
UNLIMITED

RSRE
MEMORANDUM No. 4436

N ROYAL SIGNALS &RADAR
ESTABLISHMENT

FORMAL SEMANTIC DEFINITION OF ELLA TIMING

Authors: M G Hill, E V Whiting & J D Morison

cn
,IT PROCUREMENT EXECUTIVE,

MINISTRY OF DEFENCE,

Z RSRE MALVERN, DTIC
FLECTEz E~FB 2 0151.9 D

CC flWMMON VT1CM

CONDITIONS OF RELEASE

0088204 BR-115854

DRIC U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

...... "**..*............... DRIC Y

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

ELLA Timidng

Contents

1 Introduction 2

2 ELLA Time 2

3 ELLA Delay Predicates3
3.1 Ambiguity Delay.. 3
3.2 Transport Delay.. 6
3.3 General Delay.. 6
3.4 Interial Delay..9

4 Timnescaling 10
4.1 Sample Primitive....................................... 10
4.2 Hierarchcal Timing..................................... 11
4.3 An Example Transformation................................ 12
4.4 Retiming Example...................................... 14

6 Conclusions 17

6 Acknowledgemnents 17

7 References 17

A Predicate Notation 1

Accession For'
NTIS GRA&I
DTIC TA
Unannounced 03
Just ifltic

Dist ribution/ __

Availabilit.yColdes

DitAvail and/orD int Special

THIS PAGE IS LEFT BLANK INTENTIONALLY

ELLA Timing

1 Introduction

In this document we describe work that has resulted from the collaborative projects
ESPRIT 'SPRITE' [1-3] and IED 'Formal Verification' for the formal definition of the
ELLATM timing model. We begin by describing informally the semantics of ELLA delays,
then the formal definition of ELLA timing is presented using predicate calculus. We also
define the predicate for the new ELLA 'sample and hold' timing primitive used in the
retiming of ELLA circuits. The concept of hierarchically timescaled regions is presented.
Examples of the use of the new timing primitive in hierarchical timescaling are given.

2 ELLA Time

The ELLA time model is based on the use of delay behavioural primitives. These
primitives are used to define leaf nodes whose sole property is to delay a value passing
through that node. The ELLA simulator has an internal clock that starts from zero and
increases in increments of one, and the delay time unit is defined in terms of this clock. The
relationship between simulation time and real time is left for the user to interpret. The
delay primitives serve a number of purposes, for example describing propagation delays,
providing memory, or producing high-level timing functions similar to those in register
transfer languages. There are two delay primitives, DELAY and IDELAY, each of which
must be the sole contents of a function body. Examples of these primitives are

FN DELAY_1 = (type) -t type: DELAY(?type, n).

FN DELAY_2 = (type) -> type: DELAY(?type, 2, ?type, 5).

FN DELAY_3 = (type) -> type: IDELAY(?type, 2).

where DELAYI is a transport delay and delays the input value by 'n' time units, where
'n' is an integer. Any signal that remains stable for less than the delay time, i.e 'n, is
replaced by the basic value '?type'. Note that if n=1 then DELAYI is a pure unit delay.
DELAY_2 is an ambiguity delay where at zero time it has the value ?type. After two time
units the value will change to its second type value (here it will stay at '?type'), and then
after a further three time units, i.e. five units since time zero, the input to the function
appears at the output. With this type of delay if the input is stable for less than five
time units the output becomes '?type' two time units after the first change, and it remains
'?type' until five time units after the second change. DELAY_3 is an inertial delay which
delays the input by two time units and outputs '?type' for the first two time units. With
an inertial delay any signal that remains stable for less than the delay time (two units in
this case) is filtered out.

Consider the following example where

TYPE type - NEW (h 1 1).

with the input signal to the three delays defined above given as

2

ELLA Timing

h hhhhhhhh
INPUT : 111 11111
time : 01234

then their corresponding outputs are

hhhhhh
DELAYI : ill iiiii
{n=2} ?? ?

hhhh
DELAY_2: 11

hhhhhh
DELAY_3: iiiiiiiii

where DELAYI has been instantiated for the value n=2.

The above description provides a very informal description of the behaviour of delays.
In the next section we define the delay behaviour rigorously by means of predicate calculus.

3 ELLA Delay Predicates

A brief overview of the predicate calculus terminology used in this section is given in
appendix A. For a more in-depth description the reader is referred to [9] and [10].

