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ABSTRACT

Multi-target tracking (MTT) has many applications, and has
therefore been the subject of considerable investigation. One key
aspect of this problem, especially in a dense target environment,
is the "scan-to-scan correlation" or "tracking data association"
problem of assigning measurements to tracks. Various different
approaches have been proposed to solve this problem. In this
report, three algorithms for MTT data association are presented for
comparison. First the nearest-neighbor standard filter (NNSF)
algorithm is presented. Then two of the more promissing extensions
are presented: the multiple hypothesis test method (MHT), and joint
probabilistic data association (JPDA) method. Whenever possible the
same notation is used in presenting all three methods for ease of
comparison. This report is intended to serve as a prelude to a
comparative investigation of these three competing data association
methods.

RESUME

Les techniques de poursuites de cibles multiples ont plusieurs
applications et ont donc fait l’objet de nombreuses recherches.
L'un des aspect important du probléme est l'association des données
radar avec les pistes. Plusieurs approches ont déja été proposées

: pour résoudre ce probléme., Ce rapport compare trois algorithmes
d’acsociation des données, La méthode standard du voisin-immédiat
(NNSF) est d’abord présentée. Deux variations prometteuse scont
ensuite analysées: une méthode de test & hypothéses multiples
(MHT) et une méthode d’'association de données probalistique (JPDA).
Ce rapport présente une analyse préliminaire des trols metlhodes et
sera suivi d'études plus approfondies.
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EXECUTIVE SUMMARY

In this report three quite different algorithms for multiple
target tracking in a cluttered environment are presented: Nearest
Neighbour Standard Filter (NNSF)}, Multiple Hypothesis Test (MHT)
and Joint Probabilistic Data Association (JPDA). The basic tracking
equations and data association algorithms are presented, using a
consistent notation, so that the different methods can be directly
compared. The apparent advantages and dissadvantages of each are
briefly explored, and suggestions made for further analysis.

Superficially the tradeoff among the three different
approaches is simply one of accuracy vs. computational efficiency,
with the NNSF method being the least accurate but most efficient,
and the MHT method being the most accurate and least efficient.
However this simplistic view overlooks the fact that the three
methods differ fundamentally in their approach to data association.

The NNSF produces a single wunambiquous data association
solution at each point in time, based on the previous association
and the current sensor information. This however may not be the
best choice, especially because it does not make full use of all
prior sensor data. Once an incorrect association is made, it seems
unlikely that the solution would ever recover.

The MHT approach will maintain several (perhaps many)
different possible data association solutions, and uses the history
of sensor data to eliminate highly unlikely choices, eventually
leaving only cone best choice (hcopefully). This shculd yield the
best solution, however it does generally have periods of
uncertainty. Thus if one could not wait for the solution, then it
would be necessary to take special measures.

_______ L A

The JPDA approach does not explicitly make a data association
decision. Instead this method applies all ambiguous measurements
to each tracking filter with which it «c¢ould reasonably be
associated (with an appropriate weighting factor). Thus any given
tracking filter will 1likely be assigned several "incorrect"”
measurements (hopefully with a low weighting) but will almost
certainly also be assigned the "correct" measurement (hopefully
with a high weighting). It is thus hoped that the incorrect
measurements (hopefully random) will have a small cunulative
effect.

Further investigation would be necessary to determine which,
if any, of these data association methods is most appropriate for
a given multi-target tracking problemn.
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1.1 The Problen

The multiple target tracking problem is encountered ‘n many
situations, whenever sensor data is available from one or more wide
angle of view sensors (such as radar, electronic support measures
(ESM), infra-red (IR), video, etc.), providing information on the
position (such as range, azimuth, elevation etc.,) of "targets"”
(aircraft, vessels, missiles, giound vehicles etc.). Tihe sensors
may also provide information uveeful for target identification
purposes (size, velccity, luminosity, transmitter frequency, etc.).
Although this information may be wuseful to a target tracking
algorithm, the identification aspects of target tracking are beyond
the scope of this report.

These target tracking sensors typically scan their field
of view at regqular intervals. There may be many contacts from such
a scan, from the different objects in the sensors field of view,
as well as some which may be just noise. The sensor measurements
from all contacts within a scan are generally processed together,
since they can safely be assumed to correspond to different objects
(something which cannot be said of returns from different scans or
from different sensors).

The basic tracking problem is to estimate the position and
velocity of the target(s), using the available sensor data (from
a sequence of scans). It is also normally desireable to be able to
predict the targets’ location some time in the near future. This
is a problem because the sensor data normally has errors and/or
ambiguities and the targets generally move Dpetween scans. The
prediction is further complicated by unknown target manoeuvres. If
there is only a single target, however, then Kalman filtering
technigues provide an *optimal® solution. Although the
nonlinearitites of this problem introduce some complications in the
use of Kalman filtering, this problem has been extensively studied
and suitable solutions exist.

