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Chapter 1

Introduction

1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) is a term used to describe
single or multilevel networks that use an artificial neuron
as the main processing element. These artificial neurons are
designed to emulate the functions performed by the biological
neurons found in the cerebral cortex. It is obvious to most
computer scientists that there are many classes of problems
that are extremely difficult to solve on a standard sequential
von Neumann computer but are very easy for the mammalian brain
to process. Pattern recognition is one example of these
problems. Programming a von Neumann computer to recognize
objects or patterns is very difficult and minor changes in the
object being recognized can easily cause the programs to fail.
The developing mind of a 2 year old child however can easily
recognize faces of parents, siblings, or hundreds of objects.
These recognitions can easily be made when distortions or

modifications such as changes in scale, rotation, or translation




2
occur. Even lower forms of animal life such as dogs and cats
can recognize sounds, objects, and smells.

In recent years an effort has been made to solve such
problems by enmulating the functions of the cerebral cortex.
The cerebral cortex is composed of around 10 billion to 100
billion cells known as neurons. [14] These neurons are
connected in hierarchical networks with over 10,000 billion
to 100,000 billion connections. A diagram of a biological
neuron is shown in Figure 1! [9]. There are four ma jor parts
of the neuron.

(1) The "Soma" which is the main body of the neuron cell.

(2) An "Axon" which is attached to the soma and produces
an electrical pulse to be transmitted to other neurons.

(3) The "Dendrites" which receive these electrical signals.

(4) The "Synapses" which form the connections where two
dendrites meet.

In order to emulate these cells, mathematical models of
biological neurons have been devised. The sophistication of
these models ranges from very simple to extremely complex.
Detailed mathematical models of the biological neuron can be
very complex. Some researchers believe that these detailed
models should be used, while others believe that only the very
basic functions of the neuron should be included in a model.
This controversy can be partially explained by the uncertainty

that many neurologists have as to exactly which functions of
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Figure 1

Biological Neurons

the neuron are used to process information and which are purely
biological functions. There are however several very basic
models that are used in many simulations, these consist of
a special function operating on the summation of N weighted

inputs. [4]
N
VET, =) I\, (1.1)
1=
CUTPLT = f(NFT ) (1.2)
Where Xi are the inputs from sensors or previous neurons.
f 1is a special function.
Wi are the weights connecting neuron i to neuron j.
Many different methods of connecting and training neurons

have been devised. The function of the electrical connections

from the output of one artificial neuron to the input of another




4
artificial neuron (Xi) is analogous to the function of the
synapses that connect biological neurons to one another. The
strength of the connection that the synapse has with the neuron
influences the ability of the neuron to respond. The strength
of these synapses is analogous to the weights (W:i) in the
numerical model and the values assigned to these weights
determine the function the artificial neuron will perform.

One of the important characteristics of ANNs is that they
can be trained instead of programmed. Training can be
accomplished in a variety of ways. Weights can be preset based
on a numerical analysis of the problem and the network’s
configuration or they can be taught acceptable values. This
teaching process is an iterative process performed by presenting
the inputs to the network with a set of patterns to be recognized
and adjusting weights in order to provide the desired output
response. This later method is of great importance in neural
network design since a formal mathematical analysis of many
problems can be extremely difficult.

An impressive amount of research which utilizes ANNs is
currently being conducted. There is an expectation that
integrated circuits can be designed which implement ANNs
using large scale integration. By designing dense ANN circuits
a large number of problems such as pattern recognition, verbal
word distinction, robotic controls, and signal processing may

be solved.




1.2 Beamformer Arrays

A beamformer array is an array of sensors that is used to
process signals in which direction is an important variable.
In some applications, in which the direction of the source
of a signal is known, a beamformer array can be steered to
pickup the desired signal and filter out the noise being
transmitted from other directions. Another important
application is one in which the direction from which the
information being transmitted is not known. 1In this case the
direction can be determined by analyzing the data received
by the array. Several different methods of determining the
direction of a wavefront can be employed. If the signal being
transmitted has a narrow bandwidth, analog or digital techniques
can be used to analyze the array’s output. From this analysis
the direction of the wavefront can be determined. However
when the signal being transmitted is composed of a wideband
of frequencies more complex methods must be employed to filter
the information in time in order to process only narrow bands
of frequencies. The processing of this information from
wideband beamformers can require the use of many filters and
operational amplifiers or a substantial digital signal
processing effort in order to discern the direction of the

wave.




1.3 Purpose of Dissertation

The purpose of this dissertation is to design and analyze
methods of determining the direction of arrival of a wideband
waveform using a beamformer array and an artificial neural
network. Recent research with neural networks has demonstrated
their ability to distinguish between different patterns. These
patterns consist of events such as sonar signals [10], alphabet
characters [11], and radar signals [12]. Many of these efforts
use preprocessing such as frequency analysis or filtering to
extract important features from the data that would be difficult
for the neural network to process. This preprocessing is
performed on the input signal prior to insertion into the
neural network. In this dissertation outputs from arrays of
sensors are used with little or no preprocessing to demonstrate
how the phase information received from these arrays can be
used to train ANNs to distinguish direction. Comparisons will
be made to demonstrate ANN’s sensitivity to the following
variables.

Design variables:

(1) The number of hidden units.

(2) The number of sensor inputs.

(3) Preprocessing of inputs.

Input variables:
(4) The noise level.

(5) The amplitude range.




(6) The signal’s bandwidth
Other variables:

(7) The network’s dependency on time.

(8) The different training methods being used.

When trying to determine a suitable problem to be worked
with ANNs as opposed to von Neumann computers, two important
criteria should be considered.

(1) Does the problem present computational difficulties
on a von Neumann computer?

(2) Is the problem one that the human brain can easily
process?

The first criteria is definitely met for this problem. The
filtering of the sensor’s outputs into narrowband signals will
require either analog circuits or analog to digital converters
and a nmicroprocessor or special digital signal processing
hardware. If a digital solution is used it will require many
multiplications and additions for each band of directions to
be tested. The second criteria is also met. When viewing a
smooth surface wave on a lake or ocean it is easy to visually
determine the approximate direction from which the wave
approaches. The human brain can process this information in
realtime with very little effort when only one wave is present.
However more effort is required to determine this direction

if the surface is turbulent or if waves from multiple directions
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are present. Since both of these criteria are met the problem
is assumed to be one in which ANNs could provide a quick and

reasonably accurate result.

1.4 Ooutline of Dissertation

In this dissertation the second and third chapters contain
a tutorial on ANNs and beamformer arrays. The information
contained in them is a summary of applicable information
concerning ANNs and Beamformers, such as might be found in a
text or reference book such as [2], [3], [4], [5], [6], [16].
Chapter 2 discusses artificial neuron models, different types
of neural networks, and the evolution of learning algorithms.
Mathematical and graphic examples showing how ANNs are used
to separate linearly separable patterns are also presented.
In Chapter 3 methods of determining a wave’s direction from
a beamformer array are presented for both narrowband and
wideband signals. The classical method of solving the problem
is presented along with some simulation results. A discussion
of previous work is also included. Chapter 4 provides a design
and analysis of an ANN narrowband beamformer. The learning
methods are discussed and a mathematical analysis is used to
calculate the weights and expected output of the network.
Plots for both learned weights and calculated weights are
presented that demonstrate the networks ability to learn and

its sensitivity to amplitude and noise. Chapter 5 provides
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a design and analysis of an ANN wideband beamformer. A
mathematical analysis similar to the one provided for narrow
band beamformers 1is presented in Chapter 5 for wideband
beamformers. Chapter 6 presents a demonstration of ANN wideband
beamformers on an empirical test using seismic data. First
some of the acquired data is used to train a network. After
the network is trained additional test signals are passed
through the network to test its accuracy. In Chapter 6 a
comparison between ANN beamformers and FFT beamformers is
presented. This comparison is made for both narrowband and
wideband beamformers. Chapter 7 presents csonie design criteria
and instructions on how the simulation program can be used to
help test a design’s configuration. Chapter 8 presents a brief
summary on the types of neural computing hardware that are
available commercially at the time of this writing. Chapter
9 presents the conclusions and recommendations for further
research.

The data for most plots contained in this dissertation
were calculated using a program called "VARIABLE WIDEBAND
BEAMFORMER NEURAL NETWORK" (VWBBFNN). This programwas written
specifically for this dissertation. A complete listing of the
program is included in Appendix A along with instructions for
its use and a sample input and output listing. This program
can be used to train networks of 1, 2, 3, or 4 levels of ANNs.

It can process wideband or narrowband signals. The amplitude,
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frequency, and noise ranges are adjustable. The number of
inputs and the 1location of sensors and the network’s
configuration of hidden units can also be designated. After
a network is trained simulated data is used to test the network.
The output response of this simulated data with arrival angles
of 0 to 90 degrees is recorded on a disk file for further
analysis or plotting. The ideal response of a network will
produce a 1 when the angle is within the desired band and a
N clsewhere. A plot of an ideal response is shown in Figure
2.

It is desirable to design or train networks that are
independent of both time and signal frequency so the network
will work in realtime with wideband signals. It is also
desirable for the network to be as insensitive to noise and
amplitude changes as possible. When reviewing the outputs of
these networks it is found that they can almost always be
improved by performing some output averaging. Therefore several
of the plots are presented in two forms. 1In the first form
both the maximum and minimum values of the network over the
period of one cycle are presented. In the second form the
average values of the network are presented. These averages
are found by evaluating the network at 20 random times and
averaging the results. This improvement can easily be
implemented by shunting the output of the final neuron with

a capacitor.
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The time required to train these networks can become quite
lengthy. The simulations were performed on a variety of
computers from PCs to a CRAY Y-MP. 1In Chapter 8 some of these
times are documented to help explain the advantages that might
be gained by using neural computer boards to train and simulate

neural networks.
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Chapter 2

Tutorial On Artificial Neural Networks

2.1 Artificial Neuron Models

There are many different models of the basic neuron
processing elements. Three of the more important and common
ones are: the Adaptive Linear Element, the Perceptron, and the
Backpropagation Perceptron. Each of these has played an

important role in the history of artificial neural networks.

2.1.1 Adaptive Linear Element

The Adaptive Linear Element (ADALINE) or the Multiple
Adaptive Linear Element (MADALINE) are an early form of
artificial neurons developed by Widrow [7] in the early 1960’s.
ADALINEs primarily act as adaptive filters. They can be
implemented by using an operational amplifier, a feedback
resistor, and variable resistors connected to its inputs. An
example is show in Figure 3.

These ADALINEs cannot be used to separate regions in a
pattern recognition problem, since they give analog rather
than discrete answers to a problem. ADALINEs are one of the

oldest forms of artificial neurons.

13
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They have been used in nulling radar jammers and adaptive
equalizers in telephone lines. They can be modeled with the
equation | ='§]\;l\, which is the same form used in a convolution
filter. Therefore ADALINEs can be viewed as adaptive filters.
When multinle ADALINES are used to map a vector representation
into anot...r domain the result can be written as a matrix
multiplication V = WX. It is important to note that multiple
network levels of MADALINES can always be represented in only
one level. For example a three level network V = WiX, X =
W2Y, Y = WaZ can be represented as V = WaiWzWaZ or V = WZ
where A 1s the product of the three matrices, W., W=, and

W>. Since the network can be represented in just one level,

training is greatly simplified.

——Avx%v—q RF

VAR RESISTOR AN

_d\fgx,__ RESISTOR
vAR RESISTCR

INPUTS
—J\Q&V—~
VAR RESISTOR

QUTPUT

o

VAR RESISTOR

Figure 3

Diagram of ADALINE




2.1.2 Perceptrons
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Perceptrons are also an early form of artificial neurons.

They were designed by Rosenblat in 1956.

They are also made

from operational amplifiers and resistors, but a comparator

is connected to the output of tne amplifier in order to yield

a binary 1 or 0 output when the signal is above or below a

specified threshold value respectively. The threshold values

can be implemented by using a constant voltage applied to one

of the inputs.

A diagram of a Perceptron is shown in Figure

4.
—_/\{)/}\,_ql RF
vaR RESISTOR ' A
) r\ RESISTOR —/__
VAR RESISTOR r\\\\\\\\\\ QuTePUT
. |+
——]COMPARATOR
VAR REZISTO r—1’:////////’;>>___—_—__———
' | i
AMNAL_CS ’ |
INPUTS | '
|
THRESHOLD
VAR REISISTOR
Figure 4
Model of Perceptron
2.1.3 Backpropagatio er tron

One commonly used model for the artificial neuron is

the bkackpropagation perceptron.

It can be implemented with
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an operational amplifier, a feedback resistor, N variable input
resistors, and a nonlinear function module. When the nonlinear
function is a simple comparator the model is equivalent to a
Rosenblat perceptron. However this comparator is wusually
replaced by the function /(X)=]T%T to aid in the training
of the network with the backpropagation algorithm. This model

of the neuron is usually designated as shown in Figure 5 and

is connected in hierarchical networks as shown is Figure 6.

INPUTS ig_i\/\ OUTPUT

X4 M&—f’""‘f’#’
Xy

Figure 5

Backpropagation Perceptron

In addition to these inputs known as excitatory inputs
many neurons contain an inhibitory input. When exerted the
inhibitory input will cause the neuron to be turned off
regardless of the excitatory inputs. These inhibitory inputs

are sometimes used on all neurons in one level of a network,
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so that one and only one neuron in that level will turn on.
These levels are know as "winner take all" levels. [4] This
form of competition between neurons is very similar to the
operation of biological networks and helps to develop contrast

between results.

INPUTS CUTPRUTS

Ll @) (@) Q

SENSORS LEVEL 14 LEVEL 2
HIDDEN UNITS

Figure 6

Multilevel ANN

These perceptrons are very similar to threshold elements
[13] and can perform simple logical functions. The inputs to
a perceptron can be either analog or digital. Its outputs
however are digital. This means that the later levels of a
neural network can be used to perform logical functions.

Consider the following three examples.




CASE 1:
Design an "AND" function. (C = A .AND. B)
The equation for the perceptrons are:
AW(1)+BW(2)+W(3) > 0 for A=1 and B=1
< 0 otherwise.
Therefore
W(1L)+W(2)+W(3) > 0O
W(l) +W(3) < O
W(2)+K(3) < O

W(3) < 0.

(2.

(2.
(2.

(2.
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2)
3)
4)

(2.5)

If W(3) is set equal to -1 the inequalities become

W(1)+W(2) > 1
W(l) < 1

W(2) < 1.

(2.6)

(2.

(2.

7)

8)

If W(1) and W(2) are chosen to be 0.7 the three inequalities

will hold and the element will function as an "AND" gate.

.7A+.7B > 1.0

(2.9)

Many weights other than 0.7 could also be used to solve

the inequalities. Threshold values other than -1.0 could also

be chosen. It is these weights and threshold values that must

be set or learned by the network in order to perform the desired

function.
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CASE 2:
Design an "OR" function. (C = A .OR. B)

The equation for the Perceptrons are:

AW(1)+BW(2)+W(3) > O (2.10)
AW(1) +W(3) > O (2.11)
BW(2)+W(3) > O (2.12)

W(3) < 0. (2.13)

If W(3) is set equal to -1 the inequalities becomes

W(1l)+W(2) > 1 (2.14)
W(1) > 1 (2.15)
W(2) > 1. (2.16)

If W(1) and W(2) are chosen to be 1.5 the three inequaliities

will hold and the element will function as an "OR" gate.
1.5A + 1.5B > 1 (2.17)

If negative weights are allowed an inverter can be
implemented with a single weight equal to -1. Since the
functions AND, OR, and INVERT can be implemented with
perceptrons any logical function can be implemented with them.

It is very important to note that even though all logical
functions can be implemented with perceptrons they cannot all
be implemented in one level. It was demonstrated by Minsky
and Papert (1] in their book "Perceptrons" that the EXCLUSIVE-OR
function can only be implemented with two or more levels of

perceptrons. Consider the following problem.
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CASE 3
Design an "EXCLUSIVE-OR" function (C=A .XOR. B)
The equations for the perceptron are:
AW(1) + BW(2) + W(3) <O (2.18)
AW(1) + W(3) > 0O (2.19)
BW(2) + W(3) > O (2.20)
W(3) < 0. (2.21)
Combining (2.19) & (2.20) yields
AW(1l) + BW(2) > -2W(3). (2.22)

Combining (2.22) & (2.18) yields
AW(1) + BW(2) > -W(3) + AW(1) + BW(2) (2.23)
0 > -W(3) OR W(3) > 0. (2.24)

Since it is known from Equation (2.21) that W(3) < 0, the
problem will not have a solution with one perceptron.

The property of perceptrons not inability to perform the
EXCLUSIVE-OR function in one level is of much importance
historically and practically. This function is required in
many problems. If the problems are complex it will be desirable
to train the network rather than design it mathematically.
Until recently it has been extremely difficult to train these
multilevel networks. New advances in training using
backpropagation have greatly enhanced the ability to train

multilevel ANNs.
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2.2 Types of Artificial Neural Networks

When studying the biological neural networks that comprise
the cerebral cortex, it is found to be able to perform many
functions. Among their basic functions are pattern recognition,
sound recognition, speech comprehension, logic, associative
memory, generalization, and interpretation of sensory input.
[17] Different neuron models and different network
configurations have been proposed to provide the best emulation
of different neural functions.

Ssome of the most common network configurations are:
Feedforward Networks, Hopfield Nets, Bidirectional Associative
Memory, Adaptive Resonance Theory, and Counter Propagation.
Some of these configurations require special training
procedures or special neuron models. The weights in these
networks are adjusted in one of two major ways:

(1) by calculation or

(2) by training.

Training is also divided into two main categories:
(1) supervised training and
(2) non-supervised training.
In supervised training known inputs are applied to the network
and the outputs are observed. Adjustments are then made to
the weights in order to change the prevailing outputs into the
desired outputs. After many training sets have been applied

and weights have been adjusted, the network will respond in
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the desired manner. In non-supervised learning various training
sets are applied to the input of the network. As different
features are recognized by the network it will adjust its
weights so different input patterns can be categorized. When
new input patterns are applied the nearest category to the
input will be indicated by the output.

There 1is some concern among researchers as to whether
certain network configurations or learning paradigms should
be used based on how realistically they actually model
biological neural networks. Some researchers believe that
when designing a machine that emulates human brain functions,
it is best to remain as close as possible to an accurate
biological neural network. Others contend that as many
liberties as are required should be taken in order to best
solve the problem being studied. The latter philosophy will

be used in the dissertation.

2.2.1 Feedforward Networks

Feedforward networks or nonrecurrent networks are one of
the most common neural networks used today. A feedforward
network consist of one or more rows of artificial neurons.
The inputs to the first layer come from the sensory outputs.
If more than one level is incorporated in the network design
the outputs from each element of a previous level are fed

forward into the inputs of each element of the next level.
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The connections can be fully connected or sparsely connected.
With fully connected networks each neuron takes its inputs
from every neuron or sensor in the preceding level. In a
feedforward network no neuron is allowed to feedback to a prior
level. An example of a fully connected feedforward network

is shown is Figure 7.

INRPUTS OUTPRPUTS

SENSORS LEVEL 1 LEVEL 2
HIODDEN UNITS
Figure 7

Fully Connected Neural Network

The neurons in the network that precede the output level
are referred to as "hidden units". These hidden units can
pose difficulties in training since their outputs cannot be
measured directly. Feedforward networks have some important
attributes. One of these attributes is their ability to be
unconditionally stable. There is no feedback in the network.

An input vector will simply propagate through the network and
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be mapped into an output vector. Since the network has no
memory it cannot oscillate between states. The output of each
neuron will be constrained by the nonlinear function T—LUT

-

so the output will always be bounded by 1 and 0.

