
DTC FILE Cbpy

LABORATORY COMMAND

CONTRACT REPORT NUMBER

PREPARED FOR THE

lq" HUMAN ENGINEERING LABORATORY
tad BY

VAdvanced Decision Systems
1500 Plymouth Street

Mountain View, California 94043-1230

August 1989

INTERACTIVE MODEL BASED VISION SYSTEM FOR

TELEROBOTIC VEHICLES

Contract No. DAAl5-88-C-0054

(ADS TR-3221-01)

Al. DTIC
ELECTE

e4 0 'FEB 08a i99j

7S R B U

Approved for public release;

distribution is unlimited.

ABERDEEN PROVING GROUND, MARYLAND 21005-5001

91 2 07 027



AIVANCED DECISION SYSTEMS
1;()') P I mouth mre et. Niounta in %\ . . iI it ,)rni ) - 123o1 . 4 1 9 } (-- )) * FAX 41 , --

ADS TR-3221-01

Interactive Model Based Vision System for
Telerobotic Vehicles

Daryl T. Lawton
Marcel Schoppers

E. David DiSabatino

August 1989

FINAL TECHNICAL REPORT
Period Covered: September 16, 1988 to March 15, 1989
Contract No. DAA15-88-C-0054
ADS Project No. 3221

Prepared for: U.S. Army AMCCOM
Aberdeen Proving Ground, MD
21010-5423

U.S. Army Laboratory Command
Human Engineering Laboratory
Aberdeen Proving Ground, MD
21005-5001

The views, opinions, and/or findings contained in this report are those of the au-
thor(s) and should not be construed as an official USA AMCCOM position, policy
or decision unless so designated by official documentation.

Approved for public release;
distribution is unlimited.



A S ' -- -

JRITY CLASSIFICATION of rI.IS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Uncla3ssified Nn
HECURITY CLASSIFICATION AUTHORITY I DISTRIBUTION IAVAILABILITY OF REPORT

None
:)ECLASSIFICATION /OWNGRADING SCHEDULE Approved for public release;

No ne distribution is unlimited.
:RFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) -

ADS TR-3221-0-.

1AMIE OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
,7'inced Dec is ion Svstems (if applicable)

U US A r mv -kM CCOM
ODDRESS (City, State, and ZIP Code) 7b ADDRESS (Cory, State, and ZIP Code)

1500 Pivmouti Street AbrenPoi~ Grounds, MID 210,u-5,.23
Mountain View, CA 94043-1230

IAME OF FUNDING/ISPONSORING I8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBSER:
)RGANIZATION (if applicable)

US Army Laboratory Command ISLCHE-CLS DA.AAI3-88-C-0054

DDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Human Engineering Laboratory PROGRAM PROJECT TASK WORK UNIT
Aberdeen Provin,; (-round, MD 21005-5001 ELEMENT NO. NO NO ACCESSION NO

TIE (include Security Class~fication)

teractive Model Based Vision System for Telerobotic Vehicles (Unclassified)

ERSONAL AUTHOR(S)

Darvl T. Lawton, Marcel Schoppers, anci E. David DiSabatino
rYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT

ITechniCdl (draft) IFROM9-16-88 TO3-15-8 I 89SEP27 1
JPPLEMENTARY NOTATION

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
IELD GROUP SUB-GROUP

i7 t07 I
ISTRACT (Continue on reverse if necessary and idlentify by block number)

tempts to develop intelligent and completely autonomous Systems for battlefield applications have been largely unsuccessful
te, in spite of continued progress in the underlying technologies. There remain unresolved and fundamental difficulties in
of the necessary computational power, the required complexity of perceptual systems which can operate in complex, natural,
ften hostile environments, and the corresponding complexity Of planning and reasoning systems. Our approach to these
!ms has been to develop a model based vision system that a human controls interactively. The human uses this system to
y interpret sensory information from a distributed team of telerobots. The resulting interpretation will be a model of the
that the telerobots can refine autonomously and also use to control their behavior. [n this way the human can direct the

bots by initialiZing processing that can then be handled autonomously. In addition, the communication between the robot
ie human will take place in the context of a shared model of the world. This report presents our design of such a system
ie development and initial testing of many of it's critical components regarding object representation, constraint- based
ice, terrain models, perceptual processing, and a user interface.

STRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
JNCLASSIFIEO/UNLIMITED 0: SAME A OPT Q OTIC USERS Unclassified

AME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22P FIESMO
Charles Shoemaker A SLCHE-CS

RM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATIOIN OF THIS PAGE
All other editions at* obsolte UNC LAS SIFtIED



Limited Automated Perceptual Processing Capabilities - Attempts to
deal with the control of multiple vehicles by increasing the autonomy of individ-
ual vehicles will have to confront the fact that autonomous perceptual systems
which can reliably interpret such complex, outdoor imagery do not ydt exist.
These problems are exacerbated when dealing with passive data sensors and
limited a prior information, as would be the case in a rapidly changing environ-
ment which is characteristic of a battlefield.

Our approach to these problems has betn to develop a model based vision system
that a human controls interactively. The human uses this system to rapidly interpret
sensory information from a distributed team of telerobots. The resulting interpreta-
tion will be a model of the world that the telerobots can refine autonomously and
also use to control their behavior. In this way the human can direct the telerobots
by initializing processing that can then be handled autonomously. In addition, the
communication between the robot and the human will take place in the context of
a shared model of the world. The top of Figure 1-1 shows the direct connection be-
tween a human and a robot using a telerobotic link. In this the human is controlling
a single vehicle. The bottom of Figure 1-1 shows the framework towards which we are
building. It shows multiple telerobots with limited amounts of autonopy interacting
with the human controller through a common model of the world. /

1.1 Phase I Achievements

In Phase I of this project, we developed the overall architecture of such a model
based vision system and developed and implemented some of its key components.
The overall architecture is shown in Figure 1-2 and is described more completely in
Section 2 of this report. Figure 1-3 shows the use of some of the initial components
of the system. The human is interactively placing a ground plane into a model of the
world and having it back-projected onto an image. Some surfaces have been placed
in the model of the world and slid along the ground plane. These correspond to
potential obstacles. In the complete system, the telerobot would verify and refine the
placement of these objects as well as instantiate other objects into the world model.

A significant amount of work was performed during Phase I work to define and
realize this system. In particular, we:

" Designed the overall system architecture,

" Implemented an initial version of the interactive interface in a Mac II,

" Developed a format for describing terrestrial object models which can be inter-
actively instantiated by a human to form an interpretation of a scene,

" Investigated the underlying constraint manipulation and propagation mecha-
nisms to assure consistency of relationships in the established world model, , J aS_
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Figure 1-1: Use of Common WORLD Model for Control of
Multiple Telerobots

" Developed an interface to autonomous perceptual processing during instantia-
tion of object models, and

" Specified sensors for the telerobotic drone to autonomously refine a scene model.

1.2 Outline of Report

Section 1 of this report is an introduction that describes the key problems being
addressed and our general approach to solving them.

In Section 2 we present the system architecture for an interactive model based
vision system that a human can use to provide initial environmental interpretations

for a telerobot. Critical components of this architecture are addressed in later separate
sections.

Section 3 reviews work in object representation and processing using constraints.
This is one of the fundamental technical problems in realizing our architecture be-
cause the models of world objects need to enforce realistic consistency when they

1-3
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are manipulated by the human and the telerobotic system. The human must use
minimal actions to instantiate an object in the developing model of the world and
the system will need to use the model to refine the interpretation. For example, the
human may indicate that a tree is in a particular position rlative to an image h.nd
the autonomous system will have to determine the location of the tree, where it's
trunk is, and that it is in contact with the ground plane, and aligned with gravity
using information associated with the general model of a tree. When the human
manipulates the instantiation of this model, it must change in such away that the
constraints which define the object are not violated.

Section 4 describes the general format of object models that we have developed
to be realized using the general constraint processes techniques described in Section
3. We have developed a class of primitive objects which can be combined to model
general objects in the environment and their inter-relations.

Section 5 describes work on the representation of perceptual information and the
the types of processing which is done to extract more complicated relational informa-
tion from sensors. The discussion is biased towards the segmentation of images into
the types of patterns that are predicted from the objects that a human instantiates
in the world model. Thus a human may roughly indicate that a terrain patch occurs
in some area of an image and the system will use the material attributes of that type
of terizLin patch, along with the rough constraints provided by the human, to form a
more exact area.

Section 6 describes one of the system databases for storing a prior map data
along with previous interpretations of scenes obtained at different locations as the
telerobots explores the environment.

Section 7 describes an initial user interface for the system we developed on a
Mac II.

Section 8 describes our conclusion and plans for future work.

1-5
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2. System Architecture

The underlying software architecture of our system (Figure 2.1) is built around
three major data bases that a human can access and manipulate through an extensive
useL interface. The human will also be in contact with and can control the sensors
onboard a distributed team of telerobots. The basic task of the human is to access
general models of various types of terrestrial objects stored in the Object Model
Data Base along with information in the Long Term Data Base which describes
maps and previous interpretations of portions of the environment. Those are used to
build an interpretation of the current scene in the World Model Data Base. In
a simple version of this, the human is presented with an image taken from sensors
on the telerobot. He can then use a prior maps to align landmarks and terrain
features from these maps with the image. He can also access the three-dimensional
and physically based models of objects and position them with respect to the world
model. As he does this, the models are projected back against the images obtained
from the telerobots. In the eventual realization of the system using head-mounted
video screens, the human will have a sense of "reaching" behind the image and into
the world itself as he constructs the model. The world model will describe enough
features for the telerobot to function autonomously and also to communicate with the
human in terms of a completed interpretation. The interpretation will in general take
place with respect to a set of images obtained at multiple times and from multiple
positions by different telerobots. More advanced user interfaces will allow the human
to flip from view to view and to determine relationships between different views that
can be incorporated into the world model.

2.1 Object Model Data Base

The Object Model Data Base contains generic models of objects, relationships,
and events found in terrestrial scenes. This includes a wide range of objects such as
terrain patches, vegetation, vehicles, trees, and gravity. There are two different types
of objects: Primitive Objects which correspond to the basic entities and relation
ships used to describe and represent Terrestrial Objects which correspond to the
more complex and conventional objects found in the world. Primitive Objects de-
scribe characteristics such as shape, material composition, and relationships between
subparts. Terrestrial objects describe items such as roads and trees.

The representation and description of objects for an interactive vision system of
the type outlined here, is significantly more complex, through related in many ways,
to those used in CAD/CAM systems and geometric modeling packages because they
will be manipulated by the system for autonomous processing. Thus, our model of a
tree needs to also include that it is acted on by gravity and will have a preferred type
of orientation and attachment with respect to the ground surface.

2-0
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Figure 2-1: System Architectuxe

To achieve these, we use object-oriented programmidng techniques to describe
-- 1-1 obji.'ts rto - 841. This a.llows us to define objects au being made-up

of other objects izr a controlled marnner. We can also associate programming
methods with objects that are specialized for restricted classes of objects. Ob-
jects are defined using constraint-oriented descriptions JBorning - 79, Borning - 81,
Mundy, Vrobel and Joynson - 891. This adds to the fleibility of instantiating ob-
jects in the world model and helps free the h'nman fri-tn having to specify an absurd
amount of detail when interpreting a scene. When he changes one aspect of an object
in a scene, the other related parts of the object chane under the specified constraints.
Many of the constraints between a sensor object ad a particular ty-pe of object have
attached procedures which correspond to perceptual actions.

2.2 World Model Data Base

The World Model Data Base is an active data baue shaxed by the user and
the telerobots. It describes the three dimensional world of objet. and situations
surrounding the telerobot. It is initially formed by the human accessing models in
the model data bas aad instantiating them in the world model. The robot can
then refine aspects of these instantiated objects such as their position and attribute!.
It can also begin instantiation of other objects based upon relationships stored in
the model data base. There are three- types of controllers associated with the world
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model data base. The Constraint Controller checks for consistency in the world

model. Object models are described by sets of constraints which must be satisfied.

A simple constraint is that the value of some parameter associated with an object
model will be in some bounds (such as a tree being a particular height). More
complicated constraints deal with relations such as a tree being connected to the
ground or its relation to gravity and the orientation of the ground plane. Constraint
processing can automatically ascertain values for an object instance. The human will
in general specify a limited amount of information for an object and the system will
use the constraints and processing actions associated with them to refine the model.
The Constraint Controller can thus use the constraints which define an object or
relationship to refine an instantiation or to find a violation of a constraint and ask the
human for help. The Perceptual Processing Controller deals with the extraction
of information from images and sensors on the rob,,. When the human indicates a
particular object occurring at a given location, the constraints in the object model
also specify the types of processing that needs to be done at the corresponding part
of the image to obtain this information. There are active sensors on board the robot
(or corresponding information determined by the intelligent use of passive sensors)
that can obtain this information directly. Thus, when the human indicates that an
object is somewhere, the corresponding image areas are marked out and the type
of segmentation corresponding to the material class of the object is applied or the

range sensor is used to refine its position. The Graphic Controller deals with
the presentation of the world model and interactive scene measurements to the user.
Thus when the user accesses a model of a tree, he is presented with a cartoonish 3D
tree template which is back projected onto the image he is interpreting. The Graphic
Controller does this presentation. It is also used to present the world model at a
given stage of processing to the human.

The world model is the description of objects and events in the physical envi-
ronment. It is not based on a particular sensor or time. It will in general contain
multiple coordinate systems oach associated with several different sensors. Each of
these coordinate systems can be conditionally Linked together by an explicit rigid
body or qualitative transformation. Thus something can appear and be represented
in one sensor but may not be described in the coordinate system of another sensor.

When the user completes the instantiation of the object model, it is refined by the
system in three different ways: 1) it checks for constraint violations with respect to
the newly instantiated object and other objects in the world model; 2) it will modify
unspecified attributes based upon the constraint relationships in the object model;
3) it will begin autonomous processing to iustantiate other objects and relationships
based upon the specified constraints. Thus, when an terrestrial object is instantiated,
if there is no ground plane, one wiU be instantiated using the corresponding points
on any terrestrial objects which have been placed in the world model. Or it will
direct an active sensor (such as a laser or a chemical probe) or use passive sensor
processing (such as stereo) to refine the attributes of the instantiated object (such as
how far away it is, or what its material properties are). This can involve calling an
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image processing or active sensing routine to do such things as fitting the contour of
the object or to applying histogram guided segmentation based upon the expected
material attributes of the object.

The human is ultimately responsible for directing the formation of a consistent
model ,f the world. The telerobots are responsible for filling this model in and
notifyini the human of discrepancies. The world model can be shared and accessed
by multiple telerobots. This will be the basis by which a single human can control
multiple, spatially distributed telerobots.

2.3 Long Term Data Base

The Long Term Data Base contains a prior information such as terrain maps,
imagery and sensor readings obtained by the telerobot over time; and scene models
established by the telerobot at other locations in the environment. These previous in-
terpretations can come from either the robot's past explorations or by other telerobots
operating roughly at the same time.

2.4 User Interface

The User Interface consists of mechanisms to access and move information be-
tween the different data bases. The human also depends on the interface to have
information presented to him regarding the current state of the world model.

A key attribute of the user interface to the world model is what we term a label-
plane depth buffer (Figure 2-2). This is a conventional depth buffer used for hidden
surface removal in computer graphics (Foley and Van Dam - 82] which is modified to
have a set of pointers, ordered by depth, to all the objects in the world model that
project onto a given pixel in the image. Thus when the human "touches" a pixel in
the image from the telerobot, he can access all the objects in the world model that
project onto that pixel. In the figure, all the terrain classes which occur within the
given image area are returned for the area the mouse-arrow is pointing to.

The human can place objects into the world model in several different ways. In
one form he can access the objects and manipulate them via their three dimensional
attributes with respect to some coordinate system associated with the world model.
When it has been positioned as desired, the different components of the object can
be placed into the label-plane depth buffer associated with the image. In this way,
the projected attributes of the instantiated object can access the actuai image or
the results of image processing routines. The user can Burn attributes in when he
instantiates an object. Burning means that the attributes can not be changed. In
general, this means constraining a particular feature to lay along a ray of projection.
Another technique is for the user to directly draw the specified object on the sensory
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input and then indicate the attributes of the object which has been drawn. As example
of this is interactively segmenting an image into different types of terrain patches and
pointing out that different edges correspond to terrain feature discontinuities. The
object model is still accessed by the user in this case, but the user specifies that he
is directly burning in an attribute: This means that it is then set and not subject
to alteration. When the user draws on the image, he is specifying a st of incidence
constraint for the extracted features. Thus, the system can move the model with
respect to depth in the world model but in no other way.

