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APPLICATION OF ACOUSTIC SIGNAL PROCESSING TECHNIQUES

FOR IMPROVED UNDERWATER SOURCE DETECTION AND LOCALIZATION

The subject contract was issued to the University of New Orleans (UNO)

from 13 Jan 1987 through 31 Aug 1988. Drs. George and Juliette Ioup served as Principal

Investigators. A subcontract was issued to the University of Southern Mississippi (USM),

where Dr. Grayson Rayborn served as Principal Investigator. At UNO Mr. Ken Barnes

was hired as a Research Associate, and Mr. George Frichter was hired as a Research

Assistant. During the period of performance the Principal Investigators were also sup-

ported as Navy/ASEE Senior Summer Faculty Fellows. Parts of the research summarized

in this report were performed on these appointments.

Much of the research performed for the contract has been reported at

national meetings and/or written up in manuscript form for publication. A listing of

these items follows. Beside each is noted whether a copy is incluled with this Final

Report. For each item not included with this report, information is given on the avail-

ability of the document.

1. Grayson H. Rayborn, George E. loup, Juliette W. loup, and Janet C. Carr, 'Normal-

mode filtering with orthogonal functions to avoid mode leakage," paper presented to the

Acoustical Society of America, Anaheim, CA, December 1986. Abstracted in J. Acous. Soc.

Am. Suppl. 1, Vol. 80, S113 (1986).

This research was performed prior to the start of the contract, but it provides an intro-

duction to the contract-supported research. A copy of this abstract is included in this

report.

2. Deanna M. Caveny, Donald R. Del Balzo, Jeffrey L. Becklehimer, and George E. loup,

"Performance of sinusoidally deformed line arrays," paper presented to the Acoustical

Society of America, Anaheim, CA, December 1986. Abstracted in J. Acous. Soc. Am.

Suppl. 1, Vol. 80, S26 (1986).



This research was performed prior to the start of the contract, but it provides an intro-

duction to the contract-supported research. A copy of this abstract is included .n this

report.

3. Deanna M. Caveny, Donald R. Del Balzo, Jeffrey L. Becklehimer, and George E. loup,

"Array shape estimation via piecewise subarray beam forming," paper presented to the

Acoustical Society of America, Anaheim, CA, December 1986. Abstracted in J. Acous. Soc.

Am. Suppl. 1, Vol. 80, S26 (1986).

This research was performed prior to the start of the contract, but it provides an intro-

duction to the contract-supported research. A copy of this abstract is included in this

report.

4. Grayson H. Rayborn, George E. loup, and Juliette W. Joup, "Nonorthogonality of

measured normal modes in shallow water," paper presented at the fall meeting of the

Acoustical Society of America, November 1987, Miami, FL. Abstracted in J. Acous. Soc.

Am. Suppl. 1, Vol. 82, S72 (1987).

A copy of this abstract is included in this report.

5. Juliette W. Ioup, George E. loup, Grayson H. Rayborn, Donald R. Del Balzo, and Chris-

topher Feuillade, "Effects of measured mode nonorthogonality on c- iventional matched

field processing," paper presented at the fall meeting of the Acoustical Society of Ameri-

ca, November 1987, Miami, FL. Abstracted in J. Acous. Soc. Am. Suppl. 1, Vol. 82, S73

(1987).

A copy of this abstract is included in this report.

6. James H. Leclere, Donald R. Del Balzo, Deanna M. Caveny, George E. loup, Jeffrey L.

Becklehimer, and Donald A. Murphy, "Performance of Sinusoidally Deformed Planar

Arrays," paper presented to the Acoustical Society of America, Indianapolis, IN, May 1987.

Abstracted in J. Acous. Soc. Am. Suppl. 1, Vol 81, S85 (1987).
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A copy of this abstract is included in this report.

7. Effects of Noise on Pressure and Modal Amplitude Matched Field Processing, George

M. Frichter, IV, Juliette W. loup, George B. Smith, George E. loup, Christopher Feuillade,

Grayson H. Rayborn, Donald Del Balzo, paper presented at the March Meeting of the

American Physical Society, 21-25 Mar 1988, New Orleans, abstracted in Bull. Am. Phys.

Soc. 33, 705 (1988).

A copy of this abstract is included in this report.

8. Least-squares and single-filter always-convergent iterative deconvolution of transient

signals for correlation processing, James H. Leclere, George E. loup, Juliette W. loup, and

Robert L. Field, paper presented at the fall meeting of the Acoustical Society of America,

14-18 Nov 1988, Honolulu, HI, and abstracted in Jour. Acous. Soc. Am. 84, S17 (1988).

* This paper reports work completed and submitted for a conference during the contract

period, but the paper will not be presented until after the expiration of the contract. A

copy of the abstract is included in this report.

9. Comparison of double and triple cross correlation for arrival time identification of

amplitude- and frequency-modulated acoustic transient signals, Juliette W. loup, George E.

loup, Robert L. Field, and James H. Leclere, paper presented at the fall meeting of the

Acoustical Society of AmeriL A, 14-18 Nov 1988, Honolulu, HI, and abstracted in Jour.

Acous. Soc. Am. 84, S17 (1988).

This paper reports work completed and submitted for a conference during the contract

period, but the paper will not be presented until after the expiration of the contract. A

copy of the abstract is included in this report.

10. Deanna M. Caveny, George E. loup, Donald R. Del Balzo, and James H. Leclere,

*Performance Evaluation of Sinusoidally Deformed Hydrophone Arrays," manuscript

submitted to Jour. Acoust. Soc. Am., June, 1988.

This manuscript has been accepted for publication subject to revision. A copy of the

3



manuscript in its current form is included in this report.

11. Grayson H. Rayborn, George E. loup, and Juliette W. loup, "Nonorthogonality of

Measured Normal Modes in a Shallow Water Waveguide," manuscript submitted to Jour.

Acoust. Soc. Am., May, 1988.

A copy of the manuscript is included with this report.

12. Juliette W. loup, George E. loup, Grayson H. Rayborn, Donald R. Del Balzo, and

Christopher Feuillade, "Effects of measured mode nonorthogonality on conventional

matched field processing," manuscript in preparation.

Copies of the manuscript in its current form are available from the Principal Investiga-

tors.

13. George M. Frichter, IV, 1987, Underwater Acoustic Pressure to Modal Amplitude

Mapping for Wind Generated Noise ir a Waveguide, M. S. Thesis, University of New

Orleans.

A copy of this thesis has been given to the Scientific Program Officer. Additional copies

may be requested from Mr. Frichter or the Principal Investigators.

14. Weiping Pan, 1988, An Application of a Perturbative, Approximate Method to the

Study of Sound Propagation by Normal Modes in Shallow Water, M. S. Thesis, University

of Southern Mississippi.

Mr. Pan was not supported by contract funds, but his research was supervised by Dr.

Rayborn during the contract period, and may be of interest. A copy has been supplied to

the Scientific Program Officer. Additional copies are available.

15. Grayson H. Rayborn, A study of the literature of reverberation and scattering in a

wedge environment and from wedges in a general ocean environment.

This report was written for and previously submitted to the replacement Scientific Pro-

gram Officer, Dr. Anas Abo-Zena. A copy is included in this report.
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16. James H. Leclere, Donald R. Del Balzo, and George E. Ioup, A Brief Introduction to

BEAMSTATPAK with Sample Calculations of Array Performance on Multiple Line

Systems.

This 47-page report was prepared for NORDA. A copy in draft form is available from

the authors. The report is currently being expanded and revised to describe recent

changes in BEAMSTATPAK by Dr. Rick Slater and Mr. Howard Chandler of NORDA.

Most of the research supported by this contract has been reported in the

above listed publications. Smaller research projects which have been performed have been

reported directly to the Scientific Program Officer. Funding will be sought by the Prin-

cipal Investigators to continue research in promising areas in the future.
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with fre-fallingocean bottom sesmnometers (OBS). Sincethe ship's posi- Balzo (NORDA Code 244, NSTL, MS 39529), Christopher Feuillade,
tion and its towed signal sources (air gun. uniboom) or explosives are and Mary M. Rowe (ODSI Defense Systems, Inc., 6110 Executive
fairly well known based on high-precision navigation systems, one can Boulevard, Rockville, MD 20852)
determine the geophone positions indirectly from their response to the
source excitation. Here., a newly developed source parameter estimation The accuracy of matched-field techniques for source localization in a
code (A. B. Baggeoer, W. A. Kupermn, andH.Schmidt, J.Aoust. Soc. shallow-water waveguide is dependent upon realistic modeling of the

Am. Suppl. 179, S56 (1986)] is first used to determine the performance geoscoustic environment. A study was conducted to investigate the sensi-

bounds for a localization based on seismic interface waves. Then, an actu- tivity of source localization to erroneous estimates of the geoacoustic

alshearspeed proflleisdeterminedbyinversionofa newdatasetobtained properties (sound speed, density, and attenuation) of the sediment. A

using explosive sources, and a maximum-likelihood estimation of the geo- range-independent normal-mode computer program was used to calcu-
phone position is performed. By comparing the results with the actual late acoustic fields from a midwater source received on a vertical array of

experimental geometry, it is demonstrated that in spite of the fairly long 21 hydrophones spanning the water column. Errors in estimates of range

wavelength of the interface waves, a reasonable resolution can be achieved and depth are presented as a function of mismatch of each geoacoustic

by such a technique. property.

10:.30

AAA9. Simulit/ons of matched-field procemingl in a deep.water Paefle 11:15

environment. Michael B. Porter, Ronald L Dicus. and Richard Fizeil AAA12. Wave-hefght fluctutio eflects on matched-field detection and
(Code 5120. Naval Research Laboratory, Washington, DC 20375) localhzatlo In shaDlow water. Donald R. Del Balzo (NORDA Code 244,

er asignalpocesingtcnique for amysi NST MS 39529), Christopher Feuillade, and Mary M. Rowe (ODSI
Matched-field pocessing s Deecases upcol6 10emi Eeecuiqve Bouevrd Rockvile MD2052

which field vectors for assumed source positions (range and depth) are Defence Systems. Inc_ 6110 Executive Boulevard, Rockvile MD 20852)

substituted for plane-wave steering vectors in conventional linear and Sea surface wave-height fluctuations cause a time-dependent mis-
nonlinear beamformers. The field vectors are computed by standard match in environmental conditions and therefore effect the detection and
acoustic field models (FFP. normal mode, etc.) which take into account localization performance of a matched-field processor. A sensitivity study
propagation effects in an oceanic waveguide. The output is an ambiguity was conducted to examine this mismatch phenomenon for an idealized,
surface over possible source positions in which a peak is expected at the range-independent. Pekeris channel of 100-m depth, with a 150-Hz
true source position. Accuracy of the computed fields is limited in large source, using a centrally positioned vertical array of 21 hydrophones
part by our knowledge of the environment. This environmental mismatch spanning 50% ofthe water column. Variations in the sea surface height of
causes degradation in localization performance, sometimes leading to + 3.5 m were considered as an extreme, but realistic, case, and the output
large errors in estimatior of source position. In order to assess the signifi- signal-to-noise ratio (SNR) and predicted range and depth of the source
cance of this effect, simulations were performed in which a measured field were determined from a series of range-depth maximum-likelihood ambi-
is synthesized using a slightly different environmental model from that guity surfaces. Surface height variation caused a systematic error in range
used for the steering vectors. The differences were introduced to simulate estimation, such that when the depth was increased due to a wave crest.
expected errors in sound-speed profile, sediment thickness, and elastic the target range appeared shorter than the actual range. The opposite held
wave speed. Calculations were made for a cw source operating at 10 Hz for a wave trough. The corresponding calculations of target depth were
and depths of 25 and 250m in a 500 m.deep ocean. The receiver was a 16- consistently biased towards greater depth. Calculations indicated that
element vertical array at anges of 25 (shadow zone) and 100km (second small (1%) variations in surface height can cause a loss ofup to 15 dB in
convergence zone). A typical Pacific sound %.Aocity profile was assumed. detection performance at a single time. However, when the computations
The bottom was modeled by a thin (50-m) sediment layer overlying an are properly normalized and then averaged over time throughout a com-
elastic subbottom. Degradation in localization performance due to envir- plete cycle of the wave-height variations, the resulting detection is domi-
onmental mismatch will be discussed both quantitatively and qualitative- nated by the zero wave-height maximum-likelihood surface and localiza-
ly. tion estimates based upon the position of the main peak are unambiguous.

10.4S

AAAIO. Preliminary results of matched-fleld localization sing a verteial 11:30
arry In the Tufts Abyssal PlaiL R. G. Fizell (Code 5120. Naval
Research Laboratory, Washington, DC 20375) AAA13. Normal-mode filtering with orthogonal function to avoid mode

leaageGrayson H. Rayborn (Department of Physics and Astronomy.
PACIFIC ECHO was an experiment conducted jointly by the Naval University of Southern Mississippi, Hattiesburg. MS 39406-5165 and

Research Laboratory (NRL) and Defence Research Establishment, Pa- NORDA. NSTL, MS 39529), George E. loup, Juliette W. loup
cific (DREP) in May-June 1986. Vertical aray measurements of a 1S- (Department of Physics and Geophysical Research Laboratory,
Hz cw signal projected by the NRL Mk-Vl source, towed atadepth of 100 University of New Orleans, New Orleans, LA 70148 and NORDA.
in on a circular arc of radius 3 nni. were analyzed with matched-field NSTL, MS 39529). and Janet C. Carr (NORDA. NSTL MS 39529)
processing. The DREP array was 675 m long with the top hydrophone at
400-m depth. Matched-field processing between theoretical and men Propagation ofsound in shallow water is commonly analyzed in terms

sured fields was accomplished by linear correlation and by a nonlinear of trapped normal modes. The procen of normal-mode detection by ad.
maximum-likelihood method (MLM) estimator. Theoretical dds were justment of the response of individual hydrophones in a vertical array to

computed using a normal-modes program, the measured sound velocity match the pattern of a particular normal mode is normal-mode filtering.

profile, and an assumed thick-sediment bottom. Successful localization of Despite the nonorthogonality of the normal modes in the wter column,

the source was achieved with both estimators. Sidelobes produced by the normal-mode fiterng is based on the assumption that the modes are
MLM estimator were significantly below the main peak but, for the linear orthogonal. The error induced by this assumption is known as leakage. It
estimator, sidelobes were sufficiently large to be taken as fain targets, has been estimated to range from 3% to 10% ofa measured mode. In this

paper, the error involved in treating the modes as orthogonal for a variety
of bottom types, water depths, and source frequencies is analyzed, and a
method for avoiding the error is demonstrated. Density and sound-speed

tII ratios are selected from models fitted to experimentally mesured values.
To render the results indicative of a broad range of water depths and

AAA II. Sensitivity of the matched-field ource localization techalque In frequencies, use is made of dimensionless variables. Laages as large as
ihallow water to mismatcb of geocoustlc parameters. Donald R. Del 19% are calculated.

$113 J. Acoust. Soc. Am. Suppl. 1. Vol. 80, Fail 1966 112th Meeting: Acoustical Society of Americ S113



ren demonstrate attheenitivity of the HDtraducer isjust that shape and uses this information to form the bearms. A method which "I
given by the simple application of Faraday's law, in contrast to recent accomplishes this goal form beams for subsperture separately assuming
measurements indicating otherwise ( P. H. Moose and R. F. Klaus, J. that they are approximately linear. A maximum likelihood estimation
Acoust. Soc. Am. 74, 1066 (1983) 1. This reciprocity technique should be method [M. J. Hinich and W. Rule, J. Acoust. Soc. Am. 58, I023-1029
applicable to calibration of a wide range of transducers, including hydro- (1975)] has previously been used to associate an angle with each of the
phones and accelerometers. [Work supported by the Office of Naval Re- subapertures. Given the subarray bearing angle they calculated a mean '
search. ] and a median to estimate the full array bearing angle. In this study, after

the main angle was determined, using conventional methods, a piecewise
linear array was constructed by placing the subarays together with esti.

2OO mated correction angles. To test the performance of the approximated
array shapes, beamforming was carried out using the new piecewise linear

L. Design model of large, unform, conformal arrays of bender bar and array and the modeled data for the original deformed array. Systematic
fleatenloed tramducers. G. A. Brigham (Aquasonics, Inc., Anaheim, errors were investigated as well as various methods for smoothing the
CA 92806) piecewise linear array.