3.1 Ambiguity Delay

Consider the following ambiguity delay function

FN DEL = (type: in) -- type: DELAY(vail, m, val2, n).

where 0 < m < n. The semantics for this delay function are given informally as

9 The initial value of the function is 'vail'. If there exists a sequence of n equal input
values occurring between the current time and m+n-1 units of time ago then the

output of the function is the input value n units of time ago, otherwise the output
is 'val2'.

The semantics can be formally expressed as

(Vt) IF t < 0
THEN in(t) = vail
ELSE IF 9jViin(t-n+i-j)=in(t-n) (1)

THEN DEL in(t) = in(t - n)
ELSE DEL in(t) = vai2

3

ELLA Timing

where 1 < j < m, 1 < i < n. It is necessary to initialise the input signal for times
less than zero since the remainder of the predicate requires values of 'in' from a time of
t = -n - m + 1. Without this initialisation of condition on the input signal a complex set
of conditions would be needed to capture the behaviour of DEL.

It can be noted that by using the following notation

IFpTHENqELSEr - [p==*.qlr] (2)

the above expression may be rewritten as

(Vt) [t < 0 = in(t) = valll (3)

[3j Vi in(t - n + i - j) = in(t - n) == DEL in(t) = in(t - n) I DEL in(t) = val2]]

These notations are interchangeable and in this document use will be made of both
formats.

The outer ELSE clause of (1) determines the output value for the delay function. It
does this by examining a sequence of n equal input values starting with the range [t-1 ..
t-n] and finishing with the range [(t-n-m+l) .. t-m]. Pictorially this can be seen in the
following diagram which illustrates alternatives for the input signal to the delay which
have a pulse length of at least size n

{t-} n+m-1 n+l n n-1 m 2 1 j=

? x x xx x x x x x x X X 1
? x x x x x x x x x x x x x 0 2

? x x x x x x x x x xxx 0 ? 3

?x xxx x x xx xxxx x 0 ?? ? ? m

where "x" indicates equal values, "0" a value different from "x", and "?" indicates an "x",
"0" or another value. It can be noted that although the value in(t-n) was chosen in the
second 'THEN' arm it could equally have been the value in(t-k) where m < k < n since
they are all the same value.

Up to this point we have assumed that in(t) has a known value so that a sequence of
n equal values can be found. However in ELLA a signal, such as the input to the delay
function, can have a value of '?type', which represents the ELLA unknown value. In this
case the above predicate has to be extended to allow for the following case

e If a sequence of n values are found which are a combination of a single value and the
ELLA unknown value then the delay function should return the unknown value.

4

ELLA Timing

This can be fornmally expressed as

IF 3j Vi in(t - n + i - j) = (in(t - n) V ?type) THEN DEL in(t) = ?type (4)

Combining this with (1) gives

(Vt) IF t<O0
THEN in(t) = vall
ELSE IF JjViin(t-n+i-j) =in(t- n)

THEN DEL in(t) = in(t - n) (5)
EJ:LSE IF 3j Viin(t - n+ i-j) =(in(t -n) V?type)

THEN DEL in(t) =?type

ELSE DEL in(t) =val2

where Il<j<m, l<i<n

For the particular case of m = n = 1, i.e. Pure Unit Delay, we see that in (5) i =j =1,
thus in(t - n + i - j) =in(t - n) and hence the predicate reduces to

(Vt)[t <O0==., in(t) = vall IDEL in(t) =in(t -1)] (6)

For the particular case of m =0 we need to redefine the range of 'J' to be
MIN(1,mi) j < mn so that in = 0 ~'j = 0, thus giving

(Vt) IF t < 0
THEN in(t) = vall
ELSE IF Vi in(t -n +i) =in(t -n)

THEN DEL in(t) = in(t - n) (7)
ELSE IF Vi in(t - n+i) = (in(t -n) V ?type)

THEN DEL in(t) =?type

ELSE DEL in(t) =vai2

where 1 < i < n.

In summary, the predicate for the ambiguity delay function for 0 < m < n is given by

(Vt) IF t < 0
THEN in(t) = vall
ELSE IF]jViin(t-n~i-j) =in(t -n)

THEN DEL in(t) = in(t - it) (8)
ELSE IF Ij Vi in(t - n + i -j) =(in(t - n?) V ?type)

THEN DEL in(t) =?type

ELSE DEL in(t) vai2

where MIN(l,rm) < j -- m, 1 < i n.