The eventual system will be defined by a sequence of user interfaces. Initially,
the user interface is based upon widows for displaying imagery and graphical overlays
and text-based browsers for inspecting entities in the data bases in detail. This basic
level of interface can be quite tedious to work with and it's future role will be to serve
as a debugging tool for the later development. An intermediate system interface will
use a more natural set of tools such as 3D tactile position sensors and voice activated
control. Using these, the user will actually have a sense of reaching into a data base
of models and then placing them in the world model. In the finally realized system,
the world model and the sensor input from the different telerobots is presented to
the human as a virtual reality. In this, the human can receive direct sensory input
either from one of the telerobots or the world model itself.

2.5 Telerobotic Sensor Platform

Even though the actual construction of the sensor platform used by the telerobot
is not within the scope of the work proposed here, we are able to describe several
desirable features it should have. The onboard sensors need to be controllable both
by the human interactively using the system and also automatically by the telerobot
itself when it instantiates object models in the world model. Figure 2-3 shows the
appearance of sensors on the platform. There are multiple cameras; a directable range
finder which is bore-sighted with a camera in a central location; a tactile probe; and
a fixed sensor pod for measuring ambient properties of the environment. The ideal
sensor systems on the telerobot would support:

e multiple CCD cameras which can be moved independently with high precision.

* the ability to determine three dimensional positional information in a precisely
specified direction

* the local orientation of the robot platform relative to the immediate ground
plane and gravity

# the ability to determine the moisture characteristics of the atmosphere, the
temperature, the position of the sun
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e tactile probes to establish the characteristics of the immediately surrounding
terrain and soil.

A directable range finder would be useful though multicamera ttereo will also
be able to supply depth information. We feel that one which can get ,precise depth
information at selected environmental points will be of equal or more value than
a scanning laser range finder. Figure 2-4 shows a proposed design for attaching a
laser range finder to a CCD camera such that the range to selected points could be
determined.

While the reliance on active range sensors for the telerobotic platform would
simplify perceptual processing, it will be of limited value in military operations where
not being detected is crucial. In addition, current active sensors have some limitation
when operating in complex, natural environments. For this reason, passive sensing
techniques, such as multicamera stereo, will need to be utilized.
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3. Constraint- Based Representations and Reasoning

Constraint-based representations allow us to define an object as a set of assertions
and relationships that are required to be true for the object. These assertions will
generally reflect real world relationships. Constraint-based representations can be
manipulated with considerable flexibility. This is especially true for our applications
because they do not have any preset directionality in the order in which attributes
for an object are determined when it is instantiated. This allows a human to change
a small number of attributes of an object interactively without having to change all
the effected attributes.

A simple example of this is shown in Figure 3-1 where an object is defined to
be a square in terms of its required relationships for the lengths of its sides all being
equal and all its angles being 90 degrees. When a human interactively grabs a point
on the square and moves it, we'd like the rest of the points to change is such a way
that the figure remains a square and doesn't turn into some type of quadrilateral. In
this way, the human can specify a small amount of information and have automatic
maintenance of consistency. This type of control is easily expressed using constraint
based techniques. It is very difficult to express this in a typical graphics packages
where objects are defined in terms of the positions of points and not their required
relationships. In the bottom of Figure 3-1 we see some of the corners darkened. This
corresponds to setting the position of the corners so they can not be moved. In this
case, when the human would interactively try to move the unrestricted corner, a
constraint-based system would respond with the impossibility of doing this without
violating the definition of a square.

In this section, we describe the general properties and current limitations of
constraint-based representations. We then describe how they should be utilized to
direct the pick-up of information and the form of object models.

3.1 Properties of Constraint-Based Reasoning and Representation

As described above, a constraint is a statement about what must be true. In
general, a constraint can apply to the values of one or more variables. If a constraint
applies to a single variable, then the constraint expresses something that must be true
of the value that will be assigned to that variable. For example, take the constraint
red(X) (lower case names are constants, upper case names are variables). This con-
straint says that, whatever thing X is eventually made to point to, that thing must
be red. If a constraint applies to two or more variables, then the constraint expresses
a relationship that must hold between the values of the constrained variables. As
another example, the constraint brother(X,Y) requires that, whatever things X and

Y are made to point to, those things must be brothers. As a third example of a
constraint we might have V = L ' which relates the volume of a cube to the length
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of its edges. Finally, Ohm's Law V = I x R is a constraint that relates the values of
the voltage, current and resistance across a given conductor.

Constraints express knowledge about the world, whether or not the variables
mentioned by the constraint have values assigned to them. The law about the volume
of a cube is a clear example of knowledge of a physical principle that can be applied to
any and every cube, no matter what its size. Similarly, the constraint brother(X,Y)
says something about how X and Y must be related whether or not we know exactly
what (or who) X and Y might be.

This is very a useful capability for any problem solving program. Suppose we
had a program that was looking for specific people to fill two positions in a company.
The brother constraint would allow our program to say what it knew about those
people, without having to prematurely name two specific people that happened to
be brothers. In fact, if the program merely picked out two people that were brothers
and gave us their names we might not know that they were brothers. That is, the
constraint conveys information even when it applies to specific objects.

Furthermore, the knowledge that the two people required for the job had to be
brothers would be important information in making the selection: it would rule out
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the vast majority of applicants and allow for a much more efficient search. Instead
of considering the company's every employee for both of the new positions, the pro-

gram could consider only those employees who had brothers that also worked for the
same company. Evaluating only those few people would make the program far more
efficient. The usefulness of constraints for efficient searching was demonstrated most
forcefully by the MOLGEN system [Stefik - 81].

In fact, most of human knowledge is exactly in the form of constraints. When I
describe a cube I say that its twelve edges are all the same length. That is a constraint,
because it can specify a relationship between the lengths of the twelve edges without
saying how long the edges actually are. Also in a cube, the angle between every pair
of touching edges should be a right angle. That is also a constraint because it specifies
the size of angles that could have any other size. Again, in a cube the volume is the
third power of the edge length, whether or not the edge length is known.

3.2 Adirectional Constraint Satisfaction

Constraints are not only statements about what must be true; they also allow
the deduction of unknown values from known ones. Take the case of the cube. If I
tell you that a particular edge is 6" long you can immediately deduce that the other
eleven edges are also 6" long. Further, you can deduce that the volume of the cube
is 6" x 6" x 6".

By telling you the edge length I gave you enough information to allow you to
satisfy the constraint between the volume and edge length of a cube. A constraint is
satisfied when it has values (or bindings, or assignments) for every variable mentioned
by the constraint. In the case of constraints that happen to be equations (such as
V = L3 ) you need values for all but one of the variables, and given those values
you can then compute the value for the outstanding variable. You can do something
similar for the brother(X,Y) constraint, however. If I tell you the name of one
brother you can probably tell me the name of the other, especially if there are only
two brothers in that family.

An important and useful point is that constraints are often a-directional. This
means that, even when there is only one set of values that will satisfy the constraint,
that set of values can be computed in several ways. To take the cube example again,
above you computed the volume of the cube when given the cube's edge length.
On the other hand, I could decide to tell you the cube's volume, in which case you
could compute its edge length. Either way you would have satisfied the constraint
relating volume to edge length, but the important point is that a single constraint
can generally be used in many ways. The Ohm's Law constraint is even more flexible.
V = I x R can be satisfied in three ways:

9 If you know I and R you can compute V.
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9 If you know V and R you can compute L

* If you know V and I you can compute R.

Constraints of this kind were used by the EL system Stallman and Sussman - 78i
to d,,,;n electrical circuits.

The a-directionality feature of constraints points to another useful aspect of
constraint-based computing, namely that a check on a constraint's readiness for sat-
isfaction can be made part of the constraint itself. That is, whenever the constr ni.a
is supplied with enough information to allow deduction of the outstanding value, the
constraint can notice that fact and perform the deduction without having to be asked.
This means that, no matter what information becomes available to the constraint-
based program, and no matter in what order that information arrives, the program
will make the possible deductions without having to be asked to do so. In other words,
a constraint-based program can be made to behave like a dataflow machine, or like a
data-driven forward-chained inference engine. This is extremely convenient when the
information being provided to the program is coming from an interactive terminal,
i.e. its order is entirely unpredictable. Since the programmer who is encoding the
constraints does not have to consider the order in which information will arrive, nor
when to make any deductions, nor when to ask for the results, the programming task
is made much easier.

3.2.1 History of Constraints

One of the founding contributions to work on constraint satisfaction was SKETCH-
PAD [Sutherland - 63], a general-purpose system for drawing and editing pictures on
a computer. In SKETCHPAD the user interacts directly with the display, using a
light pen for adding, moving, and deleting parts of the drawing.

ThingLab is the system closest to our own intentions. ThingLab [Borning - 79]
adopted much of SKETCHPAD's user interaction, as well as its notions of con-
straints and of recursive merging. Of course, ThingLab also extended SKETCH-
PAD's constraint mechanism, by integrating it with an inheritance hierarchy, and by
allowing local procedures for satisfying a constraint to be included as part of its defi-
nition. Many of the important ideas in Smalltalk also appear in ThingLab - objects,
classes and instances, and messages - and will be used in our own work.

We will also exploit the work on constraint languages done at MIT by Sussman
and Steele [Steele, Jr. - 80, Steele, Jr. and Sussman - 78]. Our implementation of
constraints will be very similar to theirs, including their dependency maintenance
capabilities. Thus we will provide graphics and inheritance as well as dependency
directed backtracking.
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Other related languages include SIMULA 'Dahl and Nygaard - 66. MESA
!Mitchell, Maybury, and Sweet - 79], CLU [Liskov et al. - 771, and ALPHARD
iWulf, London, and Shaw - 76]. These languages separate the interface specification
of a type from its internal implementation, just as Smalltalk distinguishes the exter-
nal message protocol of an object form its internal aspects. Thus, in programs in
these data-abstraction languages, changes to the implementation of a-type (but not
its interface) do not affect the users of that type; so more modular systems result.

Work in Artificial Intelligence includes a number of systems that use constraints
and constraint satisfaction as such. Steels jSteels - 791 has constructed a reasoning
system, modeled on society of communicating exp%.;ts, tha, uses piupagation of con-
straints in its reasoning process. Unlike either ThingLab or Sussman's work, Steels'
system is description-oriented and does not require that constraint satisfaction yield a
unique value. Stefik [Stefik - 81] uses constraint satisfaction in a hierarchical planner
for molecular genetics experiments.

3.2.2 Constraints in Graphics Systems

There have been a small number of systems that combined the use of con-
straints with display graphics, namely SKETCHPAD [Sutherland - 63], ThingLab
[Borning - 81] [Borning - 79], IDEAL (previously called LELAND) [Van Wyk - 801
and Bertrand [Leler - 88]. However, in all of these systems the data structures and
constraints were designed for two-dimensional space, and none incorporated depen-
dency maintenance and retraction. The focus of these systems was on the creation of
planar diagrams and circuits by specifying them with appropriate constraints. Our
emphasis is on finding sets of constraints that explain perspective images of prior
three-dimensional scenes. The extra dimension makes the constraint satisfaction
problem considerably larger and more difficult, and our emphasis on interpretation
as constraint selection is altogether new.

3.3 An Example

It is time to show an example of constraint based reasoning. First we specify
the "domain constraints" that describe a world containing 3 blocks of equal size. As
in PROLOG, atoms beginning with capital letters are variables, atoms beginning
with small letters are constants or predicate names. Merely for the sake of notational
convenience I have written the constraints with the assumption that different variables
must be bound to different objects.

;; circumscribe what can be on a block.

on(a,X) V on(b,X) V on(c,X) V clear(X)
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;; blocks can have only one thing at a time on them.

-on(X,A) V -on(Y,A)
-on(X,A) V -clear(A)

;; circumscribe what a block can be on.

on(X,a) V on(X,b) V on(X,c) V ontable(X)

blocks can be on only one thing at a time.
-on(A,X) / -on(A,Y)

-on(A,X) V -ontable(A)

;; rule out circular towers of one block.
-on(A,A)

;; rule out circular towers of two blocks.
-on(A,B) V -on(B,A)

;; there's always something on the table.

ontable(a) V ontable(b) V ontable(c)

This defines a network of constraints. Whenever new information is added to
this constraint set, the reasoning system uses the new information to satisfy as many

constraints as possible. The example below shows how each new piece of information

allows the reasoning system to infer more about the arrangement of the blocks being

described.

at this point the reasoning system knows onli,, the general rules, so knows
nothing about a particular arrangement of the three blocks.

> on(a,b)f input fr-om the user

=> -'clear(b) what isn't on b
-> -'on(c,b)
=> -'on(a,c) what a isn't on
-> -'ontable(a)
=> -'on(b,a) no circular 2-towers

at this point, block c might be under block b, or it might be on top of block
a, or it might be off by itself.

> clear(c) input from the user

=> -'on(b,c) new conclusions...
=> ontable(b) because b isn't on a or c
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at this point, block c might be on top of block a, or it might be off by itself.

> -ontable(c) input from the user

=> on(c,a) new conclusions...
=> -clear(a)

This example is useful partly for showing how constraint satisfaction works, and
partly because the constraints being satisfied are logical rules that constrain the truth
values of various facts. For example, when the user first asserts that cn(a,b) is true,
the reasoning system notices that -on(a,b) is false, that -on(a,b) is a special case
of -on(X,A), and that to keep the constraint

-on(X,A) V -clear(A)

true, -clear(A) had better be true. Since this constraint was matched with A = b
the system deduces that -clear(b). All the other inferences are made in exactly
the same way. But notice that what is being constrained here is not the variables X
and A, but the truth values of facts, i.e. whether facts such as clear(b) are true or
false. The variables being constrained are just the boolean variables that represent
the truth values of those facts. This is a special case of constraint satisfaction, and
this special case has been studied under the heading "Truth Maintenance Systems"
[Doyle - 79, McAllester - 781.

3.4 Dependency Maintenance and Dataflow

What if the information given to the reasoning system was wrong? Or what if we
were guessing, and now we want to try a different possibility? Using a technique called
"dependency maintenance", a constraint reasoning system can keep track of how
various conclusions depend on each other. Hence when we withdraw an assertion on
which other conclusions were based, those derived conclusions can also be withdrawn.

Let us continue the block stacking example used above. We told the reasoning
system that on(a,b) and clear(c) and -'ontable(c). From this it deduced that
block b had to be on the table, and that c had to be located on top of block a. Suppose
we decide to withdraw the assertion that on(a,b). Here is how the reasoning system
responds:

at this point the reasoning system believes that on(a,b) and clear(c) and
-ontable(c).
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> retract on(a,b) input from the user

-- -clear(b)

-- -on(c,b)

-- -ontable(a)

-- -on(b,a)

-- ontable(b)

-- on(c,a)

-- -clear(a)

The reasoning system assumes that clear(c) and -ontable(c) are to remain
true because we haven't retracted them. As a result, conclusions that follow from
those facts alone are still believed (for example: that -on(a,c) and -on(b,c)).
However, all of the conclusions that depended on the truth of on(a,b) have been
withdrawn.

Notice that the retraction could be done even though the fact we retracted was
not the last one to be asserted. This was possible because the reasoning system
kept track of the dependencies between conclusions, and because it is the dependency
structure (rather than the order of our assertions) that determines what must be
retracted.

Now that block a is no longer on top of block b, we are free to put blocks a and
b somewhere else. Let us put block b on top of block a instead:

at this point the reasoning system believes that clear(c) and -ontable (c).

> on(b,a) input from the user

=> -clear(a)
=> -on(c,a)
=> -ontable(b)
=> -on(a,b)
=> ontable(a)
=> -clear(b)
=> on(c,b)

The system has now changed its mind about many of the conclusions that held
when on(a,b): what was true then is largely false now, and vice versa.

Similar reasoning applies in the case of the constraint relating a cube's volume
to its edge length. When we tell the constraint reasoning system that the cube's edge
is a certain length, it computes the cube's volume based on that information. If we
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change withdraw our statement about edge length the system retracts the conclusion
about volume. If we then assert a new edge length the system will conclude a different
volume.

Consequently it is not hard to make a constraint reasoning system behave like
a spreadsheet, or like a dataflow computer. Whatever the system is given as input
determines its conclusions. If we change one of the inputs the system revises all the
outputs that depend on that input. At all times the output values reflect the input
values. Nevertheless, a constraint reasoning system is somewhat more general than
a spreadsheet because constraints are a-directional (as discussed above). In other
words, we can tell a constraint reasoning system what a column should add up to.
and unlike a spreadsheet, the constraint reasoning system can fill in a missing entry
in the column.

Figure 3-2 shows how the spreadsheet-like behavior of constraint systems can
be put to good use in graphics applications. In this Figure there are eight lines
and four points. Four of the lines are constrained to meet end-to-end, and so form
the outer quadrilateral. The four special points are constrained to bisect the lines
of the outer quadrilateral. The four remaining lines are constrained to form another
quadrilateral that has the four special points as its corners. With all those constraints
in place, the user can manipulate the shape of the outer quadrilateral while the
constraint reasoning system sees to it that all the constraints remain satisfied. That
is, the new positions for the midpoints and for the smaller inner quadrilateral are
automatically recomputed using the dependencies set up by the constraints. The
constraint reasoning system thus allows the user to see that, no matter what he does
to the shape of the outer quadrilateral, the inner quadrilateral is always a rectangle.