2.2.2 Recurrent Networks

Recurrent Networks, often called Hopfield Nets, are
artificial neural networks which allow feedback loops. The
main processing element is usually a perceptron. Unlike
feedforward networks these networks are not guaranteed to be
unconditionally stable. A typical example of a recurrent
network is shown in Figure 8. In a recurrent network the
output can maintain a "STATE". This state is simply the current
binary vector that is represented by the network’s output.
Since its output state changes in response to changes in inputs
and its current state, oscillations can occur. It has been
shown by Cohen & Grossberg [15] that recurrent networks will
be unconditionally stable if the weight matrix is symmetrical
with all zeroes on the diagonal.

When this criterion is met the network is guaranteed to
converge to a single stable state. The formula used to model

a Hopfield network is [18]

([['l P .
(_“__;:S 71/"/+ll' i=1,2...F

ot e

1 =g (). (2.25)
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Where C is the input electrical Capacitance of the
operational amplifier used to model the
artificial neuron.
Vi is the neuron output.
Ui= the neuron input.
Tis are the weights (synapse strength).
(For the network to be guaranteed stable
Ti+1=0 and Ti53=T31).
g is a nonlinear function.
The energy of the network that converges to a minimum value

is given by the Liapunov function [18]
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In Hopfield nets the weights are calculated and set rather
than trained. There main usage is to find a good solution to
optimization problems. They have been used as Analog to Digital
Converters in which a network with an analog input common to
all neurons will converge to a binary vector representing the
signal’s voltage. [19] Hopfield nets have also been used to
provide a good solution to the Traveling Salesman Problem. [4]
One of the advantages of Hopfield Nets is their ability to
take a corrupted vector and find the best output vector
associated with it. For this reason they are often referred

to as Associative Memory.

2.2.3 Bi-directional Associative Memory

Bi-directional Associative Memory (BAM) like Hopfield Nets
are recurrent networks. The BAM consists of two levels of
neurons in which the second level is fed back into the input
of the first level. The weight matrix of the first level must
be the transpose of the weight matrix of the second level.
An input vector can be inserted at the input of either level.
The output of that level is then a new vector which is associated
with the first. This output vector is then fed to the next
level in the loop. Since the weight matrix of this level is
the transpose of the previous weight matrix, the vector will
be re-associated with the original vector which is the input

in the first weight matrix. This will hold the network in a




27
stable state. Since each vector is mapped back into itself
the network will be unconditionally stable. Like the Hopfield
Nets BAMs can take a partially corrupted vector and find the
correct associations. But unlike the Hopfield Net it is
bidirectional, in that it can accept either the vector or its
associated vector and find the corresponding vector. An example

of a BAM is shown is Figure 9.
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Figure 9

Model of BAM

2.2.4 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) is a form of unsupervised
learning. Instead of being trained with known vectors, rardom
vectors are applied to the inputs of the network. They are
compared with the memories of the network and classified

accordingly. If no matches are found a new category is
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generated. This network model has the advantage of not requiring
that an associated output vector be known for each input vector.
It learns to classify vectors based on similarities recognized
in the training set. This model is similar to biological
neurons, in that it does rot require a supervisor in order to
learn. This ability to learn without supervision can be
disadvantageous. In many cases the features being extracted
from the input vector may not be the most obvious. 1In these
cases supervised learning could provide a solution while ART

would fail.

2.3 Training

Training is the method by which the weights of a neuron
are modified in order to learn the correct network response.
There are two major ways of training networks; statistical and
deterministic. Deterministic training has evolved from the
Delta Rule to more useful me"hods such as Backpropagation.

In order to train a neural network using supervised
training, a set of known vectors must be input into the network
and the outputs must be compared with the known results. Based
on the correctness or error in the result the weights of the
network are adjusted. Training can be a very time consuming
process. One problem, that is common to both biological and
artificial neural networks, is their tendency to forget. When

a set of patterns are presented to a network and weights are
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adjusted to provide correct results, it is found that the first
patterns will usually be forgotten by the time the later
patterns are presented. This problem can be partially solved

by repeatedly presenting all the patterns many times.

2.3.1 The Delta Rule

One of the most important training methods is the Delta Rule.
With the Delta Rule the weights of each neuron are adjusted

by using the following algorithm:

b (n+1)=h (n)+ NN\ pr (2.27)
N= Ny kerr ~ Nor (2.28)

where W(n+l1l) is the new adjusted weight.
W(n) is the o0ld weight.
K is the training rate.
(usually between 0.1 and 1.0)
Xrarcer 1S the known result that corresponds to the input.
Xinpur 1s the input to the neuron.
XouT 1s the output response to input Xziwneur wWith

weights W(n).

It can be noted from the above formula that when the error
term (Xrarser - Xour) 1S zero, no weight modification will
occur. When this term is not zero, training will occur in the
direction and strength that is proportional to it. It should

also be noted that when no input from X:neur excites the neuron
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no modifications are made to the weight associated with this
input. This means that if this input did not contribute to
the error, its weight should not be modified. This algorithm
can be used to train perceptrons in single level networks or
multilevel networks in which desired outputs for each level
are known. However, multilevel networks in which the outputs
for the hidden units are not known present serious problems.
In 1969 Minsky & Papert proved in their book "Perceptrons" [1]
that many important functions such as EXCLUSIVE-OR or Parity
could not be solved in a single level of perceptrons. This
combined with the difficulties encountered in training
multilevel networks did much to deter research on neural
networks during the 1970’s. However in 1986 several
researchers, Rumelhart, Hinton, and Williams developed a
training method for training multilevel networks Kknown as
backpropagation or the Generalized Delta Rule. Backpropagation
was also discovered by Werbos in 1974, and Parker in 1982, but
a book by Rumelhart and McClelland [3] gave a particularly
detailed explanation of these training rules. This discovery
has done much to rekindle interest in neural networks in the

1980’s.

2.3.2 Backpropagation

Backpropagation or the Generalized Delta Rule provides a

method of training all of the weights in amultilevel feedforward
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neural network. The method of training the weights is a
gradient descent method. The change in the error of the network
is calculated with respect to each weight. This value is the

slope of an error curve like the example shown in Figure 10.
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Figure 10

Error Curve

The weights are then adjusted by an amount that is proportional
to the negative slope of the curve. The formula for the error
in the network for the final level in response to N patterns

is

<

Frorar= 2 Ly (2.29)

Pel

Fo=(T,=-0,;)". (2.30)

where Erorar is the total error from the N patterns,
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Er is the error from pattern P,

+3

is the target output value,

0 is the output value.

It should be noted that when only one pattern is presented
the total error will equal (T-0)?, which will form a parabolic
curve similar to the example in Figure 10. This parabola has

a minimum value known as the "global minimum".

The equations modeling neuron (j) are

O,~f(\NFI') (2.31)

NET, =) 1,0,
t=1

where wis is the weight connecting the output of
neuron (1) to neuron (j).
NET is the internal summation of the weighted inputs

to neuron (j).

and f is the nonlinear function -
e

For the output level of the network the error slope can

be calculated as follows.

aF _az;FP_\.aﬁp
oh, 2ok, ok

(2.33)
i

By using the chain rule the derivative of the error due to one

pattern with respect to any weight can be expressed as:
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OFE, 0F, 00, ONIET,

3., 20, ONET, oh . (2.3
Carrying out these differentiations will yield:
Ep . D .
ah}}=—2(/—(ﬂ-/‘(\£f)-0“ (2.35)
The derivative of the nonlinear function /(x)=]j%7 is
frea)=f(x)- (- f(x)). (2.36)
So the formula for adjusting the weights is
Al - - R .
BTT,Z_?"'([’—O’)'(/('\ FTY) (1= f(NFTY)-0,. (2.37)

Since the correction to weight Wi3 is proportional to the
negative derivative of the error, the correction formula will

be
N, = A (I, =0 ) f(NFTY (1= [(NFT))-0,. (2.38)

Where K is the learning rate.

The real power of backpropagation is its ability to train
the hidden units of the network. The training equation must
be modified since the target values, T3, are not known for

~

hidden units. First 6, is defined as In terms of the

INET ,°
output units it can be expressed as
b, =-2-(T-0)f(NET). (2.39)

The training formula is \h ,,=A-:b-0,. From the chain rule the

definition of 0, can be modified to be
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o 2L, f(NET,). (2.40)

i aOp/
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By using the chain rule again, ;;5 can be rewritten in terms
b

of the previous level’s NETs

OE, ONET, . ,
b"'=gaNETN' 20, CfNET ) (2.41)
OR
OF S o
0= ) snEr s W [TVET,). (2.42)
K : pk

From the definition of & for an arbitrary level the formula

can be rewritten as

k
8, = bWy,  fINET,,) (2.43)
OR
k-‘
8,,=F (NET )Y 0, Iy, (2.44)

The training formula for hidden units is then

AW, =K:80,=K-0,  f (NET )Y b, Ivy,. (2.45)
A

The weights are adjusted by adding the correction to the current
weight values.

W,(n+1)=W, (n)+AW, (2.46)

The weight changes are often modified by adding a momentum

term. The momentum term acts as a low pass filter to limit
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oscillations in the training session. It is applied to the
equation as follows.

AW, =K-6-0,+AW,, M (2.47)

Where M is the momentum term.

The choice of a momentum term, M, and a learning rate term,
K, is very important when training a network. If K is too
small the training can take a tremendous amount of time to
converge. If K is too large oscillations can occur and prevent
conversion. Extreme values of M can also affect the time of
convergence. Good values for these constants are usually 0.1
to 1.0. The best values to which the weights should be
initialized are small random values. Care should be taken to
ensure that all weights are not set to the same value. 1If
they are set to the same value and a fully connected network
is used, all weight change calculations will yield the same
value and all weights will remain equal to one another throughout
the training session. During a training session the weights
could possibly fall into a state with all equal wieghts, but
this would be extremely rare. Adding extremely small amounts
of noise to the weights after each training iteration can
prevent this state from developing.

There is a very important problem that often counteracts
the improvements gained by using backpropagation. This problem

is the ability to fall into a "local minimum". These "local
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minima" are locations on the error curve where the slope in
all dimensions is 0. The network might find one of these and
represent this as the correct solution. An example of one of

these error curves with several local minima is shown in Figure

11.
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Figure 11

Error Curve with Local Minima

As was shown in Equations (2.29) and (2.30) the error curve
will be a parabola when one test pattern is used, but when
multiple test patterns are used an error curve composed of the
summation of multiple parabolas will result. It is the summation
of these curves that form the local and global minima like the
ones shown in Figure 11.

A more detailed discussion and derivation of the
backpropagation algorithm can be found in "Parallel Distributed

Processing" [3] by Rumelhart and McClelland.
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2.3.3 Statistical Training
Statistical training is a method of randomly adjusting
weights that eliminates many of the local minima. The basic
procedure is: [4]
(1) Place a vector on the input of the network.
(2) Measure the total error in the output.
(3) Select a weight at random.
Change its value a small random amount.
(4) Re-measure the error.
(5) If the error is decreased keep the change.
Otherwise retain the original weight.
(6) Repeat the procedure until a suitable solution is
reached.
This procedure is analogous to the annealing of metals in

the way it moves from a high energy state to a minimum energy

state. Therefore it is often referred to as "simulated
annealing”. Another form of statistical learning is known as
Boltzmann’s Training. In this form the changes, C, are

determined by the formula
P.=o "M (2.148)

where K is the Boltzmann constant.

T is an artificial temperature determined by
IF(ty=rT,/log(l+t). (2.49)

To is the initial temperature,
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and t is time.

2. i R

It has been demonstrated in an earlier section how the
perceptron can be used to perform simple logic by using one
level of perceptrons. These perceptron equations with variables

A and B take the form:

WaA + W=B + Wa > 0 or (2.50)
WiA + W2=B + Wa < O. (2.51)
The egquation W.A + W2B + Ws = O describes a straight line.

The perceptron therefore can be used to separate points above
the line from those below it. If three inputs are used in the
perceptron this line will become a plane in three dimensional
space. If N inputs are used it will be expanded into N
dimensions and define an N-1 dimensional hyperplane that divides
an N dimensional hypervolume. When additional 1levels of
perceptrons are used the complexity of the pattern being
distinguished can be increased. A two-level network for
example can be used to separate any convex region from its
background. Three levels of neurons can be used to separate
any regions regardless of their geometry. Consider the

following example shown in Figure 12.
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Figure 12

Example of Linearly Separable Region

One perceptron could be used to separate points above line
AB, another to separate points to the left of line CD and
another to separaté points below EF. If a second level of
perceptrons is used to "AND" the outputs of the first three
perceptrons, the convex region can be separated from all other
points. An example of a convex region is shown in the shaded
area of Figure 12. Any region or set of regions can be divided
into a set of convex regions. A third level of perceptrons
can then be used to "OR" together the convex regions and thus
separate any regions from all other points.

This provides a very powerful tool for use in pattern
recognition problems. With this ability a network can be

designed and trained to separate any pattern from its background
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or another pattern. The network will be unconditionally stable
and its output will be bounded by 1 and 0. It can be implemented
in only three levels of perceptrons and will operate in realtime
with a propagation delay of only three delay units. Where a
delay unit is the propagation delay per level of perceptrons.

There are however several major problems with this form
of network:
(1) Training times can be extremely long when backpropagation
is used.
(2) The number of hidden units required to work difficult
geometries can be very high.

(3) The training solution can fall into a "local minimum".




Chapter 3

Beamformer Fundamentals

3.1 Basic Tvpes of Reamformers

Beamformer arrays are used in a variety of different
applications. The array can be of any size, but the basic
operation is usually one of two functions. Either the
information received by the array is processed in order to
indicate the direction from which a wave is approaching or if
the direction is already known, the information is processed
by steering the beamformer in the direction oi1 the wave. If
the wave is steered toward the source of the signal, noise
from other sources will partially cancel and an improved signal

to noise ratio of the signal of interest will be realized.

3.2 Narrowband Beamformer

When a wavefront approaches an array of sensors like the
one shown in Figure 13, the array will sample the wave in space
as well as in time. If instantaneous measurements are recorded

on all N sensors, and if the wave is a single frequency sinusoid

41
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the resulting vector can be represented by the following
equation

", =SINwt+ai). (3.1)

2nd - SIN(CO)
A

where a=

and 2ni is the wave number.
w is the waves frequency.
d is the distance between sensors.
A is the wavelength.
0 is the arrival angle

and t is time.

SENSORS

Figure 13

Beamformer Array

Therefore at any instantaneous point is time with the
signal frequency held constant, the output, Vi, viewed over

space will be a sinusoid whose phase is determined by the
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arrival angle, ¢, :the distance between sensors, d, and the
wavelength, A.

The angle of approach, 0, can be determined by analyzing
the space sampled information. The output of this analysis
will be a function of both the angle of approach, the frequency
of the wave being studied, and the propagation speed of the
media through which the wave is traveling. If the propagation
speed and the wave frequency are known, the angle of approach
can be determined from the space sampled data.

One implementation often used to process the output of a
beamformer array consist of an operational amplifier used to

sum the output. If N sensors are summed the resulting output

will be:
A=) A=l
OUTPUT =) 1= SIN(w!+ai) (3.2)
=0 im0
N
SINf—a [ N\ -]
01rﬁzr:——L%J-uxwun—Lf—la)fm-axo
SIN{za) 2

OUTPUT =N\ -SIN(wt) for a=0. (3.3)

The amplitude of this output is the term

for a%0

for a=0 (3..H)

This output will be a maximum when a =0 (when the wave is

parallel to the line of sensors and perpendicular to the
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boresight). This is known as the steered direction. Depending
on the number of sensors, N, the output may have several
sidelobes which can allow noise from directions other than 0
degrees to interfere with the received signal.

If it is desired to know the direction from which a signal
propagates, multiple beamformer arrays could be used. These
arrays could each be aligned in the direction perpendicular
to the direction it was designed to observe. The array with
the highest output would indicate the direction from which the
wave was approaching. A more practical method would be to
process the information from the same array through multiple
operational amplifiers each of which is designed to respond
to a different angle of arrival. This steering can be
accomplished by placing an appropriate time delay at each input
to the operational amplifier so the summation equation will

be

N-1i
V=) SIN(w(t-A)+ai). (3.5)

1=0
Where A, is the time delay.

If wA, is equal to ai the beamformer will be steered toward

_ 2mdSIN(8)

angle 0. Since a-= = the delay should therefore be set

for
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21id SIN(0
A, = 21U SINGD) (3.6)
WA
N idSIN(0)
=" PROPAGCATION VELOCITY

(3.7)

Another way of accomplishing beamformer steering is by

multiplying the signal by e ’* in order to shift it by the

appropriate phase. (i is the sensor index and j is -1).

N-1
1= ) [SIN(wt+ai)]e '™ (3.8)
=0

N-1 _-j2ai

=) 2

=0

[SIN(wt)+ jCOS(wi)] (3.9)

The phase of the sine wave will no longer be a function of the
wavenumber, a. Therefore the steering can be accomplished by
multiplying the sensor’s output by the weight IL',=¢ '%., This
phase adjustment seems to be the simpler of the two methods
but the weight’s value will be a function of w. This will
not present a problem if w 1is a constant, but if w varies
and covers a large bandwidth additional processing will be

required.

3.3 Wideband Beamformers

When the operation of a beamformer over a large bandwidth
is desired, changes to the beamformer processing must be made.
Since the frequency of the wave is not constant the resulting

sensor output will be a function of w as well as O.




46
1, =SIN(g(w. 1)+ f(0.1)) (3.10)
From equation 3.1
Implementation of wideband beamformers is sometimes
accomplished by bandpass filtering the output of each sensor

into narrow bands and then processing each band through a

narrowband beamformer. An example is shown in Figure 14.

INPUTS

BENSORS //7;T\\

BANDPASS

FILTERS
NARROW-BAND ] l l l [ ] l
BEAMFORMERS - —_ -
OUTPUTS DIRECTION 4 DIRECTION 2 DIRECTION 3 DIRECTICN 4

Figure 14

Wideband Beamformer

When the direction of a wavefront is known and it is desired
to focus on the signal source, steering can be accomplished
by placing time delays in the lines. This can be performed
just as was done with narrowband beamformers. However, a phase
delay cannot be used to shift the phase since the phase is a

function of frequency and the frequency is not constant. 1In




47
order to process these wideband signals they must be filtered
into narrow bands and processed separately. One novel method
of implementing this filtering and subsequent phase shifting
has been reported by Follett [5]. This method incorporates
the use of Discrete Fourier Transforms or Fast Fourier

Transforms to process the digitized sensor outputs.

3.4 Previous Work

An extensive amount of literature has been published over
the past two decades on beamformer arrays. Specialized systems
for seismic, sonar, radar, and radio telescope arrays have
been reported and analyzed. [16] Three of these systems which
represent the progress in beamformer arrays and Neural Networks
are described below. First one system using an FFT beamformer
is described. Another form of these beamformers which uses
the earliest form of artificial neuron, the ADALINE, is also
discussed. Lastly some more recent research combining both

beamformers and Hopfield Networks is presented.

3.4.1 Fast Fourier Transform Wideband Beamformer

Cne method o>f processing wideband beamformer arrays is
with a Fast Fourier Transform (FFT) Beamformer. [5] With such
a system an FFT or Discrete Fourier Transform (DFT) is performed
on the output of the sensor data. This first DFT filters the
data into narrowbands. The output of each frequency band is

then routed to another Fourier Transform where the space sampled
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data is transformed into a domain which represent the wave
number of the space sampled signal. It should be noted that
the equation used to add the phase delay to the sensor outputs
is

N-1
Ig= > X%, (3.11)
te |
This equation is mathematically equivalent to the Discrete

Fourier Transform which is
N-1 .
Fo= Y fe 7t (3.12)

If the number of time samples and the number of sensors are
a power of two an FFT can be used to calculate these shifts.
The data can then be re-routed to an Inverse Fourier Transform
where it can be transformed back into the time domain.

