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APPLICATION OF ACOUSTIC SIGNAL PROCESSING TECHNIQUES

FOR IMPROVED UNDERWATER SOURCE DETECTION AND LOCALIZATION

The subject contract was issued to the University of New Orleans (UNO)
from 13 Jan 1987 through 31 Aug 1988. Drs. George and Juliette loup served as Principal
Investigators. A subcontract was issued to the University of Southern Mississippi (USM),
where Dr. Grayson Raybora served as Principal Investigator. At UNO Mr. Ken Barnes
was hired as a Research Associate, and Mr. George Frichter was hired as a Research
Assistant. During the period of performance the Principal Investigators were also sup-
ported as Navy/ASEE Senior Summer Faculty Fellows. Parts of the research summarized
in this report were performed on these appointments.

Much of the research performed for the contract has been reported at
national meetings and/or written up in manuscript form for publication. A listing of
these items follows. Beside each is noted whether a copy is incluied with this Final
Report. For each item not included with this report, information is given on the avail-

ability of the document.

1. Grayson H. Rayborn, George E. loup, Juliette W. lIoup, and Janet C. Carr, "Normal-
mode filtering with orthogonal functions to avoid mode leakage,” paper presented to the
Acoustical Society of America, Anaheim, CA, December 1986. Abstracted in J. Acous. Soc.
Am. Suppl. 1, Vol. 80, S113 (1986).

This research was performed prior to the start of the contract, but it provides an intro-
duction to the contract-supported research. A copy of this abstract is included in this

report.

2. Deanna M. Caveny, Donald R. Del Balzo, Jeffrey L. Becklehimer, and George E. loup,
*Performance of sinusoidally deformed line arrays,” paper presented to the Acoustical
Society of America, Anaheim, CA, December 1986. Abstracted in J. Acous. Soc. Am.

Suppl. 1, Vol. 80, $26 (1986).




This research was performed prior to the start of the contract, but it provides an intro-
duction to the contract-supported research. A copy of this abstract is included :n this

report.

3. Deanna M. Caveny, Donald R. Del Balzo, Jeffrey L. Beckiehimer, and George E. loup,
"Array shape estimation via piecewise subarray beamforming,” paper presented to the
Acoustical Society of America, Anaheim, CA, December 1986. Abstracted in J. Acous. Soc.
Am. Suppl. 1, Vol. 80, S26 (1986).

This research was performed prior to the start of the contract, but it provides an intro-
duction to the contract-supported research. A copy of this abstract is included in this

report.

4. Grayson H. Rayborn, George E. Ioup, and Juliette W. Ioup, "Nonorthogonality of
measured normal modes in shallow water,” paper presented at the fall meeting of the
Acoustical Society of America, November 1987, Miami, FL. Abstracted in J. Acous. Soc.
Am. Suppl. 1, Vol. 82, §72 (1987).

A copy of this abstract is included in this report.

5. Juliette W. Ioup, George E. loup, Grayson H. Rayborn, Donald R. Del Balzo, and Chris-
topher Feuillade, "Effects of measured mode nonorthogonality on c. aventional matched
field processing,” paper presented at the fall meeting of the Acoustical Society of Ameri-
ca, November 1987, Miami, FL. Abstracted in J. Acous. Soc. Am. Suppl. 1, Vol. 82, §73
(1987).

A copy of this abstract is included in this report.

6. James H. Leclere, Donald R. Del Balzo, Deanna M. Caveny, George E. Ioup, Jeffrey L.
Becklehimer, and Donald A. Murphy, "Performance of Sinusoidally Deformed Planar
Arrays,” paper presented to the Acoustical Society of America, Indianapolis, IN, May 1987.

Abstiracted in J. Acous. Soc. Am. Suppl. 1, Vol 81, S85 (1987).




A copy of this abstract is included in this report.

7. Effects of Noise on Pressure and Modal Amplitude Matched Field Processing, George
M. Frichter, IV, Juliette W. Ioup, George B. Smith, George E. lIoup, Christopher Feuillade,
Grayson H. Rayborn, Donald Del Balzo, paper presented at the March Meeting of the
American Physical Society, 21-25 Mar 1988, New Orleans, abstracted in Bull. Am. Phys.
Soc. 33, 705 (1988).

A copy of this abstract is included in this report.

8. Least-squares and single-fiiter always-convergent iterative deconvolution of transient
signals for correlation processing, James H. Leclere, George E. Ioup, Juliette W. Ioup, and
Robert L. Field, paper presented at the fall meeting of the Acoustical Society of America,
14-18 Nov 1988, Honolulu, HI, and abstracted in Jour. Acous. Soc. Am. 84, S17 (1988).
This paper reports work completed and submitted for a conference during the contract
period, but the paper will not be presen*ed until after the expiration of the contract. A

copy of the abstract is included in this report.

9. Comparison of double and triple cross correlation for arrival time identification of
amplitude- and frequency-modulated acoustic transient signals, Juliette W. loup, George E.
Ioup, Robert L. Field, and James H. Leclere, paper presented at the fall meeting of the
Acoustical Society of Americ4, 14-18 Nov 1988, Honolulu, HI, and abstracted in Jour.
Acous. Soc. Am. 84, S17 (1988).

This paper reports work completed and submitted for a conference during the contract
period, but the paper will not be presented until after the expiration of the contract. A

copy of the abstract is included in this report.

10. Deanna M. Caveny, George E. loup, Donald R. Del Balzo, and James H. Leclere,
"Performance Evaluation of Sinusoidally Deformed Hydrophone Arrays,” manuscript
submitted to Jour. Acoust. Soc. Am., June, 1988.

This manuscript has been accepted for publication subject to revision. A copy of the




manuscript in its current form is included in this report.

11. Grayson H. Rayborn, George E. loup, and Juliette W. Ioup, "Nonorthogonality of
Measured Normal Modes in a Shallow Water Waveguide,” manuscript submitted to Jour.
Acoust. Soc. Am., May, 1988.

A copy of the manuscript is included with this report.

12. Juliette W. Ioup, George E. Ioup, Grayson H. Rayborn, Donald R. Del Balzo, and
Christopher Feuillade, "Effects of measured mode nonorthogonality on conventional
matched field processing,” manuscript in preparation.

Copies of the manuscript in its current form are available from the Principal Investiga-

tors.

13. George M. Frichter, IV, 1987, Underwater Acoustic Pressure to Modal Amplitude
Mapping for Wind Generated Noise ir a Waveguide, M. S. Thesis, University of New
Orleans.

A copy of this thesis has been given to the Scientific Program Officer. Additional copies

may be requested from Mr. Frichter or the Principal Investigators.

14. Weiping Pan, 1988, An Application of a Perturbative, Approximate Method to the
Study of Sound Propagation by Normal Modes in Shallow Water, M. S. Thesis, University
of Southern Mississippi.

Mr. Pan was not supported by contract funds, but his research was supervised by Dr.
Rayborn during the contract period, and may be of interest. A copy has been supplied to

the Scientific Program Officer. Additional copies are available.

15. Grayson H. Rayborn, A study of the literature of reverberation and scattering in a
wedge environment and from wedges in a general ocean environment.
This report was written for and previously submitted to the replacement Scientific Pro-

gram Officer, Dr. Anas Abo-Zena. A copy is included in this report.




16. James H. Leclere, Donald R. Del Balzo, and George E. Ioup, A Brief Introduction to
BEAMSTATPAK with Sample Calculations of Array Performance on Multiple Line
Systems.

This 47-page report was prepared for NORDA. A copy in draft form is available from
the authors. The report is currently being expanded and revised to describe recent

changes in BEAMSTATPAK by Dr. Rick Slater and Mr. Howard Chandler of NORDA.

Most of the research supported by this contract has been reported in the
above listed publications. Smaller research projects which have been performed have been
reported directly to the Scientific Program Officer. Funding will be sought by the Prin-

cipal Investigators to continue research in promising areas in the future.




with free-falling ocean bottom seismometers (OBS). Since the ship’s posi-
tion and its towed signal sources (air gun, uniboom) or explosives are
fairly well known based on high-precision navigation systems, onc can
determine the geophone positions indirectly from their response to the
source excitation. Here, a newly developed source parameter estimation
code [A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, J. Acoust. Soc.
Am. Suppl. 1 79, $36 (1986) | is first used to determine the performance
bounds for a localization based on seismic interface waves. Then, an actu-
al shear speed profile is determined by inversion of a new data set obtained
using explosive sources, and a maximum-likelihood estimation of the geo-
phone position is performed. By comparing the results with the actual
experimental geometry, it is demonstrated that in spite of the fairly long
wavelength of the interface waves, a reasonable resolution can be achieved
by such a technique.

10:30

AAAY, Simulations of matched-field processing in s deep-water Pacific
environmesnt, Michael B. Porter, Ronald L. Dicus, and Richard Fizell
(Code 5120, Naval Research Laboratory, Washington, DC 20375)

Matched-field processing is a signal processing technique for arrays in
which field vectors for assumed source positions (range and depth) are
substituted for plane-wave steering vectors in conventional linear and
nonlinear beamformers. The field vectors are computed by standard
acoustic field models (FFP, normal mode, etc.) which take into account
propagation cffects in an oceanic waveguide. The output is an ambiguity
surface over possible source positions in which a peak is expected at the
true source position. Accuracy of the computed fields is limited in large
part by our knowledge of the environment. This environmental mismatch
causes degradation in localization performance, sometimes leading to
large errors in estimatior of source position. In order to assess the signifi-
cance of this effect, simulations were performed in which a measured field
is synthesized using a slightly different environmental model from that
used for the steering vectors. The differences were introduced to simulate
expected errors in sound-speed profile, sediment thickness, and elastic
wave speed. Calculations were made for a cw source operating at 10 Hz
and depths of 25 and 250 m in a SO0 m-deep ocean. The receiver wasa 16-
element vertical array at ranges of 25 (shadow zone) and 100 km (second
convergence zone). A typical Pacific sound v.locity profile was assumed.
The bottom was modeled by a thin (50-m) sediment layer overlying an
elastic subbottom. Degradation in localization performance due to envir-
onmental mismatch will be discussed both quantitatively and qualitative-
ly.

10:48

AAA10. Preliminary results of matched-fleld localization using a vertical
array in the Tufts Abyssal Plain. R. G. Fizell (Code 5120, Naval
Research Laboratory, Washington, DC 20375)

PACIFIC ECHO was an experiment conducted jointly by the Naval
Research Laboratory (NRL) and Defence Research Establishment, Pa-
cific (DREP) in May-June 1986. Vertical array measurements of a 15-
Hz cw signal projected by the NRL Mk- Vi source, towed at adepth of 100
m on a circular arc of radius 3 nmi, were snalyzed with matched-field
processing. The DREP array was 675 m long with the top hydrophone at
400-m depth. Matched-field processing between theoretical and mea-
sured fields was accomplished by linear correlation and by s nonlinear
maximum-likelihood method (MLM) estimator. Theoretical fields were
computed using a normal-modes program, the measured sound velocity
profile, and an assumed thick-sediment bottom. Successful localization of
the source was achieved with both estimators. Sidelobes produced by the
MLM estimator were significantly below the main peak but, for the linear
estimator, sidelobes were sufficiently large to be taken as false targets.

11:00

AAAL11. Sensitivity of the matched-field source localization tecbnique in
shallow water to mismatch of geoacoustic parameters. Donald R. Del

8113 J. Acoust. Soc. Am. Suppl. 1, Vol. 80, Fall 1986

Balzo (NORDA Code 244, NSTL, MS 39529), Christopher Feuillade,
and Mary M. Rowe (ODSI Defense Systems, Inc., 6110 Executive
Boulevard, Rockville, MD 20852)

The accuracy of matched-field techniques for source localization in a
shallow-water waveguide is dependent upon realistic modeling of the
geoacoustic environment. A study was conducted to investigate the sensi-
tivity of source localization to erroneous estimates of the geoacoustic
properties (sound speed, density, snd attenuation) of the sediment. A
range-independent normal-mode computer program was used to calcu-
late acoustic fields from a midwater source received on a vertical array of
21 hydrophones spanning the water column. Errors in estimates of range
and depth are presented as a function of mismatch of each geoacoustic
property.

11:18

AAA12, Wave-height fluctuation effects on matched-field detection and
localization in shallow water, Donald R. Del Balzo (NORDA Code 244,
NSTL, MS 39529), Christopher Feuillade, and Mary M. Rowe (ODSI
Defence Systems, Inc., 61 10 Executive Boulevard, Rockville, MD 20852)

Sea surface wave-height fluctuations cause a time-dependent mis-
match in environmental conditions and therefore effect the detection and
localization performance of a matched-field processor. A sensitivity study
was conducted to examine this mismatch phenomenon for an idealized,
range-independent, Pckeris channel of 100-m depth, with a 150-Hz
source, using a centrally positioned vertical array of 21 hydrophones
spanning 50% of the water column. Variations in the sea surface height of

+ 3.5 m were considered as an extreme, but realistic, case, and the output
signal-to-noise ratio (SNR) and predicted range and depth of the source
were determined from a series of range-depth maximum-likelihood ambi-
guity surfaces. Surface height variation caused a systematic error in range
estimation, such that when the depth was increased due to a wave crest,
the target range appeared shorter than the actual range. The opposite held
for a wave trough. The corresponding calculations of target depth were
consistently biased towards greater depth. Calculations indicated that
small (19) varistions in surface height can cause a lossof up to 15dB in
detection performance at a single time. However, when the computations
are properly normalized and then averaged over time throughout a com-
plete cycle of the wave-height variations, the resulting detection is domi-
nated by the zero wave-height maximum-likelihood surface, and localiza-
tion estimates based upon the position of the main peak are unambiguous.

11:30

AAA13. Normal-mode filtering with orthogonal functions to avoid mode
leakage. Grayson H. Raybom ( Department of Physics and Astronomy,
University of Southern Mississippi, Hattiesburg, MS 39406-5165 and
NORDA, NSTL, MS 139529), George E. loup, Juliette W. loup
(Department of Physics and Geophysical Research Laboratory,
University of New Orleans, New Orleans, LA 70148 and NORDA,
NSTL, MS 39529), and Janet C. Carr (NORDA, NSTL, MS 39529)

Propagation of sound in shallow water is commonly analyzed in terms
of trapped normal modes. The process of normai-mode detection by ad-
justment of the response of individual hydrophones in a vertical array to
match the pattern of a particular normal mode is normal-mode filtering.
Despite the nonorthogonality of the normal modes in the water column,
normal-mode filtering is based on the assumption that the modes are
orthogonal. The error induced by this assumption is known as leakage. It
has been estimated to range from 3% to 10% of a measured mode. In this
paper, the error involved in treating the modes as orthogonal for a variety
of bottom types, water depths, and source frequencies is analyzed, and a
method for avoiding the error is demonstrated. Density and sound-speed
ratios are selected from models fitted to experimentally measured values.
To render the results indicative of a broad range of water depths and
frequencies, use is made of dimensionless variables. Leakages as large as
19% are calculated.

112th Meeting: Acoustical Society of America S$113

FRIDAY AM




result demonstrates that the seasitivity of the MHD transducer is just that
given by the simple application of Faraday's law, in contrast to recent
measurements indicating otherwise {P. H. Moose and R. F. Klaus, J.
Acoust. Soc. Am. 74, 1066 ( 1983) ). This reciprocity technique should be
applicable to calibration of a wide range of transducers, including hydro-
phones and accelerometers. [ Work supported by the Office of Naval Re-
search. |

2:00

L3, Design model of large, uniform, conformal arrays of bender bar and
flextensionsl transducers, G. A. Brigham (Aquasonics, Inc., Anaheim,
CA 92806)

The single element design technology of flextensional and bender bar
transducers is several decades old but use of either type of transducer in
conformal arrays presents newer and more formidable design problems.
When the array is very large the effects of edge diffraction on the outer
elements can be ignored to generate a zeroth ordered waveguide design
model to estimate radiation loading at any steering angle. Highly eccen-
tric shelled flextensionals and bender bar transducers are then included in
one common format. Since both types are largely flexural, they are reso-
nant at frequencies where the interelement spacing is much smaller thana
wavelength in water and only the low-frequency inertial and plane-wave
volume flow components of loading need be determined. Several array
geometries have been studied and the reactive loadings calculated. This
paper shows both the theoretical and numerical results of various mass
loadings as functions of array and element geometry. [ Research support-
ed by the Naval Underwater Systems Center, New London; the Naval
Ocean Systems Center, San Diego; the Electric Boat Division of General
Dynamics. }

2:15

LA. Analysis of radisting flexural shell sonar transducers using the finite
element method. B. Hamonic, J. C. Debus, J. N. Decarpigny (Institut
Supérieur d’Electronique du Nord, 41 boulevard Vauban, 59046 Lille
Cedex, France), D. Boucher, and B. Tocquet® (Groupe d’Etude et de
Recherche de Détection Sous-Marine, Le Brusc, 83140 Six Fours les
Plages, France)

New flexural shell transducers for low-frequency applications are cur-
rently developed which are characterized by a large volume velocity and a
drastic reduction of their resonance frequencies as soon as they are flood-
ed, due to added mass effect. To design these transducers, a finite element
modeling is very useful, because it can accurately handle the assembling of
three-dimensional and shell parts in the same structure, the piezoelectric
driving force, the fluid-structure interaction as well as the radistion
damping. This paper describes the analysis of a test axisymmetric trans-
ducer with the ATILA code [J. N. Decarpigny et al., J. Acoust. Soc. Am.
78, 1499 (1985) ] using dipolar damping elements and a new extrapola-
tion method to obtain the transducer farfield characteristics [R. Bossut ef
al.,J. Acoust. Soc. Am. Suppl. 179,851 (1986) ). In-air resonance modes,
transmitting voltage response and directivity patterns are computed and
compared to messurements, displaying a satisfactory agreement. Finally,
the modeling of s transducer that is built with a glass-reinforced plastic
shell is described, and the corresponding problems and results are dis-
cussed. * Currently at Thomson-Sintra, Chemin des travails, 06802
Cagnes sur mer, France.