3.5 Higher Order Constraints

The constraints I have described so far have been rather simple. They have
consisted either of arithmetic linear equations, or of logical implications. It turns out
that there are practical problems these constraints cannot handle. In particular, there
are situations in which the constraints could be satisfied because all the necessary
information is present, but the constraint reasoning system cannot detect that fact.
This weakness in a reasoning system is called "incompleteness".

Incompleteness occurred almost as soon as constraint satisfaction was invented.
The EL system [Stallman and Sus,;man - 78], in its reasoning about circuits, came
across resistive voltage dividers as shown in Figure 3-3. An Ohm's Law constraint
applied to each of the two resistors R1 and R2. Even though the reasoning system
knew the values of the two resistors and knew that the current flowing through the
two resistors was the same, it could not work out the value of that current. The
problem was that the system did not know how to relate the values of the individual
resistors to the total resistance of the circuit. That is, the system did not have the
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Figure 3-2: Constrained Graphics Manipulation

concept of resistors-in-series. The solution was to define a new kind of constraint
that specialized Ohm's Law to resistive voltage dividers. This new constraint was
V = I x (RI + R2). Given this constraint, EL could use the values of V, Ri and R2
to compute 1, and this value of I was then used by the originally existing constraints
to compute the voltages across the individual resistors. The new constraint was
described as containing a "redundant view" of the circuit.

It is our view that the new constraint was not "redundant". Indeed, it embodied
the new information that the total resistance of two resistors in series is just the sum
of their resistances. This is important and useful information. However, EL could
not use this information in a general way. Resistors may occur in series whether or
not they are forming a voltage divider. Indeed, resistors may occur in series whether
or not they were explicitly required to be in series. But EL could reason about series
resistors only if their seriality was intentional; EL could not notice that two resistors
happened to be in series.
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Related to the incompleteness problem in constraint reasoning is the issue of
reasoning over both logical constraints and arithmetic constraints. For example, it
becomes possible to write such constraints as

resistor(R) A resistor(R2) A
(Rl.end2 = R2.endl)A (Rl.current = R2.current) (CI)

Rl.current = (Rl.endl.voltage - R2.end2.voltage)

/ (Ri. resistance R2.resistance)-

This is a logical constraint that relates the truth values of several arithmetic con-
straints. More generally, constraints that constrain the truth values of other con-
straints are called "higher order" constraints. At present BERTRAND ?Leler - 88'
is the only constraint satisfaction system that allows higher order constraints of this
form.

The higher order constraint just shown (Cl) would would solve the voltage di-
vider problem. The constraint says that if two resistors happen coincidentally to be
connected end-to-end, and if no current flows out of the terminal connecting them,
then the current (through both of them) may be computed by using Ohm's Law as
if the two resistors were one.

Note that even constraint (Cl) does not do justice to the idea of resistors-in-
series: it allows the constraint reasoning system to view the resistors as being in
series for the sole purpose of applying Ohm's Law to the series. If the voltage divider
happened to consist of three resistors in series, the reasoning system would be entitled
to view only two of the three as being in series, and hence would still not be able to
solve for the current flowing through the series. To properly capture the idea that
two resistors in series may be treated as a single resistor, we would need constraints
such as:

resistor(R1) A resistor(R2) A
(Rl.end2 = R2.endl) A (Rl.current = R2.current)

D 3RX.series-resistor(R1,R2,RX)

series-resistor(R1,R2,Rs) D

resistor(Rs) A (C2)
Rs.endl = Rl.endl A
Rs.end2 = R2. end2 A
Rs.current - Rl.current A
Rs.current = R2.current A

Rs.voltage = Rl.voltage + R2.voltage

That is, these constraints would create an entirely new conceptual object RX in
the circuit, effectively defining a new resistor that had all the properties of a normal
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individual resistor (including the use of Ohm's Law). This approach could handle an
arbitrary number of resistors in series: as a pair of resistors R1 and R2 was subsumed
by a series-resistor RX1, the new series-resistor could be regarded as an individual
resistor in series with the next adjacent resistor R3, and could be subsumed in turn.

The ability to have constraints create new objects on an opportunistic basis does
not exist in any extant constraint reasoning system. There is however an alternative
approach that both recognizes the contingent nature of higher order constraints, and
that allows for a more general approach to constraint satisfaction.

3.6 Selection Procedures

It is possible to separate

* recognition that a constraint can be satisfied, from

o calculation of the satisfying value for the last unbound variable.

Indeed, all constraint systems do this to some extent (see especially THINGLAB
"Borning - 79]). For the Ohm's Law constraint V = I x R, for example, the value
of V must be computed using a multiplication operation, while the value of R must
be computed using a division operation. This happens to be a simple example:
the central operation is easily invertible. Similarly, for the cube's volume equation
V = L 3, V is computed from L by cubing, L is computed from V by taking the cube
root. For such invertible operations, constraint systems include both the operation
and its inverse under a single notation, but in general both the operation and its
inverse must be present in the realization of the constraint. That is, depending on
which variable is being bound to satisfy the constraint, the reasoning system may
run a different operation with the constraint's remaining variables as inputs. The
operation being used to bind the last variable is a "satisfaction procedure".

While it is a convenience that for arithmetic constraints many satisfaction pro-
cedures can be inferred from the operations used to define the constraint, this con-
venience does not even suffice for very much of mathematics. The constraint Y =
a x X 2 + b x X + c allows for computing the value of Y from that of X, and can be
inverted to compute the value of X from that of Y - the inversion is the weU-known
"quadratic equation" - but no existing constraint satisfaction system is capable of
discovering that inversion for itself. To allow the system to compute X from a known
Y,' the system's user must inform the system of the quadratic equation as a redundant
constraint. In effect the user is supplying the constraint system with a satisfaction
procedure the system could not figure out for itself.

'Some constraint satisfaction systems provide a technique called "relaxation" in which solutions
are guessed at and refined with iteration, as in Newton's method for finding roots. Relaxation is not
guaranteed to find solutions to nonlinear or trigonometric equations.
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But satisfaction procedures are not yet general enough to solve the voltage-
divider problem discussed in the previous section. The problem with the voltage
divider was not that the reasoning system did not know how to invert an individual
constraint. Rather, the problem was that the system lacked certain critical knowledge,
i.e. that it was possible to view two resistors in series as a single resistance for the
purpose of computing the voltage drop across the individual resistors. In other words,
despite the system's knowing how to invert all the initially given constraints it lacked
the knowledge that a particular configuration of constraints could be useful.

Satisfaction procedures recognize that the operation used to bind a constrained
variable generally depends on both the particular constraint and the variable being
bound. Nevertheless, satisfaction procedures are still derived from individual con-
straints. Consequently they fall to recognize that a conjunction of constraints on the
same variable might allow a solution method that could not be used unless all those
constraints wer esent.

"Selection procedures" take the idea of satisfaction procedures one step further:
selection procedures are organized around variables rather than around constraints,
and the particular method employed by a selection procedure when it is binding a
variable becomes explicitly contingent on what constraints are present.

Selection procedures can solve the voltage-divider problem by recognizing the
existence of a resistive voltage divider, and by knowing how to compute the output
voltage in such a circumstance. Specifically, computing the output voltage requires
knowing a reference voltage (such as the battery or a ground) and a potential differ-
ence across one of the two resistors. Knowing the potential difference requires knowing
the current through the chosen resistor. Knowing that current requires knowing the
total resistance of, and voltage across, the voltage divider configuration. Knowing
the total resistance requires addition of the resistors in series. Thus the selection
procedure for the output voltage behaves differently depending on whether or not a
voltage divider configuration exists.

Selection procedures are extremely useful in image interpretation because the
information required to compute some result may be distributed across many objects
in an image. Consider the example shown in Figure 3-4, where an image interpretation
system knows the position and orientation of one camera relative to the other, and
also knows the size of an object visible to both cameras. Given the angles O3 subtended
by the object at the two cameras, as well as the angles ai between the object and the
camera axes, the system could - in principle - compute the position and orientation
of the object (this is simply a triangulation problem). Yet it is a nontrivial matter
to have a constraint satisfaction system realize that such triangulation is possible.
The difficulty is that the necessary parameters must come from different places in the
scene model - specifically, the parameters must be provided by two cameras and the
observed object. Using the standard approach to constraints it would be necessary
to create one "triangulation constraint" for each possible combination of camera-
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1, camera-2 and observed-object! Of course, the space required to make all those
constraints explicit would be impractically large.

To solve the same problem with selection procedures, the observation that trian-
gulation was possible would be made by a selection procedure capable of computing
an object's position and orientation in space.

In summary, selection procedures reorganize the knowledge required to satisfy
constraints. Where previous constraint satisfaction systems have organized constraint
satisfaction knowledge around the constraints themselves, our image interpretation
application has led us organize constraint satisfaction knowledge around the variables
being bound. In this way, the coincidental presence of two or more constraints on
the same variable may allow for solution methods that could not be noticed by any
of the constraints taken alone.

3.7 Solving Systems of Equations

The most general view of constraint satisfaction - when all the constraints are
arithmetic - is as solving a system of equations. Equation solving can be made arbi-
trarily difficult if the equations can be nonlinear, differential or integral, trigonometric
or transcendental. General equation solvers such as MACSYMA and MATHE-
MATICA are very difficult to build. They are in fact expert systems with math-
ematics as their domain of expertise. For many applications they are too powerful
as well as being too slow. Thus constraint satisfaction systems might be seen as a
special class of equation solving system that is exceptionally efficient by virtue of the
limitations placed on the kinds of problems that can be solved. Selection procedures
serve to pull constraint satisfaction systems a little further in the direction of gener-
ality without a significant loss of speed. In particular, selection procedures may be
built to solve frequently occurring conjunctions of equations/constraints in such cases
as the resistive voltage divider and triangulation. This is still a far cry from general
equation solving but will probably be adequate for our purposes.

Conversely, constraint satisfaction systems can provide functionality that equa-
tion solvers can not provide. The most obvious such functionality is that of depen-
dency maintenance. Constraint satisfaction systems, particularly those that do not
rewrite the equations they are solving, can reuse those equations when their input
values are changed. This is crucial for systems that may wish to experiment with
appropriate values for variables, and that may have to retract the results of previous
experiments. Image interpretation is an application in which such guessing and re-
traction may be very frequent, so that constraint satisfaction systems are preferred
over equation solvers.
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3.8 Implementing Constraint Choosing

We suggest that image interpretation be rtgarded as a process of choosing a set
of constraints that

1. account for what is visible or occluded in the image, and

2. allow for a consistent assignment of values to variables.

Accounting for what is visible or occluded in the image is a process of hypothesis
formation: the set of constraints chosen to explain the image is a theory that recon-
structs the scene that the image represents. The existence of a consistent assignment
(or satisfaction) is a way of checking that the theory is physically plausible, that the
hypothesized scene could be a real one.

In this Section we explain how constraints are chosen and satisfied. We begin
by sketching the data structures required. In particular, the objects visible in the
image become computational "objects" in the image interpreter. We then describe
how the constraint management system can assist the human user by pointing out
interpretation errors.

3.8.1 Image Objects as "Objects"

Computational "objects" are records with access procedures attached. Said dif-

ferently, "objects" are groups of variables, but are constructed in such a way that it
is not possible to read or write the values of those variables directly. Instead, if our
program wants to change the value of some variable inside an object, then our pro-
gram must ask the object to execute a procedure that modifies the specified variable
to its new value. While this might seem a round-about way of doing things it has
some benefits in that the object may decide not only to update the named variable
as requested, but may perform numerous other functions as well. Perhaps the object
needs to ensure some kind of consistency of the new value with the values of other
variables in the object. In this way the object can prevent the user's program from
making certain kinds of errors. Equivalently, object-oriented programming can lift
some of the consistency burden off the user.

To show the useful features of objects we describe the data declarations for a
program that reasons about planar quadrilaterals (closed four-sided figures).

We begin by defining vectors as triples of real numbers (the base of the vector is
taken to be the origin of the coordinate system). Then line segments are constructed
as pairs of vectors. The notation we use here is not part of any programming language;
we have chosen it to make our intent clear.
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define vector

parts

x, y, z: real;
1, a, e: real;

constraints
12 =X2 -_ 2  2

x = 1 cos(e) cos(a);
y = 1 cos(e) sin(a);
z = 1 sin(e);
y = x tan(a);
z = x sec(a) tan(e);

end vector;

define segment

parts

p1, p2: vector;
v: vector;

constraints

p2.x = pl.x + v.x;
p2.y = pl-y + v-y;
p2.z = pl.z + v.z;

end segment;

define angle

parts

vI, v2: vector;
a: real;

constraints

cos(a) = sin(vI-e) sin(v2.e) +

cos(vl.e) cos(v2.e) cos(vl.a -v2.a);

end angle;

This definition of a vector recognizes that there are two useful ways of specifying
vectors. The first is as a displacement along three Cartesian axes; hence the x, y, z
parts of the vector. The second way is in Polar coordinates, giving the vector a length,
an azimuth and an elevation; hence the 1, a, e parts of the vector. The vector must
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also maintain constraints between the two sets of coordinates. For example, if the z
component of a vector is changed, the vector's length or elevation may also change
and must be updated if they are to remain consistent with the new z value. This is
one example of the utility of the access restrictions that come with object-oriented
programming: the object's z value can only be changed by requesting the object to
do so, at which point the object cannot be prevented from updating several other
variables as well.

The above definition of a line segment recognizes that there are two ways to
specify any line segment. One way is to specify the two endpoints of the line. The
other way is to specify one endpoint and a relative displacement, so that the other
endpoint can be computed. Of course, given the two endpoints we might become
interested in the line segment's length, i.e. in the length of the vector between the
endpoints. The constraints of the line segment ensure that no matter which way the
line segment is originally specified, the other way will be accessible, and the two will
be kept consistent with each other.

The above definition of an angle computes the angle between the two vectors
referred to by the object. This object exists primarily for the constraint it carries.

We are now in a position to define a general quadrilateral. We begin by defining
an arbitrary four-sided figure (assumed to be planar; we will not go into serious detail
here). The four sides of a quadrilateral must join end-to-end to form a closed figure,
and there are four angles between the adjacent sides.

define quad

parts

sl, s2, s3, s4: segment;
a12, a23, a34, a41: angle;

constraints

sl.p2 = s2.pl;
s2 .p2 a s3.pl;

s3 .p2 = s4.pl;
s4.p2 - sl.pl;
a12.vl = s.v; a12.v2 = s2.v;
a23.vl = s2.v; a23.v2 = s3.v;
a34.vl a s3.v; a34.v2 a s4.v;
a41.vl = s4.v; a41.v2 a s.v;

end quad;

Next, by constraining that two opposite sides be parallel, we can specialize to get
a trapezium. We define a trapezium as a special case of a quadrilateral, as follows:
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Idefine trapezium from quad

constraints

sl.v.a = s3.v.a;
sl.v.e = s3.v.e;

Iend trapezium;

Because the trapezium is defined from a quadrilateral, it has all the same properties
as quadrilaterals. In particular, trapeziums will have four sides and four angles, and
those parts will have the same names as in a quadrilateral, so they need not be
defined again. In object-oriented language, the trapezium class "inherits" from the
quadrilateral class.

I To complete the trapezium definition we constrain sides sl and s3 to be parallel.
To be precise, we access side si's line segment vector v (as opposed to sl's endpoint
vectors pl and p2), and then the azimuth of that line segment vector. Similarly we
access side s3's line segment vector's azimuth, and make the two equal. Likewise for
the elevation angles.

l To continue: we can add successive constraints to various types of four-sided
figures to define, in turn, parallelograms, rectangles, rhombuses and squares. (Figure
3-5). Each type of four-sided figure inherits all the parts and constraints of the types
above it. Merely the addition of one or two new constraints specializes each type of
quadrilateral into the type(s) below it. Underneath parallelograms we can choose to
constrain all angles to be right angles, which gives us rectangles; or we can choose to
constrain all sides to have equal length, which gives us rhombuses. If we add both
sets of constraints at once we get squares. That is, squares are special cases of both
rectangles and rhombuses, so inherit constraints from both. This is called "multiple
inheritance".

The chief value of inheritance is that it allows programmers to define objects
incrementally, i.e. by making small modifications to previous definitions. It is very
easy to define a rectangle as a right-angled parallelogram, for example, or a square
as something that is both a rectangle and a rhombus.

3.8.2 How to Satisfy Constraints

So far we have seen that constraints are actually collections of selection proce-
dures: the constraint V = I x R is a collection of three selection procedures that know
how to compute each of V, I and R given the values of the other two parameters.
We have also seen that objects are actually collections of variables, with constraints
on those variables. We now show in detail hnw constraints are satisfied, i.e. howI selection procedures assign values to variables.
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Figure 3-5: Inheriting Constraints.

