000G0 Righ-Tail 0000000000
Left-Tail O0000000 Left-Tail O000000 
Mamal 0000000000 Mi,,.,,- 0000000000
Foreleg 0000000000 Foreleg 0000000000
Hindleg 0000000000 Hindleg 0000000000
Neck 0000000000 Neck 0000000000
Head 0000000000 Head 0000000000

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 3: Stickville results are displayed in terms of the match matrices (circles) whose value

is encoded as the radius of the shaded portion. Each match neuron is indexed by the model (row)

and stick (column). (a) Shows match matrix at 28 time steps. (b) Shows it at 70 tme steps. It has

correctly found two instances of a plane and its specialization jet. Note that a stick matches to a

model and all of its generalizations (more than one on in a column) and that both jets have been

found (more than one on in a row).
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Figure 4: Input data for TLville

kept simple for diagnostic purposes; the same machinery used here could solve recognition problems

for which simple template matching would be impractical.
Figure 5 shows the model base and the frames. Models (ovals) occur at two levels, line segments

and junctions. The 1NA links for a T-junction are shown. We resrict the form that an object can
have by allowing at most seven positional roles for parts, arranged in the form of the familiar
seven-segment LED display as illustrated iconically in Fig. 5. The triangles are frames, each
with three slots. The low-level frames Qi matched to segments contain the parameters Qj , =

(x, y, 0), s = 1, 2, 3 denoting position and orientation of the segment. High-level frames Pi matched

to objects have the same parameters, but these apply to a mainpart. Unlike the case in Stickville,
they are unknown ahead of time and must be computed dynamically as part of the optimization.
Match neurons neurons inaii that group low-level frames to high-level frames are shown (circles).
Unlike the case in Stickville, the grouping is computed dynamically, thus performing a "perceptual
organization".

Typical results are shown in Fig. 6 Given a random start and the input data of Fig 4; the
network often gets trapped in an unfavorable local minimum as depicted in Fig 6. With only a
single model in the database, however, our results are much improved. The network, if given a
"hint" in the form of the ina neurons initialized to correct values, does indeed converge to the
correct solution as shown in Fig. 6b.

The methodology we use can be applied to an entire vision hierarchy from low-level feature
extraction to high-level structural matching. At a high enough level, data is assumed grouped in
some meaningful way (e.g. pixels to sticks) and these grouped data entities compete for matches to
parts. At the lowest level, we are usually facing a problem such as edge-detection or shape-from-x
that often amounts to local retinotopic processing. At intermediate levels, the data must in many
applications be partitioned into contiguous regions guided only weakly by the specific expectations

of high-level models. It is at this intermediate level of segmentation that we now focus.
Vision systems eventually face the problem of segmenting a scene into parts for purposes of

object recognition or other goals. Neural network formulations of vision problems have usually

been applied to early vision where the style of processing is uniform. Here, we formulate a network
for partitioning an image into disjoint parts, and simultaneously delivering appropriate values of
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Figure 8: Structure for TLville Models occur at two levels, line segments and junctions. The
M links for a T-junction are shown. Each frame has three slots: two position coordinates and

one orientation coordinate. The bold lines highlight a possible consistent rectangle. The All and
ina neurons are displayed as circles. This does not show the connections between neurons, just the
entities that the neurons match up.
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Figure 9: Experimental results in TLville The matrices show the state of the various neurons

depicted in Fig 8 (a) Shows a typical failure. (b) Shows a correct result after network has been

initialized with the correct ina neurons on.



parameters that describe the parts. A part is a parameterized function that closely approximates
the pixel values comprising the part.

The goal of the segmentation calculation is to partition an image into relatively few contiguous
regions so that each region is closely approximated by a part. We can formulate a version of the
Frameville rectangle rule for segmentation. In the language of Frameville, a low-level frame Qj is
associated with pixel j of the image; the value of the single parameter in Qi is simply the gray-level
value, which we just denote by Q, itself. A high-level frame P holds the parameters of the part.
We do not address the question of choosing a "good" part parameterization, e.g. a superquadric;
the vocabulary of parts models is assumed supplied by a user. Parts models are indexed by a.
Since there is only a single pixel model, all Q frames are matched to it and Mf)j is unity. Since a
pixel model is part of all high level parts models, IX 4a = 1 for all model pairs. The rectangle rule
becomes simply

1: Moina'iH'° (P, Qi) (1)
ai

The difficulty of the segmentation problem lies, of course, in choosing a partition of the data into
nonoverlapping contiguous subsets so as to minimize the cost of the parameter fit. The segmentation
of the data is expressed by the values of the neurons inaii.

