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The first experimental observation of "surface intervalence enhanced"
Raman scattering (not SERS) is reported. The transition giving rise
to the enhancement is a heterogeneous charge transfer between Fe(CN)6

4 "

and colloidal titanium dioxide (Vrachnou, et al. J. Electroanal. Chem.,
1989, 258, 193). Enhancement effects in the scattering spectrum are
interpreteu with the aid of recently developed time-dependent analyses.
From the analyses a complete, quantitative description of charge-
transfer induced vibrational reorganization is obtained (i.e. all force
constants, all normal coordinate displacements, and all single-mode
components of the vibrational Franck-Condon barrier to charge-transfer
are obtained). For the Fe(CN)64-/colloidal-TiO2 system, the most
significant findings are: a) that a total of ten modes are displaced
during interfacial electron transfer, b) that the largest single
disnilacement occurs in a mode associated with a bridginR cyanide ligan&
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Abstract- The first experimental observation of "surface intervalence enhanced"

Raman scattering (not SERS) is reported. The transition giving rise to the

enhancement is a heterogeneous charge transfer between Fe(CN)"' and colloidal

titanium dioxide (Vrachnou, et al. I. Electroanal. Chem., 1989, 2 193).

Enhancement effects in the scattering spectrum are interpreted with the aid of

recently developed time-dependent analyses. From the analyses a complete,

quantitative description of charge-transfer induced vibrational reorganization is

obtained (i.e. all force constants, all normal coordinate displacements, and all single-

mode components of the vibrational Franck-Condon barrier to charge-transfer are

obtained). For the Fe(CN)6
4/colloidal-TiO 2 system, the most significant findings are:

a) that a total of ten modes are displaced during interfacial electron transfer, b) that

the largest single displacement occurs in a mode associated with a bridging cyanide

ligand, and c) that three surface modes (Ti-O vibrations) are activated during optical

electron transfer.
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One of the key requirements in any quantitative description of electron transfer

kinetics, in any environment, is an accurate estimate of internal or vibrational

reorganization energetics.' We have recently shown that complete mode-by-mode

descriptions of vibrational reorganization for selected metal-to-ligand2 and metal-to-

metal (or intervalence)3 charge-transfer events in solution can be obtained by

applying time-dependent scattering theoryO to pre- or post-resonance Raman

spectra.' The quantities obtained are redox-induced normal coordinate displacements

(&), force constants (f) and individual components (x') of the total vibrational

reorganization energy (x). We now wish to report an extension of this methodology

to an interfacial charge transfer reaction.

The reaction chosen was optical electron transfer from Fe(CN) 6' to colloidal

titanium dioxide:7oS

Fe(CN) 64  F(C

Fc(CN)6  ,,M,"M Fe(CN) 6
3  e (1)

Fe(C6- TiO 2  - e(CN)64- TiO2

Fe( e(CN) 6  ee

Following Vrachnou and co-workers, 7 we find that an intense optical absorption

exists (0. - 410 nm, e - 5,000 M j cm-') for the "surface intervalence" charge

transfer reaction in eq. 1. We further find (fig. 1) that Raman scattering spectra can

be readily obtained based on near-resonant excitation (488 nm)9 Control experiments
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at 514.5 nm (nominally preresonant), at 647.1 nm (off resonance), with ferrocyanide

alone, or with colloidal TiO2 alone, all show the scattering in fig. I to be resonantly

enhanced (e.g. enhancement factors of at least 20 for the highest energy modes).'0

The observation of enhancernent is of central importance: within the context of

the time-dependent theory,4' s resonance enhancement (Albrecht A-term scattering)

indicates the displacement of normal coordinates in direct response to the pertinent

electronic transition (in our case, eq. 1). In the simplest case, the quantitative

relationships between scattering intensity (I) and molecular structural changes are:'

1/I, - co, A!/w A (2)

and

X, a 0.5] AA W( /2x) (3)

where co is 2nr times the vibrational frequency and the summation is over all modes

which are significantly resonantly enhanced. If a local mode approximation is

appropriate, absolute bond length changes (I aa I) can also be obtained:2?

U Aa I) U (,Ah/9 0b)' (4)

In eq. 4, gx is the reduced mass and b is the bond degeneracy.

Table I lists the relative intensities, unitless normal coordinate displacements

and bond-length changes obtained for resonance enhanced modes. Absolute A and

aa values were derived by assuming that the changes in length for nonbridging Fe-C

bonds equalled those determined crystallographically for free Fe(CN) 6,-t' 2 Mode

assignments were made by analogy to Fe(CN)6','3 (H3N)sRu-NC-Fe(CN)s
1 -, (H3N)sOs-
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NC-Fe(CN) 1" and related systems, 3 and will be described in greater detail elsewhere.