5

ELLA Timing

3.2 Transport Delay

The transport delay is a particular case of the ambiguity delay where m = n and
vall = val2. Thus consider the transport delay function

FN DELT = (type: in) -+ type: DELAY(val, m).

Then from (8) we have that the predicate for this delay function is

(Vt) IF t < 0
THEN in(t) = val
ELSE IF 3jViin(t-m+i-j) = in(t - m)

THEN DELT in(t) = in(t - m) (9)
ELSE IF 'j Vi in(t- m + i- j) = (in(t - m) V ?type)

THEN DELT in(t) = ?type
ELSE DELT in(t) = val

where 0 < m, 1 < i,j < m.

3.3 General Delay

Consider the following delay function

7:. DELG .= (type: in) -- typc: DELAY(vail, m, val2, n).

where m > n. The semantics for this delay function are the same as for the ambiguity
delay i.e.

* The initial value of the function is 'vail'. If there exists a sequence of n equal input
values occurring between the current time and mqr-n-i unts of iiui. also then the
output of the function is the input value n units of time ago, otherwise the output
is 'val2'.

It should be noted that at present ELLA does not support the full range of general delay
functions.

To gain insight into the general delay case where m > n consider the following
example where n = 6 and m = 14. The following alternatives for the input signal are
possible (for pulses of at least size 'n')

6

ELLA Timing

(3*n) Wm) (2*n) (n)

{t-} 18 14 12 6 1 j=
? x x xx xx 1

? ?x x xxxx0 2

S? 7 X x x x x X0 ? 3

? ? x x x x x x 0 ? ? 4
? ? ?xxxx x x 0 ? ? ? 5

? ? x xxx x X 0 ? ? ? ? 6 (n)

? x x x x x x 0 ? ? ? ? ? 7
?x x X x xX 0 ? 8

? ? x x x x 0 ? ? ? 9
? ?xxx x x x 0 ? ? 10
? ?xx xx x x 0 ? ? ? ? 11
"7 x x xx x X 0 ? ? ?? ? ? 12 (2*n)

. , . . . o o.. , . .o

Sx xxx xx 0 ? ? ? 13

?x X x xx xX 0 ? ? 14 (m)

where "x" indicates equal values, "0" a value different from the "x" value, and "?" indi-
cates an "x", "0" or another value.

The division of the diagram shows that for values of j between 1 and n the output
value will ah.k",ys be available at t-n. Similarly between j=n+l and j=2*n the output
value will be available at t-(2*n). By using the observation that intervals of 'n' units can
be considered in turn we can extend the predicate of the ambiguity delay by means of the
introduction of a variable A which controls the particular block of n signals that are being
considered. Thus leaving '?type' aside for the moment we have that a predicate dn
for the general delay is

(Vt) IF t < 0

THEN in(t) = vall
ELSE (A) IF F(A,t) A Vp -F(1 i, t) (10)

THEN DELG in(t) = in(t - A.n)

ELSE DELG in(t) = val2

where

F(A, t) -]j Vi in(t - A.n + i - j) = in(t - A.n)

1 _ A < INT(m,n) (11)

1 < i,j < n

1 <. A

7

ELLA Timing

and 'INT(m, n)' is the integer greater than or equal to m/n.

Examining (10) we see that F(A, t) attempts to find a sequence of n equal values and
-'F(p, t) ensures that the value of A is minimum.

Extending this predicate to allow for '?type' gives the following result for the general
delay predicate

(Vt) IF t < 0
THEN in(t) = vail
ELSE (3A) IF G(A,t) A V14-,G(A,t)

THEN IF F(A,t) (12)
THEN DELG in(t) in(t - A.n)
ELSE DELG in(t) = ?type

ELSE DELG in(t) = val2

where

F(A,t) - 3j Vi in(t - A.n + i- j) = in(t - A.n)

G(A, t) - 3j Vi in(t - A.n + i - j) = (in(t - A.n) V ?type)

1 < A < INT(m,n) (13)

1 <i,j < n

1 < p< A

and 'INT(m, n)' is the integer greater than or equal to m/n.