230

LS, Array shape estimation via plecewise subarray beamforming. Deanna
M. Caveny, Donald R. Del Balzo, Jeffrey L. Becklehimer (NORDA,
Code 244, NSTL, MS 19529), and George E. Ioup (Department of
Physics and Geophysical Research Laboratory, University of New
Orleans, New Orlesns, LA 70148)

Deformation produced when towing a linear array can remove L-R
ambiguities in conventional beam patterns, provided the beamformer
knows the deformed array shape. In practice, however, this shape is usual-
1y unknown. Thus it is desirsble to have a processor that determines the

8268 J. Acoust. Soc. Am. Supptl. 1, Vol. 80, Fall 1986

shape and uses this information to form the beams. A method which -,
sccomplishes this goal forms beams for subapertures separately assuming
that they are approximately linear. A maximum likelihood estimation

method [M. J. Hinich and W. Rule, J. Acoust. Soc. Am. 58, 1023-1029 ~
(1975)] has previously been used to associate an angle with esch of the -

subapertures. Given the subarray bearing angle they calculated a mean
and a median to estimate the full array bearing angle. In this study, after
the main angle was determined, using conventional methods, a piecewise
linear array was constructed by placing the subarrays together with esti-
mated correction angles. To test the performance of the approximated
array shapes, beamforming was carried out using the new piecewise linear
array and the modeled data for the original deformed array. Systematic
errors were investigated as well as various methods for smoothing the
piecewise linear array.

2:45

L6. Performance of sinusoidally deformed line arvays. Deanna
M. Caveny, Donald R. Del Balzo, Jeffrey L. Becklehimer (NORDA,
Code 244, NSTL, MS 39529), and George E. Ioup (Department of
Physics and Geophysical Research Laboratory, University of New
Orleans, New Orleans, LA 70148)

Previously it has been shown [M. J. Hinich and W. Rule, J. Acoust.
Soc. Am. 58, 1023-1029 (1975); W. S. Hodgkiss, IEEE J. Ocean. Eng.
OE-8, 120-130 (1983)] that deformations of towed arrays from a
straight line shape can produce significant distortions in beam patterns
and errors in bearing estimation if the beamforming assumes linearity. It
has also been shown that a deformed array helps to remove left/right
ambiguities in the beam patterns, provided the beamforming is done with
the correct array configuration. In this work these two effects are studied
for undamped and damped sinusoidally deformed arrays (as observed in
practice) of one, two, and three half-cycles with relatively small array
amplitudes. By use of fixed arc length separations along the array, the
phone (x, y) coordinates are determined numerically for each sinusoidal
shape. The complex pressure fields are modeled for sources at various
locations. Then beamforming is carried out (1) with the known array
configuration, and (2) assuming that the array is linear. Degradations
resulting from assuming linearity and the ability to remove left/right am-
biguities are discussed in terms of reduced gain, angular resolution, and
bearing errors.

3:00

L7. On the design technology of the uncompensated class IV flextensional
trsnsducer. G. A. Brigham ( Aquasonics, Inc., Anaheim, CA 92806)

The air-backed flextensional transducer is stress constrained both in
the shell and the electromechanical bar driver. When Navy type III hard
lead zirconate-titanate ceramic is used, the total amount of bar preload
for depth and power cannot exceed 10 kpsi with allocation an interative
process in the design. The math model consists of three radiating shell
modes together with the bar end velocity at the shell-bar interface. The
design starts with a stress analysis of shell and bar which yields the relative
dimensions of both. These sre input to (a) the shell-bar equation for
mechanical resonance in water to get the shell major axis width, and (b)
the resonant half-power bandwidth equation to get the shell length. All
remaining parameters follow from the sizing, e.g., effective coupling,
weight, and peak acoustic power. This paper shows the design sequence,
the resuits for a uniform elliptic ring used as a baseline, and application to
designing various flextensionals for several new major Navy sonar trans-
mit ATTRY programs.

3:15

LS. Fringe counting demodulator for fiber optic isterferometric sensors,
C. M. Crooker and S. L. Garrett (Physics Department, Code 61 Gx,
Naval Postgraduate School, Monterey, CA 93943)

A demodulation scheme for high sensitivity (1-10 krad regime) fiber
optic interferometric sensors which is based on fringe rate has been devel-
oped. The technique is similar to that utilized in optical shaft encoders.
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A wearsble multichannel signal processor for stimulation of single-
electrode cochlear implants has been field tested with two patients. Each
channel in the processor, which is implemented in a digital signal process-
ing chip, consists of a resonator followed by an instantaneous compressive
nonlinearity. The channel outputs are digitally mixed for use with single-
electrode implants. The resonators perform a spectral-to-temporal trans-
formation of the input signal and the nonlinearities limit output level to
emulate the response characteristics of normal auditory neurons. The
resonator and nonlinearity parameters are adjusted to accommodate both
the acoustic properties of speech sounds and the electrical dynamic range
of the patient. Several processor configurations with different resonator
and nonlinearity designs have been evaluated. The resuits of psychophys-
ical tests, used to fit each processor configuration to the patient and mea-
sure speech performance in quiet and noise with each configuration, will
be reported.

11:30

HH12, Backward and forward masking for direct electrical stimulation
of the VIIIth nerve in two profoundly deaf subjects. L. J. Dent and B.
S. Townshend (Stanford Electronics Laboratories, Stanford, CA 943095)

Two profoundly deaf multielectrode implant subjects were required to
detect a probe signal (10 ms in duration) in a temporal gap between two
pulse-train maskers (each 300 ms in duration). The detection threshold
was measured for a probe centered temporally in the gap, as well as fora
probe offset from center by up to 97.5%. Also presented were the pure
backward and pure forward masking cases. Qualitatively, both subject’s
forward and backward masking functions approximated those observed
for normal hearing subjects {L.L. Elliott, J. Acoust. Soc. Am. 34, 1116-
1117 (1962)] in that forward masking decayed more gradually than
backward masking as a function of probe-masker separation. Because
mechanical (cochlear) contributions to masking [ H. Duifhuis, J. Acoust.
Soc. Am. 54, 1471-1488 (1973)] can be excluded in the case of direct
VIIIth nerve stimulation, these data support the attribution of nonsimul-

THURSDAY MORNING, 19 NOVEMBER 1987

taneous masking phenomena to VIIIth nerve or higher neural mecha.
nisms. (Work supported by NIH.}

11:45

HH13. Channel interactions measured by forward-masked “place”
tuning curves with muitichasnel electrical stimulation. Virginia
M. Kirby (Hearing Research Laboratory, 270-4S-11, 3M Center, Saint
Paul, MN 55144), David A. Nelson (Hearing Research Laboratory,
University of Minnesota, Minneapolis, MN 55455), Sigfrid D. Soli
(Hearing Research Laboratory, 270-4S-11, 3IM Center, Saint Paul, MN
55144), and Todd W. Fortune (Hearing Research Laboratory,
University of Minnesota, Minneapolis, MN 55455)

Simultaneous stimulation of multichannel intracochlear electrodes
can give rise to peripheral and central channel interactions. The ability to
eliminate or predict and control the interactions produced by a given
electrode geometry is a processing goal for optimizing performance with s
multichaanel cochlesr implaat. Previous studies have used loudness sum-
mation and forward-masking pattern techniques to estimate interactions
between channels of electrical stimulation. In this study, interactions be-
tween bipolar channels of analog electrical stimulation were estimated,
using & forward-masking paradigm with a fixed-level, fixed-location
probe. By varying the electrode location of a 200-Hz, 300-ms sinusoidal
masker and determining the level of the masker at each location necessary
to just mask a 200-Hz, 10-ms probe, a “place” tuning curve was derived.
Thelevel of masker required at a given location to mask the probe depends
on the amount of excitation produced by the probe and reflects, in part,
the degree to which there is overlap of neural populations responding to
each stimulus. These “place” tuning curves, which display interactions as
afunction of masker location were determined for several probe levels and
probe locations. Results and implications for speech processing strategies
will be discussed.

UMS 4 AND 5, 8:30 A.M. TO 12:00 NOON

Session I1. Underwater Acoustics V1. Signal Processing for Underwater Acoustics (Précis-Poster Session)

Thomas G. Muir, Chairman
NATO SACLANT Centre, La Spezia, Italy

Chairman’s Introduction—38:30

Contributed Papers
Following presentation of the précis, posters will be on display until 12:00 Noon.

838

1. Nonorthogosslity of measured mormal modes in shallow water.
Grayson H. Rayborn (Naval Ocean Research and Development
Activity, NSTL, MS 39529-5004 and Department of Physics and
Astronomy, University of Southern Mississippi, Hattiesburg, MS 39406),
George E. loup, and Juliette W. loup (NORDA, NSTL, MS 39529 and
Department of Physics and Geophysical Research Laboratory,
University of New Orleans, New Orleans, LA 70148)

The importance of surmounting the nonorthogonality of measured
normal modes and processing shallow-water data in such a way that mod-

872 J. Acoust. Soc. Am. Suppl. 1, Vol. 82, Falt 1987

al compositions are effectively recovered for matched field processing has
been demonstrated by several investigators. The potential for improve-
ment using this technique is greatest when the nonorthogonality of the
measured modes is largest. The amount by which the normal modes fail to
be orthogonal for a variety of ocean bottoms, array lengths and discretiza-
tions, and array positions for the Pekeris model has been studied. Envi-
ronments are selected to reflect sediment types characteristic of the conti-
nental shelf. It has been found that the nonorthogonality is greatest for
water depths and frequencies at and just above modal onsets, for sound-
speed ratios close to {, and for arrays which span only a fraction of the
water column. Judicious placement and length selection for short arrays,
however, can give orthogonal measured modes for some combinations of
frequencies and environments when a small number of modes are pres...t.
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112, Effects of messured mode moworthogonality on comventional
matched fleld processing. Julictte W. loup, George E. loup (Naval
Ocean Research and Development Activity, NSTL, MS 39529-5004 and
Department of Physics, University of New Orleans, New Orleans, LA
70148), Grayson H. Rayborn (NORDA, NSTL, MS 39529 and
Department of Physics and Astronomy, University of Southern
Mississippi, Hattiesburg, MS 39406), Donald R. Del Balzo (NORDA,
NSTL, MS 39529), and Christopher Feuillade (ODSI Defense Systems,
Inc., 6110 Executive Boulevard, Suite 320, Rockville, MD 20852)

As discussed by Raybom er al. (preceding abstract), the potential
improvement achievable from the use of modal filtering in matched field
processing is greatest when the measured modes are least orthogonal. To
assess the ability of matched field processing using a conventional cross-
correlation estimator to realize this potential, ambiguity surfaces for a
Pekeris waveguide have been constructed employing (a) the pressure
fields at the hydrophones and (b) the amplitudes resulting from modal
filtering. The quality of the surfaces is quantified utilizing measures that
compare the height of the source peak above the mean and the height of
the source peak above the standard deviation of the surface. The results
indicate that modal filter processing, for a given array of hydrophones,
offers the most improvement when bottom depth, bottom type, and fre-
quency combine to produce measured modes that are the least orthogo-
nal, and yields no improvement when the measured modes are orthogo-
nal.

843

113, Effects of correlated noise on the cross-spectral matrix ia modal
composition space, George B. Smith, Christopher Feuillade (ODSI
Defense Systems, Inc., 6110 Executive Boulevard, Rockville, MD
20852), and Donald R. Del Balzo (Naval Ocean Research and
Development Activity, Code 244, NSTL, MS 39529-5004)

Computer simulations of hydrophone cross-spectral matrices in a
shallow-water waveguide were generated for signals with different mix-
tures of correlated and white noise. These matrices were then mapped to
modal composition space, a space populated by vectors whose elements
are the amplitudes for the trapped modes. It was found that, in modal
composition space, the cross-spectral matrix is not sensitive to the differ-
ence between correlated and white noise, but is sensitive to the difference
between noise and signal. While the distribution of signal and white noise
among the elements of the cross-spectral matrix is similar before and after
the mapping to modal composition space, the distribution of correlated
and white noise is not. Temporally discrete noise sources, which are corre-
lated at the hydrophones, but not from sample to sample, make little or no
contribution to the off-diagonal elements of the cross-spectral matrix in
modal composition space. This fact has significant implications for
matched field processing in low signal-to-noise situations.

47

I14. Adaptive beamforming or matched fieid processing in media with
uncertain propegation comditioms. A. B. Baggercer, H. Schmidt
(Massachusetts Institute of Technology, Cambridge, MA 02139), W.
A. Kuperman (Naval Research Laboratory, Washington, DC 20379),
and E. K. Scheer (Woods Hole Oceanographic Institute, Woods Hole,
MA 02543)

Adaptive beamforming or matched field processing provides high re-
solution with sidelobe control if accurate replica fields can be generated.
The generation of these replica fields is a formidable problem requiring
knowledge of the complex ocean propagation environment. On the other
hand, the detection problem in the ocean may not require high resolution,
whereas sidelobe controf is still an important issue. Relaxing resolution
requirements suggest that a certain tolerance incorporating uncertainty of
the propagation conditions is permissible, or even desirable, because of the
difficuities both in specifying the medium exactly and in identifying global
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peaks. This possibility of lowering the requirements on our knowledge of
the environment is investigated with two methods: (1) by constructing
multiple beam (constraint) algorithms and (2) by considering stochastic
blurring by the medium. These two approaches are applied to plane-wave
beamforming and matched field processing.

8:51

IIS. Spatial matched processing for multipath propagation.
Matthew Dzieciuch and T. G. Birdsall (Communication and Signal
Processing Laboratory, 4242 EECS Building, Department of Electrical
Engineering and Computer Science, The University of Michigan, Ann
Arbor, MI 48104)

Underwater acoustic propagation is characterized by multipath or
multimode propagation. Ray theory and mode theory are not fully ade-
quate for modeling physical reality. Impulse responses can be more accu-
rately calculated using Gaussian beam theory. Signal processors can be
designed to take advantage of the channel complexity if the propagation is
actually known so that detectability is increased. The proposed technique,
channel matched filtering, synthetically backpropagates the wave front to
a hypothesized source focation. Accurate passive estimates of source locs-
tion can be made without knowledge of the signal characteristics. GB
theory can easily accommodate a range-dependent deep water environ-
ment. {This research supported by the Office of Naval Research.]

8:58

I16. A new technique of acoustic mode filtering in shallow sea. Harish
M. Chouhan and G. V. Anand (Department of Electrical
Communication Engineering, Indian Institute of Science, Bangalore 560
012, India)

A new technique of filtering acoustic normal modes, which overcomes
many of the drawbacks of the earlier techniques, is presented in this paper.
It is based on the fact that each normai mode in an isovelocity channel
comprises a pair of plane waves with characteristic directions of propaga-
tion symmetrically disposed with respect to the channel axis. A vertical
array of equispaced hydrophones is shaded so as to steer nulls in the
directional response of the array along the directions of arrival of plane
waves corresponding to the unwanted modes. All the shading coefficients
are real, leading to simplicity in the hardware realization of the processor.
The shading coeficients are invariant to a shift in the position of the array.
The array need not span the entire depth of the ocean. Efficient filtering is
possible even when the eigenfunctions of the modes have a significant
penetration into the bottom. { Work supported by DOE, Government of
India.]

8:59

117. Matched catastrophe decouvolution with application to the inversion
of marine seismic refraction data. Michael G. Brown (Rosenstiel School
of Marine and Atmospheric Science, University of Miami, 4600
Rickenbacker Causeway, Miami, FL 33149) and Psul E. Bullwinkel
(Applied Measurement Systems, Inc., 1415 S.W. 21st Avenue, Fort
Lauderdale, FL 33312)

The problem of extracting sccurate estimates of the trave! times of
unresolved arrivals (e.g., the second and third arrivals within a triplica-
tion) from a set of noisy bandlimited measurements of a time-dependent
scoustic wavefield is addressed. The method of solution presented is based
on the assumption that the underlying caustic structure (or, equivalently,
the travel time curve structure) of the wavefield is known. Because gen-
eric caustics associsted with causal wavefields take on only certain forms,
this is a weak assumption. Additionally, it is assumed that the medium
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source localization techniques based on mode filtering have been devel-
oped for stratified waveguides. In this paper, some problems of source
jocalization in almost-stratified waveguides are discussed. Specifically,
the Prony method is proposed for source bearing in range-dependent
waveguides. It is found that the Prony method only requires a *local
almost-stratified” condition, which means that within the data sampling
aperture length the field can be treated as adiabatic modes. For most of the
practical interesting cases, this condition can be satisfied quite easy.