Suppose we have an object describing a resistor. That object will contain values
for the voltage, current and resistance of the particular resistor being described. Sup-

pose that at some point, the voltage and resistance of that resistor become known;

clearly the current through the resistor could be computed.

How is that computation initiated? Figure 3-6 shows the resistor object (ob-
jectl), its variables, and some constraints (realized as selection procedures). When
the object is asked to assign a value to a variable, it assigns that value and then

it executes all the selection procedures having that variable as an input parameter.

Those selection procedures are found using the arrows that emanate from the vari-
ables. Some of the executed selection procedures might decide that they have enough

information to bind another variable. The target variable is found using the arcs

that emanate from constraints to variables. If a selection procedure does indeed have
enough information to bind a target variable, that procedure computes the value for

that variable and asks the object to do the assigning. Once again, the object may
decide more than just the requested variable.

Eventually the computation resulting from an update request will terminate.

When that happens, the object considers that all the relevant deductions have been

made, and that the object is in a consistent state.

It is possible that an object may be given inconsistent input parameters. This will

be detected (sooner or later) as an attempt to assign two different values to the same
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Figure 3-6: Satisfying Constraints.

variable. In such circumstances the constraint reasoning system must track down
the roots of the inconsistency, and must reject one of the inconsistent inputs. This
rejection takes the form of a retraction. The retraction may be entirely automatic, in
which case the reasoning system randomly chooses which of the inconsistent innhits
to retract; or it may be user-assisted, in whichi case the reasoning system will ask the
user to identify the input to be retracted.

3.8.3 Interactive Constraint Choosing

So far we have focused on constraints that apply to the variables within an
object; these are "intra-object" constraints. Examples of such constraints were the
constraints that turned quadrilaterals into trapeziums, and trapeziums into parallel-

ograms, and so on. There may also be constraints that apply to variables in different
objects; these are "inter-object" constraints. An example of such a constraint is that
the current flowing through each of several resistors in series is the same. In an image

interpretation application, inter-object constraints may determine occlusion (which
of two objects is hidden because further away) - among other things. The distinction

between intra- and inter-object constraints carries over into image interpretation as
a distinction between two kinds of questions. Intra-object constraints give rise to the

question "What is this image object (a parallelogram or a rectangle?)" while inter-
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object constraints give rise to the question "How are Lhese image objects spatially
related (which occludes which)?"

The task of image interpretation is to decide which constraints are relevant to
the image being interpreted. That is, image interpretation is a process of constructing
a plausible theory about what is visible in an image. We claim that constraints are
a convenient medium for expressing such a theory, because they allow us to say only
what we believe without committing us to too much; and because they allow us to
check that our theory is physically possible (by satisfying all the constraints).

For the moment we are proposing to construct our interpretations or "'theories"
interactively - a human will look at an image and will select the relevant constraints,
and will inform the constraint reasoning system about what constraints apply where.
We view this as a first step that allows us to gain experience with constraint-based im-
age interpretation. In the long run it may be possible to have an image understanding
system do (some of) the constraint selection for itself.

In summary, the constraint satisfaction techniques we shall utilize in our object
models are based upon:

e Simultaneous Algebraic Equations

Several constraints can be expressed as simultaneous algebraic equations. This
is true for most geometrical relations under perspective projection or through
direct determination with a depth sensor. For sets of linear equations, the solu-
tions can be obtained directly. In this case, the constraint network is used to au-
tomatically determine which are the redundant variables. For sets of nonlinear
equations, the situation is generally unsolvable, although there are constraint
networks for solving sets of quadratic equations. The order of a variable in an
equation can be used to determine whether we ascertain its value by sensing it
directly or let it be determined via propagation in the constraint network.

For constraints that can be expressed as algebraic equations, there are developed
packages for solving them that we would interface to a constraint-based repre-
sentation. This includes Mathematica [Wolfram - 88] and MACSYMA. We will
also investigate interfaces to numerical packages for solving sets of simultaneous
equations.

9 Predicate Logic Expressions

Expressions in the first order predicate logic can also be handled by constraint
networks. This is necessary for assertions regarding propositions such as some-
thing being on top of something or attributes such as something being red. The
solutions to the algebraic equations give us parameter value while the solutions
to the simultaneous predicate logic expressions give us a consistent set of pred-
icate or the determination that such is impossible. The underlying mechanism
used for first order predicate logic constraints is similar to that used for simul-
taneous algebraic equations 'rewrite rules) and there are also no guarantees of
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always finding an answer. There are a wide range of tools available for han-
dling such constraint networks that we investigated including PROLOG and a
Truth-Maintenance System (TMS).

Simulation Techniques

Simulation techniques are useful for representing effects such as gravity or the
interaction of multiple objects in the world model.
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4. Representation of Object Models

Object models are used to describe entities such as terra.in patches, roads, cars,
vegetation, and whatever else a telerobot can encounter in the environment that needs
to be represented. Object models need to reflect the underlying physical properties
of the world to make autonomous instantiation and refinement possible. When the

human positions a treealong a :ine of sight and the system refines it, It must be
sure that the tree is consistent with the current instantiations of the ground and of

gravity. This information needs to be represented in such a f&shion that the relation.
ships between different classes of objects is made explicit so each object can not be
treated u a special case. Our work focuses on achieving this by creating a general
format for representing objects which is compatible with constraint representation
and satisfaction techniques.

4.1 Recognition using Constraint-Based Object Models

The basic result of human directed recognition is to match existing object models

to images and other sensory information. This process of matching is called object

instantiation. It can be visualized us projecting wireframe displays corresponding

to the object models onto images from the telerobots while the wireframes axe aligned
with the images of viewed objects. This produces information concerning object type,
object attributes, position, and orientation, that enable actions. Our overall approach
is based upon the combined use of structured a prior object information, focused use

of perceptual strategies to direct and verify model matching, and constraiat-ba.sed
reasOning.

Our object models are implemented using constraint-based descriptions de-
scribed in Section 3. This is a declarative representation in which all the attributes
and relationships which are be true for an object are expressed as simultaneous
constraints [Borning - 81, Borning -79, Leler 88, Mundy, Vrobel and Joynson - 89,
Steele, Jr. - 80, Steele, Jr. and Sussman - 78, Lawton - 80]. This is computationally

realized in a network [Steele, Jr. -80, Mundy, Vrobel and Joynson - 891. When a
particular value or relation is determined, it will propagate through the network to
set other values according to the specified constraints. Thus, in using constraints,
instead of having to fill in each attribute or feature of a model to instantiate it, a
small number of such attributes can be determined and then the constraints enable
determining the value of other related attributes. This enables the system to function
opportunistically because it can use any attributes to infer the other attributes of an
object. Our use of multiple sensors will generate a very large number of simultaneous
constraints. In addition, inconsistencies can be determined in the constraint propa-

gation process. Constraint based representations allow for propagating information
and inferences while maintaining unspecified hypotheses.
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There are different types of constraints and associated propagation/satisfaction
techniques. We use constraints which are expressed as predicates in the first order
predicate calculus and also as sets of simultaneous second order polynomials which
express geometrical relations in terms of distances and angles. Constraints express
geometrical, interval, and logical relationships between parts of an object and the
relations between a sensor and an object. In constraint networks, one type of node
corresponds to variables and another type of node corresponds to the constraints be-
tween variables. Arcs describe the involvement of variables in constraints. Constraint
propagation is the process by which determined variables are used to set undeter-
mined variables by procedures attached to the constraint nodes. Example constraint
predicates for our objects correspond to relations such as order, symmetry, connec-3 tivity, relative orientation, relative scale, coincidence (such as point to curve, curve
to surface), and containment. Many of these predicates are topological in nature and
invariant under perspective projection.

4.1.1 Recognition Processing

In instantiating an object model, three related constraint networks are formed:U
1. The Intrinsic Object Constraint Network is for object properties and re-

lationships which are independent of position and orientation with respect to
other objects and sensors. Examples are such things as the relative size and
orientation of components of an object and the contour determined by the in-3 tersection of object surfaces.

2. The Coordinate System Mapping Constraint Network describes the po-
sition and orientation of an object relative to another object or sensor. Because
of sensor calibration in our system, the determination of these values for an
object relative to one sensor will generally fix them relative to other sensors.

3. The Sensor Feature Correspondence Constraint Network describes the
potential matches of extracted image features with corresponding components
of an object model. A typical example is the correspondence between an image
curvature junction and a point on a object model or between an image contour
and the corresponding edge of the object.

These different networks are all expressed in terms of the same underlying con-3straint predicates and can be viewed as a single network in terms of constraint propa-
gation. Thus perspective projection is expressed as a coincidence constraint between
a ray of projection and a point feature. The constraints in these different networks
are highly inter-related during recognition and are a major reason for the use of
constraint-based representation. For example, an incorrect correspondence of sensor

I
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I" features to object model features will generally lead to an inconsistency in the deter-
mination of intrinsic object attributes. Instantiating an object i volves accessing a
generic constraint network corresponding to an object model and connecting it to con-
straint networks for coordinate system relations and sensor feature correspondences.

Recognition is performed as a search process wherein each node of the searchI space is an instantiated constraint network. Evaluation of a node is based upon how
constraint propagation develops in a network, such as whether it cycles, develops an

inconsistency, or has unspecified values. For these cases, the search process creates
new nodes by adding or modifying values from the previous constraint network. This
is done by directly sensing additional environmental information for variables which

j lead to an inconsistency or by establishing different image feature to object model
correspondences.

Much of this search process is inherently parallel such as the constraint propa-
gation within a search-node and the parallel evaluation of constraint networks which
are based on different image to model feature correspondences. There are three major

i~)hases for model matching: 1) The initial extraction of perceptual information; 2)
Lorming initial correspondences between image features and object models features;

3) Position and attribute refinement with verification.

p 4.1.2 Sensor Feature to Model Feature Correspondence

This involves establishing an initial correspondence between extracted image
features and model components. This correspondence determines several constraints

such as which point features are constrained to lie along rays of projection, curves
constrain object edges to lie along surfaces, and regions constrain object surfaces to
lie within volumes.

There are general problems with establishing these correspondences autonomously.

First, the image features may not be cleanly extracted even though they are present in
- the image: considerable processing can be required to find image features. Contours

and regions can be fragmented and relations between features can require groupingI processes. Secondly, there is combinatoric problem. There could be several poten-

tial matches between an extracted image feature and several different model features.

In general, especially initially, due to ambiguous image to model feature correspon-

dences and significant ambiguity in the uncertainty intervals associated with some

of the constraint values, the propagation process will usually stop without having

established a unique match. For this reason, it is good for the recognition search

to establish several constraint networks with different correspondences early in the

processing or, as in our case, for the human to specify a small number (generally 2

or 3) of correspondences prior to autonomous recognition. It should be noted that

the required number of correspondences is not extensive, especially when the object
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models are rigid with known scale or orientation. Three points can fix the position
and orientation of an rigid object model in three space.

There are several heuristics to guide the determination of correspondences. As-
sociated with each object model feature and constraint is a description of the type of
perceptual feature that can be seen for it and also the relative viewing direction from
which it can be seen. Features are ranked according to their perceptual salience which
reflects how viewpoint independent the feature is and how unique it is with respect
to the object and to other objects. During recognition, an agenda is maintained of
pending queries for finding features.

4.1.3 Position and Attribute Refinement and Verification

This involves determining the position of the model features in three space given
the correspondences by solving a set of algebraic equations in which the multiple con-

straints are used to reduce the number of unknowns. In addition, this phase involves
verifying the correspondence of features based upon the predicted appearance of im-
age features, either by direct sensing or by queries over the perceptual structure data
base in the associated image areas. The constraint propagation routines associated
with the nodes in the sensor correspondence nfvtwork perform perceptual actions to
verify the predicted features.

A key concept is the utilization of perceptual strategies to acquire environmental
information when the constraint process gets stuck. Such perceptual processing will
often involve the system directing it's sensors to acquire particular information. Such
controlled use of sensors restricts the number of underdetermined variables in an infer-
ence process [Aloimonos and Swain - 85]. Examples are focused depth determination
by keeping multiple cameras focused on a point while moving them for triangulation
with simplified correspondence or looking for a particular feature by moving a sensor
towards a determined location convolving directly with a mask corresponding to the
anticipated feature or projecting a light grid onto the portion of the environment
to infer the occurrence of discontinuities, depth, and surface orientation. These are
important sources of information to unlock constraint propagation or resolve an in-

consistency without necessarily alerting the human controller. We envision a library
of such routines for obtaining environmental information, either using a directable
range sensor or multi-camera stereo. Associated with each routine is some cost esti-

mate for performing it and also the corresponding type of attribute and constraint
that it can infer. Examples are given in Section 5.

4.2 General Object Representation

The general format for object models consists of (Figure 4-1):
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Figure 4-1: Geueral Object Model
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" Attribute Slots which describe the different components of an object. For
example, a line-segment has attributes such it's length and it's endpoints. At-
tribute slots can be filled by variables from classes such as numbers, vectors,
items from an enumerated list, and pointers to other objects.

" Intra-Attribute Constraints describe the relations between different attributes
as a part of the characteristics of an object. For example, the length of a line seg-
ment can be determined from it's endpoints or one endpoint can be determined
from the orientation of the line, it's length, and the other endpoint. These rela-
tionships are stored in the intra-attribute constraints. There are different forms
of these constraints based upon the different type of constraint representation
that is used. In one form, they are expressed as algebraic equations which are
compiled into the constraint network which corresponds to the world model
when the object is instantiated; or they can be a set of first order, predicate
expressions that describe the relationship between the attributes. These predi-
cates are added to a predicate calculus constraint network in the world model
when the object is instantiated; or it can be a procedure that describes how to
determine the values of one attribute slot given the others. A single attribute
may have constraints specified only for itself in terms of bounds that it must
always be limited by or that it's value must remain constant

" Inter-Object Constraints are similar to Intra-attribute constraints, except
they are used to described relations between different objects in the world model.

For example, an inter-object constraint would express that a particular type of
object needs to be aligned with gravity or that it must be in contact with the
ground plane if it is a terrestrial object. These in general involve checking
through the current state of the world model.

" Instantiation Action and Demons are procedures which are executed when
objects are instantiated in the world model. Demons associated with an object
describe actions to take when some change occurs in the world model.

4.2.1 Use of Object Oriented Programming Methodology

To realize our object models, we have used an object-oriented programming
methodology as supported by languages like CLOS [Bobrow et al. - 87], Object LISP,
Flavours, or C++. In object-oriented programming [Cox - 84] data structures and
their associated procedures are combined into integrated units called objects. A
very simple instance of object oriented programming in conventional programming
languages is found in the notion of type coercion. A programmer can specify the
operation of addition for numbers with out having to specify the required particular
type of number being added, even though the internal representation and operations
can be quite different. In object-oriented programming this is generalized so that
when an instance of an object is operated upon, the correct procedure to perform that
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operation is determined by the object. Thus it is possible to have several different
types of objects which can implement the same abstract operation in ways specific to
it.

Another important attribute of object-oriented programming is inheritance. New
objects can be defined in terms of other objects by the specialization of their associ-
ated procedures and data structures. This leads to considerable abstraction in pro-
gramming. Inheritance applies to both the data and procedural aspects of objects, so
the actions associated with a defined class of object can be modified (or shadowed)
for more specific instances. In some object-oriented programming environments, in-
heritance is very general and objects are allowed to inherit from multiple classes of
objects. This allows for expressing general classes of objects and also being able to
define specific instances which correspond to exceptions.

The effect of the use of objects is to significantly increase modularity, flexibility,
and code maintainability. From the perspective of a developer, this allows for rapid
prototyping (studies have indicated by as much as 300 percent [Schmucker - 861).
From the perspective of a naive user, the objects correspond directly to natural units
for describing a domain. An object can be viewed as an agent that uses its associated
processes to respond to some condition, such as the state of another object or a
globally accessible resource. Thus, a user can point a mouse at an object, click on it,
and the object will respond in an appropriate manner without having a large number
of parameters specified.

Object oriented techniques allow us to represent the explicit inheritance relations
between objects. The inheritance relation can be applied to all aspects of an object,
including constraints, attributes, and attached demons.

We develop three basic types of primitive objects: geometrical, material, and
constraint/relationship. These are to be combined to create general terrestrial objects.

4.3 Primitive Objects

We distinguish two different types of object models. Primitive Objects corre-
spond to very basic attributes and relations that serve as building blocks to construct
more complex objects. Terrestrial Objects correspond to entities and relationships
which are commonly found in the world, such as gravity, ground, and trees.