To demonstrate the use of Fourier Transforms in processing
beamformer arrays, the angle response of a narrow band signal
was plotted for 9 bands. The DFT was evaluated at equal phase
increments which translated into arrival angles of 0.0, 7.18,
14.48, 22.02, 30.00, 38.68, 48.59, 61.04, and 90.00 degrees.

These values were calculated from Equation (3.1).

2nd SIN(O
q = 2N (©)

3.13
X ( )

or

ai

=SIN'| — .
0 (2nd) (3.14)
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If the sensor distance, d, is set equal one half the
wavelength, %A, the formula reduces to()=SlN"(%). As the phase
varies from 0 to 1 the arrival angle, 0, will vary from 0 to
90 degrees.
The bandwidth can be determined by the following formula
taken from Follet [5].

I | -
7—}500(0). Iois array lenglh (3.15)
/

or

3

A
BW, =2 .88(’)( 7). near endfire (3.17)
\ L

\

A table that shows the relationship between phases arrival

angles and bandwidth is shown is Table 1.

Phase Arrival Angle Bandwidth
Degrees Degrees Degrees
0 0.00 5.08
20 6.38 5.11
40 12.84 5.21
60 19.47 5.38
&0 26.39 5.67

100 33.75 6.11
120 41.81 6.81
140 51.06 8.08
160 62.73 11.08
180 90.00 34.00
Table 1
Bandwidth of Arrival Angles

It should be noted that the spacing of d was set equal to

one half the wavelength of the wave. This wavelength is a




50
function of the frequency of the wave and the velocity at which
it travels. This selection of sensor spacing, d, tunes the
array to work at a specific frequency. If wideband signals
are to be detected, modifications to the system must be made.
One solution to this problem can be achieved by using multiple
arrays of sensors known as sub-arrays. The output of each
sensor in each array is converted into the frequency domain
with a DFT or FFT. When the data is routed to the next level
of the FFT beamformer only the frequencies corresponding to
the sub-array’s tuned frequency will be included in the routing.

There are several problems that should be noted with the
DFT method of processing. First there are sidebands that
could be mistaken for the main signal. Secondly, when equal
phase increments are used, (which is a requirement for FFTs)
the resulting arrival angles will be defined sharply for lower
angles and very coursely for higher angles. When the wave
direction is not known it will be more useful to have equal
arrival angle detection. An FFT narrowband beamformer example
is shown in Figure 15. The angle response of a wideband
beamformer is shown in Figure 16. In this example 20 sub-arrays
were used to analyze data with a bandwidth of 30 to 300 Hz.
This wideband example is clearly inferior to the narrowband
example. FFT beamformers have several important advantages.

They have the capability of detecting signals from different
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directions concurrently. They also can provide a time history
output. This can be of great importance in determining not
only the direction of the signal but its signature as well.
The FFT beamformer plots are presented with the appropriate
3 db passband superimposed on each plot. The 3 db passband
is the band between the half power points. These half power
points are the locations where the signal is attenuated by a

factor of 0.707.

3.4.2 Adaptive Beamformers with ADALINES

Artificial Neural Networks have been used in the form of
ADALINES in numerous applications. Many of these have been
reported by Widrow, the inventor of the ADALINE, and Stearns.
[7] The ADALINE is primarily an adaptive filter. In beamformer
arrays they can be used to adapt for noise cancelation or array
steering. In many of these applications the least-mean-square
(LMS) algorithm is used. This is the algorithm on which the
Delta Rule was based. 1In this algorithm the square of the
error is minimized by adjusting weights on the ADALINE until
an optimum filter has been adapted. A pilot signal is often
used to provide a source with which to train the network.
These networks provide an analog output just as the FFT
beamformer method does. When a pilot signal is used to train
the network, it will allow the network to adapt to interference

or noise signals that can be unique to a particular environment.
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3.4.3 Beamforming with Hopfield Networks
Methods of using Hopfield Networks to determine the angle
of arrival have been reported by Park {20], Rastogi, et al
[21], and Goryn and Kaveh [28]. A summary taken from their
work follows. In these efforts the wave number of a narrowband
signal or the frequency of a time sampled signal can be
determined. Multiple frequencies can be determined with the

network shown in Figure 17.

INPUT  (I)

WEIGHTS
BETWEEN
OUTPUT & INRPUTS

7

L~

RESI%TOF ©5 80 RESIZTOR

i = ’__{,/ =
| ) —K \ .
CAPACITOR CAPACITOR CAPACITOR

DUTRUT (V)
HOPFIELD AND TANK NEURAL NETWORK MODEL
(FROM GORYN & KAVEH (28] )
Figure 17

Hopfield Network for Beamforming

In this network the input is a function of frequency,
phase, and amplitude. The output is a 1 or a 0, which corresponds
to the presence or absence of a signal in the form: ( taken

from Rastogi’s derivation [21])
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. 10, Jw, 2w INw, T . -
S,=ae ‘e ‘e ,...e } for frequency detection (3.17)

or
d o
~ 120 =SIN(O)f J(M-1)2n=SIN(9)]f -
S,=U e S ‘ '] (3.18)
for arrival angle detection.
The error to be minimized in the network is

(3.19)

F=17-1S,.S,...S,l" 3.

Where y is the analog input

Si is the signal vector described above.

V is the binary output vector.

Manipulation of this formula can be shown to yield
E=y'y+17S's1 -4's1 -1 78"y, (3.20)
Since Equation (3.20) is being minimized with respect to V,

terms without V can be removed.

F=1"'S'SI'=-2-R(y'Sl) (3.21)
Since Ti11=0 for stability the term must be subtracted
T P‘
F=175'S1=2-R(/'S1 )= D ((SISHL (1= 1)). (3.22)
t=|
This equation can be further manipulated to become
roor r.
Fag| 2 2ASISOUL =) (278, + SISO |, (3.23)

[
<o

-~
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(t is the transpose conjugate & T is the transpose)
Comparison of this formula with the energy function for the

Hopfie d Net,

1{,P, {Z
[f=-=" T 1,1 A0 3.2
23PN (320
shows that the feedback weights, T, should be equal to

A =—2${3f9,| (3.29)

t

and the input weight should be
SIS . (3.26)

The weights for the feedback can be calculated from the known
values of Si,. However the weights for the inputs must be
calculated from the input vector and the Si vector. When the
network converges, each output neuron will take on an output
value of 1 or 0 indicating the presence or absence of a wave
of the corresponding amplitude, phase, and frequency.
Simulations made by Rastini, et al [21] were very successful
in detecting the input’s frequency spectrum when the SNR was
5 ab.

This network has a very important advantage when used to
detect angles of arrival, in that it can detect multiple arrival
angles. The network can also provide very fine accuracy in
the angle being resolved. There are however several important

disadvantages. One is the problem of setting the weights for
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the network. The inputs weights are a function of the input,
yi. This means that the vector multiplication between y and
S must be performed for each input set. The network also
requires a large quantity of neurons. One for each combination
of angle, phase, and amplitude to be detected. Park and Rastogi
have both reported ways of reducing this number of neurons,
but considerable preprocessing is still required. Goryn and
Kaveh have extended the procedure to include wideband signals,
but preprocessing is still required including a DFT on the
input data. An example of the angle response of a narrowband
beamformer designed with an Hopfield net is shown in Figure
18. This network was designed using 50 gages and 90 neurons
for 90 evenly spaced arrival angles. The network was tested
by generating a signal of each angle and processing it through

the network with 12 iterations of the following formula.

}'.
Wk Dy =, () e N 1+ (3.27)

1y ' 1

=
Co=fCa )y TG s the nonhear tunclion.,
This formula is a discrete version of Equation (2.25) which
models the Hopfield network.
In Figure 19 an example is shown in which three different
arrival wngles are presented to the network. These angles
were 10, 50, and 62 degrees. After 6 iterations all three

angles were correctly identified.
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When training examples can be submitted to a network in
order to teach it the proper response, an important improvement
can be realized. All of the beamformer algorithms presented
so far consider a situation in which the propagation speed is
constant and the wave is approaching from one direction. This
may be accurate for some applications but for many others the
propagation speed will vary if the media through which it
travels is not homogeneous. Reflections and echos are of a
considerable consequence in both seismic and sonar
applications. To address these problems more thoroughly
feedforward networks can be trained with known signals to
provide beamformers which adapt to the environmental

characteristics and provide a more accurate response.
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Chapter 4
Model of Narrowband Beamformer

4.1 Beamformer Array Processing with ANNs

Artificial Neural Networks provide an interesting way of
processing the information received from beamformer arrays.
When the desired application is one of determining the direction
of the received signal, ANNs offer several advantages over
digital signal processing networks. Rather than requiring
special processing modules such as analog to digital converters
or special digital signal processing circuits the ANN provides
a system which will accept the sensor’s analog output and
produce a digital output that represents the presence or absence
of a wave received from a designated direction. ANNs operate
in realtime with very small propagation delays. However, ANNs
lack the precision and qualitative results that can be provided
with conventional methods of signal processing. As will be
demonstrated, ANNs offer good performance in the presence of
both random and correlated noise. They also offer good immunity

to variations in amplitude.

61
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4.2 i Narrowband Beamformer
The problem of designing a narrowband beamformer to
determine the arrival angle from space sampled data can be
solved by using ANNs. However this cannot be done with one
level of perceptrons. This becomes apparent when the formula

for the perceptron is considered. [4]

]
OUTPUT = ——%7 (kD)

I +o

Where NET = }_ h' -5,

N
1=
Since the received signal, Si, is a bipolar cyclic signal there
will be a time when Si+e = -Si. Therefore, for every +NET
result there will also be a -NET result. Since +NET should
turn the perceptron on, -NET will definitely turn it off. This
can also be seen from a graph of the 2 signal system shown in

Figure 20. In this plot the output of a two sensor system is

plotted. Three signals are presented. These signals are:

(1) SENSOR,=SIN(wt) ; SENSOR, =SIN(wl+a,)
(2) SENSOR,=SIN(wt) ; SENSOR, =SIN(wt+a,)
(3) SENSOR,=SIN(wt) : SENSOR, =SIN(wt+a,)

a,=nSIN(w,). 0,=20°, 0,=30°, 0,=10°.

The problem for the ANN to learn and process is one of separating

each of these signals. It is obvious that these signals cannot
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be linearly separated. There is no way one straight line can
be drawn separating any of the curves into two linearly separable

regions.

ARRIVAL ANGELS

'\\\\\\\\\\-4o DEGREES
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_

Figure 20

Graph of 2 Signal System

In order to design a narrowband beamformer multiple
perceptrons will be required. It is suggested that this can
be done by dividing the waveform to be analyzed into segments
and then designing each perceptron in the first level of the
network to key on one and only one segment of the waveform.
The segments which make up the desired response are then OR’ed
together with a final perceptron. An example of such a network

is shown is Figure 21.
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Figure 21

Segmented Network

In this chapter four methods are used to demonstrate how
the weights for the network can be found. These methods are:
(1) By Mathematical Analysis.

(2) By training each level of the network separately with the
Delta Rule and knowledge of what the output of each level
should be.

(3) By Backpropagation training.

(4) By using preprocessing of the sensor inputs and

Backpropagation.
4.3 Mathematical Analysis of Beamformer

When the approximate formula of the input signal is known,
a mathematical analysis can be performed ard values for the

weights can be calculated. The basic conditions to be satisfied
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for each of the arrival angle bands, g, and time segment, t,

are:

() OUTPUT = f(NET) =1 for 6,>6>0, and t,>t>t,
(2) OUTPUT = f(NET) = 0 for 6,<0 and for all t
(3) OUTPUT = f(NET) = O for 0,>0 and for all t

(1) OUTPUT = f(NET) = Don't Care Otherwise.
Since the sigmoid function, f(XJ?T)=T:}U;, is monotonically
increasing and bounded by 0 and 1, it will approcach 1 as NET
becomes very large and 0 as NET becomes very small.

Therefore for f(NET) to equal 1 the following inequality
must be satisfied.

N >0 \/?f=};h18:—771k£€HIOLD: S, =B -SIN(wt+ia))

or

N BESIN(ut i) > THRESIOLD (1.2)

For f£f(NET) to equal 0, the opposite of the above inequality
must be solved.

Nl BeSINQutra )<< THRESIOLD (1.3)

_2nd SIN(0)

o
A

Where (O is the arrival angle,
A is the wave length.
B is the amplitude of the waveform.

d is the distance between sensors.
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To minimize the error, the formula

- 2ndSIN(6
V= thl. B.SIN(u,u-(L—)\L)» THRESHOLD (+.1)

should be maximized for 0,<6<606,, and the formula

. 21d SIN(O
= Z W, - B-SlN(wHi—]—)\—())« THRESHOLD (H5)
(=]

should be minimized for 6,<6<90° and 0°<6<0, for all t.
The expected values of these formulas are found to be

t

92‘ N
511*1:/ f(())ff(t)Z[;"'B~SlN(zz't+ia)(1(({9 (1.6)
0, =l

0

a=(2“’;”)sm(e).

where f(06) and f(t) are probability density functions.
The probability of any arrival angle, 6, or time segment, t,

of the sine wave is usually a uniform distribution. The result

of the integration yields

(+.7)

E(V]=

s 0?
l R j
. b, | B-(COS(wt,+ia)-COS(wt,+ia))do.
w(t,—t)) 92“9121’ A ( ’ ) (et
!

This formula can be solved by composite numerical integration.
The maximum values for the function OUTPUT =) I, f(i) should

occur when they are fully correlated with f{i)=Wi. Therefore

the weights are calculated to be equal to the above formula.
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To demonstrate the effect of these weights the equation

can be tested with the known signal, .1:SIN(wt+ai). The output
of the neuron can be expressed as

OUTPUT=f(NET). (1.8)

-

where NET =  .1%”\(u(+a(yl{P

=

Ll

Substituting the calculated values for Wi into this formula
and writing ti and t- in terms of the width of the time segment
and the center of the time segment yields:

|
OUTPUT = ——— (1.9)

|+ VH

g .
2B ‘ \\ k r ,
\ = 5 0——-814\(4(11[,‘) CSIN(ut+ia) | SIN(ut, +i{a)d0 (1.10)
v | = 3

(L, 1) (. -1))

[, = ——— and (, =
2

!

_2ud

a SIN(O).

It can be noted that this formula will provide high values
proportional to A, and S/\C(w!,). Therefore the more hidden
neurons that are used tc subdivide the waveform into small
time segments, tn, the higher the neuron’s NET output will be.

A plot of this formula’s response is shown in Figure 22.
In this example the formula is evaluated with 0, and 0. equal
to 20 and 30 degrees respectively. The time segment was

centered at zero, (t<=0). The phase can be calculated from




68
the arrival angle by the formula aszdTqu This plot of the
perceptron’s output as a function of time and arrival angle
demonstrates that the neuron fires when the signal is in both
the correct angle bin and time segment bin. The plot also

demonstrates that when the signal is outside the correct angle

bin the result will be zero.

>
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)Y ‘Yg SIS D — X
T{_}\_\% \\\‘-\\\f‘\‘\\\\\\\ \\‘7\‘\»\_\4‘\
V2L N\ 3. ADTS 6.40 DTS TG
W - <&
Figure 22
Mathematically Designed Response

One problem should be noted. No matter what angle is being
applied to the perceptron, there can be times when the amplitude,
A, can be high enough to cause the neuron to excite.

After the outputs of each segment are calculated, they are
OR’ed together using one perceptron to provide the desired

output. The plot in Figure 22 does not necessarily represent
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the optimum solution to the problem. It represents only one
of many possible solutions and could be one of the local minima

into which a backpropagation routine can fall.

4.4 Results of Mathematically Designed Beamformer

Several simulations were made using the weights derived

with Equation (4.7). Each simulation set consist of 9
simulations for 9 different arrival angles. These arrival
angles were 0-10, 10-20, 20-30, ... 80-90 degrees. The

simulations were made using 10 sensor inputs and 2, 3, and 20
hidden units. Plots of these simulations are shown in Figures
23, 24, and 25. Simulations were also run for networks with
4,5 and 10 hidden units. These networks showed very little
difference to the ones with 3 and 20 hidden units.

These plots demonstrate that when the number of hidden
units is increased to around 4 the network’s ability to determine
the correct direction is greatly improved. The piots also
demonstrate that the lower arrival angles can be identified
more accurately than higher arrival angles. A comparison was
made between the FFT narrowband beamformer shown is Figure 15
and the mathematically designed beamformer in Figure 25. The
percent of correct responses for the FFT beamformer was 97%
while the mathematically designed beamformer was only 76%.
This was primarily due to the mathematically designed

beamformers poor performance for high arrival angles. A
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comparison itemized by arrival angle is shown in Table 2. It
should be noted that the mathematically designed beamformer
is designed to detect equal arrival angles but the DFT beamtormer

detects equal phases.

Arrival % Correct, % Correct,
Angle DFT Math
Beamformer Beamformer
(20 Hidden Units)

0 to 10 92.75
0.0 to 3.17 98.33

10 to 20 86.81
3.98 to 10.38 96.67

20 to 30 87.36
11.2 to 17.75 97.22

30 to 40 84.63
18.6 to 25.45 97.22

40 to 50 71.69
26.3 to 33.66 97.22

50 to 60 68.42
34.6 to 42.75 96.66

60 to 70 61.58
43.7 to 53.38 96.11

70 to 80 63.92
54.4 to 67.59 96.67

80 to 906 66.83
67.6 to 90. 99.44

Table 2
Comparison between Beamformers
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Mathematically Designed ANN Using 20 Hidden Units
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4.5 Delta Rule Training of Narrowband Beamformer

The first training method that will be used to train the
narrowband beamformer is the Delta Rule. When using the Delta
Rule each level is trained independently based on knowledge
of what that level’s output should be. The network shown in

Figure 26 is used.

4 SEGMENT HIDDEN UNITS

INPUT 1
SECOND LEVEL

INPUT 2

INPUT 3 = S BN ©)

QUTPUT 2
INPUT 4

INPUT M

Figure 26

Narrowband Beamformer for One Arrival Angle

Many neural network models are divided into two main
sections. The first section performs "feature extraction" to
separate the data’s important characteristics needed by the
second level. The second level is the iietwork that learns to
process these features and learns the correct response to
different stimuli. The networks in Figure 26 can be considered
to be such a system. The first level extracts the features

which are the different time segments of the angle to be
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detected and the second level is trained to give the proper
response.

To implement this model each arrival angle band is trained
separately. Every input sensor is connected to every hidden
level neuron. Each hidden level neuron is designed to respond
to the presence of one segment of one arrival angle band. The
outputs of the hidden units within a segment are then combined
in the second level to provide an output that represents the
presence of a signal within the arrival band at any time. The
following procedure is used to train each of the networks.

(1) Equation (4.7) is used to calculate the weights for
each seoment of the first level.

(2) The last level is trained using the Delta Rule to
provide an optimum set of weights for the final level.

This method is a very practical method of training the
network. When the output of the hidden units can be determined
by training or analysis, the Delta Rule will provide a fast

method of calculating optimum weights for the Jinal level.

4.6 Results of Training with the Delta Rule.

The network desianed in the previous section was used to
simulate the same three configurations presented in the previous
section. The first level was trained using Equation (4.7).
Tiie network was implemented using 2, 3, and 20 hidden units.

Simulations using 5 and 10 hidden units were also implemented,
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but they were almost identical to the simulations conducted
with 3 and 20 hidden units. The final level was trained with
the Delta Rule. A learning rate between .1 and .3 and a
momentum term of .9 were used in the learning algorithm. These
values were chosen by trying various sets and noticing which
ones caused the network to converge faster. The rate of
convergence and the minima, local or global, to which the
network converges is a function of the input patterns used to
train the network and the random values to which the weights
are initially set. Since the values are not deterministic,
they must be approximated from experimental results.
Adjustments to the weights were made after every pattern was
presented to the network.