2:20

LLA. Extraction of average under-ice reflection amplitudes and phases
with matched field processing. E. Livingston and O. Diachok (Naval
Research Laboratory, Code 5120, Washington, DC 20375-5000)

Average low-frequency under-ice reflection amplitudes and phases in
the central Arctic were extracted from long-range (259 km) signals from
fixed cw sources detected on a long (1 km) vertical array (the FRAM IV
experiment) using conventional [ H. Bucker, J. Acoust. Soc. Am. 59, 368
(1976) ] and maximum likelihood [R. Fizell, J. Acoust. Soc. Am. (to be
published) ] matched field processing methods. Theoretizal computation
of amplitudes and phases for all assumed ranges and depths were based on
the Porter-Reiss [J. Acoust. Soc. Am. 77, 1760-1767 (1985) ] normal
mode code. Under-ice reflection amplitudes and phases were incorporat-
ed into the propagation code and varied iteratively to achieve maximum
signal gain and minimum range and depth errors. The resultant best data-
fitting amplitudes and phases will be compared with expectations based
on under-ice scattering theories and laboratory-scale model experiments.

2:35

LLS. Ventriloquism and spurious sound sources in underwater acoustics.
lan Roebuck (Admiralty Research Establishment, Portland, Dorset
DTS5 2JS., England)

With the increased use of active noise control has come wider aware-
ness that the source distributions generating prescribed sound fields are
not unique. In particular, the possibility of precisely reproducing the field
due to a time-varying monopole by a multipole source (of infinite order)
located clsewhere, has been established. In this paper, the fundamental
physical limitations of carrying out such an *“‘underwater ventriloquism
act” in practice—developing a “constructive” algorithm for the various
multipole coefficients and critena for truncating the process are exam-
ined. It is shown that this is closely related to earlier ideas on the effective
size of “point” sources [I. Roebuck, J. Acoust. Soc. Am. Suppl. 1 69, $87
(1981) | and further that acoustic efficiency limits the extent to which the
transmitting multipole elements can be compacted without destructive
mutual interaction. The manner in which the greater effective size of the
**spurious’ multipole source limits the potential for deception in the pres-
ence of varying boundaries is also analyzed.

2:50

LL6. Space-time processing, environmental-scoustic effects. W.
M. Carey (Naval Underwater Systems Center, New London, CT 06320)
and W. B. Moseley (Naval Ocean Research and Development Activity,
NSTL, MS 39529)

The processing of acoustic waveforms by arrays requires an under-
standing of the temporal and spatial characteristics of signal and noise
fields. Temporal and spatial processing schemes are analogous transforms
that can employ a variety of windows (such as Hann, Hamming, etc.).
However, the ocean environment is a filter that introduces variability toa
signal in both spatial and temporal domains. This randomness is superim-
posed on an ambient sound channel characteristic. [n the case of static
source and receiver combinations, the limits on horizontal broadside ar-
ray resolution are due to volume scattering and surface scattering as long
as the time scale is less than the signal correlation time. However, in the
case of a moving source-receiver, the temporal and spatial scales are cou-
pled through the sound channel characteristic and the fluctuation effects
due to multipath or modal variations must also be considered. This paper
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reviews fundamental environmental eflects and their influence on arrays
in the deep ocean sound channel. [ Work performed while st NORDA. )

3:05

LL7. Passive synthetic arrays. W. M. Carey (Naval Underwater
Systems Center, New London, CT 06320)

Passive-synthetic apertures (W. Carey and N. Yen, J. Acoust. Soc.
Am. Suppl. 1 75, S62 (1984)] were formed with experimental towed
hydrophone data in a sound channel that supported RR and RSR trans-
mission. These apertures were formed with lengths up to 954 with coher-
eut temporal processing gains approaching 0.75 of theoretical. These re-
sults and those of previous investigators [R. Fitzgerald, J. Acoust. Soc.
Am, 60, 752-753 (1976); R. Williams, J. Acoust. Soc. Am. 60, 60-73
(1976) ] indicate that synthetic apertures can be formed by the coherent
summation of the phase-corrected summation of either hydrophone or
subaperture beams over successive time samples when the synthetic aper-
ture length is less than the spatial coherence length and the processing
time is less than the temporal coherence length. The evaluation of synthet-
ic apertures requires comparisons with conventional and other high-reso-
lution techniques. Comparisons between conventional array processing
and high-resolution techniques { maximum entropy (ME) and maximum
likelihood (ML) methods) are performed by use of the analytical expres-
sions developed by A. T. Parsons (AUWE, TN 700/83) for the determin-
ation of the array, integration, and the net processing gains. Analytical
comparisons between conventional and synthetic aperture arrays formed
with cither the same number of hydrophones or with the same effective
length but a different number of hydrophones, show that, when the spatial
processing gain exceeds the loss in integration gain, then the use of syn-
thetic apertures is advantageous. [ Work performed while at NORDA. ]

3:20

LLS. Performance of sinusoidally deformed planar arrays. James
H. Leclere, Donald R. Del Balzo, Deanna M. Caveny (NORDA, Code
244, NSTL, MS 39529), George E. Ioup (University of New Orleans,
New Orleans, LA 70148 and NORDA, NSTL, MS 39529), Jeffrey
L. Beckiehimer, and Donald A. Murphy (NORDA, NSTL, MS 39529)

The investigations of Caveny et al. [J. Acoust. Soc. Am. Suppl. 1 80,
$26 (1986)] are extended for the cases of horizontally and vertically
towed planar arrays. Horizontal and vertical arrays of three lines (64
hydrophones each) and nine lines (28 phones each) are included. In addi-
tion, a nine-line array with five horizontal and five vertical lines (with the
middle line of each in common) is also examined. Horizontal sinusoidal
deformations of one-half cycle (and in some cases two and three haif-
cycles) are applied to each line. Complex pressure fields are modeled for
various source directions for each array using the code BEAMSTATPAK
of Collier (private communication). Beamforming is then done with the
known array configuration and with the assumption that the array is
planar (for selected cases). Degradations resuiting from assuming plan-
arity and the ability to remove left/right ambiguity are summarized as a
function of the source location and the amount of array deformation in
terms of reduced gain and angular resolution. Array performance is also
examined in the presence of 8 realistic vertical noise distribution. [Re-
search sponsored by NUSC.]

3:38

LL9, Sidelobe suppression in correlated multipath estimates. Peter
C. Mignerey (US. Naval Research Laboratory, Code 5122,
Washington, DC 20375-5000)

Some environments cause a8 propagating signal to split along several
different paths. When such multipath propagation occurs, the covariance
among signals traveling along rays emanating from a common source is
expected to be larger than the covariance between signals generated by
independent sources. An estimate of the covariance between signals arriv-
ing from two different directions is shown to be a bilinear form. The ability
of the bilinear form to distinguish a correlated arrival from an indepen-
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" Anderson and Munan |1 Acoust. Soc. Am 38, 1102-1168 ( 1963))
<howed that the directivity index (1) of an infinitely-densely popuinted
spherical shell array was about equal 1o that of a sphere. Extrapolating to
discrete clements, this means the shell requires far fewer elements. They
dul st compute D asiog ssnplitude stading, due (o the inpeacticnd cost
of such systems af that ime. Foday's technology remuves that constraint.
This work revisits the problent with shading, using an approach for choos-
ing the amplitude shading coeflicents that maximizes D1 {11.5.C. Wang,
T Acoust. Soc. Am. 57, 1076~ 1084 (197%5) |. Calcwdations have been made
tor the D1 ol slided cubic volumetric sporys, lonnmmg beasus perpemlicn.
Lar 10 one of its Faces, in the presence of isotropie noise. Results show that
for 27 and 125 element arrays with clemient matrix spacings of 1/2 wave-
length, a full 10 tog (number of clemenis ) can be obtained for DI Werk is
underway to investigate farger arrays and sinaller spacings. The approach
will also be extended 1o nonisotropic naise fields. { Work supported by
NORDA and NOSC exploratory development programs. |

9:00

H7. Least-squares and single-filter always-convergent iterative
deconvolution of transient signals for ~reiation processing. James
H. Leclere. George E. loup,” Juliette W. (oup,” and Robert L. Field
(Code 244, NORDA, Stennis Space Center, MS 39529)

Carrelation processing for distributed sensors is most sccurate for
short puises and those whose autocarrelation is sharply spiked. For longer
transicnt signals. multipath arrivals at each sensor have significant inter-
ference with each other, and it is dillicult to identifly individual areival
times. Deconvolution of the received signal to sharpen the transients is
one method 10 decrease the overlap and increase the accuricy with which
teavel times can be identificd. Deconvolution can also be applied after
croms correkation 1o slapen the amtocorrekition of the transients 1 east-
sgutanes deconvolution is the most commenly used approach for acoustic
stgnals. Tt has the disadvamage of heing compuier intensive when tilters
for long 1ransients are needed. An alternative approach, the single-filter
application of the always-convergent iterative technigue, is faster and pro-
vides variable control for noise. The 1wo lechnigques are compared fore
actual underwater acoustic mubtipath transicnt signals. Single Alter appli-
cation of always-convergent iterative noise remaval s compared (o the use
of a modified Mackman-tarris window for noise control. *' Also at the
Department of Physics, University of New Oileans.

9:05

118. Compnrison of double and tripie cross correlntion (or arrival time
identitiention of amplitude- und frequency-maduinted acou:tic transient
signals. Juliette W. loup, Geurge E. loup,* Robert L. Field, and
James H. Leclere (Code 244, NORDA, Stennis Space Center, MS
39529)

The triple cross corretation of theee <ignals is 3 simultaneous function
of two lags. [Uis an alternative to crass correlations taken two at a tune for
determining the lags for a given source at three distributed sensors. 1t
shouid offer improvement in arrival time identification only when the
statisties of the signal have significant third moment components. In this
strcly, amplitude- and frequency-modulated snythetic tamsient signals
are propagated aver several possibie paths to thiee sensors, and the teiple
correlation of the received pulses computed, as well as the cross correla-
tions of the same three signals two uf a time The eflicacy of these two
approaches is compared for a variety of amplitude- and frequency-modu-
sted transient signals and multipath interlerence conduions. *' Also st
the Deparimemt of Physics, University of New Orleans.

9:10

9. In situ scoustic calibration for a farge aperture array, Darbara
J. Sotirin (Marine Physical Labaratory A-0US, Scripps Institution of
Oceanography, La Jolla, CA 92093)

During September 1987, a large aperture acoustic array was deployed
vertically in the Northeast Pacific to study low-frequency nose in the

ocean. Coherent combination ol the 1 20-channct outputs requises knowl-
edge of individual element amplitude and phase response for accurate
results. Twon situ methods of acray calibranion are described and results
from the September experiment are presented. The first method used
1eansmissions tinn a low.fiequency somce of Kiown location aml power
level. Simulating the conditions encountered duning the transunssion, the
power arriving at the array was predicted by several acoustic propagation
models. By comparing the array responce at specific frequencies to the
respanse predicicd by the mudels, un absolute calibranion was obtained

Anecror curve for the pliase dhiata was geneeted by unwiappang the phase,
accounting for a sampling ollset in the array, and subtracting a multiple
linear regression curve. The second mnethod detertmines relative amplitude
levels by examining the average ambient noise power output of a specified
frequency band across the array. Using spectral, coherence, and direction-
ality plots, the level of self-t.nise iy the nrray was shawn to be below that of
the ambient noise being measured. These two independent methods pro-
vide a consistent set of element calibration values used for array beam.
forming. | Work supported by ONT. |

9:15

1110. Abstract withdrawn,

9:20

H11. Matched-mode processing correctinns for array tilt and bottom
type. James A. Mercer (Applicd Physics Laboratory, University of
Washington, Scattle, WA 98105)

1t a related effort, Homer Nucker has shown that matched-muode pro-
cessing for an unknown sound-speed environment can be significantly
improved if correction factors for the mode-line amplitude functions can
be determined. The correction factors are abtained when a source with
known location is available to calibeate the system. This paper describes
the results of applying the same technigues for simulated cases of un-
known arcay tilt and bottom characteristics.

9:25

18112, Sedl-consistent modeling of signal and noise in a three-dimensionnl
envitonment, fohn §. Perking, W A Kuperman, ami 1° Inpeaito (ULS
Naval Rescaech Laboratory, Code 160, Washington, [DC 20373-3000)

Previous propagation work is exter ded to mode! surface noise, ship-
ping, and signal sources in a fully three-dimensional environment. The
noise cross.spectral densily matris fos a vertical areay is computed as the
stirn of 8 loval contribaution nid propagation from distant sinall patches of
ocean surface. Propagation from any pomnt to the array is made eflicient




(2) how much analig precision in needed in the connectione in the net.
work, (3) the number of training examples the network mast see before
it can be expected to form reliable generalizations, and (1) the efliciency
with which a network extracts information from the training data.

John Denker, Daniel Seliwartz, Hen Wittner, Sara Solla, John Hop-
field, Richard Howard, and Lawrence Jackel, Complex Systems, in press
(1987).

14:42
An Ananlog VLSI Svstem for Neural Network
Learning Experiments DANIEL B. SCHWARTZ and RICHARD E.

HOWARD ALKT Del} Laboratories-

Because the complexity availahle from standard VLSl has grown far be-
yonrd our ability to simulate it, it has become interesting in ite own right.
Adaptive neural network models are an example of a class of complex
systems where a mapping directly onto VLSI is of great practical and
fundamental interest. lowever, the coutinuously variable connections
required for adaption are not easily represented in a digital world. We
are building a collection of analog circuits from standard digital CMOS
with variable strength analog connections based upon charge storage by
a pair of MOS capacitors. ‘Fhe capacitors are tied together hy a string
of FETs, allowing the connection streagth to be monotaonically varied by
moving charge between tnem. Our current designs have 7 bits of ana-
log depth of both polarities. The chips have about 10° connections and
can easily be cascaded to make larger netwarke. The available computa-
tional specd is dominated by i/o bandwidth of the host controller. We
will discuss use of cuch chips and their limitations.

14:54
0183 Bpecific Heat for a Noson Syatem with_Anhar-
mometty. M.S. Wartak, C.Y. Fong, Department of

Physics, University of California, Davis.— — We used the
model Hamiltonian

N
H=Y (b7 b= TBrBI 00+ A (5], b+ biyyd) 1

to study the thermodynamic properties of the one-
dimensional boson system with on-site anharmonicity,
and with A much smaller than ¢. For the calculation
of partition function we have used the path-integral
method. The Dyson equation is solved in the nearest-
neighbor approximation. The resulting expression for
the free energy is evaluated in the static approximation
using the steeprst deacent method. The behavior of spe-
cific heat for different values of ' and A is examined.

15-06

Oig 4

Color_tnduced _Teansitions in_the Presence of a Naulinear
Potentinl, G. P. 18IRONIS, 7. GRIGOLINI, University ol
California, San Diego.-- We show that the negative dilfusion
coelficients exhibited by current approaches to the Fokker-
I"lanck equation for non-Markovian aund bistable processes
result from lnssuminr, that the system re.ichcs a conventional
steady state . Dy lilting this assumption”™ we show that when
n critical value of the noise cotrelation time t is exceeded,
The process of escape over a barrier ngrees with an exact
prediction for the large-t regime and thus that the linear
response approximation behind our theory produces exsct
results for arbitrary correlation times,

1. G. P, Tsironis, P. Grigolini, "Rate processes sctivated by
color noise: Bridging two exact limits’, UCSD preprint

2. 1. Mnasoliver, B. J. West, K. Lindenberg, Phys. Rev. A
35, 3086 (1987) )

Thursday Afternoon

1518

OIRS Surfnce loso in n 'nrabolic-Fquntion Model.
FMARTHA E.M. ItEAD and W. JOBST, Naval Oceanographlc
Office eand FLEANOR S. NOLMES, Science Applicotions
International Corporation. — Ucean-surface loss of
scoustic energy is often given as a function Sl(s) of
the grazing ongle o, If p(z) ta the complex arconat te-
pressure field (from a parnbolic-equation mudel) ns o
function of depth z near the asurface, 8 Fourier trans-
form F(K) of p(z) ylelds pressure as a function of the
vertical wave number K. K {s proportional to ain e,
thus [(£) in a function ((e) of e. We account for the
surface loss by multiplying G(e) by a loas function L(e)
— related to SL(e) — before transforming hack to
physicel spsce. The method also is applicable to bottom
loss. Numerical {mplementation, angular resolution, and
limitstions of the method are discussed. Numerical
examples sre presented,

15:30

018.6 Effects of Nolse on Pressure and Hodal Amplitude
Uneehed Fleld FProcesioxs.* CFORCE H. FRICHIER, 1V,
JULIETTE Y. IOUP, Univ, of New Orleans,** GCEORGE B.
SMITH, Xavier Unjv,, GEORGE E. IOUP,** Unlv, of New
Orleans, CHRISTOPHER FEUILLADE, Syntek, GRAYSON H.
RAYBORN, 1!niv, of Southern Hiss,,** and DONALD DFEL

BALZO, [NORDA--Modal amplitude mntched fleld processing
for acoustic signals received by a vertical acray of
hydrophones {s used to determine the effects of
spatially correlated and uncorrelated noise flelds on
pressure and modal amplitude matct.d fleld processors.
Various amounts of whlte fsotropic noise and spatially
correlatad noism am calculated by a normal mode nolse
model are combined with the fleld due to a submerged

acoustic source to produce simulated cross spectral
matrices. A phone-to-mode space mapping ls then used to
obtain the corresponding cross amplitude correlstion
matrices. Both conventional and maximum likelihood

processing are used. Results shov that spacially
uncorrelsted nnise degrades modal amplitude processors
more than spatislly correlated nolise.

