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THE SHOCK TEST FACILITY
AN EXPLOSIVE-DRIVEN, WATER-FILLED

CONICAL SHOCK TUBE

J.F. Zalesak and L. B. Poch , Jr.
Naval Research Laboratory

Underwater Sound Reference Detachment
Orlando, FL 32806

Shock damage to hull-mounted sonar transducers and related components caused
by exploding ordnance is of great Loncern to the Navy. Consequently, sonar transducers
are required to survive an explosive shock test presently performed at the West Coast
Shock Facility(WCSF) at Hunter's Point, San Francisco, CA. A conical shock tube is
an inexpensive alternative to the WCSF test. Such a shock test facility being developed
at NRL-USRD. The shock tube is a water-filled, conical-bore tube about 8 m long with
an inner diameter of 50 cm at the large end.

A small conical shock tube constructed previously is being used to determine
operating parameters required for the design of a full scale shock tube. The conical
geometry has been chosen because it represents a small solid angle segment of the
spherically expanding field in open water. The charge required to produce a specified
shock-wave pressure in open water is reduced by the fraction of a sphere represented
by the solid angle. The transducer under test is mounted to a piston located in a
cylindrical chamber at the large end of the shock tube. The shock wave resulting from
the explosive propagates down the conical tube and strikes the transducer, producing
the pressure shock. The expanding gas bubble from the explosive then accelerates the
piston along its tube, resulting in an inertial shock. Extensive testing was performed in
the prototype shock tube to establish a proper breech design, and to determine the
amount of explosive needed to reproduce the levels of shock in tests at WCSF. A
comparison of the pressure-shock waveforms and the resulting displacements obtained
at WCSF and in the prototype shock tube is presented. A design of the full-scale shock
tube is also shown.

INTRODUCTION
Naval sonar transducers and related components mounted on the hulls of surface ships and submarines are subjected

to both inertial shock and acoustic pressure shock waves when an ordnance charge explodes underwater near the vessel.
The potential damage and loss of capability is of great concern to the Navy. As a consequence, naval sonar transducers are
required to survive an appropriate test performed presently at the West Coast Shock Facility (WCSF) at Hunter's Point,
San Francisco, CA. In this test, the transducer is attached to the bottom of a Floating Shock Platform (FSP) and test charges
are detonated near the platform in a prescribed series[l]. The transducers are calibrated both before and after the test to
evaluate their susceptibility to shock damage. The tests at Hunter's Point are expensive. In addition, environmental
restrictions have led to a reduction in the number of tests that can be performed. Shock testing machines are available for
testing equipment weighing up to 7,400 lb. However, these shock machines can apply only inertial shock to the equipment
under test. The acoustic shock wave cannot be simulated using these machines. Hydrodynamic shock machines are
available[2] to apply a pressure pulse to a device under test. However, these machines produce a slowly varying pulse devoid
of the high-frequency spectral content of the pressure shock wave, and the inertial component of the shock is absent. An
inexpensive alternative to the Hunter's Point test has become increasingly desirable.

A closed-chamber shock test facility is being developed at NRL-USRD to satisfy this need. Our intention has been
to develop a shock tube of adequate diameter to allow the most commonly-tested sonar transducers to be #.valuated.
Small-diameter shock tubes of this type have been previously described[3], but have been used principally as objects of
study. This tube design allowc e,-posure to both shock-wave pressure and inertial shock in a single test by mounting the
transducer on a piston which moves in a reaction chamber. The shock-tube dimensions and charge weight are chosen to
closely simulate both the peak shock-wave pressure and the FSP's inertial motion during Shot 4 of the heavyweight shock
test schedule of reference 1.
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Fig. 1. Full-scale shock tube design.

The shock tube is a water-filled, conical-bore tube about 8-m long with an inner diameter of 50 cm at the large, or
nuzzle, end (Fig. 1). Fabrication cost effectively limits the chamber size to 50 cm, which is sufficient for mounting a (size
)f transducer) at angles of up to 50 degrees. The environmental constraints of operating such a shock tube are minuscule
:omparcd to the practice of detonating 60 lb of high explosive in an urban estuary, as must be done at WCSF. Shock tube
ests can be performed ith a frequency limited only by the mechanics of opening, loading and filling the tube. In operation,
he tube is mounted horizontally and a small explosive charge (5-20 gm TNT equiv.) is detonated in the breech, or small
liameter end of the tube. This produces the pressure shock wave, which quickly travels down the tube. The transducer
,nder test is mounted on the face of a piston free to slide in a cylindrical chamber, and forms the termination of the tube.
k.fter the shock wave strikes the transducer, the expanding gas bubble from the explosion accelerates the piston into the
:hamber, applying the inertial shock to the transducer.

