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ABSTRACT OF THESIS
THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION
IN MONITORING U.S. ARMY TRAINING MANEUVER SITES

Several types of remote sensor data having different
spatial resolutions were obtained over a portion of Pinon
Canyon Maneuver Site in Southeastern Colorado to: 1) evaluate
the ability of several line and edge enhancement techniques to
enhance remote sensor data with different spatial resolutions
for the detection of off-road vehicular damage (tank trails),
and 2) to observe changes in classification accuracy of a
rangeland environment as a function of the sensor spatial
resolution and cover type involved.

A weighted Laplacian filter was the most effective and
time efficient enhancement technique used for enhancing remote
sensor digital data. Geoscan's MKII Airborne Multispectral
Scanner with 6.5 meter spatial resolution provided the most
effective digital data set for enhancing tank trails.
However, this Airborne Scanner data resolved only 65-70% of
the tank trails visible in aerial photography obtained by the
wvailional Aerial Photography Program (NAPP). Most of this loss
of detail occurred in very small trails that were trafficked

perhaps only once. Therefore, traditional photointerpretation
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most information regarding off-road vehicular damage,
especially minimal damage of small areal extent.

Results of the classification procedure for Airborne
Scanner data and Landsat TM data produced overall
classification accuracies of 75% and 78%, respectively, for
specific classes within major cover type groups (i.e., forest,
grass, roads/exposed so0il). When major cover type groups were
combined, classification accuracy increased to 85% and 91% for
the Airborne Scanner and Landsat TM, respectively. In every
case, Landsat TM produced higher overall classification
results. However, these differences were not significant (a
= .01l) when all major cover type groups were combined.

When only forest cover types were considered, Landsat TM
produced significantly higher results than the Airborne
Scanner (a = .0l). This result was due to the ability of the
lower spatial resolution Landsat TM to average the natural
variability in forest canopies within individual pixels. The
higher spatial resolution of the Airborne Scanner resulted in
higher pixel to pixel variability, thus reducing
classification accuracy for cover types of high spectral
variability (i.e., forest cover types).

When only roads/exposed soil were considered, the
Airborne Scanner produced significantly higher results than
Landsat TM (a = .01). This result was due to a higher
pruportion of the smaller pixels being included completely
within the boundary of the cover type, with a smaller

proportion of pixels being boundary pixels.
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There was no significant difference (a = .01) 1in
classification accuracies between the two sensors when only
grass cover types were considered. This result is because the
variability from pixel to pixel is approximately the same for
grass cover types, irrespective of pixel size. Thus, the 6.5
meter spatial resolution Airborne Scanner achieved similar
results as the 25 meter spatial resolution Landsat Thematic
Mapper for grass cover types.

This research provides significant results for the U.S.
Army and other agencies interested in monitoring semi-arid
rangeland environments using remote sensor data.

Harry L. Cunningham

Department of Forest and
Wood Sciences

Colorado State University

Fort Collins, CO 80523
Fall 1990
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INTRODUCTION

1.1 OVERVIEW

The security of the United States of America depends on
a military that is able to fight and win in all types of
environments and conditions. This requires regular training
of personnel 1in dgeographic areas that simulate future
battlefields. Many of these training areas are located in
arid or semi-arid regions of the world. As such, they are
environmentally sensitive and require special management
practices to ensure their continued use.

The United States Army Construction Engineering Research
Laboratory (USACERL) has developed a method of monitoring
changes in land condition on training areas throughout the
world. The Integrated Training Area Management program was
designed to provide land managers with necessary information
to ensure these areas are not destroyed by overuse.

The Land Condition-Trend Analysis (LCTA) program is a
major part of the ITAM program. The LCTA program is a way of
obtaining very detailed information about the condition of
military training lands. A report by Diersing et al. (1989)
outlines the primary objectives of this program, which are to
evaluate and monitor the capability of the 1land to meet

multiple-use demands, to include military training, on a




sustained basis. When changes occur such that the available
resources are endangered, this program gives the land manager
a decision base for altering land management practices to
ensure long-term resource availability. This program also
standardizes the data collecting and reporting methods on an
Army-wide level.

Multiple-use is defined by Section 601 of the Federal
Land Policy and Management Act (U.S. Congress, 1976) as:

..a combination of balanced and diverse resource

uses that takes into account the long-term needs of

future generations for renewable and nonrenewable

resources, including, but not limited to,
recreation, range, timber, minerals, watershed,
wildlife and fish, and natural scenic, scientific

and historical values; and harmonious and

coordinated management of the various resources

without permanent impairment of the productivity of

the land and the quality of the environment...

Remote Sensing technology is utilized initially in the
process of selecting permanent plots within military
installations. For this application, a satellite image is
processed to identify areas that are spectrally homogeneous
based on reflectance values in the green, red and near
infrared wavelength Dbands. The resulting image |is
subsequently superimposed on a digital soil data layer within
a geographic information system (GIS). Areas that have
homogeneous soil and land cover are identified as possible
locations for the LCTA plots. These plots are established on
a stratified-random basis, that is, the number of plots

assigned for each land cover and soil category is proportional

to the percent of land area that it occupies.




Although remote sensing technology is used extensively to
identify possible locations for permanent LCTA plots, a very
limited amount of remote sensing research is presently being
conducted to assess land condition changes in conjunction with
the LCTA plots. Remotely sensed data will not replace the
need for detailed ground reference data within the LCTA plots
on military installations. However, it may provide the land
manager with an improved overall estimate of land conditions
to enable him or her to better manage the Army's need for
training and the land's capacity to support that training.

While the information collected under the LCTA program is
very valuable, it is also very labor intensive. According to
Diersing et al. (1989), field crews gather information on
areas or plots that measure 6 x 100 meters. General
guidelines suggest that one plot be designated for every 200
hectares (500 acres). The proportion of the training area
that would be covered by plots following these guidelines
represents only 0.03% of the training area. Since the number
of possible plots for large training areas could conceivably
become unmanageable, the maximum number of plots for a
particular installation is limited to 200. This information
consists of topographic features, soil <characteristics,
climatic variables, wildlife species, surface disturbance,
percentagn of bare ground, gravel, rock, duff, litter and
basal cover. These plots are visited annually to determine
changes that have occurred, and a detailed reconnaissance for

each plot as outlined above is conducted every three years.




Pinon Canyon Maneuver Site (hereafter referred to as
Pinon Canyon) 1is a wilitary training area 1located 1in
Southeastern Colorado. It 1is one of several military
installations where the Integrated Training Area Management
program is in effect. As such, several LCTA plots have been
identified and inventoried over a period of several years. A
concentrated effort is being made in this area to ensure that
the land can meet the training needs of the Army both now and
in the future.

This research was divided into two major categories. The
first focused on the ability of several types of remotely
sensed data having different spatial resolutions to detect
damage caused by off-road vehicular traffic, primarily
military tracked vehicles, on portions of training areas
located within Pinon Canyon. This damage 1is hereafter
referred to as "tank trails." The second portion of this
research involved the comparison of classification accuracies
of two data sets having different spatial resolutions. A per-
point classifier was used for the classification.

The techniques used in this research to detect tank
trails are very likely applicable to any agency interested in
monitoring off-road vehicular damage in an arid or semi-arid
environment. Several studies in the past have concentrated on
the detrimental effects of recreational off-road vehicular
traffic to plant and animal communities and the surrounding
environment. 1In these areas soil is compacted, vegetation is

lost, and erosion rates increase. The effects of off-road




vehicular travel and subsequent damage to the environment can
literally last for decades (Prose 1985). Very little research
has been conducted, however, to determine the ability of

various types of remote sensor data to detect this damage.

1.2 OBJECTIVES

The primary objective of this research was to determine
the capabilities and limitations of remote sensor systems
having different spatial resolutions to aid in monitoring U.S.
Army training maneuver sites. This was accomplished in two
phases. First, the ability of these systems to detect off-
road tracked vehicular damage on military installations was
evaluated. Second, two different types of remotely sensed
data having different spatial characteristics were evaluated
to assess their effectiveness for per-point classification on
different vegetative cover types. The following sub-
objectives were identified:

i) Evaluate several edge and line enhancement methods or
techniques to determine their effectiveness in enhancing tank
trails. (For clarity, all methods or techniques are hereafter
referred to as enhancement techniques). These enhancement
techniques included high~pass and low-pass filters, Laplacian,
Sobel, Roberts, Mero-Vassy, ?rewitt, Kirsch, and Chittineni
edge detectors, and direct:-nal line filters. A "running
difference”" or derivativr technique, and an isogradient

technique were also tested.




ii) Identify the optimum digital filter or enhancement
technique to use for enhancement of tank trails in digital
data.

iii) Evaluate the ability of sensor systems with
different spatial resolutions to detect tank trails in digital
data.

iv) Assess the impact of spatial resolution on
classification performance of different vegetative cover types
when using a per-point classifier.

v) Assess the interrelationships between sensor spatial
resolution and the spatial characteristics of forest and

rangeland cover types.




LITERATURE REVIEW

2.1 EFFECTS OF OFF-ROAD VEHICULAR TRAVEL

Several studies in the past have shown the detrimental
effects of off-road vehicle use on natural ecosystems. These
areas lose natural vegetation, the soil becomes compacted, and
erosion increases (Green et al., 1973; Wilshire, 1977;
Coodwin, 1977; Iverson et al., 1981; Goran et al., 1983; Webb
and Wilshire, 1983; Wilshire, 1984; Tuttle and Griggs, 1987;
Shaw and Diersing, 1990). Prose (1985) has shown that the
effects of military tracked vehicle maneuvers in a semi-arid
environment can last for decades.

Army Regulation AR 200-2 requires that long-term impacts
on natural resources caused by military training activities be
reduced or avoided (Prose, 1985). There are methods currently
in place to aid land managers in monitoring U.S. Army training
areas. The Integrated Training Area Management (ITAM) program
was implemented by the U.S. Army in 1987 to ensure that the
training areas are not ruined through overuse. It has been
estimated that a savings of $5.00 to $27.00 in rehabilitation
costs will be saved for every dollar spent on the ITAM program
(Diersing et al., 1989).

The Land Condition Trend Analysis (LCTA) program is the

sub-program within ITAM through which monitoring of the land




is accomplished. Shaw and Diersing (1989) have shown that
this is an effective tool in monitoring U.S. Army training
areas. Guidelines to minimize damage caused by military
tracked vehicles have been established as a direct result of
these programs (Diersing et al., 1988; Shaw and Diersing,

1989) .

2.2 REMOTE SENSING AND OFF-ROAD VEHICULAR TRAVEL

Remote sensing technology as an aid in monitoring land
conditions at military installations located in semi-arid
regions has had limited use in the past. 1In an unpublished
report, Ribanszky et al. (1990) describe the successful use of
SPOT multi-spectral data in detecting land cover changes
within U.S. Army training lands. This is accomplished by
converting the SPOT digital data to a normalized difference
vegetation index (NDVI). This research, however, 1is 1in
Hohenfels, Germany, which is not considered a semi-arid
region.

Warren and Hutchinson (1984) describe the use of remote
sensing 1in an arid environment to evaluate different
environmental variables as indicators of rangeland change. 1In
this study, disturbance was related to changes in overall
vegetation density and the ratio between shrubs and grasses.
Other studies have documented the use of remote sensing
technology in monitoring arid and semi-arid regions (Peterson

et al., 1987; Johnson et al., 1989; Teuller, 1989).




Graetz and Pech (1987) have shown the advantages of using
both Landsat Thematic Mapper (TM) and aerial photography for
assessing the human impacts of oil exploration in an arid
environment. The coarse resolution of Landsat TM limits its
ability to detect small linear features such as seismic
exploration tracks, but the repetitive and large-area coverage
make it very useful for detecting 'problem' areas. Large-
scale photography (1:2,000 - 1:10,000) was best for evaluating
processes of erosion along these tracks, and subsequent
revegetation. The high cost and restrictive coverage,
however, are the disadvantages of using aerial photography for

monitoring desert landscapes.

2.3 EDGE AND LINE ENHANCEMENT TECHNIQUES

The use of different techniques to enhance edge and
linear features in remotely sensed digital data has received
much attention in previous years (Weszka and Eberlein, 1975;
Robinson, 1977: Vanderbrug, 1976; Chavez and Bauer, 1982;
Chittineni, 1982; Ford et al., 1983; Gil et al., 1983;
Sullivan et al., 1984; Lenz, 1987; Chen and Tsai, 1988;
Berthod and Serendero, 1988; Krahe and Pousset, 1988; Kundu,
1989). Linear features may include many things from geologic
lineaments caused by joints and faults or other natural
phenomena, to the ridges and valleys on fingers that create
fingerprints (Verma et al., 1987; Peters et al., 1988).

Several papers provide a survey of different types of

edge and line detectors, and give a brief explanation of each
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(Davis, 1975; Shaw, 1979; Peli and Malah, 1982). Edge
detection may be divided into two major groups: local and
regional. Local edge detectors usually employ smal. windows
that move throughout the imagery. These windows are usually
3 x 3 or 5 x 5, and can be thought of as diff~erential
operators. That 1is, they detect differences between
brightness values of neighboring pixels and thus define
"edginess" at each poirt in the image. Regional operators, as
the name implies, cover areas much larger than the edges to be
detected. These operators are designed to detect edges of
varying widths between two large areas, each having unique and
somewhat constant brightness values (Shaw, 1979).

Local edge detectors may be subdivided into two types:
linear and nonlinear (Rosenfeld and Kak, 1976; Peli and Malah,
1982; Jensen, 1986). Linear edge detectors are performed
using linear combinations of pixels, e.qg., adding,
subtracting, multiplying or dividing pixel values within
digital imagery. Nonlinear edge detectors, however, are
performed using nonlinear combinations of pixels, e.g.,
performing exponential or logarithmic functions on pixel

values (Jensen, 1986).

2.3.1 LINEAR EDGE DETECTION TECHNIQUES

A high-emphasis spatial frequency filter, or high-pass
filter is one method of linear edge detection (Davis, 1974).
Sharp changes in brightness values throughout an image (i.e.,

the presence of edges or lines) will be amplified by a high-

-y
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pass filter. Sullivan et al. (1984) and Tensen (1986) discuss
the use of low-frequency or low-pass filters. These types of
filters tend to suppress much of the "salt and pepper'" noise
that is present in many digital images.

A simple and yet very effective technique for detecting
lines and ec 35 1is a running difference or gradient (first
derivative) technique (Rosenfeld and Kak, 1976; Hord, 1982;
Jensen, 1986). It is often referred to as a first derivative
operator because changes in brightness value over a standard
unit of one pixel are measured. This technique is performed
by subtracting each pixel in the image from its immediate
neighbor. A subtraction of pixels in the vertical direction
enhance horizontal lines and edges. Similarly, a subtraction
of pixels in the horizontal direction enhance vertical lines
and edges. In areas where no difference in brightness value
occur (i.e., the values of adjacent pixels are equal), the
result 1is =zero. These areas of 1little or no change are
assigned a gray tone. If a negative value occurs, the pixel
is assigned a darker tone. Conversely, if a positive value
occurs, the pixel is assigned a lighter tone. Thus, a band of
dark and light toned pixels surround all linear features and
edges (Jensen, 1986). The visual effect of this procedure is
an apparent 3-dimensional image, with the bands of dark and
light pixels forming lines in the image that appear to be
depressed or raised on the image, based on which direction the

image was shifted.