*4Sypported in part by ONR/NORDA Contract NOOO14.87-K-600

15:47

0187 A Review of Underwater Acoustic Urovagation Mudels
o (" y " e 2y v N

i pled I uil-YYay

JOSEPH E. MURPITY, University of New Ordgans, New Qrleans,
LA_70148; STANLEY A. CHIN-BING, Naval Ocean Research
and_Development _Activity, N§TL, MS 39529-3004, --
Underwater acoustics is usually not discussed at APS mieetings,
but rather is confined to peer review meetings. llowever, given
the close proximity of the Navy's lead ocean environmental
RDT&E laboratory, the Naval Ocean Research and Development
Activity (NORDA) located 45 miiles {rom New Orleans, we take
this opportunity to present a review of ocean acoustic propagation
modeling. In the ocean, the index of refraction is variable;
acoustic transmission paths are curved and the coupling of the
refracted, reflected, and diffeacted acoustic tields from
boundaries give rise to cowmplicated classical physics problems.
The prominent acoustic models are based on normal mode,
parabolic approximation, FFT, and odified ray methods., Fach
of these include a limited number of physical mechanisms. We
have therefore developed a coupled full-wave range-dependemt
ocean acoustic propagation and scattering model based on the
finite element method. This model is superior especinlly at low
frequencies. Numerical simmiations will be presented showing the
effect of a fractal under-ice interfnce with ice keel on the fully
coupled range-dependent underwater acoustic field.

1554
0188  Detexmination of Instrwnentation Earamegers for

Optimes Kesolutlon with Dzconvelutiopn, CFORGE E. IT0UP,
ABOLFAZL M. AMINI, and JULIETTE W, JOUP, Untv, of New

orlaana*®--An {mportant design and parameter selection




PERFORMANCE OF SINUSOIDALLY DEFORMED LINE ARRAYS

Deanna M. Caveny,” George E. Ioup,T Donald R. Del Balzo, and James H. Leclere
Naval Ocean Research and Development Activity
NSTL, MS 39529

ABSTRACT

Previously it has been shown that deformations of towed arrays from a straight line shape can
produce significant distortions in beam pattems and errors in bearing estimation if the beamforming
assumes linearity, and that a deformed array helps to remove left-right ambiguities in the beam
patterns, provided the shape is known. In this work these two effects are studied for undamped
and damped sinusoidally deformed arrays with small deformation amplitudes. By use of fixed arc
length separations along the array, the phone (x,y) coordinates are determined numerically. The
error in assuming equal x spacing is shown. The complex pressure fields are modeled using
BEAMSTATPAK of Collier. Then beamforming is carried out (1) with the known array
configuration, and (2) assuming that the array is linear, and array responses are shown for each.
Degradations resulting from assuming linearity and the ability to remove left-right ambiguities are
discussed in terms of reduced gain, angular resolution, and bearing errors. Performance is
reported as a function of deformation, s/1, from 0.0 to 0.3. True peak-ambiguous peak signal gain
differences range to 9 dB for sources at broadside and to just over 2.5 dB for arrivals near endfire.
Shape-unknown degradation ranges to 7 dB at broadside but is less than 1 dB near endfire.

* Present address: Department of Mathematics, University of Colorado, Boulder, CO 80309.
1 Also at Department of Physics and Geophysical Research Laboratory, University of New
Orleans, New Orleans, LA 70148.




INTRODUCTION

Hinich and Rule,! Hodgkiss,2 Bouvet,3 Ginzkey,* and Butler> have shown that deformations
from a straight line shape in the horizontal plane of towed arrays can produce significant distortions
in array response patterns and errors in bearing estimation if the beamformer assumes linearity.
Hinich and Rule! use approximate undamped and damped sinusoidal shapes and report the case of
three and one half cycles of the sinusoid. For the damped case, the damping is such that the
deformation increases as one moves away from the towing platform. I-Iodgkiss2 employs a single
circular arc beginning and ending at a node on the nominal array axis. He discusses errors in
passive ranging as well as those of bearing estimation. Bouvet3 develops a model for large
random array variations with fixed intersensor separations (non- elastic array). He applies the
model to an array in the shape of a circular arc.BA"zﬂLsg' gives a helpful brief review of related
literature. Ginzkey* studies the effects of small two-dimensional random position errors. Butler’
uses a sinusoidal deformation model which assumes equal x spacing of the phones.

In this work the performance of arrays with mainly small deformations in the horizontal plane
into shapes which are commonly observed to occur in practice is examined. The model developed
is capable of treating large deformations as well. The physical basis for the undamped or damped
sinusoidal shape model derives from a harmonically driven damped oscillator. The small steering
corrections of the towing platform provide the driving force. The attachment point of the neutrally
buoyant horizontal array is the origin for this model and it is approximated to be a fixed node.
Because it serves as a useful point of reference, the name tow point will be used for this node.
Since the acoustically active part of the towed array is generally attached to the towing cable by a
vibration isolation module (VIM), the model does not place the first hydrophone at the tow point
but locates it such as to allow for the VIM. The model permits any realistic whole or fractional
number of cycles, amplitude, and damping factor for the array. A drogue is assumed to be
attached to the aft end of the array and thus the damping in this model decreases the deformation as
one moves away from the tow point, in contrast to the model of Hinich and Rule.! The reader is
referred to the works of Lee,% Ketchman,? and Brandenburg? for a more detailed discussion of
array deformation models.

To approximate a sinusoidal shape, Hinich and Rule! use straight line segments between
hydrophones. To calculate the locations of hydrophones for the sinusoidal models without
approximation, however, it is necessary to fix the hydrophone spacing along the array curve for
the determination of the x and y (horizontal plane) coordinates. This modegan elastic array with
varying intersensor separations, overcoming the limitation discussed by Bouvet.3 Figure 1 shows
a sample half cycle sine deformation and the x and y coordinates for the 75th of 128 phones. The
vertical variable z is assumed zero for this study. The method for determining the coordinates




involves the numerical evaluation of the arclength integral. In the limit of small sinusoid
amplitudes, the hydrophones may be assumed to have equally spaced x locations, greatly
simplifying the calculation. A summary of the error in this approximation versus amplitude is
given. For the present work, only the arclength integral method is used, and neither the Butler
assumption of equally spaced x locations nor the Hinich and Rule assumption of straight line
segments between phones is employed.

All acoustic field modeling and beamforming for this study are performed using
BEAMSTATPAK, a package constructed by Collier.? The package generates model cross spectral
matrices for arbitrary hydrophone locations in three dimensions. Although several beamforming
options are available in BEAMSTAPAK, only conventional beamforming is chosen for all
comparisons discussed below.

DETERMINATION OF HYDROPHONE X-Y LOCATION

The natural dimensions for scaling position variables and other length measures in the study of
the deformation of equally spaced hydrophone arrays are the array element spacing, d, and the
design wavelength, A = 2d. Length variables can easily be converted to meters once the
wavelength is specitied, e.g., for a design frequency of 1000Hz and a sound speed of 1500m/s,
A=1.5mand d =0.75m. We assume that the forward VIM has an arclength of 6d, that the VIM
is followed by 128 hydrophones, and that the active array is followed by a drogue for stability.
The first hydrophone is at an arclength d/2 from the point where the VIM connects to the active
array. Therefore the first sensor lies at an arclength of 6.5d along the array from the tow point
origin. Each succeeding sensor is separated by an arclength d along the curve from the previous
one. In Fig. 1 the coordinates are in units of the phone spacing for a half cycle deformed array. A
deformation amplitude of 10d is chosen for the figure to render more apparent the details of the
shape, although this deformation is much larger than those tested in this work.

We then state the problem as follows. Assume that the towed array takes the shape of an
undamped or damped sinusoid. Given a specific number of cycles, the undamped amplitude, and

the amount of damping, determine the (x,y) coordinate location of each phone. An equation for the
array shape can be written as:

yx) = A e sin {=x) , (1)




where the undamped amplitude, A, and the amount of damping, a, are specified. The third
parameter, w, although fixed by the number of cycles, is not known initially. It is to be
determined before the coordinates are calculated.

Consider an undamped sine curve of p cycles. Let L denote the total array length, which is
(N + 5.5) d if there are N phones and the VIM is 6d. Then the arclength between two adjacent
nodes for an undamped array is L/2p. The arclength integral is given by

J': [1 + A2q2cos2gx]'/2 dx , (2)

where q = n/w and u and w are to be determined. As an initial guess, we choose u = L/2p and w
=u in expression (2). Using a numerical integration routine, we evaluate the arclength integral.
The calculated arclength is then compared to the known (desired) arclength to the first node, and u
is adjusted successively, with w = u, until the difference between the calculated and the known
arclength, L/2p, is less than a specified tolerance.

In the damped case, the equal spacing of the zero-crossings (or nodes) is preserved, but the
array length between any two adjacent nodes is no longer a constant. The arclength integral is
given by

u
J [1 + A%e23%(a2sin2qx - 2aq sin gx cos gx + @2 cos? qx)]'2dx. (3)
0

In this case, the upper limit of the arclength integral (i.e., the unknown value u) is chosen to be the
x-coordinate of the last phone. Then the known arclength is the total array length. Initially u is
taken to be L and w = u/2p. The arclength expression (3) is evaluated and u is adjusted, with
w = u/2p, until the integral is close enough to L.

The x-coordinate of each phone is found in a similar fashion except that w is now determined
and u gives the phone x coordinate. The integration is initially from the tow point to the first




phone, or generally from the last known phone location to the adjacent unknown location. The
corresponding y-coordinates are easily calculated from Eq. (1).

If instead one assumes that the x-coordinates are equally spaced with spacing d, the numerical
integration could be avoided. For sine curves with small amplitudes, this assumption may
introduce only small errors. But the magnitude of the error grows with increasing phone number
and increasing array deformation amplitudes. The assumption of this equal spacing always shifts
the x-coordinates in a positive direction, making the array appear longer than it actually is, and the
accumulated error increases more rapidly when the tangent line to the sine curve is steeper. Figure
2 illustrates the absolute value of the error in the x coordinate of each phone as a function of phone
number for arrays with one half cycle distortion of various deformation amplitudes. The
cumulative effect of the equal spacing assumption is evident, especially for the larger array
amplitudes. The deviations of the true x positions from equal x spacing do not become larger than
0.1d (0.05)), however, until the deformation of the array is greater than 2.0d for a half cycle sine

array of 128 phones. Differentiation of Eq. (1) shows that the error in y is less in magnitude than
the x error.

EXAMPLES OF BEAMFORMING IN PLACE AND AS IF LINEAR

Hodgkiss? investigates plane wave beamforming for various source locations and increasing
circular arc array bows. His results are given as array response plots for a beamformer containing
the actual phone locations and corresponding plots for a beamformer which assumes that the
element locations are linear. He does not consider left-right ambiguity removal and his array
response pattemns go over only 180°. Similar studies are conducted here for arrays having
undamped and damped sinusoidal geometries, with the addition of an examination of left-right
ambiguity removal and the calculation of performance curves. Figure 3 illustrates the various array
geometries considered in this study: a) a linear array for reference; b) an undamped half-cycle
deformation with amplitude of 2.13 phone spacings; c) an undamped full cycle deformation with
amplitude of 1.47 phone spacings; d) an undamped cycle and a half deformation with amplitude of
0.87 phone spacings; e) a damped half cycle deformation with maximum amplitude of 1.55 phone
spacings (A = 2.13d and a = 0.0069); and f) a more highly damped half cycle deformation with
maximum amplitude of 0.95 phone spacings (A =2.13 e and a = 0.020). These amplitude and
damping factor values were chosen to produce a value for the undamped cases of 0.3 in the array
shape statistic, 6/A, with o the rms shape distortion as measured from a best fitting straight line,
and values of 0.2 and 0.1, respectively, for the damped cases. The figure shows the first and last
phones and every eighth phone. The first phone is not at zero because of the VIM.




The source azimuths considered in this study are 90°, 45°, and 10° from endfire (broadside =
90°), all at the design frequency and all initially in the horizontal plane. The issue of out-of-plane
arrivals is briefly discussed later, and these arrivals are shown to produce essentially the same
results as the in-plane arrivals. Figure 4 illustrates the array response pattems of these sources for
a linear array over the full 360" azimuthal sector. Note the standard results of beam broadening
away from broadside and the occurance of grating lobes as the signal approaches endfire. Figures
5-7 contain array response patterns for sinusoidally deformed arrays. In each of the latter cases,
beamforming is done with (1) the actual phone locations known and (2) with the incorrect
assumption that the array geometry is linear. The responses shown in Fig. 4 are included so that
the deformed array responses may be compared. Beam powers for all figures are referenced to
zero dB for the linear array response maximum at a given source direction. None of the responses
is given below -30 dB.

In Fig.5, the response for the array shown in Fig. 3b, a half cycle sine curve with A =2.13d,
o/ = 0.3, is given for sources at (a) and (b) 90°, (c) and (d) 45°, and (e) and (f) 10°. In Figs.
5(a), (c), and (e) the array shape is assumed known and the actual element locations are used in the
beamforming. Because the array has almost -he same total aperture as the linear array, the forward
(true) peak is almost identical to the linear response. The ambiguous (false) peak, however, does
not have the same phase delays for the deformed array as the forward peak does, so it is
significantly changed. It has less signal gain, is broader, and is broken up to several local maxima
for the sources at 90° and 45°. While the false peak at -10° (corresponding to a source at 10%) is
somewhat reduced and broadened, it is not broken up in the same way as the others. This is due to
two factors: a) the array has less resolution (wider beams) near endfire than at broadside and b) a
plane wave arriving in a direction close to endfire sees a smaller array deformation than one
arriving at broadside. If, as is generally the case, the array shape is unknown and beamforming is
done assuming the shape to be linear, the responses of Figs. 5(b), (d), and (f) result. The signal
gain is reduced, especially at 90° and 45°, where the response peaks are also split. At 10°, the
reduction in gain is small and the main peak shape is close to that of the linear response, again
because the deformation looks smaller and the beams are wider near endfire.

For the remaining array shapes only the array response to a broadside arrival is shown. The
second and third undamped examples are in Fig.6, while the damped cases are illustrated in Fig.7.
For the undamped arrays, o/A = 0.3, the same value as the half cycle undamped array of Fig. 5.
For the one cycle array, a distortion amplitude, A, of 1.47d gives this 6/A value, while for the
cycle and a half array, A = 0.87d. The general behavior of the responses of the single cycle array,
Figs. 6(a) and (b), and the one and one half cycle array, Figs. 6(c) and (d), is similar to that of the
broadside responses of the half cycle array. For both the Fig.6 cases, however, the false peak in
the shape-known responses and the true and false peaks in the shape-unknown responses are
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considerably more broken with local maxima and minima than the half cycle case. This is because
the deformed array shapes themselves have more structure. In effect, the deformed array is
composed of several nearly-straight subsections, each of which has its own natural direction.
Thus the incident plane wave is resolved into multiple directions.

Since the damped arrays of Fig.7 have smaller values of o/A than the undamped cases, the
responses are closer to the linear array response at broadside than the undamped responses of Figs.
5 and 6. The responses in Figs. 7 (a) and (b) correspond to an array with 6/A = 0.2 (A = 2.13d,
a = 0.0069) and in Figs. 7 (c) and (d) to an array with o/A = 0.1 (A=2.13d, a = 0.020).

The irregular nature of the broken peaks in Figs. 5 through 7 leads to instabilities in such
performance measures as peak height, bearing, and beamwidth because of the difficulty in defining
these quantities. The splitting of the true peak when the beamforming is done assuming a linear
array leads to bearing errors resulting from choosing the largest sub-peak. This suggests that for
arrays which have a large enough aperture to resolve this splitting, it is probably better to find the
centroid of the overall peak, or to fit a smooth analytic shape to it, or to use some other altemative
to choosing the value of highest signal gain for the determination of source direction. Fitting a
smooth analytic shape to the peaks also suggests itself as an approach to dealing with the
instabilities in the peak height and beamwidth measures. Nevertheless, in order to have a
straightforward measure of performance, none of these procedures are adopted for this study.
They may prove crucial, however, for obtaining the best bearing estimate when doing shape-
unknown beamforming.

We note that the shape-unknown responses are all symmetric about 0° in Figs. 5 - 7. To
understand this result, consider the phases at the hydrophones for arrival directions of plus and
minus 6. For the deformed arrays, arrivals from +8 will have, at each phone, a shifted phase A+
from the phase value at a straight line array and arrivals from -9 will have a different shifted phase
A_. These phases will be correctly incorporated into the cross - spectral matrix. The steering
vectors for shape - known beamforming correspond to the actual element locations. For shape -
unknown beamforming, the same cross - spectral matrix is used, since the acoustic fields are taken
to be unchanged. The steering vectors, however, are those corresponding to a linear array. The
phase changes in going to these steering vectors frcm the correct ones are opposite to those in the
cross spectral matrix mentioned above, and thus the plus and minus arrival directions have the
same (incorrect) array response.

Hodgkiss2 shows that the degradations in the beamforming process, with the incorrect
assumption of linearity, increase as the array bow increases for circular arc shapes. The following
sections contain a systematic study of this degradation in terms of loss in signal gain and an
examination of bearing shifts and beamwidth broadening for sinusoidally deformed arrays. The
power losses are graphed versus o/A, where G is the rms deviation of the sinusoidal array




elements from the best fitting straight line. The left-right ambiguity removal is also investigated in
terms of the power difference between the true and false peaks and the beamwidth broadening of
the false peak, both of which are shown as functions of o/A.