The results of these three simulations are shown in Figures
27 through 29. These plots indicate that when the final
perceptrons are trained to find optimum weights for this last
level the results will be improved. These plots are still far
from ideal. The highest angles are still very erroneous and
the transition bands are not sharp. When the weights for the
first level of perceptrons were calculated, it was assumed
that each element should represent an equal time segment. This
was not a good assumption. It would ke desirable to allow the
first level of perceptrons to train also so they could find

values that were more near the optimum level. A comparison

between the mathematically designed beamformer and the Delta
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Rule trained beamformer is shown in Table 3. This comparison
indicates that training can provide better results than the
mathematical method used previously. Comparing Table 3 with
Table 2 indicates that neither the Delta Rule training method
nor the mathematical method are nearly as accurate as the DFT

approach. It can be noted that the DFT beamformer’s worst

o

arrival angle gave 96.11 correct response while the

mathematical and Delta Rule beamformers’ best arrival angle

[=3

gave only 92.75 % and 93.31 % correct results respectively.

Arrival Math Designed Delta Rule
Angle Beamformer Beamformer
(20 Hidden Units){ (20 Hidden Units)
0 - 10 92.75 91.64
10 - 20 86.81 92.69
20 - 30 87.36 93.28
30 - 40 84.63 93.31
40 - 50 71.69 90.61
50 - 60 68.42 85.58
60 - 70 61.58 72.06
70 - 80 63.92 79.97
80 - 90 66.83 72.28
Table 3

Comparison of Delta Rule Beamformer

4.7 Backpropagation Training of Beamformer

Backpropagation is the preferred method for training such
a network. With backpropagation no mathematical analysis or
prior knowledge about the hidden level’s outputs is required.

To demonstrate this backpropagation was used to train a network
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Delta Rule Trained ANN with 2 Hidden Units

“de.  de. de.  de. do. S TR

= BRAIVAL ANGLES 80.8 - 90.0
5 W AT
a
o
% T T “I’WM - 1
d. le. 20. do. q S0, g 7o. do. do. loe.

d. le. Ze. do. 49 5 dg. 7. ds. da. f20.
{e. Jo. de. g do.  &go. 7. do.  de. lao.

d. 10, Jo. de. Y 58, 80. 73, d0. do. leo.

e, de. 85 e

0.

7—-*~~— o 4]0. Srﬁ - £ 1%. H:}E.-—vﬂ gﬂi ’ —dG ) _W?mw.




79

“_ARRIVAL ANGLES 80.0 - 90.0

m.%ﬂPUTl

e T

T T T T
a. le. 20. 0. 40, e, g
ANGLE - DEGREE

I aiatal

2.
S
. ARRIVAL ANGLES 70.0 - 80.0

0. BV o

ANGLE - DEGREES
< ARRIVAL ANGLES 60.@ - 70.0

] m

m [HJTPUT

ANGLE - DEGREES
S ARRIVAL ANGLES 50.¢ - 60.0

-

oD

o

5

s

°g. {o. Jo. 0. 40, 5e, €o. 7e. 0. do. {o0.
ANGLE - DEGREES

S_ARRIVAL ANGLES 40.0 - 50.0

=

a

2

]

<. lo. Zo. 3o. de. 9o, ge. 70. do. de. loe.
ANGLE - DEGREES

= RARR[VAL ANGLES

-

=

s |

==

5. Je. s e, go. 7. do. de. TS

RNGLF - DEGREES
= fRRIVAL ANGLES 28.0 -

g

&

=3

L. {@. 'Y 30, 0. 7e. do. do. loo
RNGLE ~ DEGREES

9 ARRIVAL ANGLES 10.0 8.2

: j V\X

Je. 30. 4e. 50, €o. 70. da. da. {og.

ANGLE - DEGREES

2 ORHIVA, ENGLES . - io.0

:"V,/’ v\’\

3= N

G -

=3. e, Jo. ELY do. e, €g.  78. do. do. Toe.

ANGLE - HEBREFS

Figure 28

Delta Rule Trained ANN with 3 Hidden Units
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comparable to Figure 26. In this network two levels of neurons

were used as shown in the network of Figure 30.

4 SEGMENT HIDDEN UNITS
M INPUT UNITS

urpm UNIT

S,

INPUT 1

INPUT 2

INPUT 3

CUTPUT
INPUT 4

INPUT M

Figure 30

Narrowband Beamformer

Twc levels were used since it is known that any convex
pattern can be separated from its background in two levels.
Backpropagation can be especially important fcr several
reasons. The input signal is not always one for which a simple
algebraic formula is known. There can also be nonlinearities
in the media through which the data propagates. Mechanical
or electrical noise can also add complexity toc the problem.
Problems emanating from sensor coupling, <calibration,
linearity, or placement can also complicate a formal analysis
of the problem. When the problem is very difficult, the use

of a mathematical analysis for determining weights is arduous.
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However when data from known sources are used to train the
network, it will learn the effect of the nonlinearities and

adjust the weights accordingly.

4.8 Results of Training with Backpropagation

Backpropagation was used to train the same network used
in the Delta Rule Training section and the Mathematical
Simulation Section. Again 2, 3, and 20 hidden units were used.
In these simulations the average value of the network output
is plotted. This average is taken over an entire cycle. This
is accomplished by evaluating the network output at 20 random
times and computing the average. These results also demonstrate
that performance is improved when more hidden units are used.
They also indicate ag~2in that the response at higher arrival

angles is poor. Since the phase is related to the arrival

2rd SIN(6)

k the phase difference will be

angle by the formula a-=
much smaller for higher angles bands that lower ones. This
would require a much sharper separation for the higher angles.
The results of these simulations are shown in Figure 31 through
33. Since the highest two arrival angles are the most difficult
to train, an inaccurate response was learned in the 70 to 80
degree angle bin. The results of these simulations are shown
in Figure 31 through 33.

A comparison of the backpropagation trained network, the

Delta Rule trained network, and the mathematically trained
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network is shown in Table 4. This comparison shows that the
backpropagation method and the DFT method are very similar
when used as a narrowband beamformer. The DFT beamformer
outperformed the backpropagation beamformer is 3 of the 9
arrival angle bins. It shoud be noted that the DFT Leamformer’s
arrival angle bins were approximately 5 degrees wide compared

to 10 degrees for the backpropagation beamformer.

Arrival Math Delta Backpro- |DFT
Angle System | Rule pagation |System
System System
0O - 10 92.75 91.64 99.22 98.33 beam 1
10 - 20 86.81 92.69 88.33 96.67 beam 2
20 - 30 87.36 93.28 98.39 97.22 beam 3
30 - 40 84.63 93.31 98.25 97.22 beam 4
40 - 50 71.69 90.61 97.69 97.22 beam 5
50 - 60 68.42 85.58 97.00 96.66 beam 6
60 - 70 61.58 72.06 94.44 96.11 beam 7
70 - 80 63.92 79.97 90.42 96.67 beam 8
80 - 90 66.83 72.28 97.11 99.22 beam 9
Table 4

Comparison with Backpropagation Beamformer

Simulations were also made in which wider ranges of amplitudes
were used. In these simulations backpropagation was used to
train the same three networks used in the previous simulations.
Amplitude ranges of .5 to 2.0 were used to test the network

more stringently. The plots of these simulations are shown
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Average Output of Backpropagation ANN with 2 Hidden Units
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Average Output of Backpropagation ANN with 3 Hidden Units
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in Figure 34 through 36. These plots indicate that a network
will perform better, if an automatic gain control is used to
restrict its amplitude to a narrow range.

The network was also tested for its sensitivity to noise.
The peak to peak noise level was set for .2, .4, and .8 on the
simulations shown in Figure 37 through 39. These networks
used 5 hidden units and an amplitude range of .5 to 1.0. This
amplitude choice was taken from a uniform distribution. The
uncorrelated noise level was also taken from a wuniform

2
REITAY,

2
ONOISE

noise levels will correspond to a SNR of 19.42 db, 13.34 db,

distribution. By using the formula S\ R=10-1.0G,, these
and 7.38 db respectively. These three simulations provided
results that were 93.46%, 91.03%, and 81.52% correct. These
results show a very serious degradation in response as the
signal to noise is decreased from 13.34 db to 7.38 db.

DFT beamformers also degrade as the SNR is decreased. Since
the DFT beamformer is an analog system, its performance can
be measured by comparing the input SNR to the output SNR. Both
the DFT beamformer and conventional beamformers have an array
gain improvement on the order of 10log(N), where N is the

number of sensors. [5]
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ANN with 3 Hidden Units and Noise of .4
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ANN with 20 Hidden Units and Noise of .8
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4.9 Narrowband Beamformers with Nonlinear Inputs
Another method of processing narrowband ANN beamformers

can be derived from the beamformer’s input formula

I o= 4-SIN(ut+ar) (1.1
and
_2med - SIN(D)
-
Let a,-0 and the formula for the first two sensors of a
system will be
o= 1-SIN(ut) (H1)

and
= A SINQut+a, )= A SIN(ut)COS(a, )+ 1-COS(ut)SIN(a,).
These two equations can then be combined to form one equation
independent of time. This equation is
[9-2:1,1 ,C0S8(a)+1 - A4"SIN (a)=0. (H13)
If this equation is compiled for each sensor and the sensor

next to it, they can be summed into the following form

N V. ., )
N 201, =2:C08(a)) 1 =N AT SINY (a) = 0 (111
i=] (=]
OR
N ‘
Sy VR, )T =0 (H15)
tw ]

which is the form used by the perceptron model if | 7 and ! ,I°,.,

are available as inputs.
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If preprocessing is used to provide a neural network with
both the square of the input and the product of the inputs,
the network can learn the weights Wi,1, W=,1, and T. By using
only one neuron for each arrival direction the same separations
that were made using two levels of neurons and many hidden
units can be made. When this network is implemented, it is
desirable to separate the arrival angles that are greater than
one angle and less than another from all others. An example
of such a separation is shown in Figure 40 in which a system

with the two inputs X and Y are used.

.3 1
5 1
1 ]

d
g

AN Ny

1
1.0 s gkﬁa .5 1.e T s g'% TS 1o

-1

Figure 40

| Separation of Angles

However if the amplitude is allowed to vary, the points

of 1intersection between the desired bands and all others
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increase. Therefore additional hidden units to separate
amplitude above or below specified amplitude thresholds are

required. Figure 41 shows an example.

e ®
] \ 0
(4] (2]
°d %
0 "
-] k /
, .
1.8 LS gk%s .5 l.0 e s de 5 1.0
Figure 41
Separation of Angles and Amplitudes

4.10 Results o amformer with Nonlinear Input

To define the area shown in Figure 41 four neurons can be
used to define points within the two curves. An example of
the results made with 4 hidden units and 10, and 20 inputs and
amplitudes ranges of 0.5 to 1.0 and .5 to 2.0 are shown in
Figures 42 through 45. In these simulations that use 20 input
sensors a two dimensional beamformer is used. This beamformer
had 10 sensors in one line and 10 sensors in a line perpendicular
to it.

This method provides superior results to the methods which




97
use only linear inputs. It also requires fewer neurons.
Multiplying and squaring inputs is a reasonable modification
to make, since the multiplication function is required when
ANNs are implemented. Those simulations that are derived from
the exact formula for the input will be referred to as "exact"
solutions.

A compromise between these two methods can also be
demonstrated. By using linear inputs and squared inputs
elliptical patterns which closely resemble the exact solution
can be realized. An example of the same four trials tested
with the exact solution are tested with the elliptical network
in Figures 46 through 49. These simulations will be referred
to as "elliptical" solutions. No noise was used in either the

elliptical or the exact simulations.

4.11 The Network’s Dependency on Time

It was shown in Equation (4.7) that the networks using
linear inputs are dependent on time and must rely on subdividing
the network into segments or output averaging to provide
acceptable results. The networks with nonlinear inputs
described by Equation (4.15) demonstrate that these networks
can be independent of time. However even though the network
can be expressed in a formula which is independent of time,
there is no guarantee that the solution learned by the network

will be completely independent of time. To demonstrate the
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effect that time has on these networks two simulations are
presented using both linear and nonlinear inputs. Figures 50
and 51 present the same two simulations as were shown in Figures
36 and 42. These plots demonstrate that when the linear input
systems are used output averaging must be employed to improve
the systems response. Figure 50 represents one of the best
linear networks and Figure 51 represents one of worst exact

simulations.
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Chapter 5

Model of Wideband Beamformer

5.1 Design of Wideband Beamformer

When designing a wideband beamformer more information must
be input into the network in order to determine direction
correctly. This can be done in one of two ways. Tenporal
data can be saved and applied to another dimension of neurons
in the network, or a two dimensional array of sensors can be
used. The choice may depend on the price of sensors versus
the price of analog circuits to store analog outputs. For
this discussion the two dimensional beamformer array will be
used. An example of a typical array is shown in Figure 52.

To determine direction from this array it can be viewed
as two arrays, one in each direction. It was shown in Chapter
3 that a wideband beamformer is a function of both w and 0.
Since two variables are involved two linearly independent

equations in the two unknowns are required.

5.2 Mathematical Analysis of Wideband Beamformer

An analysis of a wideband beamformer is similar to that

of a narrowband beamformer. For the units in one dimension

109




110

fm - HORIZONTAL NARROWBAND BEAMFORMER
o e et il
o0 O o O O
l_|_.__I ________________________ d
! I
! 1

warzear 1 O |

BEAMFORMER | | WIDEBAND BEAMFORMER
, l
! I
|
S
! I
! |
! i
t D !
! !
v

Figure 52
Two Dimensional Beamformer

the beamformer is the same as before.

", = A-SIN(wt+r1a)

a=2ndTN(e)andA=2§"

Where C is the propagation \Velocity,.

(5.1)

In the direction perpendicular to this line the formula will

be
1", =A-SIN(wt+ jB)

_21ndC0S(0)
3 .

0.2)

As was shown in Equation 4.3 the equations for Vo and Vi can

be combined to form an equation that is independent of time.

173 -211,COS(gu)+ 12~ 4°SIN?(guw) =0
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The second sensor’s contribution to the beamformer can also

be written as:
L =21 41 .COS(P2gu)+1 5- 1°SIN"(2gu)=0. (5.3)

where ¢ ="SIN(0).

The two Equations 5.1 and 5.2 are not linearly independent.
Therefore the variables g or O cannot be evaluated independently
of w. However if the second beamformer line is in another
direction such that (/=2COS(OL the twc equations can be
combined to yield the following formula that is independent

of w (frequency) and t (time).

N L SN i
COS — x|

W)
)

i |

I AN(0) = (5.6)

This formula demonstrates that when the 3 sensors are not
in a straight line the resulting signal can be expressed in
a manner that is independent of both time, t, and frequency,
.«. However it is not in a form that can be represented in
one neuron as was the case with the narrowband beamformer.
It is known that any function can be represented in three
levels of neurons if enough hidden units are used. Therefore
backpropagation can be used to train the network to determine

the welghts of the network.
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5.3 Wideband Beamformers Using Backpropagation
Wideband Beamformers can be trained in several ways. Just
as with the narrowband beamformer these networks can be trained
by using the Delta Rule where the output of each level is
known. However unlike the narrow band beamformer the
appropriate values for the hidden units are not easy to
approximate. Mathematical calculations of the weight would
also be very difficult. This makes backpropagation the best

choice for training the network.

5.4 Results of Beamformers Trained with Backpropagation

Several sets of plots are presented in which Backpropagation
was used to train the network. The backpropagation required
over 60,000 iterations of training.

These plots are shown in Figures 53 through 61. 1In these
simulations three levels of perceptrons were used to form the
network. The simulations are made ir sets of three to provide
an example of linear, exact and elliptical networks. These
sets of simulations are performed for networks with three
hidden units in each level (3x3) , 6x6 hidden units, and 10x10
hidden units. These simulations indicate that linear networks
actually outperform the elliptical and exact networks. The
nonlinear inputs helped when simple narrowband cases were used,
but as the complexity of the input signal increased the linear

model proved to be the best. The advantage of using more
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hidden units is also demonstrated. A comparison between these
three types of networks and the number of hidden units is shown

in Table 5.

Network Linear Exact Elliptical
Hidden Network Network Network
Units % Correct % Correct % Correct
3x3 91.87 81.08 80.96
6X6 94.29 93.40 87.12
10x10 96.62 96.02 96.04
Table 5
Comparison of Wideband Beamformer Networks

All of the previous plots were made using a single frequency
component that was allowed to vary over a wideband as the
system was trained. To better demonstrate the networks wideband
abilities simulations were made in which two frequency
components of random amplitude were allowed to vary as the
network was trained. After training, simulations were made
in which 1, 2, and 7 frequency components were used to determine
whether the network was sensitive to the spectra of the waveforn.
These simulations are shown in Figures 62 through 64. These
plots demonstrate that the network is sensitive to phase and

not the spectra of the waveform.
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Linear Wideband ANN, 3x3 Hidden Units
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Exact Wideband ANN, 3x3 Hidden Units
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Elliptical Wideband ANN, 3x3 Hidden Units
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Exact Wideband ANN, 6x6 Hidden Units
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Elliptical Wideband ANN, 6x6 Hidden Units
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Linear Wideband ANN, 10x10 Hidden Units
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Wideband ANN, 10x10 Hidden Units
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Chapter 6
Empirical Demonstration and

Comparison of FFT and ANN Beamformers

6.1 Seismic Test Description

To demonscrate how the direction of arrival of a signal
can be determined from a trained ANN, the following experiment
was performed. A seismic array was arranged in a three
dimensional pattern with twelve geophones. A movable signal
source was used to transmit a wideband wave from three different
directions. The received signals were corrupted by the presence
of a crane at a fixed position in the vicinity of the geophones.
In addition to this mechanical noise, 60 HZ electrical noise
also corrupted the data. Several tests in which the signal
source was moved to different ranges in the three directions
were recorded and digitized. A diagram of the test is shown
in Figure 65.

The task for the neural network to perform is one of
determining the direction of the signal while rejecting the
mechanical and electrical noise in the system. One of the

advantages which neural networks have over conventional signal
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Seismic Test Diagram
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processing is the small amount of information required to
train the network. For example the exact directions are not
known but are labeled A, B, C for convenience. The array’s
configuration is known to be three dimensional but the order
and exact location of the gages need not be known. The
calibration of the gages in inches per second is known to be
sufficient to acquire the signal of interest but the output
is passed through an automatic gain control routine to provide
the network with an input with a narrow amplitude range. The
exact output level of the AGC is not known or required. The
exact frequency spectra of the noise source and signal source
are not known. However the data was digitized at a sampling
rate greater than twice the bandwidth of the velocity gages
used to acquire the data. This prevents aliasing of the time
sampled data. Since the frequency spectra is not known, it
was assumed to be a wideband signal. In order to prevent
aliasing in the spatial dimension the spacing of some of the
geophones were placed closer than one half of the minimum
wavelength to be received. The minimum wavelength is equal
to the propagation velocity divided by the maximum frequency
that the gages can receive. With only a brief (20 seconds)
time history of the output of the geophones the network can
be trained to recognize the direction of the desired signal

and ignore all other interference. A time history plot of the
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data used to train the network is shown in Appendix II. These
plots show an example of one second of data at all three

directions and two different ranges.

6.2 Results of Seismic Test

Once the network was trained samples of both the time
signals used to train the network and the other recorded signals
were processed through the network. The results are shown in
Figures 66-~71. Figure 66 is a simulation in which the input
data was the same data that was used to train the network.
This data was 20 seconds in duration and represented the data
closest to the geophones. In Figure 67 another sample of data
recorded at the same range was used for the input to the
simulation. In Figure 68 through 71 samples of data from other
ranges were used for the simulations. Each of the plots
presents the three network outputs as a function of time.
Ideally an output of one represents the presence of a signal
from the direction associated with that output, and a zero
represents the absence of a signal. Since only one signal was
present in each of the tests, one output should predominate
the other two.

