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ABSTRACT OF THESIS

THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION
IN MONITORING U.S. AR4Y TRAINING MANEUVER SITES

Several types of remote sensor data having different

spatial resolutions were obtained over a portion of Pinon

Canyon Maneuver Site in Southeastern Colorado to: 1) evaluate

the ability of several line and edge enhancement techniques to

enhance remote sensor data with different spatial resolutions

for the detection of off-road vehicular damage (tank trails),

and 2) to observe changes in classification accuracy of a

rangeland environment as a function of the sensor spatial

resolution and cover type involved.

A weighted Laplacian filter was the most effective and

time efficient enhancement technique used for enhancing remote

sensor digital data. Geoscan's MKII Airborne Multispectral

Scanner with 6.5 meter spatial resolution provided the most

effective digital data set for enhancing tank trails.

However, this Airborne Scanner data resolved only 65-70% of

the tank trails visible in aerial photography obtained by the

NaLional Aerial Photography Program (NAPP) . Most of this loss

of detail occurred in very small trails that were trafficked

perhaps only once. Therefore, traditional photointerpretation

techniques of i-l "qual:i' aphrcit. ht _':-" wl11 providc the
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most information regarding off-road vehicular damage,

especially minimal damage of small areal extent.

Results of the classification procedure for Airborne

Scanner data and Landsat TM data produced overall

classification accuracies of 75% and 78%, respectively, for

specific classes within major cover type groups (i.e., forest,

grass, roads/exposed soil). When major cover type groups were

combined, classification accuracy increased to 85% and 91% for

the Airborne Scanner and Landsat TM, respectively. In every

case, Landsat TM produced higher overall classification

results. However, these differences were not significant (a

= .01) when all major cover type groups were combined.

When only forest cover types were considered, Landsat TM

produced significantly higher results than the Airborne

Scanner (a = .01). This result was due to the ability of the

lower spatial resolution Landsat TM to average the natural

variability in forest canopies within individual pixels. The

higher spatial resolution of the Airborne Scanner resulted in

higher pixel to pixel variability, thus reducing

classification accuracy for cover types of high spectral

variability (i.e., forest cover types).

When only roads/exposed soil were considered, the

Airborne Scanner produced significantly higher results than

Landsat TM (a = .01). This result was due to a higher

ptuportion of the smaller pixels being included completely

witnin the boundary of the cover type, with a smaller

proportion of pixels being boundary pixels.
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There was no significant difference (a = .01) in

classification accuracies between the two sensors when only

grass cover types were considered. This result i because the

variability from pixel to pixel is approximately the same for

grass cover types, irrespective of pixel size. Thus, the 6.5

meter spatial resolution Airborne Scanner achieved similar

results as the 25 meter spatial resolution Landsat Thematic

Mapper for grass cover types.

This research provides significant results for the U.S.

Army and other agencies interested in monitoring semi-arid

rangeland environments using remote sensor data.

Harry L. Cunningham
Department of Forest and

Wood Sciences
Colorado State University
Fort Collins, CO 80523
Fall 1990
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INTRODUCTION

1.1 OVERVIEW

The security of the United States of America depends on

a military that is able to fight and win in all types of

environments and conditions. This requires regular training

of personnel in geographic areas that simulate future

battlefields. Many of these training areas are located in

arid or semi-arid regions of the world. As such, they are

environmentally sensitive and require special management

practices to ensure their continued use.

The United States Army Construction Engineering Research

Laboratory (USACERL) has developed a method of monitoring

changes in land condition on training areas throughout the

world. The Integrated Training Area Management program was

designed to provide land managers with necessary information

to ensure these areas are not destroyed by overuse.

The Land Condition-Trend Analysis (LCTA) program is a

major part of the ITAM program. The LCTA program is a way of

obtaining very detailed information about the condition of

military training lands. A report by Diersing et al. (1989)

outlines the primary objectives of this program, which are to

evaluate and monitor the capability of the land to meet

multiple-use demands, to include military training, on a
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sustained basis. When changes occur such that the available

resources are endangered, this program gives the land manager

a decision base for altering land management practices to

ensure long-term resource availability. This program also

standardizes the data collecting and reporting methods on an

Army-wide level.

Multiple-use is defined by Section 601 of the Federal

Land Policy and Management Act (U.S. Congress, 1976) as:

... a combination of balanced and diverse resource
uses that takes into account the long-term needs of
future generations for renewable and nonrenewable
resources, including, but not limited to,
recreation, range, timber, minerals, watershed,
wildlife and fish, and natural scenic, scientific
and historical values; and harmonious and
coordinated management of the various resources
without permanent impairment of the productivity of
the land and the quality of the environment...

Remote Sensing technology is utilized initially in the

process of selecting permanent plots within military

installations. For this application, a satellite image is

processed to identify areas that are spectrally homogeneous

based on reflectance values in the green, red and near

infrared wavelength bands. The resulting image is

subsequently superimposed on a digital soil data layer within

a geographic information system (GIS). Areas that have

homogeneous soil and land cover are identified as possible

locations for the LCTA plots. These plots are established on

a stratified-random basis, that is, the number of plots

assigned for each land cover and soil category is proportional

to the percent of land area that it occupies.
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Although remote sensing technology is used extensively to

identify possible locations for permanent LCTA plots, a very

limited amount of remote sensing research is presently being

conducted to assess land condition changes in conjunction with

the LCTA plots. Remotely sensed data will not replace the

need for detailed ground reference data within the LCTA plots

on military installations. However, it may provide the land

manager with an improved overall estimate of land conditions

to enable him or her to better manage the Army's need for

training and the land's capacity to support that training.

While the information collected under the LCTA program is

very valuable, it is also very labor intensive. According to

Diersing et al. (1989), field crews gather information on

areas or plots that measure 6 x 100 meters. General

guidelines suggest that one plot be designated for every 200

hectares (500 acres). The proportion of the training area

that would be covered by plots following these guidelines

represents only 0.03% of the training area. Since the number

of possible plots for large training areas could conceivably

become unmanageable, the maximum number of plots for a

particular installation is limited to 200. This information

consists of topographic features, soil characteristics,

climatic variables, wildlife species, surface disturbance,

percentage of bare ground, gravel, rock, duff, litter and

basal cover. These plots are visited annually to determine

changes that have occurred, and a detailed reconnaissance for

each plot as outlined above is conducted every three years.



4

Pinon Canyon Maneuver Site (hereafter referred to as

Pinon Canyon) is a lilitary training area located in

Southeastern Colorado. It is one of several military

installations where the Integrated Training Area Management

program is in effect. As such, several LCTA plots have been

identified and inventoried over a period of several years. A

concentrated effort is being made in this area to ensure that

the land can meet the training needs of the Army both now and

in the future.

This research was divided into two major categories. The

first focused on the ability of several types of remotely

sensed data having different spatial resolutions to detect

damage caused by off-road vehicular traffic, primarily

military tracked vehicles, on portions of training areas

located within Pinon Canyon. This damage is hereafter

referred to as "tank trails." The second portion of this

research involved the comparison of classification accuracies

of two data sets having different spatial resolutions. A per-

point classifier was used for the classification.

The techniques used in this research to detect tank

trails are very likely applicable to any agency interested in

monitoring off-road vehicular damage in an arid or semi-arid

environment. Several studies in the past have concentrated on

the detrimental effects of recreational off-road vehicular

traffic to plant and animal communities and the surrounding

environment. In these areas soil is compacted, vegetation is

lost, and erosion rates increase. The effects of off-road
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vehicular travel and subsequent damage to the environment can

literally last for decades (Prose 1985). Very little research

has been conducted, however, to determine the ability of

various types of remote sensor data to detect this damage.

1.2 OBJECTIVES

The primary objective of this research was to determine

the capabilities and limitations of remote sensor systems

having different spatial resolutions to aid in monitoring U.S.

Army training maneuver sites. This was accomplished in two

phases. First, the ability of these systems to detect off-

road tracked vehicular damage on military installations was

evaluated. Second, two different types of remotely sensed

data having different spatial characteristics were evaluated

to assess their effectiveness for per-point classification on

different vegetative cover types. The following sub-

objectives were identified:

i) Evaluate several edge and line enhancement methods or

techniques to determine their effectiveness in enhancing tank

trails. (For clarity, all methods or techniques are hereafter

referred to as enhancement techniques). These enhancement

techniques included high-pass and low-pass filters, Laplacian,

Sobel, Roberts, Mero-Vassy, ?rewitt, Kirsch, and Chittineni

edge detectors, and directi',nal line filters. A "running

difference" or derivativ technique, and an isogradient

technique were also tested.



6

ii) Identify the optimum digital filter or enhancement

technique to use for enhancement of tank trails in digital

data.

iii) Evaluate the ability of sensor systems with

different spatial resolutions to detect tank trails in digital

data.

iv) Assess the impact of spatial resolution on

classification performance of different vegetative cover types

when using a per-point classifier.

v) Assess the interrelationships between sensor spatial

resolution and the spatial characteristics of forest and

rangeland cover types.



LITERATURE REVIEW

2.1 EFFECTS OF OFF-ROAD VEHICULAR TRAVEL

Several studies in the past have shown the detrimental

effects of off-road vehicle use on natural ecosystems. These

areas lose natural vegetation, the soil becomes compacted, and

erosion increases (Green et al., 1973; Wilshire, 1977;

Coodwin, 1977; Iverson et al., 1981; Goran et al., 1983; Webb

and Wilshire, 1983; Wilshire, 1984; Tuttle and Griggs, 1987;

Shaw and Diersing, 1990). Prose (1985) has shown that the

effects of military tracked vehicle maneuvers in a semi-arid

environment can last for decades.

Army Regulation AR 200-2 requires that long-term impacts

on natural resources caused by military training activities be

reduced or avoided (Prose, 1985). There are methods currently

in place to aid land managers in monitoring U.S. Army training

areas. The Integrated Training Area Management (ITAM) program

was implemented by the U.S. Army in 1987 to ensure that the

training areas are not ruined through overuse. It has been

estimated that a savings of $5.00 to $27.00 in rehabilitation

costs will be saved for every dollar spent on the ITAM program

(Diersing et al., 1989).

The Land Condition Trend Analysis (LCTA) program is the

sub-program within ITAM through which monitoring of the land
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is accomplished. Shaw and Diersing (1989) have shown that

this is an effective tool in monitoring U.S. Army training

areas. Guidelines to minimize damage caused by military

tracked vehicles have been established as a direct result of

these programs (Diersing et al., 1988; Shaw and Diersing,

1989).

2.2 REMOTE SENSING AND OFF-ROAD VEHICULAR TRAVEL

Remote sensing technology as an aid in monitoring land

conditions at military installations located in semi-arid

regions has had limited use in the past. In an unpublished

report, Ribanszky et al. (1990) describe the successful use of

SPOT multi-spectral data in detecting land cover changes

within U.S. Army training lands. This is accomplished by

converting the SPOT digital data to a normalized difference

vegetation index (NDVI). This research, however, is in

Hohenfels, Germany, which is not considered a semi-arid

region.

Warren and Hutchinson (1984) describe the use of remote

sensing in an arid environment to evaluate different

environmental variables as indicators of rangeland change. In

this study, disturbance was related to changes in overall

vegetation density and the ratio between shrubs and grasses.

Other studies have documented the use of remote sensing

technology in monitoring arid and semi-arid regions (Peterson

et al., 1987; Johnson et al., 1989; Teuller, 1989).
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Graetz and Pech (1987) have shown the advantages of using

both Landsat Thematic Mapper (TM) and aerial photography for

assessing the human impacts of oil exploration in an arid

environment. The coarse resolution of Landsat TM limits its

ability to detect small linear features such as seismic

exploration tracks, but the repetitive and large-area coverage

make it very useful for detecting 'problem' areas. Large-

scale photography (1:2,000 - 1:10,000) was best for evaluating

processes of erosion along these tracks, and subsequent

revegetation. The high cost and restrictive coverage,

however, are the disadvantages of using aerial photography for

monitoring desert landscapes.

2.3 EDGE AND LINE ENHANCEMENT TECHNIQUES

The use of different techniques to enhance edge and

linear features in remotely sensed digital data has received

much attention in previous years (Weszka and Eberlein, 1975;

Robinson, 1977; Vanderbrug, 1976; Chavez and Bauer, 1982;

Chittineni, 1982; Ford et al., 1983; Gil et al., 1983;

Sullivan et al., 1984; Lenz, 1987; Chen and Tsai, 1988;

Berthod and Serendero, 1988; Krahe and Pousset, 1988; Kundu,

1989). Linear features may include many things from geologic

lineaments caused by joints and faults or other natural

phenomena, to the ridges and valleys on fingers that create

fingerprints (Verma et al., 1987; Peters et al., 1988).

Several papers provide a survey of different types of

edge and line detectors, and give a brief explanation of each
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(Davis, 1975; Shaw, 1979; Peli and Malah, 1982). Edge

detection may be divided into two major groups: local and

regional. Local edge detectors usually employ small windows

that move throughout the imagery. These windows are usually

3 x 3 or 5 x 5, and can be thought of as diffe rential

operators. That is, they detect differences between

brightness values of neighboring pixels and thus define

"edginess" at each point in the image. Regional operators, as

the name implies, cover areas much larger than the edges to be

detected. These operators are designed to detect edges of

varying widths between two large areas, each having unique and

somewhat constant brightness values (Shaw, 1979).

Local edge detectors may be subdivided into two types:

linear and nonlinear (Rosenfeld and Kak, 1976; Peli and Malah,

1982; Jensen, 1986). Linear edge detectors are performed

using linear combinations of pixels, e.g., adding,

subtracting, multiplying or dividing pixel values within

digital imagery. Nonlinear edge detectors, however, are

performed using nonlinear combinations of pixels, e.g.,

performing exponential or logarithmic functions on pixel

values (Jensen, 1986).

2.3.1 LINEAR EDGE DETECTION TECHNIQUES

A high-emphasis spatial frequency filter, or high-pass

filter is one method of linear edge detection (Davis, 1974).

Sharp changes in brightness values throughout an image (i.e.,

the presence of edges or lines) will be amplified by a high-
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pass filter. Sullivan et al. (1984) and Tensen (1986) discuss

the use of low-frequency or low-pass filters. These types of

filters tend to suppress much of the "salt and pepper" noise

that is present in many digital images.

A simple and yet very effective technique for detecting

lines and e( . is a running difference or gradient (first

derivative) technique (Rosenfeld and Kak, 1976; Hord, 1982;

Jensen, 1986). It is often referred to as a first derivative

operator because changes in brightness value over a standard

unit of one pixel are measured. This technique is performed

by subtracting each pixel in the image from its immediate

neighbor. A subtraction of pixels in the vertical direction

enhance horizontal lines and edges. Similarly, a subtraction

of pixels in the horizontal direction enhance vertical lines

and edges. In areas where no difference in brightness value

occur (i.e., the values of adjacent pixels are equal), the

result is zero. These areas of little or no change are

assigned a gray tone. If a negative value occurs, the pixel

is assigned a darker tone. Conversely, if a positive value

occurs, the pixel is assigned a lighter tone. Thus, a band of

dark and light toned pixels surround all linear features and

edges (Jensen, 1986). The visual effect of this procedure is

an apparent 3-dimensional image, with the bands of dark and

light pixels forming lines in the image that appear to be

depres-ced or raised on the image, based on which direction the

image was shifted.
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For the gradient image, if pixels in the y direction are

subtracted from each other, lines and edges oriented in the x

direction are enhanced. This logic holds true for other

directions as well.