There are three classes of primitive objects: Geometrical Objects which are
used to describe shapes; Material Objects which are used to describe the stuff that
objects are made out of; and Constraint/Relationship Objects which describe
spatial and logical relationships between the components of objects and constraints
on their attributes.
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Figure 4-2: Geometric Object

4.3.1 Geometrical Objects

The inheritance hierarchy for geometrical objects is shown in Figure 4-2. A
coordinate system is a geometrical object which has it's conventional meaning in
terms of number of dimensions and the various types (cartesian, polar, cylindrical).
Almost all the geometrical objects have an associated coordinate system. A field
corresponds to a scalar, vector, or tensor fields as used in physics. Thus, gravity is
defined as a constant vector field with an associated coordinate system.

Point, curve, surface and volume objects also correspond to their typical usages
and reflect 1, 2, and 3 dimensional objects. Each is specialized into similar types.
Relational refers to a geometrical object which is defined by the relationships of
.ther geometrical objects, typically through intersection. Thus, a relational-point
object is used to describe the intersection of curves; and a relational-curve is used
to describe the intersection of surfaces. The relational class is generally subdivided
into topological to refer to non-metric properties such as connectivity. Elementary
refers to particular types of curves, surfaces, and volumes. Thus, a straight-line, a
circle, an ellipse, and segments of these, are elementary types of curves. Composite
refers to an object which is made up of elementary objects of the same type. Thus a
sequence of straight line segments constitutes a composite curve.
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Figure 4-4: Surface
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Figure 4-5: Volume

Distributions are used to describe objects such as tree-crowns, vegetation
patches, and land-masses. These are rough shapes which can be described para-
metrically using a probability distribution.

4.3.2 Material Objects

Material objects are used to describe the basic stuff which makes objects up.
Ultimately, these properties correspond to the underlying atomic properties of the
substances which make up the world, such as concrete, asphalt, copper. From material
science [Cotterill - 85] there are well established physical properties and classifications
for substances. For perceptual utility, it is useful to have rougher classifications in
terms of more general objects such as metallic, vegetation, water, and so forth. There
are clear inheritance hierarchies between different material objects.

The general class of material objects is distinguished by a small number of at-
tributes [Gibson - 86]:

e Hardness - how rigid a type of substance is. This is described by a scalar
normalized between 0 and 1.

e Viscosity - the resistance to flow of a substance. Also described by a normalized
scalar.

4-10



e Density - the mass per unit volume of a substance. Described by a normalized
scalar.

* Coh-siv-ness - the strength of resistance to breaking of a substance. Described

by a normalized scalar.

* Elasticity - the tendency to regain the previous shape after deformation. De-
scribed by a normalized scalar.

* Plasticity - the tendency to held the previous shape after deformation. De-
scribed by a normalized scalar.

* Chemical reactivity - a vector describing the susceptibility of a substance to
chemical reactions such as solubility in water and air.

* Characteristic Spectral Reflectance - how the substance absorbs and reflects
light. This is described by a characteristic function from wavelength to the
amount of reflected energy.

We are treatirg substances as though there are uniform. This is not really the
case. Objects can be described in terms of multiple levels: such as a cell, a leaf-
vein, a leaf. a branch, a tree, a forest. Understanding the world doesn't require that

all possible levels for an object are used to interpret it, but that the appropria+e
one is used, based upon the objectives of the system and what c, be perceptually
determined. Thus, at one distance, the tree crown is a single object made up of general
vegetative material, while closer, it consists of branches and leaves. To deal with this,
there is also a nesting attribute associated with material objects to describe at what
distances what are the appropriate characteristic objects to describe the material.
This is a table which describes the components of the objects indexed by scale. The
perceptual processes can use this, coupled with the resolution and determined depth
of object to determine the correct scale to use. Thus we add:

* Nesting

- Scale/distance related to level of description

- Characteristic pattern for perceptual processing specified as a group (see
Section 5)

4.3.3 Constraint/Relationship Objects

The constraint objects deal with relationships such as rigidity, coincidence, rel-
ative orientation, absolute scale, order, containment, rigid body transformation, and
symmetry (rotational, reflectional, radial, bilateral).

4-11



For example, perspective projection is defined as a coincidence relation between

an environmental point and a ray of projection (see Figure 4-6). This is expressed by
the equation relating an image point to the corresponding environmental point:

Pi = ZeJ (4.1)

Thus, when there is a perspective constraint, there is a relation between an
image point, and environmental point, and a parameter describing environmental
depth. The perspective constraint object is able to determine any one of these values
given the other two. This shown in Figure 4-7 where there is a perspective constraint

between the environmental point P,, and the image point Ii. These are represented
in a partitioned graph where one side corresponds to the intrinsic attributes and
the other to the image-to-feature mapping constraints. When there are many points
visible in an image, there is a set of such constraint objects for each point.

In general there will be several other relations between points such its known

orientation, known distance or rigidity. For example, known distance is expressed by

under perspective:

D'=z'(I~i" Iei)
+2z,,izej(LI, ,j) (4.2)

and known orientation in the environment by

"(P . - P o). V (4.3)

I V II IPe - PoII

Interestingly, for example, while these constraints can be expressed in a network

and handled by direct propagation (see Figure 4-8), simultaneous constraints often

will share terms and can be simplified. This will need to be explicitly recognized. In

particular, known orientation and distance between two points yields:

P'i - PJ = V (4.4)

ZeIi - zeulo =V = (v 1 ,v 2 ,v 3 ) (4.5)
z,(aei, bei, 1) - z.,(a.,, b,, 1) = (VI, ,, V2 ) (

which is an overconstrained set of simultaneous linear equations which is directly

solvable.
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Figure 4-9: Terrestrial Objects

4.4 Terrestrial Objects

Terrestrial objects correspond to things found in the world. Figure 4-9 shows a
simple hierarchy for terrestrial objects and Figures 4-10 through 4-12 show some we
have constructed and used in the processing examples in Section 7.
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* SLOTS

o COORDINATE SYSTEM (POINTER TO A TYPE OF
COORDINATE SYSTEM)

o THE IMAGING SURFACE (POINTER TO A TYPE OF
GEOMETRIC SURFACE)
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o LABEL-PLANE DEPTH BUFFER

o LIST OF VISIBLE OBJECTS IN WORLD MODEL

• INTRA-ATTRIBUTE CONSTRAINTS

* INTER-OBJECT CONSTRAINTS (THIS INCLUDES DEMONS
THAT ARE PERFORMED: THINGS TO CHECK FOR WHEN A
PARTICULAR TYPE OF OBJECT IS INSTANTIATED. THIS
NEEDS TO BE UPDATED WHENEVER SOMETHING CHANGES,
LIKE A NEW OBJECT ENTERS THE FIELD OF VIEW)

o DETERMINE VISIBILITY OF OBJECTS IN THE WORLD
MODEL

o MAPPING RELATIONS BETWEEN CAMERA
COORDINATE SYSTEM AND OBJECT

Figure 4-10: Camera
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" SLOTS

o COORDINATE SYSTEM

o CONSTANT 3D VECTOR FIELD

" INTRA-ATTRIBUTE CONSTRAINTS

" INTER-OBJECT CONSTRAINTS

o FOR ATTACHED CAMERAS: CREATE THE 2D
PROJECTED VECTOR FIELD IN REGISTER WITH THE
SENSOR SURFACE; THIS IS THE PROJECTED-
GRAVITY-FIELD

o FOR OBJECTS THAT NEED TO BE ALIGNED WITH
GRAVITY: CHECK IF THEY ARE WITHIN SOME
THRESHOLD THETA WITH RESPECT TO THE
INSTANTIATED GRAVITY FIELD

o CHECK FOR CONSISTENCY BETWEEN THE
TRANSFORMATION RELATING DIFFERENT CAMERAS
AND THEIR PROJECTED GRAVITY FIELDS

o FOR OBJECTS THAT NEED TO HAVE TRANSITIVE
CONTACT WITH RESPECT TO THE DIRECTION OF
GRAVITY: POINTS ALONG OBJECTS WHICH HAVE
DEPTH DISCONTINUITY WITH RESPECT TO THE
PROJECTED DIRECTION OF GRAVITY

Figure 4-11: Gravity

4-18



e SLOTS

o COORDINATE SYSTEM

o NORMAL RELATIVE TO COORDINATE SYSTEM

o EQUATION OF PLANE

o POINTS ON THE GROUND PLANE

" INTRA-ATTRIBUTE CONSTRAINTS

o RELATION BETWEEN POINTS ON THE GROUND PLANE
AND THE NORMAL

" INTER-OBJECT CONSTRAINS

o FOR EACH INSTANTIATED CAMERA IN THE WORLD
MODEL:

- CREATE A HORIZON LINE OBJECT SPECIFIED
BY THE RELATION BETWEEN THE CAMERA
AND THE GROUND PLANE

- CREATE THE PROJECTED DEPTH MAP OF
IMMEDIATE GROUND-PLANE POSITIONS AS A
VECTOR FIELD IN REGISTER WITH THE IMAGE
(IN REGISTER MEANS THERE IS A VALUE FOR
EACH PIXEL IN THE IMAGE

- GENERATE THE PROJECTED RELATIVE
RADIAL DIRECTION IN THE GROUND PLANE
TO ORDER EXTRACTED IMAGE OBJECTS
INDEXED BY A RADIAL COORDINATE (THETA)

Figure 4-12: Immediate Ground Plane
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5. Perceptual Processing

Perceptual processing concerns how the telerobot uses it's onboard sensors to
obtain information about the environment to refine the instantiation of object models.
For effective functioning, it is critical that the perceptual processing be directed and
constrained, either by the human controller or by the constraints provided by object
models. We can distinguish three classes of sensors:

1. Direct Environmental Sensors - These yield such things as temperature, time of
day, direction of gravity, and orientation of immediate ground plane. This in-
formation is obtained with little or no processing and acts to parameterize other
perceptual processing, such as using the ambient temperature to set parameters
on processing infrared images

2. Imaging Sensors - These form images of the surrounding environment in differ-
ent spectral bands. These are passive sensors and using them to obtain environ-
mental information can be computationally expensive. The sensors themselves
are generally inexpensive, but need precision computer control of zoom, pan,
and focus. The processing using such sensors tends to be computationally ex-
pensive, especially for single cameras. Multiple imaging sensors, if they are
appropriately registered can yield precise depth information using stereo and
variants of it.

3. Range Sensors- These obtain environmental depth information directly. A scan-
ning laser range sensor forms an image of depth values. A pointing laser range

finder determines environmental depth in a particular direction. In Section 2 we
described a sensor which boresights a pointing laser range finder with a camera
directly. These are active sensors which can be quite expensive but will yield
reliable depth information with no computation.

Associated with each sensor will be multiple coordinate systems describing its
position and orientation relative to the world model, instantiated objects, and other
sensors. It is extremely important that all the sensors be registered so inferred in-
formation from one sensor can be used with respect to information obtained from
another one.

Utilization of human directed and constrained perceptual processing is extremely
important because of the current limited capabilities of autonomous perceptual pro-
cessing in unconstrained natural environments. While a human may clearly see the
boundary of a terrain patch from a water body, undirected segmentation processes
will almost always not extract it. These constraints involve such things as limiting
the extraction of particular types of image features to particular areas of an image
determined by a human and directing depth sensors to particular locations.
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The critical ideas in this section are representing perceptual information in a

spatially tagged data base and expressing perceptual processing and recognition pro-

cedures as direct queries or search-based grouping processes which can be applied

to this data base. This data base is called the Perceptual Structure Data Base

(PSDB) and contains extracted points, contours, regions and other perceptual ob-

jects. It is described in Section 5.1. The grouping processes which operate over the

PSDB find sets of related objects which correspond to specific types of patterns. An

example is linking several disconnected edge fragments together to form an object's

boundary or merging several regions together to form a predicted terrain patch. These

are described in Section 5.2. Section 5.3 described perceptual processing routines

for obtaining environmental information for direct incorporation into the constraint

network for sensor feature correspondence. Much of the work in this section was

developed as part of the Autonomous Land Vehicle project [Lawton et al. - 891 and

was concerned with how to extract predicted terrain features derived from an a prior

terrain map.

5.1 Perceptual Structure DataBase

The Perceptual Structure DataBase (PSDB) contains the images, objects, and
groups that have been generated by sensors and perceptual processing (see Figure

5-1). Images are obtained from sensors or the results of low-level image processing.

Perceptual objects are spatially indexed (with respect to an image) symbolic repre-

sentations of such things as points, curves, regions, surfaces and volumes. Groups

are sets of related objects in the PSDB that generally correspond to some type of sig-

nificant pattern. Groups partition the perceptual structure database into related sets

of objects. These relations can be a complicated hypothesized structure, such as a set

of lines forming a particular curve or related image structures that are matched over

a sequence of images. We stretch the concept of a group a bit to include descriptions

of collective attributes of a set of objects for histograms and other data structures.

The group structure is used to associate sets of images such as color groups, vector

groups, pyramids, and motion sequences.

All PSDB objects have a small set of basic characteristics common to all objects

of that type. In addition, arbitrary features can be associated with objects. In

this way, there is a common representation that is extended as needed for specific

processing. This is shown for the example of a curve object in Figure 5-2 where the

attributes keyed by small letters represent the basic attributes of a curve and those

in capital letters represent associated attributes.

Structures in the PSDB are accessed by a uniform query mechanism built around

filter functions. A filter function takes a list of objects as its first parameter and,

optionally, some additional parameters. The function produces a list of objects as

its result. The function itself can range from simple attribute checking to a complex

search or pattern matching operation. The objects returned are usually a subset

5-2



SPATIAL/TEMPORAL GROUPINGS
QUERY PROCESSING

METHODS & RELATIONSHIP
FUNCTIONS STRUCTURE

0//
VOLUMES

SURFACES

REGIONS

~POINTS

IMAGERY

Figure 5-1: Perceptual Structures Database
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("cCURVE 17S32716330
(6-cCURVE 173505632,

(ScCURVE 175327170,)

i #(SCURVE 17S327175,))))

IFigure 5-2: Instance of Curve Object

of the original objects, but can be a superset, or even a set of completely different

objects. The filter functions are combined by using the filter constructor. The filter

constructor takes a specification in terms of logical operators (AND, OR and NOT)

and filter functions and generates the bindings and additional functions required to

execute the query. This approach has proven to be a powerful and flexible one. There

are a number of generic filter functions that are used with many different kinds of

i objects; we have written a large number of special purpose filter functions as well.

A particularly important type of image is a label plane. These are images that

have a vector of indices at each location that point to all of the perceptual objects that

have been extracted from an image at that location (see Figure 5-3). The label plane

is very useful for relating objects extracted by different processes and at different

i resolutions. In addition, it provides a way of doing image-based geometric perceptual

processing that is necessary for grouping operations. Filter functions can also refer

to attributes of objects referred to in a label plane for finding all objects that have

certain spatial properties such as extent and location (Figure 5-4). The analogy of

a label plane for dimensions higher than two is straightforward, but computationally

I
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#<REGION 69315860>

<LINEAR-GROUP 78511367,
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Figure 5-3: Label Plane Containing a Curve

expensive. Such volumetric space representations will require architectures such as
the Connection Machine [Hillis - 85] or the CAAPP [Weems and Levitan - 87].

All perceptual objects have a TYPE attribute to indicate the object subclass.
An object subclass indicates that some specific set of features has been calculated for
that object. Image-based objects also have a GRID attribute that points to the grid
that the objects were derived from. This attribute lets a process link the symbolic
object to the label plane associated with other objects derived from the same image.
In addition, all of the image-based objects have a POINTS attribute that contains
all of the locations in the object. The spatially tagged parts of both objects are
represented by a uniform location representation that lets us trade off between storage
space, speed and fidelity while maintaining the ability to get all of the points in the
object. When locations are represented by other objects, the locations of the objects
are used as the location of the composite object. All of the representations can
be converted to points and vice versa. This lets us write most functions in terms of
points rather than depending on a specific location representation. Perceptual objects
also have methods associated with them for performing geometric manipulations of
their locations including rotation, scaling and translation for image-based matching
operations. Associating the geometric operations with objects insures that all of the
locations in the objects stay in registration.
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(flltr 13

(near-obect "curve" 10)

(within-filter :avg-Intensity 3))

RETURN ALL CURVES IN GROUP 13 (AN APPLICATION SPECIFIC
DATABASE) THAT ARE WITHIN 10 PIXELS OF THE CURVES POSITION IN
ITS LABEL PLANE AND ARE WITHIN 3 OF THE OBJECTS AVERAGE
INTENSITY

UNIFORM NEIGHBORHOOOS

OIRECTED CONES OIRECTED RECTANGLES

Figure 5-4: Spatial Query Language

5.1.1 Initialization of the PSDB

Currently, several default operations are performed to initialize the PSDB prior
to grouping operations. These are primarily for contour related information for an
image.

1. Red, green, and blue images are smoothed multiple times using the Burtian
Pyramid reduction/expansion on each component.