These plots indicate that the response is much better for
the data that trained the network than for other data sets.
The expected reason for this is that the data used to train

the network was not very representative of the data in the
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other data sets. The spectral characteristics of the data can
easily change with distance or with the intermittent operation
of the crane. It was demonstrated in Chapter 5 that when a
wideband signal is used to train the network it will be able
to recognize signals with different spectra. It is however
imperative that training signals be wideband signals that
encompass all the frequencies to be received by the ANN.

The output of the ANN was analyzed as if the output level
was connected in a winner-take-all configuration. 1In such a
configuration only the output with the highest amplitude is
asserted. The results can then be compared with the known
direction to determine the percent error in the simulation.
Thirteen segments of data were analyzed. The error for each
of the thirteen segments is shown in Table 6.

It should be noted that the results ranged from very good
(0 % error) to rather bad (31 % error). The 0 % error occurred
when the training set was used as the input to the network.
The high errors however occurred at both ranges and at all
three angles. This indicated that range was not as an important
factor as were other temporal phenomena. This can be seen
rather clearly from Figure 69. It can be seen that during the
first twelve seconds the network functioned very well, but
something happened during the last eight seconds that alters

the networks result. This could easily have been a modification
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Test and|Direction |Direction |Direction

Range A B C

Test 1 0 % 0 % 0 % Training Set
Range 1

Test 2 2 % 0 % 27 %
Range 1
Test 3 31 % 1 % -
Range 2
Test 4 17 % 10 % -
Range 2
Test 5 5 % - -
Range 2
Test 6 3 % - -
Range 2
Test 7 - 0 % -
Range 3

Table 6
Percent Error in Seismic Test

in the operation of the crane that introduced a type of noise
into the system that was not present in the training set.
Another important characteristic to notice is that when the
signal is sent from direction A or C the distinction from the
most distant sensor, Cor A, is almost perfect and very distinct.
This demonstrates that the three angles could be too close to
distinguish with the twelve sensors. The overall success rate
for simulations not in the training set was 90.4%. The success

rate for the training set was 100%.
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The quality of performance of a neural network can best

be determined by the networks success with data not contained
in the training set. The success rate of 90.4% indicates
excellent performance for a system containing large amounts
of interference and noise. Correlated noise such as that
produced by the crane can cause particularly severedifficulties
since the network must be trained to process one signal while

ignoring another.

6.3 Comparisons between FFT Beamformers and ANN Beamformers

When comparing FFT beamformers and ANN beamformers several
major differences should be considered. These differences
are:

(1) FFT beamformers are programmed using DSP hardware and
programming languages, while ANN beamformers are taught using
modifiable artificial neurons and training algorithms. When
the mathematics and programming are simple as is the case with
the narrowband beamformer, the FFT method has an advantage.
However when the programming becomes more difficult and
trade-offs between design complexity and performance are to
be made an adaptive system such as ANNs offers advantages.

(2) FFT beamformers require considerably more hardware
than ANN beamformers, but since ANNs are trained, training

examples must be available for the system to use. Training
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can require many iterations for even simple problens.

(3) The steered beams of the FFT beamformer are at arrival
angles determined by the formula 0 =SIN '(%) Since the phases,
a, are spaced at equal increments due to the symmetry of the
FFT algorithm, the arrival angle beam will be at spacings that
are a function of the arcsin of these phases. ANNs, however,
can bc trained to distinguish any band of angles from any
others.

(4) The FFT beamformer is a linear system. The FFT
beamformer accepts analog signals digitizes them, processes
them and produces analog output signals from a digital to
analog converter. As in all linear systems doubling or tripling
the input will double or triple the output. The property of
superposition will also assure that if two inputs signals are
applied, the output will be the sum of the outputs of the two
signals applied separately. ANNs however are not linear
systems. They accept analog inputs but have outputs that
approximate discrete digital levels.

(5) ANNs can be taught to ignore correlated interference
that may be present in the environment. FFT beamformers will
report correlated interference as a received signal.

(6) FFT beamformers provide an output that varies with
time. Since the information is returned to the time domain
in the last stage of the beamformer a time history is provided

to indicate both the direction of the wave and its signature
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as well. The ANN beamformer provides only the directional
information.

There are also several similarities between the two
beamformers:

(1) The performance degrades as SNR is decreased.

(2) The performance is poorer for wideband signals

compared to narrowband signals.

(3) The performance can be improved by increasing the

number of sensors and the number of processing elements.

6.3.1 Simulation Comparisons of FFT and ANN Beamformers

In order to compare FFT and ANN beamformers the following
simulations were made:

(1) Narrowband beamformers were simulated. Both
beamformers used 9 beams. The FFT beams were at equal phase
angles and the ANN beams were at equal arrival angles. A
narrow amplitude band of .95 to 1.05 was used, and 18 sensors
were used. A simulation with no noise and one with a SNR of
7.78 db was made. 20 time samples for the FFT beamformer were
used and 20 samples were averaged with the ANN beamformer.
( A DFT was actually used since the number of samples was not
a power of 2.) The ANN beamformer used four neurons in an
elliptical network. The results are shown in Figure 72 through

75.
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(2) Wideband beamformers were simulated. The FFT
beamformer used 3, 4, and 20 sub-arrays of 18 sensors each.
The ANN used multiple arrays in 2, 3, and 4 lines. Each line
contained 18 sensors. The spacing for each sub-array of the
FFT beamformer was tuned to a frequency half way between the
maximum and minimum frequencies for that array. The spacing
for each line of the ANN beamformer was set equal to one half
the wavelength of the highest frequency to be received. The
ANN beamformers were simulated using 20x5 hidden units in a
linear style network. Simulations with no noise and simulations
with SNRs of 7.78 db were made for both ANN and FFT beamformers.
A frequency range of 30 to 300 Hz was used. The results of
several of these simulations are shown in Figures 76-83.

In order to compare the results of the two beamformers the
outputs were evaluated by comparing their outputs to a specific
threshold. Outputs greater than the threshold were considered
true and outputs less that the threshold were considered false.
For the FFT beamformer a threshold of 0.5 (3 db) was used.
The ANN beamformer used 0.7 for the true threshold and 0.2 for
the false threshold. Twenty points were averaged on the ANN
beamformer to produce the average output. The absolute maximum
of the 20 sample time chip was used for the output of the FFT

beamformer.
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Wideband DFT Beamformer; 3 Sub-arrays; Noise Level 1.0
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Wideband DFT Beamformer; 4 Sub-arrays; Noise Level 1.0
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Wideband ANN Beamformer; 2 Arrays; Noise Level 1.0
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Wideband ANN Beamformer; 3 Arrays; Noise Level 1.0
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6.3.2 Results of the Comparison of ANN and FFT Beamformers

The results indicate that both systems provide excellent
results for narrowband beamformers. The percent of correct
results were 98.5% for the ANN beamformer and 97.2% for the
FFT beamformer. Both systems provide good immunity to noise.
With an SNR of 7.78 db the ANN beamformers gave 94.3% correct
results and the FFT beamformer gave 96.72% correct results.

The wideband results indicate that when a small number of
sub-arrays are used the ANN beamformer gives superior results
to the FFT beamformer. The results from the simulations
indicate that when 3 sub-arrays are used the ANN beamformer
gives 96.47% correct results (88.73% correct with 7.78 db SNR
noise) and the FFT beamformer gives only 85.11% correct results
(84.87% correct with 7.78 db SNR noise). Hcwever the results
also indicate that the response of the FFT beamformer greatly
improve as the number of sub-arrays is increased. When the
number of sub-arrays is increased to 20 the performance is
improved to give 92.09% correct results (91.10% correct with
7.78 db SRN). However the FFT’s response leveled out when at
least 2 arrays were used. Each array contained 18 sensors.
When more sensors are added no more improvement is realized.
This limit in performance was caused by the finite size of the
network. It was shown in Chapter 2 that any pattern can be
separated from another if enough neurons are used in a three

level network. However, when a finite size network is used,
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only a finite number of separable regions can be distinguished.
Additional limitations could be due to the presence of the

noise present in the training set.

6.3.3 Processing Requirements for FFT and ANN Beamformers

The amount of time required to process data with an ANN
beamformer or an FFT beamformer will be dependent on the exact
implementation being used. Systems which employ large amounts
of parallelism will give much faster results that pure
sequential implementations. The processing requirements for
these beamformers can be measured approximately by the number
of addition~-multiplication operations required to complete the
analysis of one cycle of the acquired data. In addition to
addition-multiplication operations a non-liner function
calculationwill be required for each neuron of an ANN beamformer
and SIN and COS calculations or fetches will be required for
the FFT beamformer. Since these calculations are different
for the two beamformers, the following comparison must be
considered to be only approximate.

The number of addition-multiplication operations for an
ANN beamformer can be calculated as follows:

G*N*( S*H1+H1*H2+H2*H3). (6.1)

Where N is the number of Networks (one for each angle bin).

S 1s the number of input sensors.

G is the number of iterations averaged.




156

Hl is the number of hidden units in level 1.
H2 is the number of hidden units in level 2.
H3 is the number of hidden units in level 3.
The number of addition-multiplication operations for an
FFT beamformer can be calculated as follows:
B*( (1+K)*S*T*1og2(T)+T*S*1og2(S)). (6.2)
Where B is the number of addition-multiplication operations
required for one complex butterfly operation. (B=4 will be
used for this comparison).
K is the number of sub-arrays.
S is the number of input sensors.
T is the number of time samples.
Using these formulas the following comparison can be made:
Narrowband ANN beamformer with 9 angle bins,
20 iterations averaged.
18 sensors
4 hidden units on level 1
1 hidden unit on level 2
Addition-multiplication operations = 13,680
Narrowband FFT beamformer with 9 angle bins,
18 sensors (1 sub-array)
20 time samples
Addition-multiplication operations = 18,446
Several items should be noted about these comparisons.

(1) The FFT is designed to be used with a power of two.




157
The 20 time sambles and 18 sensors were used for comparison
with the ANN beamformer.

(2) A complex FFT was used in the above calculations. When
real data is used, modifications to the FFT algorithm can be
made that improve speed by nearly 50%.

(3) No allowance was made for the SIN and COS calculations
in the FFT beamformer or the nonlinear function calculations
in the ANN beamformer.

These results indicate that for small narrowband arrays
the processing requirements of the two systems are very sinilar.
However, as more and more sub-arrays are required for processing
FFT wideband beamformers, the number of addition-multiplication

operations will increase proportionately.

6.3.4 Summary of FFT and ANN Beamformer Comparison

Throughout this dissertation the response of ANN
beamformers tc¢ several design and input characteristics has
been noted. The following itemized list is a comparison between
ANN and FFT beamformers for these characteristics.

Design variables for ANN Beamformers:
{1) Number of Hidden Units.

No further improvement in the response of an ANN beamformer
is achieved when the number of hidden units is increased past
approximately 4 for narrowband beamformers with preprocessing

or approximately 20 for wideband beamformers.
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(2) Number of Sensors.

No further improvement is the response of an ANN beamformer
is achieved when the number of sensors is increased past
approximately 36. The sensors for wideband ANN beamformers
must be in two different directions, preferably at 90 degree
angles. Two dimensional beamformers improve the response of
narrowband beamformers as well.

{3) Preprocessing.

When narrowband signals are used providing the square of
the sensor output to the network improves the response
considerably. A network with this modification to the inputs
can produce results with 4 hidden units that would require
roughly 20 hidden units when used with non-preprocessed inputs.
Design variables for FFT Beamformers:

The main design variables for the FFT beamformer are the
number of sensors, the number of time samples used in each
time chip, the number of sub-arrays, the sampling rate and the
gage placement distance. These variables can be used to produce
the desired level of response, but when wideband signals are
to be detected many sub-arrays can be required. Details on the
design of FFT beamformers can be found in Follett [5].

Input Variables:
(1) Signal to Noise Ratio.
ANN beamformers provide very good immunity to noise, but FFT

beamformers are much better. Increasing the noise from no
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noise to an SNR of 7.78 db will change the accuracy of an ANN
beamformer from 96.47% to 88.73%, but the FFT beamformer will
change from 85.11% to 84.87%. Even though the performance of
this FFT beamformer was inferior to that of the ANN beamformer,
the effect of adding noise was much more harmful to the ANN
beamformer.

(2) Amplitude Changes.

ANN beamformers can be trained to be very tolerant of
amplitude changes, but examples of all amplitudes to be detected
must be included in the training set. FFT beamformers are
designed to operate at a given amplitude. If the input is
decreased the output will be decreased proportionately.

{3) Variations in Bandwidth.

ANN beamformers can be trained to be tolerant of wideband
signals. Three levels of perceptrons will be required due to
the complexity of the patterns to be distinguished. FFT
beamformers are not as tolerant of wideband signals. Designs
must be modified to include many sub-arrays in order to furnish
all of the tuned frequencies needed to analyze the wideband
of frequencies. One general rule suggested by Follett [5] is
to only allow one sub-array’s bandwidth to expand 20% of the
tuned frequency.

Other Variables:
(1) Dependency on Time.

Both ANN and FFT beamformers are very dependent on time.
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The number of samples used by an FFT beamformer is one of the
design variables that determines the size of the first and
last level of FFTs. Time is also very important in the ANN
beamformer. As was shown in Figures 50 and 51, the network
produces many outputs over the course of a cycle that are
erroneous. Time averaging greatly reduces these errors. The
period over which the average is taken should be at least that
of the lowest frequency being received by the beamformer.
(2) Training Methods.

Backpropagation is the best training method for training
ANNs studied in this work. It can train networks with any
level of perceptrons. It can also train a network to ignore
unwanted signals and adapt to the environment in which it is
trained. FFT beamformers must be programmed rather than

trained.




Chapter 7

Proposed Design Criteria

7.1 Summary of Beamformer Design Criteria

It has been demonstrated in the preceeding chapters that
ANNs can be used successfully to determine the angle of arrival
of a wavefront using a beamformer array. Either narrowband
or wideband systems can be implemented. When designing a
feedforward neural network to process information from an array
of sensors the main considerations are:

(1) The number of sensors used.

(2) Then configuration of the sensors.

(3) The number of neurons in the network.

(4) The configuration of the network.

The sensor configuration must be two dimensional and the ANN
must have three levels if wideband signals are to be processed.
Narrowband signals can be processed with one dimensional arrays
and only two level ANNs. However two dimensional arrays will
improve the response of a narrowband signal especially in the
higher angle bands.

It was demonstrated in previous chapters that the
successfulness of these networks varies directly with the

lel
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number of sensors, the number of hidden units, and inversely
with the noise level, the amplitude range, and the frequency
range. To demonstrate the degree of effect that these variables
have on the network five plots are presented that show the
result of additional simulations that were performed. These
plots are shown in Figures 84 through 88. In these simulations
each output was evaluated by the following criteria. If the
target value was 1.0 and the result was greater than 0.7, the
result is considered correct. If the target value was 0.0 and
the result was less than 0.2, the result was considered correct.
Results between 0.2 and 0.7 were considered erroneous. The
average of correct results of all angle bands was calculated
for the following plots. These plots are presented only to
demonstrate the trend that is caused by the variable in question.
An accurate evaluation should be made by examining the
simulation outputs generated by the program VWBBFNN in Appendix
TI.

It should be noted that the desired output for each of the
9 simulation bands is zero for 89% of the arrival angles and
one for 11% of the arrival angles. Sometimes a network will
converge to a local minimum which produces a constant result
of zero, one or 0.5 for all angle bands. It is important to
view the output listings of these simulations to ensure that

one of these erroneous local minima has not been reached.
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For each of these plots all variables remained constant
except the one being tested. The program VWBBFNN in Appendix
I can be used to simulate any combination of these variables.
By using this progrém various simulations can be processed to

determine the best simulation for a potential problem.

7.2 Description of Simulation Program

The Variable Wideband Beamformer Neural Network program
VWBBFNN was designed to train and sihulate feedforward neural
networks connected to beamformer arrays. The training algorithm
used is backpropagation with momentum. Two, three, or four
levels of neurons can be used in the simulation. The program
must be supplied with the following information:

(1) Sensor locations.

(2) Arrival angles that are to be learned.
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(3) Training Rate.
(4) Training momentum.
(5) The number of training iterations.
(6) The number of hidden units on each level.
(7) The number of frequency components that make up a wide
band signal.
(8) The frequency range to be used.
(9) The zero to peak amplitude range to be used.
(10) The peak to peak noise level to be used.
(11) The type of input preprocessing (if any).

Different training rates and momentum values can be used
throughout a training session. The program supplies the user
with the learned weights and a simulation of the learned
network. A simulation is performed for each angle band that
was specified. These simulations are conducted over a range
of 0 to 90 degrees at intervals of 0.5 degrees. At each
interval twenty random times are chosen and the maximum,
minimum and average output values for the network at these ten
time samples were calculated and saved. The output is scaled
as integers between 0 and 100. At the end of a simulation the
number of correct, erroneous, and ambiguous results are
recorded. The same environmental parameters for frequency
range and noise level that were used in the training session
are used in the simulation. The training amplitude range is

reduced by 10 % for the simulation.
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The training session begins by inquiring if the network
has already been through previous training sessions. If another
training session exist, the weights are read into memory:; if
not, the weights are preset to small random values. When
training starts the input patterns are presented at random in
the following way. For each iteration a sample of each angle
band is presented once except for the two on either side of
the target angle band. These two are presented twice. The
pattern within the target band is presented N times where N
is the number of angle bands in the network. For example if
nine bands were being used and the network is being trained
to detect angles within band 4, the patterns in band 4 would
be presented nine times, the patterns within band 5 and 3 would
be presented two times and bands 1,2,6,7,8 and 9 would be
presented once each. Many modifications to this method were
attempted and this method worked best to emphasize training
at the locations where it is required the most.

The instructions are supplied to the program in three ASCII
files. The first file is named "WB.INS" and contains the
training and simulation parameters discussed above. In addition
to these parameters the names of the other two input files and
a base name for an output file are included. These two
additional files contain the sensor’s X and Y coordinates and
the angle ranges for each arrival angle to be learned. The

output files are labeled with the base output name and the
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extension ".LOG" for the simulation log and the extension
" Wnn" on each of the weight files. ("nn" is the number of the

band for each angle).

7.3 Examples of Beamformer Design

Consider the sample problem,

A wideband beamformer is to be designed with a frequency
range of 100 to 300 HZ, an amplitude range of 1. to 3. and a
noise level of 0.5. A first attempt was made by instructing
the program to use ten sensors in a straight line configuration.
The result of this simulation is shown in Figure 89. The
response indicates that the 100 to 300 Hz bandwidth is too
wide to be processed with a one dimensional array. A second
simulation was made with a two dimensional array of ten sensors
in each direction. This simulatioin is shown in Figure 90.
These results showed a tremendous improvement. A third
simulation was made with 30 sensors in which a third row was
placed at a 45 deqgree angle with the other two sensor lines.
The results of this simulation are shown in Figure 91. These
results showed 1little improvement in the response of the
network. This indicates that 20 sensors should be near the
optimum for this problem. Further simulations could be made
to increase or decrease the number of hidden units to further

optimize the peamformor’s response to the desired level.
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Chapter 8

Survey of ANN Hardware

8.1 Artificial Neural Network Hardware

Research in Neural Networks is being performed on a variety
of hardware. Conventional computers from PCs to supercomputers
are used to process training sessions and output simulations.
In addition to these conventional computers several vendors
manufacture add-on processors to aid a host computer in
processing ANN computations. These add-on processors are
usually digital and take the form of a Floating-point Processor.