The multi-target tracking problem however, is not simply
a tracking p:oblem when there are more than one target. As shall
be seen below however, the pcessibility of more than one target
significantly complicates the situation, because it introduces the
problem of associating measurenents with targets. When the distanc=
between targets is comparable to the measurement error or toc the
error in target position prediction (from one scan period to the
next), then this association problem can be very difficult. ¥or
example fighter aircraft flying in tight formation being tracked
by a scanning radar.




1.2 Background

There currently is no satisfactory unified solution method
for the Multi-target tracking problem. The single target tracking
problem, however, has been studied in depth, and optimal estimation
theory (Kalman filter theory etc.), does provide a satisfactory
solution (see for example [1}). With this method, one can form the
statistically optimal estimate of the target state vector {(position
and velocity) by recursively processing sensor measurements {radar.
sonar, ESM etc.) taken from the target being tracked.

The multi-target tracking prcblem can be approached in the
same way, as a number of stochastic estimation problems (one for
each target). Unfortunately there is the added difficulty of
deciding which measurements correspond to which targets (and which
measurements don’t correspond to any targets). This problem of
associating measurements with targets is known as the "“data
association problem”. Since this is not a problem of estimating the
value of a random variable, it does not fall neatly into the realm
of optimal estimavion. However, it 1is amenable to stochastic
treatment, and several approaches have been suggested. This report
describes in brief three of the more promising approaches.

All three approaches are based on the intuitive premise
that the probability of a particular measurement corresponding to
a specific target is a function of the proximity of that
measurement to the expected tarcet location.

The simplest of the approaches described here 1is the
"Nearest Neighbor" method, which at each time epoch (scan) makes
a complete assignment decision. This complete assignment can be
defined as a specific decision for each measurement:

i- that it came from one of the targets being tracked,
2- that it is noise, or
3- that it is from a new target,

Furthermore this allocation of measurements is made in such a way
that no target is assigned more than one measurement from any given
sensor scan. The nearest neighbor approach makes this complete
assignment decision at each point in time by minimizing a global
distance function which represents the <closeness of each
measurement to its assigned target. A problem with this approach
is that if an incorrect assignment 1is made for a single
measurement, then the tracking filter that processes it will make
a poor prediction for the position of it’s target for the next time
epoch, likely leading to subsequent incerrect assignments, and thus
the process could easily break down. The two other methods
described here are different approaches to solving this problem.
The nearest neighbour method is described in more detail in chapter
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2 below,

The second approach to be described is the Multiple
Hypothesis approach. As the name implies, this approach attempts
to solve the problem (of not being able to correctly deciae at each
epoch which measurement corresponds to which target) by keeping all
reasonably likely "complete assignments" (as defined above) as
working hypothesis (with which to predict the next epoch’'s target
positions). The global distance measure (of proximity of
measurements to predicted targets) can then be used to assign a
"probability" to each hypothesis at each epoch. These probabilities
can then be combined over several epochs, with the expectation that
incorrect hypothesis will lead to highly wunlikely cunulative
probabilities (ie. dead ends). In this way these hypothesis can be
dropped and the correct hypothesis should eventually stand out
alone. The problem with this method is that, unless the number of
hypothesis carried forward from one epoch to the next is kept very
low, then the "hypothesis tree" will grow extremely quickly, and
a computationally unmanageable situation will arrise, This method
is described in more detail in chapter 3 below.

The third method 1is the "Joint Probabilistic Data
Association" or JPDA method, which takes a very different approach:
assigning all measurements in the vicinity of a given target to
that target, but weighting the measuremenis accoiding to their
proximity. Thus it is highly unlikely that the correct measurement
will be ignored, but on the other hand it is an almost certainty
that incorrect measuremencs will also have some unwanted influence.
This JPDA method is described further in chapter 4 below.

1.3 state Space Description

For aun cbject being tracked, the discretized equations of
motion may be modeled by

Q

i

X1 = X + Gy, (1)

where X, is an nxl state vector (describing the position and
velocity etc.) of the tracked objects at the k'" sample time, ¢,
is the transition matrix, and u, is a mxl state excitation vector
to account for both maneuvres and modeling errors and is generally
assumed to be white and Gaussian with zero mean and covariance Q,.
In a track-while-scan system, the k'™ sample will occur
approximately at time kT, where T is the scan interval of the
Sensor.