An operator similar to the gradient technique was first

proposed by Roberts (1965), and is mentioned in works by Duda

and Hart (1973), Davis (1974), Peli and Malah (1982) and

Jensen (1986). This operator will detect either a horizontal

or vertical edge. It uses a 2 x 2 window as follows:

ij i,j+l

i+l,j i+l,j+l

(In cases of 2n x 2n filters (i.e., 2 x 2, 4 x 4, etc.), the

location of the output is assigned to the upper left cell).

The formula that the Robert's operator uses in calculating the

filtered image is as follows:

Image = [abs((i,j) - (i+l,j+l)) + abs((i,j+l) - (i+l,j))]

where abs refers to absolute value.

Rosenfeld ana Kak (1976) discuss in great detail a very

useful class of linear filters known as the Laplacians. These

filters are isotropic second derivative operators, and are

rotation invariant (Duda and Hart, 1973). That is, rotating

the filter by rearranging the coefficients will not change the

output. Since they are isotropic second derivative operators,

lines and edges in all directions are simultaneously enhanced

using this technique. A very basic Laplacian digital filter
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is defined by the following 3 x 3 window (Rosenfeld and Kak,

1976):

0 -1 0

-1 4 -1

0 -1 0

The numbers in this filter and the filters that follow

act as multiplicative coefficients. The cells are then

averaged, and the resulting value is assigned to the location

that coincides with the center cell of the window. Different

coefficients may be placed in these filters to enhance

specific features of interest. For example, Rosenfeld and Kak

(1976) and Jensen (1986) suggest experimenting with different

coefficients interactively until the desired product is

obtained. Robinson (1976) and Sullivan et al. (1984) indicate

that a filter with two non-zero coefficients in the 8 cells

surrounding the center cell is referred to as a bi-Laplacian

filter.

Rosenfeld and Kak (1976) compared images created using

the gradient function to images created using Laplacian

filters. They found that the gradient images generally

produced better results for edge detection. They also showed

that the Laplacian filters were usually better for detecting

lines than was the gradient method. In direct contrast to

these findings, Hord (1982) indicated that the gradient was

usually preferred for finding lines, whereas the Laplacian

filters were more useful in edge and boundary detection.
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Previous studies have documented the value of filters

designed to enhance lines and edges of a specific orientation.

(Vanderbrug, 1976; Robinson, 1977; Chittineni, 1983; Sullivan,

et al., 1984). These filters generally are constructed with

zero weighting (i.e., the sum of coefficients in the filter

equal zero) so that no output is produced over areas that have

no edges or lines present (Jensen, 1986).

Robinson (1977) provides a number of directional line

filters that were first described by Prewitt (1970) and Kirsch

(1971) as "compass gradient masks." In this case, the word

masks is used as a synonym for filters. These types of

filters are useful for applications that require edges and

lines of a particular orientation to be enhanced. When an

application requires that all edges and lines be enhanced

regardless of orientation, however, a single filter will not

provide sufficient information.

2.3.2 NONLINEAR EDGE DETECTION TECHNIQUES

Several nonlinear enhancement techniques have been

proposed. A simple nonlinear enhancement technique for edge

and line detection was suggested by Hord (1982). He developed

a way to avoid loss of detail in certain directions when using

the simple gradient technique. The directional derivative in

the x direction may be represented as dG/dx. Similarly, the

difference in they direct' n (y directional derivative) may

be represented as dG/dy. The isotropic first derivative, or

gradient, is then found according to the following equation:



15

Image = [(dG/dx)2 + (dG/dy)
2]1 /2

This technique produces an image that is very similar to the

regular gradient image. The advantage is that lines and edges

in all directions are enhanced.

The Sobel operator, as described by Duda and Hart (1973),

Robinson (1976), Rosenfeld and Kak (1976) and Jensen (1986),

is also a nonlinear operator. This operatzor is analogous to

a combination of two compass gradient masks as described

earlier, namely the North and East directions (Robinson 1977).

The two masks that are combined are as follows:

X Component: Y Component:

-1 0 1 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -_

A new image is created out of the combination of the X and Y

components as follows:

Image = (X2 + yl) /2

where X and Y are the images created by applying each

respective filter to the original image. The coefficients 1,

2, and 1 are based entirely on intuitive grounds (Duda and

Hart, 1973). Nevertheless, Jensen (1986) found that the Sobel

operator worked very well on a set of thermal-infrared data

obtained over a portion of the Savannah River.

An operator that uses the same principle as the Sobel

operator was suggested by Mero and Vassy (1975) and described

by Shaw (1977). Two filters are again used: one that enhances

edges and lines oriented in the y direction, and another that
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enhances those oriented in the x direction. The advantage of

the Mero-Vassy operator is computational efficiency. This

operator consists of 2 x 2 windows as follows:

-i 1 1 1

-i 1 ~ -i -i

In order to perform the Mero-Vassy filters with systems

restricted to 3 x 3 windows, the coefficients for the center

rows and columns are set to zero.

There are many techniques and filters available that will

enhance edges and lines in remote sensor data. This

discussion has dealt with relatively small window sizes (2 x

2, 3 x 3, etc.). There are, however, techniques that use

larger windows, depending on the intended application. A

compromise must be found regarding window size. A very small

window will enhance many fine details, but will also be very

sensitive to digital "noise." A larger window is less

sensitive to noise, but tends to subdue the fine details

required for some applications (Davis, 1974). The analyst

must interactively select the combination that best enhances

the imagery for his or her application requirements.

2.4 SPATIAL RESOLUTION CONSIDERATIONS

The ability of a sensor to detect certain features on the

ground is a function of several things. First, the spatial

resolution of a sensor will greatly influence which objects on
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the ground are detected. Spatial resolution refers to how

small an object can be on the ground and still be detected by

the sensor system (Lillesand and Kiefer, 1987). Jensen (1986)

defines spatial resolution as "the smallest angular or linear

separation between two objects than can be resolved by the

sensor."

Spatial resolution is closely related to the

instantaneous field of view (IFOV) of the sensor system

involved. The IFOV refers to the area on the ground from

which information is received by one ground resolution element

and subsequently assigned to one pixel in remotely sensed

digital imagery. Because IFOV is often the limiting factor

determining the ability of a sensor to discriminate between

two objects on the ground, the IFOV is often referred to as

the spatial resolution of the sensor. Therefore, for purposes

of this research, the IFOV of a sensor system will hereafter

be referred to as the spatial resolution of the sensor.

Second, the amount of contrast between an object and its

surrounding environment will also influence the detectability

of that object. For instance, a concrete road of high

reflectance may not be detectable in Landsat TM imagery with

a 28.5 meter spatial resolution (28.5 meters on each side of

a pixel) if that road occurs in an urban environment where

most of its surroundings are composed of concrete structures.

However, a bridge of similar spectral characteristics that

spans a water body will be easily detected because of the

spectral contrast between the bridge and the water.
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2.5 SPATIAL RESOLUTION AND CLASSIFICATION ACCURACY

Several studies in previous years have investigated the

effect of spatial resolution of the sensor system involved on

classification accuracy and area mensuration using automated

information extraction techniques (Simonett and Coiner, 1973;

Kan et al., 1975; Thomson et al., 1975; Clark and Bryant,

1977; Sadowski et al., 1977; Latty and Hoffer, 1981; Hoffer et

al., 1982; Acevedo et al., 1984; Irons et al., 1984; Williams

et al., 1984; Latty et al., 1985; Irons and Kennard, 1986;

Woodcock and Strahler, 1987; Benjamin and Gaydos, 1990).

Schwarz et al. (1969), as related by Simonett and Coiner

(1973), have documented a point that is important in

understanding the relationship between sensor spatial

resolution and informational content. They indicate that

large homogeneous areas that contain a single informational

category may effectively be imaged with coarse resolution.

However, complex, finer-scale environments will require a

finer spatial resolution so that a greater proportion of the

pixels present will contain information from a single

informational class, rather than from multiple categories.

Several studies have focused on the classification

accuracy of a single, apparently homogeneous informational

class: a forest canopy (Kan et al., 1975; Sadowski et al.,

1977; Latty and Hoffer, 1981). They have found that as

spatial resolution increases (becomes finer), spectral

variance increases, thus reducing the separability or
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interspersion of spectral clusters in feature space. The

result is a paradox: higher (finer) spatial resolution sensors

tend to produce lower classification accuracies in forest

cover types. This is, in part, due to the shadow effects and

spectral variation within a forest canopy on and between

individual tree crowns (Hoffer, 1982). Latty and Hoffer

(1981) found that classification accuracies for classes with

lower spectral variability (e.g., crop, pasture, soil) did not

significantly change with increased spatial resolution.

During a systems study to analyze the optimal spatial

resolution for Landsat Thematic Mapper, Thomson and Erickson

(1975) classified an agricultural environment of low spectral

variability using digital data that simulated sensor systems

having IFOV's of 30 and 60 meters, respectively. They found

no significant differences in these classification accuracies,

which is consistent with earlier studies. Markham and

Townshend (1981) observed similar results over several cover

types in eastern Maryland with a data set that was

progressively degraded to 10, 20, 40 and 80 meter spatial

resolution. They also found that the influence of spectral

variability on classification accuracy is affected by the

location of spectral clusters in feature space. They found

that it was impossible to predict the results of a

classification solely on spectral variability and the category

type.

Several studies have documented the effects of boundary

pixels on classification accuracy. Morgenstern et al. (1977)
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found that a higher relative frequency of boundary pixels in

the coarse spatial resolution data (50 meter to 80 meter)

tended to decrease the accuracy of agricultural crop

mensuration. Landgrebe et al. (1977) found that although

classification accuracy improved slightly with lower spatial

resolution data, the decrease in area mensuration accuracy was

larger than the improved classification accuracy. Markham and

Townshend (1981) indicated that boundary pixels in the lower

spatial resolution data tended to decrease accuracy for

classes containing small features such as roads and small

water bodies. They also indicated that boundary pixel and

scene noise effects may offset each other, thus keeping

classification accuracies relatively unchanged for several

different resolutions.

Clark and Bryant (1977) observed an increase in

classification accuracy in urban categories as spatial

resolution was degraded from 7.5 meters to 60 meters. Badhwar

et al. (1984) and Haack et al. (1987) indicate that Landsat

MSS with 80 meter resolution produces better classification

results than Landsat TM in complex environments such as urban

or near-urban land use categories. They point out, however,

that Landsat TM is superior to Landsat MSS in delineating

boundaries due to the higher spatial resolution.

Other studies have also shown that high spatial

resolution is preferred over lower resolutions for certain

applications (Parks et al., 1987; Curran and Williamson, 1988;

Benjamin and Gaydos, 1990). Parks et al. (1987) found that
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finer resolution Landsat TM and SPOT MSS were better able to

delineate vegetation and other surface features in spatially

and spectrally complex coal surface mines. Curran and

Williamson (1988) found that a spatial resolution of 2 meters

and 5 meters was best for estimating the per-field green leaf

area index (GLAI). Benjamin and Gaydos (1990) found that a

spatial resolution of 3 meters was best for extracting road

features from scanned aerial photography.

2.6 DATA COMPRESSION THROUGH PRINCIPAL COMPONENTS ANALYSIS

A procedure known as a principal components

transformation is a commonly used procedure to extract the

maximum amount of information from the bands and at the same

time, to reduce the dimensionality of remote sensor data,

particularly multispectral scanner data. To better understand

the transformation, imagine two multispectral bands, X and Y.

A two-dimensional plot of these bands would be two orthogonal

axes with the origin at (X,Y) location (0,0). If the

brightness values of all pixels in these two bands were

plotted, the result would appear to be an ellipse. The

maximum amount of variability in these pixels would probably

not coincide with either of the two orthogonal axes, and the

mean of these pixels would probably not be exactly at the

origin, (0,0).

The transformation actually occurs by transforming or

reprojecting the origin of this set of axes to the location of

the means for both bands. The axes are then rotated so that
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one of the axes coincides with the maximum amount of variance

within the conceptual ellipse. The axis that coincides with

the maximum amount of variance within the ellipse is the first

principal component of the spectral bands and contains most of

the information available in these spectral bands. The axis

that is perpendicular to the first principal component is the

second principal component. It contains a smaller amount of

information (i.e., variance) than the first principal

component, but is still valuable. The first three principal

components in a multispectral data set such as Landsat TM will

often contain 95 to 98% of the total variance or information

content. Therefore, this is an efficient way to reduce the

dimensionality of a large multispectral data set (Jensen

1986).

2.7 SELECTIVE PRINCIPAL COMPONENTS ANALYSIS

Chavez and Kwarteng (1989) have recently introduced a

procedure known as the selective principal components

analysis. This procedure compresses the data within each

portion of the electromagnetic spectrum (i.e., visible, near-

infrared, middle-infrared) into one band. The resulting data

set for Landsat TM reflective data will thus contain three

bands. Band 1 is the first principal component of the visible

bands, band 2 is the first principal component of the near-

infrared band, and band 3 is the first principal component of

the middle-infrared bands. This procedure assures that most

of the information of interest is incorporated into the first
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component from each region of the electromagnetic spectrum.

This technique also enables easier interpretation of the

compressed data as compared to a principal components analysis

utilizing a combination of all bands from all regions of the

spectrum.

In summary, much work has been done in recent years to

determine techniques that best enhance lines and edges in

remote sensor data. There are, however, dramatic differences

in the results obtained by different authors. As previously

mentioned, Rosenfeld and Kak (1976) found that the Laplacian

filters were usually better than gradient images for detecting

lines. Hord (1982), however, documented that the gradient

images were better than Laplacian filters for lines.

Therefore, because there is no clear indication in the

literature of the best technique to use for enhancing linear

features in digital remote sensor data, a large portion of the

current research was focused on the comparison of line and

edge enhancement techniques to determine which is best for

enhancing tank trails. In addition, because there have been

relatively few studies documenting the relationship of

classification accuracy as a function of remote sensor spatial

resolution and cover type, the balance of the current research

was focused on classification accuracy as a function of sensor

spatial resolution versus c ver type involved.



METHoDS AND MATERIALS

3.1 STUDY AREAS

Pinon Canyon is located in Southeastern Colorado. It was

obtained by the U.S. Army in 1983 to conduct military training

maneuvers which commenced in 1985 and have continued to the

present. Figure 3.1 shows the location of Pinon Canyon and

the three study areas that were used in this research. Each

study area is approximately 45 square kilometers, and are

portions of different training areas within Pinon Canyon.

Study Area 1 is a portion of a military training site on

which military training units have not been allowed to train

since January 1989. Study Area 2 is a portion of a training

site on which maneuvers were conducted since January 1989. A

major military exercise was being conducted in thi region at

the time the multispectral data set was acquired (July 13-15,

1989).

The majority of Study Area 3 covers portions of a

protected site within Pinon Cdnyon. Because of steep slopes

and thin soils, military training is not conducted in this

region. Area 3 also covers locations that are outside the

boundary of Pinon Canyon (northern part of imagery), and sites

that are available to military units for training (southern

part of imagery).
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3.2 DATA USED

The U.S. Army Cold Regions Research Engineering

Laboratory (USACRREL) has obtained several types of remotely

sensed data for Pinon Canyon. The data used in this research

(Table 3.1) included aerial photography obtained under the

National Aerial Photography Program (NAPP) and the National

High Altitude Photography (NHAP) program. Imagery from

Geoscan's MkII Airborne Multispectral Scanner (AMSS) was also

available (Geoscar. Pty. Ltd.). It is capable of obtaining

information in 24 spectral channels. This imagery consisted

of portions of three different flight lines flown over Pinon

Canyon on the same day. Additionally, imagery from the French

SPOT satellite and Landsat Thematic Mapper (TM) were analyzed.