One of the main hopes for Neural Networks is that they can
be produced in a very dense package. Very primitive integrated
circuits with only a few analog neurons are currently available.
If integrated circuits can be produced which enable networks
of 100’s or 1000’s of neurons to be incorporated in a single
package, many difficult cognitive problems can be solved that
are currently very difficult to solve on von Neumann Computers.
These integrated circuits could be either digital or analog

or a combination of the two.
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8.2 ANN Integrated Circuits

ANN integrated circuits are divided into two main groups,
analog and digital. There is some controversy as to which way
the industry should evolve. Digital implementations have the
advantage of being deterministic and able to be designed to
any degree of accuracy. However the extreme complexity of
multipliers, adders, and nonlinear function evaluators make
the implementation of large feedforward networks unfeasible
in digital technologies. Analog implementations seem to be
the most promising for large networks on a single chip. They
provide improved speed; they are much more conservative with
silicon space; they require fewer pins; and they can
consequently be connected in more elaborate architectures.
Some of the criteria that should be considered when choosing
an implementation of ANNs are:

(1) Does the chip perform on or off chip learning?

(2) What algorithms will the network work with?
(Backpropagation, Hopfield Nets, ALRT, etc)

(3) Are the interconnections programmable?

(4) Are the interconnections analog or digital and
what is their precision?

(5) Can neurons be connected globally?

(6) What is the chip’s speed?

(7) What is the price per neuron?

(8) What is the power consumption per neuron?
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(9) What is the chip size?
(10) What are the input/output characteristics?
(11) Does the chip guarantee stability?
(12) How easily is the chip reproduced?(13) What is the chip’s
temperature of operation?
(14) How expandable are networks with this chip?

(Summarized from [221)

High marks on all these criteria describe an ideal chip.
These requirements will definitely need to be relaxed. This
is especially true for backpropagation algorithms. The
complexity that would be required to implement feedforward
networks using backpropagation will be especially difficult.
These difficulties are due to the high computational
requirements required when training networks with
backpropagation.

There are several basic problems that have hindered
successful large scale integration of ANNs. The most severe
are:

(1) The 1inability to implement variable resistors on an
integrated circuit to serve as the weights that emulate the
synapses.

(2) The connections problemn.

In fully connected networks every neuron in one level is
connected to every neuron in the following level. The number

of connect i3 that must be routed becomes extremely large tor
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even moderate size networks. Some implementations try to solve
this problem by limiting each neuron’s connections to its
nearest neighbor. Limiting the connections to severely can
degrade the network’s response.

Some researchers have had limited success with these
problems, but most have used switching between fixed resistors
or hybrid methods such as multiplying digital to analog

converters to accomplish this end.

8.2.1 Available Integrated Circuits

At this time several companies have announced plans to
market a neural network chip or have made one commercially
available. Three of these are INTEL, Fujitsu, and Syntonics.
The Syntonics 1is commercially available at this time. It is
available on an evaluation board known as the DENDROS-1 and
has the following specifications [23]:

(1) ART-1 Network Model (Adaptive Resonance Theory, Section
2.2.4)
(2) Connection is to the second nearest neighbor
(the nearest neurons in the following level)
(3) Self-adaptive programmability
(4) On-chip learning
(5) Fully Parallel
(6) Analog implemented in CMOS

(7) Continuous operation with 10 to 20 msec settling time
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(8) Synapses are implemented with capacitors
(9) 8 Neurons
(10) There are 58 Synapses
30 Modifiable
5 All-or-none

23 Fixed

This IC is one of the first to become commercially available.
It is primitive in that it has few neurons and synapses, but
it implements an ART-1 architecture which is a complicated
model involving non-supervised adaptive learning.

Another neural network chip has been announced by INTEL.
With the proposed design proposed by INTEL 64 neurons will be
implemented in an analog design on each chip. The output of
each neuron will be routed to the input of every other neuron
on the chip. Variable synaptic weights can be set on the chip,
but no on chip learning will be provided. External hardware
must be used to train the chip, but this will allow any algorithm
including backpropagation to be used.

Another way of implementing neural networks is with digital
signal processing integrated circuits which can be incorporated
on printed circuit boards to implement complex networks. One
example was reported by [24] in which 32 transputers were used
in a 4 by 8 uarvay to implement a feedforward ANN with
backpropagation. Multiple neurons were sometimes mapped onto

a single transpute~. Since the network was to be fully
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connected, the communication problem was a serious concern.
Other experimental analog and digital designs have been
simulated or implemented. They usually involve diminishing
some aspects of this ideal neural network in order to exploit
another aspect needed to solve a particular application. One
such example by [25] is a feedforward network in which the
synapse weights are restricted to powers of two. 1In this
experiment a simulation model with real values is trained and
then the power of 2 weights nearest to the real-value weights
is used in the final implementation. Excellent results were
obtained when at least nine bits were used in the power of two
weights. This method removes the need for multiplications in
the simulation process, thereby improving the speed

considerably.

8.3 Artificial Neural Network Computers

The majority of hardware that is available at this time
is in specialized computers or add-on printed circuit boards.
These systems can be either digital or analog. A list of
commercially available electronic neural computers compiled
by Hect-Nielsen [26] is shown in Table 7.

One of the newer Neuro-Computers, the Delta FPP-2, is
primarily an add-on printed circuit card for the IBM-XT/AT and
compatible computers. [29] It is a floating point processor

that operates at 22 MFLOPS. It uses a Harvard architecture
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DATE | NEURONS| CONNECTS| SPEED C/SEC
ADALINE 1960 1 16 1.0*10%
MADALINE 1962 8 128 1.0*%10°
MARK III 1985 | 8.0*%107| 4.0%10" | 3.0*10°
ODYSSEY 1986 | 8.0%107| 2.5%10° | 2.0*10°
ANZA 1987 | 3.0%107%| 5.0%10% | 2.5*10°
ANZA PLUS 1988 1.0%10"| 1.5%16° 1.5%10°
PARALLON 2 1287 1.0%10%| 5.2%10% | 1.5*%10°%
PARALLON 2X 1987 | 9.1*10%] 3.0%10% | 1.5*10°
DELTA FPP 1987 | 1.0%10°| 1.0%10° | 2.0%10°
DELTA FPP-2 1989 3.1*%10%| 3.1*10° 2.7%10°
Table 7
Commercially Available Neuro Computers

and is heavily pipelined. IEEE 32/64 bit floating point and
32/64 bit integer arithmetic is implemented on this product.
Additional software and irterface hardware is available to run
neural network algorithms and input information from frame
grabbers. When similating an already trained network the speed

is increased *o¢ 11M connects/second. To demonstrate the
importance of usisgy such products the computation time required
to train a network using the training and simulation program

in Appendix 1 s asnown in Table 8 for various computers.
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Computer Time
AT 286 @ 10Mhz & Copr¢ essor 1840 Sec
Micro Vax II 700 Sec
AT 386 @ 25MHz & Coprocessor 389 Sec
Cray Y-MP 5 Sec
Delta FPP-2 .1 Sec (Does not include
(estimated from Spec) training signal Generation)
Table 8
Computer Execution Times

These results indicate that when research is being conducted
on large neural networks, Floating Point Processors or
supercomputers provide a great time savings. This is of
particular importance when new networks or new algorithms are
being considered. Minor changes in the training rate, momentum,
or the method of selecting patterns to be presented to the
training algorithm can cause considerable changes in the
convergence time or the network tendency to find local instead
of global minimum. To find the best parameters to use in the
problem considerable testing is required. 1If fast computing
equipment is not used, the time to find good solutions can be

prohibitive. These results also demonstrate the importance
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that realtime analog implementations could play, if they are
developed and implemented in commercially available integrated

circuits.

8.4 Best ANN Opticns for Feedforward Networks

When considering the best options for the implementation
of a project such as this, several auditional co .siderations
should be made:

(1) How portable must the system be?

(2) Must the system include local training capability?

(3) How much design effort is required?

(4) What propagation speed are required?

(5) The cost of the systen.

If portability, price and speed are not of paramount concern

a system such as the DELTA FPP-2 would provide a satisfactory

solution. This system can be contained in a portable PC
chassis; it can be trained 1locally, but the cost is over
$20,000. This system is already commercially available and
operates fast enough for many seismic or sonar applications.

If portability is of importance, a greater design effort
will be required to incorporate neural network chips or
transputers into an overall design. At the time of this writing
network chips that could bhe used in a feedforward desigr witt
backpropagation are Jjust becoming available. Digital

implementations using transputers can also provide a suitable
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solution to most problems, if the price for development is
allowable. Since the technology for these transputers is well
known and is available with development systems, it could be
the preferred method for many systems. However, in the near
future analog neural network chips should surpass the digital

implementations.




Chapter 9

Conclusions and Recommendations

9.1 Conclusions

The objective of this dissertation has been to demonstrate
how nharrowband and wideband beamformers can be implemented
using artificial neural networks. This objective has been
demonstrated througii the use of a FORTRAN simulation program
and an empirical test which measured seismic data. These tests
demonstrate the network’s sensitivity to noise, frequency
cont~nt, amplitude, network topology and sensor topology. A
comparison between ANN beamformers and FFT beamformers was
also performed.

The empirical data presented 1in Chapter 6 demonstrates
that when the data used to train the network is used to test
the same network the success rate is nearly 100%. This success
was realized in the preseince of both mechanical noise and
electrical noise. The network’s ability to learn to ignore
such noise sources and adhere to the correct signal is one of
its strongest attributes. It is however very important to
make certain that the training set is representative of all
types of signals to be detected. When signals from different
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distances are used, it is important to train the network using
all locations wnich might effect the spectra of the signal.

In Chapter 6 the comparison between ANN beamformers and
FFT beamformers indicated several strengths and limitations
for each system. The FFT beamformers are more tolerant of
high noise levels than ANN beamformers. FFT beamformers can
also be designed to detect arrival angles from multiple sources.
However, ANN beamformers are more tolerant of wideband signals
and variations in the amplitude of the signal. Both systems
gave excellent results when used as narrowband beamformers.
The processing effort for both beamformers was similar for
simple configurations, but as additional sub-arrays were added
to the FFT beamformer to improve its wideband capability the
processing effort increased proportionately.

The proper selection of the number »f hidden units and the
number of input sensors to use are two of the main considerations
in the design of a feedforward ANN. Chapter 7 presents and
examples of the design criteria for a simulated wideband
beamformer. Several plots are also presented to aid future
researchers in determining the approximate number of inputs

and hidden units required to meet a specific level of acceptance.

9.2 Recommendations

For future study several recommendations are made:

(1) A major problem in training networks with backpropagation
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is their convergence to local minima. Many researchers report
that by using statistical training methods, such as simulated
annealing, the local minima problem can be avoided. If the
training times are found to be reasonable, statistical methods
could prove to be very useful when actual implementations are
made. [27]
(2) There are several additional neural network parameters
that should be addressed. One of these parameters is the width
of the angle bands. All of the simulations presented in this
dissertation used angle bands of 10 degrees. This was chosen
to be the maximum size that might be of interest. Using smaller
angles will most likely require more sensors and hidden units
but a finer resolutinn could also increase the number of
applications for which these networks could be used.

Another important parameter that might be modified in
future studies is the number of output neurons in the network.
In this study a separate network was used to detect the presence
or absence of a signal for each angle. In the early stages
of this study it wans observed that networks with multiple
outputs could be used and trained so different outputs within
ore network would respond to different angles. These networks
require many more ridden units. If the number of hidden units
in a systom with N outputs is less than N times the number of
hidden units in a network with one output, a savings in the

number of hidden units could be realized.
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(3) Additional tests should be made using actual data and
hardware evaluation circuits. An actual implementation can
help identify problems that may not be evident from the simulated
studies.
(4) Applications should be investigated which involve both the
determination of direction and the recognition of a specified
target with a fixed spectral pattern. Since the networks were
sensitive to changes in the spectra of the transmitting source
and were very good at rejecting noise, the combination of these

two approaches seems promising.
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Appendix I

Wideband Beamformer Simulation Program

The following program was written to train and simulate
an artificial neural network. The program uses three user
supplied files as inputs and provides two sets of files as
outputs. The three inputs files are: (1) instruction file,
(2) sensor location file, and (3) arrival angle file. The
input file contains the names of the sensor file, the arrival
angle file, the base name for output files, and all other
constants required to train and simulate the network. These
constants include; training rate, momentum value, number of
training iterations, number of hidden units in each level of
the network, the number of frequencies to sum together in
training the network, the frequency range of the signal used
to train the network, the number of levels in the network, and
the amplitude range of the signal that trains the network.

The output files consists of a ".log" file that list the
maximum, minimum, and average values of the neuron output when
simulated at each arrival angle between 0. And 90. degrees in
steps of .5 degrees. The other output files are files that
contain the weights of the network and are named ".W0l, .WO02,

.." tospecify which of the arrival angle outputs it represents.
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Sample of Input files

Listing of file "WB.INS"

LINE10.SEN
FREQS.BAN
SUN13

0.51.0 .8 50 0 1 300. 300. 1
30000 0.3 0.9
-30000 0.1 0.9

0 1.0 .9
Listing of file "LINE10.SEN"
1.0 0.0
2.0 0.0
3.0 0.0
4.0 0.0
5.0 0.0
6.0 0.0
7.0 0.0
8.0 0.0
9.0 0.0
10. 0.0
Listing of file "FREQ9.BAN"

9

0.0 10.
10. 20.
20. 30.
30. 40.
40. 50.
50. 60.
60. 70.
70. 80.

80. 90.
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Sample Output Files

"Instruction information"

FREQ9.BAN
LINE10O.SEN
1 10 5 0 0 60000 1
300.00000000 300.00000000 0.10000000
0.90000000
0.000060000 10.00000000 1.00000000
0.50000000
0.80000000 0.80000000 0.97500000
0.52500000
77 99 6
85 99 6
94 99 6 "Average, maximum and minimum values"
81 99 6
98 99 81
97 99 75
93 99 77
77 99 6
92 99 7
97 99 76
98 99 81
95 99 81
92 99 70
96 99 81
97 99 81
83 99 7
99 99 91
95 99 81
96 99 81
80 99 6
88 99 10
65 99 6
49 99 6
47 92 6
56 99 6
42 99 6
23 90 6
13 65 6
6 8 6
7 18 6
8 33 6
6 7 6
8 46 6
10 47 6
13 75 6
9 64 6
19 91 6
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6 8 6

6 6 6

10 88 6

6 6 6

6 9 6

6 6 6

6 6 6

6 6 6

11 72 6

6 7 6

7 10 6

9 64 6

10 71 6

6 6 6

6 7 6

7 15 6

6 6 6

7 12 6

6 7 6

6 6 6

6 6 6

7 26 6

6 6 6

6 7 6

9 54 6

6 9 6

10 79 6

7 9 6

6 8 6

6 7 6

12 80 6

6 8 6

6 9 6

6 7 6

6 7 6

8 36 6

7 14 6

8 48 6

6 6 6

6 7 6

6 6 6

10 81 6

6 8 6

-1 158 85 "Statiscical information"

-22998 359 "End of first angle band"
FREQ9.BAN "3tart of next angle band”
LINE10.SEN

1 10 5 0 0 60000 1l
300.00000000 300.00000000 0.10000000

0.90000000
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10.00000000 20.00000000 1.00000000
0.50000000

0.80000000 0.800060000 0.97500000
0.52500000
28
52
35
35
35
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CCCCCCCCCCCCCCCCCCCCreeeeeeceeceeeceeeceeeceeceeceeeceeceeccce
C C
(o Variable Wideband Beamformer Neural Network C
C C
C VWBBFNN C
C C
C BY CARY COX C
C (o
CCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeceeeeececececeeeceeeeeceecce
C
C SET NUMBER OF SENSORS AND
C NUMBER OF ANGELS TO DETECT
C

PARAMETER (NOS=100, NOF=50)
C

REAL XIN(NOS),AA(10),F(10)
C

REAL ANGLO(NOF) ,ANGHI (NOF)
C

REAL D(NOS),SX(NOS),SY(NOS)
C

LOGICAL EXIST,DOSTAT
C

CHARACTER*4 EXT

CHARACTER*20 NAMEB

CHARACTER*20 NAME,NAMES, NAMEF ,NAMEO

CHARACTER#*20 NAMEX,NAMESX,NAMEFX
C

COMMON TRATE, XMO,NIN,NJ,NK,NL,NOUT,OUT,OUTT, XIN
C
C CONSTANT DATA USED IN PROGRAM
C

DATA NNN/6715/

DATA VEL/600./

DATA PI2/6.233185307/

DATA DT/.1/
C

NOUT=1
(o
CCCCCCCCCCCCCCCCCCCCCeeceeecceceeeceeeeeeeceececeeceecceceeececcececce
C
(o
C OPEN MAIN INPUT AND OUTPUT UNITS
C
C

OPEN(UNIT=11,FILE='WB.INS'’, FORM=’FORMATTED')
C
C OPEN AND READ ARRAY FILE
C
1111 READ(11,2220,END=1717) NAMES




2220

44

1414

OO0

45

1515

RO KE®] QOO0

QOO0

2222
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FORMAT(A20)
OPEN(UNIT=10,FILE=NAMES, FORM='FORMATTED’ )
REWIND(10)

INDEX=1

READ(1G,* ,END=1414) SX(INDEX),SY(INDEX)
INDEX=INDEX+1

GO TO 44

NIN=INDEX-1
CLOSE(UNIT=10)

OPEN FILTER FILE

READ(11,2220,END=1717) NAMEF
OPEN(UNIT=10,FILE=NAMEF, FORM='FORMATTED’ )
REWIND(10)
READ(10,*) NFILTZ

INDEX=1

READ(10, *,END=1515) ANGLO(INDEX),ANGHI(INDEX)
INDEX=INDEX+1

GO TO 45

NFILT=INDEX-1
CLOSE(UNIT=10)

READ NAME-BASE & NETWORK AND NOISE INSTRUCITONS

READ(11,2220,END=1717) NAMEB

READ(11,*,END=1717) ATMIN,ATMAX,AN,NJ,6NK,6NL,
ITYPE,FMIN, FMAX, NFC

IF((ITYPE.EQ.2).0OR.(ITYPE.EQ.3)) NIN=NIN*2

OPEN "LOG" OUTPUT FILE

NAMEO=NAMEB(1:5)//’ .LOG’
OPEN(UNIT=12,FILE=NAMEO, FORM='FORMATTED',
STATUS='NEW’)

READ NUMBER OF TRAINING ITERATIONS,
TRAINING RATE AND MOMENTUM TERM

NUMTOT=0

READ(11,*,END=1717) NUM1,TRATE, XMO
IF(NUM1.EQ.0) GO TO 1111
IF(NUM1.LT.O) THEN

NUM1=-=NUM1

DOSTAT=.TRUE.
ELSE

DOSTAT=.FALSE.
ENDIF

CALCULATE TOTAL NUMBER OF ITERATIONS DONE
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NUMTOT=NUMTOT+NUM1

TRAIN NETWORK FOR EACH FILTER
DO 9999 NF=1,NFILT

DESIGN THE WEIGHT FILE NAME
WRITE(EXT,3311) NF
FORMAT( ' .W’,I12.2)
NAME=NAMEB(1:5)//EXT(1:4)

CHECK TO SEE IF THIS IS A NEW FILE
OR AN UPDATE

INQUIRE (FILE=NAME, EXIST=EXIST)
IF(.NOT.EXIST) THEN

IF((NK.EQ.0).AND.(NL.EQ.0)) CALL FIXW2
IF((NK.NE.O).AND. (NL.EQ.0)) CALL FIXW3
IF((NK.NE.O).AND.(NL.NE.0)) CALL FIXW4

OPEN THE NEW WEIGHT FILE

OPEN(UNIT=10,FILE=NAME , FORM='FORMATTED" ,
STATUS='NEW’ )

WRITE INSTRUCTION INFO TO WEIGHT FILE

WRITE(10,1010) TRATE,XMO,NIN,NJ,NK,NL,NUMTOT,
ITYPE,NFC,
FMIN, FMAX,
ANGLO(NF) ,ANGHI (NF) ,ATMAX,ATMIN, AN,
NAME , NAMEF , NAMES
FORMAT (2F8.4,716,7F8.4,3A20)

ELSE
OPEN OLD FILE AND READ OLD INST

OPEN(UNIT=10,FILE=NAME , FORM='FORMATTED' ,
STATUS='OLD’)

READ(10,1010) TRATEX,XMOX,NINX,NJX,NKX,NLX,
NUMX, ITYPEX ,NFCX, FMINX , FMAXX,
ANGLOX,ANGHIX,ATMAXX,ATMINX,ANX,
NAMEX , NAMEFX , NAMESX

CK FOR COMPATABILITY
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IF((NINX.NE.NIN).OR. (ANGLOX.NE.ANGLO(NF)) .OR.
(ANGHIX.NE.ANGHI(NF)).OR.(ANX.NE.AN).OR.
(ATMINX.NE.ATMIN) .OR. (ATMAXX.NE.ATMAX) .OR.
(NAMEFX.NE.NAMEF) .OR. (NAMESX.NE.NAMES) .OR.
(ITYPEX.NE.ITYPE).OR.(NL.NE.NLX).OR.
(NJ.NE.NJX) .OR. (NK.NE.NKX) .OR.