The observation egquation representing valid sensor

3




measurements of the objects being tracked has the form
Y = HpX + vy (2)

where y, is the mxl sensor measurement vector (also referred to as
thas sensor "reports") and v, is white Gaussian observation noise
with zero mean and covariance R,. The observation equation for
extraneous sensor reports resulting from thermal false alarms,
clutter, and other targets is assumed to satisfy

Yi = HpXe€y oy + Wy (3)

where w, 1s assumed white and uniformly distributed over some
volume C of the measurement space centered about the predicted
measurement

Y€y k-1 = HyXey (3a)

The number of such extranesous reports in any volume C obeys
a Poisson distribution with mean BC, where B is the unnormalized
extranecus reports density.

The tracking filter provides a state estimate xe,,, and
one-scan-predicted state xe,,;,, 9iven all measurement data up to
the time K. The basic filter equations are described in the
following section.

1 4 Basic Tracking Filter Equations

The tracking filter state estimate xe,,, and covariance
P, update egquations are calculated (as functions of the
measurements y, and the previous estimates xe, |, and P, ,) as
follows:

Xep = Xe, ., + Kly, - Hxe 1] (4)
T T ~1

K, = PppaB [ Py H + R} (5)

Py = (1- KH P (6)




This requires knowledge of the measurement noise covariance R, and
the measurement matrix H, relating the measurements to the state
vector.

These estimates can then be propagated one scan into the
future (prediction) by using the state transition matrix ¢, as
follows:

X€, 1k = fpXey (7)

Pearie = HPrpd” + G Q6] (8)

1.5 Notation and Definitions

To facilitate comparison, the same notation 1is used
wherever possible to describe the different approaches to data
association. This notation, and related definitions are collected
here for ease of reference:

k = time or scan index.

N[x,P] = probability density function for a zero mean Normally
distributed (Gaussian) random vector x, with covariance
matrix P
= exp(-0.5 xT P! x)//{(2m)" |P|} (9)
(where 1n = dimension of x).

Nc = no. of measurements associated with confirmed tracks.

Nf = number of measurements associated with false targets.
Nn = number of measurements associated with new targets.
Nt = number of previously known (at time k-1) targets

{confirmed tracks) within the cluster.

Nm; number of measurements.

P, = probability of detection.

B;, = density of false targets,




b,, = density of previously known targets that have been
detected.

c = normalization constant given by summation of all the
hypothesis probabilities within the cluster for one scan,

Pr(k) = probability of a hypothesis at time k given probability cf
the prior hypothesis.

I,.," = Summation over b from 1 to L.
M., = Product over b from 1 to L.

L, = total number of hypothesis for track 1 at time k in the
absence of pruning:
L, = (L+Nk)L,_,
for Nk the number of sensor reports falling within the gate
fnr track i at scan k (pruning may have reduced L,_;
between scans).

Pal, |, .; = covariance of the estimation error given observations
through scan k-1 and given track hypothesis "al".

Kal,,,_; = expected value of the estimation error given observations
through scan k-1 and given track hypothesis "al™.

Pa, ., and Ka,,_ , are the ral and Kal analogues corresponding to
the hypothesis "a".

57!, = inverse of S, which is the covariance of the

innovation y, - ye,|,.; given hypothesis "al".
xey |y, =estimated state at scan k given hypothesis up to time k-1.

Py|x = covariance of the estimation error given observations
up to &scan K.

A, = optimal tracking filter correctinn vector for MHT filter.
AR, = optimal tracking filter gain for JPDA.

De = the expected track length.

#;. = the event that an observation j belongs to a target t.
Z, = the set of measurements up to time k.

P; = the probability of detection of target t.

Nt(3j) = number of targets associated with the observation j
except for false alarms( falce targets).




Nc(t) = number of observations associated with the target t
Nc’(t) = number of observations not associated with the taiget t.

Ncr = (Number of columns of Q)*(Number of rows of Q),
where @ is validation matrix given by eq.(25).

~J




2,0 A NEAREST NEIGHBOR STANDARD FILTER ALGORITHM

2.1 Introduction

The nearest neighbor approach to data association
determines a unique pairing so that at most one observation from
each sensor scan can be paired with a previously established tracik.
Also, a given observation can be used only conce, either to update
an existing track or to start a new track (which may be abandoned
as noise if no subseguent observations match it). This methend is
based on likelihood theory, and the goal is to minimize an overall
distance function that considers all observation-to-track pairings
that satisfy a preliminary gating test.

2.2 NNSF Algorithm

In this section, a NNSF algorithm, based on the modified
Munkres optimal assignment method (see reference (2]}, is
presented.

Step 1: Set k=1 (scan index) and all control parameters.

Step 2: Initialize the sy-stem parameters; ¢, Q, H, R,

Step 2: Simulate target trajectories.