The single element design technology of flextensional and bender bar
transducers is several decades old but use of either type of transducer in
conformal arrys presents newer and more formidable design problems. 2.45
When the array is very large the effects of edge diffraction on the outer LC Performance of slnsoldally deformed line arrys. Deann
elements can be ignored to generate a zeroth ordered waveguide design M. Caveny, Donald L Del Balzo, Jeffrey L Becklehimer (NORDA,
model to estimate radiation loading at any steering angle. Highly eccen. Code 244, NSTL, MS 39529), and George E. loup (Department of
tric shelled flextemionals and bender bar transducers are then includedin Physics and Geophysical Research Laboratory, University of New
one common format. Since both types are largely flexural, they are ro- Orleans, New Orleans, LA 70148)
nnt at frequencies where the interelement spacing is much smaller than a
wavelength in water and only the low-frequency inertial and plane-wave Previously it has been shown [M. . Hinich and W. Rule, J. Acoust.
volume flow components of loading need be determined. Several array Soc. Am. 58, 1023-1029 (1975); W. S. Hodgkiss, IEEE J. Ocean. Eng.
geometries have been studied and the reactive loadings calculated. This OE-8, 120-130 (1983)] that deformations of towed arrays from a
paper shows both the theoretical and numerical results of various mass straight line shape can produce significant distortions in beam patterns
loadings as functions of array and element geometry. J Research support- and errors in bearing estimation if the beamforming assumes linearity. It
ed by the Naval Underwater Systems Center. New London; the Naval has also been shown that a deformed array helps to remove left/right
Ocean Systems Center, San Diego; the Electric Boat Division of General ambiguities in the beam patterns, provided the bearmforming is done with
Dynamics. ] the correct array configuration. In this work these two effects are studied

for undamped and damped sinusoidally deformed arrays (as observed in
practice) of one, two, and three half-cycles with relatively small array

2:15 amplitudes. By use of fixed arc length separations along the array, the
phone (x, y) coordinates are determined numerically for each smusoida

L4. Analysis of radiating flexural shell sonar transducers using the finite shape. The complex pressure fields are modeled for sources at various
element method. B. Hamonic, J. C. Debus, J. N. Decarpigny (Institut locations. Then beamforming is carried out (1) with the known array
Sup6rieur d'Electronique du Nord, 41 boulevard Vauban, 59046 Lille configuration, and (2) assuming that the army is linear. Degradations
Cedex, France), D. Boucher. and B. Tocquete' (Groupe d'Etude et de resulting from assuming linearity and the ability to remove left/right am-
Recherche de Ditection Sous-Marine, Le Brusc, 83140 Six Fours les biguities are discussed in terms of reduced gain, angular resolution, and
Plages, France) bearing errors.

New flexural shell transducers for low-frequency applications are cur.
rently developed which are characterized by a large volume velocity and a
drastic reduction of their resonance frequencies as soon as they are flood- 3:00
ed. due to added mass effect. To design these transducers, a finite element L. On the dedgn technology of the uneompensated class IV flextensional
modeling is very useful, because it can accurately handle the assembling of trmnsduer. G.A. Brgham (Aquasoncs, Inc., Anaheim, CA 92806)
three-dimensional and shell parts in the same structure, the piezoelectric G

driving force, the fluid-structure interaction as well as the radiation The air-backed flextensional transducer is stress constrained both in
damping. This paper describes the analysis of a test axisymmetric trans- the shell and the electromechanical bar driver. When Navy type III hard
ducer with the ATiLA code [J. N. Decarpigny et al., J. Aoust. Soc. Am. lead zircons•e-fitmate ceramic is used, the total amount of bar preload
78, 1499 (1983)1 using dipolar damping elements and a new extrapola- for depth and power cannot exceed 10 kpsi with allocation an interative

tion method to obtain the transducer farfield characteristics [ R. Boiut et process in the design. The math model consists of three radiating shell
al., J. Acoust. Soc. Am. Suppl. 179, SS I (1986) 1. In-air resonance modes, modes together with the bar end velocity at the shell-bar interface. The
transmitting voltage response and directivity patterns are computed and design starts with a stress analysis ofshell and bar which yields the relative
compared to mesurements, displaying a satisfactory agreement. Finally, dimensions of both. These ae input to (a) the shell-bar equation for
the modeling of a transducer that is built with a glas-reinforced plastic mechanical resonance in water to get the shell major axis width, and (b)
shell is described, and the corresponding problems and results are dis- the resonant half.power bandwidth equation to get the shell length. AD
cussed. "' Currently at Thomm-Sintra, Chemin des travails, 06802 reaining parameters follow from the sizing. e.g., effective coupMi8
Capes sur mer, France. weight, and peak acoustic power. This paper shows the design sequence,

the results for a uniform elliptic ring used as a baseline, and application to
designing various flextensionals for several new major Navy sonar trans-

2:30 mit array programs.

1J. Array sh u atm via leewlse nmarray o ferimlas Deann
M. Caveny, Donald R. Del Blzo, Jeffrey L Becklehimer (NORDA, 3:15
Code 244, NSTL, MS 39529), and George E. loup (Department of
Physics and Geophysical Research Laboratory, University of New LL Frings eounting demodulator for fiber optic iuterferometre senr s
Orleans. New Orleans, LA 70148) C. M. Crooker and S. L Garrett (Physics Department, Code 61 Ox,

Naval Postgraduate School, Monterey, CA 93943)
Deformation produced when towing a linear array can remove L-R

ambiguities in conventional beam patterns, provided the bemformer A demodulation scheme for high sensitivity (1-10 krad regime) fiber
knows the deformed aray shape. In practice, however, this shape is usual- optic interferometric sensors which is based on fringe rate has been devel-
ly unknown. Thus it is desirable to have a processo that determines the oped. The technique is similar to that utilized in optical shat encoders.

526 J. Acoust Soc. Am. Suppl. 1. Vol. 60. Fall 1986 112th Meeting: Acoustical Socity of America



A wearable multichannel signal processor for stimulation of single- taneous masking phenomena to VIlth nerve or higher neural mocha.
electrode cochlear implants has been field tested with two patients. Each nisms. (Work supported by NIH.]
channel in the processor, which is implemented in a digital signal prcess-
ingchip, consists ofa resonator followed by an instantaneous compressive X4.
nonlinearity. The channel outputs are digitally mixed for use with single- ',

electrode implants. The resonators perform a spectral-totempora tramn--.
formation of the input signal and the nonlinearities limit output level to .
emulate the response characteristics of normal auditory neurons. The 11.45
resonator and nonlinearity parameters are adjusted to accommodate both
the acoustic properties of speech sounds and the electrical dynamic range 1Hi4 & Channel interaction measured by forward-masked "pla
of the patient. Several processor configurations with different resonator toing curv with mnutlehannel elecial stimulation. Virginia
and nonlinearity designs have been evaluated. The results of psychophys- M. Kirby (Hearing Research Laboratory, 270-4S-11, 3M Center, Saint
ical tests, used to fit each processor configuration to the patient and mea- Paul, MN 55144), David A. Nelson (Hearing Research Laboratory,
sure speech performance in quiet and noise with each configuration, wil University of Minnesota, Minneapolis, MN 55455), Sigfrid D. So fi
be reported. (Hearing Research Laboratory, 2704S.11. 3M Center, Saint Paul, MN .,:

55144), and Todd W. Fortune (Hearing Research Laboratory,
University of Minnesota, Minneapolis, MN 55455)

Simultaneous stimulation of multichannel intracochlear electrodes
11.30 can give rise to peripheral and central channel interactions. The ability to

m4112. Baiard md forward masking for dnrect ectical stmlation eliminate or predict and control the intenctions produced by a given
of the Vlflth nev In two profoundly deaf subjects. L J. Dent and B. ee geometry is a processmg goal for optimizing performance with a .
S. Townshed (Stanford Electroics Labomtories, Stanflo CA94305) multichannel cochlear implant. Previous studies have used loudness sum.

mation and forward-masking pattern techniques to estimate interactions

Two profoundly deaf multielectrode implant subjects were required to between channels of electrical stimulation. In this study, interactions be-
detect a probe signal (10 ms in duration) in a temporal pp between two tween bipolar channels of analog electrical stimulation were estimated.
pulse-train maskers (each 300 ms in duration). The detection threshold using a forward-maskins paradigm with a fixed-leveL fixed-location
was measured for a probe centered temporally in the pp, as well as for a probe. By varying the electrode location of a 200-Hz, 300-ms sinusoidal
probe offset from center by up to 97.5%. Also presented were the pure masker and determining the level of the masker at each location necessary
backward and pure forward masking cases. Qualitatively, both subject's to just mask a 200-Hz, 10-ms probe, a "place" tuning curve was derived.
forward and backward masking functions approximated those observed The level of masker required ata given location to mask the probe depends
for normal hearing subjects [ LL Elliott, J. Acoust. Soc. Am. 34, 1116- on the amount of excitation produced by the probe and reflects, in par, -
1117 (1962)1 in that forward masking decayed more gradually than the degree to which there is overlap of neural populations responding to
backward masking as a function of probe-masker separation. Because each stimulus. These "place" tuning curves, which display interactions as
mechanical (cochlear) contributions to masking [ H. Duifhuis, J. Acoust. a function of masker location were determined for several probe levels and
Soc. Am. 54, 1471-1488 (1973)] can be excluded in the case of direct probe locations. Results and implications for speech processing strategies .
VIlIth nerve stimulation, these data support the attribution of nonsimul- will be discussed. --

tl

Thomas G. Muir, Chairman
NATO SA CLANT Centme La Spezia Italy

calruas lat1:roductlou-&W01

CON~buted Pop=
Following presentation of the prci posters will be on display until 12:00 Noon.

803 al compositions ane effectively recovered for matched field processing has
been demonstrated by several investigators. The pote for improve

Gm. nt using this technique is greatest when the n.northogonality of the
GraysNon rH.ur Ryof (Naval Oca Roesc and shalometer mesre modes is largest. The amount by which te normal modes faid to

Orayon H Raborn(Naal Oean marh 51 Deelopent be orthogonal for a variety of ocean bottoms, army lengths and diacrtiwa

Actiity NASTA_ Menre 3929a andic Depatlyn ofPyic:

A v, M 9bnons, and aray positions for the Pekeris model has been studied. Envi- 
Astronomy, University ofSouthern Mississippi, Hattiesburt MS 39406),o ch iei oc i
George E. loop, and Juliette W. [oup (NORDA, NMTL MS 39529 an Ao~aaeslce orfetsdmnttpscaatrsi ftecni

nental shelf It has been found that the non orthogonality ia greate forDepartm.e of Physics and leophysical Research Laboratory, wer detd frequeiestajutboheomdon esfo 

AUiverity oNTIw OeMiS Now29-0kand, LAur u 7048 water depth anipnisa adJs bv oeloetfrsud

U y N Orveant ofsouthern imp, Newt OorleaMn39),I7 speed ratios close to 1. and for arrays which span only a fraction of ot i

water olumn. Judio placement and length selection for short arrays, .

The importance of surmounting the nonortholonaity of measured however, can give orthogonal measured modes for some combinatiomn of
normal modes Nd processing shallow-water data in such a way that mod. frequencies and environments when a small numb eofmodesmarepm:,A.
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&X pealk This possibility of lowering the requirements on our knowledge of
the environment is investigated with two methodsw (1) by constructing

Il, EfgtI of 5emur aoei -mdtmultiple beam (constraint) algorithms and (2) by considering stochastic
matced fldM proeeog. Juliette W. lup, George E. loup (Naval blurring by the medium. These two approaches are applied to plane-wave
Ocean Research and Development Activity, NSTL, MS 39529.5004 and beamforning and matched field processing
Department of Physics, University of New Orleans, New Orleans, LA
70148), Grayson H. Rayborn (NORDA. NSTL, MS 39529 and
Department of Physics and Astronomy. University of Southern
Mississippi. Hattiesburgl, MS 39406), Donald R. Del Balzo (NORDA,
NSTL, MS 39529), and Christopher Feuillade (ODSI Defense Systems,
Inc.. 6110 Executive Boulevard. Suite 320, Rockville, MD 20852) 8:51

As discussed by Raybom et al. (preceding abstract), the potential 11S. Spatial matched processing for multlpath propagation.
improvement achievable from the use of modal filtering in matched field Matthew Dzieciuch and T. G. Birdall (Communication and Signal
processing is greatest when the measured modes are least orthogonal. To Processing Laboratory, 4242 EECS Building, Department of Electrical
assess the ability of matched field processing using a conventional cross- Engineering and Computer Science. The University of Michigan. Ann
correlation estimator to realize this potential. ambiguity surfaces for a Arbor, MI 48104)
Pekeris waveguide have been constructed employing (a) the pressure
fields at the hydrophones and (b) the amplitudes resulting from modal Underwate acoustic prpagtion is c t by multipath or

filtering. The quality of the surfaces is quantified utilizing measures that multimode propagation. Ray theory and mode theory are not fully ade-

compare the height of the source peak above the mean and the height of quate for modeling physical reality. Impulse responses can be more accu-
the source peak above the standard deviation of the surface. The results rately calculated using Gaussian beam theory. Signal processors can be

indicate that modal filter processing, for a given array of hydrophones. designed to take advantageof thechannel complexity if the propagaion is

offers the most improvement when bottom depth, bottom type, and fe- actually known so that detectability is increased. The proposed technique.
quency combine to produce measured modes that are the least orthogo- channel matched filtering, synthetically backpropagates the wave front to

nal, and yields no improvement when the measured modes are orthogo. a hypothesized source location. Accurate passive estimates ofsource locs-
nal. tion can be made without knowledge of the signal characteristics. GB

theory can easily accommodate a range-dependent deep water environ-
ment. [This research supported by the Office of Naval Research. ]

&.43

113. Effects of correlated noise on the eross-spectral matrix in modal
Composition space. George B. Smith, Christopher Feuillade (ODSI
Defense Systems. Inc., 6110 Executive Boulevard, Rockville, MD U16. A new technique of acoustic mode filtering in shallow sea. Harish
20852), and Donald R. Del Balzo (Naval Ocean Research and M. Chouian and G. V. Anand (Department of Electrical
Development Activity, Code 244. NSTL, MS 39529-5004) Communication Engineering, Indian Institute of Science, Bangalore 560

Computer simulations of hydrophone cross-spectral matrices in a 012, India)

shallow-water waveguide were generated for signals with different mix- A new technique of filtering acoustic normal modes. which overcomes
tures of correlated and white noise. These matrices were then mapped to many of the drawbacks of the earlier techniques, is presented in this paper.
modal composition space, a space populated by vectors whose elements It is based on the fact that each normal mode in an isovelocity channel
are the amplitudes for the trapped modes. It was found thatL in modal comprises a pair of plane waves with characteristic directions of propaga.
composition space. the cross-spectral matrix is not sensitive to the differ. tion symmetrically disposed with respect to the channel axis. A vertical
ence between correlated and white noise, but is sensitive to the difference array of equispaced hydrophones is shaded so as to steer nulls in the
between noise and signal. While the distribution of signal and white noise directional response of the array along the directions of arrival of plane
among the elements of the cross-spectral matrix is similar before and after waves corresponding to the unwanted modes. All the shading coefficients
the mapping to modal composition space, the distribution of correlated are real, leading to simplicity in the hardware realization ofthe processor.
and white noise is not. Temporally discrete noise sources, which are corre- The shading coefficients are invariant to a shift in the position of the array.
lated at the hydrophones, but not from sample to sample, make little or no The array need not span the entire depth of the ocean. Efficient filtering is
contribution to the off-diagonal elements of the cross4pectral matrix in possible even when the eigenfunctions of the modes have a significant
modal composition space. This fact has significant implications for penetration into the bottom. [Work supported by DOE, Government of
matched field processing in low signal-to-noise situations. India.]