The ina must obey constraints that must obtain at the fixpoint of the optimization. The four
used in the network are:

* A given pixel is or isn't part of a given segment. (V =*- 1 or 0)

e A given pixel may belong to only one part.

" The pixels belonging to a part must form a spatially contiguous set.

" A part i may have one or none contiguous pixel sets assigned to it.

The constraints appear as penalty terms and are similar to those used for TLville except for the
contiguity constraint. The penalty term for this counts 0-1 and 1-0 transitions in a row of the ina
matrix and forces one or none transitions of each type.

It is still possible to satisfy the constraints and achieve a good fit by allocating a huge number
of parts, but the abstraction of pixels to parts is useless unless the segmented image contains much
less information than the original. To prevent this part proliferation, we include a parsimony term
in the objective function:

* use as few parts as possible

Or. current parsimony term just counts the number of parts used. The weight on this additive term
determines the relative cost savings of fewer parts vs. better fits, but we have no good criterion
yet for choosing this weight.

We use the objective function to specify a high-order Hopfield network of neurons ina, M and
P to carry out the optimization. As the optimization proceeds, groups of pixels clump together to
form parts, and the neurons representing parameter vectors settle to appropriate values.

Figure 7 shows a result of the segmentation net partitioning 1-D data into constant regions.
Here, Pi is a single number equal to the value of the constant approximating region i. The appro-
priate metric is simply

H(Pi,,Qj) inaii(P" - Qj)2. (2)
ii
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where H needs no superscript since only one model is present. The partition is stable; we get the
same answer with different random starts and with small changes in the data.

Other more recent implementations are described in following pages. One page shows the
recognition of real industrial parts while another shows the use of these nets for recognition of
three-dimensional objects.

The networks discussed here were hand designed in that both the model base and the definition
of the match metric HO were chosen in an ad hoc manner. It may be possible to improve the
performance of a Frameville network by supervised learning. Learning the database is quite difficult,
but improving H*O for greater discrimination may be possible. A possible strategy would be to
present the network with examples of fully matched models (all match variables set). The match
metric H'O is then changed. For example, it may be desirable to make its value zero or negative
for positive training examples and have it assume a large positive value for negative examples.
The measure governing the change of H might be the separability of the clusters of energy values
reported by the analog computation term for positive and negative examples. The match metric
itself could be modified by representing H in parameterized form and descending in the parameter
space. The next page shows results of initial work summarizing this aspect.

4.3 Work on associative memory and learning

The model matching networks described above differ from the more familiar associatve memories
well known to neural netters, but since associative memory serves as a test problem for optical
implementaions, several problems in analysis presented themselves. In addition, we continued
some previous work in new types of associative memory.

It turns out that a Hopfield style ACAM (Associative Content Addressable Memory) may be
implemented optically as projection of a binary input state onto a set of stored memories to obtain
a set of inner products, followed by summation of stored memories weighted by the innner products,
followed by thresholding. With this kind of optical architecture, it turns out to be convenient to use
connections that are positive only instead of bipolar, and to not restrict onesself to eliminating self
connections from the network. These two resrictions (bipolar nodes, non self connected nodes) are
present in the Hopfield model, but in two papers [2] [4] we show how to remove them. In particular,
we show through statistical arguments that the model with self-connected nodes actually works
better than the one with without these, and that an all-positive network is possible if the threshold
point is selected judiciously.

While the outer-product memories have been well studied and implemented optically, there is
reason to prefer alternative models that use simple template matching in conjunction with a layer
of internal decision units which compete to perform a winner-take-all (WTA) function. We refer
to this a a unary model. There are 3 reasons for our interest: WTA networks are modules of
the model-match networks described earlier, they constitute an implementation challenge for the
optical effort (see next section), and unary models are interesting in their own right.