12

For the gradient image, if pixels in the y direction are
subtracted from each other, lines and edges oriented in the x
direction are enhanced. This logic holds true for other
directions as well.

An operator similar to the gradient technique was first
proposed by Roberts (1965), and is mentioned in works by Duda
and Hart (1973), Davis (1974), Peli and Malah (1982) and
Jensen (1986). This operator will detect either a horizontal

or vertical edge. It uses a 2 x 2 window as follows:

L3 | i

i+1,3 i+1,j+1

(In cases of 2n x 2n filters (i.e., 2 x 2, 4 x 4, etc.), the
location of the output is assigned to the upper left cell).
The formula that the Robert's operator uses in calculating the
filtered image is as foilows:

Image = [abs((i,j) = (i+1,3j+1)) + abs((i,j+1) = (i+1,3))]
where abs refers to absolute value.

Rosenfeid ana Kak (1976) discuss in great detail a very
useful class of linear filters known as the Laplacians. These
filters are isotropic second derivative operators, and are
rotation invariant (Duda and Hart, 1973). That is, rotating
the filter by rearranging the coefficients will not change the
output. Since they are isotropic second derivative operators,
lines and edges in all directions are simultaneously enhanced

using this technique. A very basic Laplacian digital filter
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is defined by the following 3 x 3 window (Rosenfeld and Kak,

1976) :
0 -1 0
-1 4 -1
0 -1 0
The numbers in this filter and the filters that follow
act as mnultiplicative coefficients. The cells are then

averaged, and the resulting value is assigned to the location
that coincides with the center cell of the window. Different
coefficients may be placed in these filters to enhance
specific features of interest. For example, Rosenfeld and Kak
(1976) and Jensen (1986) suggest experimenting with different
coefficients interactively until the desired product is
obtained. Robinson (1976) and Sullivan et al. (1984) indicate
that a filter with two non-zero coefficients in the 8 cells
surrounding the center cell is referred to as a bi-Laplacian
filter.

Rosenfeld and Kak (1976) compared images created using
the gradient function to images created using Laplacian
filters. They found that the gradient images generally
produced better results for edge detection. They also showed
that the Laplacian filters were usually better for detecting
lines than was the gradient method. In direct contrast to
these findings, Hord (1982) indicated that the gradient was
usually preferred for finding lines, whereas the Laplacian

filters were more useful in edge and poundary detection.
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Previous studies have documented the value of filters
designed to enhance lines and edges of a specific orientation.
(Vanderbrug, 1976; Robinson, 1977; Chittineni, 1983; Sullivan,
et al., 1984). These filters generally are constructed with
zero weighting (i.e., the sum of coefficients in the filter
equal zero) so that no output is produced over areas that have
no edges or lines present (Jensen, 1986).

Robinson (1977) provides a number of directional line
filters that were first described by Prewitt (1970) and Kirsch
(1971) as "compass gradient masks." In this case, the word
masks is used as a synonym for filters. These types of
filters are useful for applications that require edges and
lines of a particular orientation to be enhanced. When an
application requires that all edges and lines be enhanced
regardless of orientation, however, a single filter will not

provide sufficient information.

2.3.2 NONLINEAR EDGE DETECTION TECHNIQUES

Several nonlinear enhancement techniques have been
proposed. A simple nonlinear enhancement technique for edge
and line detection was suggested by Hord (1982). He developed
a way to avoid loss of detail in certain directions when using
the simple gradient technique. The directional derivative in
the x direction may be represznted as dG/dx. Similarly, the
difference in the y direct:’ >n (y directional derivative) may
be represented as dG/dy. The isotropic first derivative, or

gradient, is then found according to the following equation:
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Image = [(dG/dx)? + (dG/dy)?]"/?
This technique produces an image that is very similar to the
regular gradient image. The advantage is that lines and edges
in all directions are enhanced.

The Sobel operator, as described by Duda and Hart (1973),
Robinson (1976), Rosenfeld and Kak (1976) and Jensen (198s6),
is also a nonlinear operator. This operator is analogous to
a combination of two compass gradient masks as described
earlier, namely the North and East directions (Robinson 1977).

The two masks that are combined are as follows:

X Component: Y Component:
-1 0 1 1 2 1
=2 0 2 0 0 0
-1 0 1 -1 | =2 -1

A new image is created out of the combination of the X and Y
components as follows:
Image = (X% + Y?)'/?

where X and Y are the images created by applying each
respective filter to the original image. The coefficients 1,
2, and 1 are based entirely on intuitive grounds (Duda and
Hart, 1973). Nevertheless, Jensen (1986) found that the Sobel
operator worked very well on a set of thermal-infrared data
obtained over a portion of the Savannah River.

An operator that uses the same principle as the Sobel
operator was suggested by Mero and Vassy (1975) and described
by Shaw (1977). Two filters are again used: one that enhances

edges and lines oriented in the y direction, and another that
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enhances those oriented in the x direction. The advantage of
the Mero-Vassy operator is computational efficiency. This

operator consists of 2 x 2 windows as follows:

-1 1 1 1

-1 1 =1 -1

In order to perform the Mero-Vassy filters with systems
restricted to 3 x 3 windows, the coefficients for the center
rows and columns are set to zero.

There are many techniques and filters available that will
enhance edges and lines in remote sensor data. This
discussion has dealt with relatively small window sizes (2 x
2, 3 x 3, etc.). There are, however, techniques that use
larger windows, depending on the intended application. A
compromise must be found regarding window size. A very small
window will enhance many fine details, but will also be very
sensitive to digital '"noise." A larger window 1is less
sensitive to noise, but tends to subdue the fine details
required for some applications (Davis, 1974). The analyst
must interactively select the combination that best enhances

the imagery for his or her application requirements.

2.4 SPATIAL RESOLUTION CONSIDERATIONS
The ability of a sensor to detect certain features on the
ground is a function of several things. First, the spatial

resolution of a sensor will greatly influence which objects on




17

the ground are detected. Spatial resolution refers to how
small an object can be on the ground and still be detected by
the sensor system (Lillesand and Kiefer, 1987). Jensen (1986)
defines spatial resolution as "the smallest angular or linear
separation between two objects than can be resolved by the
sensor."

Spatial resolution is closely related to the
instantaneous field of view (IFOV) of the sensor system
involved. The IFOV refers to the area on the ground from
which information is received by one ground resolution element
and subsequently assigned to one pixel in remotely sensed
digital imagery. Because IFOV is often the limiting factor
determining the ability of a sensor to discriminate between
two objects on the ground, the IFOV is often referred to as
the spatial resolution of the sensor. Therefore, for purposes
of this research, the IFOV of a sensor system will hereafter
be referred to as the spatial resolution of the sensor.

Second, the amount of contrast between an cbject and its
surrounding environment will also influence the detectability
of that object. For instance, a concrete road of high
reflectance may not be detectable in Landsat TM imagery with
a 28.5 meter spatial resoclution (28.5 meters on each side of
a pixel) if that road occurs in an urban environment where
most of its surroundings are composed of concrete structures.
However, a bridge of similar spectral characteristics that
spans a water body will be easily detected because of the

spectral contrast between the bridge and the water.
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2.5 SPATIAL RESOLUTION AND CLASSIFICATION ACCURACY

Several studies in previous years have investigated the
effect of spatial resolution of the sensor system involved on
classification accuracy and area mensuration using automated
information extraction techniques (Simonett and Coiner, 1973;
Kan et al., 1975; Thomson et al., 1975; Clark and Bryant,
1977; Sadowski et al., 1977; Latty and Hoffer, 1981; Hoffer et
al., 1982; Acevedo et al., 1984; Irons et al., 1984; Williams
et al., 1984; Latty et al., 1985; Irons and Kennard, 1986;
Woodcock and Strahler, 1987; Benjamin and Gaydos, 1990).

Schwarz et al. (1969), as related by Simonett and Coiner
(1973), have documented a point that 1is important in
understanding the relationship between sensor spatial
resolution and informational content. They indicate that
large homogeneous areas that contain a single informational
category may effectively be imaged with coarse resolution.
However, complex, finer-scale environments will require a
finer spatial resolution so that a greater proportion of the
pixels present will contain information from a single
informational class, rather than from multiple categories.

Several studies have focused on the classification

accuracy of a single, apparently homogeneous informational

class: a forest canopy (Kan et al., 197%; Sadowski et al.,
1977; Latty and Hoffer, 1981). They have found that as
spatial resolution increases (becomes finer), spectral

variance increases, thus reducing the separability or
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interspersion of spectral clusters in feature space. The
result is a paradox: higher (finer) spatial resolution sensors
tend to produce lower classification accuracies in forest
cover types. This is, in part, due to the shadow effects and
spectral variation within a forest canopy on and between
individual tree crowns (Hoffer, 1982). Latty and Hoffer
(1981) found that classification accuracies for classes with
lower spectral variability (e.g., crop, pasture, soil) did not
significantly change with increased spatial resolution.

During a systems study to analyze the optimal spatial
resolution for Landsat Thematic Mapper, Thomson and Erickson
(1975) classified an agricultural environment of low spectral
variability using digital data that simulated sensor systems
having IFOV's of 30 and 60 meters, respectively. They found
no significant differences in these classification accuracies,
which 1is consistent with earlier studies. Markham and
Townshend (1981) observed similar results over several cover
types 1in eastern Maryland with a data set that was
progressively degraded to 10, 20, 40 and 80 meter spatial
resolution. They also found that the influence of spectral
variability on classification accuracy is affected by the
location of spectral clusters in feature space. They found
that it was impossible to predict the results of a
classification solely on spectral variability and the category
type.

Several studies have documented the effects of boundary

pixels on classification accuracy. Morgenstern et al. (1977)
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found that a higher relative frequency of boundary pixels in
the coarse spatial resolution data (50 meter to 80 meter)
tended to decrease the accuracy of agricultural crop
mensuration. Landgrebe et al. (1977) found that although
classification accuracy improved slightly with lower spatial
resolution data, the decrease in area mensuration accuracy was
larger than the improved classification accuracy. Markham and
Townshend (1981) indicated that boundary pixels in the lower
spatial resolution data tended to decrease accuracy for
classes containing small features such as roads and small
water bodies. They also indicated that boundary pixel and
scene noise effects may offset each other, thus keeping
classification accuracies relatively unchanged for several
different resolutions.

Clark and Bryant (1977) observed an increase 1in
classification accuracy in urban categories as spatial
resolution was degraded from 7.5 meters to 60 meters. Badhwar
et al. (1984) and Haack et al. (1987) indicate that Landsat
MSS with 80 meter resolution produces better classification
results than Landsat TM in complex environments such as urban
or near-urban land use categories. They point out, however,
that Landsat TM is superior to Landsat MSS in delineating
boundaries due to the higher spatial resolution.

Other studies have also shown that high spatial
resolution is preferred over lower resolutions for certain
applications (Parks et al., 1987; Curran and Williamson, 1988;

Benjamin and Gaydos, 1990). Parks et al. (1987) found that
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finer resolution Landsat TM and SPOT MSS were better able to
delineate vegetation and other surface features in spatially
and spectrally complex coal surface mines. Curran and
Williamson (1988) found that a spatial resolution of 2 meters
and 5 meters was best for estimating the per-field green leaf
area index (GLAI). Benjamin and Gaydos (1990) found that a
spatial resolution of 3 meters was best for extracting road

features from scanned aerial photography.

2.6 DATA COMPRESSION THROUGH PRINCIPAL COMPONENTS ANALYSIS

A procedure known as a principal components
transformation is a commonly used procedure to extract the
maximum amount of information from the bands and at the same
time, to reduce the dimensionality of remote sensor data,
particularly multispectral scanner data. To better understand
the transformation, imagine two multispectral bands, X and Y.
A two-dimensional plot of these bands would be two orthogonal
axes with the origin at (X,Y) 1location (0,0). If the
brightness values of all pixels in these two bands were
plotted, the result would appear to be an ellipse. The
maximum amount of variability in these pixels would probably
not coincide with either of the two orthogonal axes, and the
mean of these pixels would probably not be exactly at the
origin, (0,0).

The transformation actually occurs by transforming or
reprojecting the origin of this set of axes to the location of

the means for both bands. The axes are then rotated so that
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one of the axes coincides with the maximum amount of variance
within the conceptual ellipse. The axis that coincides with
the maximum amount of variance within the ellipse is the first
principal component of the spectral bands and contains most of
the information available in these spectral bands. The axis
that is perpendicular to the first principal component is the
second principal component. It contains a smaller amount of
information (i.e., variance) than the first principal
component, but is still valuable. The first three principal
components in a multispectral data set such as Landsat TM will
often contain 95 to 98% of the total variance or information
content. Therefore, this is an efficient way to reduce the
dimensionality of a large multispectral data set (Jensen

1986).

2.7 SELECTIVE PRINCIPAL COMPONENTS ANALYSIS

Chavez and Kwarteng (1989) have recently introduced a
procedure Xknown as the selective principal components
analysis. This procedure compresses the data within each
portion of the electromagnetic spectrum (i.e., visible, near-
infrared, middle-infrared) into one band. The resulting data
set for Landsat TM reflective data will thus contain three
bands. Band 1 is the first principal component of the visible
bands, band 2 is the first principal component of the near-
infrared band, and band 3 is the first principal component of
the middle-infrared bands. This procedure assures that most

of the information of interest is incorporated into the first
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component from each region of the electromagnetic spectrum.
This technique also enables easier interpretation of the
compressed data as compared to a principal components analysis
utilizing a combination of all bands from all regions of the
spectrum.

In summary, much work has been done in recent years to
determine techniques that best enhance lines and edges in
remote sensor data. There are, however, dramatic differences
in the results obtained by different authors. As previously
mentioned, Rosenfeld and Kak (1976) found that the Laplacian
filters were usually better than gradient images for detecting
lines. Hord (1982), however, documented that the gradient
images were Dbetter than Laplacian filters for 1lines.
Therefore, because there 1is no clear indication in the
literature of the best technique to use for enhancing linear
features in digital remote sensor data, a large portion of the
current research was focused on the comparison of line and
edge enhancement techniques to determine which 1is best for
enhancing tank trails. 1In addition, because there have been
relatively few studies documenting the relationship of
classification accuracy as a function of remote sensor spatial
resolution and cover type, the kalance of the current research
was focused on classification accuracy as a function of sensor

spatial resolution versus ¢ var type involved.

-




METHUDS AND MATERIALS

3.1 STUDY AREAS

Pinon Canyon is located in Southeastern Colorado. It was
obtained by the U.S. Army in 1983 to conduct military training
maneuvers which commenced in 1985 and have continued to the
present. Figure 3.1 shows the location of Pinon Canyon and
the three study areas that were used in this research. Each
study area 1is approximately 45 square kilometers, and are
portions of different training areas within Pinon Canyon.

Study Area 1 is a portion of a military training site on
which military training units have not been allowed to train
since January 1989. Study Area 2 is a portion of a training
site on which maneuvers were conducted since January 1989. A
major military exercise was being conducted in this region at
the time the multispectral data set was acquired (July 13-15,
1989).