Lk47

14. Adaptive hbaesfalag or matched eld poee in In media with
uncertain preo,.gam eodltlens, A. B. Baggeroer. H. Schmidt 117. Matched catastrophe deconvolatlon with appl catim to the inversion
(Massachusetts Institute of Technology, Cambridge. MA 02139), W. ofmorineselmlerefactiondata. MichaelG. Brown (RosenstieSchol
A. Kuperman (Naval Research Laboratory, Washington, DC 20375), of Marine and Atmospheric Science, University of Miami, 4600and E. K. Scheer (Woods Hole Oceanographic Institute. Woods Hole, Rickenbacker Causeway, Miami, FL 33149) and Paul E. Bullwinkel
MA 02543) (Applied Measurement Systems, Inc., 1415 S.W. 21st Avenue, Fort

Adaptive beamforming or matched field proesing provides high re- L FL 33312)

solution with sidelobe control if accurate replica fields can be generated. The problem of extracting accurate estimates of the travel times of
The eneration of these replica fields is a formidable problem requiring unresolved arrivals (e.g., the second and third arrivals within a triplica-
knowledge of the complex ocean propagation environment. On the other tion) from a set of noisy bandlimited measurements of a time-dependent

hand. the detection poblem in the ocean may not require high resolution, acoustic wavefield is addressed The method of solution presented is based
wheres sidelobe control is still an important issue. Relaxing resolution on the assumption that the underlying caustic structure (or. equivalently.
requremeswsqgest that a certain tolerance incorporating uncertainty of the travel time curve structure) of the wavefdeld is known. Because gen-
te propagationodition is permissible, or even desirable ca, seof the eric caustics associated with causal waveflelds take on only certain forms.
4cicultis both in specifying the medium exactly and in identifying global this is a weak assumption. Additionally, it is assumed that the medium
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source localization techniques based on mode filtering have been devel- reviews fundamental environmental effects and their influence on arrays
oped for stratified waveguides. In this paper, some problems of source in the deep ocean sound channel. (Work performed while at NORDA.3
localization in almost-stratified waveguides are discussed. Specifically,
the Prony method is proposed for source bearing in range-dependent
waveguides. It is found that the Prony method only requires a "local
jimost-stratified" condition, which means that within the data sampling 3:05
aperture length the fieldcanbetreated asadiabatic modes. For mostof the LL7. Passive synthetic arrays. W. M. Carey (Naval Underwater
practical interesting cases, this condition can be satisfied quite easy. Systems Center New London, CT 06320)

Passive-synthetic apertures (W. Carey and N. Yen, J. Acoust. Soc.
Am. Suppl. 1 75, S62 (1984)] were formed with experimental towed

2:20 hydrophone data in a sound channel that supported RR and RSR trans-

LL4. Extraction of average under-lee reflection amplitudes and phas mission. These apertures were formed with lengths up to 95A with coher-

with matched field processing. E. Livingston and 0. Diachok (Naval et temporal processing gains approaching 0.75 of theoretical. These re-

Research Laboratory. Code 5120. Washington, DC 20375-5000) suits and those of previous investigators ( R. Fitzgerald, J. Acoust. Soc.
Am. 60, 752-753 (1976); R. Williams, 3. Acoust. Soc. Am. 60, 60-73

Average low-frequency under-ice reflection amplitudes and phases in (1976) 1 indicate that synthetic apertures can be formed by the coherent
the central Arctic were extracted from long-range (259 km) signals from summation of the phase-corrected summation of either hydrophone or :i
fixed cw sources detected on a long (I kin) vertical array (the FRAM IV subaperture beams over successive time samples when the synthetic aper-
experiment) using conventional [H. Bucker, J. Acoust. Soc. Am. 59, 368 ture length is less than the spatial coherence length and the processing
(1976) ] and maximum likelihood (R. Fizell, J. Acoust. Soc. Am. (to be time is less than the temporal coherencelength. The evaluation of synthet-
published) I matched field processing methods. Theoretical computation ic apertures requires comparisons with conventional and other high-reso-
of amplitudes and phases for all assumed ranges and depths were based on lution techniques. Comparisons between conventional array processing
the Porter-Reiss [3. Acoust. Soc. Am. 77, 1760-1767 (1985)] normal and high-resolution techniques [muimum entropy (ME) and maximum
mode code. Under-ice reflection amplitudes and phases were incorporat- likelihood (ML) methods) are performed by use of the analytical expres-
ed into the propagation code and varied iteratively to achieve maximum sions developed by A. T. Parsons (AUWE, TN 700/83) for the determin-
signal gain and minimum range and depth errors. The resultant best data- ation of the array, integration, and the net processing gains. Analytical
fitting amplitudes and phases will be compared with expectations based comparisons between conventional and synthetic aperture arrays formed
on under-ice scattering theories and laboratory-scale model experiments. with either the same number of hydrophones or with the same effective

length but a different number of hydrophones, show that, when the spatial
processing gain exceeds the loss in integration gain, then the use of syn-
thetic apertures is advantageous. [ Work performed while at NORDA.]

LLS. Ventriloquism and spurious sound sources In underwater acoustics,
Ian Roebuck (Admiralty Research Establishment, Portland, Dorset 3.9
DT5 2JS, England)

Lii. Performance of siausoidally deformed planar arrays. James
With the increased use of active noise control has come wider aware- H. Leclerc, Donald R. Del Balzo, Deanna M. Caveny (NORDA, Code

ness that the source distributions generating prescribed sound fields are 244, NSTL MS 39529), George E. loup (University of New Orleans,
not unique. In particular, the possibility of precisely reproducing the field New Orleans, LA 70148 and NORDA, NSTL, MS 39529), Jeffrey
due to a time-varying monopole by a multipole source (of infinite order) L Becklehimer, and Donald A. Murphy (NORDA, NSTL, MS 39529)
located elsewhere, has been established. In this paper, the fundamental
physical limitations of carrying out such an "underwater ventriloquism The investigations of Caveny et al. (J. Acoust. Soc. Am. Suppl. 80,
act" in practice--developing a "constructive" algorithm for the various S26 (1986)) are extended for the cases of horizontally and vertically
multipole coefficients and criteria for truncating the process are exam- towed planar arrays. Horizontal and vertical arrays of three lines (64
ined. It is shown that this is closely related to earlier ideas on the effective hydrophones each I and nine lines (28 phones each) are included. In addi-
size of "point" sources ( 1. Roebuck, J. Acoust. Soc. Am. Suppl. 169, S87 tion, a nine-line array with five horizontal and five vertical lines (with the
(1981)1 and further that acoustic efficiency limits the extent to which the middle line of each in common) is also examined. Horizontal sinusoidal
transmitting multipole elements can be compacted without destructive deformations of one-half cycle (and in some cases two and three half.
mutual interaction. The manner in which the greater effective size of the cycles) are applied to each line. Complex pressure fields are modeled for
"spurious" multipole source limits the potential for deception in the pres- various source directions for each array using the code BEAMSTATPAK
ence of varying boundaries is also analyzed. of Collier (private communication). Beamforming is then done with the

known array configuration and with the assumption that the array is
planar (for selected cases). Degradations resulting from assuming plan.
arity and the ability to remove left/right ambiguity are summarized as a

2:50 function of the source location and the amount of array deformation in
terms of reduced gain and angular resolution. Array performance is also

ML Care (Naval Uerwters e nmentNal odon, CfT. 06320 examined in the presence of a realistic vertical noise distribution. [Re-M. Carey (Naval Underwater Systems C'enter. New London, CT 06320) sac pmoe yNS.

and W. B. Moseley (Naval Ocean Research and Development Activity, search sponsored by NUSC.

NSTL, MS 39529)

The processing of acoustic waveforms by arrays requires an under-
standing of the temporal and spatial characteristics of signal and noise 3".
fields. Temporal and spatial processing schemes are analogous transforms US. Sideloe s son in ensrelated multipath estimats. Peter
that can employ a variety of windows (such as Hann, Hamming, etc.). C. Mignerey (U.S. Naval Research Laboratory, Code 5122,
However, the ocean environment is a filter that introduces variability to a Washington, DC 20375.5000)
signal in both spatial and temporal domains. This randomness is superim-
posed on an ambient sound channel characteristic. In the case of static Some environments cause a propagating signal to split along several
source and receiver combinations, the limits on horizontal broadside ar- different paths. When such multipath propagation occurs, the covariance
ray resolution are due to volume scattering and surface scattering as long among signals traveling along rays emanating from a common source is
as the time scale is less than the signal correlation time. However, in the expected to be larger than the covariance between signals generated by
case of a moving source-receiver, the temporal and spatial scales are cou- independent sources. An estimateof thecovariance between signals arriv-
pled through the sound channel characteristic and the fluctuation effects ing from two different directions is shown to be a bilinear form. The ability
due to multipath or modal variations must also be considered. This paper of the bilinear form to distinguish a correlated arrival from an indepen-
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forming. I Work supported by ONT.
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117. Least-squares and single-filter always-convergent Iterative 9:15
deconvolutlon of transient signals for -'relation processing. James
i. Leclere. George E. loup.*I Juliette W. isorip.' and Robert L. Field I 110. Abstract withdrawn.
(Code 244. NORDA. Stenniis Space Centier. MS 39529)

Crrrelatiio processinig for distributed senisors is most accurate for
short pulses avid those whose autocorrelattioti is sltarply spiked. For longer
raiisieni signtals. mttItipat I arrivals at cacti sensor have significasi initer-

fecreiice wvith Ii cct other, avid it is ditlitiult to iti ify iiiliividtsli arr'ival
limtes. D ecronvotti i of lt te received sigm iiilt %ia rgois lite t railiit is
rjie methiod it) d~crease lite overlap anid iticreise tlte accuratcy with which
Ii avcl liics cali he ilitiltifiecl. lcrivoltoitin ein also hie applied after
cr.%% vcorrelamitios to lic ,it ie amiiti~orrca isi ,if lte traIIicIieit I east-

Eip:3C lecosivilili I% iiste imiosi Coiiiiilinl y user itii imch fori act nst tic
sigoitls. It has lte rtisadvatiigc of hinitg crniprtier oiitteive when filters
for long tranisients are neceded. An alterna~tive approach. lte Kitugle-filter
a pplica~tii i( rif lie a11way%-coiiverget iterat i ye tetmilue. is faster and pro.
vidot variable conitrol for noise. 'I lie two trcltitiqes asre comipiled for
icto mii d eusrwatera:crusi ic nisItipali Ittraniiit -,igiials Sinigle filtera:ppli-
cat inn ol aS ways-convergent iterative iitise retivul is ctitpared to lith Ise
oif a modified lllackman- Ilarris windohw for tinise control. "Also iat thle
Departiniitit of Physics. UnIiversit y of New (ileans.

9:05
1111. Comiparisioi sii doilte auit triple cross coprrelaiitln for arrivail time
identificatioin of aniplittide. and frequeiley-iidulitted aecnt4lic traonslentl
signals. Juliette W. loup,3  George E. louip.m' Robert L. Field, atid 9-20
James If. Leclere (Code 244, NORDA. Steninis Space Center, MS
39529) lilt. Ntiteched-ode processing corrections frir array tIiad bottom

type. )allies A. Mercer (Applied Phtysics Laboratory. University of
1 lie triple cross corret:,tico of Itfree signails i% a si,,ititta seuitss ftiiiction WsigoSate A915

,iftwso lags. It is :sg alterniative to erris ctitlat ionis taketi two at a Iilei for WaigtnSetl. A9315
deternminitig the lags for a giveni source at thiree distributed settgsorrs. It lit a related effort. Hlooner lutcker tias showii that ntIclied- inotle pro.
sthotild offer improvement in arrival ntie ideitificatioti ornly icro tirte CcsinR for an unknown sound-speed enviroiimenit cats he significantly
Statistics oif tle sigtiai leave sigsiiihicail third ilorittiti conpiiments. lei this improved if correction factors for thse iiiode-litie aniplitude functions can
sti uy. aiuplit ite- tied freqiicy-nioclitiated il yliclic lt i 3fseit .igtills be deterniied. rite corections factors tire sohtainies whten a source with
arc 9)33 pagaterl liver several ,ixsiile lit 1% t)i thlree sensowrs. and tfile t ripile kniowm beat ilti is avnulalile t3i calibrate rlise systemt. "I his plaper tlcscr ibes
crirrevtio of lte received pulses conipuied. as well as tlte cross correla- the results of applyitig the same technilities for simumlated cases of uii-
tioiis (if lte saute three sigtials two at a tinte I(lie efficacy of these two known array till slid biltioni characteristics.
iplfrmich tes is. Coimpared for a variety ,if 35 plit toile. atid frequentcy-nnslu.

te id transsient signiats anid multipaili iiterherctice critdiiimis. "' Also at
tlse Departmenit of Physics. University of New Orleans.

9:25

1112. Self-consisient mrsdelIng sif signail anl n~ilsC lit a thiree-dimesionalii

9:11 Itt evirinniruit. lmmii S. P'ei kil. %V A K treriml.ail,339F liigeiitmq (ItI S
Naval Rtesearch, Laboratory. Cocie 5 I1)K wasliioiugoii DC 203 75LXNI))

119. ln itoh acoustic calibration for a large aperture array. Iharbara rvospoaainwr seteddi ociraenie hp
). Saitiriii (Marine Pihysical Laboramtory A-t8J5. Scripps Institutioti of prevad ig l proagatin wor ull exterded tnie s fctiov ironent shIip.

Oceaogrphy.LesJola. C 9293)noise crtis.,sfiectrai dentsity iatriat fiti a vertical array is cruinpiitct aslth
D urinig Sceteriber 1 997. a large aperitlire alotisimc array was depiloyed sooni of a llx:tIl Ciot r ibition rele promigaiifin list ant1;11 %sigll paitehesI of

vertically iii tire Northeast P'acific to study Itiw-trequeticy notiise its thse ocean suirface. P'ropagationi frot aliy point to ltme array is miade efficient
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(2) tbow iittct at. al..g treciauin Is neerd.. it C tle coittectii in thei nt 15-19

work, (3) live' nith~er of trainting examptgles tile' ne.twork 111.1st Pro. befoire Mil 5 Stirf ace I~nqo lit n lnvrnbolic-IEun ou nlc
it can be expected to form reliable general izat ions, anid (4) the efficienicy WTHA F.M. ltl'AI) and W. jtolsr, Neivel (ken loerphc

with whticht a network extracts information fromi the training data. Office and ELEANOR S. IlOLMtES, Science AppLicatioiis
International Corporation. - Okeen-surfars? lowi of
acoustic etiergy ts often Rtveit as n function elt.(a of

Jolmi lh'tk.'r. D~aniel Schwartz. lien Wittii.'v, Sara Sidla, Jolnhin.t tile grazinR tug In a. If 1(z) tis tile comleit w.ulli I i-

fir'll, Iticliard Howard, and Lawrence Jacket. Compt~lex Systems., in press pressure field (froms a porn bo Iic-equatIitn model) no a
(1987). function of depth z near the surface. a Fourier trans-

form F(K) of p(--) yields pressure as a function of the
vertical wave number K. K is proportional to amitt ao,

14:42 thus l(K) In a function ('(e) of to. We nccottit fuir rite

An AiainoL VLSI Systemt for Neural Network sur face loaa by multiplying C(s) by a loss fitmctton L(o)
________________ ad -related to SL(e) - before transforming heck to

Leriitg Experinteists DANIEL Bi. SCIIWAILIZ and ICHiARDi E. physical space. Tite method also Is applicable to bottom
HIOWARtD AT&T Bell Laboratorie, loss. Nutmerical. implementation. angular resolut inn, and

limitations of the method are discussed. Numerical

Becauise the complexity availablhe from standard V1,51 has. grown far be- xmlssepeetd
yond our ability to simulate it, it has become interesting in its own right.
Adaptive neural network models are an example of a class of complex
systems where a mapping directly onto VLSI is of great practical and 11
fundamental interest, However, Lte coetintitously variabtle cotn'tlon 01. ffL(CiiA o1 ftae pit ELeator~r Ati nl" 1~~1

reqiiired for adaption are not easily represented in at digital world. We ELLA C~ii ~tFORGE Mli i.Rciirri., IV.
JULIETTE WJ. 10111, Unv qf Netw Q ~. GEORGE ft.

are building a collection of analog circuits from standard digital CMOS SMITH. Xavier Unv GEORGE E. IOUP.** Unl... gl New
with variable strength analog connections based upon charge storage by Qcj±jear,1. CIIRISTOPIIER FEUILLADE, Syntehk. GRAYSON It.
a pair of MOS capacitors. [lie capacitors are tied together by a string RAYBORRI. l1 fLIy_ Rot SoulrD~r taU * arid DONALD DF.L
of F1"te. allowinig tile connection strength to Ibe umnotonically varied bty BALZO. .t2.-nodaI amplir..de matched ft-lut prncpnsatig
movinig charge between titetn. Our currentt designs have 7 bit* of ana- for acoustic signals received by a vertical array of

log depth of both polarities. The chips have about 103 connections and hydrophones is used to determine the effects of

can easily he cascaded to make larger nietwork. The available compitta- s patiall y correlated and utacorrelated noise fields onl
Lioal ped i dmintedbyi/oba~dwdtl o th hst ontoler.We pressure and model, amplitude amitcL-d filld processors.
tioalsped s dmiate b i/ bndwdt ofth hot ontoler.We Various amounts of wihite isotroptc noise mild spatially

will discuss use of such chips anti their limtitations. correlated rinisa as calculatted bv a normal mo-le tloitt

model Are combined with tile field due to A submerged
acoustic source to produce simulated cross spectral

14754 matrices. A phione-to-mode spae mapping is then used to

015 3 8perifi .Lea for a ilospr SysateMj!ith Anhar- obtain the corresponding cross amplitude correlationl
i matrices. both conventiotial and maximum likelihood

tl'Ycltifty. .M.S. Wartak. C.Y. Fong, liepartivntt of processing are used. Results show that spatially
Physics, University of California, Davis.-- We used the uncorrelated noise degrades modal amplitude processors
model Hamniltonian more tihan spatially correlated noise.

=N - 'bbi+a(4 + t+ *&Supported In part by ONR/NORnA Conitract N000)14-87-K- 6 0 0
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to studly tile thermodynamic prope~rties of the one- 0 11.1 &Eevj!..f flcryaleE Acoustic IPronaClWL~~lkIZ
dimensional boson system with on-site antharntionicity, r~fiszn l'sii -'l-aeIt p-evedn uualaiw
and witlh a much smaller than Il. For the calculatioet J OSEPIl I . MI Itl'IIIIY, U lxu l-e
of partition function we have used tile path-integral LA 70148; STANLEY A. CIIIN-IIING. NjjvjJ.)crjIC1
method. The Dyson equation is solved in the nearest- al eeonetAtyy
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ABSTRACT

Previously it has been shown that deformations of towed arrays from a straight line shape can

produce significant distortions in beam patterns and errors in bearing estimation if the beamforming

assumes linearity, and that a deformed array helps to remove left-right ambiguities in the beam

patterns, provided the shape is known. In this work these two effects are studied for undamped

and damped sinusoidally deformed arrays with small deformation amplitudes. By use of fixed arc

length separations along the array, the phone (x,y) coordinates are determined numerically. The

error in assuming equal x spacing is shown. The complex pressure fields are modeled using

BEAMSTATPAK of Collier. Then beamnforming is carried out (1) with the known array

configuration, and (2) assuming that the array is linear, and array responses are shown for each.