It can be noted that this predicate can also be used to describe the case where 0 <
m < n by simply taking j to have the range MIN(1, m) < j < MIN(m, n) and extending
the definition of INT so that INT(0,n)=1. From (13) A = 1 when m < n and in that case
there is no u such that 1 < p < A. Thus (12) reduces to

(Vt) IF t < 0

THEN in(t) = vail
ELSE IF Ij Vi in(t - n + i - j) = (in(t - n) v ?type)

THEN IF 3j Vi in(t - n + i - j) = in(t-n) (14)
THEN DEL-G in(t) = in(t - n)

ELSE DEL-G in(t) = ?type
ELSE DELG in(t) = va12

where MIN(1,mn) -- < in, I i < n and (14) is functionally equivalent to (8).

In sumniary, the predicate for a delay function with 0 <- m, 1 n can be given as

8

ELLA Timing

(Vt) IF t -.. 0
THEN in(t) = vall
ELSE (3A) IF G(A,t) A Vp -G(p,t)

THEN IF F(A,t) (15)
THEN DELG in(t) = in(t - A.n)
ELSE DELG in(t) ?type

ELSE DELG in(t) = vai2

where

F(A,t) = 3j Vi in(t - A.n + i - j) = in(t - A.n)

G(A, t) =j Vi in(t - A.n + i - j) = (in(t - A.n) V ?type)

1 < A < INT(m,n) (16)

1<i<n

MIN(1, m) < j < MIN(m, n)

1< u<A

and 'INT(m, n)' is the integer greater than or equal to MAX(1, m/n).

3.4 Interial Delay

Consider the following interial delay function

FN IDEL = (type: in) - type: IDELAY(val, n).

The semantics of this delay function are given informally as

* The initial value of the function is 'val'. The function delays its input signal by 'n'
units, and if the signal changes within that time then the changes are filtered out.

One formal interpretation of the semantics of this function is given by

(Vt) IF t < 0

THEN in(t) = val
ELSE IF Vi in(t- 1)= in(t - 1 - i) (17)

THEN IDEL in(t) = in(t - n)
ELSE IDEL in(t) =IDEL in(t - 1)

where 1 - i < n and this recursive call shows the memory of IDEL.

A formal definition of this function can also be obtained by using the predicate for the
general delay. In this case 'in' in (15) is allowed to tend towards infinity. Since this means
that all blocks of 'n' signals are considered, even those which occurred before simulation

began, the condition G(A, t) will always be met eventually (all input signals for t <, 0 have
the same value). Hence the predicate (15) becomes, on letting m -- oc

9

ELLA Timing

(Vt) IF t < 0
THEN in(t) = val
ELSE (3A) IF G(A,t) A VIA -,G(p,t) (18)

THEN IF F(A,t)
THEN IDEL in(t) = in(t - A.n)
ELSE IDEL in(t) = ?type

where

F(A, t) 3j Vi in(t - A.n + i - j) = in(t -A.n)

G(A, t) = 3j Vi in(t - A.n + i - j) = (in(t - A.n) V ?type)

1<)A< oo (19)
1 <i, j< n

1 < IL < A

4 Timescaling

The timescaling enhancements for ELLA come in two parts. First the introduction of a
new language primitive, second, the introduction of hierarchic time regions. The language
primitive is a sample-and-hold construct which will allow synchronous descriptions to use
ELLA time to describe clock periods other than one per time tick. The hierarchic approach
will allow users to wrap up ELLA functions into regions which operate with clock periods
either faster or slower than the surrounding region. These two features are related by a
transformation and the simulator makes use of this fact.

For example, a hierarchically faster region running at four times the rate of the outer
region, say, would be transformed into a region which has its inputs held constant for four
time units and its output sampled ever four time units. The outer region would then have
its delay times multiplied by four. Thus both regions would appear to operate within the
same time frame, however only the inner region would change each time unit (the outer
region effectively changing only every four time units). Thus users have at their disposal a
new timing primitive which can be accessed either explicitly or implicitly. For a complete
description of the enhancements and the implications on the ELLA system the reader is
referred to [4-7].

4.1 Sample Primitive

The new sample-and-hold primitive occurs in the same syntactic position as the DELAY
primitive, that is it is the sole contents of a function body. The syntax of the new primitive
is of the form [7]

SAMPLE(interva-size, initial-value, skew)

or

10

ELLA Timing

SAMPLE(interval-size)

where if omnitted 'initial-value' and 'skew' default to ?type and zero, respectively. The
'skew' value determines the sample point and its value must be less than the intervalsize.

Consider the following macro function which provides a mechanism for instantiating
the SAMPLE primitive.

MAC SAMPLE-HOLD {INT interval, CONST(TYPE type) init, INT skew, }
= (type: in) --* type: SAMPLE(interval, init, skew).