Step 4: Simulate measurements (or receive the data from radar.)

Step %: vValidate the measurements using gating test: Fora gate
about

Y& k-1 = H > xe

and select the Nk sensor reports to be used in filter
updating. A measurement is valid if

-1

{yv - Yekn-l]T 5 {yw - Yenjka} ¢ gz (10)

(this is a “g-o¢" elliptical gate).

Step 6: Form the assignment matrix. The elements of the matrix
are equal to the normalized distance function associated
with the assignment of each of "Nobs" observations to each
of "Ntr" tracks. If the gating relationship is not
satisfied, the observation- to-track pairing can be given
a very large distance to penalize this assignment.




Step 7: Solve the Ascignment Matrix: Minimize the normalized
distance function using the modified Munkres optimal
assignment algorithm in section 2.3.

Step 8: Correlate the observations to the tracks according to the
solution of optimal assignment matrix.

Step 9: Update and predict the state vectors (tracks) using (4)
to (9).

Step 10: Output the predicted track positions.

Step 11: If k=kf {end of tracking mission), go to the Step 11.
Otherwise, set k:-k+1 and go to Step 4.

2.3 Modified Munkers Assignment Algorithm

The following method is based on the Munkres optimal
assignmert algorithm modified by Burgeois and Lassalle [(12]. This
method has an advantage (ccmpared to older methods) for
applications since the assignment matrix need not be square. For
the convenience of presentation of the algorithm, the rows and
columns of the matrix may be marked and referred to as covered. The
zerds may be marked by being starred (*) or primed (').

The Optimal Assignment Algorithm:

Step 1: Initially, no lines are covered and 0’'s are s._arred or
primed.

Step 2: Let v = min.{Nuwmber of rows, Number ot columnsj}.

Step 3: I1f (number of rows) > (number of columns), go to Step 6.

Step 4: For each row in the matrix, subtract the smallest element
of the row from each element in the row.

Step 5: If the (number of columns) > (number of rows), go to Step
7.

Step 6: For each column in the matrix, subtract the smallest
element of the column from each component of the column and
go to Step 7.

Step 7: a) Find a zero, "Z", of the matrix.
b) 1f there is no starred zero in its row or its column,

9




Step 8:

Step 9:

Step 10:

Step 11:

star the zero (i.e. Z*). Repeat for all zeros of the
matrix. Go to Step 8.

a) Cover every column containing a starred zero Zx*.

b) 1f v columns are covered, the locations of the 2* form
the row-column associations (i.e. observation-to-track
pairs). The algorithm 1is now completed. Otherwise,
continue to the next step.

a) Choose an uncovered zero and prime it (i.e. Z').

b) If there is no starred 0 in the row of 2’', go to Step
10.

c¢) If there is a starred zero Z* in the row of Z', cover
this row and uncover the column of Z*.

d) Repeat until all zeros are covered and then go to Step
11.

al) Let Zo dencte the uncovered 2’. 1f there is no Z* in
the column of Zo, go to Step (a6).

a2) Let 21 denote the Z* in the column of Zo.

a3) Let Z2 denote the Z' in the row of 21,

a4) Continue the steps a2 and a3 until a Z2 which has no
Z* in its columns has been found.

ab) Un-star each starred zero of the sequence.

ab) Star each primed zero of the sequence.

bl) Erase all primes from primed zeros and uncover every
line.

cl) Go to Step 8.

a) Find the smallest uncovered element in the matrix and
call it "m". "m" will be positive.

b) Add "m" to each covered row.

¢) Subtract "m" from each uncovered column.

d) Go to Step 9 without altering stars, primes, or
uncovered lines.

10




3.0 THE MULTIPLE HYPOTHESIS APPROACH
3.1 Introduction

In the sequel of this section, a track history "a" at scan
k is defined by sele~ting a single sensor report y from each scan
i<k

{(¥(I3:3), 3=1,2...k | 0Ij<Nj)

where Nj is the number of reports at scan j and Ij=0 refers to the
hypothesis that none of the sensor reports withirn the gate
originated from the target. Hence the track history "a" is just the
hypothesis that the entire sequence of measurements within "a" is
correct; i.e. each sensor report y(Ij;j) originated from the target
when Ij 0, while no sensor report was received when 1j=0, 1<j<k.
The track history "a" at scan k is obtained from the track history
"al" at scan k-1 by selecting one of 1+Nk measurements and
incorporating it into the measurement set specified by "a". 1In
notational terms, a={al, I}. Clearly one history "al" at scan k-1
gives rise to 1+Nk histories "a" at scan k. Therefore, the total
number of hypothesis {(er histories) L, at scan k ie given by
(1+Nk)*L, _,.