2. The gradient is determined for each component image.

3. The Canny edge operator [Canny - 83] is applied to each intensity image at each
spatial resolution.

4. The edges are thinned, traversed, and extracted as objects in the PSDB. A
simple linear decomposition is associated with each curve and stored as in a
tree structured attribute. The mean and variance of values along the curves are
extracted with respect to intensity, contrast, and the gradient in each component
and intensity. Orientation is associated with each linear subsegment of a curve.

5. Histograms are computed with respect to the curve object attributes. The image
is divided into nested square subareas and histograms are associated with each
of these.
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I

6. Objects are sorted by attributes such as size, mean and variance of contrast andiintensity, and extent of deviation from a linear approximation.

5.2 Grouping Processes

Grouping processes for an interface between queries produced during instanti-
ation of an object model and image processing routines and sensors on board the
telerobot. Examples are such things as:

I* Find an edge parallel to a specified edge

* Find all connected green regions in an indicated area

* Match a predicted contour under specified curvature constraints

. Find a repeating pattern of edges

* Find a set of symmetric curves with contrast in a specified range

The specification of a grouping process corresponds to predicting a type of pat-
tern of image features in an image and returning an ordered set of candidate patterns.
The specification of a predicted group will be associated with the instantiation demons
in an object model and instantiate the portion of the constraint network concerned
with image feature to object model correspondences. A group itself is described by a
set of parameters, the most critical of which will be set by the actions of the human
when he places an object in the world model and it is projected against the image.

The measure-based grouper described here is a generalization of edge-linking
procedures developed by multiple researchers [Martelli - 76]. It involves selecting a
structure in the PSDB and a grouping criteria which can be expressed as a unified
measure to evaluate sets of objects for satisfying the group-criteria. An example of
such a grouping criteria is maintaining constant curvature and contrast along a set

of ordered curves. The grouping process is expressed by several different types of
functions for controlling the search and generating potential group members. These
are functions for specifying an initial hypothesis, a successor function, an evaluation

function, a goal function and a result function.

The initial hypothesis is usually a single primitive object, like a curve or region,

although a group structure can also be used. This is selected by the best match to
some prediction of image attributes derived from a model (such as finding a straight

edge of high contrast at some expected orientation and position) or directly by the
human establishing a correspondence between a PSDB object and an object model
component.
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Successors to a given hypothesized group are generated by applying a general
constraint to all the potential objects. These global constraints range from attribute
checks to complex geometric restrictions based on what can be globally inferred about
the structure we are trying to find. The successor functions use a group, the possible
successors, and a local constraint function that accounts for local changes in the group
structure, to generate a list of new hypotheses. The local constraint functions have
proven to be very powerful in that they allow us to deal with local changes rather
than requiring a broad global constraint.

The evaluation function looks at a hypothesized group and evaluates it in terms
of the criteria appropriate to the structures we are trying to find.

The goal function examins each hypothesis as it is pulled off the agenda and
indicates whether in terms of the overall goal, the hypothesis should be opened or
closed. The goal function also determines if the search should terminate and whether
a hypothesis is itself a goal structure. The result function takes the results of the
search and generates a permanent record.

Given the initial hypothesis, candidates, successor function, evaluation function
and goal function, the search function performs a best first search over the hypothesis
space by the following algorithm.

1. Pick the best hypothesis so far as ranked by the evaluation function.

2. Call the goal function to determine if this hypothesis is a goal and whether to
continue with the hypothesis, terminate the search, or retrieve the next best
hypothesis.

3. Call the successor function on this hypothesis to generate a new hypothesis.

4. Call the evaluation function on each of the hypotheses and then add them to
the agenda ordered by their evaluation.

5. Repeat from 1.

6. When the search is ended, call the result function with each goal hypothesis
and collect the returned values.

5.2.1 Running the Grouper

The grouper can run interactively in an automatic bottom-up fashion directly
under human control, or top-down based upon the predictions associated with instan-
tiated objects. To run the grouper, the following function is called:

(find-groups <group type> <label plane>
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&key (filter) (interactive) (display)
(show 0) (redisplay t) (zoom '(I 1)))

The <-group type> is the class of group which is being searched for. The <label
plane is the data structure which contains the results of perceptual processing which
will be used as possible components of the desired groups. A filter over objects in the
label plane can be specified at run time to limit the search as desired. By default,
the results of grouping are deposited in the label plane for future processing.

5.2.2 Defining a Group

A group can be represented as a collection of hierarchies (Figure 5-5). Specifi-
cation of a new group or an instance of some defined group involves the selection of
elements from these hierarchies. Figure 5-5 shows the top level elements of the group
which should be specified.

5.2.2.1 Component Constraints

Groups are made of other groups and perceptual objects in PSDB. There may be

multiple types of components for a single group. For example, a group might contain
both curves and junctions. The type slot indicates the component object type and is
chosen from the group hierarchy (Figure 5-6). When attempting to group objects in
the label plane, MBG only considers objects of the appropriate type.

5.2.2.2 Global Constraints

For each component, one can specify global constraints which must be satisfied

by all potential components of a given type. For example, for curves to be considered
as possible components of a straight line group they may be constrained to be of a
certain length or straightness, or have attributes within some maximum deviation

from other members of the group. These constraints usually take the form of filter
functions which return a reduced number of candidate objects.I
5.2.2.3 Successor Constraints

Given a partial group definition and some potential candidates in the label plane,
MBG must select a subset which will be considered for addition to the group. The

successor constraints specify how to choose new components to be added to the current
group. For example, a successor constraint might be used to find all edges in a

I specified geometric relation to a hypothesized group. Most of these filter functions
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I GROUP HIERARCHY

TYP. NEW

PARENT - GROUP HIERARCHY

COMPONENTS

-TYPE S GROUF HIERARCHY

-GLOBAL CONSTRAINTS - GLOBAL CONSTRAINT HIERARCHY

-SUCCESSOR o SUCCESSOR CONSTRAINT
CONSTRAINTS HIERARCHY

EVALUATION FUNCTION
i ~-MAXIMIZE - ,

-MINIMIZE .EVALUATION FUNCTION HIERARCHY
-MINIMIZE

I INSTANTIATION CONSTRAINTS - GLOBAL CONSTRAINT HIERARCHY

I ACCEPTANCE CONSTRAINTS - EVALUATION FUNCTION HIERARCHY

SHAPE DESCRIPTION - SHAPE DESCRIPTION HIERARCHY

SEARCH CONSTRAINTS

I -SEARCH STRATEGY -4 SEARCH HIERARCHY

I
-DEVIATION <INTEGER>

-DEPTH OF SEARCH <INTEGER>

-TOTAL HYPS <INTEGER>

I -NUM GROUPS <INTEGER>

I Figure 5-5: Group Specification Hierarchy

I
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TEMPORAL STRAIGHT LINE

SEQUENTIAL -CONTOUR - SEQUENTIAL -CLOSED
CURVE CONTOUR ELLIPSE

CONSTANT
CURVATURE

I JUNCTIONAL

RELATIONAL PARALLEL

PERPENDICULAR

GROUP AFFINE

TRANSFORMATIONAL EXPANDING

CONTRACTING

AMORPHOUS

AREAL DEFINED FORM
DEFINED PROPERTY COMPACT

SPARSE

Figure 5-6: IS-A Hierarchy of Groups
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work directly on the object representations, but some of them make use of the label
plane for more complex geometric operations.

5.2.2.4 Evaluation Functions

Groups can evaluate themselves and obtain a value that indicates how 'good"
they are. This is used by search processes to guide the completion of groups. The
group value is a linear combination of functions applied to the group components.
These functions relate to the desired properties of an ideal group member in a given
class. There may be attributes which should be mazimized and some which should
be minimized to achieve the best group. For example, for a straight line group, the
idea is to maximize the length of the group while minimizing the average deviation
from the best straight line through the curves.

5.2.2.5 Search

Various search strategies are available depending on the type of grouping desired.
Users can define new strategies as appropriate. The current strategies are best-first,
mono tonic-search, and accept-all-candidates.

Best-First:

Best-first performs a standard breadth first search of potential groups. In this
case, "best" means the highest valued group as determined by the specified evaluation
functions. At a given point, the highest valued group is chosen and expanded by
applying the successor constraints. Hypothesis groups are created by extending the
group to include each of the candidate successors. These groups are evaluated and
added to the list of active hypothesized groups. A goal function determines whether
or not to accept or reject a hypothesized group. If no goal is specified (the default)

then the hypothesized group is accepted when no more potential successors to the
group exist. This is generally the most useful of the defined search strategies.

Due to the combinatorial nature of this search process, it is necessary to provide
ways of restricting it. This search can be controlled by the following parameters:

e Within-n-of-Best:

o the amount that hypothesized groups are allowed to deviate from the best

hypothesized group found so far. A small value here restricts the search space
and speeds the search. It also may prematurely prune groups which may turn

out to be very good.

e Depth-Of-Search:
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o This restricts the total depth of the search tree.

" Total-Hyps:

This sets a maximum number of hypotheses to be maintained at a given time.
Only the best groups are kept for future expansion.

" Best-n-Groups:

c This specifies the number of groups to be returned from the search process.

* Threshold:

o This specifies a minimum value that a group must have to be considered for
further processing.

" Acceptance Constraints:

o The evaluation functions described above can be used to specify minimum
acceptance criteria for hypothesized groups.

Monotonic-Search:

This strategy is a special case of best-first search. By setting "TotalHyps" to 1
and "Within-n-of-Best" to 0, best-first search will behave monotonically (i.e. only
groups of monotonically non-decreasing value will be considered). This can be useful
when the criteria for group membership are well specified. The resulting search does
not suffer combinatorial explosion but for most cases is too restrictive. Notice that
by using the best-first strategy and changing the "deviation" value to some negative
value, one can force the possible hypotheses to be monotonically increasing in value.

5.2.2.6 Shape Descriptions

Groups can be described in terms of their components, but since they often
correspond to perceptual events they may have some real geometric structure. Hence
it is often useful to represent this structure explicitly and treat the group as a single
object deposited in the label plane.

5.2.3 Example

Figure 5-7 is an image of sumac leaves and berries. The textural regions corre-
sponding to the berries in the sumac image are described by the "sumac-berry" group
generated by the visually salient features determined from a model of a sumac-berry
(Figure 5-8). The texture regions were generated by selecting primitive regions with
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Figure 5- 7: Sumac Intensity Image, and Berry Detail

attributes corresponding to sumac-berry substantial properties (Figure 5-9) and then
applying region-based grouping processes to the adjacent regions. Textural regions
which are compact and of a reddish color indicate possible regions of berries. Global
component constraints limit the search for a berry group to regions of the appropriate
color and contrast. Sumac berries tend to be in tight clumps hence new regions are
added to the group only if they satisfy a compactness constraint. This constraint is
specified as a maximum distance constraint on the centroids of regions in the group.
Figure 5-10 illustrates the extracted regions and the berry group.

Figure 5-11 illustrates some straight line groups found in a ponderosa pine
branch.

The straight lines of the pine branch image radiate from roughly the same lo-
cation (the pine cone). This is captured by a "radial-line group" which specifies a
roughly constant change in orientation among the elements of the group. Figure 5-12
shows the radial structure of the pine needles in red.

5.3 Perceptual Processing for Direct Extraction of Environmental Infor-
mation

Many of the sensors on board the telerobot can be used to obtain environmental
information directly without requiring significant segmentation or perceptual process-
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(deft lavor sumac-berries
((Type :sumac-berries)
(components

'((type 'region
global-constraints
'((:attrib-filter (and (attrib :avg-red 60 133) ;80

(attrib :avg-green 15 101) ;30
(attrib :avg-blue 22 113) ;35
(attrib :var-red-contrast 25 1000)
(attrib :var-green-contrast 26 1100)

(attrib :vax-blue-contrast 36 1155)
(attrib :avg-red-contrast 12 48)
(attrib :avg-green-contrast 11 50)
(attrib :avg-blue-contrast 13 51)

(attrib :area 0 93)
successor-contrainfts
'((:centroid-distance 0.0 10.0)))))

(Maximize '((:num-components 1.0)
((:sum-component-attrib 'region ':area) 1.0)))

(SearchStrategy ':beut-first)
(within-n-of-beat 0.0)
(totaihyps 1)
(InstantiationConstraints
'((attrib-filter (type-filter 'region)))))

(group-schema))

Figure 5-8: Sumac-Berry Region Group
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Figure 5-9: Primitive Regions in Berry Detail

Figure 5-10: Regions Forming Textural Area
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Figure 5-11: Straight-Line Groups in Ponderosa Pine Branch

Figure 5-12: Radial Line Group
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ing. This involves information about depth and surface orientation. This information
can be deposited directly into the constraint networks for intrinsic object attributes
and sensor feature correspondence. It is useful to think of such perceptual processing
organized as a library of subroutines used for the direct extraction of environmental
information which can be invoked by the constraint controller. Examples of such
routines are:

. Scanning along a given direction and getting a depth profile

" Scanning across an edge to find depth discontinuities

* Scanning over an area to determine depth and variance

" Scanning along a ray of projection in three space

A key motivation for such routines is that they can be developed to yield very
reliable depth information about a focused part of the environment, instead of form-

ing, for example, a complete depth map of a scene which may have significant errors.
The use of such routines will decrease computational expense. It also allows the in-
stantiation of object models to direct ile extraction of important information and
avoid non-essential information. Such routines could be realized directly with the
directable range sensor described in Section 2. It should also be possible to form a

library of such routines based upon passive techniques, notable multi-camera stereo.

Passive techniques are essential for avoiding detection and for operation in un-
constrained, outdoor environments. They also have benefits for eventual realization
in parallel hardware architectures. In future project work, the algorithms for using

several inter-related passive sensing techniques for the extraction of three dimensional

scene information and performing model matching will be developed. This will in-

clude (but is not limited to) the use of inverse perspective, camera calibration, stereo,

and model based stereo.

I Multi-camera calibration enables measurements made from one camera to be

related to those made with other cameras. It is used to determine the transformations

between multiple sensor coordinate systems, the world model, and instantiated object
models. Camera calibration is essential to solving the inverse perspective and stereo
inferences needed in the following tasks. It enables the rays of projection from one
camera to be projected onto the view of another camera to yield epipolar constraints
necessary for processing multiple images.

There is a well established body of techniques for camera calibration
rC[('atleman - 79]. In addition, there has been much recent work by which a robot
can simply and robustly calibrate it's own sensors by simple standard moments
[Brooks, Flynn and Marill - 88], [Tsai and Lenz - 88a]. This is essential for the semi-
independent functioning of a telerobot which is separated by potentially large dis-

*tances from a human controller.
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Passive inference techniques can also be based upon the various constraints and
relationships used to describe object models as developed under perspective projec-
tion with multiple cameras. This involves taking a geometric relation and expressing
it using an inverse perspective transform iLawton - 80' (see Section 4) consistent with
multiple calibrated cameras. This yields a set of equations expressed totally in pa-
rameters that can be measured from images and whose solution determines consistent
environmental depths for the associated image points. In general, for a single sensor
and an arbitrary geometrical relation, this does not produce a solvable, or sufficiently
constrained, set of equations. But for restricted geometrical relations and the use of
the epipolar constraint between multiple calibrated cameras, an overconstrained set
of equations is generally produced. Examples of such solvable relationships include
relationships such as parallelism between lines; line segments with known lengths; line
segments with known relative directions; points constrained to lie in a given plane;
known angles between line segments and planes; and several others. Thus, for models
described in terms of such relationships, the inference of depth under interactive regis-
tration with image locations is solvable. For these restricted cases, a prior knowledge
of shape or the underlying geometry is theoretically sufficient to instantiate an object
model.

Focused depth inference can also be obtained using stereo and motion. These
techniques will be based upon triangulation using multiple cameras and can be the
basis of a passive, directable range finder. The particular cases are:

@ A human selects a point in one image and interactively determines its position in
images obtained from other cameras under the constraints provided by camera
calibration.

* A human selects a point in one image and it's position in other images is
determined automatically under the constraints provided by camera calibra-
tion. The matching will be done using a small image area around the se-
lected point which is treated as a feature. These features will be displaced and
correlated along epipolar lines. The type of matching is similar to that used
in [Lawton, Rieger, and Steenstrup - 87] for determining image displacements
along translational flowpaths during sensor motion.

e A human selects a point in one image and the associated camera is able to
move to another position. While it does, it will continuously track the selected
environmental point and perform triangulation. This will simplify the match-
ing processing and allow for optimizing the length of the base-line used for
triangulation.
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6. Long Term Database

The long term database (LTDB) is a database and a set of access functions that
store and recall the following information:

" a priori knowledge about the world including maps, geographic grid databases,
terrain, etc.

* sets of visual or other sensor observations, the inferences drawn from these
observations via image processing, and previous human directed scene interpre-
tations.

* the spatial and semantic relationships between observations, and inferences.

