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The dependence of the threshold voltage on acceptor density and neutron

fluence of n-channel AIGaAs/GaAs modulation-doped field effect transistors

(MODFETs) has been described previously. 1- 3  These analyses have, recently,

been extended to describe the dependence of MODFET I-V characteristics on

4acceptor doping density.4. In this work, we have extended the theory further

to include neutron degradation, due to carrier removal and acceptor introduc-

tion, on MODFET I-V characteristics.

It has been previously shown4 that the applied gate voltage as a function

of device geometry, doping densities, and channel charge, ns, for MODFETs is

given by:

Vg = V0  + f(ns ) (1)

where V0 is the difference between the Schottky barrier height and the sum cf

the AiGaAs/GaAs band offset, ctd the potential drop across the doped AIGaAs

layer due to the ionized donors. The function f(ns ) may be written as:

f(ns ) = (qi E) (d + a) (NaW + n.) + CO(NaW + ns)2/3

+ (kT/q)ln(exp(ns/ne) - 1)(2)

where C. is a function of the Planck constant, the carrier effective mass, the

elemental charge, and the permittivity of AIGaAs and GaAs, assumed identical.

CO is equal to -1.7 x 10- 9 V-cm4 / 3 . Similarly, the charge density nc is a

function of physical constants and the effective mass of the carriers and is

equal to -8.4 x 1011 cm 2 .

In the charge control model, I-V characteristics are determined by sub-

stituting V - Vc(x) for V in Eq. (1), inverting the result, by using

Eq. (2), to find n. as a function of Vc(x). Then, the current is calculated

by substituting tLe rcs,1lt for n,(x) in terms of V and Vc (x) into the

relationship for the current at position x in the chnei [I(x) q'n (x)dVc

(x)/dx; where P is the mobility], and integrating over the channel length 5 . 0
In the subthreshnld and saturation rewions. qnnrox.r,,ti ns t(,r ifn) allow a .i

straightforward inversion of Eq. (1) for this purpose 6 , . -- ,
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However, there is a region in channel charge density over which neither,

tho subthreshold nor the saturation approximations apply. Because the inte-

gration for the current is performed over the voltage in the channel as well

as over the channel length, an approximation which is continuous in the volt-

age may be inverted to explicitly determine the channel charge in terms of the

channel voltage, and reasonable approximates of f(ns ) over the region must be

determined. To this end we have derived a piecewise approximation for f(n s )

over this region which allows inversion of Eq. (1).

Using this piecewise approximation, the charge control model may be used

to calculate the I-V characteristics. A complication arises in the applica-

tion of the charge control model because, for various values of the applied

gate and drain-source voltages, different regions of the channel may have

charge densities that must be calculated by different approximations to

f(ns). Therefore, the current equation must be integrated in a piecewise

fashion. Th2 results for the drain-source current as a function of drain-

source voltage and gate voltage, using the piecewise approximation, have been

discussed elsewhere.
4

Neutron degradation of the I-V characteristics may be accounted for, by

carrier removal, acceptor introduction, and mobility degradation. The effects

of carrier, removal and acceptor introduction may be incorporated in the model

by substitution of an effective donor density, N d and effective acceptor

density, N ", where:a

Nd' = Nd - ad € (3a)

Na ' = Na + aa 0 (3b)

N a is the pre-irradiation acceptor density, Nd is the pre-irradition donor

density, ad is the carrier, removal rate, aa is the acceptor introduction rate,

and is the neutron fluence. The effects of neutrons on mobility may be

atc';ntcd fct by an expression of the form:

, (1 + K 4 ) (4)
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where Vf and i are the post- and pre-irradiation mobilities, respectively,

and K is the neutron mobility damage constant. Using Eqs. (3a), (3b), and

(4) in our piecewise model yields post-irradiation results for MODFET I-V

characteristics from subthreshold to saturation.