Degradations resulting from assuming linearity and the ability to remove left-right ambiguities are

discussed in terms of reduced gain, angular resolution, and bearing errors. Performance is

reported as a function of deformation, s/l, from 0.0 to 0.3. True peak-ambiguous peak signal gain

differences range to 9 dB for sources at broadside and to just over 2.5 dB for arrivals near endfire.

Shape-unknown degradation ranges to 7 dB at broadside but is less than 1 dB near endfire.

* Present address: Department of Mathematics, University of Colorado, Boulder, CO 80309.

I Also at Department of Physics and Geophysical Research Laboratory, University of New

Orleans, New Orleans, LA 70148.



INTRODUCTION

Hinich and Rule,1 Hodgkiss, 2 Bouvet,3 Ginzkey,4 and Butler5 have shown that deformations
from a straight line shape in the horizontal plane of towed arrays can produce significant distortions
in array response patterns and errors in bearing estimation if the beamformer assumes linearity.
Hinich and Rule' use approximate undamped and damped sinusoidal shapes and report the case of
three and one half cycles of the sinusoid. For the damped case, the damping is such that the
deformation increases as one moves away from the towing platform. Hodgkiss2 employs a single
circular arc beginning and ending at a node on the nominal array axis. He discusses errors in
passive ranging as well as those of bearing estimation. Bouvet3 develops a model for large
random array variations with fixed intersensor separations (non- elastic array). He applies the
model to an array in the shape of a circular arc. A also gives a helpful brief review of related
literature. Ginzkey 4 studies the effects of small two-dimensional random position errors. Butler s

uses a sinusoidal deformation model which assumes equal x spacing of the phones.
In this work the performance of arrays with mainly small deformations in the horizontal plane

into shapes which are commonly observed to occur in practice is examined. The model developed
is capable of treating large deformations as well. The physical basis for the undamped or damped
sinusoidal shape model derives from a harmonically driven damped oscillator. The small steering
corrections of the towing platform provide the driving force. The attachment point of the neutrally
buoyant horizontal array is the origin for this model and it is approximated to be a fixed node.
Because it serves as a useful point of reference, the name tow point will be used for this node.
Since the acoustically active part of the towed array is generally attached to the towing cable by a
vibration isolation module (VI), the model does not place the first hydrophone at the tow point
but locates it such as to allow for the VIM. The model permits any realistic whole or fractional
number of cycles, amplitude, and damping factor for the array. A drogue is assumed to be
attached to the aft end of the array and thus the damping in this model decreases the deformation as
one moves away from the tow point, in contrast to the model of Hinich and Rule.1 The reader is
referred to the works of Lee,6 Ketchman,7 and Brandenburg8 for a more detailed discussion of

array deformation models.
To approximate a sinusoidal shape, Hinich and Rule' use straight line segments between

hydrophones. To calculate the locations of hydrophones for the sinusoidal models without
approximation, however, it is necessary to fix the hydrophone spacing along the array curve for

S S.

the determination of the x and y (horizontal plane) coordinates. This model an elastic array with
varying intersensor separations, overcoming the limitation discussed by Bouvet.3 Figure I shows

a sample half cycle sine deformation and the x and y coordinates for the 75th of 128 phones. The
vertical variable z is assumed zero for this study. The method for determining the coordinates
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involves the numerical evaluation of the arclength integral. In the limit of small sinusoid

amplitudes, the hydrophones may be assumed to have equally spaced x locations, greatly

simplifying the calculation. A summary of the error in this approximation versus amplitude is

given. For the present work, only the arclength integral method is used, and neither the Butler

assumption of equally spaced x locations nor the Hinich and Rule assumption of straight line

segments between phones is employed.

All acoustic field modeling and beamforming for this study are performed using

BEAMSTATPAK, a package constructed by Collier.9 The package generates model cross spectral

matrices for arbitrary hydrophone locations in three dimensions. Although several beaxnforming

options are available in BEAMSTAPAK, only conventional beamforming is chosen for all

comparisons discussed below.

DETERMINATION OF HYDROPHONE X-Y LOCATION

The natural dimensions for scaling position variables and other length measures in the study of

the deformation of equally spaced hydrophone arrays are the array element spacing, d, and the

design wavelength, X = 2d. Length variables can easily be converted to meters once the

wavelength is specified, e.g., for a design frequency of 1000Hz and a sound speed of 1500m/s,
X = 1.5m and d = 0.75m. We assume that the forward VIM has an arclength of 6d, that the VIM

is followed by 128 hydrophones, and that the active array is followed by a drogue for stability.

The first hydrophone is at an arclength d/2 from the point where the VIM connects to the active
array. Therefore the first sensor lies at an arclength of 6.5d along the array from the tow point

origin. Each succeeding sensor is separated by an arclength d along the curve from the previous

one. In Fig. 1 the coordinates are in units of the phone spacing for a half cycle deformed array. A

deformation amplitude of 10d is chosen for the figure to render more apparent the details of the

shape, although this deformation is much larger than those tested in this work.

We then state the problem as follows. Assume that the towed array takes the shape of an

undamped or damped sinusoid. Given a specific number of cycles, the undamped amplitude, and

the amount of damping, determine the (x,y) coordinate location of each phone. An equation for the

array shape can be written aq:

y(x)=A e-axsin (X) (1)
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where the undamped amplitude, A, and the amount of damping, a, are specified. The third

parameter, w, although fixed by the number of cycles, is not known initially. It is to be

determined before the coordinates are calculated.

Consider an undamped sine curve of p cycles. Let L denote the total array length, which is

(N + 5.5) d if there are N phones and the VIM is 6d. Then the arclength between two adjacent

nodes for an undamped array is L2p. The arclength integral is given by

1 + A2 q2 cos 2 qx] 1 12 dx, (2)
0

where q = n/w and u and w are to be determined. As an initial guess, we choose u = L,2p and w

= u in expression (2). Using a numerical integration routine, we evaluate, the arclength integral.

The calculated arclength is then compared to the known (desired) arclength to the first node, and u

is adjusted successively, with w = u, until the difference between the calculated and the known

arclength, L/2p, is less than a specified tolerance.

In the damped case, the equal spacing of the zero-crossings (or nodes) is preserved, but the

army length between any two adjacent nodes is no longer a constant. The arclength integral is

given by

[1 + A2e 2ax(a 2 sin2qx - 2aq sin qx cos qx + q2 COS 2 qx)]"/ 2 dx. (3)

0

In this case, the upper limit of the arclength integral (i.e., the unknown value u) is chosen to be the

x-coordinate of the last phone. Then the known arclength is the total array length. Initially u is

taken to be L and w = u/2p. The arclength expression (3) is evaluated and u is adjusted, with

w = u/2p, until the integral is close enough to L

The x-coordinate of each phone is found in a similar fashion except that w is now determined

and u gives the phone x coordinate. The integration is initially from the tow point to the first
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phone, or generally from the last known phone location to the adjacent unknown location. The

corresponding y-coordinates are easily calculated from Eq. (1).
If instead one assumes that the x-coordinates are equally spaced with spacing d, the numerical

integration could be avoided. For sine curves with small amplitudes, this assumption may

introduce only small errors. But the magnitude of the error grows with increasing phone number

and increasing array deformation amplitudes. The assumption of this equal spacing always shifts

the x-coordinates in a positive direction, making the array appear longer than it actually is, and the

accumulated error increases more rapidly when the tangent line to the sine curve is steeper. Figure

2 illustates the absolute value of the error in the x coordinate of each phone as a function of phone

number for arrays with one half cycle distortion of various deformation amplitudes. The

cumulative effect of the equal spacing assumption is evident, especially for the larger array
amplitudes. The deviations of the true x positions from equal x spacing do not become larger than

0. Id (0.05), however, until the deformation of the array is greater than 2.Od for a half cycle sine

array of 128 phones. Differentiation of Eq. (1) shows that the error in y is less in magnitude than

the x error.

EXAMPLES OF BEAMFORMING IN PLACE AND AS IF LINEAR

Hodgkiss 2 investigates plane wave beamforming for various source locations and increasing

circular arc array bows. His results are given as array response plots for a beamformer containing

the actual phone locations and corresponding plots for a beamformer which assumes that the

element locations are linear. He does not consider left-right ambiguity removal and his array

response patterns go over only 180". Similar studies are conducted here for arrays having

undamped and damped sinusoidal geometries, with the addition of an examination of left-right

ambiguity removal and the calculation of performance curves. Figure 3 illustrates the various array

geometries considered in this study: a) a linear array for reference; b) an undamped half-cycle

deformation with amplitude of 2.13 phone spacings; c) an undamped full cycle deformation with

amplitude of 1.47 phone spacings; d) an undamped cycle and a half deformation with amplitude of

0.87 phone spacings; e) a damped half cycle deformation with maximum amplitude of 1.55 phone

spacings (A = 2.13d and a = 0.0069); and f) a more highly damped half cycle deformation with
maximum amplitude of 0.95 phone spacings (A = 2.13 - and a = 0.020). These amplitude and

damping factor values were chosen to produce a value for the undamped cases of 0.3 in the array
shape statistic, a/,, with a the rms shape distortion as measured from a best fitting straight line,

and values of 0.2 and 0.1, respectively, for the damped cases. The figure shows the first and last

phones and every eighth phone. The first phone is not at zero because of the VIM.
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The source azimuths considered in this study are 90", 45', and 10* from endfire (broadside =

90"), all at the design frequency and all initially in the horizontal plane. The issue of out-of-plane
arrivals is briefly discussed later, and these arrivals are shown to produce essentially the same
results as the in-plane arrivals. Figure 4 illustrates the array response patterns of these sources for
a linear array over the ful 360" azimuthal sector. Note the standard results of beam broadening
away from broadside and the occurance of grating lobes as the signal approaches endfire. Figures
5-7 contain array response patterns for sinusoidally deformed arrays. In each of the latter cases,
beamforming is done with (1) the actual phone locations known and (2) with the incorrect
assumption that the array geometry is linear. The responses shown in Fig. 4 are included so that
the deformed array responses may be compared. Beam powers for all figures are referenced to
zero dB for the linear array response maximum at a given source direction. None of the responses

is given below -30 dB.
In Fig.5, the response for the array shown in Fig. 3b, a half cycle sine curve with A = 2.13d,

a;X = 0.3, is given for sources at (a) and (b) 90", (c) and (d) 45, and (e) and (f) 10. In Figs.
5(a), (c), and (e) the array shape is assumed known and the actual element locations are used in the
beamnforming. Because the array has almost .he same total aperture as the linear array, the forward
(true) peak is almost identical to the linear response. The ambiguous (false) peak, however, does
not have the same phase delays for the deformed array as the forward peak does, so it is
significantly changed. It has less signal gain, is broader, and is broken up to several local maxima
for the sources at 90' and 45'. While the false peak at -10" (corresponding to a source at 10') is
somewhat reduced and broadened, it is not broken up in the same way as the others. This is due to
two factors: a) the array has less resolution (wider beams) near endfire than at broadside and b) a
plane wave arriving in a direction close to endfire sees a smaller array deformation than one
arriving at broadside. If, as is generally the case, the array shape is unknown and beamforming is
done assuming the shape to be linear, the responses of Figs. 5(b), (d), and (f) result. The signal
gain is reduced, especially at 90' and 45, where the response peaks are also split. At 10', the
reduction in gain is small and the main peak shape is close to that of the linear response, again
because the deformation looks smaller and the beams are wider near endfire.

For the remaining array shapes only the array response to a broadside arrival is shown. The
second and third undamped examples are in Fig.6, while the damped cases are illustrated in Fig.7.
For the undamped arrays, cIX = 0.3, the same value as the half cycle undamped array of Fig. 5.
For the one cycle army, a distortion amplitude, A, of 1.47d gives this a/X value, while for the
cycle and a half array, A = 0.87d. The general behavior of the responses of the single cycle array,
Figs. 6(a) and (b), and the one and one half cycle array, Figs. 6(c) and (d), is similar to that of the
broadside responses of the half cycle array. For both the Fig.6 cases, however, the false peak in
the shape-known responses and the true and false peaks in the shape-unknown responses are
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considerably more broken with local maxima and minima than the half cycle case. This is because

the deformed array shapes themselves have more structure. In effect, the deformed array is

composed of several nearly-straight subsections, each of which has its own natural direction.

Thus the incident plane wave is resolved into multiple directions.

Since the damped arrays of Fig.7 have smaller values of a/X than the undamped cases, the

responses are closer to the linear array response at broadside than the undamped responses of Figs.

5 and 6. The responses in Figs. 7 (a) and (b) correspond to an array with a/X = 0.2 (A = 2.13d,

a = 0.0069) and in Figs. 7 (c) and (d) to an array with a/X = 0.1 (A=2.13d, a = 0.020).

The irregular nature of the broken peaks in Figs. 5 through 7 leads to instabilities in such

performance measures as peak height, bearing, and beamwidth because of the difficulty in defining

these quantities. The splitting of the true peak when the beamforming is done assuming a linear

array leads to bearing errors resulting from choosing the largest sub-peak. This suggests that for

arrays which have a large enough aperture to resolve this splitting, it is probably better to find the

centroid of the overall peak, or to fit a smooth analytic shape to it, or to use some other alternative

to choosing the value of highest signal gain for the determination of source direction. Fitting a

smooth analytic shepe to the peaks also suggests itself as an approach to dealing with the

instabilities in the peak height and beamwidth measures. Nevertheless, in order to have a

straightforward measure of performance, none of these procedures are adopted for this study.

They may prove crucial, however, for obtaining the best bearing estimate when doing shape-

unknown beamforming.

We note that the shape-unknown responses are all symmetric about 0* in Figs. 5 - 7. To

understand this result, consider the phases at the hydrophones for arrival directions of plus and

minus 0. For the deformed arrays, arrivals from +0 will have, at each phone, a shifted phase A+

from the phase value at a straight line array and arrivals from -0 will have a different shifted phase

A_. These phases will be correctly incorporated into the cross - spectral matrix. The steering
vectors for shape - known beamforming correspond to the actual element locations. For shape -

unknown beamforming, the same cross - spectral matrix is used, since the acoustic fields are taken

to be unchanged. The steering vectors, however, are those corresponding to a linear array. The

phase changes in going to these steering vectors frcm the correct ones are opposite to those in the

cross spectral matrix mentioned above, and thus the plus and minus arrival directions have the

same (incorrect) array response.

Hodgkiss2 shows that the degradations in the beamforming process, with the incorrect

assumption of linearity, increase as the array bow increases for circular arc shapes. The following

sections contain a systematic study of this degradation in terms of loss in signal gain and an

examination of bearing shifts and beamwidth broadening for sinusoidally deformed arrays. The

power losses are graphed versus a/X, where a is the rms deviation of the sinusoidal array
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elements from the best fitting straight line. The left-right ambiguity removal is also investigated in
terms of the power difference between the true and false peaks and the beamwidth broadening of
the false peak, both of which are shown as functions of a/X.

LEFT-RIGHT AMBIGUITY RESOLUTION AND LINEAR DEGRADATION

Probably the most obvious change in the array response patterns as they describe a deformed
array is the possible power loss in both the real and ambiguous signal peaks. This loss can be
studied from two different perspectives.

The first considers the "ability" of a given array shape to resolve left-right ambiguities. Both
Hinich and Rule1 and Hodgkiss2 discuss this advantage of a deformed array over a linear array.
Figure 8 illustrates the power loss in the "secondary," or ambiguous, peak. This loss is plotted vs
a/X for various array damped and undamped shapes (half cycles, full cycles, one and a half

cycles) and for various source azimuths. The azimuths selected are 10", 30", 45', 60", and 90" for
the half cycle cases and 10" and 90 for the others. Figure 8 summarizes the results for all shapes
and all azimath angles considered. In Fig. 8 (a) the half cycle damped array performance is given
for left-right ambiguity removal in terms of false peak-true peak power difference in dB versus
a/2. For the damped array a/X may be varied by changing the amplitude or the damping factor.

We have chosen to vary the damping for this performance evaluation. In general, for this and all
cases in Fig. 8, the ability to discriminate an ambiguous peak from a true peak by power difference

is greatest for sources at broadside and decreases to be least for sources close to endfire. This
trend is expected because the left-right phase difference is smaller at endfire. Deviations from this
observation are slight in Fig. 8, and occur because of the instabilities in the broken false peak
maxima discussed earlier. In Figs. 8 (b), (c), and (d) the left-right ambiguity removal performance

for the undamped half cycle, cycle, and cycle and a half are summarized. At broadside, for a given
a/X, the undamped half and full cycles are better (i.e., have greater power difference) at resolving
left-right ambiguity than a one and a half cycle array. An examination of Figs. 5(a) and 6(a) and
(c), however, shows that for /AI = 0.3, this advantage in resolution is due mainly to two thin

spikes in a highly broken one and a half cycle ambiguous peak. If an average or curve fit peak is
used instead of the tallest subpeak to measure ambiguity removal this distinction in the difference
performance measure is not expected to be as large.