LEFT-RIGHT AMBIGUITY RESOLUTION AND LINEAR DEGRADATION

Probably the most obvious change in the array response pattems as they describe a deformed
array is the possible power loss in both the real and ambiguous signal peaks. This loss can be
studied from two different perspectives.

The first considers the "ability” of a given array shape to resolve left-right ambiguities. Both
Hinich and Rule! and Hodgkiss? discuss this advantage of a deformed array over a linear array.
Figure 8 illustrates the power loss in the "secondary,” or ambiguous, peak. This loss is plotted vs
o/A for various array damped and undamped shapes (half cycles, full cycles, one and a half
cycles) and for various source azimuths. The azimuths selected are 10°, 30°, 45°, 60°, and 90° for
the half cycle cases and 10° and 90" for the others. Figure 8 summarizes the results for all shapes
and all azimath angles considered. In Fig. 8 (a) the half cycle damped array performance is given
for left-right ambiguity removal in terms of false peak-true peak power difference in dB versus
o/A. For the damped array o/A may be varied by changing the amplitude or the damping factor.
We have chosen to vary the damping for this performance evaluation. In general, for this and all
cases in Fig. 8, the ability to discriminate an ambiguous peak from a true peak by power difference
is greatest for sources at broadside and decreases to be least for sources close to endfire. This
trend is expected because the left-right phase difference is smaller at endfire. Deviations from this
observation are slight in Fig. 8, and occur because of the instabilities in the broken false peak
maxima discussed earlier. In Figs. 8 (b), (c), and (d) the left-right ambiguity removal performance
for the undamped half cycle, cycle, and cycle and a half are summarized. At broadside, for a given
o/A, the undamped half and full cycles are better (i.e., have greater power difference) at resolving
left-right ambiguity than a one and a half cycle array. An examination of Figs. 5(a) and 6(a) and
(c), however, shows that for /A = 0.3, this advantage in resolution is due mainly to two thin
spikes in a highly broken one and a half cycle ambiguous peak. If an average or curve fit peak is
used instead of the tallest subpeak to measure ambiguity removal this distinction in the difference
performance measure is not expected to be as large.

The second perspective considers the loss in array signal gain which results from assuming that
the array shape is linear. Figure 9 shows the power loss in the source peaks, relative to the linear
peak power, plotted versus o/A, for the same array shapes and azimuthal source directions
considered in Fig. 8. For all cases the degradation is greatest for broadside arrivals, decreasing, in
general, as the angle decreases to become least at 10°. The exceptions, as before, are due to the




irregular qualities of the degraded peaks. As expected, the degradation becomes worse with
increasing array deformations for all shapes. For a given source direction the degradations are
similar for almost all combinations considered, except for differences in the 90° and 60° results.
Only the half cycle undamped and the full cycle performance for sources at broadside track fairly
closely for these arrival angles among the cases examined. The performance at 6/A = 0.3,
however, is identical for all arrival angles for the damped and undamped half cycles because the
{wo arrays are the same. (We note that this is true in Fig. 8 as well.) The damped array has /A
= 0.3 when the damping is zero. To study larger values of o/A for the damped array we would
have had to start with a larger initial amplitude A, or to have chosen to vary A instead of varying
the damping factor, a.

One utilization for performance summaries, such as those shown in Fig. 9, is to determine, as a
function of o/A, if the array element locations need be known or if the beamforming process can
assume a linear array. As an example, given a one cycle deformed array and broadside arrivals, if
no more than a 5 dB loss in signal gain is acceptable, then array element locations are needed when
o/A > 0.2. If no more than - 3 dB loss is tolerable, then the upper limit for assuming linearity is
o/A = 0.13. Note that these limits are a function of array shape and that for broadside arrivals
they are higher for one and one half cycle arrays and lower for damped and undamped half cycle
arrays.

In all of the above cases, the sources are in the plane of the array. The variation of the results
for sources above or below the plane of the array is also investigated. To reduce the number of
cases, a fixed value of o/A = 0.3 is chosen. Arrays of one haif cycle, a full cycle, and one and a
half cycles are considered. Source cases include azimuthal angles of 10° and 90° from endfire,
with an elevation angle of 10°. These results are not plotted because, as anticipated, the dB losses
are only slightly larger than those for sources in the horizontal plane. In all three situations, any
observed change in dB loss is of the order 1 x 10™. (The largest observed change is 3 x 10 dB,
for a full cycle, beamformed as if linear.) These effects should be more pronounced for larger
values of o7/A, i.e., sinusoidal arrays of larger amplitudes, and also for larger elevation angles.

3dB WIDTHS

Other degradations which can arise in the beamforming process for deformed arrays are an
increase in the source peak beamwidth and raised sidelobes. Beamforming with the known phone
locations, however, gives source peaks which correspond closely, in terms of 3 dB width, to those
source peaks which a linear array would produce for the small deformations considered here. For
the ambiguous peaks, on the other hand, the broadening is large and the ratio of the 3 dB width of
the false peak to that of the true peak may be taken as another measure of left-right ambiguity




discrimination. In Fig. 10, we give this ratio, as a function of o/, for all three undamped cases
with broadside arrivals and for the undamped half cycle with a 10" arrival. For broadside
incidence, the ambiguous peak-true peak width ratio increases rapidly with increasing o/A to a
value of 30 to 35 at o/A = 0.3 for all three shapes. It is possible that at small deformations this
ratio may offer improved left-right discrimination in contrast to the difference in signal gain for
sources at broadside in some applications. For the half cycle and a source at 10°, however, the
beamwidth ratio is almost constant at one, versus /A, and so would not serve as a useful
discriminant. The dB widths of the broken ambiguous peaks have been determined as accurately
as possible without recourse to curve fitting and may be subject to small errors.

One can also consider the source peak width for shape - unknown beamforming as a measure of
performance degradation by comparing it to the beamwidth for the source peak in the
corresponding linear array response. Although we do not show these results, significant source
peak broadening may be observed in the shape - unknown response pattems of Figs. 5 through 7.
It should be noted, however, that the shape - unknown source peak widths are smaller for all these
examples than the width of the ambiguous peak in the associated shape - known response.
Therefore, in this limited range of calculations, the ratios shown in Fig. 10 are larger than would
be found on a performance graph for shape - unknown source peak width ratios. This result is not
surprising, since the phase errors for the ambiguous peak are in a sense twice those of shape
unknown beamforming. Performance curves for source peak broadening as a result of assuming
linearity serve as a measure, which, along with the loss in array signal gain, can be used to
determine the largest acceptable value of 6/A for shape - unknown beamforming.

PEAK SHIFTS

For small values of o/A, incorrectly assuming a linear array may resuit in only small dB
losses. In these instances, one may choose to accept this degradation. As Hinich and Rule! and
Hodgkiss2 point out, however, there can still be a bearing error of 1° to 2°. This bearing error
arises from the splitting of the source peak into two or more subpeaks, the largest of which is not
centered with respect to the peak spread. For the deformed array responses shown in this paper,
only damped half cycle responses are included for deformations with o/A less than 0.3. In Fig. 7
(b) 6/A = 0.1 and the peak is already asymmetrical, although not highly broken. For o/A = 0.2
the response shown in Fig. 7 (d) is split into two parts with a minimum between them at the correct
source bearing. The broadside 6/A = 0.3 peaks, shown for various array shapes in Figs. 5 (b)
and 6 (b) and (d), exhibit behavior ranging from a simple splitting into two parts to a highly broken
and irregular shape. Thus it is understandable that even relatively small array deformations lead to
bearing errors as large as approximately haif the source peak width in shape - unknown
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beamforming. Hinichl0 and Bouvet3 (and references cited therein) discuss techniques for
estimating the correct bearing.

CONCLUSIONS

We have shown that it is not difficult to build an algorithm for an exact (to within quantization
and round-off error) model of damped sinusoidally deformed arrays of any whole or fractional
number of cycles. Even though the model is not needed for very small array deformations, which
may simply be calculated using Eq. (1), it is inexpensive enough to use for all deformatiion.

We have also investigated full 360° array responses for a variety of damped and undamped
sinusoidally deformed 128 element arrays, including correct responses and those resulting from an
incorrect assumption of array linearity. Undamped and damped 1/2 cycle arrays and undamped 1
cycle and 1 and 1/2 cycle arrays have been included. By examining various properties of these
response patterns as a function of o/A, for various source directions, we have been able to
summarize their performances both in the shape-known and shape-unknown applications.

In shape-known beamforming, the ability to discriminate true peaks from false peaks increases, as
expected, as array deformation increases. Differences in array signal gain for these two peaks
range up to 9 dB for o/A = 0.3 when the source is at broadside. For arrivals near enrifire,
however, the largest difference is just over 2.5 dB. In shape-unknown beamforming, the
degradation in array signal gain ranges up to 7 dB at broadside but remains less than 1 dB near
endfire.

We have also examined the 3 dB widths for the ambiguous peaks compared to the true peaks in
shape-known beamforming. The ratio of these widths increases rapidly with o/A, reaching a
value of 35 at o/A = 0.3 for the one cycle array at broadside. The shape-unknown peak
broadening is also significant, but less than that of the ambiguous peak, as we have explained.
Near endfire the broadening is negligible for both types of beamforming for the domain of 6/A
considered.

Straightforward measures of array signal gain changes and peak widths are difficult to apply
due to the broken nature of the peaks with the resolution capability of 128 phones. This problem
also leads to errors of bearing estimation. We have suggested various techniques for dealing with
this problem.

The model admits of ready extension to two and three dimensional array geometries, and it is
anticipated that these will be examined in the future.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Figure Captions

The coordinates of a deformed array which is a half cycle of a sine curve. The array
consists of 128 hydrophones and a VIM. The known arclength between two phones is
used to calculate the (x,y) coordinates of each phone. Coordinates are given in units of d,
the phone spacing. The amplitude of the deformation for this case is 10d. The position of
the 75th phone is indicated. Note that different scales are used for the ordinate and the
abscissa.

The absolute error in the x coordinate of the phones resulting from the assumption of equal
spacing d along the x axis. The error is given in terms of the phone spacing, d, as a
function of phone number. The array shape is assumed to be an undamped half cycle sine,
including a VIM, with the indicated total array deformation amplitude for each error curve.
The deformation amplitudes are given as multiples of d and range from 0.5d to 4.0d.

Representative array geometries. The first and last phones and every eighth phone are
shown. Array dimensions are given in units of phone spacings. (a) Linear array; (b)
undamped half cycle, amplitude 2.13d; (c) undamped full cycle, amplitude 1.47d; (d)
undamped cycle and a half, amplitude 0.87d; (e) damped half cycle, maximum amplitude
1.55 at x = 57.5d; (f) damped half cycle, maximum amplitude 0.95d at x = 42.6d.

Linear array responses for sources at (a) 90°, (b) 45°, and (c) 10° from endfire.

Fig. 5. Undamped half cycle (Fig. 3b) deformed array response. Amplitude of deformation is

Fig. 6.

Fig. 7.

2.13d and o/A is 0.3. Responses (a), (c), and (e) are obtained when the correct phone
locations are used, and (b), (d), and (f) result when the arrays are incorrectly assumed to be
linear. Source is at (a) and (b) 90°, (c) and (d) 45°, and (e) and (f) 10°.

Undamped one cycle, (a) and (b), and one and one half cycle, (c) and (d), deformed array
responses for a source at 90°. Deformation amplitude for one cycle is 1.47d and for one
and one half cycles is 0.87d. o/A for both cases is 0.3. (a) and (c) are the responses when
the correct phone locations are used, and (b) and (d) are those corresponding to a linear
array shape assumption. Array shapes are shown in Figs. 3(c) and (d).

Damped half cycle deformed array response for a source at 90°. (a) and (b) are for a shape
determined by A =2.13d, a = 0.0069, and /A = 0.2 (Fig. 3e), while (c) and (d) are for an
array with A =2.13d, a = 0.020, and o/A = 0.1 (Fig. 3f). The array responses for the

14




known shape appear in (a) and (c) while the shape unknown (linear assumption) responses
are in (b) and (d).

Fig. 8. Performance curves for peak height difference in left-right ambiguity removal of deformed
arrays with known element locations. Amount by which left (ambiguous) peak is down
from right (true) peak is given in dB versus o/A for sources at 10° (8), 30° (0), 45° (),
60° (+), and 90° (X). Performance in (a) is for damped half cycle deformed arrays with A
= 2.13d and selected values of o/A achieved by varying a. In (b), (c), and (d), o/A is
adjusted by varying A for one half cycle, one cycle, and one and one haif cycle deformed
arrays, respectively.

Fig. 9. Performance curves of peak height degradation for deformed arrays assumed to be linear.
Loss in array signal gain of deformed arrays is given as the power loss in the source peaks,
in dB, relative to the corresponding peaks for a linear array, versus o/A for sources at 10°
(@), 30° (0), 45° (A), 60° (+), and 90° (X). Performance in (a) is for damped half cycle
deformed arrays with A =2.13d and selected values of o/A achieved by varying a. In (b),
(c), and (d), o7A is adjusted by varying A for one ualf cycle, one cycle, and one and one
half cycle deformed arrays, respectively.

Fig.10. Left - right ambiguity beamwidth discrimination. The beamwidth ratio, defined as the
false peak 3 dB width over the true peak 3 dB width, for deformed arrays beamformed
with array element locations known, versus o/A. Resuits for a one - half cycle array
@), a full cycle array (A), and a one and a half cycle array (X) for sources at broadside.
Results for a half cycle array (O), for a source at 10°.
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Nonorthogonality of measured normal modes in shallow water
Grayson H. Rayborn
Department of Physics and Astronomy
University of Southern Missisisippi, Hattiesburg, MS 39406-5046
George E. Ioup and Juliette W. Ioup

Department of Physics and Geophysical Research Laboratory
University of New Orleans, New Orleans, LA 70148

ABSTRACT

Several investigators have demonstrated that measured mode
nonorthogonality, among other factors, can make processing of shallow
water vertical array data by use of modal compositions an improvement
over processing in the space of the original pressure measurements.
The potential for improvement using this technique is greatest when the
nonorthogonality of the measured modes is largest, although the
success of the transformation to modal amplitude space is governed by
the condition of the transformation matrix. We have cast the Helmholtz
equation for the Pekeris model in dimensionless form and studied the
amount by which the measured normal modes fail to be orthogonal for a
variety of ocean bottoms, array lengths and discretizations, and array
positions. Environments are selected to reflect sediment types
characteristic of the continental shelf using an inverse linear
relationship which we show exists between water-to-bottom density and
velocity ratios for the data of Hamilton. The nonorthogonality is
found to be substantial and to exceed previous estimates for some cases
even when the entire water column is spanned by a dense array. We have
found that matched field processing using modal composition is likely
to offer the most improvement over conventional matched field
processsing for water depths and frequencies at and just above modal

onsets, for sound speed ratios close to one, and for arrays which span




only a fraction of the water column. For full water column span
discrete arrays with one more phone than mode, there is a zone of
orthogonality covering one third to one half the possible depth and

frequency combinations for all cases studied.

INTRODUCTION

Propagation of sound in shallow water is commonly
analyzed in terms of normal modes, i.e., collective oscillations of the
entire body. It is not always remembered that the oscillating body is
composed of the water column and the sediment beneath it, not just of
the water column alone. The importance of these oscillations in sound
propagation in the bottom is more easily understood for those normal
modes whose depth eigenvalurs form a continuum since these modes
correspond to pairs of travelling waves which are largely absorbed and
only partially reflected when they strike and penetrate the bottom, and
these bottom oscillations correspond to the energy lost to the bottom.
The importance of the bottom oscillations for sound propagated by
trapped normal modes is less easily perceived since these modes are
totally reflected from the bottom and therefore largely constitute the
pressure field in the water column at appreciable distances from the
source. Nonetheless, the bottom is oscillating and this oscillation is
important in the sense that the energy in the bottom prevents even the
trapped normal modes from being orthogonal on the water column, a fact
that was recognizea by Pekeris in his seminal study of the transmission

1

of sound in shallow water. Since this early work numerous

investigators have detected, separated, and measured normal modes . 2”7

Despite the emphasis that Pekeris gave to the fact that the




normal modes were orthogonal only when both the water column and bottom
were considered, mode filtering experiments in the past frequently
assumed that the nonorthogonality was not important and approximated
the depth eigenfunctions as orthogonal on the water column alone.
Estimates of the error induced by this assumption have occasionally

been made. Ferris2

has measured the mode nonorthogonality under
unspecified conditions and found it to range from -10 dB to -30 dB of
the measure mode. Clay et al.® have termed this error "mode leakage"
and found it to vary from 3 to 10 percent using a nine-element vertical
array in a water tank with a sand bottom overlying concrete when three
normal modes were present. An important exception to the wusual
assumption of orthogonality is found in the experiments and analysis of
Tindle et al.6 These investigators propose forming a matrix of the
sampled depth eigenfunctions and computing its inverse when the number
of phones and modes are equal. When there are more phones than modes,
they form a square matrix by multiplying by its transpose to extract an
inverse of the resulting depth eigenfunction matrix. The importance of
this inverse has been recognized by recent investigators who term it a
mode filtering processor and use it to map the pressures measured on
the hydrophones into a space which describes modal compostions for the
purpose of estimating the range and depth of sources in waveguides by

matched field processing.s'9

In this paper we review the connection
between nonorthogonality and modal composition space processing and
present a uniform and systematic approach to understanding the degree

of nonorthogonality of the measured modes and, therefore, some of the

conditions under which it is important to use this type of processing.