With this latter reason as motivation, we completed a study of unary models [16] and showed
the following: We present a universal architecture for standartd auto-associative memory models
which makes optimally efficient use of hardware. This architecture is described by a bilinear energy
functiom. Bot outer-product and unary models can be viewed as special cases of this unversal ar-
chitecture. The universal architecture uses only the minimal number of binary connections required
by information theory to encode the stored memories. For higher order outer product memories,

13



Progress: Three-Dimensional Object Recognition

The match networks were used to recognize 3-D objects from stereo im-
ages. Shown at left are a stereo pair of images after edge finding. The
corresponding data graphs are shown. A match network (not shown)
recovers 3-D structure by ,stereo correspondence. The -3-D sftructure is
itself matched against a database as shown ar right. (Each 'sqiiare'is a
match neuron.) ...- , 7 -
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Progress: Recognizing Industrial Parts

The match networks were used to recognize industrial parts from 2-D
images. Models are stored as graphs, data compiled into graphs as shown
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A

Learning

" Match Metrics can be learned from example, instead of being hand designed.

" Learning may be accomplished by presenting labelled positive and negative examples to the learning
network, of the form:

--- Model -Positive EXOMPle Negative Example

0 The network, including the subnetwork responsible for learning the match metrics, takes the general

- form: I

* / INA~ , Ina,

II

I moduiates connect ion strent I

(a)

The output of the learning net is used to modulate the connection strengths among match neurons.

9 The actual network responsible for learning takes the form:

with the equations of motion:

g(M(ci' JC1 z,) C
(1+

E(M) = lg(M(i,cj,zi(g(Mi(c,Ki,zi) -data 1 )

where g is'a Gaussian function. Learning takes place by arranging the gaussian neurons with respect

ttheir magnitude ci and center z..-. . -. ~ ;~
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the need for large numbers of internal "product units" is eliminated.
In the previous section, an approach to learning in Frameville was discussed but no committment

to a given learning algorithm was mentioned. Reseach on learning, though somewhat peripheral to
the immmediate goals in this contract, was conducted. In [14] [15], a learning algorithm in whuich
a system learns to approximate mappings by constructing an interpolating lookup table on a lattice
of points in the input space.
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4.4 Work on optical implementation

This section describes work on optical implementation performed as a subcontract at the University
of Arizona. A paper [11] by the subcontract investigators is re[produced here and summarizes the
optical progress. Figure numbers refer to figures within this report.
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Design and Demonstration of an Opto-Electronic Neural Network
using Fixed Planar Holographic Interconnects

Paul £. Keller and Arthur F. Gmitro
Optical Sciences Center
University of Ariz=na

Tucson. Arizona 85721

1. Introduction
A key element of most neural network systems is the massive number of weighted interconnections used to

de relatively simple processing nodes together in a useful architectr. The inherent p ralleliam and intervonnec.
don capability o optics make it a likely candidate for the implementation of th neural network Interconnection
process. While thern are several optical technologies wouth exploring, we are looking at the capabilities and Umi-
tations of using fixed planar holographic interconnects in a neural network sysMm and have Implemented an initial
tat system using plaw holograms and opto.elecuvnic nodes.

2. System '---
All neural network systems consist of nodes (simple 'ionU.Unea elements crudely Imitating biological

neuros) and weighted interconnections (synapses) between nodes. The basic system we have looked at employs
optical interconnects and eleclmie nodes in a feedback architectum A prototype i shown in Figure 1.

InputLLigh
!Beams
1 Detectors

Fourier Lih
L igj.ht S ource0 HOlgm Tranlsformh Beamni j.= Plane 2

I ectonic I
I Thresholding I
L Device-

igure 1: Prototype opto-clecuonic neural network system. Figur 2: Single nods in the system.

Each node Is composed of an input summing port, non-linear transfer device, and an output port. In an opto-
electronic system, a differential pair of detectors Is operated as an input to the node; signals with positive
(excatory) weights arive at one detector, and signals with nepdtve (inhibitory) weiobts a-ive at anoher dettor.
These detectors sum up the Intensity of each optical signal arriving at the node. A thrshold operation Is electron.
Ically applied to the detected signal to produce an output signal. The output signal of the node modulates an opt-
cal sorcv. FlW 2 illumms an idealized node.

An Individual node drives an optical beam that illuninates a single subholopram. Each subholopam stores
the connection weights beween that node and all other nodes. A subbologram is designed as a Fourier transform
hologram am used In a coberent optical system so that the diffracted connection pattern Is Independent of subholo-

3. Desip . . .---------- -- .
The Hopfleld t auto-assocIadve memory model was chosen as a means to mat the inwrconnect capability of

plowr holographic opticl In om in dheximenal opto-dectonic neural network. This neural network- - ...cal Inecn et in . w e. e .m .ta . .. .-. -,.. . ._ :
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tries to associate each pattern presented to it with a pattern that it wa trained on during an initial batch training
process. Using the Hopfield outer product formulation, a training set of patterns was used to construct the fixed
interconnection weights. The Hopfield model is a globally interconnected neural network- all nodes are connected
to all other nodes with a deterministic strength or weight. These weights were then encoded in an army of binary
amplitude subholograms.