The majority of Study Area 3 covers portions of a
protected site within Pinon Canyon. Because of steep slopes
and thin soils, military training is not conducted in thkis
region. Area 3 also covers locations that are outside the
boundary of Pinon Canyon (northern part of imagery), and sites
that are available to military units for training (southern

part of imagery).
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3.2 DATA USED

The U.S. Army Cold Regions Research Engineering
Laboratory (USACRREL) has obtained several types of remoctely
sensed data for Pinon Canyon. The data used in this research
(Table 3.1) included aerial photography obtained under the
National Aerial Photography Program (NAPP) and the National
High Altitude Photography (NHAP) program. Imagery from
Geoscan's MKII Airborne Multispectral Scanner (AMSS) was also
available (Geoscar. Pty. Ltd.). It is capable of cbtaining
information in 24 spectral channels. This imagery consisted
of portions of three different flight lines flown over Pinon
Canyon on the same day. Additionally, imagery from the French
SPOT satellite and Landsat Thematic Mapper (TM) were analyzed.
A combination of SPOT Panchromatic and Landsat TM was created
using the Intensity, Hue, Saturation transformation and used
as an additional data set. Unless otherwise indicated, all
data, except the SPOT Panchromatic imagery, is hereafter
referred to as the "multispectral data set."’ In cases where
only selected data are used, they are referred to by their
specific data code designator as found on Table 3.1.

Figure 3.2 graphically shows the relationship of spectral
bands for Data Sets 4, 6, and 8. It is obvious from this

figure that the band widths of Geoscan's MKII Airborne

'Although aerial photography is not normally referred to
as "multispectral", different portions of the spectrum
comprise the information in color infrared photography. For
purposes of this research, therefore, it is included in the
"multispectral data set."
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Multispectral Scanner are very narrow and closely spaced.

Table 3.2 contains the actual band widths and ranges for each

of the 24 channels of Data Set 4.

Table 3.2. Geoscan's MKII Airborne Multispectral Scanner

(AMSS) Band Specifications.

REGION BAND NUMBER BAND WIDTH (um) RANGE (um)
VISIBLE 1 .042 .5010 - .5430
2 .067 .5495 - .6165
3 .071 .6095 - .6805
4 .024 .6810 - .7050
) .024 .7050 - .7290
NEAR IR 6 .023 .7285 - .,7515
7 .022 .8190 - .8410
8 .022 .8620 - .8840
9 .021 .9045 - .9255
10 .020 .9450 - .9650
MIDDLE IR 11 .044 2.0220 - 2.0660
12 . 044 2.0660 - 2.1100
13 .044 2.1140 - 2.1580
14 .044 2.1540 - 2.1980
15 .044 2.1980 - 2.2420
16 .044 2.2420 - 2.2860
17 .044 2.2860 - 2.3300
18 . 044 2.3300 - 2.3740
THERMAL IR 19 .530 8.3750 - 8.9050
20 .530 8.9050 - 9.4350
21 .530 9.4350 - 9.9650
22 .533 9.9535 -10.4865
23 .533 10.4835 -11.0165
24 .533 11.0135 -11.5465

Preprocessing of Data Sets 4 and 8 included fixing bad

scan lines in Data Set 4, and masking clouds and cloud shadows

out of both data sets. Additionally, a selective principal

components analysis was performed on both data sets to reduce

the dimensionality of the data (Chavez and Kwarteng,

1989).
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Ground truth information for this research consisted of
aerial photography (as discussed above). Detailed information
collected by field crews from Fort Carson, Colorado and
Colorado State University during the summer of 1989 was also
available from several LCTA plots located within each study
area (Appendix 1). This data included information such as the
amount of bare ground, gravel, rock, duff, litter and basal
cover located at each plot. Additionally, field work was
conducted by the author over many portions of the study areas
to determine major vegetative cover types and approximate

percent ground cover.

3.3 DETECTION OF OFF-ROAD VEHICULAR DAMAGE

The first specific sub-objectives defined for this
research were to evaluate several line and edge detectors,
define the optimum filter for enhancing tank trails, and
evaluate the effectiveness of different sensor systems for
detecting these trails. Berthod and Serendero (1988) describe
three types of lines that can be found in satellite imagery.
They are, (1) thick lines that have two nonparallel edges, (2)
thin lines approximately one pixel wide, and (3) "virtual" or
inferred lines. An example of the last type are small lanes
between fields, etc. Although all lines were enhanced using
various line and edge detectors, this research was primarily
focused on lines of the first and especially the second type.

A three-phase evaluation was used to determine which

enhancement techniques and data sets most effectively enhanced
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tank trails. A distinction must be made between the terms
enhancement technique and filter. Enhancement technique
refers to a method for enhancing certain features (i.e., tank
trails) such as Laplacian, high-pass and gradient, etc.
Filter, on the other hand, refers to the specific window into
which different coefficients are placed to perform a specific
function such as smoothing the data or enhancing lines or
edges. For the first phase of this evaluation process,
several filters having different coefficients for each
technique (see Appendix 3) were applied to a portion of Study
Area 2 to determine an optimal filter within each technique.
(This resulted in a combination of twenty enhancement
technique/filter combinations which are described in Section
3.3.2). Second, after the best enhancement technique/filter
combinations were identified, all twenty combinations were
applied to a portion of Study Area 1 to determine which
technique best enhanced tank trails for each of the nine data
sets that are described below. Third, after an optimum
technique was determined for each data set, the best enhanced
image from each data set was compared to the best enhanced
image from other data sets to determine which combination of
remote sensor data and enhancement technique is best able to

detect tank trails.

3.3.1 DATA USED FOR DETECTION OF TANK TRAILS
The entire multispectral data set (less the NHAP

photography that was obtained before any military tracked
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vehicles trained 1in the area), as well as the SPOT
Panchromatic data set were used for this portion of the
research. Additionally, a one-band image from each data set,
(the middle~infrared component where available), was used to
assess whether a black and white image (1 band) or color
composite image (3 bands) produced better results using these
methods. The single band from aerial photography was obtained
by using the red portion of the red, green, blue (RGB) video
digitized data which represents the photographically sensitive
near-infrared portion of the spectrum.

When the original aerial photography was video digitized,
several fine details were lost due to the screen resolution of
the monitor or video camera. Therefore, an additional data
set was created from NAPP aerial photography by enlarging the
test portion of Study Area 1 to twice the original size. This
portion was again video digitized. A one-band image was again
created from the red portion of the RGB digitized data.

A total of nine data sets were thus used from Study Area
1 to evaluate different enhancement techniques. These data
sets are similar to those found in Table 1 with the exception
that one-band and three-band data sets are now included.
These nine data sets were (ordered according to descending
spatial resolution): (1) An enlarged photograph of NAPP
¢ 2rial photography, one band, (2) Digitized NAPP photography,
one band, (3) Digitized NAPP photography, three bands, (4)
Aircraft Multispectral Scanner, one band, (5) Aircraft

Multispectral Scanner, three bands, (6) SPOT Panchromatic
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imagery, (7) SPOT/TM intensity, hue, saturation
transformation, (8) Landsat Thematic Mapper, one band, and (9)

Landsat Thematic Mapper, three bands.

3.3.2 IMAGE ENHANCEMENT TECHNIQUES

The first phase of the evaluation of enhancement
techniques and filters was conducted using a portion of Study
Area 2 of Data Set 4. This established a set of enhancement
techniques that satisfactorily enhanced tank trails. The
middle-infrared band of this imagery was used for this initial
phase of the research because of the high spectral response of
soil in this portion of the electromagnetic spectrum.

Several techniques were tested for their effectiveness in
enhancing off-road vehicular damage. These techniques
included high-pass and 1low-pass filters, edge and line
detectors such as Laplacian (weighted and =zero-weighted),
Sobel, Roberts, Mero-Vassy, Prewitt, Kirsch, and Chittineni
line and edge detectors. Directional 1line filters that
enhance lines in a particular direction were tested. A
running difference or gradient technique, and an isogradient
technique were also evaluated to determine which technique
produced optimum results. Appendix 3 contains a complete list
of techniques attempted, coefficients used, and also indicates
the best filter from each category.

The following section contains a summary from Appendix 3
of the best techniques and filters that were applied to Study

Area 1. Table 3.3 gives a summary of this information and the
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data sets to which they were applied. Each cell in this
matrix represents one processed image (i.e., a total of 180
images were created for evaluation). The characteristics of
the 20 different enhancement techniques used, as listed in
Table 3.3 are as follows:

1. Laplacian, no weight.

0 =1.75 0
-1.75 7 -1.75
0 -1.75 0

2 and 3. Laplacian, weighted.

0 -1 0 1 -2 1
-1 5 -1 -2 5 -2
0 -1 0 i =2 1

4. Sobel edge enhancement. (Image = (X% + Y?)'/2,

X Component: Y Component:
-1 0 1 1 2 1l
-2 0 2 0 0 0
-1 0 1 -1 -2 -1

5. High-pass filter, 3 x 3 window.

-1 | -1 -1
-1 9 -1
-1 [ -1 -1

6. Sobel edge enhancement, applied to the high-pass
filtered image from number 5 above. (The same X and Y
components from the regular Sobel image (above) were used for

this technique).
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Table 3.3. Matrix used in evaluating enhancement techniques for different remote sensor systems.
/

Enlarged Photo

(Digitized)

Digitized Photo

One Band

Digitized Photo

Three Bands

Aircraft MSS

One Band

Aircraft MSS
Three Bands

SPOT 10M

Panchromatic

SPOT/TM IHS

Three Bands

Landsat TM

One Band

Landsal TM

Three Bands
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7. 5 x 5 Laplacian filter, zero weight.

0 -1 -2 -1 0
-1 =2 ~4 -2 -1
-2 -4 40 -4 -2
-1 -2 ~4 -2 -1

0 -1 -2 -1 0

8. Prewitt directional filters, combined into one image by

simple addition.

North: Northeast:
1 1 1 1 1 1
1 -2 1 -1 -2 1
-1 -1 -1 -1 -1 1
East Southeast:
-1 1 1 -1 -1 1
-1 -2 1 -1 -2 1
-1 1 1 1 1 1
South Southwest:
-1 -1 -1 1 -1 -1
1 -2 1 1 -2 -1
1 1 1 1 1 1
West: Northwest
1 1 -1 1 1 1
1 -2 -1 1 -2 -1
1 1 -1 1 -1 -1




9. Mero-Vassy filter.
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(Image

= (abs(A) + abs(B))), where

abs refers to the absolute value.

A Component:

B Component:

1 1 -1 1
-1 -1 -1 1
10. Prewitt gradient filter. (Image = A + B).
A Component: B Component:
1 1 1 1 0 -1
0 0 0 1 0 -1
-1 -1 -1 1 0 -1
11. cChittineni filter (Laplacian).
-1 2 -1
2 5 2
-1 2 -1
12-19. Consider the following matrix of pixels from a
hypothetical image. Each cell in the matrix may be

represented as follows (the letters A-I are for convenience in

referring to the cells):

»
DN,y ;.; (A) { DN, (B) [DN,, ,; (C)
DN, ;., (D) |DN;, (E) |DN, ., (F)
DNi,; iy (G) [ DN, (H) |[DNy, ., (I)

12. A vertical difference (or gradient) image was obtained

by applying the following equation to each pixel in the image:
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DN. . - DN,

. i1,; (or E = B).

This procedure enhanced horizontal lines and edges in the
imagery.

13. A horizontal difference (or gradient) image was
obtained by performing the following equation to each pixel in
the image:

DN. . — DN

i,i i,j+1

(or E - F).
This procedure enhanced vertical 1lines and edges in the
imagery.

14. A NW-SE (diagonal) difference (or gradient) image was
obtained by performing the following equation to each pixel in
the image:

_ DN, ; = DN, ;, (or E - A). _

This procedure enhanced lines and edges oriented in a NE-SW
direction.

15. A NE-SW (diagonal) difference (or gradient) image was
obtained by performing the following equation to each pixel in
the image:

DN. . - DN

i) i1, o1 (or E - C).

This procedure enhanced lines and edges oriented in a NW-SE
direction.

16. Adding the vertical and horizontal gradient images
together created an image with all horizontal and vertical
lines and edges enhanced.

17. Adding the diagonal gradient images together created
an image with all diagonal lines and edges enhanced.

18. Adding all gradient images together created an image

with lines and edges in all directions enhanced.
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19. Another method of enhancing both horizontal and

vertical lines and edges is given by the following equation:
(vert? + horiz?)'/?

Where vert? is the vertical gradient image (E - B) squared,

and horiz?

is the horizontal difference image (E - F) squared.

20. In addition to the techniques outlined above, the
original imagery was used as another data set to evaluate.
This provided a way of evaluating whether or not the

enhancement techniques outlined above improved the ability to

visually detect off-road vehicular damage.

3.3.3 METHOD OF EVALUATION

The enhancement techniques outlined above were determined
in the first phase of the evaluation. The second phase of the
evaluation of enhancement techniques was conducted on a
portion of Study Area 1 to determine which enhancement
technique worked best for each particular data set. After
this was completed, the third phase of the evaluation compared
the best enhanced image from each data s2t to the best
enhanced image from other data sets.

The second phase of the evaluation determined the best
enhancement technique (for enhancing tank trails) for each
data set. This was determined by displaying two images
simultaneously that were enhanced using the different
techniques. The best of the two images were unanimously
selected by a grcup of three analysts. Criteria used in

selecting the best image was as follows: "Which image... (1)
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is easier to visually interpret, (2) has the most contrast
between the tank trail and background areas, (3) maximizes
fine detail, such as tank trails, and (4) is best for overall
interpretability?" The best image of the two was then
retained on the display screen and the next image was
displayed in place of the discarded image. These two images
were then evaluated in a similar manner. This process
continued until all twenty techniques within a particular data
set were evaluated. The image that remained after this
evaluation was identified as the best enhancement technique
for that particular data set.

The third phase of the evaluation involved comparisons of
the best enhanced image from each data set (i.e., Aircraft
Multispectral Scanner, Landsat TM, etc.) to each other. This
was accomplished using 11 individuals of varying expertise in
remote sensing and photointerpretation. These individuals had
no previous exposure to the data. The same criteria and
methodology used for evaluating imagery within a data set were
used for this comparison between data sets. This process
continued until each person had individually selected the
image that in his or her opinion was best for detecting off-
road vehicular damage. Thus, the image that the majority of
the photointerpreters selected was considered to represent the
specific sensor and technique that would be best for detecting
off-road vehicular damage. Additionally, the 11 interpreters
individually ranked all nine images from best (1) to worst

(9). Using this data, a Chi-square distribution was
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calculated for the top three images selected by the
interpreters to see if their selections were significantly

better than chance selection.

3.4 CLASSIFICATION COMPARISON OF TWO SENSORS

The last specific sub-objectives for this research were
to assess the impact of spatial resolution on classification
performance of different cover types and to assess the
interrelationships between sensor spatial resolution and
forest and grassland cover types.

Geoscan's MKII Airborne Multispectral Scanner and Landsat
TM were used in a comparison of classification accuracy
performance. The LCTA plots that were located within the
three study areas were divided into training plots and test
plots. Plots having the same major vegetative cover types and
approximately the same percent ground cover were identified,
grouped together, and numbered. For each category of cover
type and percent ground cover, odd numbered plots were used
for test areas and even numbered plots were used for training
areas. Appendix 1 lists LCTA plot information, identifying

the training plots and test plots.

3.4.1 USE OF NORMALIZED DIFFERENCE VEGETATION INDEX

A Normalized Difference Vegetation Index (NDVI) was
i .itially considered for inclusion in both data sets to aid in
the classification of different vegetative cover types.
However, other studies (Huete and Jackson 1987, Tueller 1987)

have indicated that NDVI underestimates vegetation on light-
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colored soil and overestimates vegetation on dark-colored
soil.