A combination of SPOT Panchromatic and Landsat TM was created

using the Intensity, Hue, Saturation transformation and used

as an additional data set. Unless otherwise indicated, all

data, except the SPOT Panchromatic imagery, is hereafter

referred to as the "multispectral data set."' In cases where

only selected data are used, they are referred to by their

specific data code designator as found on Table 3.1.

Figure 3.2 graphically shows the relationship of spectral

bands for Data Sets 4, 6, and 8. It is obvious from this

figure that the band widths of Geoscan's MKII Airborne

'Although aerial photography is not normally referred to
as "multispectral", different portions of the spectrum
comprise the information in color infrared photography. For
purposes of this research, therefore, it is included in the
"multispectral data set."
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Multispectral Scanner are very narrow and closely spaced.

Table 3.2 contains the actual band widths and ranges for each

of the 24 channels of Data Set 4.

Table 3.2. Geoscan's MKII Airborne Multispectral Scanner
(AMSS) Band Specifications.

REGION BAND NUMBER BAND WIDTH (um) RANGE (gm)

VISIBLE 1 .042 .5010 - .5430
2 .067 .5495 - .6165
3 .071 .6095 - .6805
4 .024 .6810 - .7050
5 .024 .7050 - .7290

NEAR IR 6 .023 .7285 - .7515
7 .022 .8190 - .8410
8 .022 .8620 - .8840
9 .021 .9045 - .9255

10 .020 .9450 - .9650

MIDDLE IR 11 .044 2.0220 - 2.0660
12 .044 2.0660 - 2.1100
13 .044 2.1140 - 2.1580
14 .044 2.1540 - 2.1980
15 .044 2.1980 - 2.2420
16 .044 2.2420 - 2.2860
17 .044 2.2860 - 2.3300
18 .044 2.3300 - 2.3740

THERMAL IR 19 .530 8.3750 - 8.9050
20 .530 8.9050 - 9.4350
21 .530 9.4350 - 9.9650
22 .533 9.9535 -10.4865
23 .533 10.4835 -11.0165
24 .533 11.0135 -11.5465

Preprocessing of Data Sets 4 and 8 included fixing bad

scan lines in Data Set 4, and masking clouds and cloud shadows

out of both data sets. Additionally, a selective principal

components analysis was performed on both data sets to reduce

the dimensionality of the data (Chavez and Kwarteng, 1989).



30

Ground truth information for this research consisted of

aerial photography (as discussed above). Detailed information

collected by field crews from Fort Carson, Colorado and

Colorado State University during the summer of 1989 was also

available from several LCTA plots located within each study

area (Appendix 1). This data included information such as the

amount of bare ground, gravel, rock, duff, litter and basal

cover located at each plot. Additionally, field work was

conducted by the author over many portions of the study areas

to determine major vegetative cover types and approximate

percent ground cover.

3.3 DETECTION OF OFF-ROAD VEHICULAR DAMAGE

The first specific sub-objectives defined for this

research were to evaluate several line and edge detectors,

define the optimum filter for enhancing tank trails, and

evaluate the effectiveness of different sensor systems for

detecting these trails. Berthod and Serendero (1988) describe

three types of lines that can be found in satellite imagery.

They are, (1) thick lines that have two nonparallel edges, (2)

thin lines approximately one pixel wide, and (3) "virtual" or

inferred lines. An example of the last type are small lanes

between fields, etc. Although all lines were enhanced using

various line and edge detectors, this research was primarily

focused on lines of the first and especially the second type.

A three-phase evaluation was used to determine which

enhancement techniques and data sets most effectively enhanced
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tank trails. A distinction must be made between the terms

enhancement technique and filter. Enhancement technique

refers to a method for enhancing certain features (i.e., tank

trails) such as Laplacian, high-pass and gradient, etc.

Filter, on the other hand, refers to the specific window into

which different coefficients are placed to perform a specific

function such as smoothing the data or enhancing lines or

edges. For the first phase of this evaluation process,

several filters having different coefficients for each

technique (see Appendix 3) were applied to a portion of Study

Area 2 to determine an optimal filter within each technique.

(This resulted in a combination of twenty enhancement

technique/filter combinations which are described in Section

3.3.2). Second, after the best enhancement technique/filter

combinations were identified, all twenty combinations were

applied to a portion of Study Area 1 to determine which

technique best enhanced tank trails for each of the nine data

sets that are described below. Third, after an optimum

technique was determined for each data set, the best enhanced

image from each data set was compared to the best enhanced

image from other data sets to determine which combination of

remote sensor data and enhancement technique is best able to

detect tank trails.

3.3.1 DATA USED FOR DETECTION OF TANK TRAILS

The entire multispectral data set (less the NHAP

photography that was obtained before any military tracked
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vehicles trained in the area), as well as the SPOT

Panchromatic data set were used for this portion of the

research. Additionally, a one-band image from each data set,

(the middle-infrared component where available), was used to

assess whether a black and white image (1 band) or color

composite image (3 bands) produced better results using these

methods. The single band from aerial photography was obtained

by using the red portion of the red, green, blue (RGB) video

digitized data which represents the photographically sensitive

near-infrared portion of the spectrum.

When the original aerial photography was video digitized,

several fine details were lost due to the screen resolution of

the monitor or video camera. Therefore, an additional data

set was created from NAPP aerial photography by enlarging the

test portion of Study Area 1 to twice the original size. This

portion was again video digitized. A one-band image was again

created from the red portion of the RGB digitized data.

A total of nine data sets were thus used from Study Area

1 to evaluate different enhancement techniques. These data

sets are similar to those found in Table 1 with the exception

that one-band and three-band data sets are now included.

These nine data sets were (ordered according to descending

spatial resolution): (1) An enlarged photograph of NAPP

z ?:ial photography, one band, (2) Digitized NAPP photography,

one band, (3) Digitized NAPP photography, three bands, (4)

Aircraft Multispectral Scanner, one band, (5) Aircraft

Multispectral Scanner, three bands, (6) SPOT Panchromatic
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imagery, (7) SPOT/TM intensity, hue, saturation

transformation, (8) Landsat Thematic Mapper, one band, and (9)

Landsat Thematic Mapper, three bands.

3.3.2 IMAGE ENHANCEMENT TECHNIQUES

The first phase of the evaluation of enhancement

techniques and filters was conducted using a portion of Study

Area 2 of Data Set 4. This established a set of enhancement

techniques that satisfactorily enhanced tank trails. The

middle-infrared band of this imagery was used for this initial

phase of the research because of the high spectral response of

soil in this portion of the electromagnetic spectrum.

Several techniques were tested for their effectiveness in

enhancing off-road vehicular damage. These techniques

included high-pass and low-pass filters, edge and line

detectors such as Laplacian (weighted and zero-weighted),

Sobel, Roberts, Mero-Vassy, Prewitt, Kirsch, and Chittineni

line and edge detectors. Directional line filters that

enhance lines in a particular direction were tested. A

running difference or gradient technique, and an isogradient

technique were also evaluated to determine which technique

produced optimum results. Appendix 3 contains a complete list

of techniques attempted, coefficients used, and also indicates

the best filter from each category.

The following section contains a summary from Appendix 3

of the best techniques and filters that were applied to Study

Area 1. Table 3.3 gives a summary of this information and the
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data sets to which they were applied. Each cell in this

matrix represents one processed image (i.e., a total of 180

images were created for evaluation). The characteristics of

the 20 different enhancement techniques used, as listed in

Table 3.3 are as follows:

1. Laplacian, no weight.

0 -1.75 0

-1.75 7 -1.75

0 -1.75 0

2 and 3. Laplacian, weighted.

0 -1 0 1 -2 1

-1 5 -1 -2 5 -2

0 -i 0 1 -2 1

4. Sobel edge enhancement. (Image = (X2 + y2) 112.

X Component: Y Component:

-1 0 1 1 2 1

-2 0 2 0 0 0

-Lj 0 1 - -2 -1

5. High-pass filter, 3 x 3 window.* L-i -1 -1

-1 9 -1

- -11 -i

6. Sobel edge enhancement, applied to the high-pass

filtered image from number 5 above. (The same X and Y

components from the regular Sobel image (above) were used for

this technique).
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7. 5 x 5 Laplacian filter, zero weight.

0 -2 -2 -1 0

-1 -2 -4 -2 -2

-2 -4 40 -4 -2

-2 -2 -4 -2 -1

0 -2 -2 -1 0

8. Prewitt directional filters, combined into one image by

simple addition.

North: Northeast:

1 1 1 1 1 1

1 -2 1 -1 -2 1

-i -i -l ] -1 -1 1

East: Southeast:

-1 1 1 -1 -2 1

-1 -2 1 -1 -2 1

-i 1 1 j [1 1 1

South: Southwest:

-1 -1 -I 1 -1 -1

1 -2 1 1 -2 -2

1 1 1 1 1 1

West: Northwest:

1 1 -1 1 1 1

1 -2 -1 1 -2 -1

1 1 -1 1 -1 -1
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9. Mero-Vassy filter. (Image = (abs(A) + abs(B))), where

abs refers to the absolute value.

A Component: B Component:

1 1 -.

10. Prewitt gradient filter. (Image = A + B).

A Component: B Component:

1 1 1 1 0 -1

0 0 0 1 0 -1

-1 -1 -1_if 1 0 -1

11. Chittineni filter (Laplacian).

-1 2 -1

2 5 2

-i 2 -1

12-19. Consider the following matrix of pixels from a

hypothetical image. Each cell in the matrix may be

represented as follows (the letters A-I are for convenience in

referring to the cells):

DNi.,1 . I  (A) DNi.I, j  (B) DNi. 1 ,.1i (C)

DNi, 1  (D) DNi j  (E) DNi,]+ (F)

DNi I,].l (G) DN1i+, (H) DNi +,]+ 1  (I)

12. A vertical difference (or gradient) image was obtained

by applying the following equation to each pixel in the image:
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DNij  - DNi.1, j  (or E - B).

This procedure enhanced horizontal lines and edges in the

imagery.

13. A horizontal difference (or gradient) image was

obtained by performing the following equation to each pixel in

the image:

DN,j - DNi,j + (or E - F).

This procedure enhanced vertical lines and edges in the

imagery.

14. A NW-SE (diagonal) difference (or gradient) image was

obtained by performing the following equation to each pixel in

the image:
DNi, j - DNi. 1 i-1. (or E - A).

This procedure enhanced lines and edges oriented in a NE-SW

direction.

15. A NE-SW (diagonal) difference (or gradient) image was

obtained by performing the following equation to each pixel in

the image:

DNi,j - DNi.1,j+1  (or E - C).

This procedure enhanced lines and edges oriented in a NW-SE

direction.

16. Adding the vertical and horizontal gradient images

together created an image with all horizontal and vertical

lines and edges enhanced.

17. Adding the diagonal gradient images together created

an image with all diagonal lines and edges enhanced.

18. Adding all gradient images together created an image

with lines and edges in all directions enhanced.
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19. Another method of enhancing both horizontal and

vertical lines and edges is given by the following equation:

(vert2 + horiz
2)11 2

Where vert2 is the vertical gradient image (E - B) squared,

and horiz2 is the horizontal difference image (E - F) squared.

20. In addition to the techniques outlined above, the

original imagery was used as another data set to evaluate.

This provided a way of evaluating whether or not the

enhancement techniques outlined above improved the ability to

visually detect off-road vehicular damage.

3.3.3 METHOD OF EVALUATION

The enhancement techniques outlined above were determined

in the first phase of the evaluation. The second phase of the

evaluation of enhancement techniques was conducted on a

portion of Study Area 1 to determine which enhancement

technique worked best for each particular data set. After

this was completed, the third phase of the evaluation compared

the best enhanced image from each data s3t to the best

enhanced image from other data sets.

The second phase of the evaluation determined the best

enhancement technique (for enhancing tank trails) for each

data set. This was determined by displaying two images

simultaneously that were enhanced using the different

techniques. The best of the two images were unanimously

selected by a grrup of three analysts. Criteria used in

selecting the best image was as follows: "Which image... (1)
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is easier to visually interpret, (2) has the most contrast

between the tank trail and background areas, (3) maximizes

fine detail, such as tank trails, and (4) is best for overall

interpretability?" The best image of the two was then

retained on the display screen and the next imaac was

displayed in place of the discarded image. These two images

were then evaluated in a similar manner. This process

continued until all twenty techniques within a particular data

set were evaluated. The image that remained after this

evaluation was identified as the best enhancement technique

for that particular data set.

The third phase of the evaluation involved comparisons of

the best enhanced image from each data set (i.e., Aircraft

Multispectral Scanner, Landsat TM, etc.) to each other. This

was accomplished using 11 individuals of varying expertise in

remote sensing and photointerpretation. These individuals had

no previous exposure to the data. The same criteria and

methodology used for evaluating imagery within a data set were

used for this comparison between data sets. This process

continued until each person had individually selected the

image that in his or her opinion was best for detecting off-

road vehicular damage. Thus, the image that the majority of

the photointerpreters selected was considered to represent the

specific sensor and technique that would be best for detecting

off-road vehicular damage. Additionally, the 11 interpreters

individually ranked all nine images from best (1) to worst

(9). Using this data, a Chi-square distribution was
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calculated for the top three images selected by the

interpreters to see if their selections were significantly

better than chance selection.

3.4 CLASSIFICATION COMPARISON OF TWO SENSORS

The last specific sub-objectives for this research were

to assess the impact of spatial resolution on classification

performance of different cover types and to assess the

interrelationships between sensor spatial resolution and

forest and grassland cover types.

Geoscan's MKII Airborne Multispectral Scanner and Landsat

TM were used in a comparison of classification accuracy

performance. The LCTA plots that were located within the

three study areas were divided into training plots and test

plots. Plots having the same major vegetative cover types and

approximately the same percent ground cover were identified,

grouped together, and numbered. For each category of cover

type and percent ground cover, odd numbered plots were used

for test areas and even numbered plots were used for training

areas. Appendix 1 lists LCTA plot information, identifying

the training plots and test plots.

3.4.1 USE OF NORMALIZED DIFFERENCE VEGETATION INDEX

A Normalized Difference Vegetation Index (NDVI) was

i itially considered for inclusion in both data sets to aid in

zie classification of different vegetative cover types.

However, other studies (Huete and Jackson 1987, Tueller 1987)

have indicated that NDVI underestimates vegetation on light-

.. . ..0u m m m m m ~ m|
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colored soil and overestimates vegetation on dark-colored

soil.

To determine whether NDVI would aid in classifying

vegetation at Pinon Canyon, Data Set 4 (Geoscan's MKII

Airborne Multispectral Scanner) from Study Area 1 was first

classified (unsupervised classification) using the three

principal component bands and the NDVI band. A second data

set was then created using only the three principal component

bands. This new data set was classified in a similar manner

and compared to the first classification. A test area was

Eeiected from an location that consisted of very light-colored

background soil, with 10-20% vegetative cover uniformly

distributed throughout the test area. This test area

contained 172 pixels. The classification using the NDVI band

classified 50 pixels as vegetation and 122 pixels as

roads/exposed soil. The classification without NDVI, however,

classified 101 pixels as vegetation and 71 pixels as

roads/exposed soil. The estimate of vegetation present in the

classification using the NDVI band was substantially lower

than was actually present in this location. The

classification without the NDVI band more accurately reflected

the amount of vegetation present in this test area.