I. THEORY

A. Nonorthogonality and its relation to matched field processing

In the following we treat the assumption of
orthogonality, not the approximations of the environment and the
solution of the Helmholtz equation, each of which is an important topic
treated elsewhere. Consider a vertical array of N hydrophones when M
trapped modes are present, such that M < N. Let the depth

eigenfunction for the nth

h

mode be U (z) so that the complex pressure

produced by the n®? mode at the nth hydrophone is

Pu(Zg) = Up(zy) bp(ro.zy) (1)

where T, and z_ are the range and depth of the source, b

h

is a complex

o m

multiplicative factor for the n'" mode at this source range and depth,

and z,, is the depth of the nth hydrophone. The form of b, may be found
in standard treatments of solutions of the Helmholtz equation.lo’ll
To determine the modal composition of the measured complex pressure
field, prior knowledge of the environment is wused to calculate a
theoretical depth eigenfunction, Um(z), from the Helmholtz equation by
means of any of several commonly used computer algorithms. The
measured pressure can then be projected onto the calculation of the

measured eigenfunction to give a (r,,z,), an approximation to

bm(ro,zo):

N
an(To 2) = Z,P(zp) Up(zy) - (2)

The integrity of this method is based on the

assumption that the pressure field can be expressed as a linear




combination of these environmentally determined, numerically
approximated eigenfunctions, and that they are orthogonal on the

interval sampled by the hydrophones so that the inner product sum is
N
me’ = nEIUm(zn) Uml (Zn) - Smm. . (3)
The expansion may then be written as
M

If the assumption of orthogonality applies for the
calculated discrete depth eigenfunctions, then the matrix Z, whose

entries are me., is an identity matrix, and

N M
ay = Zp(zg) Uplzp) = 22, by = by . (5)

The M X M matrix Z is not ordinarily an identity
matrix, however, since measured fractional span discrete approximations
to the eigenfunctions are normally not orthogonal. Even so the modal
amplitudes b, can be extracted correctly by computing the inverse of Z,

since z‘lz will still be an identity matrix. In this case we have

M
by = = (Z Y. ag
m’=1
M N L
- 2 (27 ) gpe P(zg) Uge(zy) (6)
m’=1 n=1
and
M
P(zy) = Z Up(zy) by . (N
m=1




]

Tindle et al.® appear to be the first to suggest

an approach to processing which does not rest on the assumption of

orthogonality. They define a matrix U whose mnth

th

entry is the value of
the m-" eigenfunction at the location of the nth hydrophone. Thus, the
columns of this matrix are vectors, each of which is composed of
samples taken from a depth eigenfunction sampled at the hydrophone
locations. This matrix defines a transformation from a vector space of
modal compositions to a vector space of measured complex pressures, as
in Eq. (7) above. Tindle et a1.6 and subsequent investigatorss'9 have
shown that, under certain conditions, there exist significant
advantages associated with using an inverse mapping to go from the
space of measured complex pressures to the space of modal compositions.
The problem with defining an inverse mapping is that the U matrix is

generally not square. The Moore-Penrose pseudoinverse12

may be
calculated to accomplish the inverse mapping, however, and when N > M
it provides the theoretical best least-squares solution for the modal

composition. Hence, as in Eq. (6),
b=-wtny-luotp | (8)

in which we have dropped summation notation in favor of the less
cumbersome matrix form and show the commonly used UfU for the matrix Z,
where t represents the conjugate transpose.

The potential advantage of processing in modal
composition space can be seen by considering the conventional matched
field processor in the complex pressure space, <|pf(ro,zo)p'(r,z)|2>,
with p(ro,zo) the measured or true field wvector and p’'(r,z) the

calculated field vector for a source at (r,z). If this processor is




represented in terms of modal composition vectors, we ‘naves'l3

<iptp’ 1> - pl<p'p’t>p
- obltutrub (9)

where R is the cross-spectral matrix of the complex pressures and
b(r,,z,) is the vector of true modal amplitudes corresponding to the

5 and Yang,9

noise-free measured field. As has been shown by Shang
matched field processing can be considerably improved when it is
performed in the space of modal compositions. This processing is
specified by <|bT(r°.z°)b'(r,z)|2>, with b’(r,z) the vector of modal
amplitudes for a source at (r,z). Writing the innermost product

explicitly in terms of the transformation from pressure space, this

becomes
<iptb' |5 =tz ut pr prtuzlns
-btzlutruzly . (10)

The amount by which the processor in Eq. (10) differs from that
in Eq. (9) is governed by the deviation of Z'l, and hence Z, from the
identity matrix. If, in fact, the measured eigenfunctions are
orthogonal so that Z is the identity matrix, the processors are
identical. The degree of advantage to be gained by proceeding to this
modal composition space processing, then, is determined at least in
part by the degree of nonorthogonality of the measured eigenfunctions.
It is known that the depth eigenfunctions will be orthogonal if they
are densely enough measured on the entire span of water plus bottom.
Because hydrophone arrays rarely extend below the water column and are

usually sparsely spaced, the amount of nonorthogonality among the




modes can vary greatly with environment and array configuration. It is
our purpose to investigate the behavior of the nonorthogonality in
shallow water for bottoms consisting of a variety of sediment types
and for dense and sparse arrays spanning part or all of the water
column. The above discussion does not consider the effects of noise or
nonlinear processing nor the condition number of the transformation,

which governs the degree to which modal compositions can be recovered.

B. Dimensionless Analysis for Normal Modes

We wish to demonstrate the amount of
nonorthogonality in the modes and its effect on the Z matrix by use of
a simple model, one that still permits the insertion of realistic
bottom velocities and densities, parameters whose contribution to
nonorthogonality we wish to investigate. To this end we have adopted
the Pekeris modell with constant velocities in the water column and in
the sediment and no shear in the bottom. The fraction of the
eigenfunction in the water column depends on the wavelengths of the
depth eigenfunctions (the mode wavelengths) in the water column, which
are determined for a given bottom type by the product of the linear
frequency of the source and the water depth divided by the speed of
sound in the water. This fraction, then, does not depend solely on the
depth of the water column nor the frequency of the source. Thus, for
our model, a water depth of 50 m and a source frequency of 100 Hz
produce the same nonorthogonality between modes for a given bottom type
as a water depth of 100 m and a source frequency of 50 Hz if the slight
difference in relative densities due to the depth difference is

ignored. Consequently, to present our results in a form that has the




greatest possible usefulness, we have defined dimensionless variables
by dividing the 1lengths in the problem by ()\/2x), where ) is the
wavelength of the sound in water and cp/w = A/2x. The angular
frequency of the source is w, and c1 is the speed of sound in the water
column. Thus, we make the following definitions:

¢ = wz/cy is the dimensionless distance below the surface, and

a = wH/cy is the dimensionless depth of the water column.

Using the standard separation for the homogeneous Helmholtz

equation with the assumption of cylindrical symmet:ry,14 the equation

for the depth eigenfunctions is
d2u/dz? + (w%/c? - kK DU = d%’2/d22 + k22 - 0 (11)

where k., the separation constant, is the horizontal component of the
wave vector, kz is the vertical component, and c is the speed of sound
in the medium. We use the subscript 1 to denote parameters in the

water column and 2 for those in the bottom. In terms of the newly-

defined dimensionless variables, the differential equation becomes,

2

after factoring out w2/c1

au/ac? + (e2/cy? - kHu - 0 (12)
with K = k (c/w). For the two media this becomes
u/ac? + 1 -KHU = 0 ¢ <a
(13)

du/ac? + (c,2 - kDU = 0 ¢>a

with c, = °1/°2' the relative velocity of sound in the two media.
Since we are interested in trapped modes, we desire solutions for which

°t2 < k% < 1. Application of the usual boundary conditions leads to




discrete values of K and of k = (1 - 1(2)1/2 = (c/w)k,, which satisfy

the transcendental equation

tan kya = - (D k)/[(L - e ) - k212, (14)

where D, = D,/D;, the relative density of the two media (in the
opposite sense to c ). The depth eigenfunctions before normalization

and matching boundary conditions are given by

Um(g') = sin kmg 0<(¢<a 15
Up(6) = exp(-[(L - ¢,.2) - k21M%) ¢ >a

C. Measured normal mode nonorthogonality

As discussed previously, it was recognized by Pekeris that
the orthogonality of normal modes exists on the entire span of water

column plus bottom.!

This orthogonality applies for continuous
eigenfunctions defined on this span. It is therefore expected that
when only the water column, or part of the water column, is sampled
discretely by an array of hydrophones, the measured normal modes will
not be orthogonal. Since our intention is to study this phenomenon, we
next develop equations to calculate nonorthogonality in the Pekeris
model for given bottom types, array lengths and placements, and
distribution of hydrophones in the array.

Since the nonorthogonality may be due to any of the above
causes we suggest the following terminology to describe its sources.
For a dense array which spans the entire water column, the
nonorthogonality is due to neglecting the portion of the eigenfunction

in the sediment, and we use the name "water column span

nonorthogonality.” If only a part of the water column is spanned with

10




a dense array, we refer to the effect as "fractional span
nonorthogonality.” The overlap of differing eigenfunctions due to
approximating a dense array with a sampled array we refer to as

"discretization nonorthogonality," 1i.e., the replacement of the
integral with a Riemann sum. The usual measurement will contain
nonorthogonality due to more than one of these sources, and this work
contains studies when various combinations are present.

Since the measurements due to a dense array are adequately
approximated with a continuous model for the eigenfunctions, we begin

by calculating the nonorthogonality in the integral formulation. The

overlap of any two eigenfunctions on the water column is given by

a
Im = J sin kmg sin knf dac . (16)
0

It is important to normalize this overlap in calculating the
nonorthogonality. There is some arbitrariness in the choice of the
normalization. Since we are only interested in working in the water
column, we choose to normalize by the geometric mean of the areas under
the continuous eigenfunctions involved in the overlap integral. This
gives entries of one on the main diagonal of the Z matrix. It ignores
the fraction of energy which is in the bottom. Bottom abosrption also
affects the amount of each mode present, but transmission loss is not
included here. Our calculated nonorthogonalities indicate the size of
the off-diagonal elements relative to diagonal elements of equal size
because of the normalization used. Since in practice the diagonal
elements are not generally all equal, our results would have to be

scaled with the inverse of the geometric mean of the diagonal elements

11




calculated with normalized eigenfunctions to correspond to the energy
partitioning of the propagating modes. Our normalization corresponds
to that used by Clay et al.® We then define the nonorthogonality

between the modes m and n as

Apgn = Imn/[ImmInn]1/2 . (17)

The integral I has particularly simple form:

sin (km - kn)a sin(km + kn)a (18)
Im = _ m#¥n
2(ky - Ky) 20, + k)
and
Inn - a2 - sin(ana)/l;kn . (19)

For partial span nonorthogonality, we evaluate the integral
of Eq. (16) from a) to a, to obtain
sin (km - kn)az sin(km + kn)°2
2(ky, - k) 2(ky, + kj) (209
sin (km - kn)al sin(km + kn)al m¥n
ey T g T

Im -

and

Inn - 02/2 - sin(anaz)/ltkn

(21)
- a1/2 + sin(2kga1)/4k,

When the number of hydrophones is not dense and the
continuous model no longer suffices, we evaluate instead a sum over
hydrophones to determine the overlap:

N
- 121 sin(kyy) sin(k,$y) ACy , (22)

where N is the number of phones.

12




With these expressions it is possible to investigate
in a systematic fashion the amount contributed to nonorthogonality by
all of the above factors. Since all of the assumptions depend on the
sound speeds and densities in the bottom, of which there are many
possible combinations, it is necessary to limit these variables to a
reasonable number while treating to the extent feasible commonly found
combinations in shallow water. We have found a method using the data

of Hamilton15

to accomplish this, and discuss it in the next section.
For the sound speed and density combinations selected, we then show the
water column span nonorthogonality as a function of a for all modal
combinations through six modes. We then examine for two bottom types
fractional span nonorthogonality as a function of a for dense arrays
which span the top, middle, and bottom half of the water column, as
well as a few other fractional spans. We show one case in which the
array size is held constant as a is varied. Next the discretization
nonorthogonality for full and partial water column span for a dense
array of 25 phones is presented. The sparse array cases range from the

number of hydrophones equal to the number of modes to twice the number

of modes for the largest a’s included.
I1. SOUND SPEEDS AND DENSITIES

Hamiltonl® has studied density and compressional sound velocity
in common marine sediments. We wish to investigate possible relations
between the sound speeds and densities reported by Hamilton for the
purpose of selecting representative cases. To this end we have plotted

the relative density, D defined by the ratio of the density in the

rl
bottom to the density in the water versus the ratio of the sound speed

in water to that in the bottom, c_, in Fig. 1. Although this method of

r’

13




defining sound speed and density ratios is chosen to reflect the way
the quantities appear in the Helmholtz equation, Eq. (13), these
definitions prove fruitful because the data of Hamilton then fall very
close to two straight lines, as shown in Fig. 1. Separate straight
lines have been fitted to (A) the data for the sands and silts without
clays, and (B) the data for the clays with sands and silts, using
weighted linear regression with the weights determined by the errors
given by Hamilt:on.]‘5 The data for the clays were fit by the equation

D, = -4.08 c. +5.50 , (23)
and the data for the sands and silts by

D, = -2.69 ¢, +4.26 . (24)
The absolute densities measured by Hamilton were divided by 1.02293,
the specific gravity of seawater at a depth of 50 m at standard
salinity, to produce the relative densities used in the plots. It
was necessary to fix a water density in order to proceed with the
calculations, and the density at 50 m was chosen as a reasonable
compromise over the continental shelf. Although in general

the relation of density to sound speed is expected to be complcex,16

the
fact that the measurements of Hamilton are characterized by such a
simple relation implies that a significant part of the sediments may be
treated assuming a linear relation between the relative densities and
sound speeds. Several benefits accrue from this assumption. One
advantage is that a few density and sound speed combinations may be
chosen to span the sediments of interest. One might expect results
between these points to vary smoothly from one case to another because

of the linear relationship. The equations which describe the

propagation of normal modes can be reduced by one parameter by

14




employing the relation between the density and the sound speed to
eliminate one of the variables. Finally, the measurements of Tindle et
al.6’7 have shown that it can be difficult to make shipboard
determinations of densities, although sound speeds may be fairly
accurately determined. If it is known that the sediment is among the
types characterized by Hamilton, these relations can possibly be used
to determine densities from measured sound speeds in the bottom more
accurately than they can be measured at sea. The 1laboratory
experiments of Tindle et al.17+7 are done with a sand whose density and
sound speed fall close to the fitted straight line of the sands. This
data point is shown as a triangle in Fig. 1.

The data points of Hamiltonl?

are shown as rectangles in
Fig. 1. The values selected to represent the sand and silt sediments
for the results shown in the following figures are indicated with open
circles. Three values, (0.847,1.96), (0.909,1.79), and (0.926,1.75),
were chosen from the sand and silt straight line using the linear
regression Eq. (24). For the clays the representative value of
(0.990,1.46) was chosen from Eq. (23). More sand and silt sediments

than clayey sediments are chosen because of the predominance of sand

sediments on the continental shelves.
II1I. Measured mode nonorthogonality
A, Full water column span

Water column span nonorthogonality refers to the nonorthogonality
resulting when a dense array spans the entire water column. This
nonorthogonality results because the part of the eignfunction which

extends into the bottom is ignored. In general it is not possible to
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overcome this nonorthogonality without sampling the pressure field in
the bottom, although certain depth, frequency, and environmental
combinations may have modal orthogonality for a specific sampling. The
nonorthogonality for the canonical cases mentioned previously has
been calculated using Eq. (17) for all mode combinations through the
sixth mode, as a function of the scaled depth alpha. The results are
given in Figs. 2-5, which show with a continuous line the percentage
nonorthogonality for each case versus alpha. (The symbols represent the
results for a discrete 25-phone array, which will be discussed later.)
The general features of all four figures are similar. The domain of
the scaled depth alpha from the onset of the second mode to the onset
of the seventh mode differs, however, from one case to the next. These
are the alpha values required to produce all the combinations for
nonorthogonality when six or fewer modes are present. Below the onset
of the second mode there is only one mode present, so no
nonorthogonality exists. Fig. 2 shows the nonorthogonality for the
sand with the highest scund speed and largest density (c, = 0.847, D, =
1.96). Depending on the choice of water depth and source frequency,
the nonorthogonality can be seen to range from approximately 17 percent
at the onset of the second mode to less than a percent for the mode
combinations with the least overlap prior to the onset of the seventh
mode. Nonorthogonality is greatest at the onset of a new mode for the
combinations involving the highest modes. At onset the
nonorthogonalities between the established modes and the new mode
increase with the mode number of the previously present mode.
Nonorthogonalities involving established modes at the onset of a new
mode increase with the product of the mode numbers. The curves of

nonorthogonality occasionally but rarely cross. When they do, they
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always involve a new mode and an established mode and are accomplished
before the onset of the next mode for all cases studied here. Thus,
just before the onset of a new mode the magnitude of the
nonorthogonalities is ordered by the product of the mode numbers.