3.2 The Tracking Filter Equations

The equations for target state estimation (the tracking
equations) that are appropriate for use with MHT data association,
are listed below. Section 1.5 above provides the notation. Appendix
B explains the important hypothesis probability equation (11). The
other equations come largely from Kalman filtering theory, and are
very similar to the standard tracking equations of section 1.4
above,

Pr(k) = Hypothesis probability at scan k

= (L/c) (P (1-p)™N (B )M (B,
* " Nly,-Hyxe, |, 5]

* Pr(k-1) (11)




Ray -1 = Kaly ., + Palkm-ﬂHTsalku~1[Yk‘Yekw-1 ~ HKal, . ,]1(12)

where . .
S k-1 = BP BT + Ry
Te-1
Pa; yoy = Paly |, = Paly (B S HPaly (13)
or
Kay k-1 = Kaly |, if no measurement on the (14)
target was received
Pa, ,_; = Paly in the gate. (15)
Lk
A, = L., [Pr(k)Ka, ,.,] (16)

= optimal tracking filter correction vector at scan k
Kag, = Kagy — A, (17)
Pa, = Pa, |, (18)
The state and covariance update:
X€y,, = X€ .y + A (19)
Py = L,"[Pr(k){Pa, _, +Ka,,,_,Kal,, ,}] - AAT (20)

One scan prediction:

X€py 1k = fuXey )y (21)
Pearjx = Qkpk“(‘x'k'r + G, Q,G," (22)
Kay, g = &xKay {23)
Pa, in = @kpakikq’kT + 6,0,6," (24)

12




3.3 EHT Algorithm

This section outlines the basic algorithm for
implementation of the Multiple Hypothesis Testing method for multi-
target tracking, either in a simulation environment or in real
time. First the algorithm is described verbally, followed by a top
level flowchart.

For notations and definitions, see sectio: 1.%. In an
actual implementation the simulated gquantities are received from
sensors.

STEP 1: Set scan counter k=1 and all the control parameters.
STEP 2: Initialize the track and system parameters;

¢, Q. H, R, Pal,|,, Kal,,,, Pr(0), xe 4, Py
STEP 3: Simulate target trajectories.

STEP 4 Simulate measurements.

STEP 5: For each history (or hypothesis) "al", 1 < al < L, ;.
receive unconditional estimation parameters (from STEP 11):

Pal, ., Kaly ;. Pr(k-1), xe, |, 1+ Pyipy
STEP 6: Form gate about
Yeyxik-1 = H Xey,y

and select the Nk sensour reports to be used in filter
updating. A measurement is wvalid if

{yx - yeklk—l}T s vy - Yeyk-11 £ g’

(this is a "g-o¢" elliptical gate).
STEP 7: (1) Identify new histories (or hyvpotheses) "a", for

1 < a £ (1+Nk)*L, ;.
{2) For each hypothesis, compute Pr(k} using equation (11).
(see Appendix B for details.)

STEP 8: For each remaining history (or hypothesis) "a", and each
track within "a"
Compute Ka,,_, using equation (12).
Compute Pa, ,_, using equation (13).

13




STEP 9: For each history {(or hypothesis) "a",
Calculate A, using equation (16).
Calculate Ka,,, using eguation (17).
Calculate Pa, y using equation (18).

STEP 10: Compute new optimal updated estimates xe,,, using
eq. {19). Compute error covariance P,,, using equation

(20).

STEP 11: Predict for next scan data:
Compute Ka,,,,, using eguation (23)
Compute Pa,,,,, using equation (24)
Compute xe,,; , using equation (21)
Compute P,,,|, using equation (22)

STEP 12: GO TO STEP 5 for next scan data and/or output the results.

Figure 1 below provides a top level flow chart of this MHT
process, showing the sequence of events. The important function of
"pruning" the hypothesis tree (to reduce the number of hypothesis
to consider) 1is described very briefly in appendix C. The
clustering process, also to reduce the number of hypothesis to
coneider, is described in appendix D.
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Figure 1. Multiple Hypothesis Test Flowchart.
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4.0 JOINT PROBABILISTIC DATA ASSOCIATION

4.1 Introduction

In this section, a JPDA algorithm for multiple targets in
Poisson clutter 1is presented. This all-neighbors approach
incorporates all observations within a validation region about the
predicted track position into the update of that track. Also, a
given observation can be used to update multiple tracks. Track
update is then based on a probabilistically determined weighted sum
of all observations within the validation region. In fact, the
method performs an averaging over observation-to-track data
association hypothesis that have rougnly comparable 1likeliho.d.
Further, this is a target-oriented approach, in the sense that a
set of established targets is used to form gates in the measurement
space and to compute posterior probabilities, in contrast to the
measurement-oriented algorithm such as MHT, where each measurement
is considered in turn and hypothesized to have come from some
established track, a new target, or clutter (false alarm).