The semantics of this function are given informally as

9 At a time 't' if (t-skew) is some multiple of the interval size then take the current
input value, otherwise the output remains unchanged.

The semantics are defined formally by the following predicate.

(Vt) [t < 0 == , in(t) = init I SAMPLE-HOLD in(t) = in(t-((t-skew)MODinterval))]
(20)

Thus consider the following example

TYPE ty = NEW (tl11t21t31t41t561tt7It8un).

FN SiP (ty) -> ty: SAMPLE(4,un, 2).

In this case SMP samples the input signal every 4 units with the sample point occurring
after 2 units. A typical simulation run then gives the following result

TIME : 0 1 2 3 4 5 6 7 8 9 10 11

input : ti t2 t3 t4 t5 t6 t7 t8 ti t2 t3 t4
output un un t3 t3 t3 t3 t7 t7 t7 t7 t3 t3

4.2 Hierarchical Timing

Hierarchical timing is obtained by the use of the FASTER and SLOWER constructs.
Both constructs appear in the same syntactic position as the SAMPLE primitive, i.e. the
sole contents of a function body, and they instantiate a function to run at a simulation
rate faster or slower (respectively) than the enclosing region.

The syntax for the FASTER construct is

FASTER(function.name, interval-size, initial-value, skew)

11

ELLA Timing

or

FASTER(function-name, interval-size)

where, 'function-name' is the name of the function which is to have its clock rate set
at 'interval-size' times faster than the surronding region. The parameter 'initial-value'
determines the initial output value of the faster region and 'skew' sets the input sample
position, if omitted 'initial_value' and 'skew' default to ?type and zero respectively. A
similar syntax follows for SLOWER i.e.

SLOWER(functionaname, interval-size, initial-value, skew)

or

SLOWER(function-name, interval-size)

again if omitted 'initial-value' and 'skew' default to ?type and zero respectively. The re-
striction of the size of 'skew' for FASTER and SLOWER is the same as for SAMPLE.

Now consider the following macro functions

MAC FASTERF
{FN (TYPE type) --- type: F, INT interval, CONST(type) init, INT skew,

= (type: in) --+ type: FASTER(F, interval, init, skew).

and

MAC SLOWERS
(FN (TYPE type) --- type: S, INT interval, CONST(type) init, INT skew,

= (type: in) --+ type: SLOWER(S, interval, init, skew).

The predicates for these functions are defined in terms of the transformations which replace
the FASTER/SLOWER constructs with an appropriate SAMPLE function. Thus the
predicates for FASTER-F is given by

(Vt) [t < 0 ==. in(t) = init I FASTERF in(t) = SAMPLE HOLD(F in(t))] (21)

and the predicate for SLOWERS is given by

(Vt) [t < 0 ==* in(t) = init I SLOWERS in(t) = S(SAMPLEHOLD in(t))] (22)

In both cases 'time' is defined to be the common time base which is the least common
multiple of the inner faster/slower region and the enclosing region.

4.3 An Example Transformation

In this section a very simple circuit is shown to demonstrate how the faster and slower
features are transformed to circuits with sample primitives. Consider the following ELLA
circuit which is shown in figure 2.

12

ELLA Timing

TYPE a - NEW (a I a2).

FN DEL = (a) ->a:DELAY(?a,2).

FN F = Ca:in) ->a: DEL in.

FN S = (a:ini) -: DEL in.

FN FAST = (a) ->a: FASTERCF,4,al,2).

FE SLOW - (a) ->a: SLOWERCS.a2,1).

FN MAIN = (a:in) -> a: DEL(SLOWCDELCFAST in))).

in

Figure 2: Faster and Slower

This circuit has little practical use and is given merely to illustrate the transformation
procedure. The functions FAST and SLOW are transformed to remove the FASTER and
SLOWER constructs using one of ELLAs in-built transformations. The resulting circuit
can then be described in the following way.

MAC IEW..DEL{INT period} = (a) -> a: DELAY(?a, period*2).

FE F-.SAMPLE a(a) ->a: SAMPLE(4, al, 2).

FN S-.SAMPLE - (a) ->a: SAMPLE(12, a2, 4).

F1 NEW-.FAST a(a:in) -> a: F..SAMPLE(NEW..DEL{1}in).

13

ELLA Timing

FN NEW-SLOW = (a:in) -> a: NEWDEL{12}(SSANPLE in).

