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SPRITE-ELLA Language Enhancements

1 Introduction

This document outlines language enhancements to the Hardware Description Language
ELLATM that have been carried out for the ESPRIT project 'SPRITE'. The ELLA lan-
guage was chosen at the commencement of the project alongside Silage [2] as an input
language to the Cathedral Silicon Compilers [1). ELLA was chosen for the project because
its semantics, particularly its applicative style, are well matched to signal processing tasks
and because it has a well developed support environment. However in order to fulfil all
the functions required of the SPRITE design language it was recognised that a number
of enhancements to the language were required. It is these enhancements that will be
described in this document.

The enhancements include the ability to name function output signals and their sub-
sequent 'joining' within the function body, the instantiating of multi-dimensional rows of
functions with greater flexibility in their external connection. The other major enhance-
ment to ELLA has been in the introduction of timescaled regions. These are regions which
have internal clocks running either faster or slower than the enclosing function. This en-
hancement was implemented so that ELLA can have the ability to model the functionality
of Silage Interpolate and Decimate functions.

All the features described in this document are available in the current release of the
SPRITE-ELLA system.

The language enhancements will be introduced in turn with their collective syntax
given in appendices.

2 Multiple Declarations

Previous versions of ELLA (see [3]) have only supported single identifier declarations
e.g.

LET a a FUNC(input1, input2).

Enhancements to the language now permit multiple identifier declarations in the left hand
side of such expressions, for example

LET (al,a2) = TWO.OUTPUNC(inputl, input2).

In ELLA sequence clauses VAR's and PVAR's have been enhanced to allow similar formats,
and sequential assignment statements enhanced to allow the following

(al, a2) := (bl, b2);

3
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Each of these declarations will now be considered with a complete definition of the syntax
given in appendix A.

2.1 LET Declarations

Multiple declarations allow collaterals of identifiers to be grouped together, thus giving
users the ability to assign different names to different parts of a 'unit' clause, (see [3] for
description of ELLA units), for example

LET (al,a2) a TWO.OUT.FUNC(inputi0 input2).

where TWOOUTFUNC is a function which has two output signals. The number of iden-
tifiers declared in such statements must equal the number of signals of the value delivering
(unit) clause.

Such declarations can also help to 'tidy up' series of LET statements. For example
with multiple LET's such a set of statements as

LET a a d, b a ., c w f.

can be written as

LET (a,b,c) = (d,e,f).

Multiple LET's can also be used to simplify ELLA text, for example

LET dummy a CASE (inl,in2)
OF (t,t): (,,)

(f,bool)I(bool,f): (f,t,f)
ESAC.

LET a = dummy E1, b z dummy[2], c = dummyE3).

can now be written as

LET (a,b,c) = CASE (inl,in2)
OF (t,t): (t,f,t),

(f,bool)l(bool,f): (f,t,f)
ESAC.

In certain cases it may not be required, or desirable, to name all the outputs of a 'unit'
clause. In this case null names may be used, however there must be at least one non-null
name, thus

4
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LET ( ,a, ) = (nl, in2, in3). # legal #

is valid but

LET ( , , ) (inl, in2, in3). # illegal U

is not.

A restriction imposed on multiple LET's is that they can't be used to decompose a
STRING (a STRING is a special form of packed array possessing the global unknown

property, see [11]). For example the following is not allowed

LET (a, b, c) z STRING [3) bit'O. # illegal #

Multiple LETs can also be used in the ELLA sequence clause and they follow the iden-

tical rules as in the Junctional part.

2.2 Variable Declarations

Variable assignment declarations are used solely in the ELLA sequence clause and the

introduction of assignment variables occurs through either a VAR or PVAR statement.
These statements are enhanced in the same way as LET statements such that the following
are all legal statements

VAR (a,b,c) (t,,x),
(u,v,w) (t. i/2, char'c);

PVAR (one, two, three) (i/1, t, char'z),

(unknown, value) :: (?bool, i/2);

In multiple VAR and PVAR assignments, as with LET statements, some but not all of the
expected names may be null, for example

VAR (a,) : (i/2, t); # legal *

PVAR (one, , ) :: [3)char'k; * legal $

VAR C , ) : (i/2, t); # illegal U

PVAR C , , ) : [3char'k; # illegal #

5
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2.3 Assignment Statements

Once a variable has beeu declared through a VAR or PVAR declaration it can be

assigned to via an assignment statement. Like the variable declarations the assignment
statement has been extended to allow collaterals of variables on the left hand side, for
example

(one, two, three) :- (a,b.,);

( , value, ) := (u, v, w);

(array[2..3) [[in)), row[3], value) :- (inputi,input2,input3);

As with declarations, multiple assignments can have some but not all of the expected
names given as null, for example

( , ,a, ) :* FOUROUTFUC(input); # legal #

C , , , ) : FOUR.UTFUNC(input); # illegal *

where FOUROUTFUNC is a function that delivers four output signals.
A further restriction which is placed on multiple assignments is that the same identifier

cannot appear more than once in the left hand side. This is because multiple sequential
assignment statements are treated as parallel statements within a sequence step. Thus
there is no specified ordering of execution, and hence potentially ambiguous statements
must not be allowed, for example

(a, b, c, d) := (in, a, a, b); # legal #

(array[2..4], b, c, array) :w FOUROUTFUC(input); # illegal #

However a statement of the form

(a, b) :- (b, a) # legal #

is allowed and this swaps the contents of variables 'a' and 'b'.