(FMIN.NE.

WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
WRITE(*,*)
STOP ’ERR
ENDIF

READ

FMINX) .OR. (FMAX.NE.FMAXX)) THEN
NINX,NIN

NJX,NJ

NKX , NK

NLX,NL

NFCX,NFC

FMINX, FMIN
FMAXX , FMAX
ANGLOX ,ANGLO(NF)
ANGHIX,ANGHI (NF)
ANX, AN

ATMINX ,ATMIN
ATMAXX , ATMAX

#1/

IN WEIGHTS FOR 2, 3,

IF((NL.NE.O).AND.(NK.NE.O)) CALL READW4(10)
IF((NL.EQ.O0).AND. (NK.NE.O)) CALL READW3(10)
IF((NL.EQ.O).AND.(NK.EQ.0)) CALL READW2(10)

REOPEN THE WEIGHT FILE & REWIND IT

OPEN(UNIT=10,FILE=NAME, FORM='FORMATTED’,
STATUS='0OLD’)

REWIND(10)

WRITE THE WEIGHT FILE ID INFORMAI'ION

NUMTOT=NUMX+NUM1
WRITE(10,1010) TRATE,XMO,NIN,NJ,NK,NL,NUMTOT,

ENDIF

ITYPE,NFC,
FMIN,FMAX,

ANGLO(NF) ,ANGHI (NF) ,ATMAX ,ATMIN, AN,
NAME , NAMEF , NAMES

WRITE INSTRUCTION INFO TO OUTPUT FILE

ANGMAX=ANGHI (NF)*PI2/360.
ANGMIN=ANGLO(NF)*PI12/360.

OR 4 LEVEL ANN
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TIME=0.
WRITE(*,*) ‘DO ‘,NUM1,’ ANG =’ ,ANGHI(NF),ANGLO(NF)

DO TRAINING FOR "NUM1" ITERATIONS
DC 987 JJJ=1,NUM1

SET RANDOM AMPLITUDE WITHIN LIMITS
& SET RANDOM FREQ WITHIN LIMITS
FOR "NC" DIFFERENT FREQUENCIES

DO 877 NC=1,NFC
AA(NC)=ATMIN+(ATMAX-ATMIN)*RAND(NNN)
F(NC)=FMIN+( FMAX-FMIN)*RAND(NNN)
CONTINUE

PICK A RANDOM ANGLE BAND TOC TRAIN

NUMIT=NFILTZ*2.0+2
DO 923 IT=1,NUMIT

ITIT=NUMIT*RAND (NNN)+1
1ZZ=NF

IF(ITIT.LE.NFILTZ) IZZ=ITIT
IF(ITIT.EQ.NUMIT) IZZ=NF-1
IF(ITIT.EQ.NUMIT-1) IZZ=NF+1
IF(IZZ.GT.NFILTZ) IZZ=1
IF(IZZ.LE.0) IZZ=NFILTZ

SET A RANDOM ANGLE WITHIN THE BAND
RANGE=ANGHI(IZZ)-ANGLO(IZZ)
RANGE=RANGE*PI2/360.
ANGR=(FLOAT(I1ZZ~1)+RAND(NNN) ) *RANGE

SET THE TARGET VALUES

OUTT=0.0
IF( (ANGR.GT.ANGMIN) .AND. (ANGR.LT.ANGMAX)) OUTT=1.0

CALCULATE X & Y COORDINATES OF THIS ANGLE
(RANGE=1000 FEET)

X=1000.*SIN(ANGR)
¥=1000.*COS(ANGR)

GET THE SELECTED TYPE OF INPUTS

DO A LINEAR SELETCION IF ITYPE=1
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c
IF(ITYPE.EQ.1) THEN
o
CALL WAVSET(D,SX,SY,NIN,X,Y,VEL)
c
DO 11 IS=1,NIN
XIN(IS)=WAVE(IS,D,AA,F,NFC,AN,TIME)
11 CONTINUE
ENDIF
c
c DO AN ELIPTICAL SELECTION IF ITYPE=2
C
IF(ITYPE.EQ.2) THEN
C
NIN2=NIN/2
CALL WAVSET(D,SX,SY,NIN2,X,Y,VEL)
o
DO 117 IS=1,NIN2
XIN(IS)=WAVE(IS,D,AA,F,NFC,AN,TIME)
XIN(IS+NIN2)=XIN(IS)*XIN(IS)
117 CONTINUE
ENDIF
C
c DO A X=SIN(A); Y=SIN(A+P); ETC.
o SELECTION IF ITYPE=3
c
IF(ITYPE.EQ.3) THEN
o
NIN2=NIN/2
CALL WAVSET(D,SX,SY,NIN2,X,Y,VEL)
c
DO 116 IS=1,NIN2
XIN(IS)=WAVE(IS,D,AA,F,NFC,AN,TIME)
XIN(IS+NIN2)=XIN(IS)*XIN(IS)
IF(IS.EQ.1) THEN
X1=XIN(1)
ELSE
XIN(IS-1)=XIN(IS-1)*XIN(IS)
ENDIF
116 CONTINUE
XIN(NIN2)=XIN(NIN2)*X1
ENDIF
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C o
c TRAIN THE NETWORK C
C C

Cccceceeeeceeceecceecceeeeeeeecceccecececceeecee
Cc
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IF((NK.EQ.0).AND.(NL.EQ.0O)) THEN
Cc
CALL ANN2
CALL LEARN2
CALL ADJUSTZ2
ENDIF
C
IF((NK.NE.O).AND.(NL.EQ.0)) THEN
C
CALL ANN3
CALL LEARN3
CALL ADJUST3
C
ENDIF
C
IF((NK.NE.O).AND.(NL.NE.O)) THEN
Cc
CALL ANN4
CALL LEARN4
CALL ADJUST4
C
ENDIF
C C
CCCCCeeeceelcceececececcceceeceececeeeeeceeece
C
923 CONTINUE
C
C PICK A RANDOM TIME FOR TEXT ITERATION
C
TIME=TIME+DT*RAND (NNN)
C
987 CONTINUE
C
CCCCCeeeeceeeeeeeeceecceceececcececececccecce
Cc C
C TRAINING IS COMPLETE C
C Cc
CCCCCCCeeeeeeeeecceeceecccececcacccccccecccce
c
C SAVE WEIGHTS
c
IF((NK.EQ.0).AND.(NL.EQ.0)) CALL SAVEW2(10)
IF((NK.NE.O).AND.(NL.EQ.0)) CALL SAVEW3(10)
IF((NK.NE.O) .AND.(NL.NE.O)) CALL SAVEW4(10)
C
9999 CONTINUE
o
Cc DO STATISTICS IF REQUESTED
C

IF(DOSTAT) THEN
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CALL STATS(NFILT,NAMEB,D,SX,SY,NFC)
ENDIF
o
c GO DO ANOTHER TEST
C
GO TO 2222
c
c ALL TEST ARE DONE -- EXIT
C
1717 CLOSE(UNIT=11)
CLOSE(UNIT=12)
STOP ‘DONE’
END
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C
c SUBROUTINE TO SIMULATE THE TRAINED
C NETWORK AND COMPILE SOME STATISTICS
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
SUBROUTINE STATS(NFF,NAMEB,D,SX,SY,NFC)
o
PARAMETER (NOS=100, NOF=50)
c
C
REAL XIN(NOS)
C
REAL ANGLO(NOF),ANGHI (NOF)
c
REAL D(NOS),SX(NOS),SY(NOS),AA(10),F(10)
C
CHARACTER*4 EXT
CHARACTER*20 NAMEB
CHARACTER*20 NAME,NAMES,NAMEF
c
COMMON TRATE,XMO,NIN,NJ,NK,NL,NOUT,OUT,OUTT,XIN
c
C CONSTANT DATA USED IN PROGRAM
C
DATA NNN/6715/
DATA VEL/600./
DATA PI2/6.283185307/
DATA DT/.1/
C
NOUT=1
c
C LOOK FOR ALL VERSIONS OF THE BASE FILE
C

DO 9999 NF=1,NFF
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DESIGN THE WEIGHT FILE NAME

WRITE(EXT,3311) NF
FORMAT{ / W’ ,I12.2)
NAME=NAMEB(1:5)//EXT(1:4)

OPEN OLD FILE AND READ OLD INST

WRITE(*,2211) NAVE

FORMAT (’ TRY 20O OPEN ’,A20)

OPEN(UNIT=10,FILE=NAME, FORM=’FORMATTED" ,

STATUS=’0LD” )

REWIED(10)

READ(10,1210) TRATE,XMO,NIN,NJ,NK,NL,NUM, ITYPE,6NFC,
FMIN, FMAX,
ANGLO(NF) ,ANGHI(NF),ATMAX,ATMIN, AN,
NAME ,NAMEF , NAMES

FORMAT (2F8 4,716,7F8.4,3A20)

READ WETGHTS FOR 2, 3, OR 4 LEVEL ANN
IF((NK.EJ.2).AND.{(NL.EQ.0)) CALL READW2(10)
IF{(NK.NE.0).AND.(NL.EQ.0)) CALL READW3(10)
IF{(NK.NE.G).AaND.(NL.NE.O)) CALL READW4(10)

GGET ANSLE (IN RAD)

ANGMAX=2ANGHI (NF)}*PI2/360.
ANGMIN=ANGLO(NF)*FPI2/360.

TIME=0.

SET AMPLITUDE RANGE TO
9¢% OF TRAINED AMPLITUDE

RANGE=( .1+ ANTMAX-ATMIN) ) /2.
SATMAX=ATMAX-RANGE
SATMTN=ATMIN+RANGE

SAN=AN

WRITLZ IYPORTRAN VARIABLES TO "LOG" FILE

~

VRITE(12,1212)
WRTTE(12,1212) NAMES

WKITE(12,1213) NFC,NIN,NJ,NK,NL,NUM,ITYPE
WRITE(12,1214;, FMIN,FMAX,TRATE,XMO
WRITE(12,1214) ANGLO(NF),ANGHI(NF),ATMAX,ATMIN
WRITE(12,7714% AN,SAN,SATMAX,SATMIN
FORMAT(AZ0)

NAMEF

-

¢
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FORMAT (716)
FORMAT (4F16.8)

IERRT=0
IXLOT=0
IXHIT=0
IAMBT=0

TEST THE NETWORK FROM 1 TO 90 DEGREES IN

STEPS OF .5 DEGREES
DO 987 JJJ=1,180
ANGR=FLOAT(JJJ)*PI2/(2.%360.)

SET RANDOM AMPLITUDE AND
RANDOM FREQUENCY WITHIN LIMITS

DO 571 NC=1,NFC
AA(NC)=SATMIN+(SATMAX-SATMIN ) *RAND(NNN)
F (NC)=FMIN+(FMAX~FMIN)*RAND (NNN)
CONTINUE

SET THE TARGET VALUE
AVG=0.
XMAX=0.
XMIN=1.
IXLO=0
IXHI=0
IAMBIG=0

FOR EACH ANGLE TEST THE NETWORK
AT 20 RANDOM TIMES

DO 923 IT=1,20
SET TARGET VALUES

OUTT=0.0

205

IF( (ANGR.GT.ANGMIN) .AND. (ANGR.LT.ANGMAX)) OUTT=1.0

CALCULATE X & Y COORDINATES OF THIS ANGLE

X=1000.*SIN(ANGR)
¥=1000.*COS(ANGR)

GET THE SELECTED TYPE OF INPUTS

DO A LINEAR SELETCION IF ITYPE=1
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o
IF(ITYPE.EQ.1) THEN
o
CALL WAVSET(D,SX,SY,NIN,X,Y,VE.)
C
DO 11 IS=1,NIN
XIN(IS)=WAVE(IS,D,AA,F,NFC,AN, TIME)
11 CONTINUE
ENDIF
o
c DO AN ELIPTICAL SELECTION IF ITYPE=2
c
IF(ITYPE.EQ.2) THEN
C
NIN2=NIN/2
CALL WAVSET(D,SX,SY,NIN2,X,Y,VEL)
o
DO 117 IS=1,NIN2
XIN(IS)=WAVE(IS,D,AA,F,NFC,AN,TIME)
XIN(IS+NTN2)=XIN(IS)*XIN(IS)
117 CONTINUE
ENDIF
c
C DO A X=SIN(A); Y=SIN(A+P); ETC.
c SELECTION IF ITYPE=3
c
IF(ITYPE.EQ.3) THEN
o
NIN2=NIN/2
CALL WAVSET(D,SX,SY,NIN2,6X,Y,VEL)
o
DO 116 IS=1,NIN2
XIN(IS)=WAVE(IS,D,AA,F,NFC,AN,TIME)
XIN(IS+NIN2)=XIN/IS)*XIN(IS)
IF(IS.EQ.1) THEN
X1=XIN(1)
ELSE
XIN(IS-1)=XIN(IS-1)*XIN(IS)
ENDIF
116 CONTINUE
XIN(NIN2)=XIN(NIN2)*X1
ENDIF
o
C DO SIMULATION FOR 2, 3, OR 4 LE'EL ANN
c
IF((NK.EQ.0).AND.(NL.EQ.0)) CALL ANN2
IF((NK.NE.O).AND.(NL.EQ.0)) CALL ANN3
IF((NK.NC.0).AND.(NL.NE.O)) CALL ANN4
o
c FIND AVG, MAX, & MIN OUTPUT
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AVG=AVG+OUT
IF(OUT.GT.XMAX) XMAX=0UT
IF(OUT.LT.XMIN) XMIN=OUT

FIND STATISTICS ON GOOD, BAD,
& AMBIGUOUS RESULTS

I '(OUTT.LT.0.2).AND,(OUT.LT.0.2)) IXLO=IXLO+1
I OUTT.GT.0.7).AND.(OUT.GT.0.7)) IXHI=IXHI+1
IF((OUT.GT.0.2).AND.(OUT.LT.0.7)) IAMBIG=IAMBIG+1
IERROR=20-IXLO-IXHI~-IAMBIG

SET RANDOM TIME FOR NEXT ITERATION

TIME=TIME+DT#*RAND (NNN)
CONTINUE

COMPUTE AVERAGE
AVG=AVG/20.

WRITE RESULTS TO "LOG" FILE SCALED BY 100
IAVG=AVG*100.

MAX=XMAX*100.
MIN=XMIN*100.
WRITE(12,1233) IAVG,MAX,MIN
FORMAT (3I4)

COMPUTE STATISTICS
IERRT=IERRT+IERROR
IXiOT=IXLOT+IXLO
IXHIT=IXHIT+IXHI
IAMBT=IAMBT+IAMBIG
CONTINUE

WRITE(12,1233) -1,IERRT,IAMBT
WRITE(12,1233) =-2,IXLOT,IXHIT

CONTINUE

ALL ANGLE BANDS ARE FINISHED
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RETURN
C

END
C
CCCCCCCCCClreeeeeeeeeeeeeeeecceeeceeeeceecececeeeeeeecececece
C

Cc SUBROUTINE TO SET UP THE PROPOGATION
C TIME FOR ALL "NIN" SENSORS
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCe
c

SUBROUTINE WAVSET!D,SX,SY,NS,X,Y,VEL)

REAL D(NS),SX(NS),SY(NS)

o
DO 1 I-=1,NS
C
C CALCUALTE DISTANCES FORM SENSORS
o
XX=SX(I)-X
YY=SY(I)-Y
o
C CALCULATE TIME DELAY TO SENSOR
c
D(I) = XX*XX + YY*YY
D(I) = SQRT(D(I))/VEL
1 CONTINUE
RETURN
END
o
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C
o CALCULATE THE VALUE AT SENSOR "IS" AT TIME "TIME"
c AND FREQUENCY "F" AND AMPLITUDE "A"
C AND NOISE LEVEL "AN"
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
C

FUNCTION WAVE(IS,D,A,F,NC,AN,TIME)
REAL D(1),A(NC),F(NC)
DATA PI2,N/6.283185307,6713/

C
C GET TOTAL TIME
c (PROPAGATION TIME + REAL TIME)
C
T = TIME + D(IS)
C
C CALCUT.ATE WAVE AMPLITUDE AT THIS SENSOR
C (NOISE + ALL FREQUENCY COMPONENTS)
c

WAVE~ AN*{RAND(N)-.5)




DO 33 I=1,NC

W=F(I)*PI2

WAVE = A(I)*SIN(W*T) + WAVE
33 CONTINUE

RETURN

END
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
o
c FIRST DERIVATIVE OF PERCEPTRON’S
C NONLINEAR FUNCTION
c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
c

FUNCTION FUNP(XX)

FUNP=XX#* (1.-XX)

RETURN

END
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C PERCEPTRON’S NONLINEAR FUNCTION
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
o

FUNCTION FUN(X)

FUN=1./(1l.+EXP(-X))

RETURN

END
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
o RANDOM NUMBER GEN.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
o

FUNCTION RAND(N)

K=31627

N=N*K

N=MOD(N,32768)

RN=N

RN=RN/32767.