Another test area was selected from a location that

consisted of very dark shale with little or no vegetation

present. This test area contained 242 pixels. The

classification using the NDVI classified 168 pixels as

vegetation and 104 pixels as dark shale. The classification
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without NDVI, however, classified 2 pixels as vegetation and

240 pixels as dark shale. The estimate of vegetation present

in the classification using the NDVI band was substantially

higher than was actually present in this location. The

classification without the NDVI band more accurately reflected

the amount of vegetation present in this test area.

A visual, qualitative evaluation of the two

classifications was also done in these test areas. In

locations that contained light-colored soil, the vegetation

present as indicated by the classification using the NDVI band

was much lower than was actually present. The vegetation

present as indicated by the classification without the NDVI

band, however, was much closer to the amount of vegetation

actually present in that location.

Additionally, locations that contained the dark-colored

shale with little or no vegetation were visually evaluated.

The classification using the NDVI band indicated that there

was an abundance of vegetation present in this location, where

in fact, little or no vegetation was present.

These findings are consistent with the previous studies

by Huete and Jackson (1987) and Tueller (1987). Therefore, to

more accurately classify vegetation at Pinon Canyon, the NDVI

channel was not used in the classification procedure.

3.4.2 CLASSTFICATTON PROCEDURE

Because of the heterogeneity of this rangeland

environment, an unsupervised classification technique was used
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for classification. A mono-cluster blocks technique was used

wherein small training blocks were extracted from each study

area and mosaicked together (Fleming and Hoffer, 1977). These

training blocks were carefully selected to ensure that each

LCTA training plot was contained within at least one training

block. Additionally, other training blocks were chosen to

ensure that the maximum amount of spectral variability was

contained in the mosaicked image. As much as possible, the

same locations were chosen as training blocks in both data

sets. Using the mosaicked images and an unsupervised

statistical clustering algorithm within the ERDAS image

processing system (ERDAS, Inc., 1990), a set of training

signatures were developed for Data Set 8 and for each of the

three study areas for Data Set 4.

After the training signatures were developed, each study

area for both data sets was classified using the appropriate

training data. Using ancillary information such as aerial

photography, LCTA training plot information, and personal

observation and on-site photographs taken by the author, the

initial classes in the classified image were combined into

like informational classes.

3.4.3 EVALUATION OF CLASSIFICATION ACCURACY

Classification accuracy for each data set was evaluated

and compared using two methods. First, two sets of

contingency tables of classification performance for the test

areas in each data set were constructed. The first set of
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contingency tables contained classification information about

each informational class separately. The second set of

contingency tables contained classification information about

general cover types (i.e., forest, roads/exposed soil, and

grasses). Overall classification accuracy was then calculated

for each data set and for both types of contingency tables.

The second approach used to compare classification accuracy

was to determine if the classification accuracies of the two

sensors were significantly different. To accomplish this, a

set of polygons were digitized on each data set that

corresponded to each test area (see Appendix 1). These test

areas comprised half of the LCTA plots, as well as locations

visited by the author in the field. These polygon files were

then converted into geographic information system (GIS) files.

Using the SUMMARY command within ERDAS, a cross-tabulation of

pixels was developed to compare the polygon GIS files (i.e.,

"ground truth") and the classified GIS files.

An evaluation of overall classification accuracy of the

two data sets was conducted by comparing the accuracies of the

test areas on one data set to the accuracies of the same

locations on the other data set. The percent of correctly

classified pixels for each test area of the Landsat TM data

was subtracted from the percent of correctly classified pixels

for the same area in the Airborne Scanner data. Additionally,

classification accuracies for the general cover types

(forested areas, roads/exposed soil and rangeland grasses)

were evaluated and compared. To accomplish this comparison,
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the differences in classification accuracy were tested for

normality.

The Kolmogorov-Smirnov goodness-of-fit test for normality

(Zar 1984) was made for the differences in classification

accuracy between the two data sets. Normality of the data was

tested first for all categories, and then for the general

cover types as described above. Upon completing this test, a

null hypothesis that there was no difference between the two

overall classification accuracies was tested using the

Student's t-distribution. The above procedure was then

followed to test for significant differences in classification

accuracy between the general cover types (i.e., forest,

roads/exposed soil and rangeland grasses). A similar

hypothesis stated that there was no difference in

classification accuracy between these general cover types.

3.4.4 INTERRELATIONSHIPS OF SENSOR SPATIAL RESOLUTION

To assess the interrelationships of sensor spatial

resolution and forest and rangeland cover types, a portion of

the Airborne Scanner and Landsat TM Data Sets were extracted

from the original imagery. These sub-areas were converted

into a format that was compatible with the MICROPIPS.EGA image

processing system (MICROPIPS.EGA, The Telesys Group, Inc.)

using a program called ERD2MP (Lee and Lee, 1990). A cross-

sectional view of digital values for each pixel along a row of

pixels, or scan line, was produced using MICROPIPS.EGA.



47

The result of this procedure was a set of figures that

graphically depicted the variability in spectral response as

a function of ground cover type and sensor spatial resolution.

These figures summarized the differences in spectral

variability that occurred between ground cover types, and

helped explain differences in classification accuracy between

sensors having different spatial resolution. The figures

contain information from each portion of the electromagnetic

spectrum (i.e., visible, near infrared and middle infrared).

Scan line data from the Airborne Scanner and Landsat TM data

(i.e., Data Sets 4 and 8) were combined onto the same page for

visual comparison between sensor systems.



RESULTS AND DISCUSSION

4.1 DETECTION OF OFF-ROAD VEHICULAR DAMAGE

As previously mentioned in Chapter 3, a three-phase

evaluation was conducted to determine which enhancement

techniques and data sets most effectively enhanced tank

trails. Phase one determined twenty enhancement

technique/filter combinations that were applied to Study Area

1 (see Section 3.3.2).

During phase two of the evaluation, these twenty

combinations were applied to nine data sets from a portion of

Study Area 1. This resulted in 180 images in which tank

trails were enhanced. Using three individuals and the

evaluation criteria previously outlined, the enhanced images

were compared within each data set. That is, for a particular

data set, all twenty enhanced images were compared to

determine the technique that best enhanced that particular

type of remote sensor data. Based on these evaluations, the

best technique for each data set is indicated by an asterisk

on Table 4.1. Figures 4.1 through 4.9 are reproductions of

the images selected as the best enhanced image for each data

set.

In every case, the techniques that best enhanced tank

trails utilized weighted Laplacian or 3 x 3 high-pass filters.

S
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Figure 4.1. Image selected as the best enhanced image fromthe enlarged NAPP photography (digitized). The Laplacian
(Filter 2) filter was used for this enhancement.0I

Figure 4.2. Image selected as the best enhanced image fromthe digitized NAPP photography, one band. The Laplacian
(Filter 3) filter was used for this enhancement.
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0

Figure 4.3. Image selected as the best enhanced image from

the digitized NAPP photography, three bands. The Laplacian
* (Filter 2) filter was used for this enhancement.

40

* Figure 4.4. Image selected as the best enhanced image from
the Airborne Multispectral Scanner, one band. The Laplacian
(Filter 2) filter was used for this enhancement.
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Figure 4.5 Image selected ds the best enhanced imagc from
the Airborne Multispectral Scanner, three bands. The
Laplacian (Filter 2) filter was used for this enhancement.

Figure 4.6. Image selected as the best enhanced image from
the SPOT Panchromatic data. The high-pass (3 x 3) filter was
used for this enhancement.
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Figure 4.7. Image selected as the best enhanced image from

the SPOT/TM intensity, hue, saturation transformation data.

The high-pass (3 x 3) filter was used for this enhancement.

II

Figure 4.8. Image selected as the best enhanced image from

Landsat Thematic Mapper, one band. The high-pass (3 x 3)
filter was used for this enhancement.
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Figure 4.9. Image selected as the best enhanced image from
Landsat Thematic Mapper, three bands. The Laplacian (Filter
2) filter was used for this enhancement.
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Of the Laplacian filters, the filter that was selected as the

most effective enhancement technique for most data sets was:

0 -1 0
-1 5 -1

0 -i _ __ 0

The other weighted Laplacian filter that best enhanced the

one-band image of Data Set 5 was:

1 -2 1

-2 5 -2

1 -2 1

The filter that best enhanced tank trails in the other data

sets was the 3 x 3 high-pass filter. This filter was:

-1 -T -1

-1 9 -1

The third phase of the evaluation compared the best

enhanced image from each data set to like images in other data

sets. Using the criteria previously outlined in Section

3.3.3, 11 individuals evaluated these images for their ability

to enhance tank trails. Since there was a time delay between

the :-cquisition dates of Data Set 1 (NAPP photography) and the

resz of the imagery, interpreters were asked to compare just

t. -3e tank trails that were visibly present in both images.

'Ihe images were ranked from best (1) to worst (9). The

results of this evaluation are summarized in Table 4.2.



56

~ co co

o c,

c r-. 1r N N Nt u N cN Uq

c CZ
cm

c CL

CD

a '/o U- D t - U) ( D C
c c

cn
a) ca

Z E
'D q. 0 r .) rcIt Ir ~ q t

.C:D

*o 3

r .r

C- C. (.0. 0. 0. C



57

When the rank order of the images are summed down each

* column in Table 4.2, a total score for each data set is

obtained. Low total scores represent data sets in which tank

trails were easily detected. High total scores represent data

* sets in which tank trails were not easily detected. Of

particular interest is the column of l's down the middle of

the table, and the lowest possible total score of 11. Every

* interpreter selected Geoscan's MKII Airborne Multispectral

Scanner using three bands as the best image for enhancing tank

trails. Several individuals selected the one-band image of

the same sensor as the second best image for enhancing tank

trails. It received a total score of 25.

It is interesting to note that the enlarged NAPP

photography and the SPOT Panchromatic data sets received very

similar scores of 37 and 40, respectively. This indicates

that the ability of these two data sets to be enhanced for the

detection of tank trails is approximately the same. Based on

the number of pixels on the display screen that occurred along

a known ground distance, the spatial resolution of the

digitized enlarged NAPP photography was found to be

approximately 5 meters. Surprisingly, the 10 meter spatial

resolution SPOT Panchromatic data performed just as well as

the 5 meter spatial resolution digitized enlarged NAPP

photography. This is thought to be, in part, due to the

"graininess" of the photography brought about by the

photographic enlargement process. Another possibility may be

the higher contrast present in the SPOT Panchromatic data
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versus the digitized enlarged NAPP photography enabled easier

* identification of the tank trails.

The regular NAPP photography and the SPOT/TM intensity,

hue, saturation transformation data sets also received similar

* scores. Again, this indicates that these data sets have

similar capabilities in regard to enhancing tank trails.

On the bottom end of the scale, the Landsat TM Data Sets

* were very poor for detecting tank trails. They received

scores of 88 and 99 for the three-band and one-band image,

respectively. This is undoubtedly due to the larger 25 meter

* spatial resolution of this data.

When the original photography was video digitized, many

fine details were lost. This was primarily a result of the

type of equipment used for this process. The camera and video

screen used were unable to capture many of the smaller tank

trails that were clearly visible on the aerial photography.

A flatbed or rotating drum scanner used for scanning positive

transparencies of aerial photography would have undoubtedly

produced an image of greater detail (Jensen 1986). This would

have ensured that most of the fine tank trails would have been

included in the digital imagery.

To evaluate the responses provided by the interpreters on

the data sets used, a contingency table was created with each

image listed across the top of the table and the possible

ranking of these images down the left side (Table 4.3). The

numbers in the matrix represent the number of interpreters

that selected that particular ranking for each image.
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Table 4.3. Performance ranking of images based on responses
from interpreters.

IMAGE2

1 2 3 4 5 61 71 87 9

1 0 0 0 0 11 0 0 0 0

• 2 2 0 0 8 0 1 0 0 0

R 3 3 0 0 3 0 5 0 0 0

A 4 6 0 1 0 0 3 1 0 0

N 5 0 3 1 0 0 1 5 0 0

K 6 0 4 6 0 0 1 0 0 0

7 0 4 2 0 0 0 5 0 0

87 _ 0 0 0 0 0 0 0 0 01

1 9 IL -o 0 0 0 0 0 0 11 0

It is obvious from Table 4.3 that an unusually high

number of individuals ranked Images 5 and 4 as first and

second best, respectively. Based on the information for image

5, a 95% confidence interval for the true percentage of

individuals that would select this enhanced image as the best

for detecting tank trails is (71.96 - 100). That is, 95 out

of 100 times, 72% or more of the interpreters would select

this image as the best enhanced image.

To further test the significance of interpreter

responses, a Chi-square distribution was calculated for the

interpreter's selection of the top three images to determine

2Images are as follows: 1) Large photo (digitized), one
band, 2) Digitized photo, one band, 3) Digitized photo, three
bands, 4) Aircraft AMSS, one band, 5) Aircraft AMSS, three
bands, 6) SPOT 10M panchromatic, 7) SPOT/TM intensity, hue,
saturation, three bands, 8) Landsat TM, one band, 9) Landsat
TM, three bands.
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whether the observed values were significantly different from

• those expected strictly by chance. Since there were only four

images selected by the interpreters as the top three choices,

two contingency tables were constructed with three rows and

* four columns each. Table 4.4 represents information from

observed interpreter responses (extracted from Table 4.3).

Table 4.5 represents expected frequencies of interpreter

• responses as determined strictly by chance. These were

calculated from values in Table 4.4. Each expected cell value

is equal to the row total multiplied by the column total, and

* divided by the grand total.

Table 4.4. Observed interpreter responses classified by image
and ranking.

IMAGE

RANK 1 4 5 6 Row Total

1 0 0 11 01

2 2 8 0 1 11

3 3 3 0 5 11

Column 5 1 ii 11 6 Grand
Total Total=33

Table 4.5. Expected frequencies of interpreter responses if
image and ranking were unrelated.

IMAGE

RANK 1 4 5 6

1 1.67 3.67 3.67 2.00

2 1.67 3.67 3.67 2.00

3 1.67 3.67 3.67 2.00
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A Chi-square goodness-of-fit test measures significance

between observed values and those expected strictly by chance.

The test statistic for the Chi-square distribution is given by

the following formula:

X2 (observed cell count - expected cell count)2

(expected cell count)

The null hypothesis (Ho) for this evaluation is that the

differences reflected between the observed and expected

frequencies in the interpreter's responses of image ranking

are attributed to chance occurrence. The alternative

hypothesis (Ha) is that the differences in the two values are

not occurring strictly by chance. This would imply a direct

relationship between an image and the ranking it received from

the interpreters. The null hypothesis is rejected when the

calculated value for Chi-square is greater than or equal to

the critical value for Chi-square at the correct number of

degrees of freedom. The number used for decrees of freedom

(DF) is based on the size of the contingency table. It is

determined according to the following equation:

DF = (Number of rows - 1) (Number of columns - 1)

Solving for DF in the equation above produces 6 degrees of

freedom for use in the Chi-square calculations.