From the table, a number of points are worth noting: 1) The total number of modes

(or types of bonds) displaced is surprisingly large (ten) indicating that even the

simplest of interfacial redox reactions may entail substantial complexity in vibrational

activation. 2) As seen for related binuclear metal systems (in solution),3 bridging

modes suffer the greatest displacement, with the CuN bridging mode providing the

largest single contribution to the vibrational barrier. 3) Remarkably, three surface

modes are enhanced and therefore displaced during optical electron transfer. This

last observation is unprecedented experimentally and is at odds with most, if not all,

existing theoretical views of interfacial electron transfer.

While the mode assignments in Table 1 are reasonably well established,

questions do arise regarding the possibility of more than one type of binding

geometry (e.g. doubly-bridged) and the degree of protonation of the bound

ferrocyanide. We performed a number of control experiments where: (1) Fe(CN)6'

and colloidal TiO2 concentrations were substantially varied. (2) The pH was varied

between 1 and 3. (3) Multiple excitation wavelengths were used in resonance. (4) An

isotope study using a 7:1 dilution in D2SO 4/D 20 was completed. 4 Interestingly, all of

these experiments led to no change in relative Raman intensities or frequency shifts.

These results, therefore, tend to support the notion that only one type of complexed

ferrocyanide species exists, which apparently is unprotonated, and is bound to

titanium via a single-cyanide ligand."
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Finally, the possibility of unwanted scattering from either a Prussian blue or

titanate/Fe(CN)6' species was considered. We eliminated the Prussian blue problem

by: (a) using Os(CN)6' in place of Fe(CN)6' with similar results, (b) purposely

making the Prussian blue complex which absorbs in the red and showing that it is

not present in our absorption spectrum, and (c) proving that no enhancement occurs

in the Fe(CN)6'/colloidal-TiO 2 solution at 647.1 nm (where Prussian blue would

absorb). The second problem, titanate formation during preparative TiCI4 hydrolysis,

can be effectively eliminated by dialysis.7 This was confirmed by an electrochemical

experiment (supplementary material) in which redox-active Fe(CN)6' (i.e. free or

titanate bound) was shown to be absent from Fe(CN),'/dialyzed-colloid solutions,

but present in intentionally prepared Fe(CN) 6 /titanate solutions."5

Supplementary Material Available: One figure showing differential pulse

voltammograms for Fe(CN),6 /colloidal-TiO 2 and Fe(CN) 6 /titanate solutions.

Ordering information is given on any current masthead page.
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Table 1. Spectroscopic, structural and reorganizatlonal

parameters for electron transfer from Fe(CN)64 to colloidal TiO2.

Mode Relative , 2  I &a I X Assignment
Intensity__ 

_

2118 cm"-' 20.0 0.95c 0.048 A 1000 cm VC.N bridge

2072 6.61 0.33 0.014 340 VCN radial

2058 5.44 0.27 0.026 280 VC.N terminal

720 0.27 0.11 ? 40 ?

598 1.00 0.59 0 .026d 180 VF.Jc

540 0.33 0.24 0.039 60 vFc.C bridge

516 1.12 0.89 e 230 vTi

484 0.90 0.82 e 200 VTi

418 0.56 0.69 e 140 VTi o

364 0.27 0.43 0.059 80 VTi-N

a. Depolarization studies indicate that all modes, with the possible exception of modes at

540 and 720 cm -' (too weak to determine with certainty), are totally symmetric. b. Within

the experimental uncertainty, relative intensities are unaffected by changes in excitation

wavelength. c. All values scaled to the value for A 2 at 598 cm'. d. Taken from (or taken as)

the crystallographically determined value 2 for Fe(CN) 6
4-13". e. Value not determined, since

the measured normal coordinate displacement (A) may entail more than one type of bond

length displacement (i.e., a local-mode approximation may not be appropriate).
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Figure 1. Preresonance Raman spectrum of 0.6 mM Fe(CN),61/5.8g/L TiC)2 colloid

at pH = 2.0 with 488.0 nmn excitation. The asterisk at 656 crnf' denotes

an unenhanced E.mode of TiC)2. The mode at 540 cmf' is real and is

more convincingly resolved in experiments performed at 457.9 nm.
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Supplemental Figure. Differential pulse voltammograms of (A) Fe(CN) 6'/titanate

solution prepared from the outer dialysis water, pH = 2.0, 0.65 mM Fe(CN)64, E1/20x

0.33 V; (B) Fe(CN)6 /Colloidal-TiO 2 assembly prepared from the inner dialyzed

solution. The experimental conditions are as follows: scan/rate = 5 mV s", pulse

amplitude = 5 mV, pulse width = 0.5 sec. The electrode material used was glassy

carbon.