We have applied our model to the analysis of the I-V characteristics of

neutron-irradiated MODFETs. Shown in Figure 1 is the ratio of the post- to

pre-irradiated source-drain current versus neutron fluence. The applied gate

and soure-drain voltage was 0.4 volts (the peak of the transconductance) and

2 volts, respectively. Uncertainties on the data represent one standard devi-

ation. Relevant device parameters are listed. The solid straight line is the

result of a linear regression analysis of the data. This result is included

for comparison to highlight the point that the data and the theory show a

nonlinear dependence of the source-drain current degradation on neutron

fluence.

The dotted curve is the result of the piecewise I-V model using an

acceptor introduction rate of 0.67 cm-I 1 which is consistent with, although

slightly higher than, acceptor introduction rates used previously 3 . Mobility

degradation was measured by Hall measurement and yielded a value of 2.32

10-16 cm2 for K in Eq. (4). Degradation due to carrier removal, Eq. (3a),

is negligible compared to the effects of acceptor introduction and mobility

degradation. Closer scrutiny of the theoretical results have shown that at a

neutron fluence of 1 x 1015 cm-2 , about two-thirds of the degradation is due

to mobility degradation and that the remainder is due to acceptor introduction

in the GaAs channel.

Shown in Figure 2 are the theoretical and experimental results for the

ratio of the post- to pre-irradiation transconductance vs neutron fluence

nonlinear dependence of neutron fluence. About two-thirds of the transcon-

ductance degradation at a fluence of 1 x 1015 cm-2 is due to a decrease in the

mobility, which is consistent with the source-drain current degradation. The

remainder of the degradation is due to acceptor introduction.

The theoretical results fit the data remarkably well even though we have

neglected suui, e and drain resistances in this first order version of the

model. We expect that inclusion of the source and drain resistances will

3
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Figure I. Ratio of Post- to Pre-irradiation Source-Drain Current vs Neutron
Fluence. The solid line is a linear fit to the data. The dotted
line represents the theoretical results using the triangular-well,
one-subband, depletion layer model. This model has been extended
to describe 1-V characteristics from subthreshold through satura-
tion and includes neutron degradation due to carrier removal and
aceptor introduction.



1.05

1 .00

0.95 --- THEORY

0.90
E

P 0.85 -
E

0.80 '-
NA= 5 x 1014cm-3

0.75 ACC INTRO RATE: 0.67 cm1

!10 = 4500 cm 2/V-s

0.70

0.65 I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NEUTRON FLUENCE [10 15/cm2]

Figure 2. The Ratio of the Post- to Pre-irradiation Transconductance vs
Neutron Fluence. The dotted line is the output of the zero source-
drain resistance model described in the text.
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improve the theoretical results, especially in the high fluence region. The

reason for this is shown in Figure 3, in which we have plotted the source-

drain resistance vs neutron fluence (and in the insert the end resistance vs

fluence). As the neutron fluence increases so does the resistance (the soid

lines are parabolic fits to data included to guide the eye). We expect,

therefore, the theoretical curves in Figures 1 and 2 to show more degradation,

due to the increased resistance, particularly at the higher fluences.

Therefore, the data may be simulated using a lower acceptor introduction rate,

which is more in keeping with the value of 0.5 cm- 1 cited in the literature.

Also, pre-irradiation theoretical I-V characteristics will improve. For

example, the zero resistance model predicts a pre-irradiaton current of -8 mA

for the bias conditions considered. The experimental results yield a value

of -2 mA. Including source and drain resistance will decrease the theoretical

results in keeping with the experimental pre-irradiation results. We are in

the process of including source and drain resistances in both the pre- and

post-irradiation model.

In summary, we have developed a piecewise MODFET model that may used to

describe I-V characteristics of these devices from subthreshold through

saturation. The model has been extended to describe neutron degradation of

MODFET I-V characteristics. We are unaware of any attempts to model the I-V

characteristics of these devices over the whole range of bias conditions, much

less include neutron degradation from subthreshold to saturation.
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Figure 3. The Source-Drain Resistance vs Neutron Fluence. (Insert: the end
resistance vs neutron fluence.)
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