EXPERIMENTS
A small (15-cm diameter, 3-m length) conical shock tube (Fig. 2) which was built and used in previous experiments

s being employed to determine various operating parameters required in the design of the full-scale shock tube.

Filler[3] showed shock wave pres-
;ure records that have high-frequency
-nergy of broad spectral range superim-
posed on the exponential pressure decay
)f the shock wave. This feature seems to
)e a characteristic of the shock wav
;enerated ;n a conical tube with thick
;teel walls. A potential secondary pres-
;ure pulse resulting from the reflection
f the shock wave from the piston sur-

'ace may be absorbed sufficiently by
:overing the piston surface with a water- N
;oaked cypress wood cap of the proper
;rain orientation[4]. A typical sample of
k shock-wave pressure measurement
nade in the closed tube and recorded
vith a 1/4-in diam. tourmaline disk gage A

,4,

s shown in Fig. 3. The gage output was V"

•ecorded on a digital waveform re-
;order. The estimated peak pressure
)btained for this shot, which was
,enerated from an electric blasting cap Fig. 2. 15-cm diam. shock tube.
f 0.65-grn TNT equivalent, is 2380 psi.
rhe high-frequency energy has a strong
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32oo ,-visual effect on the appearance of the prcssurc-wav signature,
but does not contribute much to the total en-rey in the

2500 spectrum. This signature may be compared with one recorded
2000I! similarly at WCSF at a 30-ft standoff test (Shot 3 of MIL-S-

2000 j 901D), seen in Fig. 4.

500 The inertial shock motion of our reaction chamber piston

0000 was recorded by attaching the core of a 20-in linear variable1 differential transformer (LVDT) to the rear of the sliding
500 ., , ] piston. It was assumed that the mass of the piston and the water

500 4i 1 r ii in the tube would be controlled by the spring rate of the gas
0 ,bubble generated in the explosion. The period of this oscillator

was adjusted by adding mass to the piston. Fig. 5 shows the
-500 0 time history of the piston displacement when the tube is driven-0.40 0.00 0.40 0.8C 1.20 ,.60

Time (ms) by a charge consisting of an E-1A blasting cap and 0.7 gm of
DuPont Detaprime GA. The piston was loaded with ap-

Fig. 3. Shock-wave pressure measurement proximately 200 lb of lead. The inertial shock motion of the
from 15 cm tube. WCSF FSP has been reported previously[51, and is taken to be

a half-sine pulse of approximately 600-ms duration and 16-in 2500

peak displacement. The vertical kickoff velocity for the FSP
has been computed as 10.7 fps. This agrees quite well with
the reported waveform. 2000

Certain problems that arose during the experimenta- o1500
tion have solutions that, at best, consist of compromises. S
The problem of initiating the charge in a safe and convenient 1000
manner still remains. Openings at the breech end of the tube
made to admit firing wires erode rapidly and also form stress ( (V
concentrations. At present, we are running firing lines down o
the length of the tube, where they can be brought out on 0
standard connectors, but must be replaced for every shot. 0 -
The breech is designed with a removable block, which is in
the form of a steel cylinder with a cavity on one face to hold -500

6.20 6.40 6.60 6.80 7.00 7.20 7..'
the explosive. An extensive study was done to find the best Time (ms)

design and the most cost-effective material for this block.
Titanium proved the most durable material, but AISI 1018 Fig. 4. Shock wave pressure at FSP.
steel is the choice when the breech block can be replaced

frequently. Another problem is the vibration that couples into
20.0 the steel tube that then reradiates as sound into the water. This

effect is what causes the shock wave pressure signature to
16.0 appear "noisy". Normally, we estimate the peak pressure level

by the method descibed by Cole[6J, but the additional "noise"
2.0 signal on the decay portion of the curve makes the extrapolation

procedure less exact. We were able to reduce the "steel" portion
E BO of the signal somewhat by mechanically isolating the tube flan-

ges and breech block with elastomeric gaskets, but this greatly

4.0 increased the frequency of blowouts and leaks. Finally, the
o5 problem of corrosion strongly affects the choice of material for

00/ the tube itself. Nickel-aluminum bronze with integrally-cast
o flanges is the material of choice from the point of view of

-40_ strength and corrosion resistance, however the cost is prohibi-
00 800 ,200 1600 tive. Using welded-on steel flanges lowers the cost to an accept-

Time (ms) able range, but creates unsolvable manufacturing difficulties.

Fig. 5. Reaction block motion in 15 cm tube. The best compromise, considering all factors is stainless steel
316L with integrally-cast flanges.
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CONCLUSION
We have proposed a design foi a fill-s4ize shock tube facility that will provide either alternative testing or pre-qualifying

test results to the WCSF MIL-S-901D compliance. As many as four test cycles per work day may be carried out, and at a
fraction of the cost per test.
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