To determine whether NDVI would aid in classifying
vegetation at Pinon Canyon, Data Set 4 (Geoscan's MKII
Airborne Multispectral Scanner) from Study Area 1 was first
classified (unsupervised classification) using the three
principal component bands and the NDVI band. A second data
set was then created using only the three principal component
bands. This new data set was classified in a similar manner
and compared to the first classification. A test area was
celected from an location that consisted of very light-colored
background soil, with 10-20% vegetative cover uniformly
distributed throughout the test area. This test area
contained 172 pixels. The classification using the NDVI band
classified 50 pixels as vegetation and 122 pixels as
roads/exposed soil. The classification without NDVI, however,
classified 101 pixels as vegetation and 71 pixels as
roads/exposed soil. The estimate of vegetation present in the
classification using the NDVI band was substantially lower
than was actually present in this 1location. The
classification without the NDVI band more accurately reflected
the amount of vegetation present in this test area.

Another test area was selected from a location that
consisted of very dark shale with little or no vegetation
present. This test area contained 242 pixels. The
classification wusing the NDVI classified 168 pixels as

vegetation and 104 pixels as dark shale. The classification
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without NDVI, however, classified 2 pixels as vegetation and
240 pixels as dark shale. The estimate of vegetation present
in the classification using the NDVI band was substantially
higher than was actually present in this 1location. The
classification without the NDVI band more accurately reflected
the amount of vegetation present in this test area.

A visual, qualitative evaluation of the two
classifications was also done in these test areas. In
locations that contained light-colored soil, the vegetation
present as indicated by the classification using the NDVI band
was much lower than was actually present. The vegetation
present as indicated by the classification without the NDVI
band, however, was much closer to the amount of vegetation
actually present in that location.

Additionally, locations that contained the dark-colored
shale with little or no vegetation were visually evaluated.
The classification using the NDVI band indicated that there
was an abundance of vegetation present in this location, where
in fact, little or no vegetation was present.

These findings are consistent with the previous studies
by Huete and Jackson (1987) and Tueller (1987). Therefore, to
more accurately classify vegetation at Pinon Canyon, the NDVI

channel was not used in the classification procedure.

3.4.2 CLASSTFICATTON PROCEDURE
Because of the heterogeneity of this rangeland

environment, an unsupervised classification technique was used
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for classification. A mono-cluster blocks technique was used
wherein small training blocks were extracted from each study
area and mosaicked together (Fleming and Hoffer, 1977). These
training blocks were carefully selected to ensure that each
LCTA training plot was contained within at least one training
block. Additionally, other training blocks were chosen to
ensure that the maximum amount of spectral variability was
contained in the mosaicked image. As much as possible, the
same locations were chosen as training blocks in both data
sets. Using the mosaicked images and an unsupervised
statistical clustering algorithm within the ERDAS image
processing system (ERDAS, Inc., 1990), a set of training
signatures were developed for Data Set 8 and for each of the
three study areas for Data Set 4.

After the training signatures were developed, each study
area for both data sets was classified using the appropriate
training data. Using ancillary information such as aerial
photography, LCTA training plot information, and personal
observation and on-site photographs taken by the author, the
initial classes in the classified image were combined into

like informational classes.

3.4.3 EVALUATION OF CLASSIFICATION ACCURACY

Classification accuracy for each data set was evaluated
and compared using two methods. First, two sets of
contingency tables of classification performance for the test

areas in each data set were constructed. The first set of
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contingency tables contained classification information about
each informational class separately. The second set of
contingency tables contained classification information about
general cover types (i.e., forest, roads/exposed soil, and
grasses). Overall classification accuracy was then calculated
for each data set and for both types of contingency tables.
The second approach used to compare classification accuracy
was to determine if the classification accuracies of the two
sensors were significantly different. To accomplish this, a
set of polygons were digitized on each data set that
corresponded to each test area (see Appendix 1l). These test
areas comprised half of the LCTA plots, as well as locations
visited by the author in the field. These polygon files were
then converted into geographic information system (GIS) files.
Using the SUMMARY command within ERDAS, a cross-tabulation of
pixels was developed to compare the polygon GIS files (i.e.,
"ground truth") and the classified GIS files.

An evaluation of overall classification accuracy of the
two data sets was conducted by comparing the accuracies of the
test areas on one data set to the accuracies of the same
locations on the other data set. The percent of correctly
classified pixels for each test area of the Landsat TM data
was subtracted from the percent of correctly classified pixels
for the same area in the Airborne Scanner data. Additionally,
classification accuracies for the general cover types
(forested areas, roads/exposed soil and rangeland grasses)

were evaluated and compared. To accomplish this comparison,
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the differcences in classification accuracy were tested for
normality.

The Kolmogorov-Smirnov goodness-of-fit test for normality
(Zar 1984) was made for the differences in classification
accuracy between the two data sets. Normality of the data was
tested first for all categories, and then for the general
cover types as described above. Upon completing this test, a
null hypothesis that there was no difference between the two
overall classification accuracies was tested using the
Student'’s t-distribution. The above procedure was then
followed to test for significant differences in classification
accuracy between the general cover types (i.e., forest,
roads/exposed soil and rangeland grasses). A similar
hypothesis stated that there was no difference in

classification accuracy between these general cover types.

3.4.4 INTERRELATIONSHIPS OF SENSOR SPATIAL RESOLUTION

To assess the interrelationships of sensor spatial
resolution and forest and rangeland cover types, a portion of
the Airborne Scanner and Landsat TM Data Sets were extracted
from the original imagery. These sub-areas were converted
into a format that was compatible with the MICROPIPS.EGA image
processing system (MICROPIPS.EGA, The Telesys Group, Inc.)
using a program called ERD2MP (Lee and Lee, 1990). A cross-
sectional view of digital values for each pixel along a row of

pixels, or scan line, was produced using MICROPIPS.EGA.
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The result of this procedure was a set of figures that
graphically depicted the variability in spectral response as
a function of ground cover type and sensor spatial resolution.
These figures summarized the differences in spectral
variability that occurred between ground cover types, and
helped explain differences in classification accuracy between
sensors having different spatial resolution. The figures
contain information from each portion of the electromagnetic
spectrum (i.e., visible, near infrared and middle infrared).
Scan line data from the Airborne Scanner and Landsat TM data
(i.e., Data Sets 4 and 8) were combined onto the same page for

visual comparison between sensor systems.




RESULTS AND DISCUSSION

4.1 DETECTION OF OFF-ROAD VEHICULAR DAMAGE

As previously mentioned in cChapter 3, a three-phase
evaluation was conducted to determine which enhancenment
techniques and data sets most effectively enhanced tank
trails. Phase one determined twenty enhancement
technique/filter combinations that were applied to Study Area
1 (see Section 3.3.2).

During phase two of the evaluation, these twenty
combinations were applied to nine data sets from a portion of
Study Area 1. This resulted in 180 images in which tank
trails were enhanced. Using three individuals and the
evaluation criteria previously outlined, the enhanced images
were compared within each data set. That is, for a particular
data set, all twenty enhanced images were compared to
determine the technigque that best enhanced that particular
type of remote sensor data. Based on these evaluations, the
best technique for each data set is indicated by an asterisk
on Table 4.1. Figures 4.1 through 4.9 are reproductions of
the images selected as the best enhanced image for each data
set.

In every case, the techniques that best enhanced tank

trails utilized weighted Laplacian or 3 x 3 high-pass filters.
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Figure 4.1. 1Image selected as the best enhanced image from
the enlarged NAPP photography (digitized). The Laplacian
(Filter 2) filter was used for this enhancement.

Figure 4.2. 1Image selected as the best enhanced image from
the digitized NAPP photography, one band. The Laplacian
(Filter 3) filter was used for this enhancement.
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Figure 4.3. Image selected as the best enhanced image from
the digitized NAPP photography, three bands. The Laplacian
(Filter 2) filter was used for this enhancement.

Figure 4.4. 1Image selected as the best enhanced image from
the Airborne Multispectral Scanner, one band. The Laplacian
(Filter 2) filter was used for this enhancement.
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Figure 4.5 Image selected as the best enhanced imagc from
the Airborne Multispectral Scanner, three bands. The
Laplacian (Filter 2) filter was used for this enhancement.

Figure 4.6. Image selected as the best enhanced image from
the SPOT Panchromatic data. The high-pass (3 x 3) filter was
used for this enhancement.
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Figure 4.7. Image selected as the best enhanced image from
the SPOT/TM intensity, hue, saturation transformation data.
The high-pass (3 x 3) filter was used for this enhancement.

Figure 4.8. Image selected as the best enhanced image from
Landsat Thematic Mapper, one band. The high-pass (3 x 3)
filter was used for this enhancement.
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Figure 4.9. Image selected as the best enhanced image from
Landsat Thematic Mapper, three bands. The Laplacian (Filter
2) filter was used for this enhancement.
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Of the Laplacian filters, the filter that was selected as the

most effective enhancement technique for most data sets was:

0| -1 0
-1 5 -1
0| -1 0

The other weighted Laplacian filter that best enhanced the

one-band image of Data Set 5 was:

1] -2 1
-2 5 ~2
1 |-2 1l

The filter that best enhanced tank trails in the other data

sets was the 3 x 3 high-pass filter. This filter was:

-1} -1 ~1
-1 9 -1
-1 ]-1 -1

The third phase of the evaluation compared the best
enhanced image from each data set to like images in other data
sets. Using the criteria previously outlined in Section
3.3.3, 11 individuals evaluated these images for their ability
to enhance tank trails. Since there was a time delay between
the ncquisition dates of Data Set 1 (NAPP photography) and the
rest of the imagery, interpreters were asked to compare just
t. »se tank trails that were visibly present in both images.
The images were ranked from best (1) to worst (9). The

results of this evaluation are summarized in Table 4.2.
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When the rank order of the images are summed down each
column in Table 4.2, a total score for each data set is
obtained. Low total scores represent data sets in which tank
trails were easily detected. High total scores represent data
sets in which tank trails were not easily detected. of
particular interest is the column of 1's down the middle of
the table, and the lowest possible total score of 11. Every
interpreter selected Geoscan's MKII Airborne Multispectral
Scanner using three bands as the best image for enhancing tank
trails. Several individuals selected the one-band image of
the same sensor as the second best image for enhancing tank
trails. It received a total score of 25.

It 1is interesting to note that <the enlarged NAPP
photography and the SPOT Panchromatic data sets received very
similar scores of 37 and 40, respectively. This indicates
that the ability of these two data sets to be enhanced for the
detection of tank trails is approximately the same. Based on
the number of pixels on the display screen that occurred along
a known ground distance, the spatial resoclution of the
digitized enlarged NAPP photography was found to be
approximately 5 meters. Surprisingly, the 10 meter spatial
resolution SPOT Panchromatic data performed just as well as
the 5 meter spatial resolution digitized enlarged NAPP
photography. This is thought to be, in part, due to the
"graininess" of the photography brought about by the
photographic enlargement process. Another possibility may be

the higher contrast present in the SPOT Panchromatic data
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versus the digitized enlarged NAPP photography enabled easier
identification of the tank trails.

The regular NAPP photography and the SPOT/TM intensity,
hue, saturation transformation data sets also received similar
scores. Again, this indicates that these data sets have
similar capabilities in regard to enhancing tank trails.

On the bottom end of the scale, the Landsat TM Data Sets
were very poor for detecting tank trails. They received
scores of 88 and 99 for the three-band and one-band image,
respectively. This is undoubtedly due to the larger 25 meter
spatial resolution of this data.

When the original photography was video digitized, many
fine details were lost. This was primarily a result of the
type of equipment used for this process. The camera and video
screen used were unable to capture many of the smaller tank
trails that were clearly visible on the aerial photography.
A flatbed or rotating drum scanner used for scanning positive
transparencies of aerial photography would have gndoubtedly
produced an image of greater detail (Jensen 1986). This would
have ensured that most of the fine tank trails would have been
included in the digital imagery.

To evaluate the responses provided by the interpreters on
the data sets used, a contingency table was created with each
image listed across the top of the table and the possible
ranking of these images down the left side (Table 4.3). The
numbers in the matrix represent the number of interpreters

that selected that particular ranking for each image.
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Table 4.3. Performance ranking of images based on responses
from interpreters.

IMAGE?

1 2 3 4 5 6 7 8 9

1 0 0 0 0 11 0 0 0 0

2 2 0 0 8 0 1 0 0 0
R |3 3 0 0 3 0 5 0 0 0
A |4 6 0 1 0 0 3 1 0 0
N |5 0 3 1 0 0 1 5 0 0
K |6 0 4 6 0 0 1 0 0 0
7 0 4 2 0 0 0 5 0 0

8 0 0 0 0 0 0 0 0 11

9 0 0 0 0 0 0 0 11 0

It is obvious from Table 4.3 that an unusually high
number of individuals ranked Images 5 and 4 as first and
second best, respectively. Based on the information for image
5, a 95% confidence interval for the true percentage of
individuals that would select this enhanced image as the best
for detecting tank trails is (71.96 - 100). That is, 95 out
of 100 times, 72% or more of the interpreters would select
this image as the best enhanced image.

To further test the significance of interpreter
responses, a Chi-square distribution was calculated for the

interpreter's selection of the top three images to determine

’Images are as follows: 1) Large photo (digitized), one
band, 2) Digitized photo, one band, 3) Digitized photo, three
bands, 4) Aircraft AMSS, one band, 5) Aircraft AMSS, three
bands, 6) SPOT 10M panchromatic, 7) SPOT/TM intensity, hue,
saturation, three bands, 8) Landsat TM, one band, 9) Landsat
TM, three bands.
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whether the observed values were significantly different from
those expected strictly by chance. Since there were only four
images selected by the interpreters as the top three choices,
two contingency tables were constructed with three rows and
four columns each. Table 4.4 represents information from
cbserved interpreter responses (extracted from Table 4.3).

Table 4.5 represents expected frequencies of interpreter

responses as determined strictly by chance. These were
calculated from values in Table 4.4. Each expected cell value
is equal to the row total multiplied by the column total, and
divided by the grand total.

Table 4.4. Observed interpreter responses classified by image
and ranking.

IMAGE
RANK 1 4 5 6 Row Total
1 1 1 ]

1 0 0 11 0 11

2 2 8 0 1 11

3 3 3 0 5 11

Column 5 11 11 6 Grand
Total Total=33

Table 4.5. Expected frequencies of interpreter responses if
image and ranking were unrelated.
IMAGE
RANK 1 4 5 6 ]
1.67 3.67 3.67 2.00
1.67 3.67 3.67 2.00
1.67 3.67 3.67 2.00
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A Chi-square goodness-of-fit test measures significance
between observed values and those expected strictly by chance.
The test statistic for the Chi-square distribution is given by

the following formula:

X2 = 2: (observed cell count - expected cell count)?
(expected cell count)

The null hypothesis (Ho) for this evaluation is that the
differences reflected between the observed and expected
frequencies in the interpreter's responses of image ranking
are attributed to chance occurrence. The alternative
hypothesis (H,) is that the differences in the two values are
not occurring strictly by chance. This would imply a direct
relationship between an image and the ranking it received from
the interpreters. The null hypothesis is rejected when the
calculated value for Chi-square is greater than or equal to
the critical value for Chi-square at the correct number of
degrees of freedom. The number used for decrees of freedom
(DF) is based on the size of the contingency table. It is
determined according to the following equation:

DF = (Number of rows - 1) (Number of columns - 1)
Solving for DF in the equation above produces 6 degrees of
freedom for use in the Chi-square calculations.