Following the form of the Chi-Square equation above, the

Chi-square statistic becomes:
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X2 (0 - 1.67)2 + (0 - 3.67)2 + (11 - 3.67)2 +
1.67 3.67 3.67

(0 - 2.00)2 (2 - 1.67)2 (8 - 3.67)2 (0 - 367)2
- + - + + ( 6 )

2.00 1.67 3.67 3.67

(1 - 2.00)2 + (3 - 1.67)2 + (3 - 3.67)2 +

2.00 1.67 3.67

(0 - 3.67)2 (5 - 2.00)2
+ = 37 .38

3.67 2.00

This value exceeds the Chi-square critical value of

22.458 at a = .001. Therefore, we reject the null hypothesis

in favor of the alternative. That is, the differences between

the observed and expected frequencies in the interpreter's

responses of image ranking are not attributable to chance

occurrence (a = .001).

Since these differences are not attributable to chance,

this indicates that there is indeed a relationship between a

certain image and the number of interpreter's that selected it

for a particular ranking. Thus, the selection of Images 5 and

4 (from Geoscan's MKII Airborne Multispectral Scanner) as the

first and second best enhanced images, respectively, is not

attributable to chance occurrence (a = .001).

4. 1. 1 AERIAL PHOTOGRAPHY AND MULTISPECTRAL SCANNER COMPARISON

Since Image 5 (Figure 4.5) was selected as the best

enhanced image by every interpreter in this research, a

comparison was conducted between the actual aerial photography

and Image 5 to determine the number of tank trails that were

not being recorded, if any, by the multispectral scanner
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(Image 5). The area covered by Image 5 was determined and

identified on the NAPP aerial photography. The tank trails

present in the aerial photography were carefully identified

and marked to ensure that each trail was counted only once.

This information was assumed to be a reference base from which

comparison could be made with Image 5.

There were approximately three months after the aerial

photography was acquired that U.S. Army units were allowed to

train in this area. During this time, 2 new tank trails were

made that are easily detected in Image 5. Therefore, less

obvious tank trails could easily have been made, but the

actual number is probably very small (5 to 10). Therefore, if

all tank trails present in the aerial photography were visible

in Image 5, and tank trails were made after the photography

was obtained that are visible in Image 5, the total number of

tank trails visible in Image 5 could conceivably exceed the

number determined from aerial photography.

The number cf tank trails visible in Image 5 was

determined by placing a clear sheet of plastic over a computer

display screen that had this image displayed. The visible

trails were then carefully identified and marked to ensure

each trail was counted only once. During these procedures,

only the number of tank trails were considered, not the size

of those trails.

There were 105 tank trails visible in Image 5. This

includes all tank trails that may have been made during this

three month time delay. The number of tank trails visible in
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the aerial photography was 149. Therefore, considering that

this estimate may be slightly high, 65-70% of the total number

of tank trails visible in aerial photography were also visible

in Image 5 (three band image created by Geoscan's MKII

Airborne Multispectral Scanner).

From this information, it is obvious that although

Geoscan's MKII Airborne Multispectral Scanner was selected as

the best image for enhancing tank trails, a certain amount of

detail was lost by capturing the information digitally rather

than photographically. Most of this information, however, was

the smaller trails that had been travelled on a very limited

number of times (perhaps only once). Land managers must

consider this loss of detail when using digital information to

assess off-road vehicular damage.

A more quantitative approach in determining the actual

amount of tank trail information recorded by a multispectral

scanner could also be defined. Such an approach could be

pursued as the subject of further research. First, the tank

trails present in aerial photography could be digitized into

a raster (grid cell) geographic information system. A binary

map would be produced. A value of 1 would be assigned to

every cell identified as tank trail, and a 0 would be assigned

to e--verything else. The computer output would be a list of

th total number of cells that included a tank trail, and

t.iose that did not.

The multispectral scanner imagery would be reclassified

into a binary map. Again, a value of 1 would represent a tank
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trail, and a value of 0 would represent everything else. The

output would be the same as above. That is, a list of the

total number of cells and their content would be provided. In

this way, a direct comparison could be made between the two

data sets of the total number of cells that contained tank

trails.

4.1.2 RELATIVE COST COMPARISONS

A relative cost in terms of time required for the

processing of the different enhancement techniques is provided

for future users. First, any enhancement technique will take

longer when applied to all bands in an image rather than just

one of the bands. In the case of simple filtering operations

such as directional line filters, high-pass, low-pass or the

Laplacian filters, the time required increases proportionally

with the number of bands subjected to the filtering process.

These simple filtering operations are the most time efficient

of all techniques attempted in this research, and appear to be

the most effective.

Enhancement techniques that required a rotation of the

filter by 90 degrees to create two images and the subsequent

combining of these images in some manner was the next most

time-consuming type of enhancement technique attempted.

Examples of this type of technique were the Sobel, Mero-Vassy,

and Prewitt operators. For the data used in this study, these

rotational types of enhancement technique did not perform

well.
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The running difference or gradient type of enhancement

techniques were the next most time-consuming technique. This

technique required the creation of two images offset from each

other by one pixel, and then subtracting one image from the

other. This enhanced lines and edges in one direction only.

The procedure was then repeated by creating two images offset

from each other by one pixel in another direction and

subtracting these two images. This procedure was satisfactory

for lines in a particular orientation, but to obtain

information about lines in other directions, these images

needed to added together. Additionally, without a priori

knowledge of where the tank trails were, it became difficult

to identify tank trails as opposed to natural variations in

topography and vegetation.

The isotropic gradient image suggested by Hord (1982) was

the next most time-consuming enhancement technique. Rather

than simply adding two gradient images together, the images

were squared, added together, and the square root was taken.

This produced slightly better results than simply adding the

gradient images together, but required more time.

The most time-consuming enhancement technique of all

those attempted was the combined directional line filter

image. This technique combined the 8 images created with the

directional line filters into one image using simple addition.

This image enhanced major and secondary roads very well, but

many of the fine tank trails were not discernable.
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In summary, simple filtering operations such as the

Laplacian filters were the most time efficient enhancement

technique. The Laplacian filters also provided the best

results of all techniques attempted in this research.

Rotational filters (Sobel, Mero-Vassy, etc.) were the next

most time-consuming technique and did not perform well for

these data sets. Gradient and isotropic gradient images were

the next most time-consuming techniques, respectively. They

enhanced linear features rather well, but without a priori

knowledge of where the tank trails were, it was difficult to

distinguish between trails and natural variations in

topography. The image that combined all directional line

filters into one image was the next most costly technique.

Major roads were enhanced, but small features were not

discernable. Thus, the most effective was also, fortuitously,

the most time efficient to utilize.

4.2 CLASSIFICATION COMPARISON OF TWO SENSORS

Portions of Pinon Canyon were classified using Geoscan's

MKII Airborne Multispectral Scanner (referred to as Airborne

Scanner in this section) with 6.5 meter spatial resolution and

Landsat TM with 25 meter spatial resolution to compare

classification accuracies between the two sensors.

Definitions for the informational classes in subsequent

tables are as follows. Appendix 2 contains a partial list of

vecgtation foLnd at Pinon Canyon and the abbreviations used in

tnis research.
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BOGR/HIJA 10-20% COVER Blue grama (Bouteloua
gracilis) and Galleta
(Hilaria 1 amesii) ,
approximately 10-20% ground
cover.

BOGR/AGSM/HIJA 20-30% Blue grama (Bouteloua
COVER gracilis) , Western

wheatgrass (Agropyron
smithii) and Galleta
(Hilaria Jamesii),
approximately 20-30% ground
cover.

BOGR/SPAI/HIJA 30-40% Blue grama (Bouteloua
COVER gracilis), Alkali sacaton

(Sporobolus airoides) and
Galleta (Hilaria Jamesii),
approximately 30-40% ground
cover. Although occurring
in many small clumps, Alkali
sacaton tends to increase
overall percent ground
cover.

BOGR/SPAI/HIJA 40%+ Same as above. However, the
COVER small clumps of Alkali

sacaton are larger, closer
together and much more lush.

DARK SHALE 0-5% Predominantly occurring in
VEGETATIVE COVER small basins near shale

outcrops. Very heavy
concentration of shale with
little or no vegetation.

SHALE-CLAY WITH Spectral response dominated
AGSM/BOGR 20-30% COVER by Shale-clay, similar to

dark shale above. However,
smaller amounts of shale
mixed with clay allow mostly
Western wheatgrass
(Agropyron smithii) and Blue
grama (Bouteloua gracilis)
to be dominant species.
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OPIM/BOGR/HIJA 20-30% Very distinctive plant
COVER community comprised of Tree

cholla (Opuntia imbricata),
Blue grama (Bouteloua
qracilis) and Galleta
(Hilaria Jamesii). Tree
cholla is the dominant
overstory species.

JUMO/PIED/BOER 5-20% Dominant species is One-
CROWN CLOSURE seeded juniper (Juniperus

monosperma) with occasional
individuals of Pinyon pine
(Pinus edulis). Open canopy
areas are comprised of Black
grama (Bouteloua eriopoda)
with lesser amounts of Blue
grama (Bouteloua gracilis)
and Galleta (Hilaria
jamesii).

JUMO/PIED/BOER 20-30% Same as above. However, the
CROWN CLOSURE overstory of One-seeded

juniper and occasional
Pinyon pine has a crown
closure of approximately 20-
30%.

JUMO/PIED/BOER 30-50% Same as above. However the
CROWN CLOSURE c r own c 1 o s u r e i s

approximately 30-50%.

ROADS/EXPOSED SOIL 0- Predominantly roads, but
10% VEGETATIVE COVER also includes areas of very

sparse vegetation on

limestone ridges or prairie
dog towns.

S E M I - R I P A R I A N Vegetation predominantly in
VEGETATION (TAPE) study area 3 below check

dams in the arroyos. The
slow trickle of groundwater
from the arroyo ponds allows
vegetation such as Five-
stamen tamarix (Tamarix
pentandra) and other grasses
to survive.
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ANNUALS BY DISTURBED Annual vegetation caused by
AREAS ground disturbance of tanks

and other vehicles.
Predominant species is the
Russian thistle (Salsola
iberica).

The three study areas from the Airborne Scanner and

Landsat TM were classified using an unsupervised maximum

likelihood classification algorithm. Tables 4.6 through 4.9

indicate the spectral classes for each data set and study area

and the informational classes into which they were classified.

Table 4.6. Spectral and informational classes for the
Airborne Scanner, Study Area 1.

CLASS NUMBER SPECTRAL CLASSES INFORMATIONAL CLASS*

1 7, 14, 15, 23, 24 BOGR/HIJA 10-20% COVER
2 13 OPIM/BOGR/HIJA 20-30% CVR
3 1, 2, 3, 4, 6, 9, BOGR/AGSM/HIJA 20-30% CVR

16, 18, 28
4 8, 17, 19, 20 BOGR/SPAI/HIJA 30-40% CVR
5 25 BOGR/SPAI/HIJA 40%+ COVER
6 21, 22 DARK SHALE 0-5% VEGETATION
7 26, 27 SHALE-CLAY AGSM/BOGR 20-

30% COVER
8 5, 10, 11, 12 ROADS/EXPOSED SOIL 0-10%

COVER
9 29 BACKGROUND

A partial list of vegetation cover types found at Pinon
Canyon and abbreviations used is found in Appendix 2.
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Table 4.7. Spectral and informational classes for the
Airborne Scanner, Study Area 2.

CLASS NUMBER SPECTRAL CLASSES INFORMATIONAL CLASS

1 1, 2, 7, 9, 13 BOGR/HIJA 10-20% COVER
2 4, 6, 14, 19 BOGR/AGSM/HIJA 20-30% CVR
3 5, 20, 22 BOGR/SPAI/HIJA 30-40% CVR
4 8, 21 ANNUALS BY DISTURBED AREAS
5 12 BOGR/SPAI/HIJA 40%+ COVER
6 15 ROADS/EXPOSED SOIL 0-10%

COVER
7 3, 10, 11, 16, OPIM/BOGR/HIJA/JUMO

17, 18 20-30% COVER

Table 4.8. Spectral and informational classes for the
Airborne Scanner, Study Area 3.

CLASS NUMBER SPECTRAL CLASSES INFORMATIONAL CLASS

1 1, 2, 3, 6, 7, 8, BOGR/HIJA 10-20% COVER
10, 11, 15, 18, 21,
22, 30

2 4, 9, 14, 16, 19, BOGR/AGSM/HIJA 20-30% CVR
20, 24, 25, 27, 28,
29, 34

3 5, 12 SEMI-RIPARIAN VEG. (TAPE)
4 13, 17 ROADS/EXPOSED SOIL 0-10%

COVER
5 26 BOGR/SPAI/HIJA 30-40% CVR
6 33 JUMO/PIED/BOER 5-20%

CROWN CLOSURE
7 31 JUMO/PIED/BOER 20-30%

CROWN CLOSURE
8 23, 32, 35 JUMO/PIED/BOER 30-50%

CROWN CLOSURE
9 36 BACKGROTJND
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Table 4.9. Spectral and informational classes for Landsat TM,
Study Areas 1-3.

CLASS NUMBER SPECTRAL CLASSES :NFORMATIONAL CLASS

1 1, 8, 12, 19 BOGR/HIJA 10-20% COVER
2 6, 7, 9, 11, 15, BOGR/AGSM/HIJA 20-30%

• 20, 21, 30 COVER
3 10, 14, 16, 28 BOGR/SPAI/HIJA 30-40%

COVER
4 17, 23, 26 BOGR/SPAI/HIJA 40%+ COVER
5 22 DARK SHALE 0-5% VEG COVER
6 24 SHALE-CLAY AGSM/BOGR 20-

• 30% COVER
7 5, 13, 18 OPIM/BOGR/HIJA 20-30%

COVER
8 4 JUMO/PIED/BOER 5-20%

CROhN CLOSURE
9 27, 29 JUMO/PIED/BOER 20-30%

* CROWN CLOSURE
10 3, 31 JUMO/PIED/BOER 30-50%

CROWN CLOSURE
11 25 ROADS/EXPOSED SOIL 0-10%

COVER
12 32 BACKGROUND

4.2.1 CLASSIFICATION COMPARISON

Overall classification accuracy for a contingency table

is determined by summing the number of correctly classified

pixels for each category (the major diagonal from top left to

lower right) and dividing this number by the total number of

pixels or samples used (Story and Congalton, 198r%. For an

overall classification comparison, test area information from

the three study areas from the Airborne Scanner were combined

into one contingency table (Table 4.10). Table 4.11 is a

contingency table depicting classification performance of the

Landsat TM data. The numbers in the cells of these two tables

represent the number of pixels that were classified into a
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certain category. Only those informational classes that were

coincident in both data sets were used in the classification

comparison (due to differences in spatial resolution and the

very limited extent of their occurrence, two informational

classes were not identified using Landsat TM, namely the

annual vegetation along disturbed areas, and the semi-riparian

vegetation found downslope from the arroyo dams).

Overall classification accuracy for the Airborne Scanner

and Landsat TM (individual cover types) was calculated from

Tables 4.10 and 4.11 as follows:

Airborne Scanner (from Table 4.10):

Sum of the major diagonal = 5153
Total number of pixels (samples) = 6883
Overall classification accuracy = 5153/6883 = 74.9%

Landsat TM (from Table 4.11):

Sum of the major diagonal = 2944
Total number of pixels (samples) = 3751
Overall classification accuracy = 2944/3751 = 78.-%

In addition, contingency tables were created that

combined the information shown in Tables 4.10 and 4.11 into

general cover type groups for the Airborne Scanner and Landsat

TM (Tables 4.12 and 4.13, respectively). These included

forested areas, roads/exposed soil, grassland classes and

other (other classes include dark shale, annuals along

disturbed areas and semi-riparian vegetation).