The basic function of the LTDB for the telerobotic vision system is to generate
predictions of objects and terrain in a scene using a prior terrain information and
previous scene interpretations. These predictions will be used to automatically sug-
gest critical landmarks for a human to match and refine. This will enable the robot
to more rapidly interpret a scene that it has visited previously and further reduce the
processing load on the human.

Most of our work for implementing the LTDB was developed as part of the the-
ory of Qualitative Navigation [Levitt and Lawton - to appear]. The first part of
this theory was based on a multi-level spatial representation for an exploring robot

(or in our case, telerobot) (Figure 6-1). The levels are ordered by the abstractness of
represented spatial information. At the lowest (and least abstract) level in Figure 6-1
is a grid based representation of terrain described relative to a single fixed, global
coordinate system. This corresponds to the type of information associated with an a
prior terrain grid. The middle-level consists of locally coupled polar coordinate sys-
tems called viewframes. Each viewframe stores the direction and range of extracted
landmarks and objects from a coordinate system based on the robot. There are in-
tervals of uncertainty associated with the range and angle of the perceived landmarks
in the viewframe. The use of the viewframe data structure allows us to condition-
ally attach it and its associated landmarks to a region of the global coordinate grid
to reflect uncertainty in global position. The most abstract level of representation
consists of viewframes with out any range information. This level corresponds to a
purely topological representation of space.

The use of these multiple levels of representation allows us to cleanly combine
two different types of information. Generally, the a prior terrain map is an array of
numbers described relative to a fixed global coordinate system while the world and
landmarks surrounding the robot are best described as distinct objects which are not
easily summarized as a feature value which describes a 30x30 meter patch of earth.
Both types of information are represented and related in the LTDB.
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The second part of Qualitative Navigation was a technique of localization by
which it was possible to determine the position of a viewframe from another viewframe

with which it shares landmarks. What was significant was that this localization pro-
cedure was adequate for path planning and navigation even with enormous amounts
of uncertainty (up 1000 percent) in landmark portion.

For the telerobot, this is used in several ways. Generally, the robot will have
very good information about where it is if it can use the Global Positioning System

(GPS). Thus, visual predictions are generated from the a prior terrain map for auto-

matic registration and refinement by the human. Second, if the robot is near a place
where a viewframe was extracted during a previous interpretation, the landmarks

from that viewframe are available for interactive registration by the human. Using
the viewframe localization procedure, once a few landmarks are registered, the others
can be positioned automatically. The viewframe localization procedure would also be
of use if GPS were not available.

The architecture for LTDB is pictured in Figure 6-2. LTDB contains several
types of information: a priori terrain grids, a priori cultural feature networks such

as roads and rivers, viewframes derived from previous interpreted scenes, landmarks,
and viewpaths.

Landmarks are the distinctive visual events either observed at runtime or avail-

able from memory. These are chiefly pointers to instantiated object models in previ-
ously extracted world models. Landmark data includes time of acquisition, viewframes

it occurs in, pointers to map or grid data tying the landmark to absolute coordi-
nate systems (if available), as well as perceptual data. Viewpaths are sequences of
viewframes acquired while the robot was moving through its environment. They
are the key structure of visual memory. Each viewframe points at the landmarks
it records. Because the landmark and viewpath databases point at each other, all
modules that use LTDB have access to both databases. Terrain grids and cultural
feature networks constitute the a priori knowledge available to LTDB. They are used
to make visual predictions on paths, and for post-run processing for algorithms that
use LTDB as input for creating and updating maps of the environment the robot has
passed through.

Viewpath maintenance is the process that attempts to match the re-acquisition
of landmarks to infer closeness of visual places in memory. Thus, when we re-acquire
landmarks, our current viewpath is linked to existing ones in memory. This is the
primary function that makes LTDB useful for visual predictions and for path planning.

The spatial reasoning module computes relationships between objects in visual
memory in response to tasks and queries from the vision system. Fundamental opera-
tions include planning headings between the current viewframe and ones predicted in
memory, path planning, and inference of global relationships between local coordinate
systems.
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Following this introduction, Section 6.1 describes the prediction processing using
an prior terrain grid. Section 6.2 describes the properties of viewframes.

6.1 A Priori Terrain Knowledge and Prediction

A priori terrain data is provided in several formats. Feature masks (or thematic
overlays) are two-dimensional and follow standard Mercator projections onto the ter-
rain. Examples include road networks, gullies, buildings, and fields. Digital elevation
models (DEMs) are 2-1/2 dimensional in that they encode, at most, one elevation
value at each point on the surface of the earth (so they cannot, for example, be used
to depict tunnels).

Given a digital elevation model (DEM), we can generate various displays of data.
These include contour diagrams, pseudocolor plots (where color is used to distinguish
elevation or slope), or surface plots. It can be used as a synthetic image which acts
as a prediction of what a sensor might capture when imaging the given terrain we
have implemented. A perspective surface plot with hidden line elimination can be
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generated from arbitrary viewpoints using a camera model. The routine can plot

arbitrary values into an image for subsequent processing or it can draw colors into a
window for display purposes.

Given a DEM in the form of a grid, the surface plot routine takes two types
of input parameters: positional and camera. The position of the "'pseudocamera" is
specified in terms of an x,y location (in grid coordinates), an orientation in degrees
where Ois North or positive y in the grid), a height above the surface (in the same
units as the values in the DEM), and a tilt angle (in degrees where 0 is straight ahead).
This captures all the degrees of freedom (in an intuitive form) of a real camera in the
real terrain. The "pseudocamera" is modeled by its resolution (in grid cells), field of

I view (in degrees), and ra ge (the distance the camera can "sense" in grid units).

Given underlying surface features (such as roads, fields, buildings) that are reg-
istered to the DEM, a variation of the plot routines will write values derived from
those objects onto an image. These values may be pointers pointing back to the de-
scriptions of the objects themselves (making the image a label grid) or some derived

I property of the object (such as albedo). The resulting image is then available to be
processed to form a prediction of what can be found in the scene.

3The display routines can generate label plane images (see Section 2 and 5) where
the values in the image are pointers to the geographic objects (e.g., roads, fields) that
occur in the scene (Figure 6-3). Since the visual characteristics of these objects canIbe modeled, it is possible to use their position in the synthetic image as predictions
as to what will be found in the senscr-derived imagery.

Given approximate positions of geographic entities in the image allows model-
based processing to be carried out. In hypothesized boundary regions, edge detectors
can be run that are tuned to the appropriate direction. Since there is a high probabil-
ity that an edge is present, weaker evidence can be considered than would be the case
with a model-independent detector. In regions corresponding to geographic entities,
(rcads, forests, etc.) texture and other region-based operators can look for evidence
concerning what is known about the particular region. For example, if it is known
that a region is a forest, then that indicates a texture with a high standard devia-
tion. However, if the particular type of forest is known, and additional information
exists (e.g., the time of year, sun angle, density of trees), then much more specific
predictions about color can be made. If the region has been seen previously, then
even more exact predictions can be made.

All the information regarding the synthetic image can be manipulated in theI same way as senso-derived images. The extracted regions will be placed in PSDB
and have the same representation as other "regions". This facilitates matching the
predictions with the image structures. The same type of queries over PSDB that have
been previously described can also be used to manipulate this data. This consistency
across different types of data simplifies the software engineering of the vision system.I
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Figure 6-4 shows human interaction with such a label plane image using a mouse.
The window in the upper left corner of each of these figures shows the predicted image.
The pointer in this image indicates a region that is being queried for the relevant types
of objects projecting onto this area of the image. The figure on the lower left indicates
the regions of visibility with respect to the position of the vehicle sup',erimposed on
top of a contour map display.

6.2 Local Coordinate System: Viewframes

We define a geographic "place" in terms of data about visible landmarks. A
place, as a point on the surface of the ground, is defined by the landmarks and
spatial relationships between landmarks that can be observed from a fixed point in
space. More generally we can define a place as a region in space, in which a fixed set
of landmarks can be observed from anywhere in the region, and relationships between
them do not change in some appropriate qualitative sense. Data about places is stored
in structures called viewframes.

Viewframes provide a definition of place in terms of relative angles and angular
error between landmarks, and coarse estimates of the absolute range of the landmarks

from our point of observation. Virtual axes between pairs of selected landmarks form
a local coordinate system that can be used to localize the robot relative to all visible
landmarks. These coordinate systems are truly local in that it is unnecessary to know
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anything about the absolute relationships between observed landmarks, or to relate
the robot's current location to any past location the robot has passed through.

A viewframe encodes the observable landmark information in a stationary panorama.
That is, we assume that the sensor platform is stationary long enough for the sensorIto pan up to 360' , to tilt up to 900, and to recognize landmarks in its field of view.
Viewframes allow us to localize our position in space relative to observable landmarks
in several ways. In performing a viewframe localization, we can make use of observed
or inferred data about our approximate range to landmarks. Errors in ranging and
relative angular separation between landmarks are smoothly accounted for. A priori
map data can also be incorporated.

To generate a viewframe, relative solid angles between distinguished points on
landmarks are computed using a sensor-centered coordinate system. A distinguished
point on a landmark may be a statistically derived point such as the centroid of the
projection of the landmark in an image, a structurally derived point such as a vertex
or high curvature boundary point, or a perceptually derived point as in a unique
visual feature of the landmark.

We establish a sensor-centered spherical coordinate system that fixes an orienta-
tion in azimuth and elevation and takes the direction opposite our current heading as
the zero degree axis. Then two landmarks in front of us, relative to our heading, will
have an azimuth separation of less than 180'. If we assume that no two distinguished
landmark points have the same elevation coordinates (i.e., no two distinguished points
appear one directly above the other) then we obtain a well-ordering of the landmarks
in the azimuth direction which we can speak of as "ordered from left to right". The
relative solid angle between two distinguished landmark points is now well defined.
See Figure 6-5.

Under the above assumptions, we can pan from left to right, recognizing land-

marks, Li, and storing the solid angles between landmarks in order, denoting the
angle between the i-th and j-th landmarks by Angij. The basic viewframe data is this
ordered list, L1, Anrgl2, L2 , Ang23, L3 , . .- Note that the relative angular displacement
between any two landmarks can be computed from this basic list. However, the angle
between landmarks that is more readily measured is the planar angle, Qij, established
by the sensor focal point and the two distinguished points observed in the i-th and
j-th landmarks. There is an error in computing these relative angles that is at least as
great as resolution of the vision system. The angular error is measured by eij between
landmarks i and j. Finally, range estimates are required for landmarks recorded in
viewframes. These estimates can be arbitrarily coarse, but finite. We only insist the
true range lie between the bounds specified for the estimate. With this data in mind,
the structure of a viewframe is given by L 1,[rl1,r 12],Ang12,e 12,L 2... , where ril Is
the nearest range estimate and r12 is the farthest.
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6.2.1 Viewframe Localization

We now explain how it is possible to localize ourselves in space relative to these
observed landmarks. This is used to determine and refine one's position given rough
correspondences between predicted landmarks and observed image features. A more
complete description can be found in [Levitt and Lawton - to appear].

We begin by noting that the set of points in 3-space from which we can observe

an angle of Oij between landmarks Li and Lj is constrained to a torus-like space,
pictured in Figure 6-6. This is more easily observed in a planar cross-section where
the shape is the figure eight cross-section in Figure 6-7. To prove this, we set up a
polar coordinate system with the origin at Li, and with L3 at coordinates [s,], where
s is the fixed but unknown distance between the landmarks. Denote the (unknown)
distance from the sensor to L, by ?, and the distance to Lj by Ri We now ask, what
are the set of points in the plane, [r, ang], from which we can observe an angle of 9i,
between Li and Lj? This situation is pictured in Figure 6-7.

We can now compute:

ri = s1i cos5 + s, cot esinq

= cot - 1  csc E - cot ]
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Figure 6-6: Constant Angle Toroid
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This is the polar form for a circle with center [!zcsc 0. E) 0 and radius !1 csc 0.
It has singularities where R or R. are equal to zero. By symmetry we obtain the
figure-eight-like shape pictured in Figure 6-7. Rotating the circular arc in 3-space
about the axis defined by the line segment joining L, and L,, we obtain the figure
pictured in Figure 6-6.

Figure 6-7 shows how varying the sensor location along the circular arc is equiv-
alent to varying the absolute ranges to the two landmarks. If we can bound the
ranges to the landmarks, then we can localize ourselves along the circular arc accord-
ingly. This is logically equivalent to establishing a local coordinate frame between
the landmarks, and bounding our location relative to that frame. Note that if we
can register the landmarks with a priori map data, then we can know and use the
distance between the landmarks, but this is not necessary.

Error in angular measurement of the O, corresponds to different choices of con-
centric circular arcs each of which contains [Li, Lj] and the sensor focal point. If
we union these arcs together, we obtain the localization, Locij, of the sensor relative
to the two landmarks. Because our localization must be true relative to all observed
landmark pairs simultaneously, the intersection of the Locij over all i>j give our best
localization. Intersecting the Locij requires that the Locij be represented in the same
local coordinate frames. These concepts can clearly be extended to 3-space reasoning
if necessary.

In summary, if we can observe distinguished points on landmarks and the relative
angles between them, and if we can put bounds or the ranges to landmarks, then we
can compute our location in space relative to pairs of landmarks, and intersect the
pair-relative localizations to obtain our best localization relative to the entire set of
observed landmarks.

6.2.2 Viewframe Headings

Headings and directions between viewframes can be computed between two
viewframes that share at least two landmarks (two landmarks for 2D reasoning,
three landmarks for 3D reasoning) in common. If the set of landmarks included
in a viewframe destination are visible and we are very close to our original point of
observation, then it is straightforward (up to traversability of the intervening terrain)
to perform a hill-climbing algorithm to bring the sensor to the point of observation
where the viewframe was previously collected.

An alternative approach is to formulate the viewframe localizations for each of
the viewframes in the common local coordinate system defined by the two (or three)
landmarks and the sensor. Note that the the two landmarks must not be co-linear
with the sensor (the three must not be co-planar with the sensor). We then have two
regions expressed in the same coordinate system. Any affine linear transformation
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that maps one viewframe approximately onto the other may be taken as a heading.
For example, we can translate the centroid of the first viewframe to the centroid of
the second. This is the definition of viewframe heading transformation we use as a
default. It defines a heading as a vector pointing between the viewframes and supplies
the vision system with an intuitive notion of "head thataway". A viewframe heading
is not generally the same as a metric heading because the points in space that the
sensor occupied when the viewframes were collected may not be mapped onto each
other by the viewframe heading transformation. Figure 6-8 illustrates the generic
situation in which we can compute a viewframe heading. One viewframe contains the

landmarkz L1, L2 and L3 , and the other viewframe contains landmarks L 2, L 3 and
L 4. Range estimates to L2 and L3 may also be different in the two viewframes.

I

i
!
I
I
I
I
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7. Mac II Based User Interface and Processing

We developed a prototype user interface for experimentation during Phase I work.

It allows for basic actions such as viewing multiple images at different resolutions;
mr--Ipulating three dimensional objects relative to displayed images while projecting
the objects onto the images registered with the world model.

We view this initial interface as the first of a sequence. It is based on a few basic

mechanisms such as display windows, color overlays, label-planes, and text browsers
and utilizes standard input devices such as a keyboard, mouse or drawing pad. The
user interacts with objects through textual browse tables which describe the values
of the attributes of objects and present the explicit interconnections between objects.
The interaction is a little painstaking because objects are manipulated by typing
in values into slots in the text browsers and watching other values be propagated

in displayed browse windows. This is a basic level of functionality which is useful
for debugging. The next level of interface will involve interactive devices which en-
able several values to be set and operations to be performed simultaneously. This
will include items such as data gloves, speech understanding hardware, and multiple

displays. This will enable a user to specify many aspects of the world model simulta-

neously and also to use intuitive spatial gestures in developing the world model. An

example would be having the physical sensation of grabbing a model and placing it

into the world. This technology is currently becoming readily available and inexpen-

sive. The final stage of the interface will be a virtual reality style presentation of the

work model which the human actually inhabits the world model as it is established.

Our initial work was done on a Mac II using Coral CommonLISP

Bobrow et al. - 871. Our choice was based upon several factors. There is extensive

commercial software available for the Macintosh for graphics with a growing empha-

sis on video and image processing. The Mac toolbox [Apple Computer - 88] supplies

an enormous facility for building interfaces, all of which was accessible through Coral
CommonLISP. There are also exciting developments in interactive devices for gestural
and voice input for the Macintosh.