-3
N
»

_—— e wm =N 2 A Yy an
JEPUA ALYUL LW

Step 1: Set k=1 (time index) and all the control parameters.
Step 2: 1Initialize the system parameters; ¢, Q, H, R,

Step 3: Either simulate the target trajectories and sensor
measurements (incluvding clutter etc.), or in a real
implementation, receive and register (scale, time tag etc.)
the sensor data.

Step 4: Validate the measurements using "g-o ellipsoid" gating
test {2g.(10)). Form the validation matrix Q(#): (examples
can be found in (13]).

Qi = {wl#y)}, J=1,2,...,Nm; t=1,2,...,Nt (25)
where
w(#,,) =1 if meas. j is within the gate of
target t (event "#, " occurs) (26)
0 otherwise
Step 5: For each t=1,2,...,Nt compute the residual:
Y = y(i,t) - ye, (27)

Step 6: Compute covariance of Y, at k:

16




S(j,t) = H, P\, B" + R,. (28)
Step 7: Using Bayes' formula, compute the joint event prob.
Poyp(#) = Pri{#iz,}
= (C'rc) * M, —0.5xyT 8T L/ 2SS, ) () )
*x T, M [Pt
« "t 1-e Lt (29)
where 8! = inverse of S(j,t) at scan k (30)

and where the numbers Nt(j), Nc(t) and Nc’'(t) can be
calculated from the validation matrix 9.

Step 8: For each target t=1,2,...,Nt,
compute

B(j,t) = }:i=1“°‘[Phyp(i)*w(j,t;i)} {31)

and for t=0, compute

B(O,t) = 1 - Z,,,""[B(],t)] (32)
Step 9: For each t=1,2,..., Nt,
compute N
Yt = Ly, [B(3,t)*y ). (33)

Step 10: Compute the filter gain AA.:

AA, = P, HZ s, (34)

Step 11: Update the state and covariance:
for each t=1,2,...,Nt,

Xey , = X€p |, + AR XYt (35)

Py = Pyixoy = AAL S(3,t) AA,T (36)

Step 12: Predict for the next scan data:

Xepx = ik Xeyy (37)
Pior e = HPie®” + 6,067 (38)
Yl = Heyr X0k (39)
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step 13: I1If desired, caiculate and output the estimated current
target position, velocity etc., (at time k) from the current
state estimate, xe,,,, or the predicted target position
etc., (at time k+l) using the predicted state estimate
xey,; k- The associated covariance may also be desired.

Step 14: Set k=k+1l and go to the Step 3.

Remark:

In the above algorithm, the joint event probabilities are
computed using equation (29) which is derived under the assumption
that the probability mass function (PMF) of the false measurements
is given by the Poisson PMF (see equation (9~42) of [2]):

p(m) = exp{-Av,}(AV,)" / m! (49)

where X\ is the spatial density of false measurements(i.e., the
average number per unit volume) and V, is the volume of the
validation region. Thus AV, is the expected number of false
measurements in the gate and m is the number of false measurements.

If the PMF is uniformly distributed, then the expression
for the probability should be modified accordinaly (see equation
(9.46) of [2)]).




5.0 CONCLUSIONS

In this report three quite different algorithms for
multiple target tracking in a clutter environment are presented:
Nearest Neighbour Standard Filter (NNSF), Multiple Hypothesis Test
(MHT) and Joint Probabilistic Data Association (JPDA). For further
development towards implementation of the algorithm, the following
comments and suggestions are offered.

1) The main drawback of the NNSF algorithm is that the tracking
performance or accuracy of the filter may become very poor in a
dense target environment because of possible misassociation
(choosing an incorrect measurement for processing by a target
tracking filter). 1It's main advantage is that it 1is easy to
implement and computationally feasible,

2) In the MHT method, the main drawback of the algorithm is that
in a dense target environment the number of hypotheses can increase
exponentially with each scan, leading to computational burden
problems. Hence, for implementation, the development of an
efficient way of pruning the hypotheses tree is necessary.

3) Another disadvantage of the MHT method is that the data
association decision is often deferred, and thus a single best
estimate for the target tracking solution is not always available.
If target execution is desired before the MHT soclution is resolved,
this can be a problem. This problem can likely be overcome by
providing a NNSF-type solution at all times (using the most
probable current hypothesis: ie. using all measurements up to the
current time).

4) One advantage of the MHT method is that it provides a systematic
track initiation procedure.