Much effort went into the construction of the hologram used in the interconnect process. After examining a
variety of computer generated hologram (COWh) techniques for accuracy of reconstructed interconnect weights.
computation time, required space bandwidth product, and diffraction efficiency, two techniques, er diffusion and
random search, were found to satisfy many of these criteria.

Both techniques were used to produce binary amplitude holograms. The general design techniques are as
follows. The weights connecting a single node output to all node inputs am represented as an intensity pattern in
the detector plane. The optical amplitude at the detector plane is given by the square root of the intensity. To
reduce the dynamic range required to encode a hologram, a random phase function is added. Since amplitude holo-
grams must produce a hennitian difflacon pattern, the mapped weights are shifted off the optic axis and a hermi-
tian conjugate is added. To compensate for the sine function roll-off in the connection pattern due to finite sized
hologram pixels, the connection weights are multiplied by an inverse Ane function weighting. This predetermined
diffraction pattern is then Inverse Fourier transformed, and the transformed data values ae normalized using the
extreme amplitude values for the entire set of subholopams. ,exicographicaly scanning these sampled values,
each sample is binatized. Since the dam is continuous valued, an em is produced by the binauization. This error
ii propagated to the adjacent unbinarzed pixels of the hologram; t is the er diffusion process.2 The net
effect of the error difusion process s to reduce the total quanization error across the entire hologram. What
remains Is a high frequency binarization error that manifests itself as diffracted light far off the optic axis in the
detector plane. The location of this diffracted light Is controlled by the method used to distribute the binarization
error in the holograni. To improve interconnection weight accuracy and to confme the diffracted spots of light to
the center of each detector cell, each hologram is replicated 4-times vertically and horizontally (16 replicas). The
error diffusion algorithm has shown the best performance for a non-itcraive COR design pvcess.

Random search is an iterative process used to improve de connection accuracy of the error diffusion holo-
grams. Starting with an error diffusion hologram, this method determines whether a perturbation (flipping a pixel
in the hologram from opaque to transparent or vice versa) improves the accuracy. A perturbation is kept only if
the accuriy is improved. This process is repeated until convergence. The main disadvantage of the random search
process Is the massive computation required. This process iL related to the simulated annealing process except that
no annealing takes place. The simulated annealing process allows accuracy degrading perturbations of the holo-
gram to be kept with a probability modeled by the Maxwell-Boltzmane distribution.3 Simulated annealing, in
theory, is able to find the globally optimum solution; in practice, limited computation requires compromises that
may or may not produce good results. We have found that the random search algorithm produces holograms with
almost the same performance as simulated annealing but requiring far les computation dime.

For a large scale problem, electron beam fabrication would be required to produce the array of subhologrns.
For the small scale problem that was implemented, a photolithography process was used; the hologram mask was
printed onto a sheet of film using a laser film writer and photographically mduced onto a holographic plate.

4. Experiment
The experimental opto-electronlc neural network is illustrated in Figure 3. An initial pattern of 8 by 8 pixels

Is fed into the system by a computer, this pattern represents the initial state of the neural network. The pattern is
written onto a Hughes Liquid Crystal Light Valve SLM using a hlgh-intenity projection television. This binary
pattern is polarization encoded onto the coherent optical laser beam by die SLM. The polarization beam splitting
cube reflec= only the vertical component of this polarized signal so that a binary amplitude pattern illuminates the
hologram array. Each pixel of the pattern illuminates an individual subholopma. There are 64 nodes with 4096
bipolar interconnections In the experimental system.