The basic components and constructs used in our environments have been de-
scribed in [Lawton and McConnell - 88], [McConnell et.al. - 87], [Edelson, et.al. - 88],

and [Riley et.al. - 87]. In general, we found that developing corresponding compo-

nents of the user interface on the Mac was fairly simple. For example, Figure 7-1
shows the interactive application of a spatial mask to a set of edges registered with

an image. The selected edges are then displayed in a Browse Table for further in-
spection. We found that several of the commercially available products could be

integrated with image handling. The use of generic CommonLISP made possible the

use of programming constructs developed for CommonLISP-based IU environments.
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On the negative side, we found that integrating other commercial application
software such as CAD/CAM, databases, and expert system building tools was still
rather difficult and awkward. In part, this is due to the lack of a conventional operat-
ing system which supports such things as virtual memory, multi-tasking, interprocess
communication, and the lack of language interfaces for much of the commercial Mac
software. Ancther limitation that has made us question the appropriateness of the
Mac is the Allegro Coral CommonLISP environment itself. While providing great
flexibility and power as a development environment, it needs to be greatly optimized
as a run-time system before we can consider it for developing computationally in-
tensive IU environment applications. The main hardware limitations we experienced
stem from an overworked CPU. The central processor must not only perform all the
computation and symbolic processing required for image understanding, but must
also drive all the graphic display operations that are so fundamental to this type of
interactive image and graphical object oriented application and orchestrate the access
of all devices to the main memory. The CPU handles all file writes and memory man-
agement tasks byte by byte. This problem can be solved in several ways, and rumors
from Apple indicate that they are actively developing hardware that addresses all
these solutions (e.g., using an AMD 29000 RISC graphics coprocessor increasing bus
bandwidth from 10mHz to 20mHz, and having direct memory access channels).

The limitations we hav discovered are, in all likelihood, soon to be addressed by
Apple so they can compete with low-cost scientific workstations from other vendors
such as Sun, DEC, Apollo, and Nex,. With the increasing sophistication of user-
interface tools associated with these machines, increased power, and a large third-
party supply of hardware and software, they all provide very attractive platforms for
IU environments.

In this section we begin by describing our hardware set up (Section 7.1) and
the (components of) the Interface Software in Section 7.2. We conclude with several
examples of the interface and system components in operation.

7.1 Hardware Configuration

The Mac IIx and Mac IIcx are full 32-bit, 68030-based machines using a 15.67mHz
clock, a 68882 floating point coprocessor, SCSI and RS-422 ports, and a flexible NuBus
expansion bus architecture (10mHz). The Mac Ilcx has three NuBus expansion slots,
and the Mac IIx provides six NuBus expansion slots. The NuBus provides an open
architecture which has led to widespread commercial availability of powerful and inex-
pensive extended hardware ca.abilities which include coprocessors, memory, storage,
digitizers, extended ports, robotic control, measurement, voice recognition, and a
rapidly growing assortment of other equipment. Because of the large commercial
Mac market, these products are relatively inexpensive, powerful, simple to install,
and well supported.
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Figure 7-2: Current Workstation Configuration

The current environment is shown in Figure 7-2. It includes a 600MB magneto
optical disk with removable media, an additional hi-resolution color monitor and
video card, hi-resolution hardcopy capabilities, and extensive video image acquisition
and digitizzing facilities (see Figure 7-3). Coprocessors have also been explored as a
means to expand the computational power of the platform (e.g., we evaluated the TI
MicroExplorer and Symbolics Macivory LISP coprocessor boards). These modular
extensions have provided us with a powerful and flexible environment for operating
within the vision and image processing domains.

In addition to the base level system, we have added a RasterOps 19" color monitor
(model 1948S) which retails for about $5K and a SuperMac Spec-trum/8 video card
(1024 x 768 x 8 bits) which retails for about $1500.

A SCSI connected Jasmin 600MB magneto optical removable drive was added
(it uses the new Ricoh drive). Each cartridge holds 300MB on each side, it has an
average access time of 50ms (about twice the time required for most magnetic drives,
though writing on the optical media takes longer), and a 1.2MB data transfer rate.
The drive retails for about $5K and each removable cartridge retails for about $270.
For tape backups, we transfer data over the ethernet to our timeshare machines which
have attached 9-track and 8mm tape drives.

Figure 7-3 shows the video image acquisition subsystem we have added to tLe
uase level system. NTSC video sources are provided by a Sony LDP-1500 videodisk
player, 3/4" videotape (Sony V05800 recorder, V05850 Recorder, and RM440 re-
mote editing deck), and a Sony color broadcast quality camera. A FOR-A digital
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Figure 7-3: Video Image Acquisition Subsystem

time-based corrector reduces image noise by providing better video stability and
freeze-frame capability (an especially important consideration for videotape). The
videotape editing deck provides a desktop videotape controller which is placed near
the operator console to allow convenient videotape and image access control. Because
these decks do not have good freeze frame and random access abilities, they are not
well-suited for the digitization of imagery in a motion sequence. The videodisk player
and direct camera input has proven to be better for motion sequence digitization.
The videodisk player is controlled by the Mac through its RS-422/232 port using
the Voyager Videostack by The Voyager Company, Santa Monica, CA (about $60)
which allows simple computer control of playback which includes forward play, fast
play, single step, random frame jumps, freeze frame, rapid scan, disk eject and close,
frame display, and unit reset. We plan to build a simple port interface to control the
videodisk player via user program control and from within CommonLISP. Video data
is displayed on two Sony video monitors.

We currently use an 8-bit monochrome Data Translation (DT) video digitizer
board with four software-selectable input video channels (which we use as composite
color, red, green, and blue) which retails for about $1100. The digitizer captures
640 x 480 images in 1/30th second. Color images may be captured by digitizing
and saving the color planes in sequence. We currently drive the digitizer from the
interactive program supplied by DT, and we also have a Pascal/C driver which allows
direct capture of images from the digitizer into our preferred CVL image format. We
eventually plan to integrate the current program interface to allow users to drive the
digitizer functions from CommonLISP.
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7.1.1 Future Mac-Based Systems

Several changes are currently underway in the Mac and general computing envi-
ronment which will greatly impact the modular extensions available for the base level
svstem.

Storage and archival technologies are rapidly developing faster, larger, and less
expensive memories. The availability of large, low-cost secondary memories provides
greater latitude in the computation 'power tradeoff for IU environments, research, and
applications development. Magneto optical media and 8mm tape systems will most
rapidly develop in the near future. The recent advent of DMA boards has overcome
some limitations in the Mac II systems (e.g., slow SCSI chip set, no DMA) which will
result in far lower average access times for these secondary devices.

Coprocessors for the Mac and parallel processing in general is rapidly evolving.
More parallel coprocessors are becoming available for the Mac, and the use of these
coprocessors allows the overall computational power of the system to be stated in
terms of hundreds of MIPS (versus the 3MIPS in the Mac x-series machines). In
this framework, the Mac is primarily a chassis and graphics front-end processor. The
recent development by Apple of MR-DOS is intended to standardize the communica-
tion and tasking in such an arrangement, and this standard may help to accelerate
the development of these systems. The rumored addition by Apple of an AMD 29000
RISC graphics coprocessor to the Mac (supposedly to be introduced in late '89 or
early '90) will offload graphics tasks from the main Mac CPU and significantly boost
overall graphics and processing power.

Image acquisition and display technologies are also rapidly developing. It ap-
pears likely that within the next year or so, real-time digitizer to large optical media
storage will be commercially available. Such systems are also capable of scanning
digital data to video in real-time. This would provide high quality, random access,
digital image acquisition, and real-time display of processing results at relatively low
cost; current hard disk systems which currently do this run into the six digits. The
,.bility to redisplay processing results in real-time which may have taken far longer to
process (e.g., motion processing or segmentation results) will greatly help to describe
algorithms and results in the community.

The basic sensory modalities of the user interface include visual (via the display),
touch (via the keyboard and mouse), and sound (via the built-in Mac stereo sound
and voice generation capabilities). Other sensory modalities may be added using off-
the-shelf components to expand the ease, power, and naturalness with which the user
may interact with the IU environment. For example, the interface may be expanded
to include voice keyword recognition (e.g., the VoiceNavigator by Articulate Systems
of Berkeley, CA retails for about $750 and operates without application software
modification), a data glove (soon to be available by Nintendo at relatively low cost),
6-d trackball (e.g., from CIS Graphics, Westford, MA for $3300 retail), a touch screen
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(e.g., from MicroTouch Systems, Woburn, MA retail for $900 and up), and other
sensory input devices. These additional sensory modalities expand the potential
application domains, ease of use, and user expressiveness over the base level system.

In general, we found the Mac to be a very good graphical platform which facili-
tated the rapid prototype development of an IU environment on a low-cost, modularly
expandable system. The base Mac system without the addition of coprocessor boards
did not have sufficient computational power to support moderate to high computa-
tional requirements which usually occur in advanced IU applications. The use of

coprocessor boards was explored and found to be a viable way to greatly increase the
power of the base system to better handle increased computational loads. Upcoming
improvements to the Mac operating system to handle virtual memory, multiprocess-
ing, and larger memories will make the Mac better suited for IU environments and
applications.

7.2 Interface Software

The interface software we developed was based upon a small set of objects which
were implemented using the interface objects in the ObjectLISP extensions to Coral
CommonLISP [Coral Software Corp. - 1987]. These objects are based, in turn, on
the basic interface components in the Mac Tool Box [Apple Computer - 881. These
are reviewed below.

7.2.1 Windows

Images and objects are viewed in windows. Objects are two dimensional entities
such as points, curves, regions, and assemblages of these. When a three dimensional
object is displayed in a window, it is explicitly decomposed into these two dimensional
objects. Viewing operations such as panning and zooming can be applied to windows.
In addition, windows can be linked so that the display in one window can be seen
in another window with an arbitrary transformation associated with the link. Thus,
a window can zoom onto another window to view something at increased resolution.
A transformation such as multilevel thresholding can be associated with the link
between windows.

7.2.2 Browsers

Browsers are used to interact with text-based displays of objects. In one form,
the attributes and values of a single object are displayed in a browse table. In the
multi-column form, the attributes of multiple object; are displayed 'n a single browse
table. The -'4iue in ;, browse tabie can be changed directly by selecting the indicated
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cells and typing in a new value. Data Base operations can also be performed over
browse tables. It is possible to interactively perform boolean queries over the entities
in a browse table. As with windows, browse tables can also be linked together so
that changes in one can be propagate to another, as in changing the transformation
matrix in one browse table to effect the position of coordinates of ar object stored in
another browse table associated with a spatial object.

7.2.3 Overlay Object Display

There are classes of objects corresponding to points, curves, regions, and as-
semblages of these which can be displayed on top of imagery. This is done for the
projection of 3D graphical objects using these primitive display objects.

7.2.4 Label Planes

Associated with each image is a label plane (see Sections 2 and 5). This enables
an object displayed in register with an image to have access to the underlying intensity
values in the image and also to adjacent objects. Spatial queries can be applied to
the object in the label plane.

7.3 Processing Examples

Figure 7-4 shows the appearance of the general set-up of the Mac II environment
described in Section 7-1 while it is being used.

Figure 7-5 shows setting up an initial display window and associating a camera
object with the world model and mousing through several different system options.

Figure 7-6 shows an image display window and a text browser window. The
image display window contains a view onto the back parking lot at ADS. The user
is selecting items (shown in yellow) from the text browser window from a library of
images.

Figure 7-7 shows a display window and an associated text browser which describe
the a .hahment relation between the camera object and the world model coordinate
system.

Figure 7-8 shows three image display windows each containing a different image
obtained from a 360 degree panoramic sequence of images obtained from the ADS
parking lot.

Figure 7-9 shows multiple camera coordinate text browser associated with each
image. The camera parameters can be altered interactively.
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Figure 7-4: General Set-up of the Mac II Environment

Figure 7-5: Display Window with Mouse-sensitive System Options
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Figure 7-6. Image Display Window

Figure 7-7: Display Window and an Associated Text Browser
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Figure 7-8: Three Image Display Windows

.G-

Figure 7-9: Multiple Camera Coordinate Text Browser
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Figure 7-10: Multiple Linked Display Windows

Figure 7-10 shows multiple display windows linked by a transformation link. The
transformation corresponds to a selecting and zooming on a subpart of the larger
window. The displayed text browser window describes the parameters of the zoom
and selection transformation between the windows.

Figure 7-11 shows the human interactively segmenting the image into curves that
are deposited into the Perceptual Structure Data Base and can then be accessed via
the label plane associated with the corresponding image. The corresponding data
base of curves is displayed in a text browser window. The human can select and
manipulate curves either via the label plane or by operations on the text browser
window.

Figure 7-12 shows interactively placing an immediate ground plane object into
the world model and back projecting it onto the image in the display window. The
associated text browsers show the parameters describing the camera and the ground
plane and their attachment.

Figure 7-13 shows the human using the mouse to access information about a
displayed surface. The user can access the label plane associated with the displayed
image. This allows access to the objects in the corresponding portions of the world
model. In this case the attributes of the surface are displayed in a text browser
window.

7-12



EEFT

Figure 7-11: Human Interactively Segmenting the Image

Figure 7-12: Placing Immediate Ground Plane Object
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Figure 7-13: Human using the Mouse on Label Plane
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8. Conclusions and Future Work

The objective of the first phase of this project has been to determine the feazi-
bilitv and the design of an interactive model based vision system which will enable
a human to rapidly interpret sensory data from a distributed team of telerobots. In
Section 1 we described how such a system will enable a human to control a team
of telerobots under low bandwidth communications. In Section 2 we presented the
overall architecture of the system.

Section 3 reviewed work in constraint based reasoning and why it is necessary.
The use of constraint based representations and reasoning has many advantages and.
based upon alternatives we considered, is fundamental to realizing the system. Com-
putational implementation of constraint based processing is the fundamental technical
task for Phase II work, especially for working with complex object models. The dif-
ficulty of this will be simplified by the e tent to which perceptual processing can
obtain precise environmental information and that the human can intervene in the
constraint satisfaction process with critical information.

Section 4 described our format for representing object models and it's impli-
cations for constraint-based reasoning and perceptual processing. We implemented
simple object models for planar surfaces. A more extensive set of such objects will
be required in Phase II work.

Section 5 described work in the representation and processing of perceptual in-
formation. This work has shown the ability to extract patterns that will correspond
to the predictions generated by instantiated object models. Further work is required
in simplifying the specification of a grouping process as an automatic part of ob-
ject model instantiation. In addition, the library of passive processing routines for
obtaining environmental information neeas to be implemented.

Section 6 described work in the representation of large scale space and generation
of visual predictions from a prior terrain information and previous human directed
interpretations. This could be an effective initial demonstration of the system.

Section 7 reviewed our work in developing an initial version of the interac-
tive interface for the system on a Mac II. The Mac II will be useful as an in-
terface tool integrating future system components for such things as voice and
gestural input. The Mac II has certain limitation so a workstation with a con-
ventional operating system, such as a SUN, will also be used for Phase Il work.
It will also be of use to interface to an established CAD package such as BRL
(SECAD/VLD Computing Consortium - 1988].

Based upon our work to date, we feel that the system is feasible. The key
technical questions to be addressed during Phase II work are:
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Constraint Satisfaction System: Constraint based reasoning is fundamentai
to the system's representation of objects and the control of inference and consis-
terncv determination in the model of the world that the human creates interactivelv.
It allows for the modular development of object models and minimizes the amount
of information a human needs to specify to place an object into the model of the
world. The effort will be impl -nenting the underlying constraint mechanisms needed
to represent objects and also implementing the constraint controller. This task cor-
responds to the Constraint Controller and the World Model Data Base in the systern
architecture.

Object Model Representation: This involves implementing the basic repre-
sentation for describing objects. It needs to be general and extendable to deal with
the wide range of situations the telerobot could be in. We will also develop several
specific object models for use in demonstrations. This work corresponds to the Object
Model Data Base in the system Architecture.

Passive Perceptual Processing: A concealed ,elerobot will require passive
sensor processing techniques for extracting three-dimensional scene information and
for instantiating object models. Passive techniques are essential for avoiding detec-
tion. The effort will determine the extent to which they could achieve the functionality
of active sensors. This corresponds to portions of the perceptual processing controller
and portions of the eventual processing on-board the Telerobot.

Demonstration Preparations: An important aspect of this work is defining
and performing a demonstration of the key technical components in an integrated
scenario. Efforts here will focus on defining an important and achievable demonstra-
tion. This will assure alignment with HEL objectives and address system integration
issues.

There are a few portions of the system architecture which will not require em-
phasis during Phase II development. The Long Term Data Base is in many senses
dependent on completion of work on building effective world models using our defined
object models. It is also being addressed by several other efforts in terrain model-
ing and by previous ADS work in the Knowledge Based Vision Project as part of the
Autonomous Land Vehicle Effort [Lawton et al. - 89, Levitt and Lawton - to appear,
Lawton and Levitt - 89]. We are not stressing work in user interfaces and machine
independent graphical packages and interfaces due to the on-going dramatic develop-
ments in these areas in the commercial sector. We intend to use in-house or commer-
cially available graphics packages. The components of the user interface will become
common and inexpensive in the immediate future. Toy companies are starting to
make hand position sensors for less than $100. It is essential, however, to be aware
of these developments and remain compatible with them.
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