Following the form of the Chi-Square equation above, the

Chi-square statistic becomes:
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X2 = (0 -1.67)% + (0 - 3.67)° L. (11 - 3.67)2

1.67 3.67 3.67

+

(0 - 2.00)2 + (2 - 1.67)°2 N (8 - 3.67)°? . o - 3.67)°%
2.00 1.67 3.67 3.67

+

(1L - 2.00)32 . (3 - 1.67)% . (3 - 3.67)2
2.00 1.67 3.67

(0 - 3.67)2 . A5 - 2.00)°%
3.67 2.00

= 37.38

This value exceeds the Chi-square critical value of
22.458 at @ = .001. Therefore, we reject the null hypothesis
in favor of the alternative. That is, the differences between
the observed and expected frequencies in the interpreter's
responses of image ranking are not attributable to chance
occurrence (a = .001).

Since these differences are not attributable to chance,
this indicates that there is indeed a relationship between a
certain image and the number of interpreter's that selected it
for a particular ranking. Thus, the selection of Images 5 and
4 (from Geoscan's MKII Airborne Multispectral Scanner) as the
first and second best enhanced images, respectively, is not

attributable to chance occurrence (a = .001).

4.1.1 AERIAL PHOTOGRAPHY AND MULTISPECTRAL SCANNER COMPARISON

Since Image 5 (Figure 4.5) was selected as the best
enhanced image by every interpreter 1in this research, a
comparison was conducted between the actual aerial photography
and Image 5 to determine the number of tank trails that were

not being recorded, if any, by the multispectral scanner
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(Image 5). The area covered by Image 5 was determined and
identified on the NAPP aerial photography. The tank trails
present in the aerial photography were carefully identified
and marked to ensure that each trail was counted only once.
This information was assumed to be a reference base from which
comparison could be made with Image 5.

There were approxXximately three months after the aerial
photography was acquired that U.S. Army units were allowed to
train in this area. During this time, 2 new tank trails were
made that are easily detected in Image 5. Therefore, less
obvious tank trails could easily have been made, but the
actual number is probably very small (5 to 10). Therefore, if
all tank trails present in the aerial photography were visible
in Image 5, and tank trails were made after the photography
was obtained that are visible in Image 5, the total number of
tank trails visible in Image 5 could conceivably exceed the
number determined from aerial photography.

The number c<¢f tank trails visible in Image 5 was
determined by placing a clear sheet of plastic over a computer
display screen that had this image displayed. The visible
trails were then carefully identified and marked to ensure
each trail was counted only once. During these procedures,
only the number of tank trails were considered, not the size
of those trails.

There were 105 tank trails visible in Image 5. This
includes all tank trails that may have been made during this

three month time delay. The number of tank trails visible in
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the aerial photography was 149. Therefore, considering that
this estimate may be slightly high, 65-70% of the total number
of tank trails visible in aerial photography were also visible
in Image 5 (three band image created by Geoscan's MKII
Airborne Multispectral Scanner).

From this information, it 1is obvious that although
Geoscan's MKII Airborne Multispectral Scanner was selected as
the best image for enhancing tank trails, a certain amount of
detail was lost by capturing the information digitally rather
than photographically. Most of this information, however, was
the smaller trails that had been travelled on a very limited
number of times (perhaps only once). Land managers must
consider this loss of detail when using digital information to
assess off-road vehicular damage.

A more quantitative approach in determining the actual
amount of tank trail information recorded by a multispectral
scanner could also be defined. Such an approach could be
pursued as the subject of further research. First, the tank
trails present in aerial photography could be digitized into
a raster (grid cell) geographic information system. A binary
map would be produced. A value of 1 would be assigned to
every cell identified as tank trail, and a 0 would be assigned
to «v2rything else. The computer output would be a list of
tk - total number of cells that included a tank trail, and
tiiose that did not.

The multispectral scanner imagery would be reclassified

into a binary map. Again, a value of 1 would represent a tank
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trail, and a value of 0 would represent everything else. The
output would be the same as above. That is, a list of the
total number of cells and their content would be provided. 1In
this way, a direct comparison could be made between the two
data sets of the total number of cells that contained tank

trails.

4.1.2 RELATIVE COST COMPARISONS

A relative cost in terms of time required for the
processing of the different enhancement techniques is provided
for future users. First, any enhancement technique will take
longer when applied to all bands in an image rather than just
one of the bands. In the case of simple filtering operations
such as directional line filters, high-pass, low-pass or the
Laplacian filters, the time required increases proportiocnally
with the number of bands subjected to the filtering process.
These simple filtering operations are the most time efficient
of all techniques attempted in this research, and appear to be
the most effective.

Enhancement techniques that required a rotation of the
filter by 90 degrees to create two images and the subsequent
combining of these images in some manner was the next most
time-consuming type of enhancement technique attempted.
Examples of this type of technique were the Sobel, Mero-Vassy,
and Prewitt operators. For the data used in this study, these
rotational types of enhancement technique did not perform

well.
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The running difference or gradient type of enhancement
techniques were the next most time-consuming tachnique. This
technique required the creation of two images offset from each
other by one pixel, and then subtracting one image from the
other. This enhanced lines and edges in one direction only.
The procedure was then repeated by creating two images offset
from each other by one pixel in another direction and
subtracting these two images. This procedure was satisfactory
for lines 1in a particular orientation, but to obtain
information about 1lines in other directions, these images
needed to added tcgether. Additionally, without a priori
knowledge of where the tank trails were, it became difficult
to identify tank trails as opposed to natural variations in
topography and vegetation.

The isotropic gradient image suggested by Hord (1982) was
the next most time-consuming enhancement technigque. Rather
than simply adding two gradient images together, the images
were squared, added together, and the square root was taken.
This produced slightly better results than simply adding the
gradient images together, but required more time.

The most time-consuming enhancement technique of all
those attempted was the combined directional 1line filter
image. This technique combined the 8 images created with the
directional line filters into ore image using simple addition.
This image enhanced major and secondary roads very well, but

many of the fine tank trails were not discernarkle.
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In summary, simple filtering operations such as the
Laplacian filters were the most time efficient enhancement
technique. The Laplacian filters also provided the best
results of all techniques attempted 1in this research.
Rotational filters (Sobel, Mero-Vassy, etc.) were the next
most time-consuming technique and did not perform well for
these data sets. Gradient and isotropic gradient images were
the next most time-consuming techniques, respectively. They
enhanced linear features rather well, but without a priori
knowledge of where the tank trails were, it was difficult to
distinguish between trails and natural variations 1in
topography. The image that combined all directional 1line
filters into one image was the next most costly technique.
Major roads were enhanced, but small features were not
discernable. Thus, the most effective was also, fortuitously,

the most time efficient to utilize.

4.2 CLASSIFICATION COMPARISON OF TWO SENSORS

Portions of Pinon Canyon were classified using Geoscan's
MKII Airborne Multispectral Scanner (referred to as Airborne
Scanner in this section) with 6.5 meter spatial resolution and
Landsat TM with 25 meter spatial resolution to compare
classification accuracies between the two sensors.

Definitions for the informational classes in subsequent
tables are as follows. Appendix 2 contains a partial list of
vey~tation found at Pinon Canyon and the abbreviations used in

this research.




BOGR/HIJA 10-20% COVER

BOGR/AGSM/HIJA 20-30%
COVER
BOGR/SPAI/HIJA 30-40%
COVER
BOGR/SPAI/HIJA 40%+
COVER
DARK SHALE 0-5%

VEGETAT1VE COVER

SHALE-CLAY WITH
AGSM/BOGR 20-30% COVER
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Blue grama (Bouteloua
gracilis) and Galleta

(Hilaria jamesii),
approximately 10-20% ground
cover.

Blue grama
gracilis),
wheatgrass
smithii) and Galleta
(Hilaria Jamesii),
approximately 20-30% ground
cover.

(Bouteloua
Western
(Agropyron

Blue grama (Boutelcua
gracilis), Alkali sacaton
(Sporobolus airoides) and
Galleta (Hilaria_ Jamesii),

approximately 30-40% ground

cover. Although occurring
in many small clumps, Alkali
sacaton tends to increase
overall percent ground
cover.

Same as above. However, the
small clumps of Alkali
sacaton are larger, closer

together and much more lush.

Predominantly occurring in
small basins near shale
outcrops. very heavy
concentration of shale with
little or no vegetation.

Spectral response dominated

by Shale-clay, similar to
dark shale above. However,
smaller amounts of shale

mixed with clay allow mostly
Western wheatgrass
(Agropyron smithii) and Blue
grama (Boutelocua gracilis)
to be dominant species.




OPIM/BOGR/HIJA 20-30%
COVER

JUMO/PIED/BOER 5-20%

CROWN CLOSURE

JUMO/PIED/BOER 20-30%
CROWN CLOSURE

JUMO/PIED/BOER 30-50%
CROWN CLOSURE

ROADS/EXPOSED SOIL O-

10% VEGETATIVE COVER

SEMI-RIPARTIAN
VEGETATION (TAPE)
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Very distinctive plant
community comprised of Tree

cholla (Opuntia imbricata),

Blue grama (Bouteloua
gracilis) and Galleta
(Hilaria jamesii). Tree

cholla is the dominant
overstory species.

Dominant species 1s One-
seeded Jjuniper (Juniperus
monosperma) with occasional
individuals of Pinyon pine
(Pinus edulis). Open canopy
areas are comprised of Black
grama (Bouteloua eriopoda)
with lesser amounts of Blue
grama (Bouteloua gracilis)

and Galleta (Hilaria
jamesii).

Same as above. However, the
overstory of One-seeded
juniper and occasional

Pinyon pine has a crown
closure of approximately 20-
30%.

Same as above. However the
crown closure is
approximately 30-50%.

Predominantly roads, but
also includes areas of very
sparse vegetation on

limestone ridges or prairie
dog towns.

Vegetation predominantly in
study area 3 below check
dams in the arroyos. The
slow trickle of groundwater
from the arroyo ponds allows
vegetation such as Five-
stamen tamarix (Tamarix
pentandra) and other grasses
to survive.
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ANNUALS BY DISTURBED Annual vegetation caused by

AREAS ground disturbance of tanks
and other vehicles.
Predominant species 1is the
Russian thistle (Salsola
iberica).

The three study areas from the Airborne Scanner and
Landsat TM were classified using an unsupervised maximum
likelihood classification algorithm. Tables 4.6 through 4.9
indicate the spectral classes for each data set and study area
and the informational classes into which they were classified.

Table 4.6. Spectral and informational classes for the
Airborne Scanner, Study Area 1.

CLASS NUMBER SPECTRAL CIASSES INFORMATIONAL CLASS"

1 7, 14, 15, 23, 24 BOGR/HIJA 10-20% COVER

2 13 OPIM/BOGR/HIJA 20-30% CVR

3 1, 2, 3, 4, 6, 9, BOGR/AGSM/HIJA 20-30% CVR

16, 18, 28

4 8, 17, 19, 20 BOGR/SPAI/HIJA 30-40% CVR

5 25 BOGR/SPAI/HIJA 40%+ COVER

6 21, 22 DARK SHALE 0-5% VEGETATION

7 26, 27 SHALE-CLAY AGSM/BOGR 20~
30% COVER

8 5, 10, 11, 12 ROADS/EXPOSED SOIL 0-10%
COVER

9 29 BACKGROUND

A partial list of vegetation cover types found at Pinon
Canyon and abbreviations used is found in Appendix 2.




Table 4.7.

Spectral and

Airborne Scanner,
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informational classes for the
Study Area 2.

CLASS NUMBER

SPECTRAL CLASSES

INFORMATIONAI CILASS

1 1, 2, 7, 9, 13 BOGR/HIJA 10-20% COVER

2 4, 6, 14, 19 BOGR/AGSM/HIJA 20-30% CVK

3 5, 20, 22 BOGR/SPAI/HIJA 30-40% CVR

4 8, 21 ANNUALS BY DISTURBED AREAS

5 12 BOGR/SPAI/HIJA 40%+ COVER

6 15 ROADS/EXPOSED SOIL 0~-10%

COVER
7 3, 10, 11, 16, OPIM/BOGR/HIJA/JUMO
17, 18 20-30% COVER

Table 4.8. Spectral and informational classes for the

Airborne Scanner,

Study Area 3.

CLASS NUMBER

SPECTRAL CLASSES

1

1,
10,
22,
4,
20,
29,
5,
13,

26
33

31
23,

36

2, 3,
11,
30

9, 14,

24,

34
12

17

32,

6,
15,

25,

35

16,

7’ 8!
18, 21,
19,
27, 28,

INFORMATIONAL CILASS

BOGR/HIJA 10-20% COVER

BOGR/AGSM/HIJA 20-30% CVR

SEMI-RIPARIAN VEG. (TAPE)
ROADS/EXPOSED SOIL 0-10%
COVER

BOGR/SPAI/HIJA 30-40% CVR
JUMO/PIED/BOER 5-20%

CROWN CLOSURE
JUMO/PIED/BOER 20-30%

CROWN CLOSURE
JUMO/PIED/BOER 30-50%

CROWN CLOSURE
BACKGROUND
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Table 4.9. Spectral and informational classes for Landsat TM,
Study Areas 1-3.

CLASS NUMBER SPECTRAL CLASSES INFORMATIONAL CLASS
1 1, 8, 12, 19 BOGR/HIJA 10-20% COVER
2 6, 7, 9, 11, 15, BOGR/AGSM/HIJA 20-30%

20, 21, 30 COVER

3 10, 14, 16, 28 BOGR/SPAI/HIJA  30-40%
COVER

4 17, 23, 26 BOGR/SPAI/HIJA 40%+ COVER

5 22 DARK SHALE 0-5% VEG COVER

6 24 SHALE-CLAY AGSM/BOGR 20~
30% COVER

7 5, 13, 18 OPIM/BOGR/HIJA  20-30%
COVER

8 4 JUMO/PIED/BOER 5-20%
CROWN CLOSURE

9 27, 29 JUMO/PIED/BOER 20-30%
CROWN CLOSURE

10 3, 31 JUMO/PIED/BOER  30-50%
CROWN CLOSURE

11 25 ROADS/EXPOSED SOIL 0-10%
“OVER

12 32 BACKGROUND

4.2.2 CLASSIFICATION COMPARISON

Overall classification accuracy for a contingency table
is determined by summing the number of correctly classified
pixels for each category (the major diagonal from top left to
lower right) and dividing this number by the total number of
pixels or samples used (Story and Congalton, 198¢;. For an
overall classification comparison, test area information from
the three study areas from the Airborne Scanner were combined
into one contingency table (Table 4.10). Table 4.11 is a
contingency table depicting classification performance of the
Landsat TM data. The numbers in the cells of these two tables

represent the number of pixels that were classified into a
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certain category. Only those informational classes that were
coincident in both data sets were used in the classification
comparison (due to differences in spatial resolution and the
very limited extent of their occurrence, two informational
classes were not identified using Landsat TM, namely the
annual vegetation along disturbed areas, and the semi-riparian
vegetation found downslope from the arroyo dams).