The Foarie mansform (Fraunhofer diffration pattern) of the hologram aay is produced at the back focal plae
of the les. To reduce scatter, the low frequency information of the diffraction pattern is Mted ouL A relay
lens Is used to image the filtered Fourier plane onto a video camera. The light beams (diffraction from the holo-
gram plane) arriving at the detector plane constitute the input to the node plane. In a practical Opto.elecsonic
neural network, each electronlc node would take the difference between de signal on its positive-welght detector
and its negadva-weisht detector, threshold the result, and drive an optical source such a laser diode to be either on
Of Off. For our experimentl test system, a video camera Is used to detect the optical Inpu signals. The video
signal is fed into 6 compater where It Is digitized by a video frame buffer. The comput splits up the video
fknm Ino a grid and sms up dweintensity In each cell 1o simulate a detectw array. TM differenm and tduslolding -
operation am pedormed digitally and the output stored In a video fram buffer, where the video output represents

-.
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the next itcration of the network. This forms the new network state, which illuminates the hologram plane, and
the process continues until the network converges to a stable state.

As this experimental system was described, a node can take on two values; a value of 0 Is represented by a
dark pixel, and a value of I is represented by a ight pixel. The performance of a Hopficld style neural network is
signiflcantly improved by using bipolar node values instead of unipolar node values. As an experimental test of
bipolar nodes, a two step process was used. During the first step, a pattern was projected onto the SLM, and the
detected pattern on the video camera was stored. During the second step, the inverse of the pattern was projected
onto the SLM. and its detected pattern on the video camera was subtracted from the first detected pattern.
Polarization encoding is another method for consructing bipolar nodes. A node value of +1 is encoded as horizon-
tally polarized light, and a node value of .1 is encoded as vertically polarized light. With bipolar weights and
bipolar state values, four detectors and two polarizers are used in the in summing port of the node.

Output of tr e Nodal Plane Input to the Nodal Plan

"video signal video slpuW
Computer

Projecn CRT Arm Cubs At U

Hologram 
pianourier Flane

F. Results

The best perfornance of the associative memory neural network would come from a network storing randomly
generated patterns but since patters of disdnct stuc~ture (vertica lines, horizontal lines, diagonal lines) are gener-
ally encountered In vision and pattern recognition tasks, it was decided to use a set or" ordinary typewrnte cclmczers
(letters, numbers, symbols) to construct the teat network, Using th Hopfleld outer product formulation, a training
set of three patterns, FiB),, wa used to determine the interconnection weights.

A prime tfeature of auto-assocative memory neural networks is the convergence of the network to the ideal
stored pattern when the input latteuiis cor t By romy fliinthepixeof the -aning set. awttset o(
corrupted patterns was generated. TIhese psterns wens presented to the exeneta opto.elect, onic neural net-wrk, a ompuer sim laton of the opw-electonic neura network, and a come simulation of the ideal neural
network. From the simulabson, I was found that the autoassociaive neural network constrcoted with random
search hologra pfomed almost iddstically to the same neural network with ideal iteronnect weights. The
expelment, while not peIv owing quite as well as the sinulanon, did come close for both tuipolar and bipolar
state values. The resIls with error difusion holorams we r not as good a with pre random swlaholorans
but show dtat ers difAsion based holpemphic int rconnect aa iod rde-off between e f e and
C H pmpuaton tie for bipolar state values, FIure 4 ill k is the performance of the experlntoohe opto-
electronic neual network with a tect set composed of coerpted versio. of die ler B. This figure is a graph of
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the probability that the network converges to the original letter B as a function of the number of corrupted pixels
in the input pattern. The total number of pixels in the input is 64. From this graph, it is apparent that when the
number of incorrect pixels in the input pattern becomes too large, the network does not converge to the ideal
pattern. Similar responses were foud with the other stored patterns.

The small differences between ie experimental results and the simulation results were caused by aberrations
in the Fourier transform lens and relay lens, non-uniformity of the video camera, high frequency roll off in the
holograms due to loss of resolution during the hologram fabrication process, and RF interference in the electronics
produced by the argon ion lasers plasma discharge tube.

The experimental opto-electronic neural network system along with its computer simulation shows that a
planar hologram can be used to implement the interconnect weights of a neural network. The resuts we have
found with the experiment agree well our analytic calculations of neural network performauc* 4
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igure 4: Perfonnrnce of the ideal associative memory and the opto-electrnic implementations. The graph plots
the probability of convergence of the network to the correct state versus the number of corrupted pixels.

6. Conclusions
We have demonstimted that a systcm employing planar holographic optical interconnects can be used to imple-

ment a neural network architecture and that the performance of an optically implemented Hopfleld style network
comes close to that of an arbitrary system employing ideal interconnect weights.

This rmwarch is supported by the Optical Circuitry Cooperative at the University of Arizona.
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