The second perspective considers the loss in array signal gain which results from assuming that
the array shape is linear. Figure 9 shows the power loss in the source peaks, relative to the linear
peak power, plotted versus a/X, for the same array shapes and azimuthal source directions

considered in Fig. 8. For all cases the degradation is greatest for broadside arrivals, decreasing, in

general, as the angle decreases to become least at 10". The exceptions, as before, are due to the
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irregular qualities of the degraded peaks. As expected, the degradation becomes worse with

increasing array deformations for all shapes. For a given source direction the degradations are

similar for almost all combinations considered, except for differences in the 90" and 60" results.

Only the half cycle undamped and the full cycle performance for sources at broadside track fairly
closely for these arrival angles among the cases examined. The performance at a/% = 0.3,

however, is identical for all arrival angles for the damped and undamped half cycles because the
two arrays are the same. (We note that this is true in Fig. 8 as well.) The damped array has a/X.
= 0.3 when the damping is zero. To study larger values of a/X for the damped array we would

have had to start with a larger initial amplitude A, or to have chosen to vary A instead of varying

the damping factor, a.

One utilization for performance summaries, such as those shown in Fig. 9, is to determine, as a
function of a/, if the array element locations need be known or if the beamforming process can

assume a linear array. As an example, given a one cycle deformed array and broadside arrivals, if

no more than a 5 dB loss in signal gain is acceptable, then array element locations are needed when

a/ > 0.2. If no more than - 3 dB loss is tolerable, then the upper limit for assuming linearity is

a/X = 0.13. Note that these limits are a function of array shape and that for broadside arrivals

they are higher for one and one half cycle arrays and lower for damped and undamped half cycle

arrays.

In all of the above cases, the sources are in the plane of the array. The variation of the results

for sources above or below the plane of the array is also investigated. To reduce the number of
cases, a fixed value of a/X = 0.3 is chosen. Arrays of one half cycle, a full cycle, and one and a

half cycles are considered. Source cases include azimuthal angles of 10" and 90" from endfire,

with an elevation angle of 10". These results are not plotted because, as anticipated, the dB losses

are only slightly larger than those for sources in the horizontal plane. In all three situations, any

observed change in dB loss is of the order 1 x 10.4. (The largest observed change is 3 x 10-4 dB,

for a full cycle, beamformed as if linear.) These effects should be more pronounced for larger
values of /X, i.e., sinusoidal arrays of larger amplitudes, and also for larger elevation angles.

3 dB WIDTHS

Other degradations which can arise in the beamforning process for deformed arrays are an

increase in the source peak beamwidth and raised sidelobes. Beamforrring with the known phone

locations, however, gives source peaks which correspond closely, in terms of 3 dB width, to those

source peaks which a linear array would produce for the small deformations considered here. For

the ambiguous peaks, on the other hand, the broadening is large and the ratio of the 3 dB width of

the false peak to that of the true peak may be taken as another measure of left-right ambiguity

9
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discrimination. In Fig. 10, we give this ratio, as a function of a/3X, for all three undamped cases

with broadside arrivals and for the undamped half cycle with a 10' arrival. For broadside
incidence, the ambiguous peak-true peak width ratio increases rapidly with increasing a/X to a

value of 30 to 35 at ai/X = 0.3 for all three shapes. It is possible that at small deformations this

ratio may offer improved left-right discrimination in contrast to the difference in signal gain for

sources at broadside in some applications. For the half cycle and a source at 10, however, the
beamwidth ratio is almost constant at one, versus aIX, and so would not serve as a useful

discriminant. The dB widths of the broken ambiguous peaks have been determined as accurately

as possible without recourse to curve fitting and may be subject to small errors.
One can also consider the source peak width for shape - unknown beamforming as a measure of

performance degradation by comparing it to the beamwidth for the source peak in the

corresponding linear array response. Although we do not show these results, significant source

peak broadening may be observed in the shape - unknown response patterns of Figs. 5 through 7.
It should be noted, however, that the shape - unknown source peak widths are smaller for all these

examples than the width of the ambiguous peak in the associated shape - known response.

Therefore, in this limited range of calculations, the ratios shown in Fig. 10 are larger than would

be found on a performance graph for shape - unknown source peak width ratios. This result is not

surprising, since the phase errors for the ambiguous peak are in a sense twice those of shape

unknown beamforming. Performance curves for source peak broadening as a result of assuming

linearity serve as a measure, which, along with the loss in array signal gain, can be used to

determine the largest acceptable value of aIX for shape - unknown beamforming.

PEAK SHITS

For small values of ar/X, incorrectly assuming a linear array may result in only small dB

losses. In these instances, one may choose to accept this degradation. As Hinich and Rule1 and

Hodgkiss 2 point out, however, there can still be a bearing error of V to 2". This bearing error

arises from the splitting of the source peak into two or more subpeaks, the largest of which is not

centered with respect to the peak spread. For the deformed array responses shown in this paper,
only damped half cycle responses are included for deformations with a/X less than 0.3. In Fig. 7
(b) c/X = 0.1 and the peak is already asymmetrical, although not highly broken. For a/ = 0.2

the response shown in Fig. 7 (d) is split into two parts with a minimum between them at the correct
source bearing. The broadside ciX = 0.3 peaks, shown for various array shapes in Figs. 5 (b)
and 6 (b) and (d), exhibit behavior ranging from a simple splitting into two parts to a highly broken
and irregular shape. Thus it is understandable that even relatively small array deformations lead to

bearing errors as large as approximately half the source peak width in shape - unknown
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beamforming. Hinicht 0 and Bouvet3 (and references cited therein) discuss techniques for

estimating the correct bearing.

CONCLUSIONS

We have shown that it is not difficult to build an algorithm for an exact (to within quantization
and round-off error) model of damped sinusoidally deformed arrays of any whole or fractional
number of cycles. Even though the model is not needed for very small array deformations, which
may simply be calculated using Eq. (1), it is inexpensive enough to use for all deformatiion.

We have also investigated full 360" array responses for a variety of damped and undamped
sinusoidally deformed 128 element arrays, including correct responses and those resulting from an
incorrect assumption of array linearity. Undamped and damped 1/2 cycle arrays and undamped 1
cycle and 1 and 1/2 cycle arrays have been included. By examining various properties of these
response patterns ds a function of a/X, for various source directions, we have been able to

summarize their performances both in the shape-known and shape-unknown applications.
In shape-known beamforming, the ability to discriminate true peaks from false peaks increases, as
expected, as array deformation increases. Differences in array signal gain for these two peaks
range up to 9 dB for a/X = 0.3 when the source is at broadside. For arrivals near enifire,
however, the largest difference is just over 2.5 dB. In shape-unknown beamforming, the
degradation in array signal gain ranges up to 7 dB at broadside but remains less than 1 dB near

endfire.
We have also examined the 3 dB widths for the ambiguous peaks compared to the true peaks in

shape-known beamforming. The ratio of these widths increases rapidly with aIX, reaching a
value of 35 at a/X = 0.3 for the one cycle array at broadside. The shape-unknown peak

broadening is also significant, but less than that of the ambiguous peak, as we have explained.
Near endfire the broadening is negligible for both types of beamforming for the domain of a/I
considered.

Straightforward measures of array signal gain changes and peak widths are difficult to apply
due to the broken nature of the peaks with the resolution capability of 128 phones. This problem
also leads to errors of bearing estimation. We have suggested various techniques for dealing with
this problem.

The model admits of ready extension to two and three dimensional array geometries, and it is
anticipated that these will be examined in the future.
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Figure Captions

Fig. 1. The coordinates of a deformed array which is a half cycle of a sine curve. The array
consists of 128 hydrophones and a VIM. The known arclength between two phones is
used to calculate the (x,y) coordinates of each phone. Coordinates are given in units of d,
the phone spacing. The amplitude of the deformation for this case is 1 Od. The position of

the 75th phone is indicated. Note that different scales are used for the ordinate and the
abscissa.

Fig. 2. The absolute error in the x coordinate of the phones resulting from the assumption of equal

spacing d along the x axis. The error is given in terms of the phone spacing, d, as a
function of phone number. The array shape is assumed to be an undamped half cycle sine,
including a VIM, with the indicated total array deformation amplitude for each error curve.
The deformation amplitudes are given as multiples of d and range from 0.5d to 4.0d.

Fig. 3. Representative array geometries. The first and last phones and every eighth phone are

shown. Array dimensions are given in units of phone spacings. (a) Linear array; (b)
undamped half cycle, amplitude 2.13d; (c) undamped full cycle, amplitude 1.47d; (d)
undamped cycle and a half, amplitude 0.87d; (e) damped half cycle, maximum amplitude
1.55 at x = 57.5d; (f) damped half cycle, maximum amplitude 0.95d at x = 42.6d.

Fig. 4. Linear array responses for sources at (a) 90, (b) 45, and (c) 10" from endfire.

Fig. 5. Undamped half cycle (Fig. 3b) deformed array response. Amplitude of deformation is
2.13d and a/I is 0.3. Responses (a), (c), and (e) are obtained when the correct phone

locations are used, and (b), (d), and (f) result when the arrays are incorrectly assumed to be
linear. Source is at (a) and (b) 90, (c) and (d) 45, and (e) and (f) 10.

Fig. 6. Undamped one cycle, (a) and (b), and one and one half cycle, (c) and (d), deformed array

responses for a source at 90. Deformation amplitude for one cycle is 1.47d and for one
and one half cycles is 0.87d. aIX for both cases is 0.3. (a) and (c) are the responses when

the correct phone locations are used, and (b) and (d) are those corresponding to a linear

array shape assumption. Array shapes are shown in Figs. 3(c) and (d).

Fig. 7. Damped half cycle deformed array response for a source at 90. (a) and (b) are for a shape
determined by A = 2.13d, a = 0.0069, and aX = 0.2 (Fig. 3e), while (c) and (d) are for an
array with A = 2.13d, a = 0.020, and a/X = 0.1 (Fig. 3f). The array responses for the
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known shape appear in (a) and (c) while the shape unknown (linear assumption) responses
are in (b) and (d).

Fig. 8. Performance curves for peak height difference in left-right ambiguity removal of deformed

arrays with known element locations. Amount by which left (ambiguous) peak is down
from right (true) peak is given in dB versus (A for sources at 10" (C), 30* (0), 45" (A),

60" (+), and 90 (X). Performance in (a) is for damped half cycle deformed arrays with A
= 2.13d and selected values of /X achieved by varying a. In (b), (c), and (d), a/X is

adjusted by varying A for one half cycle, one cycle, and one and one half cycle deformed

arrays, respectively.

Fig. 9. Performance curves of peak height degradation for deformed arrays assumed to be linear.

Loss in array signal gain of deformed arrays is given as the power loss in the source peaks,
in dB, relative to the corresponding peaks for a linear array, versus a/X for sources at 10"
(0), 30" (0), 45" (A), 60" (+), and 90" (X). Performance in (a) is for damped half cycle
deformed arrays with A = 2.13d and selected values of aX achieved by varying a. In (b),
(c), and (d), aIX is adjusted by varying A for one hialf cycle, one cycle, and one and one

half cycle deformed arrays, respectively.

Fig. 10. Left - right ambiguity beamwidth discrimination. The beamwidth ratio, defined as the
false peak 3 dB width over the true peak 3 dB width, for deformed arrays beamformed

with array element locations known, versus WkX Results for a one - half cycle array

(D), a full cycle array (A), and a one and a half cycle array (X) for sources at broadside.
Results for a half cycle array (0), for a source at 10'.
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Nonorthogonality of measured normal modes in shallow water
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ABSTRACT

Several investigators have demonstrated that measured mode

nonorthogonality, among other factors, can make processing of shallow

water vertical array data by use of modal compositions an improvement

over processing in the space of the original pressure measurements.

The potential for improvement using this technique is greatest when the

nonorthogonality of the measured modes is largest, although the

success of the transformation to modal amplitude space is governed by

the condition of the transformation matrix. We have cast the Helmholtz

equation for the Pekeris model in dimensionless form and studied the

amount by which the measured normal modes fail to be orthogonal for a

variety of ocean bottoms, array lengths and discretizations, and array

positions. Environments are selected to reflect sediment types

characteristic of the continental shelf using an inverse linear

relationship which we show exists between water-to-bottom density and

velocity ratios for the data of Hamilton. The nonorthogonality is

found to be substantial and to exceed previous estimates for some cases

even when the entire water column is spanned by a dense array. We have

found that matched field processing using modal composition is likely

to offer the most improvement over conventional matched field

processsing for water depths and frequencies at and just above modal

onsets, for sound speed ratios close to one, and for arrays which span



only a fraction of the water column. For full water column span

discrete arrays with one more phone than mode, there is a zone of

orthogonality covering one third to one half the possible depth and

frequency combinations for all cases studied.

INTRODUCTION

Propagation of sound in shallow water is commonly

analyzed in terms of normal modes, i.e., collective oscillations of the

entire body. It is not always remembered that the oscillating body is

composed of the water column and the sediment beneath it, not just of

the water column alone. The importance of these oscillations in sound

propagation in the bottom is more easily understood for those normal

modes whose depth eigenvalu-s form a continuum since these modes

correspond to pairs of travelling waves which are largely absorbed and

only partially reflected when they strike and penetrate the bottom, and

these bottom oscillations correspond to the energy lost to the bottom.

The importance of the bottom oscillations for sound propagated by

trapped normal modes is less easily perceived since these modes are

totally reflected from the bottom and therefore largely constitute the

pressure field in the water column at appreciable distances from the

source. Nonetheless, the bottom is oscillating and this oscillation is

important in the sense that the energy in the bottom prevents even the

trapped normal modes from being orthogonal on the water column, a fact

that was recognizeo by Pekeris in his seminal study of the transmission

of sound in shallow water.1 Since this early work numerous

investigators have detected, separated, and measured normal modes.
2-7

Despite the emphasis that Pekeris gave to the fact that the
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normal modes were orthogonal only when both the water column and bottom

were considered, mode filtering experiments in the past frequently

assumed that the nonorthogonality was not important and approximated

the depth eigenfunctions as orthogonal on the water column alone.

Estimates of the error induced by this assumption have occasionally

been made. Ferris2 has measured the mode nonorthogonality under

unspecified conditions and found it to range from -10 dB to -30 dB of

the measure mode. Clay et al.8  have termed this error "mode leakage"

and found it to vary from 3 to 10 percent using a nine-element vertical

array in a water tank with a sand bottom overlying concrete when three

normal modes were present. An important exception to the usual

assumption of orthogonality is found in the experiments and analysis of

Tindle et al. 6  These investigators propose forming a matrix of the

sampled depth eigenfunctions and computing its inverse when the number

of phones and modes are equal. When there are more phones than modes,

they form a square matrix by multiplying by its transpose to extract an

inverse of the resulting depth eigenfunction matrix. The importance of

this inverse has been recognized by recent investigators who term it a

mode filtering processor and use it to map the pressures measured on

the hydrophones into a space which describes modal compostions for the

purpose of estimating the range and depth of sources in waveguides by

matched field processing.5 ,9  In this paper we review the connection

between nonorthogonality and modal composition space processing and

present a uniform and systematic approach to understanding the degree

of nonorthogonality of the measured modes and, therefore, some of the

conditions under which it is important to use this type of processing.