RAND=ABS (RN)

RETURN

END
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C
CCCCCCCCCCCCCCeeeeeeeeeeeeeecceeeceeceeeceeeeccece
C

C FOR 4 LEVEL ANN
o
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
o
C SET RANDOM INITIAL WEIGHTS
C
SUBROUTINE FIXW4
c
PARAMETER (NOS=100,NOF=50)
C
REAL WIJ(NOS,NOS),WJK(NOS,NOS)
REAL WKL (NOS,NOS),WLO(NOS,1)
REAL BIASJ(NOS),BIASL(NOS),BIASK(NOS),BIASO(1)
REAL OUTJ(NOS}),OUTK(NOS),OUTL(NOS),0UT(1)
REAL EL(NOS),EK(NOS),EJ(NOS),EO(1)
REAL DKL (NOS,NOS),DJK(NOS,NOS)
REAL DIJ(NOS,NOS),DLO(NOS,1)
RIAL DBIASL(NOS),DBIASK(NOS),DBIASJ(NOS),DBIASO(1)
REAL OUTT(1),XIN(NOS)
c
COMMON /STUFF/WiJ,WJK,WKL,WLC,BIASJ,BIASL,
& BIASK,BIASO,OUTL,GUTJ,OUTK,EL,EK,EJ,EO,DKL,
& DJK,DIJ,DLO,DBIASL,DBIASK,DBIASJ,DBIASO
C
COMMON TRATE, XMO,NIN,NJ,NK,NL,NOUT,OUT,OUTT,XIN
c
DATA DDD/50./
DATA NNN/6713/
o
DO 444 II=1,NIN
DO 44 JJI=1,NJ
WIJ(II,JJ)=-.5+RAND(NNN)
WIJ(II,JJ)=WIJ(II,JJ)/DDD
44 CONTINUFE
444 CONTINUE
o
DO 445 JJ=1,NJ
BIASJ(J3)=-.5+RAND(NNN)
BIASJ(JJ)=BIASJ(JJ)/DDD
DO 45 KK=1,NK
WJIK(JJ,KK)=-.5+RAND(NNN)
WJIK(JJ,KK)=WIK(5J,KK) /DDD
45 CONTINUE
445 CONTINUF
C

DO 446 KK-1,NK
BIASK(KK)=-.% +RAND(NNN)
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446

54
546

47
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BIASK(KK)=BIASK(KK)/DDD
DO 46 LL=1,NL

WKL (KK,LL)=-.5+RAND(NNN)
WKL (KK,LL)=WKL(KK,LL)/DDD
CONTINUE

CONTINUE

DO 546 LL=1,NL
BIASL(LL)=-.5+RAND(NNN)
BIASL(LL)=BIASL(LL)/DDD
DO 54 MM=1,NOUT
WLO(LL,MM)=-.5+RAND (NNN)
WLO(LL,MM)=WLO(LL,MM) /DDD
CONTINUE

CONTINUE

DO 47 MM=1,NOUT
BIASO(MM)=~.5+RAND(NNN)
BTASO(MM)=BIASO(MM) /DDD
CONTINUE

RETURN

SAVE WEIGHTS

ENTRY SAVEW4(IUNIT)
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WRITE(IUNIT,1010) ((WIJ(II,JJ),II=1,NIN),JJ=1,NJ),

(BIASJ(JJ),JJ=1,NJ)
WRITE(IUNIT,1010) ((WJK(JJ,KK),JJ=1,NJ),KK=1,NK),

(BIASK(KK) ,KK=1,NK)
WRITE(IUNIT,1010) ((WKL(KK,LL),KK=1,NK),LL=1,NL),

(BIASL(LL),LL=1,NL)

WRITE({IUNIT,1010) ((WLO(LL,MM),LL=1,NL),MM=1,NOUT),

(BIASO(MM) ,MM=1,NOUT)

FORMAT (F16.8)
CLOSE(UNIT=IUNIT)
RETURN

READ WEIGHTS

ENTRY READW4(IUNIT)

READ(IUNIT,1010) ((WIJ(II,JJ),II=1,NIN),JJ=1,NJ),
(BIASJ(JJ),JdJ=1,NJ)

READ(IUNIT,1010) ((WJK(JJ,KK),JJ=1,NJ),KK=1,NK),
(BIASK(KK),KK=1,NK)

READ(IUNIT,1010) ((WKL(KK,LL),KK=1,NK),LL=1,NL),
(BIASL(LL),LL=1,NL)

READ(IUNIT,1010) ((WLO(LL,MM),LL=1,NL),MM=1,NOUT),

(BIASO(MM) ,MM=1,NOUT)

CLOSE(UNIT=IUNIT)
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RETURN
ROUTINE TO SIMULATE ANN
ENTRY ANN4
SIMULATE LEVEL 1

DO 10 J=1,NJ
S=BIASJ(J)

DO 11 I=1,NIN
S=S+XIN(I)*WIJ(I,J)
CONTINUE

OUTJ (J)=FUN(S)
CONTINUE

SIMULATE LEVEL 2

DO 20 K=1,NK
S=BIASK(K)

DO 21 J=1,NJ
S=S+OUTJ (J) *WIK(J,K)
CONTINUE

OUTK (K)=FUN(S)
CONTINUE

SIMULATE LEVEL 3

DO 30 L=1,NL
S=BIASL(L)

DO 31 K=1,NK
S=S+OUTK (K ) *WKL(K,L)
CONTINUE
OUTL(L)=FUN(S)
CONTINUE

SIMULATE LEVEL 4

DO 40 M=1,NOUT
S=BIASO(M)

DO 41 L=1,NL
S=S+OUTL(L)*WLO(L,M)
CONTINUE
OUT(M)=FUN(S)
CONTINUE

RETURN

LEARNING ROUTINE




000

110

116

117
115

121

120

131

130

213
ENTRY LEARN4
TRAIN LEVEL 4

DO 110 M=1,NOUT
EL(M)=FUNP(OUT(M) ) * (OUTT(M)~OUT(M))
DBIASO(M)—TRATE+EQ(M)+ XMO*DBIASO (M)

DO 110 L=1,NL
DLO(L,M)=TRATE*EO (M) *OUTL(L)+XMO*DLO(L,M)
CONTINUE

TRAIN LEVEL 3

DO 115 L=1,NL
S=0.

DO 116 M=1,NOUT

S=S+WLO(L,M)*EOQ(M)

CONTINUE

EL(L)=FUNP(OUTL(L))*S
DBIASL(L)=TRATE*EL(L)+XMO*DBIASL(L)

DO 117 K=1,NK
DKL(K,L)=TRATE*EL(L)*OUTK(K)+XMO*DKL(K,L)
CONTINUE

CONTINUE

TRAIN LEVEL 2

DO 120 K=1,NK
S=0.

DO 121 L=1,NL

S=S+WKL(K,L)*EL(L)

CONTINUE

EK(K)—FUNP(OUTK(K))*S

DBIASK(K)=TRATE*EK (K)+XMO*DBIASK(K)

DO 120 J=1,NJ
DJK(J,K)=TRATE*EK (K )*OUTJ (J)+XMO*DJK(J,K)
CONTINUE

TRAIN LEVEL 1

DO 130 J=1,NJ
S=0.
DO 131 K=1,NK
S=S+WJIK(J,K) *LK(K)
CONTINUE
EJ(J)=FUNP(OUTJ(J))*S
DBIASJ (J)=TRATE*EJ (J)+XMO*DBIASJ(J)
DO 130 I=1,NIN
DIJ(I,J)=TRATE*EJ(J)*XIN(I)+XMO*DIJ(I,J)
CONTINUE
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RETURN

ROUTINE TO ADJUST WEIGHTS
ENTRY ADJUST4

ADJUST BIAS WEIGHTS

DO 229 M=1,NOUT
BIASO(M)=BIASO(M)+DBIASO(M)

DO 230 L=1,NL
BIASL(L)=BIASL(L)+DBIASL(L)

DO 220 K=1,NK
BIASK(K)=BIASK(K)+DBIASK(K)

DO 210 J=1,NJ
BIASJ(J)=BIASJ(J)+DBIASJI(J)

ADJUST WEIGHTS

DO 239 M=1,NOUT
DO 239 L=1,NL
WLO(L,M)=WLO(L,M)+DLO(L,M)

DO 240 L=1,NL
DO 240 K=1,NK
WKL(K,L)=WKL(K,L)+DKL(K,L)

DO 250 K=1,NK
DO 250 J=1,NJ
WJIK(J,K)=WJIK(J,K)+DJIK(J,K)
DO 260 J=1,NJ

DO 260 I=1,NIN
WIJ(I,J)=WIJ(I,J)+DIJ(I,J)

RETURN

END

3 LEVEL ANN

SET RANDOM INITIAL WEIGHTS
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SUBROUTINE FIXW3
PARAMETER (NOS=100,NOF=50)

REAL WIJ(NOS,NOS),WJK(NOS,NOS),WKL(NOS,1)
REAL BTASJ(NOS),BIASL(1),BIASK(NOS)

REAL OUTJ(NOS),OUTK(NOS),OUT(1)

REAL EL(1),EK(NOS),EJ(NOS)

REAL DKL(NOS,1),DJK(NOS,NOS),DIJ(NOS,NOS)
REAL DBIASL(1),DBIASK(NOS),DBIASJ(NOS)
REAL OUTT(1),XIN(NOS)

COMMON/STUFF/WIJ,WJK, WKL ,BIASJ,BIASL,BIASK,
& ouTJ,0uUTK, EL, EK,EJ,DKL,DJK,DIJ,
& DBIASL ,DBIASK,DBIASJ

COMMON TRATE, XMO,NIN,NJ,NK,NL,NOUT,OUT,OUTT,XIN

DATA DDD/50./
DATA NNN/6713/

DO 444 II=1,NIN
DO 44 JJ=1,NJ
WIJ(II,JJ)=-.5+RAND(NNN)
WIJ(II,JJ)=WIJ(II,JJ)/DDD
44 CONTINUE
444 CONTINUE

DO 445 JJ=1,NJ
BIASJ(JJ)=~.5+RAND(NNN)
BIASJ(JJ)=BIASI(JJ)/DDD
DO 45 KK=1,NK
WJK(J.J,KK)=-.5+RAND(NNN)
WJIK(JJ,KK)=WJK(JJ,KK) /DDD

45 CONTINUE

445 CONTINUE

DO 446 KK=1,NK
BIASK(KK)=~.5+RAND(NNN)
BIASK(KK)=BIASK(KK)/DDD
DO 46 LL=1,NOUT
WKL (KK,LL)=-.5+RAND(NNN)
WKL (KK ,LL)=WKL(KK,LL) /DDD
46 CONTINUE
446 CONTINUE

DO 47 LL=1,NOUT
BIASL(LL)=~.5+RAND(NNN)
BIASL(LL)=BIASL(LL)/DDD
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CONTINUE
RETURN

SAVE WEIGHTS

ENTRY SAVEW3(IUNIT)

WRITE(IUNIT,1010) ((WIJ(II,JJ),II=1,NIN),JJ=1,NJ),
(BIASJ(JJ),JJ=1,NJ)

WRITE(IUNIT,1010) ((WJK(JJ,KK),JJ=1,NJ),KK=1,NK),
(BIASK(KK) ,KK=1,NK)

WRITE(IUNIT,1010) ((WKL(KK,LL),KK=1,NK),LL=1,NOUT),
(BIASL(LL),LL=1,NOUT)

FORMAT (F16.8)

CLOSE (UNIT=IUNIT)

RETURN

READ WEIGHTS
ENTRY READW3(IUNIT)

READ(IUNIT,1010) ((WIJ(II,JJ),II=1,NIN),JJ=1,NJ),
(BIASJ(JJ),JJ=1,NJ)

READ(IUNIT,1010) ((WJK(JJ,KK),JJ=1,NJ),KK=1,NK),
(BIASK(KK) ,KK=1,NK)

READ(IUNIT,1010) ((WKL(KK,LL),KK=1,NK),LL=1,NOUT),
(BIASL(LL),LL=1,NOUT)

CLOSE(UNIT=IUNIT)

RETURN

ROUTINE TO SIMULATE ANN
ENTRY ANN3
SIMULATE LEVEL 1

DO 10 J=1,NJ
S=BIASJ(J)

DO 11 I=1,NIN
S=S+XIN(I)*WIJ(I,J)
CONTINUE

OUTJ (J)=FUN(S)
CONTINUE

SIMULATE LEVEL 2

DO 20 K=1,NK
S=BIASK(K)

DO 21 J=1,NJ
S=S+OUTJ (J ) *WIK(J,K)
CONTINUE
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OUTK(K)=FUN(S)
CONTINUE

SIMULATE LEVEL 3
DO 30 L=1,NOUT
S=BIASL(L)
DO 31 K=1,NK
S=S+0OUTK(K)*WKL(K,L)
CONTINUE
OUT(L)=FUN(S)
CONTINUE
RETURN

LEARNING ROUTINE
ENTRY LEARN3

TRAIN LEVEL 3

DO 110 L=1,NOUT

EL(L)=FUNP(OUT(L))*(OUTT(L)-OUT(L))
DBIASL(L)=TRATE*EL(L)+XMO*DBIASL(L)

DO 110 K=1,NK

DKL(K,L)=TRATE*EL(L)*OUTK(K)+XMO*DKL(K,L)

CONTINUE
TRAIN LEVEL 2

DO 120 K=1,NK
S=0.

DO 121 L=1,NOUT
S=S+WKL(K,L)*EL(L)
CONTINUE
EK(K)=FUNP(OUTK(K) ) *S

DBIASK(K)=TRATE*EK (K)+XMO*DBIASK(K)

DO 120 J=1,NJ

DJK(J,K)=TRATE*EK (K) *OUTJ (J)+XMO*DJK(J,K)

CONTINUE
TRAIN LEVEL 1

DO 130 J=1,NJ
S=0.

DO 131 K=1,NK
S=S+WJK(J,K)*EK(K)
CONTINUE
EJ(J)=FUNP(OUTJ(J) ) *S

DBIASJ(J)=TRATE*EJ(J)+XMO*DBIASJ(J)
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DO 130 I=1,NIN
DIJ(I,J)=TRATE*EJ(J)*XIN(I)+XMO*DIJ(I,J)
CONTINUE
RETURN

ROUTINE TO ADJUST WEIGHTS
ENTRY ADJUST3

ADJUST BIAS WEIGHTS

po 230 L=1,NOUT
BIASL(L)=BIASL(L)+DBIASL(L)

DO 220 K=1,NK
BIASK(K)=BIASK(K)+DBIASK(K)

DO 210 J=1,NJ
BIASJ(J)=BIASJ(J)+DBIASJI(J)

ADJUST WEIGHTS

DO 240 L=1,NOUT
DO 240 K=1,NK
WKL(K,L)=WKL(K,L)+DKL(K,L)

DO 250 K=1,NK
DO 250 J=1,NJ
WIK(J,K)=WIK(J,K)+DJK(J,K)

DO 260 J=1,NJ
DO 260 I=1,NIN
WIJ(I,J)=WIJ(I,J)+DIJ(I,J)

RETURN
END

CCceeeeeecceceeeceeeeceeeccecccececcceecececeeeeee
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2 LEVEL ANN

CCCCCCCCCccceeeeceeccceeceeecececcecececececcecececece
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SET RANDOM INITIAL WEIGHTS
SUBROUTINE FIXW2

PARAMETER (NOS=100,NOF=50)
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REAL WIJ(NOS,NOS),WJL(NOS,1)
REAL BIASJ(NOS),BIASL(1)
REAL OUTJ(NOS)

REAL EL(1),EJ(NOS)

REAL DJL(NOS,1),DIJ(NOS,NOS)
REAL DBIASL(1),DBIASJ(NOS)
REAL OUTT(1),XIN(NOS),O0UT(1)

COMMON /STUFF /WIJ,WJL,BIASJ,BIASL,
& OUTJ,EL,EJ,DJL,DIJ,
& DBIASL,DBIASJ

COMMON TRATE, XMO,NIN,NJ,NK,NL,NOUT,OUT,OUTT,6 XIN

DATA NNN/6713/
DATA DDD/50./

DO 444 II=1,NIN
DO 44 JJ=1,NJ
WIJ(II,JJ)=-.5+RAND(NNN)
WIJ(II,JJ)=WIJ(II,JJ)/DDD

44 CONTINUE

444 CONTINUE

DO 446 JJ=1,NJ
BIASJ(JJ)=-.5+RAND(NNN)
BIASJ(JJ)=BIASJI(JJ)/DDD
DO 46 LL=1,NOUT
WJL(JJ,LL)=-.5+RAND(NNN)
WJL(JJ,LL)=WJL(JJ,LL)/DDD

46 CONTINUE

446 CONTINUE

DO 47 LL=1,NOUT

BIASL(LL)=-.5+RAND(NNN)

BIASL(LL)=BIASL(LL)/DDD
47 CONTINUE

RETURN

SAVE WEIGHTS

QOO0

ENTRY SAVEW2(IUNIT)
WRITE(IUNIT,1010) ((WIJ(II,JJ),II=1,NIN),JJ=1,NJ),
& (BIASJ(JJ),JJ=1,NJ)
WRITE(IUNIT,1010) ((WJL(JJ,LL),JJ=1,NJ),LL=1,NOUT),
& (BIASL(LL),LL=1,NOUT)
1010 FORMAT (F16.8)
CLOSE(UNIT=TUNIT)
RETURN
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READ WEIGHTS
ENTRY READWZz (IUNIT)

READ(IUNIT,1010) ((WIJ(II,JJ),II=1,NIN),JJ=1,NJ),
(BIASJ(JJ),JJ=1,NJ)

READ(IUNIT,1010) ((WJL(JJ,LL),JJ=1,NJ),LL=1,NOUT),
(BIASL(LL),LL=1,NOUT)

CLOSE(UNIT=IUNIT)

RETURN

ROUTINE TO SIMULATE ANN
ENTRY ANN2
STMULATE LEVEL 1

DO 10 J=1,NJ
S=BIASJ(J)

DO 11 I=1,NIN
S=S+XIN(I)*WIJ(I,J)
CONTINUE

OUTJ (J)=FUN(S)
CONTINUE

SIMULATE LEVEL 2

DO 30 L=1,NOUT
S=BIASL(L)

DO 31 J=1,NJ
S=S+OUTJ (J)*WJIL(J,L)
CONTINUE
OUT(L)=FUN(S)
CONTINUE

RETURN

LEARNING ROUTINE
ENTRY LEARN2

TRAIN LEVEL 2
DO 110 L=1,NOUT
EL(L)=FUNP(OUT(L))* (OUTT(L)-OUT(L))
DBIASL(L)=TRATE*EL({L)+XMO*DBIASL(L)
DO 110 J=1,NJ

DJL(J,L)=TRATE*EL(L)*OUTJ(J)+XMO*DJL(J,L)
CONTINUE
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C TRAIN LEVEL 1

DO 130 J=1,NJ
S=0.
DO 131 L=1,NOUT
S=S+WJL(J,L)*EL(L)
131 CONTINUE
EJ(J)=FUNP(OUTJ(J))*S
DBIASJ(J)=TRATE*EJ(J)+XMO*DBIASJ(J)
DO 130 I=1,NIN
DIJ(I,J)=TRATE*EJ(J)*XIN(I)+XMODIJ(I,J)
130 CONTINUE

C
RETURN
c
C ROUTINE TO ADJUST WEIGHTS
c
ENTRY ADJUST2
c
C ADJUST BIAS WEIGHTS
c
DO 230 L=1,NOUT
230 BIASL(L)=BIASL(L)+DBIASL(L)
o
DO 210 J=1,NJ
210 BIASJI(J)=BIASJ(J)+DBIASJI(J)
C
c ADJUST WEIGHTS
c
DO 240 L=1,NOUT
DO 240 J=1,NJ
240 WJL(J,L)=WJL(J,L)+DJL(J,L)
C
DO 260 J=1,NJ
DO 260 I=1,NIN
260 WIJ(I,J)=WIJ(I,J)+DIJ(I,J)
C
RETURN
END
c

CCCCCCCCCCCCCCCCCCCCCLICCCCCCCeeeeeeeeeececeeececceeececece
C

C END OF VWBBFNN

C
CCCCCCCCCCCCCCCCeeeeeeeceeceeceeceecececeeceeececccceecceeeccee




Appendix II
Time History Plots of Seismic Data
The following data was acquired on analog magnetic tape
and digitized for processing. Neither amplitude or time scaling

was required to train the network.
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Channels 1-6 Seismic Data Direction A
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Channels 7-12 Seismic Data Direction A
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CHannels 1-6 Seismic Data Direction B
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Channels 7-12 Seismic Data Direction B

CCHANNEL 12 FILE: MS1.SCL
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Channels 1-6 Seismic Data Direction C
. CHANNEL 6 FILE: M91.SCL
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Chéannels 7~-12 Seismic Data Direction C
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Channéls 1~6 Seismic Data Direction A Range 2
. CHANNEL 6 FILE: M31,SCL
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Channels 7-12 Seismic Data Direction A Range 2

. CHANNEL 12 FILE: M31.SCL
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Channels 1-6 Seismic Data Direction B Range 2
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Channels 7-12 Seismic Data Direction B Range 2
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