5) Another advantage of the MHT method is that it is most likely
to have the correct association solution as one of it’s hypothesis
{hopefully the hypothesis assigned highest probability).

6) The JPDA algorithm is a non-back-scan (or zero-ccan) approach,
meaning that all hypotheses are combined after computation of the
probabilities, for each target at each time step. One problem with
this method is that it implies that incorrect measurements are
routinely (and purposely) used by the tracking filters, albeit
hopefully with a lower weighting than the correct measurement. This
method does however have the advantage of being more
computationally efficient than an n-scan algorithm in a heavy
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clutter environment such as sonar tracking.

7) Another difficulty with the JPDA method is in the implementation
of track initiation. Since the MHT algorithm provides a systematic
track initiation procedure, an effective way of combining these two
methods may be of interest.

Suggestionsg:
1) Comparisons of the accuracy performance of these different
algorithms for various target dynamic and clutter models.

2) Comparison of the computational burdens of these algorithms for
various target densities and clutter models.

3) Investigation of ways and means of overcoming the shortcommings
of these methods, especially pruning for the MHT method, and
providing real time output from the MHT method.
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APPE X A: BYPOTHESIS TREE AND HYPOTHESIS MATRIX

Let @, be the set of associaticn hypotheses up to time k.
This set is obtained from @, , and the latest set of measurements
Y, as follows. New hypotheses @, ;, first measurement yl,, then
augmenting the resulting set by associating y2,, etc. The possible
association for the i-th measurement yi, are

a. It is the continuation of a previous history (or track).
b. It is a new track (or target).
c. It is a false alarm {or clutter).

Each target can be associated with at most one current
measurement, which has to fall in its validation region.

Example:

For the configuration of targets and measurements shown in
Fig.1l, the hypothesis tree are formed using the rule mentioned
above. In the hypothesis tree shown in Fig.2, each node represents
the track gqualities:

"0" 1is the false target or false alarm.

"1,2,..." are the confirmed or new targets.

The following figure 2 shows the hy»othesis tree representation of
the hypothesis formation technique cutlined above. Each node of
the tree represents an alternative hypothesis; further branches are
added to each node as a new measurement point is considered.

ZCX Target

I I Measurement

Figure Al, Confiqguration of Targets and Measurements.
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hypothesis numbers

after measurement 13 wcememmmmmmme
after measurement 12 ——c—wcee—-
after measurement 11 -

prior

hypothesis Y\\\\\\\\\\ ’/////0“‘:::::::5 E
2\
4-::::::::0 (H10)
5 (H27)
0 (H4)
o-&:EEEg (H14)

////// (H21)
o a0 (H7)
<<:;\\\ —

‘3¢ 5 (H24)

-0
el
4~4&::::::2 (H17)
5 (H28)

| 0 false target |
| 1, 2: target 1 and 2 |
| 3,4,5:new targets |
| I

Figure A2. Hypothesis Tree for Configuration in Figure Al.
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The hypothesis matrix corresponding to the tree can be
formed as follows.

after the measurement 11

after the measurement 12

after the measurement 13

WA O———— ——
OO OO0 —————

I

I

0 H1l

0 H2

0 H3

0 H4
0 21]0 H5
1 210 K6
3 210 H7
0 41}0 H8
1 ¢10 HO9
2 410 BH1O0
3 4|0 HL
0 0 2 nH12
1 0 2 H13
3 0 2 H14
0 4 2 H15
1 4 2 H16
3 4 2 H17
0 0 5 HI18
1 0 5 HI19
2 0 5 H2C
3 0 5 Bm21
0 2 5 H22
i 2 5 H23
3 2 5 H24
0 4 5 H25
1l 4 5 H26
2 4 5 H27
3 & 5 H28

| hypothesis numbers

Figure A3. Hypothesis matrix corresponding to the hypothesis tree.
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PPENDIX B: HYPOTHESIS PROBABILITIES

In the equation for hypothesis probability in section 3.2
above (eq. (11)), an expression suggested by Reid (eq. (16) of ref.
{11]) is used. Further, the formula is valid for type 1 sensors
such as a scanning radar (which provide a "complete" picturz of
some coverage area in each data set, and hence can provide number-
of-target information). If type 2 sensors such as ESM or a tracking
radar are assumed (which in each report only provide information
about individual targets), some modifications have to be done as
given in [11]). Similar expressions for computation of hypothesis
probabilities in the non-recursive form can be found in Bar-Shalom
[2].

The equation (11) can be easily implemented since it is
given by a recursive form. If all the prior hypotheses are first
multiplied by (1-P,)"*, then as a branch is created for each
measurement and its hypothesized origin, the 1likelihood «f the
branch is found by multiplying the prior probability by either B,
By, OF

Po*N[y,~B,xe, . ,,S]/(1-P;)

as appropriate. After all such branches are generated the
likelihoods are then normalized.