Overall classification accuracy for the Airborne Scanner
and Landsat TM (individual cover types) was calculated from
Tables 4.10 and 4.11 as follows:

Airborne Scanner (from Table 4.10):

Sum of the major diagonal = 5153
Total number of pixels (samples) = 6883

Overall classification accuracy = 5153/6883 = 74.9%
Landsat TM (from Table 4.11):

Sum of the major diagonal = 2944

Total number of pixels (samples) = 3751

Overall classification accuracy = 2944/3751 = 78.2%

In addition, contingency tables were created that
combined the information shown in Tables 4.10 and 4.11 into
general cover type groups for the Airborne Scanner and Landsat
TM (Tables 4.12 and 4.13, respectively). These 1included
forested areas, roads/exposed soil, grassland classes and
other (other <classes 1include dark shale, annuals along
disturbed areas and semi-riparian vegetation).

Overall classification accuracies for the Airborne
Scanner and Landsat TM (combining general cover types) were

calculated from Tables 4.12 and 4.13 as follows:
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Table 4.12. Contingency table for combined general cover
types for classification of the Airborne Scanner (all study
o areas combined).
Forested Roads/Exp. Grassland Others Row
Areas Soil Areas Totals
Forested
Areas 909 2 570 31 1512
Roads/Exp
Seil 3 212 16 19 250
Grassland
Areas 27 39 3631 67 3764
Others 0 25 235 1097 1357
Colummn
Totals 939 278 4452 1214 6883

Table 4.13.

Contingency table for combined general cover
types for classification of Landsat TM.

forested Roads/Exp. Grassland Others Row
Areas Soil Areas - Totals
Forested
Areas 738 0 52 1 791
Roads/Exp
Soil 63 380 189 0 632
Grassland
Areas 19 6 2263 0 2288
Others 0 0 4 36 40
Colum
Totals 820 386 2508 37 3751
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Airborne Scanner (from Table 4.12):

Sum of the major diagonal = 5849
Total number of pixels (samples) = 6883

Ooverall classification accuracy = 5849/6883 = 85.0%
Landsat TM (from Table 4.13):

Sum of the major diagonal = 3417

Total number of pixels (samples) = 3751

Overall classification accuracy = 3417/3751 = 91.1%

When general cover types were combined in Tables 4.12 and
4.13, overall classification accuracy was improved
approximately 10% and 12% for the Airborne Scanner and Landsat
TM, respectively. This indicates that much of the error that
was occurring in Tables 4.10 and 4.11 was due to
misclassification between similar cover types (i.e., 20-30%
grass cover was classified as 10-20% grass cover, etc.).

The results of overall classification, as calculated from
data in Tables 4.10 through 4.13, are good classification
results. Classification accuracies of 75 to 80% for
individual classes such as those identified in this research
is good. Additionally, according to Anderson et al. (U.S.
Department of the Interior, 1976), the information contained
within the general cover type groups used in this research are
considered to be Level I land use and land cover categories.
The minimum level of acceptable classification accuracy for
Level I land use and land cover categories using satellite
remote sensor data should be at least 85% (U.S. Department of
the Interior, 1976). According to the the above information

for the general cover type groups, this goal has been met.
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It is also important to note that in both cases, Landsat
T produced a higher overall classification accuracy than
Geoscan's MKII Airborne Multispectral Scanner. This is, in
part, due to the spatial resolution differences between the
sensors. A detailed discussion concerning differences in
classification accuracy as a function of sensor spatial
resolution and cover type, along with any significant
differences in classification accuracy is deferred until
later.

To determine whether there were significant differences
in classification accuracy between the two data sets, polygons
were digitized on each data set that corresponded to the
different test areas. The percent of correctly classified
pixels 1in Landsat TM was subtracted from the percent of
correctly classified pixels for the same area in the Airborne
Scanner. Thus, a resulting value of 0 represents a test area
that was classified with the same percent accuracy for both
sensors. Similarly, a positive value represents a test area
in which the Airborne Scanner produced a higher percent of
correctly classified pixels than did Landsat TM. A negative
value represents a test area where Landsat TM had a higher
percent of correctly classified pixels than did the Airborne
Scanner. The results of this comparison are summarized in

Table 4.14.
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Table 4.14. Differences in percent of correctly classified
pixels for test areas in the Airborne Scanner and Landsat TM.

FORESTED AREAS ROADS/EXPOSED SOIL GRASSLAND AREAS
-50.83 28.79 33.03 - 7.73 -11.18
-57.83 11.46 22.41 11.23 -12.35
-24.72 30.93 24.14 - 3.98 9.70
-22.44 19.05 35.10 6.85 - 5.72
-25.54 10.75 7.46 6.67
-27.93 19.45 -13.51 10.91
- 8.28 41.77 1.46 0.21

2.82 3.96
- 0.43
MEAN = -31.08 MEAN = 25.17 MEAN = 0.37
STD DEV = 17.23 STD DEV = 9.78 STD DEV = 8.21

OVERALL STATISTICS:
MEAN = 1.88
STANDARD DLVIATION = 22.64

The student's t-distribution was used to test for
significant differences between the classification accuracies
of the Airborne Scanner and Landsat TM. One of the
assumptions that must be met before using the student's t-
distribution is that the data be normally distributed. To
test the data in Table 4.14 for normality, the Kolmogorov-
Smirnov goodness-of-fit test for normality was used. The
tabular data required to perform this test and the subsequent
calculations are in Appendix 4. The result was that the data
in Table 4.14 were normally distributed, both collectively and

for the individual general cover types.

4.2.2 TESTS FOR DIFFERENCES IN CLASSIFICATION ACCURACY
Since the above data are normally distributed, a

student's t-distribution was used to test for significant
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differences between classification accuracies. For these
| tests, the following test procedures were used:

Step 1: Hi: p =20 (That is, the null
hypothesis was that the true
mean of the differences
between classification

e accuracies of the two
sensors was zero, implying
no significant difference in
classification accuracy
between the two sensors for
the cover types involved).

Step 2: H,: u # 0 (That is, the true mean of
the differences between
classification accuracies of
the two sensors was not
zero, implying that there
was a significant difference
between the two sensors for
the cover types involved).

Step 3: a = .01 (That 1s, the data were
tested at the a = .01 level
of significance).

(X - 0)

Step 4: Test statistic used: £ = = Y)
s/ Vvn

xi
i

Where sample mean

)]
i

sample standard deviation

and n number of observations

Step 5: The rejection region was identified.

(That is, H, was rejected if
l'tl 2 t, ., where t, ., is the
critical wvalue for t at
a=.01 and n-1 degrees of
freedom).

Step 6: The value of t was calculated according to the
equation in step 4.

Step 7: A decision was made based on the parameters
outlined above.
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The following sections summarize the student's t-tests
that were conducted for an overall classification accuracy
assessment, as well as for general cover types individuelly.
ALL GENERAL COVER TYPES COMBINED:

tcalculated (from step 4) = 0.49

Tirivica, (from statistical table) = 2.73
Since t_, .iiated ¢ Ceriticair H, W3S not rejected. That is, at
a = .01, there is no significant difference in classificatiocon

accuracies between the two s=nsors when all general cover
types are combined.

FORESTED AREAS:

tcalculated (from step 4) = 4.77
T rirical (from statistical table) = 3.71
Since tcalculated 4 tcriti:al’ Ho was rejected. That is, at ¢«

= .01, there is a significant difference in classification
accuracies between the two sensors when forested areas only
are considered.

ROADS /EXPOSED SOTIL:

(from step 4) = 8.5%

tcalculated

(from statistical table) = 3.17

tcr1tical

Since t t H, was rejected. That is, at «

> L.
calculated = critical’

.01, there is a significant difference in classification
accuraclies between the two sensors when roads/exposed soil
only are considered.

GRASSLAND AREAS:

t (from step 4) = 0.19

cal ulated

t (from statistical table) = 2.92

critical
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Since t H, was not rejected. That is, at

calcutated % Tcritical s
a = .01, there is no significant difference in classification
accuracies between the two sensors when grassland cover types
only are considered.

As these results indicate, there 1is no significant
difference in classification accuracies between the Airborne
Scanner and Landsat TM when all general cover types are
considered. However, when the individual general cover type
differences are examined, significant differences are noted.
For instance, there is a significant difference (a = .01)
between classification accuracies for the forest cover types.
Table 4.14 indicates that in every case, the differences in
classification accuracy were negative. As previously noted,
this indicates that Landsat TM had better classification
accuracy performance than the Airborne Scanner for forest
cover types. This is consistent with earlier work (Kan et
al., 1975: Sadowski et al., 1977: Latty and Hoffer, 1981;
Badhwar et al., 1984; Haack et al., 1987) wherein it was found
that sensors with a lower (coarser) spatial resolution often
obtained higher classification accuracies than did sensors
with higher (finer) spatial resolution. This is due to the
higher pixel to pixel variation present in the imagery
obtainnd from higher spatial resolution sensors. The lower
spa "1al resolution sensors have less variation from pixel to
pixel, and thus produce higher classification accuracies.

Additionally, there is a significant difference (a = .01)

between classification accuracies for cover types such as
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road/exposed soil. Table 4.14 indicates that the differences
in classification accuracy were positive in every case. This
indicates that the Airborne Scanner had better classification
accuracy performance than Landsat TM for cover types such as
road/exposed soil that are small and have a high percentage of
boundary pixels per unit area. As previous studies have
indicated (Morgenstern et al., 1977; Landgrebe et al., 1977;
Markham and Townshend, 1981), this is an advantage of the
higher spatial resolution sensors. A higher percentage of the
pixels in a higher spatial resolution sensor are included
within the boundaries of an informational class. This reduces
the number of edge and boundary pixels, and thus increases
classification accuracy within these cover types.

There was no significant difference in classification
accuracy between the two sensors for the grassland cover
types. This makes sense because the variability in a natural
grassland cover type is relatively low and constant. That is,
the spectral variation over a small portion of grassland (6.5
X 6.5 meters) will be approximately the same as the variation
over a much larger area of grassland (25 x 25 meters)
containing the same cover types. These findings are also
consistent with earlier work (Latty and Hoffer, 1981).
Classification accuracies of high spatial resolution sensors
and low spatial resolution sensors will be similar for cover
types of low spectral variability (i.e., agricultural fields,

pasture and grasslands, etc.).
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Since there was such dramatic differences in
classification accuracy between major cover type groups, it
seems counter-intuitive that there was no significant
difference in classification accuracy when all cover types
were combined. One possible explanation 1is that the
significant differences exhibited between the sensors in the
individual cover types were of similar magnitude in opgposing
directions so as to offset each other. 1In other words, the
impact of high classification accuracy in the Airborne Scanner
within the road/exposed soil cover types was offset by the low
classification accuracy in Landsat TM within the same cover
types. Similarly, the impact of poor classification accuracy
of the Airborne Scanner in the forested cover types was offset
by the high classification accuracy in Landsat TM within these
forested areas.

The proportion of pixels taken as test data for the
different cover types was approximately proportional to the
actual cover types found at Pinon Canyon over the study areas.
Thus, the relationships of <classification accuracy as

described above would be applicable to the entire study area.

4.3 INTERRELATIONSHIPS OF SENSOR SPATIAL RESOLUTION

A comparison between portions of Geoscan's MKII Airborne
Multispectral Scanner (Data Set 4) and Landsat TM (Data Set 8)
was conducted to document the interrelationships of spatial
resolution between forest and rangeland cover types. As

mentioned in Chapter 3, a cross-sectional view of digital
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values across one scan line was obtained using MICROPIPS.EGA.
Figures 4.10 through 4.12 are graphical representations of
these cross sections. Figure 4.13 is a reproduction of the
area from which the scan lines were taken. Figure 4.13 is a
portion of Study Area 3 from the Airborne Scanner data.
These graphs were taken from a scan line that crossed
forest cover types such as One-seeded 3juniper (Juniperus
monosperma) and Pinyon pine (Pinus edulis). These cover types
are located on the left portion of the graphs as indicated.

The scan line also covered rangeland grasses such as Blue

grama (Bouteloua gracilis), Galleta (Hilaria jamesii), Alkali

sacaton (Sporobolus airoides) and Western wheatgrass

(Agropyron smithii). These cover types are located on the

right portion of the graphs.

Statistics were obtained for the forested area as well as
the grassland area for the scan lines. These statistics help
in understanding Figures 4.10 through 4.12. Table 4.15
summarize these statistics.

Table 4.15. Mean and standard deviation of forest and

grassland cover types for the Airborne Scanner and Landsat TM.
Top number is the mean with standard deviation in parentheses.

Airborne Scanner Landsat TM
Visible Near-IR Mid-IR visible Near-IR Mid-IR
Forested 94.19 102.45 103.10 106.13 84.97 95.08
Area (43.79) (39.73) (46.16) (26.06) 6.55) (26.82)
Grassland 111.98 105.27 115.15 115,24 74.38 135,04
Area (15.09) (16.48) (14.30) (13.97) (4.67) (16.50)
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AMSS.Pinon Canyon : Band Number 1 (VIS)
Image row = 43, maximum = 255
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Figure 4.10. Profile of a scan line from the visible portion
of the Airborne Scanner data (Data Set 4), top, and the
Landsat TM data (Data Set 8), bottom. Scan line was taken
across forest cover types (left) and grassland cover types
(right). The change from forest to grass is identified by the
arrowhead.
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AMSS.Pinon Canyon : Band Nuwber 2 (NIR)
Image row = 43, maximum = 255
Intensity Profile
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Figure 4.11.

(right) .
arrowhead.

Profile of a scan line from the near-infrared
portion of the Airborne Scanner data (Data Set 4), tcp, and
the Landsat TM data (Data Set 8), bottom.
across forest cover types

(left)

Scan line was taken
and grassland cover types
The change from forest to grass is identified by the
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ANSS.Pinon Canyon : Band Number 3 (MIR)
Inage row = 43, maximum = 255
Intensity Profile
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Figure 4.12. Profile of a scan line from the middle-infrared
portion of the Airborne Scanner data (Data Set 4), top, and
the Landsat TM data (Data Set 8), bottom. Scan line was taken
across forest cover types (left) and grassland cover types
(right). The change from forest to grass is identified by the
arrowhead.
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Figure 4.13. Photographic reproduction of a portion of Study
Area 3 from Geoscan's MKII Airborne Multispectral Scanner.
The black line marks the location of the scan line profiles
taken from this area.
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As reflected by Table 4.15, the standard deviation, and
thus the variance, of data values within forested areas for
the Airborne Scanner are higher than those for Landsat TM.
This is true for every band. In addition, the standard
deviation of data values within grassland areas for the
Airborne Scanner are approximately similar to those for
Landsat TM. The only exception is the near-infrared band.

This is primarily due to the highly variable canopy
within the forest cover types. There are many open spaces
between the tree crowns at Pinon Canyon. These open spaces
are usually covered to some degree by grasses, but in some
areas may be completely void of vegetation. Grassland cover
types, on the other hand, are basically homogeneous throughout
the entire grassland community, thus producing a lower
variatizn of data wvalues.

The high spatial resolution of the Airborne Scanner (6.5
meters) allows individual pixels to detect information between
tree crowns such as grass or bare around. Other pixels may
record information from the shady side of a large tree,
whereas its immediate neighbor may record information from the
sunny side of the same tree crown. This concept of high
variability from pixel to pixel is graphically displayed on
the 1left portion (forested areas) of Figures 4.10 (top)
through 4.12 (top).