Overall classification accuracies for the Airborne

Scanner and Landsat TM (combining general cover types) were

calculated from Tables 4.12 and 4.13 as follows:



76

Table 4.12. Contingency table for combined general cover
types for classification of the Airborne Scanner (all study
areas combined).

Forested Roads/Exp. GrassLand Others Row

Areas Soil Areas Totals

Forested

Areas 909 2 570 31 1512

Roads/Exp

Soi1 3 212 16 19 250

Grassland

Areas 27 39 3631 67 3764

Others 0 25 235 1097 1357

CoLL I
Totats 939 278 4452 1214 6883

Table 4.13. Contingency table for combined general cover
types for classification of Landsat TM.

Forested Roads/Exp. Grassland Others Row

Areas Soil Areas TotaLs

Forested

Areas 738 0 52 1 791

Roads/Exp

Soil 63 380 189 0 632

Grassland

Areas 19 6 2263 0 2288

Others 0 0 4 36 40

Column

Totals 820 386 2508 37 3751
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Airborne Scanner (from Table 4.12):

Sum of the major diagonal = 5849
Total number of pixels (samples) = 6883
Overall classification accuracy = 5849/6883 = 85.0%

Landsat TM (from Table 4.13):

Sum of the major diagonal = 3417
Total number of pixels (samples) = 3751
Overall classification accuracy = 3417/3751 = 91.1%

When general cover types were combined in Tables 4.12 and

4.13, overall classification accuracy was improved

approximately 10% and 12% for the Airborne Scanner and Landsat

TM, respectively. This indicates that much of the error that

was occurring in Tables 4.10 and 4.11 was due to

misclassification between similar cover types (i.e., 20-30%

grass cover was classified as 10-20% grass cover, etc.).

The results of overall classification, as calculated from

data in Tables 4.10 through 4.13, are good classification

results. Classification accuracies of 75 to 80% for

individual classes such as those identified in this research

is good. Additionally, according to Anderson et al. (U.S.

Department of the Interior, 1976), the information contained

within the general cover type groups used in this research are

considered to be Level I land use and land cover categories.

The minimum level of acceptable classification accuracy for

Level I land use and land cover categories using satellite

remote sensor data should be at least 85% (U.S. Department of

the Interior, 1976). According to the the above information

for the general cover type groups, this goal has been met.
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It is also important to note that in both cases, Landsat

* TM produced a higher overall classification accuracy than

Geoscan's MKII Airborne Multispectral Scanner. This is, in

part, due to the spatial resolution differences between the

* sensors. A detailed discussion concerning differences in

classification accuracy as a function of sensor spatial

resolution and cover type, along with any significant

* differences in classification accuracy is deferred until

later.

To determine whether there were significant differences

in classification accuracy between the two data sets, polygons

were digitized on each data set that corresponded to the

different test areas. The percent of correctly classified

pixels in Landsat TM was subtracted from the percent of

correctly classified pixels for the same area in the Airborne

Scanner. Thus, a resulting value of 0 represents a test area

that was classified with the same percent accuracy for both

sensors. Similarly, a positive value represents a test area

in which the Airborne Scanner produced a higher percent of

correctly classified pixels than did Landsat TM. A negative

value represents a test area where Landsat TM had a higher

percent of correctly classified pixels than did the Airborne

Scanner. The results of this comparison are summarized in

Table 4.14.
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Table 4.14. Differences in percent of correctly classified
pixels for test areas in the Airborne Scanner and Landsat TM.

0
FORESTED AREAS ROADS/EXPOSED SOIL GRASSLAND AREAS

-50.83 28.79 33.03 - 7.73 -11.18
-57.83 11.46 22.41 11.23 -12.35
-24.72 30.93 24.14 - 3.98 9.70

* -22.44 19.05 35.10 6.85 - 5.72
-25.54 10.75 7.46 6.67
-27.93 19.45 -13.51 10.91
- 8.28 41.77 1.46 0.21

2.82 3.96
- 0.43

MEAN = -31.08 MEAN = 25.17 MEAN = 0.37
STD DEV = 17.23 STD DEV = 9.78 STD DEV = 8.21

OVERALL STATISTICS:
MEAN = 1.88

* STANDARD D2VIATION = 22.64

The student's t-distribution was used to test for

significant differences between the classification accuracies

of the Airborne Scanner and Landsat TM. One of the

assumptions that must be met before using the student's t-

distribution is that the data be normally distributed. To

test the data in Table 4.14 for normality, the Kolmogorov-

Smirnov goodness-of-fit test for normality was used. The

tabular data required to perform this test and the subsequent

calculations are in Appendix 4. The result was that the data

in Table 4.14 were normally distributed, both collectively and

for the individual general cover types.

4.2.2 TESTS FOR DIFFERENCES IN CLASSIFICATION ACCURACY

Since the above data are normally distributed, a

student's t-distribution was used to test for significant
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differences between classification accuracies. For these

tests, the following test procedures were used:

Step 1: Ho: = 0 (That is, the null
hypothesis was that the true
mean of the differences
between classification
accuracies of the two
sensors was zero, implying
no significant difference in
classification accuracy
between the two sensors for
the cover types involved).

Step 2: Ha: 4 * 0 (That is, the true mean of
the differences between
classification accuracies of
the two sensors was not
zero, implying that there
was a significant difference
between the two sensors for
the cover types involved).

Step 3: a = .01 (That is, the data were
tested at the a = .01 level
of significance).

Step 4: Test statistic used: t (X- 0)

s / Jn-

Where X - sample mean

s - sample standard deviation

and n = number of observations

Step 5: The rejection region was identified.

(That is, Ho was rejected if
I ti > tan-1 where ta. 1 is the
critical value for t at

a=.0l and n-1 degrees of
freedom).

Step 6: The value of t was calculated according to the
equation in step 4.

Step 7: A decision was made based on the parameters
outlined above.
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The following sections summarize the student's t-tests

* that were conducted for an overall classification accuracy

assessment, as well as for general cover types individuolly.

ALL GENERAL COVER TYPES COMBINED:

* tcatcutated (from step 4) = 0.49

tcriticaL (from statistical table) = 2.73

Since tcaLtuLated I tcritica[ , Ho was not rejected. That is, at

Sa = .01, there is no significant difference in classification

accuracies between the two s-nsors when all general cover

types are combined.

* FORESTED AREAS:

tcatcuLated (from step 4) = 4.77

tcriticaL (from statistical table) = 3.71

Since tcaLcutated - tcritiat , H0 was rejected. That is, at a

= .01, there is a significant difference in classification

accuracies between the two sensors when forested areas only

* are considered.

ROADS/EXPOSED SOIL:

tcatcuLated (from step 4) = 8.55

tcriticat (from statistical table) = 3.17

Since tcalcutated > tcritical , H0 was rejected. That is, at a

= .01, there is a significant difference in classification

accuracies between the two sensors when roads/exposeK soil

only are considered.

GRASSLAND AREAS:

tcat .tated (from step 4) = 0 19

tcriticaL (from statistical table) = 2.92
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Since tcalcuLate I tcritica[, H0 was not rejected. That is, at

a = .01, there is no significant difference in classification

accuracies between the two sensors when grasslana cover types

only are considered.

As these results indicate, there is no significant

difference in classification accuracies between the Airborne

Scanner and Landsat TM when all general cover types are

considered. However, when the individual general cover type

differences are examined, significant differences are noted.

For instance, there is a significant difference (a = .01)

between classification accuracies for the forest cover types.

Table 4.14 indicates that in every case, the differences in

classification accuracy were negative. As previously noted,

this indicates that Landsat TM had better classification

accuracy performance than the Airborne Scanner for forest

cover types. This is consistent with earlier work (Kan et

al., 1975; Sadowski et al., 1977; Latty and Hoffer, 1981;

Badhwar et al., 1984; Haack et al., 1987) wherein it was found

that sensors with a lower (coarser) spatial resolution often

obtained higher classification accuracies than aid sensors

with higher (finer) spatial resolution. This is due to the

higher pixel to pixel variation present in the imagery

obtainrd from higher spatial resolution sensors. The lower

spa-ial resolution sensors have less variation from pixel to

pixel, and thus produce higher classification accuracies.

Additionally, there is a significant difference (a = .01)

between classification accuracies for cover types such as
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road/exposed soil. Table 4.14 indicates that the differences

in classification accuracy were positive in every case. This

indicates that the Airborne Scanner had better classification

accuracy performance than Landsat TM for cover types such as

road/exposed soil that are small and have a high percentage of

boundary pixels per unit area. As previous studies have

indicated (Morgenstern et al., 1977; Landgrebe et al., 1977;

Markham and Townshend, 1981), this is an advantage of the

higher spatial resolution sensors. A higher percentage of the

pixels in a higher spatial resolution sensor are included

within the boundaries of an informational class. This reduces

the number of edge and boundary pixels, and thus increases

classification accuracy within these cover types.

There was no significant difference in classification

accuracy between the two sensors for the grassland cover

types. This makes sense because the variability in a natural

grassland cover type is relatively low and constant. That is,

the spectral variation over a small portion of grassland (6.5

x 6.5 meters) will be approximately the same as the variation

over a much larger area of grassland (25 x 25 meters)

containing the same cover types. These findings are also

consistent with earlier work (Latty and Hoffer, 1981).

Classification accuracies of high spatial resolution sensors

and low spatial resolution sensors will be similar for cover

types of low spectral variability (i.e., agricultural fields,

pasture and grasslands, etc.).
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Since there was such dramatic differences in

classification accuracy between major cover type groups, it

seems counter-intuitive that there was no significant

difference in classification accuracy when all cover types

were combined. One possible explanation is that the

significant differences exhibited between the sensors in the

individual cover types were of similar magnitude in opposing

directions so as to offset each other. In other words, the

impact of high classification accuracy in the Airborne Scanner

within the road/exposed soil cover types was offset by the low

classification accuracy in Landsat TM within the same cover

types. Similarly, the impact of poor classification accuracy

of the Airborne Scanner in the forested cover types was offset

by the high classification accuracy in Landsat TM within these

forested areas.

The proportion of pixels taken as test data for the

different cover types was approximately proportional to the

actual cover types found at Pinon Canyon over the study areas.

Thus, the relationships of classification accuracy as

described above would be applicable to the entire study area.

4.3 INTERRELATIONSHIPS OF SENSOR SPATIAL RESOLUTION

A comparison between portions of Geoscan's MKII Airborne

Multispectral Scanner (Data Set 4) and Landsat TM (Data Set 8)

was conducted to document the interrelationships of spatial

rebolution between forest and rangeland cover types. As

mentioned in Chapter 3, a cross-sectional view of digital
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values across one scan line was obtained using MICROPIPS.EGA.

Figures 4.10 through 4.12 are graphical representations of

these cross sections. Figure 4.13 is a reproduction of the

area from which the scan lines were taken. Figure 4.13 is a

portion of Study Area 3 from the Airborne Scanner data.

These graphs were taken from a scan line that crossed

forest cover types such as One-seeded juniper (Juniperus

monosperma) and Pinyon pine (Pinus edulis). These cover types

are located on the left portion of the graphs as indicated.

The scan line also covered rangeland grasses such as Blue

grama (Bouteloua gracilis), Galleta (Hilaria Jamesii), Alkali

sacaton (Sporobolus airoides) and Western wheatgrass

(AQropyron smithii). These cover types are located on the

right portion of the graphs.

Statistics were obtained for the forested area as well as

the grassland area for the scan lines. These statistics help

in understanding Figures 4.10 through 4.12. Table 4.15

summarize these statistics.

Table 4.15. Mean and standard deviation of forest and
grassland cover types for the Airborne Scanner and Landsat TM.
Top number is the mean with standard deviation in parentheses.

Airborne Scanner Landsat TM

Visible Near-IR Mid-IR Visible Near-ZR Mid-IR

Forested 94.19 102.45 103.10 106.13 84.97 95.08

Area (43.79) (39.73) (46.16) (26.06) (6.55) (26.82)

Grassland 111.98 105.27 115.15 115.24 74.38 135.04

Area (15.09) (16.48) (14.30) (13.97) (4.67) (16.50)
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AfSS.Pinon Canyon : Band Number I (VIS)

Image row = 43, maximum = 255
Intensity Profile

S - ... . . . .......... .. ................................................. ............

6 . ........................ . ............................ .. ... .. ........ .... ......... . .....

' I4

TM.Pinon Canyon Band Number 1 (UIS)
Image row = 189, maximum 233

Intensity Profile

Figure 4.10. Profile of a scan line from the visible portion
of the Airborne Scanner data (Data Set 4), top, and the
Landsat TM data (Data Set 8), bottom. Scan line was taken
across forest cover types (left) and grassland cover types
(right). The change from forest to grass is identified by the
arrowhead.
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ANSS.Pinon Canyon : Band Number 2 (MIR)

Image row = 43, maximum 255
Intensity Profile
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Figure 4.11. Profile of a scan line from the near-infrared

portion of the Airborne Scanner data (Data Set 4), tcp, and
the Landsat TM data (Data Set 8), bottom. Scan line was taken

across forest cover types (left) and grassland cover types

(right). The change from forest to grass is identified by the
arrowhead.
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AMSS.Pinon Canyon : Band Number 3 (MIR)
Image row = 43, maximum 255

Intensity Profile
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TM.Pinon Canyon Band Number 3 (MIR)
Image row = 189, maximum = 210

Intensity Profile
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Figure 4.12. Profile of a scan line from the middle-infrared
portion of the Airborne Scanner data (Data Set 4), top, and
the Landsat TM data (Data Set B), bottom. Scan line was taken
across forest cover types (left) and grassland cover types
(right). The change from forest to grass is identified by the
arrowhead.
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F4Pr rt

Figure 4.13. Photographic reproduction of a portion of Study
Area 3 from Geoscan's MKII Airborne Multispectral Scanner.
The black line marks the location of the scan line profiles
taken from this area.
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As reflected by Table 4.15, the standard deviation, and

thus the variance, of data values within forested areas for

the Airborne Scanner are higher than those for Landsat TM.

This is true for every band. In addition, the standard

deviation of data values within grassland areas for the

Airborne Scanner are approximately similar to those for

Landsat TM. The only exception is the near-infrared band.

This is primarily due to the highly variable canopy

within the forest cover types. There are many open spaces

between the tree crowns at Pinon Canyon. These open spaces

are usually covered to some degree by grasses, but in some

areas may be completely void of vegetation. Grassland cover

types, on the other hand, are basically homogeneous throughout

the entire grassland community, thus producing a lower

Varlatizn of data values.

The high spatial resolution of the Airborne Scanner (6.5

meters) allows individual pixels to detect information between

tree crowns such as grass or bare around. Other pixels may

record information from the shady side of a large tree,

whereas its immediate neighbor may record information from the

sunny side of the same tree crown. This concept of high

variability from pixel to pixel is graphically displayed on

the left portion (forested areas) of Figures 4.10 (top)

through 4.12 (top).

The lower spatial resolution of Landsat TM (25 meters),

on the other hand, allows many of these irregularities in the

tree canopy to be averaged into the information recorded by
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one larger pixel. Thus the potential for high variability

from pixel to pixel is reduced by sensors with lower spatial

resolution. This concept of averaging the variability within

the tree canopy and thus reducing the variability from pixel

to pixel is displayed in the left portion (forested areas) of

Figures 4.10 (bottom) through 4.12 (bottom).