Further inspection of Fig. 2 reveals that the maximum error
at onset decreases uniformly as the number of the new mode increases.
For example, the maximum nonorthogonality at the onset of the sixth
mode is just over ten percent, compared to the almost 17 percent
nonorthogonality at the onset of the second mode. Both positive and
negative percentages have been given, according to the sign of the
overlap between the two modes. The overlap is seen to be positive for
the n(n - 1) mode combination, and negative for the n(n - 2) mode
combination, and continues to alternate. The relative minimum in the
amount of nonorthogonality occurs just before the onset of a new mode.
The largest value of nonorthogonality before onset ranges from
approximately 3.5 percent below the third mode onset to just over 4
percent below the seventh mode onset.

The next higher velocity sand results are plctted in Fig. 3.
This sand has c, = 0.909 and D, = 1.79. Essentially all the
observations for the previous figure hold for this one, with some
slight changes in the percentages. For example, the maximum error is
almost 18 percent for this case.

Figure 4 shows the results for the lowest velocity sand
considered, ¢, = 0.926 and D, = 1.75. Again changes from the highest
velocity sand discussion are small. For this sand the maximum
nonorthogonality is just over 18 percent.

Although the general features of Fig. 5, the clay-silt-sand
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with Cy = 0.99 and Dr = 1.4608, are similar to the other three figures,
there are several important differences worth noting. The scaled depth
alpha domain needed to cover the region from the onset of the second
mode to that of the seventh mode is considerably greater than that of
the sands. The maximum nonorthogonality is greater by a larger margin
than the small differences among the other cases. The nonorthogonality
between the first and second mode at the onset of the second mode is
over 20 percent. This is the largest nonorthogonality we have observed
for a full water column span with a dense array in the cases
considered. The smallest maximum nonorthogonality at onset, which
occurs at the onset of the sixth mode, is over 13 percent.

The magnitude of nonorthogonality for different mode
combinations depends on the density of the sediment, but when allowance
is made for modal onset the shape and position of the nonorthogonality
curves are very similar. This is illustrated by defining a parameter

y = a(l-¢21/2 (25)
Modal onsets occur at the same value of this parameter since, as Eq.
(14) demonstrates, the onset of a new mode, corresponding to another
root of the equation, is determined by the asymptote of the right side
of the equation, which occurs at kn - [1 - cr2]1/2. Thus the onset of
modes occur for the same value of vy, namely vy = (n - 1/2) x, regardless
of the bottom type. Figure 6, which shows the percentage modal
nonorthogonality as a function of vy, demonstrates that in terms of «v
the nonorthogonalities are nearly the same for all bottom types

studied.
B. Fractional water column span

When only part of the water column is spanned by a dense array
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the nonorthogonality might be expected to be larger than that which
occurs for full water column span. Indeed it 1is found that
nonorthogonalities can approach 100 percent in magnitude when the array
lengths are small. There are, however, isolated occurrences of zeros
in the overlap integral, so some modal combinations can have less
nonorthogonality when measured by a fractional span array than those
resulting from an array that fully spans the water column. In order to
investigate this phenomenon while keeping the number of cases
considered to a reasonable number, we limit our study to the two
examples with extreme velocity/density ratios, the sand with ¢, = 0.847
and D, = 1.96, and the clay with ey = 0.990 and Dr = 1.461.

We consider the fractional water column span
nonorthogonality from three perspectives:

(1) For selected values of the scaled depth a, we show
nonorthogonality as the fraction of the water column spanned increases
with (a) the array centered in the middle of the water column, (b) the
array growing from the top of the water column, and (c) the array
growing from the bottom of the water column.

(2) As a function of the scaled depth a, we show the
nonorthogonality when the top, middle, and bottom half of the water
column are spanned by an array.

(3) For an array chosen arbitrarily to be half the water column
depth at the initial scaled depth a, the nonorthogonality is examined
as a increases and the array length is held constant for arrays
centered in the water column, beginning at the top of the water column,
and beginning at the bottom of the water column. This simulates using

a fixed vertical array in water of increasing depth at constant
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frequency or increasing the frequency for a fixed length array at a
constant depth.

Figures 7 through 12 show sample results corresponding to
perspective (1). The nonorthogonality percentages for arrays growing
outward from the middle of the water column, for scaled depth a values
selected to have six modes present, are shown in Figs. 7 and 8 for the
sand and clay examples, respectively. At the right edge where the
arrays span the full water column, the nonorthogonalities agree with
those shown for these alpha values in Figs. 2 and 5. At the left edge
of the curves, where only 0.05 of the water column is spanned, the
nonorthogonalities are between 90 and 100 percent in magnitude for all
mode combinations. The overlaps between any two modes are not in
general expected to vary monotonically with increasing fraction of o
spanned by the array due to the oscillatory character of the modal
functions. It is not surprising, therefore, that many of the curves of
Figs. 7 and 8 have local maxima, some more than one. The maximum
nonorthogonality present, however, does decrease monotonically as the
fraction of a spanned increases.

The same discussion can be applied to the nonorthogonality
for arrays growing down from the top of the water column, as shown in
Figs. 9 and 10. The major diirerence is that the nonorthogonality
magnitude starts at 100 percent for arrays which span 0.05 of the water
column, and it does not decrease below 90 percent for any combination
until 0.2 of the column is spanned. This result obtains because all
modes have a node at the surface of the water column, and there irs no
cancellation of negative and positive area in the overlap‘ until a node
of one of the pair of modes is reached. Since there is not a node of

the depth eigenfunctions at the bottom of the water column, this
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feature does not appear in Figs. 11 and 12, which show the
nonorthogonality for arrays which grow from the bottom of the water
column. For arrays which grow from the bottom up, the maximum
nonorthogonality decreases more rapidly than it does for the other two
array starting points, although the maximum nonorthogonality does not
decrease monotonically, possessing three local minima. The last local
min;mum, which occurs when the array length spans approximately 94
percent of the water column from the bottom up, has a smaller value for
the extreme nonorthogonality than the full water column span. This
result is one facet of a feature of these figures which is not present
for the other two cases. Because the modal eigenfunctions are
truncated at the bottom before reaching a node, whereas they end at the
top of the water column at a node, an array growing from the bottom
reaches a depth symmetric with the bottom cutoff before reaching the
top of the water column. One would therefore expect that for many mode
combinations the nonorthogonality would increase as the array grows
from this point to the top of the water column. The point at which
many mode nonorthogonalities start to increase for the case in Fig. 11
is at 90% span and for Fig. 12 at about 88% span.

The nonorthogonalities in perspective (2) are shown in Figures 13
through 18. Figures 13 and 14 show the nonorthogonality for arrays
spanning the middle half of the water column as the scaled depth a
increases from the onset of the second mode to the onset of the seventh
mode for the sand and clay examples, respectively. When only half the
water column is spanned, the nonorthogonalities can be much larger than
those of the full water column span, with percentages as high as 85%

observed. The percentages for different modal overlaps vary greatly
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from one to another, and some decrease with increasing a, while others
increase with increasing a. These behaviors can be understood from an
examination of the overlap of the modal eigenfunctions for the two
modes in question as a increases. The results suggest one reason that
arrays spanning a large fraction of the water column are needed to
produce high-quality ambiguity surfaces, as reported by Heitmeyer and

Hamson.l8

There is no a value on these graphs for which large
nonorthogonalities are not present. The sand and clay results are
qualitatively similar, although detailed curve shapes and percentages
differ for some overlaps.

Figures 15 and 16 show the results corresponding to 13 and 14,
but with the array spanning the top half of the water column rather
than the middle. The maximum nonorthogonality is even larger for these
arrays, approaching 100% in the case of the first and second mode
overlap. Whereas the largest nonorthogonalities above the third mode
onset corresponded to negative overlaps for arrays in the middle of the
water column, in Figs. 15 and 16 these occur for positive overlaps.
Again, some nonorthogonalities increase with increasing a and some
decrease.

The last set of graphs for perspective (2) are Figs. 17 and 18,
which show the nonorthogonalities for arrays in the bottom half of the
water column. Maximum nonorthogonalities for arrays in the bottom half
are less than 80% in magnitude. Like the arrays in the middle of the
water column, the largest nonorthogonalities occur for overlaps which
are negative. The curves for the overlaps of the newly onset modes
with the two mode numbers just below them appear to be mirror images of
each other about a line of symmetry which varies from about -37% to

about -30%.
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Finally, perspective (3) nonorthogonalities are presented in
Figs. 19 thru 24. For this perspective an array length is chosen which
spans half the water column at the onset of the second mode. This
array length is held fixed while the scaled depth a is increased. As
new modal onsets are reached, additional nonorthogonalities are shown
on the graph. The increasing of the scaled depth may be viewed as an
increase in frequency or an increase in water depth, as discussed
above. The change in nonorthogonality with frequency and depth could
be an important factor in the design of experiments with fixed array
length. Figures 19 and 20 give the resulting nonorthogonalities when
the constant array has its center at the center of the water column for
all scaled depths, for the sand and clay cases, respectively. Again,
some nonorthogonalities increase with a while others decrease, at least
initially after onset. The nonorthogonalities observed are generally
large, some even approaching 100 percent. The nonorthogonalities of
the first and second modes between themselves, however, are not larger
than 80 percent, in contrast to Figs. 21 and 22, which have the
constant array descending from the top of the water column. For this
case, as might be expected from an examination of the modal
eigenfunctions, the nonorthogonalities between modes one and two are
close to 100 percent over the entire domain of a included. Many other
large nonorthogonalities are also observed for the array at the top of
the water column. Nonothogonalities never become smaller than 20
percent except for a single case at the onset of the sixth mode in the
clay results of Fig. 22. 1In contrast to the nonothogonality behavior
of the arrays which start at the top of the water column, those which

start at the bottom, whose results are given in Figs. 23 and 24, have
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nonorthogonalities which change signs as a increases. This means that
there are regions of a for which some nonorthogonalities are small.
The difference between the top and bottom behavior is explained by the
different boundary conditions at the top and bottom, and the fact that
a node is found in the eigenfunctions at the top of the water column
whereas none of the eigenfunctions terminates in a node at the bottom

of the water column.

C. Discretization

All calculations to this point have been done using a continuous
model, i.e., an integral formulation to evaluate the nonorthogonality.
This model is an excellent approximation if the hydrophones are densely
enough spaced in the array. In all plots presented in this paper, the
number of phones is held constant as a is increased. It is found over
this range of a that the results for 50 phones are graphically
indistinguishable from those of the continuous model. If instead 25
phones are used, the discrete results differ slightly for the highest
modes from those of the continuous model. The 25-phone results are
shown in Figs. 2 through 5 as the plotted points, and they may be seen
to lie on the continuous lines which are the integral results except
for the highest modes, for which they differ slightly. When the number
of hydrophones is reduced to 12, the discrepancy between the dense
array shown by the continuous lines in Fig. 25 and the discrete array
indicated by the symbols, becomes more noticeable. Interestingly, for
this case, the nonorthogonality is less for the discrete than for the
dense array.

When the number of phones is equal to or only slightly

exceeds the number of modes, the discrepancy between the continuous
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array and a full-span six-phone array, shown in Fig. 26, is even more
pronounced. Again, the dense array results are indicated by the
continuous lines and the discrete array by the symbols. When the
number of phones is one more than the number of modes, as is true for a
values from 26.6 to 32.5 in Fig. 26, the nonorthogonality shows an
interesting development. With a discrete array there exists a small
range of a values for which the nonorthogonalities are almost zero for
all mode combinations. 1In this figure, the a range correspondiag to
nonorthogonalities less than 1% is 29.6 to 32.5 at the onset of the
next mode. An implication of this result for matched field processing
will be discussed in later work. After the nonorthogonality reaches a
minimum, which appears to occur just before the onset of the mode whose
number is equal to the number of phones in the array, the
nonorthogonalities of all mode combinations begins to increase rapidly
with increasing a. Similar behavior has been observed for the other
canonical cases. The existence of the large zone of nonorthogonality
suggests that for between one-third and one-half of all water depth and
frequency combinations for the range of a’s studied, a discrete array
can be designed for a given a for which all the measured modes are
orthogonal to within 1%.

For discrete partial span arrays, the difference between
continuous arrays and discrete arrays is generally smaller for a given
number of phones than for full span arrays because the phone spacing is
smaller. Six phone arrays which span half the water column show
differences between discrete and continuous arrays comparable to the

differences for 12 phone arrays which span the full water column.
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SUMMARY

Full Water Column Span

Continuous

As long as there are more phones than modes, nonorthogonality is
greatest near modal onset and decreases smoothly with increasing scaled
depth. At a fixed scaled depth with few exceptions, and these
occurring near modal onset, the greatest nonorthogonality occurs
between modes whose modal numbers form the highest product. Indeed at
a fixed scaled depth, modal nonorthogonalities are nearly ordered by
this mode number product. Finally, although the maximum
nonorthogonality is always greatest between the two highest modes, the
amount of this maximum nonorthogonality decreases with increasing
scaled depth from a maximum of 16% to 20%, depending on bottom type,
for the nonorthogonality between modes two and one, to about 11% to 1l4%

between modes six and five at onset.

Discrete

The nonorthogonality for the discrete case is visually
indistinguishable from the continuous case as long as approximately
twenty-five or more hydrophones are used for the six modes studied. In
general, approximately four times as many phones as modes appear to be
required for this conclusion. For fewer than 25 hydrophones the
discrete results diverge from those for the continuous array, more so
as the number of phones decreases. Surprisingly, the deviation is in
the direction of decreased nonorthogonality for the discrete geometries
tested. The most interesting manifestation of this increase in

orthogonality with sparse spatial sampling is the existence of a domain
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of values for the scaled depth a for which the nonorthogonality between
modes almost vanishes for all modal pairs. For all bottom types
studied, these zones of orthogonality occur just before the onset of
the mode whose mode number is equal to the number of hydrophones in the
array. The existence of the zones suggests that, for a given value of
a, arrays can be designed to have measured mode orthogonality to within

one percent for all modal combinations, over much of the a domain.

Partial Water Column Span

For arrays that span no more than one-half the water column, the
nonorthogonality of all modal combinations is quite substantial, except
for occasional near zero values for certain modal combinations for some
particular fractional water column spans. Arrays that span 20% of the
water column or less typically exhibit strikingly large modal
nonorthogonalities, frequently 60 to 80 percent. Even for arrays that
span as much as 90% of the water column, the nonorthogonality is
increased substantially over the full span case, typically exhibiting
nonorthogonalities of about 20%. These results, which were of course
expected, seem to hold for arrays near the top, middle, or bottom of
the water column. No zones of orthogonality were observed.

When arrays half the length of the water column were examined as
a was increased, large nonorthogonalities were found for all but a few
modal combinations regardless of the scaled depth a used or the
placement of the array in the top, middle, or bottom of the water
column. A curiously symmetrical distribution of nonorthogonalities for
some modal combinations was observed.

These same substantial nonorthogonalities were observed when the

perspective was changed and the nonorthogonalities calculated as the
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actual array length, initially half the water column, was held constant
and the scaled depth a increased. Almost all of the modal
nonorthogonalities, which were 20% or more initially, increased as the
scaled depth increased and the array length became a smaller fraction
of the scaled depth.

Although the discrete cases we tested were limited, the use of a
sparse array, one with only six phones for example, resulted generally
in changes in nonorthogonality of the same order of magnitude as had
been observed previously for 12 phones for full span arrays, as long as
the number of phones exceeded the number of modes.

In conclusion, the largest nonorthogonalities were observed for
partial span arrays, and these arrays are the ones most 1likely to
benefit from proceeding to modal amplitude space for matched field
processing. For full span arrays, the largest nonorthogonalities were
found at 1ind just above modal onset. These locally maximum
nonorthogonalities decrease as the number of modes present increases,
and they tend to be significantly smaller than the nonorthogonalities
found with partial span arrays. A slight increase in
nonorthogonalities was noted as the sound speed ratio approached one

from below.
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FIGURE CAPTIONS

Fig. 1. Relative density, D, = density of bottom/density of water,

versus relative velocity, c. = velocity in water/velocity in bottom.

r
Upper straight line fit to data sands and silts without clays, lower
straight line fit to data for clays with sands and silts. Squares:

15

data from Hamilton; triangle: data from Tindle et al.;U'7 circles:

cases studied below.

Fig. 2. Percentage nonorthogonality versus scaled depth a for a sand
bottom with ¢, = 0.847, D, = 1.96. Vertical dotted lines mark the
onset of each new mode. Solid line for a dense array and symbols for a

discrete 25-phone array. L4 percent nonorthogonality between modes 2

and 1, ® between 3 and 1, O between 3 and 2, ® between 4 and 1,

L1 between 4 and 2, ©O between 4 and 3, Fa between 5 and 1,
4+ between 5 and 2, X between 5 and 3, O between 5 and &,
< between 6 and 1, Bd between 6 and 2, ¥ between 6 and 3,
O between 6 and 4, and ® between 6 and 5.

Fig. 3. Same as Fig. 2 for a sand and silt with c¢_. = 0.909 and D, -

r

1.79.

Fig. 4. Same as Fig. 2 for a sand and silt with c, = 0.926 and D, =

r

1.75.

Fig. 5. Same as Fig. 2 for a clay-silt-sand with c. = 0.990 and D, =

r

1.4608.

Fig. 6. Percentage nonorthogonality versus alternate scaled depth +~.

Circle for sandy bottom with ¢, =~ 0.847, triangle for c, = 0.909, plus




for ¢, = 0.926, and square for c,. = 0.990. Vertical dotted lines mark

the onset of each new mode. Mode numbers may be identified by

comparison to Figs. 2 thru 5.