3



I. THEORY

A. Nonorthogonality and its relation to matched field processing

In the following we treat the assumption of

orthogonality, not the approximations of the environment and the

solution of the Helmholtz equation, each of which is an important topic

treated elsewhere. Consider a vertical array of N hydrophones when M

trapped modes are present, such that M < N. Let the depth

eigenfunction for the mth mode be Um(z) so that the complex pressure

produced by the mth mode at the nth hydrophone is

Pm(Zn) - Um(Zn) bm(ro,zo) (1)

where ro and zo are the range and depth of the source, bm is a complex

multiplicative factor for the mth mode at this source range and depth,

and zn is the depth of the nth hydrophone. The form of bm may be found

in standard treatments of solutions of the Helmholtz equation.1 0 1 1

To determine the modal composition of the measured complex pressure

field, prior knowledge of the environment is used to calculate a

theoretical depth eigenfunction, Um(Z), from the Helmholtz equation by

means of any of several commonly used computer algorithms. The

measured pressure can then be projected onto the calculation of the

measured eigenfunction to give am(ro,zo), an approximation to

bm(rozo):

N
am(rozo) - n 1P(Zn) Um(zn) (2)

The integrity of this method is based on the

assumption that the pressure field can be expressed as a linear

4



combination of these environmentally determined, numerically

approximated eigenfunctions, and that they are orthogonal on the

interval sampled by the hydrophones so that the inner product sum is

N
Zmm, a n IiUm(Zn) Um,(Zn) - 6mm, (3)

The expansion may then be written as

M
P(Zn) - m iUm(Zn) am (4)

If the assumption of orthogonality applies for the

calculated discrete depth eigenfunctions, then the matrix Z, whose

entries are Zmm,, is an identity matrix, and

N M
am - nE iP(zn) Um(Zn) - mE_ mm, bm , - bm (5)

The H X M matrix Z is not ordinarily an identity

matrix, however, since measured fractional span discrete approximations

to the eigenfunctions are normally not orthogonal. Even so the modal

amplitudes bm can be extracted correctly by computing the inverse of Z,

since Z-1Z will still be an identity matrix. In this case we have

M
bm - E (z' 1 )mm, am#

m' -l

M N
- Z E (Z 1 )mm, P(Zn) Um,(Zn) (6)

m'-l n-I

and

M
P(Zn) - Z Um(Zn) bm (7)

Sm- 5



Tindle et al.6 appear to be the first to suggest

an approach to processing which does not rest on the assumption of

orthogonality. They define a matrix U whose mnth entry is the value of

the mth eigenfunction at the location of the nth hydrophone. Thus, the

columns of this matrix are vectors, each of which is composed of

samples taken from a depth eigenfunction sampled at the hydrophone

locations. This matrix defines a transformation from a vector space of

modal compositions to a vector space of measured complex pressures, as

in Eq. (7) above. Tindle et al.6 and subsequent investigators5'9 have

shown that, under certain conditions, there exist significant

advantages associated with using an inverse mapping to go from the

space of measured complex pressures to the space of modal compositions.

The problem with defining an inverse mapping is that the U matrix is

generally not square. The Moore-Penrose pseudoinverse 1 2 may be

calculated to accomplish the inverse mapping, however, and when N > M

it provides the theoretical best least-squares solution for the modal

composition. Hence, as in Eq. (6),

b - (UtU)-l Ut p , (8)

in which we have dropped summation notation in favor of the less

cumbersome matrix form and show the commonly used UU for the matrix Z,

where t represents the conjugate transpose.

The potential advantage of processing in modal

composition space can be seen by considering the conventional matched

field processor in the complex pressure space, <lpt(roZ o )p'(r,z)I2>,

with p(rozo) the measured or true field vector and p'(r,z) the

calculated field vector for a source at (r,z). If this processor is

6



represented in terms of modal composition vectors, we have
5'1 3

<Iptp,l 2> _ pt<p,plt>p

- bt Ut R U b , (9)

where R is the cross-spectral matrix of the complex pressures and

b(roz o ) is the vector of true modal amplitudes corresponding to the

noise-free measured field. As has been shown by Shang5 and Yang,9

matched field processing can be considerably improved when it is

performed in the space of modal compositions. This processing is

specified by <Ibt(rozo)b'(r,z)12>, with b'(r,z) the vector of modal

amplitudes for a source at (r,z). Writing the innermost product

explicitly in terms of the transformation from pressure space, this

becomes

<Ibtb, 12> _ <b t Z-1 Ut p, p't U Z "I b>

- bt Z -1 Ut R U Z -1 b (10)

The amount by which the processor in Eq. (10) differs from that

in Eq. (9) is governed by the deviation of Z-1 , and hence Z, from the

identity matrix. If, in fact, the measured eigenfunctions are

orthogonal so that Z is the identity matrix, the processors are

identical. The degree of advantage to be gained by proceeding to this

modal composition space processing, then, is determined at least in

part by the degree of nonorthogonality of the measured eigenfunctions.

It is known that the depth eigenfunctions will be orthogonal if they

are densely enough measured on the entire span of water plus bottom.

Because hydrophone arrays rarely extend below the waLer column and are

usually sparsely spaced, the amount of nonorthogonality among the

7



modes can vary greatly with environment and array configuration. It is

our purpose to investigate the behavior of the nonorthogonality in

shallow water for bottoms consisting of a variety of sediment types

and for dense and sparse arrays spanning part or all of the water

column. The above discussion does not consider the effects of noise or

nonlinear processing nor the condition number of the transformation,

which governs the degree to which modal compositions can be recovered.

B. Dimensionless Analysis for Normal Modes

We wish to demonstrate the amount of

nonorthogonality in the modes and its effect on the Z matrix by use of

a simple model, one that still permits the insertion of realistic

bottom velocities and densities, parameters whose contribution to

nonorthogonality we wish to investigate. To this end we have adopted

the Pekeris model I with constant velocities in the water column and in

the sediment and no shear in the bottom. The fraction of the

eigenfunction in the water column depends on the wavelengths of the

depth eigenfunctions (the mode wavelengths) in the water column, which

are determined for a given bottom type by the product of the linear

frequency of the source and the water depth divided by the speed of

sound in the water. This fraction, then, does not depend solely on the

depth of the water column nor the frequency of the source. Thus, for

our model, a water depth of 50 m and a source frequency of 100 Hz

produce the same nonorthogonality between modes for a given bottom type

as a water depth of 100 m and a source frequency of 50 Hz if the slight

difference in relative densities due to the depth difference is

ignored. Consequently, to present our results in a form that has the

8



greatest possible usefulness, we have defined dimensionless variables

by dividing the lengths in the problem by (A/2w), where A is the

wavelength of the sound in water and cl/w - A/2w. The angular

frequency of the source is w, and cI is the speed of sound in the water

column. Thus, we make the following definitions:

- wz/c, is the dimensionless distance below the surface, and

a- H/cl is the dimenstonless depth of the water column.

Using the standard separation for the homogeneous Helmholtz

equation with the assumption of cylindrical symmetry,14 the equation

for the depth eigenfunctions is

d2U/dz2 + (W2/c2 - kr2)U - d2Z/dz2 + kz 2Z - 0 (11)

%here kr, the separation constant, is the horizontal component of the

wave vector, kz is the vertical component, and c is the speed of sound

in the medium. We use the subscript 1 to denote parameters in the

water column and 2 for those in the bottom. In terms of the newly-

defined dimensionless variables, the differential equation becomes,

after factoring out w2/c2

d2U/d 2 + (c2/ci2 - K2)U - 0 , (12)

with K - kr(c/w). For the two media this becomes

d2U/dC2 + ( -K 2)U - 0 < a

d2U/d 2 + (cr
2 - K2 )U - 0 > 13)

with cr - ci/c 2 , the relative velocity of sound in the two media.

Since we are interested in trapped modes, we desire solutions for which

Cr 2 < K2 < 1. Application of the usual boundary conditions leads to

9



discrete values of K and of k - (1 - K2)1/ 2 - (c/w)kz , which satisfy

the transcendental equation

tan km- - (Drkm)/[(l - cr2) km2]i/2 (14)

where Dr - D2/DI, the relative density of the two media (in the

opposite sense to cr). The depth eigenfunctions before normalization

and matching boundary conditions are given by

Um(O - sin kW 0 < <
(15)

Um( ) - exp(-[(l - Cr2) km 2]1/2 }  . > (

C. Measured normal mode nonorthogonality

As discussed previously, it was recognized by Pekeris that

the orthogonality of normal modes exists on the entire span of water

column plus bottom.1  This orthogonality applies for continuous

eigenfunctions defined on this span. It is therefore expected that

when only the water column, or part of the water column, is sampled

discretely by an array of hydrophones, the measured normal modes will

not be orthogonal. Since our intention is to study this phenomenon, we

next develop equations to calculate nonorthogonality in the Pekeris

model for given bottom types, array lengths and placements, and

distribution of hydrophones in the array.

Since the nonorthogonality may be due to any of the above

causes we suggest the following terminology to describe its sources.

For a dense array which spans the entire water column, the

nonorthogonality is due to neglecting the portion of the eigenfunction

in the sediment, and we use the name "water column span

nonorthogonality." If only a part of the water column is spanned with

10



a dense array, we refer to the effect as "fractional span

nonorthogonality." The overlap of differing eigenfunctions due to

approximating a dense array with a sampled array we refer to as

"discretization nonorthogonality," i.e., the replacement of the

integral with a Riemann sum. The usual measurement will contain

nonorthogonality due to more than one of these sources, and this work

contains studies when various combinations are present.

Since the measurements due to a dense array are adequately

approximated with a continuous model for the eigenfunctions, we begin

by calculating the nonorthogonality in the integral formulation. The

overlap of any two eigenfunctions on the water column is given by

a

Imn - J sin km. sin kn* d . (16)

0

It is important to normalize this overlap in calculating the

nonorthogonality. There is some arbitrariness in the choice of the

normalization. Since we are only interested in working in the water

column, we choose to normalize by the geometric mean of the areas under

the continuous eigenfunctions involved in the overlap integral. This

gives entries of one on the main diagonal of the Z matrix. It ignores

the fraction of energy which is in the bottom. Bottom abosrption also

affects the amount of each mode present, but transmission loss is not

included here. Our calculated nonorthogonalities indicate the size of

the off-diagonal elements relative to diagonal elements of equal size

because of the normalization used. Since in practice the diagonal

elements are not generally all equal, our results would have to be

scaled with the inverse of the geometric mean of the diagonal elements

11



calculated with normalized eigenfunctions to correspond to the energy

partitioning of the propagating modes. Our normalization corresponds

to that used by Clay et al.8 We then define the nonorthogonality

between the modes m and n as

Amn - imn/limmlnn] 1/2  (17)

The integral Imn has particularly simple form:

sin (km - kn)a sin(km + kn)a (18)
Irn- _ my n

2(m- kn) 2(km + kn)

and

Inn - a/2 - sin(2kna)/4kn (19)

For partial span nonorthogonality, we evaluate the integral

of Eq. (16) from a, to a 2 to obtain

sin (km - kn)02 sin(km + kn)a2Imn - 2(km _ _ _ +_(2
2 (k m - kn) 2(k. + kn)

(20)

sin (km - kn)oI sin(km + k)j m , n

2(km - kn) 2 (km + kn)

and

Inn - 02/2 sin(2 kna2 )/
4 kn

(21)
- al/2 + sin(2kn-l)/ 4kn

When the number of hydrophones is not dense and the

continuous model no longer suffices, we evaluate instead a sum over

hydrophones to determine the overlap:

N
Imn - E sin(kml) sin(kni) A~i (22)

i-l

where N is the number of phones.

12



With these expressions it is possible to investigate

in a systematic fashion the amount contributed to nonorthogonality by

all of the above factors. Since all of the assumptions depend on the

sound speeds and densities in the bottom, of which there are many

possible combinations, it is necessary to limit these variables to a

reasonable number while treating to the extent feasible commonly found

combinations in shallow water. We have found a method using the data

of Hamilton1 5 to accomplish this, and discuss it in the next section.

For the sound speed and density combinations selected, we then show the

water column span nonorthogonality as a function of a for all modal

combinations through six modes. We then examine for two bottom types

fractional span nonorthogonality as a function of a for dense arrays

which span the top, middle, and bottom half of the water column, as

well as a few other fractional spans. We show one case in which the

array size is held constant as a is varied. Next the discretization

nonorthogonality for full and partial water column span for a dense

array of 25 phones is presented. The sparse array cases range from the

number of hydrophones equal to the number of modes to twice the number

of modes for the largest a's included.

II. SOUND SPEEDS AND DENSITIES

Hamilton15 has studied density and compressional sound velocity

in common marine sediments. We wish to investigate possible relations

between the sound speeds and densities reported by Hamilton for the

purpose of selecting representative cases. To this end we have plotted

the relative density, Dr, defined by the ratio of the density in the

bottom to the density in the water versus the ratio of the sound speed

in water to that in the bottom, cr, in Fig. 1. Although this method of

13



defining sound speed and density ratios is chosen to reflect the way

the quantities appear in the Helmholtz equation, Eq. (13), these

definitions prove fruitful because the data of Hamilton then fall very

close to two straight lines, as shown in Fig. 1. Separate straight

lines have been fitted to (A) the data for the sands and silts without

clays, and (B) the data for the clays with sands and silts, using

weighted linear regression with the weights determined by the errors

given by Hamilton.15 The data for the clays were fit by the equation

Dr - - 4 .08 cr + 5.50 , (23)

and the data for the sands and silts by

Dr - - 2 .6 9 cr + 4.24 (24)

The absolute densities measured by Hamilton were divided by 1.02293,

the specific gravity of seawater at a depth of 50 m at standard

salinity, to produce the relative densities used in the plots. It

was necessary to fix a water density in order to proceed with the

calculations, and the density at 50 m was chosen as a reasonable

compromise over the continental shelf. Although in general

the relation of density to sound speed is expected to be complex,16 the

fact that the measurements of Hamilton are characterized by such a

simple relation implies that a significant part of the sediments may be

treated assuming a linear relation between the relative densities and

sound speeds. Several benefits accrue from this assumption. One

advantage is that a few density and sound speed combinations may be

chosen to span the sediments of interest. One might expect results

between these points to vary smoothly from one case to another because

of the linear relationship. The equations which describe the

propagation of normal modes can be reduced by one parameter by
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employing the relation between the density and the sound speed to

eliminate one of the variables. Finally, the measurements of Tindle et

al. 6,7 have shown that it can be difficult to make shipboard

determinations of densities, although sound speeds may be fdirly

accurately determined. If it is known that the sediment is among the

types characterized by Hamilton, these relations can possibly be used

to determine densities from measured sound speeds in the bottom more

accurately than they can be measured at sea. The laboratory

experiments of Tindle et al. 1 7'7 are done with a sand whose density and

sound speed fall close to the fitted straight line of the sands. This

data point is shown as a triangle in Fig. 1.

The data points of Hamilton1 5 are shown as rectangles in

Fig. 1. The values selected to represent the sand and silt sediments

for the results shown in the following figures are indicated with open

circles. Three values, (0.847,1.96), (0.909,1.79), and (0.926,1.75),

were chosen from the sand and silt straight line using the linear

regression Eq. (24). For the clays the representative value of

(0.990,1.46) was chosen from Eq. (23). More sand and silt sediments

than clayey sediments are chosen because of the predominance of sand

sediments on the continental shelves.

III. Measured mode nonorthogonality

A. Full water column span

Water column span nonorthogonality refers to the nonorthogonality

resulting when a dense array spans the entire water column. This

nonorthogonality results because the part of the eignfunction which

extends into the bottom is ignored. In general it is not possible to
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overcome this nonorthogonality without sampling the pressure field in

the bottom, although certain depth, frequency, and environmental

combinations may have modal orthogonality for a specific sampling. The

nonorthogonality for the canonical cases mentioned previously has

been calculated using Eq. (17) for all mode combinations through the

sixth mode, as a function of the scaled depth alpha. The results are

given in Figs. 2-5, which show with a continuous line the percentage

nonorthogonality for each case versus alpha. (The symbols represent the

results for a discrete 25-phone array, which will be discussed later.)

The general features of all four figures are similar. The domain of

the scaled depth alpha from the onset of the second mode to the onset

of the seventh mode differs, however, from one case to the next. These

are the alpha values required to produce all the combinations for

nonorthogonality when six or fewer modes are present. Below the onset

of the second mode there is only one mode present, so no

nonorthogonality exists. Fig. 2 shows the nonorthogonality for the

sand with the highest s,.ind speed and largest density (cr - 0.847, Dr -

1.96). Depending on the choice of water depth and source frequency,

the nonorthogonality can be seen to range from approximately 17 percent

at the onset of the second mode to less than a percent for the mode

combinations with the least overlap prior to the onset of the seventh

mode. Nonorthogonality is greatest at the onset of a new mode for the

combinations involving the highest modes. At onset the

nonorthogonalities between the established modes and the new mode

increase with the mode number of the previously present mode.

Nonorthogonalities involving established modes at the onset of a new

mode increase with the product of the mode numbers. The curves of

nonorthogonality occasionally but rarely cross. When they do, they
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always involve a new mode and an established mode and are accomplished

before the onset of the next mode for all cases studied here. Thus,

just before the onset of a new mode the magnitude of the

nonorthogonalities is ordered by the product of the mode numbers.

Further inspection of Fig. 2 reveals that the maximum error

at onset decreases uniformly as the number of the new mode increases.

For example, the maximum nonorthogonality at the onset of the sixth

mode is just over ten percent, compared to the almost 17 percent

nonorthogonality at the onset of the second mode. Both positive and

negative percentages have been given, according to the sign of the

overlap between the two modes. The overlap is seen to be positive for

the n(n - 1) mode combination, and negative for the n(n - 2) mode

combination, and continues to alternate. The relative minimum in the

amount of nonorthogonality occurs just before the onset of a new mode.

The largest value of nonorthogonality before onset ranges from

approximately 3.5 percent below the third mode onset to just over 4

percent below the seventh mode onset.

The next higher velocity sand results are plctted in Fig. 3.

This sand has cr - 0.909 and Dr - 1.79. Essentially all the

observations for the previous figure hold for this one, with some

slight changes in the percentages. For example, the maximum error is

almost 18 percent for this case.