The right portion of Figures 4.10 through 4.12 is a

graphic representation of data values Laken over a grassland

community. As is visually interpreted, the variance is

drastically reduced as compared to forest communities for both

sensor systems.

Relating these findings back to the classification

comparison between the two sensor systems, many interesting

facts are noted. First, there was a significant difference (a

= .01) in classification accuracy between the two sensor

systems for forest cover types. Specifically, Landsat TM

provided the better classification in these cover types. The

reduction in spectral variance from pixel to pixel in Landsat

TM (which has the lower, or coarser, spatial resolution), was

the reason forest cover types were classified higher with this

system.

Second, there was a significant difference (a = .01) in

classification accuracy between the two sensors for

road/exposed soil cover types. In this case, the Airborne

Scanner produced the better classification. The higher

(finer) spatial resolution of the Airborne Scanner enabled

more pixels to be included in the actual cover type and a
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lower proportion of pixels to be included in boundary between

cover types. This increased classification accuracy for these

cover types for the Airborne Sensor.

Third, there was no significant difference (a = .01) in

classification accuracies between the two sensors for

grassland cover types. This is due to the fact that the

spectral variation from pixel to pixel in these cover types

was reduced due to the nature of the cover type involved.

Grassland communities have similar variation over a small area

as compared to a larger area.

As previously mentioned, the differences in

classification accuracy between the two sensors when all

general cover types were involved was not significantly

different. This is due to the fact that differences in

individual cover types were in opposing directions so as to

offset each other.



SUMMARY AND CONCLUSIONS

5.1 SIGNIFICANT RESULTS

This research has produced significant results for the

U.S. Army and other agencies interested in monitoring off-road

vehicular damage. An indication of the spatial resolution; and

types of remote sensor systems needed for best detecting off-

road vehicular damage has been provided. It has also provided

the information necessary to adequately and efficiently

enhance this imagery for optimal detection of off-road

vehicular damage.

This research has also produced significant results in

documenting differences in classification accuracy as a

function of remote sensor system spatial resolution and the

spatial characteristics of the cover types involved. It has

been shown that higher spatial resolution sensor systems are

not always best for detecting and monitoring vegetative cover

types. In addition, differences in spectral variation from

pixel to pixel for different vegetative cover types has been

documented. This helps explain the differences in

classification accuracy observed for the different sensor

systems and cover types involved. A brief synopsis of the

significant results obtained in this research are provided in

this chapter.
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o Off-road vehicular damage was best enhanced using a

weighted Laplacian filter, and this type of filter was the

most time efficient.

In 6 out of 9 data sets, the technique that best enhanced

the imagery for detection of tank trails were weighted

Laplacian filters. Specifically, the weighted Laplacian

filter that produced the best enhancement of off-road

vehicular damage was:

0 -1 0

-1 5 -1

0 -1 0

Therefore, for agencies interested in monitoring off-road

vehicular damage using remote sensor digital data, the

weighted Laplacian filter above will produce the optimum

results.

o The enhancement of Geoscan's MKII Airborne Multispectral

Scanner data having 6.5 meter spatial resolution to detect

off-road vehicular damage provided the best results when

compared to other remote sensor digital data used in this

research.

Eleven out of eleven interpreters selected Geoscan's MKII

Airborne Multispectral Scanner, using the first three

principal component bands derived from every portion of the

electromagnetic spectrum, as the best enhanced image for

detecting tank trails. A statistical evaluation of this

result indicated that more than 72% of all interpreters would
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select this image 95 times out of 100. Additionally, 8 out of

11 interpreters selected the one-band image, from the Airborne

Scanner as the second best enhanced image for detecting tank

trails. Selection of these two images as first and second best

over all data sets was not due to chance occurrence (a =

.001).

o Traditional photointerpretation techniques of high-auality

aerial photography such as provided by the National Aerial

Photography Program (NAPP) will provide more information

regarding off-road vehicular damage than remote sensor

digital data.

Standard NAPP color-infrared aerial photography was

carefully examined using traditional photointerpretation

techniques within a portion of the study area to determine the

number of tank trails that were resolved by the aerial

photography. In addition, the number of tank trails visible

in the best enhanced image of remote sensor digital data was

determined. The actual number of tank trails visible in the

digital imagery was only 65-70% of the total number visible in

the NAPP aerial photography. Most of the detail that was lost

in the digital imagery were small tank trails, i.e., those

that had been travelled on a very limited number of times.

o A classification of remote sensor data that included a

Normalized Difference Vegetation Index (NDVI) produced

misleading and false information regarding the amount of

vegetation present in different locations. The amount of
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vegetation present on dark-colored soils was overestimated.

It was underestimated on light-colored soils.

An evaluation was conducted to determine whether NDVI

would aid in classifying vegetation at Pinon Canyon (see

Section 3.4.1). Study Area 1 from the Airborne Scanner data

was first classified using the three principal component bands

and the NDVI band. A second data set was then created using

only the three principal component bands. The two

classifications were then compared. A test area containing

172 pixels that consisted of a very light-colored soil with

10-20% vegetative cover was selected to test the

classification on light-colored soil. Another test area

containing 242 pixels that consisted of a very dark-colored

shale with nearly no vegetation present was selected to test

the classification on dark colored soil.

The classification of the light-colored soil area using

the NDVI band classified 50 pixels as vegetation and 122

pixels as roads/exposed soil. The classification without

NDVI, however, classified 101 pixels as vegetation and 71

pixels as roads/exposed soil. The estimate of vegetation

present in the classification using the NDVI band was lower

than was actually present in this location. The

classification without the NDVI band more accurately reflected

the amount of vegetation present in this test area.

The classification of dark-colored soil using the NDVI

band classified 168 pixels as vegetation and 104 pixels as

dark shale. The classification without NDVI, however,
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classified 2 pixels as vegetation and 240 pixels as dark

shale. The estimate of vegetation present in the

classification using the NDVI band was higher than was

actually present in this location. The classification without

the NDVI band more accurately reflected the amount of

vegetation present in this test area.

A visual, qualitative evaluation of the two

classifications was also done in these test areas. Using the

NDVI band in the classification procedure resulted in an

underestimate of vegetation in light-colored soils, and an

overestimate of vegetation in dark-colored soils.

In summary, since the classification that contained the

NDVI band produced an underestimation and overestimation of

vegetation in light-colored and dark-colored soil

respectively, it was not included in the final classification

procedure.

o Overall classification accuracy for the individual cover

type classes for the Airborne Scanner was 74.9% as compared

to 78.5% for Landsat Thematic Mapper.

These results are based on the assumption that the

locations digitized as test polygons in the classified image

accurately reflect the information within the selected test

locations (LCTA plots, etc.). The results demonstrate that a

relatively high overall classification accuracy can be

achieved for very specific land use and land cover categories,

based primarily on species, vegetation density (for grass
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cover types), and percent crown closure (for forest cover

types). These results are obtainable in a mixed rangeland

environment by sensors of varying spatial resolution.

o Overall classification accuracy for the major cover type

groups for Geoscan's MKII Airborne Multispectral Scanner

was 85% as compared to 91% for Landsat Thematic aipprr.

When the individual categories were combined into major

cover type groups (i.e., forest, grass, and roads/exposed

soil), an increase of 10% and 12% were observed for the

Airborne Scanner and Landsat TM, respectively. This indicates

that many of the pixels that were misclassified were actually

classified in other individual classes contained within the

same major cover type group (i.e., errors were occurring

between categories that differed only in vegetation density or

percent crown closure). By combining the individual classes

into major cover type groups, the minimum level of accuracy

for Level I land use and land cover categories of 85% has been

achieved (U.S. Department of the Interior, 1976).

o There were no significant differences in classification

accuracy between classifications of individual cover types

obtained using Geoscan's MKII Airborne Multispectral

Scanner and Landsat Thematic MaPper when all cover types

were considered (a = .01). There was also no significant

difference in the classification accuracies between the

data sets when only grass cover types were considered (a =
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.01). There were, however, significant differences in

classification accuracy between the two data sets for the

forest and roads/exposed soil cover types when they were

considered separately (a = .01).

A procedure was conducted that evaluated the differences

in the percent of correctly classified pixels for individual

test area for the classifications of Landsat TM and the

Airborne Scanner data using the student's t-test (see Section

4.2.1 and 4.2.2). Based on these differences in the percent

of correctly classified pixels for each test area and the

results of the student's t-test, no significant difference was

found in classification accuracy between Landsat TM and the

Airborne Scanner when the differences from all test areas

were considered (a = .01).

However, when the differences for forest test areas

were considered, a significant difference was observed (a =

.01). The percent of correctly classified pixels from the

Landsat TM classification was subtracted from the percent of

correctly classified pixels from the Airborne Scanner. In the

case of forest cover types, the differences observed were all

negative. Thus, the percent of correctly classified pixels

was higher in the classification produced from Landsat TM data

for forest cover types. Therefore, the classification of

forest cover types was significantly higher in Landsat TM as

compared to the Airborne Scanner. This result is primarily 0

due to the high spectral variability from pixel to pixel that

occurs in forest cover types (see Section 4.3). The reason
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that Landsat TM achieved a higher classification accuracy for

forest cover types is a function of the lower spatial

resolution (larger pixel size) of Landsat Thematic Mapper.

The larger pixel is able to average much of the spectral

variation that occurs in cover types such as a forest canopy.

On the other hand, because of the high spatial resolution of

certain sensor systems such as the Airborne Scanner used in

this research, the high spectral variability that is a natural

phenomena of many cover types (i.e., forests) is recorded on

a pixel by pixel basis in remotely sensed diqital imagery.

This spectral variability from pixel to pixel in the data

results in poor classification results for these cover types.

When the differences for roads/exposed soil test areas

were considered, a significant difference was also observed (a

= .01). In the case of roads/exposed soil test areas,

however, the differences observed were all positive. This

means that the classification produced from the Airborne

Scanner data resulted in a significantly higher classification

than Landsat TM. This is primarily due to the smaller spatial

resolution. More pixels are completely within the cover type,

and a lower proportion are boundary pixels. This improves

classification accuracy for cover types that are spectrally

homogeneous and of small areal extent.

No significant differences in the percent of correctly

classified pixels were found for the test areas containing

grassland cover types (a = .01). This is because the spectral

variability from pixel to pixel in a natural grassland cover
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type is relatively low and constant (see Section 4.3). Thus,

a high spaLial resolution sensor will receive approximately

the same information as a lower spatial resolution sensor.

The reason that there were no significant differences in

classification accuracy between the two sensors when all cover

types were involved is, in part, due to the fact that the

differences in classification accuracy between forest cover

types and the roads/exposed soil were of similar magnitude,

but in opposing directions, so as to offset each other. In

other words, the high accuracy in the Landsat TM

classification for forest cover types was offset by the high

accuracy in the Airborne Scanner classification for

roads/exposed soil.

To summarize, remote sensor systems that have low spatial

resolution will classify cover types of high spectral

variability with a significantly higher percentage of accuracy

as compared to sensor systems with a higher spatial

resolution. This is because the larger pixel in the lower

spatial resolution sensor is able to average the high spectral

variability found in forest cover types. Additionally, areas

that have low spectral variability (e.g., grassland) will be

classified with approximately the same degree of accuracy,

irrespective of sensor spatial resolution.

5.2 APPLICABILITY OF RESULTS

The results of this research indicate that agencies or

land managers interested in detecting off-road vehicular
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damage with very high spatial resolution remote sensor digital

imagery should use a weighted Laplacian filter such as the one

described above to enhance the imagery. Unless a very high

spatial resolution sensor is available, high quality aerial

photography, such as provided by the National Aerial

Photography Program (NAPP), provides the best results for

detecting off-road vehicular damage, particularly the damage

that was created by a very limited amount of traffic (perhaps

only one pass from one vehicle).

The results of this research also demonstrate that a low

spatial resolution sensor such as Landsat Thematic Mapper be

used to monitor overall changes in vegetation density on U.S.

Army Training Maneuver Sites rather than a high spatial

resolution sensor. Although classification accuracy between

the two sensors will be similar in grassland communities, the

accuracy of the higher (finer) spatial resolution sensor will

be lower in forest cover types as compared to that of a lower

(coarser) spatial resolution sensor such as Landsat TM.

5.3 RECOMMENDED TOPICS FOR FUTURE RESEARCH

Several topics could be pursued as topics for further

research. As described in this research (see Section 4.1.1),

a more quantitative approach in determining the actual amount

of damage information recorded by a multispectral scanner is

possible. This involves digitizing the vehicular damage into

a raster (grid .ell) geographic information system. A value

of 1 would represent damaged areas, whereas a 0 would
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represent non-damaged areas. The computer output would be the

total number of cells that contain off-road vehicular damage.

Following the same procedure for digital imagery, a

reclassification of the data would create a binary map (i.e.,

a value of 1 represents vehicular damage, a value of 0

represents everything else). After the total number of cells

were calculated by the computer, a direct comparison of the

number of cells present in aerial photography versus the

digital imagery could be made.

A method that may be useful in monitoring off-road

vehicular damage and the changes that occur over time is

possible using aerial photography and a geographic information

system (GIS). Digitizing the damage that has occurred in an

area into a GIS will allow a "degree of damage" code to be

applied to each damaged area. For example, a damage code

could be developed where a value of 1 represented rinimal

damage and a value of 5 represented extreme damage. Aerial

photography obtained over the same location one or two years

later could provide an interesting comparison to previous

damage. The damaged areas could again be digitized with

appropriate damage codes applied to each damaged area. A

comparison between the two dates could then be made to see

what changes have occurred since the first set of photography

was obtained. Types of changes may be: 1) new damage, 2)

increased "degree of damage", 3) decreased "degree of damage"

(i.e., recovery has taken place), or 4) no change has

occurred. This type of information would be very useful for
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a land manager attempting to develop or adjust a land use plan

for continued use of our natural resources.

A very efficient method for comparing the information

from the two dates is available. An overlay procedure within

a GIS could overlay the two map layers, thus providing

information regarding the coincidence of the tank trails. A

major drawback of this procedure, howeve, is that if the two

images are shifted by just one pixel (i.e., poor alignment),

the statistical evaluation of coincidence will be much lower

than if the two images were precisely registered to each

other.

A method to determine what the alignment is between the

two data sets is also available. Using the GIS to construct

concentric rings around each tank trail in one data set would

determine how far away each cell was from the closest tank

trail. Overlaying this new map onto the second data set would

provide spatial statistical information regarding the degree

of misalignment between the two data sets.

Another area for potential future research could involve

a comparison of higher spatial resolution multispectral

imagery to determine what resolution is needed to detect all

of the damage caused by off-road vehicles. This data may be

obtained by an airborne multispectral scanner flown at varying

altitudes, thus producing different spatial resolution data.

Additionally, investigations into the utility of the Airbcrne

Visible-Infrared Imaging Spectrometer (AVIRIS) or High

Resolution Imaging Spectrometer (HIRIS) would be useful.
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A Fourier transformation applied to the data sets may be

a useful tool for extracting tank trail information such as

the number of trails and the angles between them. This is

another potential for future research.

Exploring the advantages and limitations of a flatbed or

drum scanner to digitize aerial photography to extract

information about off-road vehicular damage is proposed as

another topic for further research. A visual, qualitative

evaluation of the NAPP aerial photography used in this

research reveals many details that were lost due to the video

digitization process. A comparison of the scanned aerial

photography and other remote sensor systems would be very

interesting.
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APPENDIX 1

Table A1.1. Land Condition Trend Analysis (LCTA) Plot
information.