Fig. 7. Percentage nonorthogonality versus fraction of scaled depth a
for sandy bottom with cp = 0.847, @ = 26.6 (5 modes present), and the

array growing outward from the middle of the water column.

Fig. 8. Same as Fig. 7 for ¢, = 0.990 and a = 110 (5 modes present).

r
Fig. 9. Same as Fig. 7 for the array growing from the top down.

Fig. 10. Same as Fig. 8 for the array growing from the top down.
Fig. 11. Same as Fig. 7 for the array growing from the bottom up.

Fig. 12. Same as Fig. 8 for the array growing from the bottom up.

Fig. 13. Percentage nonorthogonality versus scaled depth a for a sandy
bottom with ¢, = 0.847 with an array which spans the middle half of the

water column.
Fig. 14. Same as Fig. 13 for ¢, = 0.990.

Fig. 15. Same as Fig. 13 for the array spanning the top half of the

water column.

Fig. 16. Same as Fig. 14 for the array spanning the top half of the

water column.

Fig. 17. Same as Fig. 13 for the array spanning the bottom half of the

water column.




Fig. 18. Same as Fig. 14 for the array spanning the bottom half of the

water columm.

Fig. 19. Percentage nonorthogonality versus scaled depth a for a sandy
bottom with ¢ = 0.847 for a fixed length array centered on the middle
of the water column. The dimensionless array length is chosen to span

half the water column at the onset of the second mode.
Fig. 20. Same as Fig. 19 for c, = 0.990.

Fig. 21. Same as Fig. 19 with the fixed length array having its upper

end at the top of the water column.

Fig. 22. Same as Fig. 20 with the fixed length array having its upper

end at the top of the water column.

Fig. 23, Same as Fig. 19 with the fixed length array having its lower

end at the bottom of the water column.

Fig. 24. Same as Fig. 20 with the fixed length array havings its lower

end at the bottom of the water column.

Fig. 25. Same as Fig. 2 except that the symbols are for a 12-phone

array.

Fig. 26. Same as Fig. 2 except that the symbols are for a 6-phone

array.
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THE UNIVERSITY OF SOUTHERN MISSISSIPPI

' l I l PHYSICS & ASTRONOMY

December 19, 1988

Code 244

Building 1005

NORDA

Stennis Space Center, MS 39529

Dr. Anas M. Abo-Zena Qj§§3
V4

Dear Dr. Abo-Zena:

Transmitted herewith is the final report on the
supplement to the University of Southern Mississippi
subcontract to the NORDA contract with the University
of New Orleans number NQ0014-87-K6002. This report
is an analysis of the literature on scattering and
reverberation from wedges in ocean acoustics. As
the report explains, a thorough literature search was
done and the five most important papers were analyzed
and reported. I have not analyzed your own two
papers which make significant contributions to the
field because I do not wish to put myself in the
uncomfortable position of presuming to explain an
author’s own paper to the man himself! Although I
believe the report to be full and complete, 1 will,
of course, be happy to try to answer any questions
you may have. The official report will be submitted
through the University of New Orleans as part of
their final report on the enlire contract. 1 have
informed their Principal Investigator that 1 was
sending a copy of my supplemental report directly to
you as well as to him.

Thank you again for the opportunity of working
with you and 1 look forward to future collaborations.

Yours sincerely,

Grayson H. Rayborn
Professor of Physics & Astronomy

Southern Station © Box 5046 e Hattiesburg. Mississippi o 39406 5046 ©  (6001)266 4934




NORDA/UNO FINAL REPORT

INTRODUCTION

As a supplement to the University of Southern
Mississippi subcontract from the Univeristy of New Orleans
(Board of Supervisors of Louisiana State University and
Agricultural and Mechanical College) of their NORDA Contract
N0O0014-87-K6002, a study of the literature of reverberation
and scattering from wedges on the ocean bottom was performed.
The Principal Investigator for the University of Southern
Mississippi was Grayson H. Rayborn, Professor of Physics and

Astronomy. The work was performed during the summer of 1988.

IDENTIFICATION OF RELEVANT LITERATURE

The literature relevant to scattering and reverberation
from wedges on the ocean bottom was identified by performing
a keyword search at the Maury Library at Stennis Space
Center. The search was conducted on the words: "wedge",
"ocean", and "underwater acoustics"”. The resulting
citations were studied and additional literature of the
author’s own personal knowledge was also studied. Of course,
relevant citations in these papers were also checked until no

new references were found. Thus, the study should be
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reasonably complete, although only the five most important
papers are analyzed in this report. The form of this report
will be first to review the important papers in detail, and
then to assess the present understanding of scattering and
reverberations from wedges on the ocean bottom as expressed
in the literature, and finally to suggest possible areas and

ideas for fruitful continued study.

REVIEW AND ANALYSIS OF RELEVANT LITERATURE

1) F. B. Jensen and W. A. Kuperman, "Sound propagation
in a wedge-shaped ocean with a penetrable bottom”,

Journal of the Acoustical Society of America 67(5),

1564-1566 (May 1980).

This paper utilizes a parabolic equation (PE) method
to investigate the propagation of sound from a point
source, modeled as a gaussian beam in the PE code,
across a constant depth ocean into an ocean sloping
upward at 1.55°. A single frequency source was used
to create three propagating normal modes which
disappeared at depths predicted by normal mode
theory, propagating into the bottom as beams. These

results agree with tank experiments (Coppens and
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Sanders 1978) when the geometry is scaled by the
acoustical wavelength (Coppens and Sanders used

f = 150 kHz), except that experiment showed that the
measured beam angle as the modes disappeared into
the bottom was 20 to 30% lower than the asymptotic
theory, stationary phase angle predicted. Also, the
measured beam angle was approximately 20% higher
than that predicted by the PE model, probably due to
the fact that the critical angle in the experiment
was approximately 28°, while their PE model is
designed to handle forward angles only as great as

200,

The important points disclosed by this article are:

a) A PE model can predict the main features of
up-slope propagation including cut-off
depths and radiation into the bottom;

b) Radiation into the bottom is the principal
energy loss mechanism; there ié little
energy converted into the next l?wer mode ;

c) Thus, mode coupling theories must include

coupling to _the continuum if they are to be

-

at all realistic.

Page 3
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M. J. Buckingham, "Acoustic Propagation in a Wedge-
Shaped Ocean with Perfectly Reflecting Boundaries",

NRL Report 8793, March 19, 1984; 23 pages.

As the title indicates, this paper presents a
solution for the acoustic field produced by a point
source in a wedge-shaped ocean with perfectly
reflecting, i. e., pressure-release, boundarie=.

The solution is presented in the form of a sum of
normal modes and it correctly reduces in the
vicinity of the point source to the free-field
solution for a point source. Interestingly, the
radiation field associated with each normal mode
forms a well-defined beam which diverges as the
energy propagates out towards deep water. This
paper also demonstrates the formation of shadow
zones outside the beam where there is essentially no
energy in the mode. 7The modes are well-ordered with
the inner beam having the highest mode number and
the outer beam the lowest mode number so that the
spatial extent of the sound field in a direction

parallel to the shore line is determined by the
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lowest order mode which is propagating. The author
demonstrates that, to a good approximation, the
number of propagating modes is the integer number of
half-wavelengths of the sound contained in the depth
of water at the source or receiver, whichever is
shallower. In addition to a normal mode integral,
this paper approximates the normal mode integral
accurately as the weighted sum of Hankel functions
of the first and second kind (whose order is the
mode number), a form which is applicable to most
situations encountered in ocean acoustics. Further,
the paper demonstrates that another popular
approximation to the integral (D. L. Bradley and A.
A. Hudimac "The Propagation of Sound in a Wedge
Shaped Shallow Duct", Naval Ordinance Laboratory
Report NOLTR 70-235, Nov. 1970) is inapplicable
precisely in the region of most interest to
underwater ocean acoustics, when the receiver is
less than ten times the distance of the sound source
from the shoreline. The paper concludes by

interpreting the modal beams as rays, with a

criterion for determining when a ray may correspond
to a mode: "the grazing angle of the ray at the

vertex of its hyperbolic path must be the same as

Page 5
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that of the ray corresponding to the mtP mode in
shallow water whose depth is equal to the depth at
vertex". Finally, a simple, physical argument for

the existence of shadow zones is given.

The principal question raised by this paper is how
the solution can be extended to a more realistic
case for ocean acoustics in which the bottom surface
is treated as penetrable rather than perfectly
reflecting (pressure release boundary). The
solution presented in this paper is valid because
the Helmholtz equation for a wedge is separable when
both wedge surfaces are pressure release. The
Helmholtz equation is not separable when one of the
boundaries is penetrable. The challenge left by
this paper is, then, to extend the work to an
interesting, realistic model for ocean acoustics.

It should also be noted Lhat the solutions given are
applicable only to certain angles; namely, those

which are integral sub-multiples of pi radians.

Stewart A. L. Glegg and Jong R. Yoon, "Experimental

measurements of 3-dimensional propagation in a
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wedge~-shaped ocean with pressure release boundary

conditions”, (submitted to the Journal of the

Acoustical Society of America.)

These experiments were done to check the theoretical
analysis of Buckingham presented in NRL «eport 8793
and discussed in the previous paragraph of this
report. The experiments were performed by immersing
a plexiglas tank prismatic in shape and filled with
air in a larger tank which is itself filled with
water. The wedge angle, then, becomes the angle
between the top of the plexiglas tank and the
horizontal surface of the water. Adjustment of the
cables which restrained the buoyant plexiglas tank
then permitted variation in the water wedge angle.
The wedge model in this experiment has a pressure
release bottom and slope and a wedge angle of about
20 degrees. For simplicity of analysis only the
lowest mode is excited by locating the source near
the cut off range. The acoustic field from a point
source in the wedge domain was measured at several
different frequencies and for different wedge angles
and good agreement with the theoretical model was

found. The wedge angles were between one-tenth pi,
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or 182, and one-eighth pi, or 22,5°. Although large
variations in sound level, on the order of 10 dB,
were found for small changes in wedge angle,
subsequent analysis showed that the measurement were
consistent with a linear variation between the sound
levels predicted by Buckingham at angles which were
sub-multiples of pi radians. It was found that for
downslope propagation, the spatial characteristics
of the field in a direction parallel to the shore
line are in good agreement with the theoretical
solution of Buckingham’s and that the azimuthal
extent of the beam does depend on the wedge angle as
predicted. Shadow zones were also found as
predicted. Errors were in the range of 1.5 dB
except in the shadow zones were low signal-to-noise
ratios caused the errors to jump to about 3 dB. In
addition to verifying Buckingham's theory, the paper
also gives measurements of pulse propagation and

distortion in the wedge.

The significance of this paper is that it
experimentally confirms the predictions of the
Buckingham theory including shadow zones and the

spatial extent of the modal beams and demonstrates
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that the theory can indeed be extended to angles
which are not sub-multiples of pi by simple, linear

interpolation.

M. J. Buckingham, "Theory of Three-Dimensional
Acoustic Propagation in a Wedgelike Ocean with a

Penetrable Bottom", Journal of the Acoustical

Society of America 82(1), (1987).

This paper extends Buckingham’s previous results for
a pressure release bottom in a wedge~-shaped ocean Lo
a penetrable bottom in the same geometry in an
approximate fashion. The approximation depends on
the fact that the oscillating modal functions which
do not, of course, reach a node at a penetrable
bottom the way they do at a perfectly reflecting

bottom, do approximately reach nodes some distance

below the penetrable bottom, and the distance is the

same for all modes. The distance below the bottom

at which the nodes form depends in a systematic way
on the character of the bottom. Buckingham's
application of this "common node theory" to the

wedge problem permits him to approximate the wedge
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by another one of the same wedge angle but displaced

so that its apex is farther from the sound source.

The importance of this paper is that it suggests a
means of extending the theory of propagation in an
infinite wedge, albeit in only an approximate
fashion, to the realistic case of a penetrable

bottom.

Herman Medwin, Emily Childs, Edgar A. Jordon, and
Robert A. Spaulding, Jr., "Sound scatter and
shadowing at a seamount: Hybrid physical solutions

in two and three dimensions", Journal of the

Acoustical Society of America 75(5), 1478-1490(1984).

Previous measurements, theories, and discussions of
sound propagating in ocean wedges have assumed that
the wedge was infinite in horizontal extent and that
the bottom eventually met the ocean surface.
Although these are reasonable assumptions to make
when studying the transmission of sound near a
constantly sloping shoreline, this model is of

questionable validity when applied to seamounts
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which are finite in horizontal extent and which may
never reach the surface of the sea. This paper
attempts the more difficult problem of predicting
scattering and diffraction from a seamount. The
particular object of study is the Dickins Seamount
in the Northeast Pacific Ocean (54°232’'N, 136°55'W).
This paper provides scale model experiments and
computer experiments to explain the results of ocean
measurements over this Dickins Seamount reported by

G. R. Ebbeson and R. G. Turner in J. Acoust. Soc.

Am. 73, 143-152 (1983) and N. R. Chapman and G. R.

Ebbeson in J. Acoust. Soc. Am. 73, 1979-1984 (1983).

Three approximations to the actual seamount were
used in the laboratory scale model experiments. A
simple plane wedge, a contour wedge in which slopes
vary along the wedge to express general contour
features of the Dickins Seamount, and a realistic
scale model based on a a detailed bathymetric survey
by the Defense Research Establishment Pacific. In
these laboratory measurements the contour wedge
produced results in somewhat better agreement with
the ocean measurements than did the simple wedge.
Neither, however, was sufficiently accurate so as to

provide a useful model. The authors concluded that
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"...a three-dimensional wave solution is essential
for correct modeling of the effect of Dickins
Seamount." 'The authors also compared propagation
loss measured in the ocean trials under specified
conditions to be 97 + 5 dB with their own hybrid
model of seamount propagation in which they
incorporate the wave phenomena of forward scatter at
the upslope of the seamount followed by diffraction
and reradiation over the crest. The hydbrid model
identified three contributions to propagation loss:
(1) upslope forward scattering loss, (2) diffraction
loss, and (3) an additional refraction loss for the
new path from the seamount to the receiving
hydrophone. The hybrid model also predicts that
diffraction loss is proportional to the square root
of the frequency, a conclusion which appears to be
supported by the ocean measurements.

Finally, this paper reports computer experiments
on three models of the seamount. All models treat
the seamount as rigid since, as a relatively new
seamount, the Dickins Seamount has slopes containing
only a very thin sedimentary deposit. Computer
Model 1 calculated the diffraction loss using a tLwo-

dimensional double diffraction Lechnique Lreating
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the wedge as a wide contour wedge barrier with two
changes of slope. Compavision wilth the laboratory
experimenls of Lhese compuler calculations showed
good Lo excellenl agreement. Model 2 naively
assumed that the crestL of the three-dimensional
seamount is where most of the ma.jor changes of slope
occur and that the crest may be approximated by
crestal line segments of linite length. This model
gave results for diffraction strength that were a dB
or two better than those yielded by the simple wedge
model in laboratory experiments. However, this
crestal segment model slill gave diffraction
strenglh results that were about 10 dB Loo high.
Therefore, this model is too naive to be useful.
Model 3 used accurale changes ol slope along Lhe
track belween source and rveceiver, but did not
properly account for Lhe Lopography one either side
of the divect Lrack. Each Lime the slopes were
estimated and diffraction strength calculated, Lhe
results were within 2 or 3 dB of each other and
always about 2 or 3 dB Loo high. 'The clear
conclusion of the computer model experiments was
that the double diffraction Lechnique permils

accurate compuler calculatious of Lhe di€Cfraction
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loss in the shadow of a two-dimensional seamount and
approximate predictions for the three-dimensional
body. The overall conclusions of the authors was
that hybrid laboratory and computer models could
give accurate estimates of diffraction loss and
shadowing by the Dickins Seamount for sound sources
from 50 to 500 Hz, that the shadow loss varies as
the square root of the frequency, and that the
three-dimensional diffracted signal is significantly

different from the two-dimensional signal.

CONCLUSION

Most of the theories and data on diffraction of acoustic
waves by wedges treat the wedges as infinite in extent. This
model appears to be useful in studies of sound propagation
near shores. The use of common node theory apparently
permits the extension of this theory to penetrable bottoms in
a straight forward, although approximate, manner. The
experimental verification of the theory for the infinite
wedge with pressure release boundaries gives great confidence
that the theory should accurately describe sound propagation

in the ocean near gently sloping beaches. Optimum processing
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techniques remain to be worked out both for detection and for
range and depth localization. The extension of shallow
water, rectangular wave guide matched field processing
techniques to the wedge should certainly prove challenging,
and might decisively determine whether modal processing is
superior to conventional processing. Signal estimation in
this field would also profit from determination of the non-
orthogonality of the modal functions for wedges with various
bottoms as they have been determined by Rayborn, G. loup, and
J. Ioup for the rectangular problem.

However, the work of Medwin et_al suggests that the
theory of propagation in an infinite wedge is of only limited
utility in describing the diffraction over and around a
finite, wedge-like seamount. Their work also indicates that
reasonable prediction of the effect of such seamounts on
propagation loss and their shadowing may be made if detailed
laboratory models and extensive computer simulations are
made.

In conclusion, then, the problem of propagation past
wedge-shaped seamounts is a difficult one, and much work
remains to be done in this field if general inferences about
the effect of such seamounts on acoustic propagation are to

be made.
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