Figure 4 shows the results for the lowest velocity sand

considered, cr - 0.926 and Dr - 1.75. Again changes from the highest

velocity sand discussion are small. For this sand the maximum

nonorthogonality is just over 18 percent.

Although the general features of Fig. 5, the clay-silt-sand
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with cr - 0.99 and Dr - 1.4608, are similar to the other three figures,

there are several important differences worth noting. The scaled depth

alpha domain needed to cover the region from the onset of the second

mode to that of the seventh mode is considerably greater than that of

the sands. The maximum nonorthogonality is greater by a larger margin

than the small differences among the other cases. The nonorthogonality

between the first and second mode at the onset of the second mode is

over 20 percent. This is the largest nonorthogonality we have observed

for a full water column span with a dense array in the cases

considered. The smallest maximum nonorthogonality at onset, which

occurs at the onset of the sixth mode, is over 13 percent.

The magnitude of nonorthogonality for different mode

combinations depends on the density of the sediment, but when allowance

is made for modal onset the shape and position of the nonorthogonality

curves are very similar. This is illustrated by defining a parameter

(I - C(I-Cr2 I/2 1 (25)

Modal onsets occur at the same value of this parameter since, as Eq.

(14) demonstrates, the onset of a new mode, corresponding to another

root of the equation, is determined by the asymptote of the right side
2 1/2

of the equation, which occurs at kn - [1 - Cr2  . Thus the onset of

modes occur for the same value of 7, namely 7 - (n - 1/2) r, regardless

of the bottom type. Figure 6, which shows the percentage modal

nonorthogonality as a function of 7, demonstrates that in terms of -Y

the nonorthogonalities are nearly the same for all bottom types

studied.

B. Fractional water column span

When only part of the water column is spanned by a dense array
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the nonorthogonality might be expected to be larger than that which

occurs for full water column span. Indeed it is found that

nonorthogonalities can approach 100 percent in magnitude when the array

lengths are small. There are, however, isolated occurrences of zeros

in the overlap integral, so some modal combinations can have less

nonorthogonality when measured by a fractional span array than those

resulting from an array that fully spans the water column. In order to

investigate this phenomenon while keeping the number of cases

considered to a reasonable number, we limit our study to the two

examples with extreme velocity/density ratios, the sand with cr - 0.847

and Dr - 1.96, and the clay with cr - 0.990 and Dr - 1.461.

We consider the fractional water column span

nonorthogonality from three perspectives:

(1) For selected values of the scaled depth a, we show

nonorthogonality as the fraction of the water column spanned increases

with (a) the array centered in the middle of the water column, (b) the

array growing from the top of the water column, and (c) the array

growing from the bottom of the water column.

(2) As a function of the scaled depth a, we show the

nonorthogonality when the top, middle, and bottom half of the water

column are spanned by an array.

(3) For an array chosen arbitrarily to be half the water column

depth at the initial scaled depth a, the nonorthogonality is examined

as a increases and the array length is held constant for arrays

centered in the water column, beginning at the top of the water column,

and beginning at the bottom of the water column. This simulates using

a fixed vertical array in water of increasing depth at constant
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frequency or increasing the frequency for a fixed length array at a

constant depth.

Figures 7 through 12 show sample results corresponding to

perspective (1). The nonorthogonality percentages for arrays growing

outward from the middle of the water column, for scaled depth a values

selected to have six modes present, are shown in Figs. 7 and 8 for the

sand and clay examples, respectively. At the right edge where the

arrays span the full water column, the nonorthogonalities agree with

those shown for these alpha values in Figs. 2 and 5. At the left edge

of the curves, where only 0.05 of the water column is spanned, the

nonorthogonalitic3 are between 90 and 100 percent in magnitude for all

mode combinations. The overlaps between any two modes are not in

general expected to vary monotonically with increasing fraction of a

spanned by the array due to the oscillatory character of the modal

functions. It is not surprising, therefore, that many of the curves of

Figs. 7 and 8 have local maxima, some more than one. The maximum

nonorthogonality present, however, does decrease monotonically as the

fraction of a spanned increases.

The same discussion can be applied to the nonorthogonality

for arrays growing down from the top of the water column, as shown in

Figs. 9 and 10. The major diLierence is that the nonorthogonality

magnitude starts at 100 percent for arrays which span 0.05 of the water

column, and it does not decrease below 90 percent for any combination

until 0.2 of the column is spanned. This result obtains because all

modes have a node at the surface of the water column, and there ir no

cancellation of negative and positive area in the overlap until a node

of one of the pair of modes is reached. Since there is not a node of

the depth eigenfunctions at the bottom of the water column, this
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feature does not appear in Figs. 11 and 12, which show the

nonorthogonality for arrays which grow from the bottom of the water

column. For arrays which grow from the bottom up, the maximum

nonorthogonality decreases more rapidly than it does for the other two

array starting points, although the maximum nonorthogonality does not

decrease monotonically, possessing three local minima. The last local

minimum, which occurs when the array length spans approximately 94

percent of the water column from the bottom up, has a smaller value for

the extreme nonorthogonality than the full water column span. This

result is one facet of a feature of these figures which is not present

for the other two cases. Because the modal eigenfunctions are

truncated at the bottom before reaching a node, whereas they end at the

top of the water column at a node, an array growing from the bottom

reaches a depth symmetric with the bottom cutoff before reaching the

top of the water column. One would therefore expect that for many mode

combinations the nonorthogonality would increase as the array grows

from this point to the top of the water column. The point at which

many mode nonorthogonalities start to increase for the case in Fig. 11

is at 90% span and for Fig. 12 at about 88% span.

The nonorthogonalities in perspective (2) are shown in Figures 13

through 18. Figures 13 and 14 show the nonorthogonality for arrays

spanning the middle half of the water column as the scaled depth a

increases from the onset of the second mode to the onset of the seventh

mode for the sand and clay examples, respectively. When only half the

water column is spanned, the nonorthogonalities can be much larger than

those of the full water column span, with percentages as high as 85%

observed. The percentages for different modal overlaps vary greatly
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from one to another, and some decrease with increasing a, while others

increase with increasing a. These behaviors can be understood from an

examination of the overlap uf the modal eigenfunctions for the two

modes in question as a increases. The results suggest one reason that

arrays spanning a large fraction of the water column are needed to

produce high-quality ambiguity surfaces, as reported by Heitmeyer and

Hamson.18 There is no a value on these graphs for which large

nonorthogonalities are not present. The sand and clay results are

qualitatively similar, although detailed curve shapes and percentages

differ for some overlaps.

Figures 15 and 16 show the results corresponding to 13 and 14,

but with the array spanning the top half of the water column rather

than the middle. The maximum nonorthogonality is even larger for these

arrays, approaching 100% in the case of the first and second mode

overlap. Whereas the largest nonorthogonalities above the third mode

onset corresponded to negative overlaps for arrays in the middle of the

water column, in Figs. 15 and 16 these occur for positive overlaps.

Again, some nonorthogonalities increase with increasing a and some

decrease.

The last set of graphs for perspective (2) are Figs. 17 and 18,

which show the nonorthogonalities for arrays in the bottom half of the

water column. Maximum nonorthogonalities for arrays in the bottom half

are less than 80% in magnitude. Like the arrays in the middle of the

water column, the largest nonorthogonalities occur for overlaps which

are negative. The curves for the overlaps of the newly onset modes

with the two mode numbers just below them appear to be mirror images of

each other about a line of symmetry which varies from about -37% to

about -30%.
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Finally, perspective (3) nonorthogonalities are presented in

Figs. 19 thru 24. For this perspective an array length is chosen which

spans half the water column at the onset of the second mode. This

array length is held fixed while the scaled depth a is increased. As

new modal onsets are reached, additional nonorthogonalities are shown

on the graph. The increasing of the scaled depth may be viewed as an

increase in frequency or an increase in water depth, as discussed

above. The change in nonorthogonality with frequency and depth could

be an important factor in the design of experiments with fixed array

length. Figures 19 and 20 give the resulting nonorthogonalities when

the constant array has its center at the center of the water column for

all scaled depths, for the sand and clay cases, respectively. Again,

some nonorthogonalities increase with a while others decrease, at least

initially after onset. The nonorthogonalities observed are generally

large, some even approaching 100 percent. The nonorthogonalities of

the first and second modes between themselves, however, are not larger

than 80 percent, in contrast to Figs. 21 and 22, which have the

constant array descending from the top of the water column. For this

case, as might be expected from an examination of the modal

eigenfunctions, the nonorthogonalities between modes one and two are

close to 100 percent over the entire domain of a included. Many other

large nonorthogonalities are also observed for the array at the top of

the water column. Nonothogonalities never become smaller than 20

percent except for a single case at the onset of the sixth mode in the

clay results of Fig. 22. In contrast to the nonothogonality behavior

of the arrays which start at the top of the water column, those which

start at the bottom, whose results are given in Figs. 23 and 24, have
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nonorthogonalities which change signs as a increases. This means that

there are regions of a for which some nonorthogonalities are small.

The difference between the top and bottom behavior is explained by the

different boundary conditions at the top and bottom, and the fact that

a node is found in the eigenfunctions at the top of the water column

whereas none of the eigenfunctions terminates in a node at the bottom

of the water column.

C. Discretization

All calculations to this point have been done using a continuous

model, i.e., an integral formulation to evaluate the nonorthogonality.

This model is an excellent approximation if the hydrophones are densely

enough spaced in the array. In all plots presented in this paper, the

number of phones is held constant as a is increased. It is found over

this range of a that the results for 50 phones are graphically

indistinguishable from those of the continuous model. If instead 25

phones are used, the discrete results differ slightly for the highest

modes from those of the continuous model. The 25-phone results are

shown in Figs. 2 through 5 as the plotted points, and they may be seen

to lie on the continuous lines which are the integral results except

for the highest modes, for which they differ slightly. When the number

of hydrophones is reduced to 12, the discrepancy between the dense

array shown by the continuous lines in Fig. 25 and the discrete array

indicated by the symbols, becomes more noticeable. Interestingly, for

this case, the nonorthogonality is less for the discrete than for the

dense array.

When the number of phones is equal to or only slightly

exceeds the number of modes, the discrepancy between the continuous
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array and a full-span six-phone array, shown in Fig. 26, is even more

pronounced. Again, the dense array results are indicated by the

continuous lines and the discrete array by the symbols. When the

number of phones is one more than the number of modes, as is true for a

values from 26.6 to 32.5 in Fig. 26, the nonorthogonality shows an

interesting development. With a discrete array there exists a small

range of a values for which the nonorthogonalities are almost zero for

all mode combinations. In this figure, the a range correspondiag to

nonorthogonalities less than 1% is 29.6 to 32.5 at the onset of the

next mode. An implication of this result for matched field processing

will be discussed in later work. After the nonorthogonality reaches a

minimum, which appears to occur just before the onset of the mode whose

number is equal to the number of phones in the array, the

nonorthogonalities of all mode combinations begins to increase rapidly

with increasing a. Similar behavior has been observed for the other

canonical cases. The existence of the large zone of nonorthogonality

suggests that for between one-third and one-half of all water depth and

frequency combinations for the range of a's studied, a discrete array

can be designed for a given a for which all the measured modes are

orthogonal to within 1%.

For discrete partial span arrays, the difference between

continuous arrays and discrete arrays is generally smaller for a given

number of phones than for full span arrays because the phone spacing is

smaller. Six phone arrays which span half the water column show

differences between discrete and continuous arrays comparable to the

differences for 12 phone arrays which span the full water column.
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SUMMARY

Full Water Column Span

Continuous

As long as there are more phones than modes, nonorthogonality is

greatest near modal onset and decreases smoothly with increasing scaled

depth. At a fixed scaled depth with few exceptions, and these

occurring near modal onset, the greatest nonorthogonality occurs

between modes whose modal numbers form the highest product. Indeed at

a fixed scaled depth, modal nonorthogonalities are nearly ordered by

this mode number product. Finally, although the maximum

nonorthogonality is always greatest between the two highest modes, the

amount of this maximum nonorthogonality decreases with increasing

scaled depth from a maximum of 16% to 20%, depending on bottom type,

for the nonorthogonality between modes two and one, to about 11% to 14%

between modes six and five at onset.

Discrete

The nonorthogonality for the discrete case is visually

indistinguishable from the continuous case as long as approximately

twenty-five or more hydrophones are used for the six modes studied. In

general, approximately four times as many phones as modes appear to be

required for this conclusion. For fewer than 25 hydrophones the

discrete results diverge from those for the continuous array, more so

as the number of phones decreases. Surprisingly, the deviation is in

the direction of decreased nonorthogonality for the discrete geometries

tested. The most interesting manifestation of this increase in

orthogonality with sparse spatial sampling is the existence of a domain
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of values for the scaled depth a for which the nonorthogonality between

modes almost vanishes for all modal pairs. For all bottom types

studied, these zones of orthogonality occur just before the onset of

the mode whose mode number is equal to the number of hydrophones in the

array. The existence of the zones suggests that, for a given value of

a, arrays can be designed to have measured mode orthogonality to within

one percent for all modal combinations, over much of the a domain.

Partial Water Column Span

For arrays that span no more than one-half the water column, the

nonorthogonality of all modal combinations is quite substantial, except

for occasional near zero values for certain modal combinations for some

particular fractional water column spans. Arrays that span 20% of the

water column or less typically exhibit strikingly large modal

nonorthogonalities, frequently 60 to 80 percent. Even for arrays that

span as much as 90% of the water column, the nonorthogonality is

increased substantially over the full span case, typically exhibiting

nonorthogonalities of about 20%. These results, which were of course

expected, seem to hold for arrays near the top, middle, or bottom of

the water column. No zones of orthogonality were observed.

When arrays half the length of the water column were examined as

a was increased, large nonorthogonalities were found for all but a few

modal combinations regardless of the scaled depth a used or the

placement of the array in the top, middle, or bottom of the water

column. A curiously symmetrical distribution of nonorthogonalities for

some modal combinations was observed.

These same substantial nonorthogonalities were observed when the

perspective was changed and the nonorthogonalities calculated as the
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actual array length, initially half the water column, was held constant

and the scaled depth a increased. Almost all of the modal

nonorthogonalities, which were 20% or more initially, increased as the

scaled depth increased and the array length became a smaller fraction

of the scaled depth.

Although the discrete cases we tested were limited, the use of a

sparse array, one with only six phones for example, resulted generally

in changes in nonorthogonality of the same order of magnitude as had

been observed previously for 12 phones for full span arrays, as long as

the number of phones exceeded the number of modes.

In conclusion, the largest nonorthogonalities were observed for

partial span arrays, and these arrays are the ones most likely to

benefit from proceeding to modal amplitude space for matched field

processing. For full span arrays, the largest nonorthogonalities were

found at ind just above modal onset. These locally maximum

nonorthogonalities decrease as the number of modes present increases,

and they tend to be significantly smaller than the nonorthogonalities

found with partial span arrays. A slight increase in

nonorthogonalities was noted as the sound speed ratio approached one

from below.
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FIGURE CAPTIONS

Fig. 1. Relative density, Dr - density of bottom/density of water,

versus relative velocity, cr - velocity in water/velocity in bottom.

Upper straight line fit to data sands and silts without clays, lower

straight line fit to data for clays with sands and silts. Squares:

data from Hamilton;1 5 triangle: data from Tindle et al.; 17 ,7  circles:

cases studied below.

Fig. 2. Percentage nonorthogonality versus scaled depth a for a sand

bottom with cr - 0.847, Dr - 1.96. Vertical dotted lines mark the

onset of each new mode. Solid line for a dense array and symbols for a

discrete 25-phone array. 4 percent nonorthogonality between modes 2

and 1, 9 between 3 and 1, C1 between 3 and 2, U between 4 and 1,

0 between 4 and 2, 0 between 4 and 3, Z- between 5 and i,

+ between 5 and 2, X between 5 and 3, < between 5 and 4,

'7 between 6 and I, 0 between 6 and 2, . between 6 and 3,

o between 6 and 4, and 0 between 6 and 5.

Fig. 3. Same as Fig. 2 for a sand and silt with cr - 0.909 and Dr -

1.79.

Fig. 4. Same as Fig. 2 for a sand and silt with cr - 0.926 and Dr -

1.75.

Fig. 5. Same as Fig. 2 for a clay-silt-sand with cr - 0.990 and Dr -

1.4608.

Fig. 6. Percentage nonorthogonality versus alternate scaled depth -Y.

Circle for sandy bottom with cr - 0.847, triangle for cr - 0.909, plus



for cr - 0.926, and square for cr - 0.990. Vertical dotted lines mark

the onset of each new mode. Mode numbers may be identified by

comparison to Figs. 2 thru 5.

Fig. 7. Percentage nonorthogonality versus fraction of scaled depth a

for sandy bottom with cr - 0.847, a - 26.6 (5 modes present), and the

array growing outward from the middle of the water column.

Fig. 8. Same as Fig. 7 for cr - 0.990 and a - 110 (5 modes present).

Fig. 9. Same as Fig. 7 for the array growing from the top down.

Fig. 10. Same as Fig. 8 for the array growing from the top down.