PLOT COVER TYPE3  UTM COORDINATES % COVER4

10 AGSM/HIJA/SIHY 584100-E 4142500-N 4%

11 BOGR/HIJA 583300-E 4141100-N 25%

13 BOGR/HIJA 587500-E 4140600-N 41%

14 BOGR/HIJA 588300-E 4143100-N 17%

15 SPAI/HIJA/AGSM 597400-E 4161100-N 44%

21* BOGR/HIJA 591800-E 4147300-N 40%

22* BOGR/BOHI 596100-E 4144900-N 31%

103 BOGR/HIJA/AGSM 595200-E 4146500-N 22%

118 BOGR/HIJA 595700-E 4151200-N 30%

124 BOGR/HIJA 597700-E 4147800-N 6%

125 BOGR/HIJA/AGSM 597500-E 4149300-N 32%

3Appendix 2 contains a partial listing of vegetation
found at Pinon Canyon, including abbreviations used (Shaw et
al 1989).

4Percent cover is determined by field crews. Each 6 x
100 meter plot is divided into 1-meter interval6 along a line
inside the plot that parallels its long axis. The plant
species at each 1-meter interval are then Aetermined. The
total number of plants encountered along this line represents
the average percent ground cover.
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PLOT # COVER TYPE UTM COORDINATES % COVER

126* BOGR/HIJA 598100-E 4148800-N 12%

127 BOGR/HIJA/AGSM 598300-E 4150400-N 23%

128* BOGR/HIJA 594500-E 4148800-N 20%

129* BOGR/LICHEN 594600-E 4149700-N 45%

140* AGSM/BOGR 595200-E 4150500-N 26%

141* BOGR 594700-E 4147400-N 6%

143* BOGR/HIJA/AGSM 593200-E 4145900-N 24%

144* BOGR/HIJA 590500-E 4140500-N 19%

145 BOGR/HIJA 589800-E 4140400-N 27%

146 BOGR/HIJA 589300-E 4140500-N 14%

147* BOGR/HIJA 588600-E 4140600-N 35%

154 HIJA/AGSM 584100-E 4142700-N 17%

156* BOGR/HIJA 582700-E 4141100-N 22%

160* BOGR/LICHEN 588700-E 4141100-N 41%

161 BOGR/HIJA 588300-E 4141800-N 40%

163* BOGR/LICHEN 586900-E 4141200-N 47%

164 BOGR/HIJA 589000-E 4144800-N 17%

192 BOGR/HIJA 586500-E 4137400-N 35%

203* BOGR/HIJA 587600-E 4144100-N 19%
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Table A2.1. A partial list of dominant vegetation found at
Pinon Canyon.

ABBREVIATION5  SCIENTIFIC NAME COMMON NAME

BOGR Bouteloua gracilis Blue grama

HIJA Hilaria iamesii Galleta

AGSM Agropyron smithii Western wheatgrass

SPAI Sporobolus airoides Alkali sacaton

BOER Bouteloua eriopoda Black grama

JUMO Juniperus monosperma One-seeded juniper

GLME Glossopetalon Greasebush
meionandra

OPIM Opuntia imbricata Tree cholla

SIHY Sitanion hystrix Squirreltail

SAIB Salsola iberica Russian thistle

TAPE Tamarix pentandra Five-stamen tamarix

PIED Pinus edulis Pinyon pine

5 Abbreviations are made by using the first two letters
from each scientific name. A combination of four letters is
thus made.
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EDGE AND LINE ENHANCEMENT TECHNIQUES USED*

1. Laplacian (zero-weight) filters.
6

0 -1 0 0 -. 5 0 0 -. 25 0

-1 4 -1 -.5 2 -.5 -.25 1 -.25

0 -1 0 0 -. 5 0 0 -. 25 0

0 -2 0 -1 -1 -1 0 -1.75 0

-2 8 -2 -1 8 -i -1.75 7 -1.75

0 1-2 10 -1 -1 0 -1.75 0

0 -. 75 0 -. 5 -. 5 -. 5 0 -1.25 0

-. 75 3 -. 75 -. 5 4 -. 5 -1.25 5 -1.25

0 -.75 0 -.5 -.5 -.5 0 -1.25 0

0 -1.5 0 1 -2 1 -.75 -.75 - '7 C

-1.5 6 -1.5 -2 4 -2 -.75 6 -.75

0 -1.5 0 1 -2 -75 125 -.75 -.75

2 -4 2 0.5 -1 0.5 -.25 -.25 -.25

-4 8 -4 -1 2 -1 -25 2 -.25

2 -4 2 0.5 -1 0.5 -.25 -.25 -. 25

1.5 -3 1.5

-3 5 -3

1.5 -3 1.5
*Filt(- r bordered by double lines were best for a particular

methc.

6In this research, Laplacian and Bi-Laplacian edge

detectors are grouped together within zero-weight and weighted
filters.
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2. Laplacian (weighted) filters.

0 -1 0 0 -1.5 0 0 -2 0

-1 5 -1 -1.5 7 -1.5 -2 9 -2

0 -1 0 0 -1.5 0 0 -2 0

1 -2 1 0 -1 0

-2 5 -2 -1 3 -1

1 -2 1 0 -i 0

3. Sobel Edge Enhancement. (Image = (X2 + y 2 ) 1 12 )

X Components: Y Components:

-1 0 1 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -1

-. 5 0 .5 1 .5

-1 0 10 0 0
-. 5 0 .5 -. 5 -1 -. 5

-2 -1 0 0 1 2

-1 0 1 -1 0 1

0 1 2 -2 -1 0

-4 -2 0 0 2 4

-2 0 2 -2 0 2

0 2 4 -4 -2 0

-2 -1 0 2 1 0

-1 0 1 1 0 -1

0 1 2 0 -1 -2
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2 1 .5 -2 -1 .5

1 0 -1 -1 0 1

.5 -1 -2 .5 1 2

2 1 .5 .5 1 2

1 0 -1 -1 0 1

.5 -1 -2 -2 -1 .5

4. High-pass filters (3 x 3 window).

-1 -1 -1 -1 -1 -1

-- 9 -1 -1 17 -1

5. Filters using a 5 x 5 window.

0 -i -2 -1 0 0 -1 -2 -1 0

-1 -2 -4 -2 -1 -1 -2 -4 -2 -1

-2 -4 40 -4 -2 -2 -4 41 -4 -2

-1 -2 -4 -2 -1 -1 -2 -4 -2 -1

0 -1 -2 -1 0 0 -1 -2 -1 0

-. 3 -. 3 -. 3 -. 3 -. 3 -1 -1 -1 -1 -1

-. 3 -. 3 -. 3 -. 3 -. 3 -1 -1 -1 -1 -1

-. 3 -. 3 9.7 -. 3 -. 3 -1 -1 24 -1 -1

-.3 -.3 -.3 -.3 -.3 -1 -1 -1 -1 -1

-.3 -.3 -. 3 -.3 -.3 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

-1 -1 25 -1 -1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1



122

6. Low-pass filter (In addition to the 3 x 3 unity filter

below, a 5 x 5 unity filter was also tested).

1 1 1

1 1 1

1 1 1

7. Robert's edge detector.

I j i i,j+l

i+l,j i+l,j+l

Image = [abs((i,j) - (i+l,j+l)) + abs((i,j+l) - (i+l,j))]

Where abs refers to the absolute value.

8. Prewitt directional filters, first individually, then

combined into one imaqe by simple addition.

North; Northeast:

1 1 1 1 1 1

1 -2 1 -1 -2 1
-1 -1 -1 -1 -1 1

East: Southeast:

-1 1 1 -1 - f 1

-1 -2 1 -1 -2 1

-1 1 1 1 1 1

South: Southwest:
-I -i -i 1 ___-i_ -i

1 -2 1 1 -2 -

1 1 1 1 1 1

West: Northwest:

1 1 -l 1 1 1

1 -2 -l 1 -2 -1

1 1 -l 1 -1 -1
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9. Kirsch gradient filters.

5 5 5 5 5 -3 5 -3 -3

-3 0 -3 5 0 -3 5 0 -3

-3 -3 -3 -3 -3 -3 5 -3 -3

-3 -3 -3 -3 -3 -3 -3 -3 -3

5 0 -3 -3 0 -3 -3 0 5

5 5 -3 5 5 5 -3 5 5

-3 -3 5 -3 5 5

-3 0 5 -3 0 5

-3 -3 5 -3 -3 -3

10. Prewitt three-level simple filters.

1 1 1_1 1 0 1 0 -1

0 0 0 1 0 -1 1 0 -1

-1 -1 -1 0 -1 -1 1 0 -1

0 -1 -1 -1 -1 -1 -1 -1 0
1 0 -1 0 0 0 -1 0 1

1 1 0 1 1 1 0 1 1

-1 0 1 0 1 1

-1 0 1 -1 0 1

-1 0 1 -1 -i 0

11. Prewitt five-level simple filters.

1 2 1 2 1 0 1 0 -1

0 0 0 1 0 -1 2 0 -2

-i -1 -2 1 0 -1



124

0 -1 -2 -1 -2 -1 -2 -. 0

1 0 -1 0 0 0 - 0 1

2 1 0 1 2 1 0 1 2

-i 0 1 0 1 2

-2 0 2 - 0 1

-1 0 1 -2 -1 0

12. Mero-Vassy filter. (Image = (abs(A) + abs(B))), where

abs refers to the absolute value.

A Component: B Component:

1 1 -1 1

-1 -1 -1 1

13. Prewitt gradient filters. (Image = A + B).

A Component: B Component:

1 1 1 1 0 -1

0 0 0 1 0 -1

-1 -1 L-L-i 1 1 0 -

14. Chittineni filters.

(Laplacian) (Non-Laplacian)

-1 2 -1_ -i 1 1 1

2 5 2 0 0 0 -2 -2 -2

-1 2 -1 -1 0 1 1 1 1

-1 -1 -1 -I1 0 1 1 -2 1

0 0 0 -i 0 1 1 -2 1

1 1 1 -1 0 1 1 -2 1
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Techniques 15-22:

Consider the following matrix of pixels from a

hypothetical image. Each cell in the matrix may be

represented as follows (the letters A-I are for convenience in

referring to the cells):

DNi.ij. I  (A) DNi.I, j  (B) DNi-1 ,j.1  (C)

DNij I  (D) DNi. (E) DNij I  (F)

DNi.+,j 1. (G) DNi I j  (H) DNi +,+ I  (I)

15. A "vertical gradient" image was obtained by performing

the following equation to each pixel in the image:

DNi,j - DN,.I j  (or E - B).

This procedure enhanced horizontal lines and edges in the

imagery.

16. A "horizontal gradient" image was obtained by

performing the following equation to each pixel in the image:

DNij  - DNi,,4 I  (or E - F).

This procedure enhanced vertical lines and edges in the

imagery.

17. A "NW-SE (diagonal) gradient" image was obtained by

performing the following equation to each pixel in the image:

DNij  - DNi, .I  (or E - A).

This procedure enhanced lines and edges oriented in a NE-SW

direction.

18. A "NE-SW (diagonal) gradient" image was obtained by

performing the following equation to each pixel in the image:
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DN0j - DNI-,j I  (or E - C).

This procedure enhanced lines and edges oriented in a NW-SE

direction.

19. Adding both the vertical and horizontal difference

images above created an image with all horizontal and vertical

lines and edges enhanced.

20. Adding both diagonal difference images created an image

with all diagonal lines and edges enhanced.

21. Adding all difference images together created an image

with lines and edges in all directions enhanced.

22. An isogradient method of enhancing both horizontal and

vertical lines and edges is given by the following equation:

(vert2 + horiz2)1/2

Where vert2 is the vertical gradient image (E - B) squared,

and horiz2 is the horizontal gradient image (E - F) squared.

23. In addition to the methods outlined above, the original

imagery was included as another "method" for evaluation.

The methods outlined above were also applied to images

that were first treated using the high-pass and low-pass

filters. This was performed for two reasons. First, it was

speculated that a high-pass filter first applied to the

imagery would enhance tank trails to a certain extent, and

subsequent techniques specifically designed for edge and line

enhancement would enhance them even more. Second, when the

large amount of salt and pepper noise became evident in data

set 4, the low-pass filter was applied to the imagery to

determine if this would reduce the problems encountered with
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such noise. These procedures did not aid in the enhancement

of the digital imagery for tank trails.



APPENDIX 4

KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST FOR NORMALITY

Differences in classification accuracy as listed in Table

4.14 represent continuous data. The Kolmogorov-Smirnov

goodness-of-fit test for normality was first developed for use

with continuous data, and is preferable to the Chi-square

goodness-of-fit test for this type of data (Zar 1984).

Four tests for normality were conducted. First, data

from all general cover types were tested to determine

normality for the entire data set. Second, data from each of

the general cover types (i.e., forested areas, roads/exposed

soil and grassland areas) were tested for normality. Tables

A4.1 through A4.4 contain information used for these tests.

The Kolmogorov-Smirnov test for normality measures

goodness-of-fit of the cumulative relative observed frequency

(Rel F,) of the data in question to the cumulative relative

expected frequency (Rel Fi') if that data were normally

distributed. As indicated on tables 1 through 4, value D. and

Di' are calculated by taking the absolute value of the

differences between F, and Fi', and F i- and Fi' respectively.

The le gest value obtained in either the Di or the Di column

becomes a value known as D. This number is compared to the

Kolmogorov-Smirnov critical value for D as found in tables in
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statistical texts. If the calculated value of D exceeds the

critical value for D as found in the statistical table, the

null hypothesis that the data are not normally distributed is

rejected in favor of the alternative. The alternative in this

case is that the data are normally distributed.

For example, from Table A4.1, the largest Di is 0.0681

and the largest Di' is 0.1557. Thus, the calculated value foi

D becomes 0.1557. The critical value for D with 35

observations is 0.1480. Since the calculated value for D is

larger than the critical value for D, the null hypothesis is

rejected. Thus, the data are normally distributed.

A summary of this test, as well as the tests for the

general cover types follows. The result of these tests were

that the data were normally distributed for the general cover

types, both individually and collectively. The null

hypothesis (Ho) was that the data were not normally

distributed.

ALL GENERAL COVER TYPES COMBINED (FROM TABLE A4.1):

Max D i = 0.0681 Max D' = 0.1557 D = 0.1557

D critical value from statistics table = 0.148

0.1557 > 0.148, therefore, reject Ho. That is, the

combined data are normally distributed (a = .05).

FORESTED AREAS (FROM TABLE A4.2):

Max Di = 0.2382 Max Di' = 0.4532 D = 0.4532

D critical value from statistics table = 0.350

0.4532 > 0.350, therefore, reject H0 . That is, the data

from the forested areas are normally distributed (a = .01).
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ROADS/EXPOSED SOIL (FROM TABLE A4.3):

Max D i = 0.0655 Max D i' = 0.3243 D = 0.3243

D critical value from statis;ics table = 0.290

0.3243 > 0.290, therefore, reject Ho. That is, the data

from the roads/exposed soil are normally distributed (a

.01).

GRASSLAND AREAS (FROM TABLE A4.4):

Max Di = 0.1272 Max Di' = 0.3594 D = 0.3594

D critical value from statistics table = 0.240

0.3594 > 0.240, therefore reject Ho. That is, the data

from the grassland areas are normally distributed (a = .01).

Since the data were normally distributed, both

individually and collectively, use of the student's t-

distribution to test for significant differences in

classification accuracy was possible.