FN NEWMAIN = (a:in) -> a:
NEWDEL{4}(NEWSLOW(NEWDEL{4}(NEWFAST in))).

The functions FAST and SLOW have now been transformed so that they have a SAMPLE
function at the end and beginning of their respective new forms. Because SAMPLE is a
core primitive, functions FSAMPLE and S.SAMPLE are needed to instantiate parlfriular
instances. It can be seen that the delays external to the timescaled regions have also
been transformed. If function NEW-MAIN is now simulated its 'clock' will be that of the
common timebase.

4.4 Retiming Example

In this section we apply the new retiming constructs to a simple 'parallel to serial to
parallel' circuit.

Consider the following circuit diagram.

2 w2-- - --- ------ ---

, INTERPOLATE, SOU .. , DECIMATE

n-1- -n-1
n ni

BLOCK
FASTBLOCK

which corresponds to the following ELLA description

TYPE word = ...

14AC INTERPOLATE = ([INT n]word:input) -> word:

C SEQ
TYPE intcount = NEW ic/(l..n);
FN INC = (intcount:in) -> intcount:

ARITH IF in - n THEN I ELSE in+i FI;
PVAR count ::= ic/1;
LET out = input[Ecount]J;
count := INC count;
OUTPUT out

14

ELLA Timing

MAC DECIMATE INT n1 = (word:newvalue) -> Injword:

(SEQ
TYPE intcount = NEW ic/(i..n);
FN INC = (intcount:in) -> intcount:

ARITH IF in f n THEN I ELSE in+l FI;

PVAR count ::= ic/1;
PVAR out := En) zeroword;
LET pastout , out;
out [[count]] := newvalue;
count := INC count;
OUTPUT pastout

FN SCU = (word:input) -> word: ...

FN BLOCK = (En]word:input) -> [n]word:
(LET inter = INTERPOLATE input.

OUTPUT DECIMATE Wn} (SCU inter)

FN FASTBLOCK = (Enjword: in) -> [n]word: FASTER(BLOCK, n).

where the body of function 'SCU' has been left unspecified, this function represents some
form of serial computation unit. The keyword 'FASTER' in the function FASTBLOCK
signifies entry into a region where the internal clock of the function 'BLOCK' is chang-
ing 'n' times faster than the outer clock. The circuit is thus modelling a parallel to
serial (INTERPOLATE), a serial computation unit (SCU), and a serial to parallel (DEC-
IMATE) function, where 'n' parallel signals are transformed into 'n' sequential signals
which then pass through a computation unit running at 'n' times the outer rate, before
being re-grouped in parallel. This circuit follows the format of the Silage [8] interpolate

and decimate constructs.

The effect of the faster region on the way signals are handled is shown in the following
example where SCU is taken as

FN SCU = (word:input) -> word:input.

Consider the case where n=4, and 'word' is an enumeration type defined by

TYPE word = NEW (al I a2 I a3 I a4 I bi I b2 [b3 [b4 I bn).

Then simulating the function 'BLOCK' with the input

15

ELLA Timing

input = (al, a2, a3, a4) for t = 0..3

input = (bl, b2, b3, b4) for t = 4..7

input = (bn, bn, bn, bn) for t = 8

gives the following result

TIME BLOCK inter (internal node of
0 ? ?? al function BLOCK)
i al ? ? ? a2
2 al a2 ? ? a3
3 al a2 a3 ? a4
4 ai a2 a3 a4 bi
5 bl &2 a3 a4 b2
6 bl b2 a3 a4 3
7 bi b2 b3 a4 b4
8 bi b2 b3 b4 bn

Simulating the function FASTBLOCK with the input

input = (al, a2, a3, a4) for t = 0 (i.e t-inner - 0..3)

input = (bl, b2, b3, b4) for t = 1 (i.e tinner = 4..7)

input = (bn, bn, bn, bn) for t = 2

gives the following result

TIME FASTBLOCK
0 ? ? ? ?
1 al a2 a3 a4
2 bi b2 b? b4

The results show that FASTBLOCK behaves in the same manner as BLOCK however
from the user point of view FASTBLOCK only requires two simulation time units. In
the transformations such regions of hierarchical timing will be transformed to a common
time frame and sample-and-hold constructs would be appropriately placed in the circuit.
A user could of course have written the circuit with sample-and-hold constructs from the
outset, however the use of the hierarchical timing means that such detail can be hidden.