Example

In Figure B2, the hypothesis probabilities are computed for
the hypothesis tree shown in fiqure Bl, in terms of its prior
hypothesis probability and the probability of each branch.

Hl

Figure Bl. Hypothesis Tree.
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Pr(H11l) = Pr(Hl1 )*Pr(T1l)
Pr(H12) = Pr{H11)*Pr(T2)
Pr(H13) = Pr(Hl12)*Pr(T3)
Pr{H14) = Pr(H12)*Pr(T4)
Pr(H15) = Pr(Hi11l)*Pr(T5)
Pr(H16) = Pr(H1S5)*Pr(T6)
Pr(H17) = Pr(HL1S)*Pr(T7)

| | | Prob. of each track.
| | Prob. of prior hypothesis.
| Prob. after new mcasurements.

Figqure B2. Hypothesis Tree Branch Probabilities.

In figure B2 the probability of each track is calculated
using the simple rule in accordance with the track quality:

1/ 1f the mreasurement briongs to false alarm (or false
target), the probability of the track(er branch) is given
by

n
£
-
<
a
=

(Be ) *(1-2,) /.

2/ If the measurement "j" belongs to i-th track, the
corresponding probability is given by P *N[(,S(i)), where
N{a,b] is the Normal (Gaussian) density function associated
with the assignment of the j-th observation to the i-th
track of the prior history and is defined by

NIO,S(i)]) = exp(=d,,*d, /2)
{(2n)"18(1) ]} (B1)

for the residual matrix S(i) and normalized distance

function d;.

3/ 1f an observation belongs to new target, the corresponding
probability is computed by

B, *(1-P,)/c.

Remark:
If the track deletion option is included, then the factor
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g 1/Pe should be properly introduced in the probability
Ccalculations (as per reference [4) pp. 255-260).




APPENDIX C: HYPOTHESIS REDUCTION

Since, in the worst casc, the number of hypotheses can grow
exponentially with time, there is a clear need to limit this
number. Some schemes for doing so include:

a. The first opportunity for limiting hypotheses is

to require an observation to satisfy a gating
relationship before any of the possible track
associations are to be considered to be potentially
valid.

b. The JPDA algorithm, by computing all the
measurements at the current time, considers only the
number of known targets with a single hypothesis per
target.

€. The "N-scan-back" concept, by combining all

histories that have common measurements from k-N to
k.

d. An alternative method is to combine those
hypotheses that similar effects, i.e., same number
of targets but with slightly different state
estimates. The mean and covariance of the resulting
estimate is a combination of the individual estimates
and covariance. At the same time, hypotheses with
negligible probabilities are eliminated,

The method ¢ has been found to be most effective in
practice, and it provides an efficient approximation of the
method d. The process of pruning hypotheses is highly
dependent on the applications. Typical ways of pruning can be
summarized as:

1) To remove hypotheses with probabilities that fall
below some predetermined threshold. Disadvantage of
this method is that it does not take intoc account the
computational capacity.

2) To allow only a predetermined number, say M, of
hypotheses to be maintained by ranking the hypotheses
and choosing only the M most likely ones, as measured
either by the probabilities or the score functions.

3) To rank and sum the probabilities of the more
likely hypotheses. When this sum exceeds a threshold
the rewmaining hypotheses are then eliminated.
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APPENDIX D: CLUSTERING

A cluster is a group of hypotheses and associated tracks
that does not interact with any other group of hypotheses
(contained within other clusters). The hypotheses within a cluster
will not share cbservations with the hypotheses within any other
cluster. The basic purpcse of clustering is to divide the large
tracking problem intoc a number of smaller ones that can be solved
independently. This can greatly reduce the number of bhypotheses
that must be maintained.

The steps in clustering are as follows. Initially, one
cluster is set up for each confirmed target. Each new measurement
is associated with a cluster if it falls in the validation region
of any track from that cluster. A new cluster is initiated any time
an observation is received that does not fall within the gates of
any track contained in an existing cluster. The cluster is
initiated on the observation using the alternatives (true target
or false alarm) associated with its source. In order that clusters
remain distinct, the gates of the tracks within the clusters must
not overlap. Thus, when an observation falls within the gates of
two or more tracks from different clusters, the clusters are
merged. The merging must be done before the observation is
processed. If an observation is associated with mire than one
cluster, then those clusters are combined into a super-cluster.
If tracks within a cluster separate spatially and have nc more
common measurements, the c¢orresponding cluster is subdivided
accordingly into smaller clusters that can be handled separately.
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