Fig. Il. Same as Fig. 7 for the array growing from the bottom up.

Fig. 12. Same as Fig. 8 for the array growing from the bottom up.

Fig. 13. Percentage nonorthogonality versus scaled depth a for a sandy

bottom with cr - 0.847 with an array which spans the middle half of the

water column.

Fig. 14. Same as Fig. 13 for cr - 0.990.

Fig. 15. Same as Fig. 13 for the array spanning the top half of the

water column.

Fig. 16. Same as Fig. 14 for the array spanning the top half of the

water column.

Fig. 17. Same as Fig. 13 for the array spanning the bottom half of the

water column.



Fig. 18. Same as Fig. 14 for the array spanning the bottom half of the

water column.

Fig. 19. Percentage nonorthogonality versus scaled depth a for a sandy

bottom with cr - 0.847 for a fixed length array centered on the middle

of the water column. The dimensionless array length is chosen to span

half the water column at the onset of the second mode.

Fig. 20. Same as Fig. 19 for cr - 0.990.

Fig. 21. Same as Fig. 19 with the fixed length array having its upper

end at the top of the water column.

Fig. 22. Same as Fig. 20 with the fixed length array having its upper

end at the top of the water column.

Fig. 23. Same as Fig. 19 with the fixed length array having its lower

end at the bottom of the water column.

Fig. 24. Same as Fig. 20 with the fixed length array havings its lower

end at the bottom of the water column.

Fig. 25. Same as Fig. 2 except that the symbols are for a 12-phone

array.

Fig. 26. Same as Fig. 2 except that the symbols are for a 6-phone

array.
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THE UNIVERSITY OF SOUTHERN MISSISSIPPI
PHYSICS & ASTRONOMY

December 19, 1988

Dr. Anas M. Abo-Zena
Code 244
Building 1005
NORDA
Stennis Space Center, MS 39529

Dear Dr. Abo-Zena:

Transmitted herewith is the final report on the
supplement to the University of Southern Mississippi
subcontract to the NORDA contract with the University
of New Orleans number N00014-87-K6002. This report
is an analysis of the literature on scattering and
reverberation from wedges in ocean acoustics. As
the report explains, a thorough literature search was
done and the five most important papers were analyzed
and reported. I have not analyzed your own two
papers which make significant contributions to the
field because I do not wish to put myself in the
uncomfortable position of presuming to explain an
author's own paper to the man himself! Although I
believe the report to be full and complete, I will,
of course, be happy to try to answer any questions
you may have. The official report will be submitted
through the University of New Orleans as part of
their final report on the enlire contract. I have
informed their Principal Investigator that I was
sending a copy of ny supplemental report directly to
you as well as to him.

Thank you again for the opportunity of working
with you and I look forward to future collaborations.

Yours sincerely,

Grayson H. Rayborn
Professor of Physics & Astronomy

Southern Station * Box 5046 * Hattiesburg. Mi'si,;qipl)i 9 3)400 5046 e (6010206 403l4



NORDA/UNO FINAL REPORT

INTRODUCTION

As a supplement to the University of Southern

Mississippi subcontract from the Univeristy of New Orleans

(Board of Supervisors of Louisiana State University and

Agricultural and Mechanical College) of their NORDA Contract

N00014-87-K6002, a study of the literature of reverberation

and scattering from wedges on the ocean bottom was performed.

The Principal Investigator for the University of Southern

Mississippi was Grayson H. Rayborn, Professor of Physics and

Astronomy. The work was performed during the summer of 1988.

IDENTIFICATION OF RELEVANT LITERATURE

The literature relevant to scattering and reverberation

from wedges on the ocean bottom was identified by performing

a keyword search at the Maury Library at Stennis Space

Center. The search was conducted on the words: "wedge",

"ocean", and "underwater acoustics". The resulting

citations were studied and additional literature of the

author's own personal knowledge was also studied. Of course,

relevant citations in these papers were also checked until no

new references were found. Thus, the study should be
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reasonably complete, although only the five most important

papers are analyzed in this report. The form of this report

will be first to review the important papers in detail, and

then to assess the present understanding of scattering and

reverberations from wedges on the ocean bottom as expressed

in the literature, and finally to suggest possible areas and

ideas for fruitful continued study.

REVIEW AND ANALYSIS OF RELEVANT LITERATURE

1) F. B. Jensen and W. A. Kuperman, "Sound propagation

in a wedge-shaped ocean with a penetrable bottom",

Journal of the Acoustical Society of America 67(5),

1564-1566 (May 1980).

This paper utilizes a parabolic equation (PE) method

to investigate the propagation of sound from a point

source, modeled as a gaussian beam in the PE code,

across a constant depth ocean into an ocean sloping

upward at 1.5501 A single frequency source was used

to create three propagating normal modes which

disappeared at depths predicted by normal mode

theory, propagating into the bottom as beams. These

results agree with tank experiments (Coppens and
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Sanders 1978) when the geometry is scaled by the

acoustical wavelength (Coppens and Sanders used

f = 150 kHz), except that experiment showed that the

measured beam angle as the modes disappeared into

the bottom was 20 to 30% lower than the asymptotic

theory, stationary phase angle predicted. Also, the

measured beam angle was approximately 20% higher

than that predicted by the PE model, probably due to

the fact that the critical angle in the experiment

was approximately 280 , while their PE model is

designed to handle forward angles only as great as

200.

The important points disclosed by this article are:

a) A PE model can predict the main features of

up-slope propagation including cut-off

depths and radiation into the bottom;

b) Radiation into the bottom is the principal

energy loss mechanism; there is little

energy converted into the next lower mode;

c) Thus. mode coupling__theories must include

coupl ngto the continuum if they are to be

at all realistic.
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2) M. J. Buckingham, "Acoustic Propagation in a Wedge-

Shaped Ocean with Perfectly Reflecting Boundaries",

NRL Report 8793, March 19, 1984; 23 pages.

As the title indicates, this paper presents a

solution for the acoustic field produced by a point

source in a wedge-shaped ocean with perfectly

reflecting, i. e., pressure-release, boundarie-.

The solution is presented in the form of a sum of

normal modes and it correctly reduces in the

vicinity of the point source to the free-field

solution for a point source. Interestingly, the

radiation field associated with each normal mode

forms a well-defined beam which diverges as the

energy propagates out towards deep water. This

paper also demonstrates the formation of shadow

zones outside the beam where there is essentially no

energy in the mode. The modes are well-ordered with

the inner beam having the highest mode number and

the outer beam the lowest mode number so that the

spatial extent of the sound field in a direction

parallel to the shore line is determined by the

Page 4



NORDA/UNO FINAL REPORT

lowest order mode which is propagating. The author

demonstrates that, to a good approximation, the

number of propagating modes is the integer number of

half-wavelengths of the sound contained in the depth

of water at the source or receiver, whichever is

shallower. In addition to a normal mode integral,

this paper approximates the normal mode integral

accurately as the weighted sum of Hankel functions

of the first and second kind (whose order is the

mode number), a form which is applicable to most

situations encountered in ocean acoustics. Further,

the paper demonstrates that another popular

approximation to the integral (D. L. Bradley and A.

A. Hudimac "The Propagation of Sound in a Wedge

Shaped Shallow Duct", Naval Ordinance Laboratory

Report NOLTR 70-235, Nov. 1970) is inapplicable

precisely in the region of most interest to

underwater ocean acoustics, when the receiver is

less than ten times the distance of the sound source

from the shoreline. The paper concludes by

interpreting the modal beams as rays, with a

criterion for determining when a ray may correspond

to a mode: "the grazing angle of the ray at the

vertex of its hyperbolic path must be the same as
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that of the ray corresponding to the mth mode in

shallow water whose depth is equal to the depth at

vertex". Finally, a simple, physical argument for

the existence of shadow zones is given.

The principal question raised by this paper is how

the solution can be extended to a more realistic

case for ocean acoustics in which the bottom surface

is treated as penetrable rather than perfectly

reflecting (pressure release boundary). The

solution presented in this paper is valid because

the Helmholtz equation for a wedge is separable when

both wedge surfaces are pressure release. The

Helmholtz equation is not separable when one of the

boundaries is penetrable. The challenge left by

this paper is, then, to extend the work to an

interesting, realistic model for ocean acoustics.

It should also be noted that the solutions given are

applicable only to certain angles; namely, those

which are integral sub-multiples of pi radians.

3) Stewart A. L. Glegg and Jong R. Yoon, "Experimental

measurements of 3-dimensional propagation in a
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wedge-shaped ocean with pressure release boundary

conditions", (submitted to the Journal of the

Acoustical Society of America.)

These experiments were done to check the theoretical

analysis of Buckingham presented in NRL Rieport 8793

and discussed in the previous paragraph of this

report. The experiments were performed by immersing

a plexiglas tank prismatic in shape and filled with

air in a larger tank which is itself filled with

water. The wedge angle, then, becomes the angle

between the top of the plexiglas tank and the

horizontal surface of the water. Adjustment of the

cables which restrained the buoyant plexiglas tank

then permitted variation in the water wedge angle.

The wedge model in this experiment has a pressure

release bottom and slope and a wedge angle of about

20 degrees. For simplicity of analysis only the

lowest mode is excited by locating the source near

the cut off range. The acoustic field from a point

source in the wedge domain was measured at several

different frequencies and for different wedge angles

and good agreement with the theoretical model was

found. The wedge angles were between one-tenth pi,
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or 180, and one-eighth pi, or 22,50. Although large

variations in sound level, on the order of 10 dB,

were found for small changes in wedge angle,

subsequent analysis showed that the measurement were

consistent with a linear variation between the sound

levels predicted by Buckingham at angles which were

sub-multiples of pi radians. It was found that for

downslope propagation, the spatial characteristics

of the field in a direction parallel to the shore

line are in good agreement with the theoretical

solution of Buckingham's and that the azimuthal

extent of the beam does depend on the wedge angle as

predicted. Shadow zones were also found as

predicted. Errors were in the range of 1.5 dB

except in the shadow zones were low signal-to-noise

ratios caused the errors to jump to about 3 dB. In

addition to verifying Buckingham's theory, the paper

also gives measurements of pulse propagation and

distortion in the wedge.

The significance of this paper is that it

experimentally confirms the predictions of the

Buckingham theory including shadow zones and the

spatial extent of the modal beams and demonstrates
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that the theory can indeed be extended to angles

which are not sub-multiples of pi by simple, linear

interpolation.

4) M. J. Buckingham, "Theory of Three-Dimensional

Acoustic Propagation in a Wedgelike Ocean with a

Penetrable Bottom", Journalof the Acoustical

Society of America 82(1), (1987).

This paper extends Btickitigham's previous results for

a pressure release bottom in a wedge-shaped ocean to

a penetrable bottom in the same geometry in an

approximate fashion. The approximation depends on

the fact that the oscillating modal functions which

do riot, of course, reach a node at a penetrable

bottom the way they do at a perfectly reflecting

bottom, do approximately reach nodes some distance

below the penetrable bottom, and the distance is the

same for all modes. The distance below the bottom

at which the nodes form depends in a systematic way

on the character of the bottom. Buckingham's

application of this "common node theory" to the

wedge problem permits him to approximate the wedge
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by another one of the same wedge angle but displaced

so that its apex is farther from the sound source.

The importance of this paper is that it suggests a

means of extending the theory of propagation in an

infinite wedge, albeit in only an approximate

fashion, to the realistic case of a penetrable

bottom.

5) Herman Medwin, Emily Childs, Edgar A. Jordon, and

Robert A. Spaulding, Jr., "Sound scatter and

shadowing at a seamnount: Hybrid physical solutions

in two and three dimensions", Journal of the

Acoustical Society of America 75(5), 1478-1490(1984).

Previous measurements, theories, and discussions of

sound propagating in ocean wedges have assumed that

the wedge was infinite in horizontal extent and that

the bottom eventually meL the ocean surface.

Although these are reasonable assumptions to make

when studying the transmission of sound near a

constantly sloping shoreline, this model is of

questionable validity when applied to seamounts
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which are finite in horizontal extent and which may

never reach the surface of the sea. This paper

attempts the more difficult problem of predicting

scattering and diffraction from a seamount. The

particular object of study is the Dickins Seamount

in the Northeast Pacific Ocean (54032'N, 136055'W).

This paper provides scale model experiments and

computer experiments to explain the results of ocean

measurements over this Dickins Seamount reported by

G. R. Ebbeson and R. G. Turner in J. Acoust. Soc.

Am. 73, 143-152 (1983) and N. R. Chapman and G. R.

Ebbeson in J. Acoust. Soc. Am. 73, 1979-1984 (1983).

Three approximations to the actual seamount were

used in the laboratory scale model experiments. A

simple plane wedge, a contour wedge in which slopes

vary along the wedge to express general contour

features of the Dickins Seamount, and a realistic

scale model based on a a detailed bathymetric survey

by the Defense Research Establishment Pacific. In

these laboratory measurements the contour wedge

produced results in somewhat better agreement with

the ocean measurements than did the simple wedge.

Neither, however, was sufficiently accurate so as to

provide a useful model. The authors concluded that

Page 11



NORDA/UNO FINAL REPORT

... a three-dimensional wave solution is essential

for correct modeling of the effect of Dickins

SeamounL." The authors also compared propagation

loss measured in the ocean trials under specified

conditions to be 97 + 5 dB with their own hybrid

model of seamount propagation in which they

incorporate the wave phenomena of forward scatter at

the upslope of the seamounL followed by diffraction

and reradiation over the crest. The hydbrid model

identified three contributions to propagation loss:

(1) upslope forward scattering loss, (2) diffraction

loss, and (3) an additional refraction loss for the

new path from the seamount to the receiving

hydrophone. The hybrid model also predicts that

diffraction loss is proportional to the square root

of the frequency, a conclusion which appears to be

supported by the ocean measurements.

Finally, this paper reports computer experiments

on three models of the seamount. All models treat

the seamount as rigid since, as a relatively new

seamount, the Dickins Seamount has slopes containing

only a very thin sedimentary deposit. Computer

Model 1 calculated the diffraction loss using a two-

dimuensiozal double di rilrac:tiot 1echnique treating
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the wedge as a wide conitour wedge barrier with two

changes of slope. Comipar is ioin w iLh the laboratory

experiments of these compu Ler calcu lat ions showed

good to excel lent agreemetit.. Model 2 naively

assumed that the crest of the three-dimensional

seamount is where mnost of the ma~Jor changes of slope

occur arid that the crest may be approximated by

crestal line seguients of finite length. This model

gave results for diffractioni strength that were a dB

or two better- thati those yielded by the simple wedge

model in laboratory expeiiets. However-, tis

crestal segmient model still gave diffraction

strength results that were about 10 dB too high.

Therefore, this model is too naive to be useful.

Model 3 uised accurate changes of slope along the

track bet~ween sourtce anid receiver-, boit did riot

properl y accountL for- the topography onie e ither side

of the ditrec, Lrack. E~ach L.ime the slopes were

estimiated arid diffraction strength calculated, the

results were within 2 or :1 dB or each othetr arid

always abouit 2 or 3 dB too high. r'he c Leart

conclusion of the computer- mtodel experimets was

that the double di ffract iotn techniquje permiiits

accuirate compujter caLcuiLations of the di ffiactiotn
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loss in the shadow of a two-dimensional seamount and

approximate predictions for the three-dimensional

body. The overall conclusions of the authors was

that hybrid laboratory and computer models could

give accurate estimates of diffraction loss and

shadowing by the Dickins Seamount for sound sources

from 50 to 500 Hz, that the shadow loss varies as

the square root of the frequency, and that the

three-dimensional diffracted signal is significantly

different from the two-dimensional signal.

CONCLUSION

Most of the theories and data on diffraction of acoustic

waves by wedges treat the wedges as infinite in extent. This

model appears to be useful in studies of sound propagation

near shores. The use of common node theory apparently

permits the extension of this theory to penetrable bottoms in

a straight forward, although approximate, manner. The

experimental verification of the theory for the infinite

wedge with pressure release boundaries gives great confidence

that the theory should accurately describe sound propagation

in the ocean near gently sloping beaches. Optimum processing
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techniques remain to be worked out both for detection and for

range and depth localization. The extension of shallow

water, rectangular wave guide matched field processing

techniques to the wedge should certainly prove challenging,

and might decisively determine whether modal processing is

superior to conventional processing. Signal estimation in

this field would also profit from determination of the non-

orthogonality of the modal functions for wedges with various

bottoms as they have been determined by Rayborn, G. loup, and

J. Ioup for the rectangular problem.

However, the work of Medwin et al suggests that the

theory of propagation in an infinite wedge is of only limited

utility in describing the diffraction over and around a

finite, wedge-like seamount. Their work also indicates that

reasonable prediction of the effect of such seamounts on

propagation loss and their shadowing may be made if detailed

laboratory models and extensive computer simulations are

made.

In conclusion, then, the problem of propagation past

wedge-shaped seamounts is a difficult one, and much work

remains to be done in this field if general inferences about

the effect of such seamounts on acoustic propagation are to

be made.
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