16

ELLA Timing

5 Conclusions

In this document we have formally defined, through the use of predicate calculus,
the semantics of all ELLA delays and the new retiming primitive. Examples of the new
hierarchic timing concept have also been given.

6 Acknowledgements

The authors would like to acknowledge the support of the ESPRIT 'SPRITE' project
2260 and the IED Formal Verification project 4/1/1357. The authors would also like to
acknowledge Praxis Electronic Design for their contribution to the retiming enhancement.

7 References

1. M. Hill, Private Communication

2. W. Smits, Private Communication

3. W. Smits, Private Communication

4. P. Rouse, "Requirements Specification for Timescaling", Praxis document ref. no.
E.N0045.20.16 (also appeared as Sprite deliverable D3.3/Praxis/Y1-M6)

5. P. Rouse, "Specification for Timescaling", Praxis document ref. no. E.N0045.50.12

6. M. Hill, J. D. Morison, "Timescaling in ELLA", ESPRIT project 2260 deliverable
D3.3/RSRE/Y1-M6, 1989

7. M. Hill, E. V. Whiting, "ELLA Timing", ESPRIT project 2260 deliverable D3.3/RSRE/Y1-
M12, 1989

8. C. Sheers, "User Manual for the $2C Silage to C Compiler", Internal Report, IMEC
1988.

9. R. Stoll, "Set Theory and Logic", W. H. Freeman and Company, 1963.

10. R. L. Goodstein, "Mathematical Logic", Leicester University Press, 1965.

ELLATM is a registered Trade Mark of the Secretary of State for Defence, and winner of
a 1989 Queens Award for Technological Achievement.

17

ELLA Timing

A Predicate Notation

We start by considering the following English sentence

Every rational number is a real number (1)

which may be translated as

For every x, if z is a rational number, then z is a real number (2)

In ordinary grammar, "is a real number" is known as the predicate of (1). In the
translation (2) the added predicate "x is a rational number" replaces the common noun
"rational number". Using "Q(x)" for "x is a rational number" and "R(x)" for "x is a real
number", we may symbolise (2) as

W, Q(z) (3)

Hence the statement "3 is a rational number" may be symbolised by

Q(3)

Now the sentence

Some real numbers are rational

may be translated as

For some x, z is a real number and x is a rational number

and using the predicates introduced above, this may be symbolised as

3x ~)A QW(4)
Similarly the predicate

Vx, R(x) == Q(x) (5)

says that if x is a real number then it is also a rational number. This has the same meaning
as

3x, -,R(x) VQ(x) (6)

which says

There is something which 'is not a real number' or 'is a rational number'

Now consider the predicate

(Vz) [Q(z) = R())I A (Vx) [Q(x) => S(z)I (7)

where S(x) stands for "is an irrational number". Then this predicate can be rewritten in
the following form

(Vz) [Q(x) =* R(z) I S(x) (8)

which stands for
(Vx) IF Q(x) THEN R(z) ELSE S(x) (9)

Note that although R(x) is true when Q(z) is false it is not deducible from this predicate.

18

THIS PAGE IS LEFT BLANK INTENTIONALLY

REPORT DOCUMENTATION PAGE DRiC Reference Number (if known) ..

Overall security classification of sheet Unclassified ..
(As far as possible this sheet should contain only unclassified information. If it is necessary to enter classified Information, the field concerned
mast be marked to Indicate the classification eg (R). (C) or (S).

Originators Reference/Report No. Month Year
MEMO 4436 NOVEMBER 1990

Originators Name and Location
RSRE, St Andrews Road
Malvern, Worcs WR14 3PS

Monitoring Agency Name and Location

Title

FORMAL SEMANTIC DEFINITION OF ELLA TIMING

Report Security Classification Title Classification (L1, R, C or S)
UNCLASSIFIED U

Foreign Language Title (in the case of translations)

Conference Details

Agency Reference Contract Number and Period

Project Number Other References

Authors Pagination and Ref

HILL, M G; WHITING, E V; MORISON, J D 18

Abstract

A formal definition of the ELLA timing model is presented using the notation of predicate calculus. The
definition of the new sample primitive used for the retiming of ELLA circuits is also given. Examples of
retimed circuits are provided.

II

Abstract Classification (U,R,C or S)

U

Descriptors

Distribution Statement (Enter any limitations on the distribution of the document)

UNLIMITED

*S46 -

THIS PAGE IS LEFT BLANK, INTENTIONALLY