The lower spatial resolution of Landsat TM (25 meters),
on the other hand, allows many of these irregularities in the

tree canopy to be averaged into the information recorded by
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one larger pixel. Thus the potential for high variability
from pixel to pixel is reduced by sensors with lower spatial
resolution. This concept of averaging the variability within
the tree canopy and thus reducing the variability from pixel
to pixel is displayed in the left portion (forested areas) of
Figures 4.10 (bottom) through 4.12 (bottom).

The right portion of Figures 4.10 through 4.12 is a
graphic representation of data values taken over a grassland
community. As 1s visually interpreted, the variance is
drastically reduced as compared to forest communities for both
sensor systems.

Relating these findings back to the <classification
comparison between the two sensor systems, many interesting
facts are noted. First, there was a significant difference («
= .01} in classification accuracy between the two sensor
systems for forest cover types. Specifically, Landsat TM
provided the better classification in these cover types. The
reduction in spectral variance from pixel to pixel in Landsat
TM (which has the lower, or coarser, spatial resolution), was
the reason forest cover types were classified higher with this
system.

Second, there was a significant difference (a = .01) in
classification accuracy between the two sensors for
road/exposed soil cover types. In this case, the Airborne
Scanner produced the better classification. The higher
(finer) spatial resolution of the Airborne Scanner enabled

more pixels to be included in the actual cover type and a
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lower proportion of pixels to be included in boundary between
cover types. This increased classification accuracy for these
cover types for the Airborne Sensor.

Third, there was no significant difference (a = .01) in
classification accuracies between the two sensors for
grassland cover types. This is due to the fact that the
spectral variation from pixel to pixel in these cover types
was reduced due to the nature of the cover type involved.
Grassland communities have similar variation over a small area
as compared to a larger area.

As previously mentioned, the differences in
classification accuracy between the two sensors when all
general cover types were involved was not significantly
different. This is due to the fact that differences in
individual cover types were in opposing directions so as to

offset each other.




SUMMARY AND CONCLUSIONS

5.1 SIGNIFICANT RESULTS

This research has produced significant results for the
U.S. Army and other agencies interested in monitoring off-road
vehicular damage. An indication of the spatial rasclutioir and
types of remote sensor systems needed for best detecting off-
road vehicular damage has been provided. It has also provided
the information necessary to adequately and efficiently
enhance this imagery for optimal detection of off-road
vehicular damage.

This research has also produced significant results in
documenting differences in classification accuracy as a
function of remote sensor system spatial resolution and the
spatial characteristics of the cover types involved. It has
been shown that higher spatial resolution sensor systems are
not always best for detecting and monitoring vegetative cover
types. In addition, differences in spectral variation from
pixel to pixel for different vegetative cover types has been
documented. This helps explain the differences 1in
classification accuracy observed for the different sensor
systems and cover types involved. A brief synopsis of the
significant results obtained in this research are provided in

this chapter.
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o Off-road vehicular damage was best enhanced using a

weighted Laplacian filter, and this type of filter was the

most time efficient.

In 6 out of 9 data sets, the technique that best enhanced
the imagery for detection of tank trails were weighted
Laplacian filters. Specifically, the weighted Laplacian
filter that produced the best enhancement of off-road

vehicular damage was:

0 -1 0
-1 5 -1
0 -1 0

Therefore, for agencies interested in monitoring off-road
vehicular damage using remote sensor digital data, the
weighted Laplacian filter above will produce the optimum

results.

o The enhancement of Geoscan's MKITI Airborne Multispectral

Scanner data having 6.5 meter spatial resolution to detect

off-road vehicular damage provided the best results when

compared to other remote sensor digital data used in this

research.

Eleven out of eleven interpreters selected Geoscan's MKII
Airborne Multispectral Scanner, using the first three
principal component bands derived from every portion of the
electromagnetic spectrum, as the best enhanced image for
detecting tank trails. A statistical evaluation of this

result indicated that more than 72% of all interpreters would
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select this image 95 times out of 100. Additionally, 8 out of
11 interpreters selected the one-band image, from the Airborne
Scanner as the second best enhanced image for detecting tank
trails. Selection of these two images as first and second best
over all data sets was not due to chance occurrence (a =

.001).

o Traditional photointerpretation techniques of high-quality
aerial photography such as provided by the National Aerial
Photography Program (NAPP) will provide more information
regarding off-road vehicular damage than remote sensor

digital data.

Standard NAPP color-infrared aerial photography was
carefully examined using traditional photointerpretation
techniques within a portion of the study area to determine the
number of tank trails that were resolved by the aerial
photography. In addition, the number of tank trails visible
in the best enhanced image of remote sensor digital data was
determined. The actual number of tank trails visible in the
digital imagery was only 65-70% of the total number visible in
the NAPP aerial photography. Most of the detail that was lost
in the digital imagery were small tank trails, i.e., those

that had been travelled on a very limited number of times.

o A classification of remote sensor data that included a
Normalized Difference Vegetation Index (NDVI) produced

misleading and false information regarding the amount of
vegetation present in different locations. The amount of
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vegetation present on dark-colored soils was overestimated.
It was underestimated on light-colored soils.

An evaluation was conducted to determine whether NDVI
would aid in classifying vegetation at Pinon Canyon (see
Section 3.4.1). Study Area 1 from the Airborne Scanner data
was first classified using the three principal component bands
and the NDVI band. A second data set was then created using
only the three principal component bands. The two
classifications were then compared. A test area containing
172 pixels that consisted of a very light-colored soil with
10-20% vegetative cover was selected to test the
classification on light-colored soil. Another test area
containing 242 pixels that consisted of a very dark-colored
shale with nearly no vegetation present was selected to test
the classification on dark colored soil.

The classification of the light-colored soil area using
the NDVI band classified 50 pixels as vegetation and 122
pixels as roads/exposed soil. The classification without
NDVI, however, classified 101 pixels as vegetation and 71
pixels as roads/exposed soil. The estimate of vegetation
present in the classification using the NDVI band was lower
than was actually present in this 1location. The
classification without the NDVI band more accurately reflected
the amount of vegetation present in this test area.

The classification of dark-colored soil using the NDVI
band classified 168 pixels as vegetation and 104 pixels as

dark shale. The classification without NDVI, however,
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classified 2 pixels as vegetation and 240 pixels as dark
shale. The estimate of vegetation present in the
classification using the NDVI band was higher than was
actually present in this location. The classification without
the NDVI band more accurately reflected the amount of
vegetation present in this test area.

A visual, qualitative evaluation of the two
classifications was also done in these test areas. Using the
NDVI band in the classification procedure resulted in an
underestimate of vegetation in light-colored soils, and an
overestimate of vegetation in dark-colored soils.

In summary, since the classification that contained the
NDVI band produced an underestimation and overestimation of
vegetation in light-colored and dark-colored soil
respectively, it was not included in the final classification

procedure.

o Overall classification accuracy for the individual cover

type classes for the Airborne Scanner was 74.9% as compared

to 78.5% for Landsat Thematic Mapper.

These results are based on the assumption that the
locations digitized as test polygons in the classified image
accurately reflect the information within the selected test
locations (LCTA plots, etc.). The results demonstrate that a
relatively high overall classification accuracy can be
achieved for very specific land use and land cover categories,

based primarily on species, vegetation density (for grass
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cover types), and percent crown closure (for forest cover
types). These results are obtainable in a mixed rangeland

environment by sensors of varying spatial resolution.

o Overall classification accuracy for the major cover tvype

groups for Geoscan's MKII Airborne Multispectral Scanner

was 85% as compared to 91% for Landsat Thematic Mapu~r.

When the individual categories were combined into major

cover type groups (i.e., forest, grass, and roads/exposed
soil), an increase of 10% and 12% were observed for the

Airborne Scanner and Landsat TM, respectively. This indicates
that many of the pixels that were misclassified were actually
classified in other individual classes contained within the
same major cover type dgroup (i.e., errors were occurring
between categories that differed only in vegetation density or
percent crown closure). By combining the individual classes
into major cover type groups, the minimum level of accuracy
for Level I land use and land cover categories of 85% has been

achieved (U.S. Department of the Interior, 1976).

o There were no_sigqnificant differences in classification

accuracy between classifications of individual cover tvpes

obtained using Geoscan's MKII Airborne Multispectral

Scanner and Landsat Thematic Mapper when all cover types

were considered (a = .01). There was also no significant

difference in the classification accuracies between the

data sets when only grass cover types were considered (a =
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.01) . There were, however, siqnificant differences in

classification accuracy between the two data sets for the
forest and roads/exposed soil cover types when they were
considered separately (o = .01).

A procedure was conducted that evaluated the differences
in the percent of correctly classified pixels for individual
test area for the classifications of Landsat TM and the
Airborne Scanner data using the student's t-test (see Section
4.2.1 and 4.2.2). Based on these differences in the percent
of correctly classified pixels for each test area and the
results of the student's t-test, no significant difference was
found in classification accuracy between Landsat TM and the
Airborne Scanner when the differences from all test areas
were considered (a = .01).

However, when the differences for forest test areas
were considered, a significant difference was observed (a =
.01). The percent of correctly classified pixels from the
Landsat TM classification was subtracted from the percent of
correctly classified pixels from the Airborne Scanner. In the
case of forest cover types, the differences observed were all
negative. Thus, the percent of correctly classified pixels
was higher in the classification produced from Landsat TM data
for forest cover types. Therefore, the classification of
forest cover types was significantly higher in Landsat TM as
compared to the Airborne Scanner. This result is primarily
due to the high spectral variability from pixel to pixel that

occurs in forest cover types (see Section 4.3). The reason
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that Landsat TM achieved a higher classification accuracy for
forest cover types is a function of the lower spatial
resolution (larger pixel size) of Landsat Thematic Mapper.
The larger pixel 1is able to average much of the spectral
variation that occurs in cover types such as a forest canopy.
On the other hand, because of the high spatial resolution of
certain sensor systems such as the Airborne Scanner used in
this research, the high spectral variability that is a natural
phenomena of many cover types (i.e., forests) is recorded on
a pixel by pixel basis in remotely sensed digital imagery.
This spectral variability from pixel to pixel in the data
results in poor classification results for these cover types.

When the differences for roads/exposed soil test areas
were considered, a significant difference was also observed («a
= .01). In the case of roads/exposed soil test areas,
however, the differences observed were all positive. This
means that the classification produced from the Airborne
Scanner data resulted in a significantly higher classification
than Landsat TM. This is primarily due to the smaller spatial
resolution. More pixels are completely within the cover type,
and a lower proportion are boundary pixels. This improves
classification accuracy for cover types that are spectrally
homogeneous and of small areal extent.

No significant differences in the percent of correctly
classified pixels were found for the test areas containing
grassland cover types (a = .01). This is because the spectral

variability from pixel to pixel in a natural grassland cover
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type is relatively low and constant (see Section 4.3). Thus,
a high spaiial resolution sensor will receive approximately
the same information as a lower spatial resolution sensor.

The reason that there were no significant differences in
classification accuracy between the two sensors when all cover
types were involved is, in part, due to the fact that the
differences in classification accuracy between forest cover
types and the roads/exposed soil were of similar magnitude,
but in opposing directions, so as to offset each other. 1In
other words, the high accuracy 1in the Landsat TM
classification for forest cover types was offset by the high
accuracy in the Airborne Scanner <classification for
roads/exposed soil.

To summarize, remote sensor systems that have low spatial
resolution will classify cover types of high spectral
variability with a significantly higher percentage of accuracy
as compared to sensor systems with a higher spatial
resolution. This is because the larger pixel in the lower
spatial resolution sensor is able to average the high spectral
variakbility found in forest cover types. Additionally, areas
that have low spectral variability (e.g., grassland) will be
classifiad with approximately the same degree of accuracy,

irrespective of sensor spatial resolution.

5.2 APPLICABILITY OF RESULTS
The results of this research indicate that agencies or

land managers interested in detecting off-road vehicular
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damage with very high spatial resolution remote sensor digital
imagery should use a weighted Laplacian filter such as the one
described above to enhance the imagery. ©Unless a very high
spatial resolution sensor is available, high quality aerial
photography, such as provided by the National Aerial
Photography Program (NAPP), provides the best results for
detecting off-road vehicular damage, particularly the damage
that was created by a very limited amount of traffic (perhaps
only one pass from one vehicle).

The results of this research also demonstrate that a low
spatial resolution sensor such as Landsat Thematic Mapper be
used to monitor overall changes in vegetation density on U.S.
Army Training Maneuver Sites rather than a high spatial
resolution sensor. Although classification accuracy between
the two sensors will be similar in grassland communities, the
accuracy of the higher (finer) spatial resolution sensor will
be lower in forest cover types as compared to that of a lower

(coarser) spatial resolution sensor such as Landsat TM.

5.3 RECOMMENDED TOPICS FOR FUTURE RESEARCH

Several topics could be pursued as topics for further
research. As described in this research (see Section 4.1.1),
a more quantitative approach in determining the actual amount
of damage information recorded by a multispectral scanner is
possible. This involves digitizing the vehicular damage into
a raster (grid cell) geographic information system. A value

of 1 would represent damaged areas, whereas a 0 would
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represent non-damaged areas. The computer output wculd be the
total number of cells that contain off-road vehicular damage.

Following the same procedure for digital imagery, a
reclassification of the data would create a binary map (i.e.,
a value of 1 represents vehicular damage, a value of 0
represents everything else). After the total number of cells
were calculated by the computer, a direct comparison of the
number of cells present in aerial photography versus the
digital imagery could be made.

A method that may be useful in monitoring off-road
vehicular damage and the changes that occur over time is
possible using aerial photography and a geographic information
system (GIS). Digitizing the damage that has occurred in an
area into a GIS will allow a “degree of damage" code to be
applied to each damaged area. For example, a damage code
could be developed where a value of 1 represented minimal
damage and a value of 5 represented extreme damage. Aerial
photography obtained over the same location one or two years
later could provide an interesting comparison to previous
damage. The damaged areas could again be digitized with
appropriate damage codes applied to each damaged area. A
comparison between the two dates could then be made to see
what changes have occurred since the first set of photography
was obtained. Types of changes may be: 1) new damage, 2)
increased '"degree of damage'", 3) decreased "degree of damage"
(i.e., recovery has taken place), or 4) no change has

occurred. This type of information would be very useful for




104

a land manager attempting to develop or adjust a land use plan
for continued use of our natural resources.

A very efficient method for comparing the information
from the two dates is available. An overlay procedure within
a GIS could overlay the two map 1layers, thus providing
information regarding the coincidence of the tank trails. A
major drawback of this procedure, however, is that if the two
images are shifted by just one pixel (i.e., poor alignment),
the statistical evaluation of coincidence will be much lower
than if the two images were precisely registered to each
other.

A method to determine what the alignment is between the
two data sets is also available. Using the GIS to construct
concentric rings around each tank trail in one data set would
determine how far away each cell was from the closest tank
trail. Overlaying this new map onto the second data set would
provide spatial statistical information regarding the degree
of misalignment between the two data sets.

Another area for potential future research could involve
a comparison of higher spatial resolution multispectral
imagery to determine what resolution is needed to detect all
of the damage caused by off-road vehicles. This data may be
obtained by an airborne multispectral scanner flown at varying
altitudes, thus producing different spatial resolution data.
Additionally, investigations into the utility of the Airbcrne
Visible-Infrared 1Imaging Spectrometer (AVIRIS) or High

Resolution Imaging Spectrometer (HIRIS) would be useful.
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A Fourier transformation applied to the data sets may be
a useful tool for extracting tank trail information such as
the number of trails and the angles between them. This is
another potential for future research.

Exploring the advantages and limitations of a flatbed or
drum scanner to digitize aerial photography to extract
information about off-road vehicular damage is proposed as
another topic for further research. A visual, qualitative
evaluation of the NAPP aerial photography used 1in this
research reveals many details that were lost due to the video
digitization process. A comparison of the scanned aerial
photography and other remote sensor systems would be very

interesting.
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APPENDIX 1

Table Al.1l. Land Condition Trend Analysis (LCTA) Plot
information.
PLOT COVER TYPE? UTM COORDINATES % COVER*

10 AGSM/HIJA/SIHY | 584100-E 4142500-N 4%
11 BOGR/HIJA 583300-E 4141100-N 25%
13 BOGR/HIJA 587500-E 4140600-N 41%
14 BOGR/HIJA 588300-E 4143100-N 17%
15 SPAI/HIJA/AGSM | 597400-E 4161100-N 44%
21" | BOGR/HIJA 591800-E 4147300-N 40%
22" | BOGR/BOHI 596100-E 4144900-N 31%
103 BOGR/HIJA/AGSM | 595200-E 4146500-N 22%
118 BOGR/HIJA 595700-E 4151200-N 30%
124 BOGR/HIJA 597700-E 4147800-N 6%
125 BOGR/HIJA/AGSM | 597500-E 4149300-N 32%

3Appendix 2 contains a partial listing of vegetation

found at Pinon Canyon,

including abbreviations used (Shaw et

al 1989).

“Percent cover is determined by field crews. Each 6 x
100 meter plot is divided into l-meter intervals along a line
inside the plot that parallels its long axis. The plant
species at each 1l-meter interval are then Adetermined. The
total number of plants encountered along this line represents
the average percent ground cover.
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PLOT # | COVER TYPE UTM COORDINATES $ COVER
126" BOGR/HIJA 598100-E 4148800-N 12%
127 BOGR/HIJA/AGSM | 598300-E 4150400-N 23%
128" BOGR/HIJA 594500-E 4148800-N 20%
129" BOGR/LICHEN 594600-E 4149700-N 45%
140" | AGSM/BOGR 595200-E 4150500-N 263%
141" BOGR 594700-E 4147400-N 6%
143" BOGR/HIJA/AGSM | 593200-E 4145900-N 24%
144" BOGR/HIJA 590500-E 4140500-N 19%
145 BOGR/HIJA 589800-E 4140400-N 27%
146 BOGR/HIJA 589300-E 4140500-N 14%
147" BOGR/HIJA 588600~E 4140600-N 35%
154 HIJA/AGSM 584100-E 4142700-N 17%
156" BOGR/HIJA 582700-E 4141100-N 22%
160" BOGR/LICHEN 588700-E 4141100-N 41%
161 BOGR/HIJA 588300-E 4141800-N 40%
163" BOGR/LICHEN 586900-E 4141200-N 47%
164 BOGR/HIJA 589000-E 4144800-N 17%
192 BOGR/HIJA 586500-E 4137400-N 35%
203" BOGR/HIJA 587600-E 4144100-N 19%




APPENDIX 2

Table A2.1. A partial list of dominant vegetation found at
Pinon Canyon.

ABBREVIATION’® SCIENTIFIC NAME COMMON NAME
BOGR Bouteloua gracilis Blue grama
HIJA Hilaria jamesii Galleta
AGSM Agropyron smithii Western wheatgrass
SPAI Sporobolus airoides Alkali sacaton
BOER Bouteloua eriopoda Black grama
JUMO Juniperus monosperma One-seeded juniper
GLME Glossopetalon Greasebush

meionandra

OPIM Opuntia imbricata Tree cholla
SIHY Sitanion hystrix Squirreltail
SAIB Salsola iberica Russian thistle
TAPE Tamarix pentandra Five-stamen tamarix
PIED Pinus edulis Pinyon pine

> Abbreviations are made by using the first two letters
from each scientific name. A combination of four letters is
thus made.




APPENDIX 3

EDGE AND LINE ENHANCEMENT TECHNIQUES USED"

1. Laplacian (zero-weight) filters.

6

*Filte¢ 5 bordered by double lines were
methc ..

In this research, Laplacian

0 -1 0 0 |-.5 0 0 -.25 0
-1 4 -1 -.5[ 2 -.5 -.25 1 -.25
0 -1 0 0 |-.5 0 0 -.25 0
0 -2 0 -1 -1 -1 0 -1.75 0
-2 8 -2 -1 8 -1 -1.75 7 | -1.75
0 -2 0 -1 -1 -1 0 -1.75 0
0 | -.75 0 -.5| -.5]-.5 0 -1.25 0
-.75 3 |-.75 -.5 4 |-.5 -1.25 5 -1.25
0o | -.75 0 -.5{ -.5|-.5 0 -1.25 0

0o |-1.5 0 1 -2 1 -.75 -.75 | - 75
1
-1.5 6 |-1.5 -2 4 -2 -.75 6 -.75
0 |-1.5 0 1 -2 1 -.75 -.75 | -.75
2 -4 2 0.5| -1 |o0.5 -.25 -.25 | =-.25
-4 8 -4 -1 2 -1 -.25 2 ~.25
2 -4 2 0.5| -1 [0.5 -.25 -.25 | =-.25
1.5( -3 1.5
-3 5 -3
1.5 -3 1.5

best for a particular

and Bi-Laplacian

edge

detectors are grouped together within zero-weight and weighted

filters.




120

2. Laplacian (weighted) filters.
0 -1.5 0 0 =2 0
-1.5 7 -1.5 -2 S -2
0 -1.5 0 0 -2 0
1 -2 1 0 =1 0
-2 5 -2 -1 3 -1
1 -2 1 0 -1 0
3. Sobel Edge Enhancement. (Image = (X% + Y?)'/2)

X Components:

Y Components:

-1 0 1 1 2 1
=2 0 2 0 0 0]
-1 0 1 ﬂ -1 -2 -1

-.5 0] .5 .5 1 .5

-1 0 1 0 0 0

-.5 0 .5 -.5 -1 -.5
=2 -1 0 0 1 2
-1 0 1 -1 0 1l
0 1 2 =2 -1 0
-4 -2 0 0 2 4
-2 0 2 -2 0 2
0 2 4 -4 =2 0
-2 -1 0 2 1 0
-1 0 1 1 0 -1
0 1 2 0 -1 =2
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High-pass filters (3 x 3 window).

4.

— — —t
I I |
(] ~]
| — |
— — L
| ! 1
re——

4| ]
} ! 1
| o] o
| |
— [} —
| | '

Filters using a 5 x 5 window.

5.

25
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6. Low-pass filter (In addition to the 3 x 3 unity filter

below, a 5 x 5 unity filter was also tested).

1 1 1
1 1 1
1 1l 1

7. Robert's edge detector.

$3 |83+

i+1,3 i+1,3+1

Image = [abS((l,j) - (i+lrj+1)) + abs((i,j+l) - (l+llj))]
Where abs refers to the absolute value.
8. Prewitt directional filters, first individually, then

combined into one image by simple addition.

North: Northeast:

1 1 1 1 1 1
1 -2 1 -1 -2 1

-1 -1 -1 -1 -1 1

East: Southeast:

-1 1 1 -1 -1 1

-1 -2 1 -1 -2 1

-1 1 1 1 1 1

South: Southwest:

-1 -1 -1 1l -1 -1
1 =2 1 1 =2 -1
1 1 1 1 1 1l

West: Northwest:
1 1 -1 1 1 1
1 -2 -1 1 -2 -1
1 1 -1 1 -1 -1
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9. Kirsch gradient filters.
5 5 5 5 5 -3 5 -3 =3
-3 0 -3 5 0 -3 5 0 -3
-3 =3 -3 -3 -3 -3 5 -3 -3
=3 =3 =3 -3 -3 =3 -3 -3 -3
5 0 =3 =3 0 -3 -3 0 5
5 5 =3 5 5 5 -3 5 5
-3 =3 5 -3 5 5
-3 0 5 -3 0] 5
-3 -3 5 -3 -3 =3
10. Prewitt three-level simple filters.
1 1 1. 1 1 0 1 0 -1
0 0 0 1 0 -1 1 0 -1
=1 -1 -1 0 -1 -1 1 0 -1
0 -1 -1 -1 -1 -1 -1 -1 0
1 0 -1 0 0 0 -1 0 1
1 1 0 1 1 1 0 1 1
-1 0 1 0] 1 1
-1 0 1 -1 0 1
-1 0 1 -1 -1 0
11. Prewitt five-level simple filters.
1 2 1 2 1 0 1 0 -1
0 0] 0 1 o] -1 2 0 -2
-1 =2 -1 0 -1 =2 1 0 -1
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0 -1 -2 -1 -2 -1 -2 -1
1l 0 -1 0 0 0 -1 0
2 1 0 1 2 1 0 . 1
-1 0 1 0 1 2
-2 0 2 -1 0 1
-1 0 1 -2 -1 0
12. Mero-Vassy filter. (Image = (abs(A) + abs(B))), where

abs refers to the absolute value.

A Component:

B Component:

1 1 -1 1
1 S L 1
13. Prewitt gradient filters. (Image = A + B).
A Component: B Component:
1 1 1 1 0 -1
0 0 0 1 0 -1
-1 -1 -1 1 0 -1
14. Chittineni filters.
(Laplacian) (Non-Laplacian)
-1 2 -1 1 0 -1 1 1 1
2 5 2 0 0 0 -2 -2 =2
-1 2 -1 -1 0 1 1 1 1l
-1 -1 -1 -1 0 1 1 -2 1
0 0 0 -1 0 1 1 =2 1
1 1 1 -1 0 1 1 -2 1
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Techniques 15-22:

Consider the following matrix of pixels from a
hypothetical image. Each cell in the matrix may be
represented as follows (the letters A-I are for convenience in

referring to the cells):

DN; q,j-1  (B) DN;.4,; (B) DN;.q,j¢1 (@
DN, ;, (D) DN, ;  (E) DN; ,,; (F)
DN, ;.y (G) DNi,, ; (H) DNiy; juy  (I)

15. A "vertical gradient" image was obtained by performing
the following equation to each pixel in the image:

DN, | - DN, ,

i,) i

i (or E - B).
This procedure enhanced horizontal lines and edges in the
imagery.

16. A '"horizontal gradient" image was obtained by

performing the following equation to each pixel in the image:

DN. . - DN

i, i,j*+

(or E - F).
This procedure enhanced vertical lines and edges in the
imagery.

17. A "NW-SE (diagonal) gradient" image was obtained by
performing the following equation to each pixel in the image:

DN, ; - DN (or E = A).

i-1,j-1
This procedure enhanced lines and edges oriented in a NE-SW
direction.

18. A "NE-SW (diagonal) gradient" image was obtained by

performing the following equation to each pixel in the image:
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DN. . - DN

i i1, j+1 ({or E - C).

This procedure enhanced lines and edges oriented in a NW-SE
direction.

19. Adding both the vertical and horizontal difference
images above created an image with all horizontal and vertical
lines and edges enhanced.

20. Adding both diagonal difference images created an image
with all diagonal lines and edges enhanced.

21. Adding all difference images together created an image
with lines and edges in all directions enhanced.

22. An isogradient method of enhancing both horizontal and
vertical lines and edges is given by the following equation:

(vert® + horiz?)'/?
Where vert? is the vertical gradient image (E - B) squared,
and horiz® is the horizontal gradient image (E - F) squared.

23. In addition to the methods outlined above, the original
imagery was included as another "method" for evaluation.

The methods outlined above were also applied to images
that were first treated using the high-pass and low-pass
filters. This was performed for two reasons. First, it was
speculated that a high-pass filter first applied to the
imagery would enhance tank trails to a certain extent, and
subsequent techniques specifically designed for edge and line
enhancement would enhance them even more. Second, when the
large amount of salt and pepper noise became evident in data
set 4, the low-pass filter was applied to the imagery to

determine if this would reduce the problems encountered with
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such noise. These procedures did not aid in the enhancement

of the digital imagery for tank trails.




APPENDIX 4

KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST FOR NORMALITY

Differences in classification accuracy as listed in Table
4.14 represent continuous data. The Kolmogorov-Smirnov
goodness-of-fit test for normality was first developed for use
with continuous data, and is preferable to the Chi-square
goodness-of-fit test for this type of data (Zar 1984).

Four tests for normality were conducted. First, data
from all general cover types were tested to determine
normality for the entire data set. Second, data from each of
the general cover types (i.e., forested areas, roads/exposed
soil and grassland areas) were tested for normality. Tables
A4.1 through A4.4 contain information used for these tests.

The Kolmogorov-Smirnov test for normality measures
goodness-of-fit of the cumulative relative observed frequency
(Rel F;) of the data in question to the cumulative relative
expected frequency (Rel F;') if that data were normally
distributed. As indicated on tables 1 through 4, value D; and
D,' are calculated by taking the absolute value of the
differences between F;, and F,', and F,, and F;' respectively.
The lz '‘gest value obtained in either the D; or the D;' column

becomes a value known as D. This number is compared to the

Kolmogorov-Smirnov critical value for D as found in tables in
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statistical texts. If the calculated value of D exceeds the
critical value for D as found in the statistical table, the
null hypothesis that the data are not normally distributed is
rejected in favor of the alternative. The alternative in this
case 1is that the data are normally distributed.

For example, from Table A4.1, the largest D; is 0.0681
and the largest D.' is 0.1557. Thus, the calculated value for
D becomes 0.1557. The critical value for D with 35
observations is 0.1480. Since the calculated value for D is
larger than the critical value for D, the null hypothesis is
rejected. Thus, the data are normally distributed.

A summary of this test, as well as the tests for the
general cover types follows. The result of these tests were
that the data were normally distributed for the general cover
types, both individually and collectively. The null

hypothesis (H,) was that the data were not normally

distributed.
ALL GENERAIL COVER TYPES COMBINED (FROM TABLE A4.1):
Max Di = 0.0681 Max Di' = 0.1557 D = 0.1557

D critical value from statistics table = 0.148

0.1557 > 0.148, therefore, reject H,. That is, the
combined data are normally distributed (a = .05).
FORESTED AREAS (FROM TABLE A4.2):

Max D; = 0.2382 Max D,' = 0.4532 D = 0.4532

D critical value from statistics table = 0.350
0.4532 > 0.350, therefore, reject H,. That is, the data

from the forested areas are normally distributed (a = .01).
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ROADS/EXPOSED SOIL (FROM TABLE A4.3):

Max D; = 0.0655 Max Di' = 0.3243 D = 0.3243

D critical value from statiscics table = 0.290

0.3243 > 0.290, therefore, reject H,. That is, the data
from the roads/exposed soil are normally distributed (a =
.01).
GRASSLAND AREAS (FROM TABILE A4.4):

Max D; = 0.1272 Max D;' = 0.3594 D = 0.3594

D critical value from statistics table = 0.240

0.3594 > 0.240, therefore reject H,. That is, the data
from the grassland areas are normally distributed (a = .01).

Since the data were normally distributed, both
individually and collectively, use of the student's ¢t-
distribution to test for significant differences in

classification accuracy was possible.