3 Named Outputs

ELLA V4 only allowed functions with unnamed outputs, this meant that the output of
a function could only be given through an OUTPUT statement. An enhancement carried

6
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out for the SPRITE project allows the naming of outputs and their joining within the
function body.

The format for an output type is similar to an input type, for example

FN A =. (typo:in) -> (typ*:out): ...

Of course unnamed outputs are still allowed in exactly the same format as before (see [3]).

By providing named outputs the user also has the choice of how the output may be
joined, for example

FN A = (typ.:in) -> (type:out):

JOIN in -> out.

or

F1 A = (type:in) -> (type:out):

OUTPUT in

These two examples show the only ways in which the output can be joined. Thus an output

must be joined to by either an 'OUTPUT' statement or specific 'JOIN' statements. There
can never be a mixture of part of an output signal being 'joined' by the OUTPUT statement

and the rest by explicit JOIN's.

4 Enhancements to the Function Type Mechanism

Before continuing with the enhancements carried out for SPRITE an enhai.vement
carried out for a UK IED (Information Engineering Directorate) project will be described.
This enhancement is incorporated into the SPRITE-ELLA system since it is anticipated
that it could provide extra functionality advantageous to transformational design. Only a
brief overview will be given here, a complete account is provided in [10].

Function types in ELLA are an enhancement of the basic type mechanism and are used
for defining signals that carry information in both directions. Before these enhancements

function type signals were used in a limited way, as input signals to a function but never
as output signals and hence function types required the use of function sets, which are an

7
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extension to the ELLA function mechanism, in order to communicate. However it is now
possible to have function types delivered as outputs, both in function specifications and
value delivering clauses.

The definition of a function type has not changed and therefore a valid function type
definition is

TYPE onuml a NEW (vail va12 I va13 ),
onum2 a NEW (resl I res2 I res3 ),
*numl_-o-enum2 = *numl -> onum2.

where 'enuml-to-enum2' is a function type that has a signal 'enuml' in one direction and
a signal 'enum2' in the other.

An example of a function with a named function type input and output is

FN B z (onumlto-onum2:lhs) -> (onum1_.to-onum2:rhs): ...

Where, internal to 'B', 'lhs' is a value delivering function type which is made up of a value
delivering signal of type 'enum2' and a value requiring signal of type 'enum1'. Whilst 'rhs'
is a value requiring function type which is made up of a value delivering signal of type
'enumi' and a value requiring signal of type 'en'un2' (see [10]). Hence it is possible to
connect the input signals of 'B' to its output signals, and this may be achieved is several
ways. For example via an OUTPUT statement e.g.

FN B = (enumlto-enum2:lhs) -> (enuml.to_enum2:rhs):

OUTPUT ID ihs

or via JOIN statements e.g.

FE B = (enu1_to-enum2:lhs) -> (enumlto_num2:rhs):

JOIN ihs -> rhs,

rhs -> ihs.

or
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FN B z (.numlto_onum2:1hs) -> (onum _to_onum2:rhs):

JOIN 10 ihs -> 10 rhs.

or

FN B a (enumto_onum2:1hs) -> (onumlto_enum2:rhs):

JOIN 10 rhs -> 10 1hs.

Function types can now be used anywhere where an ordinary type is used providing
it is meaningful. Thus replication of function types is not allowed since this would mean
joining an input to a signal more than once. The syntax of function types is given in
appendix B. For a complete description of function types and the consequences of their
extension on the ELLA language the reader is referred to [10].

5 Multiple Instantiations

In ELLA V4 it was only possible to MAKE either a single instantiation or a row of
instantiations of a function, for example

FN FUNC a (enuml:in) -> *num2: resl.

FN USEFUNC a (enuml:in) -> *num2:

MAKE FUNC: func,
[23FUNC: func2.

With the SPRITE-ELLA system it is possible to instantiate rows of rows of functions and
the number of rows of rows that can be instantiated is not restricted. Thus it is possible
to say

MAKE [5J [3) [4]FUIC: multfunc.

and the type of 'multfunc' is [5[3][4]enum1-to~enum2, which is 'a row of row of row of

function types'. The value delivering part of 'multfunc' is then of type [5][3][4]enum2, and
thu value requiring part of type [5][3] [4enumi.

In ELLA V4 it was necessary to supply each input to a row of makes separately. Clearly

for the case of multiple rows joining each element separately would be too restrictive. Thus

9
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the whole question of joining up ELLA circuits has been considered and the SPRITE-ELLA
system allows inputs to multiple rows of makes to be supplied all at once, or separately,
or in groups. The next section describes in detail the enhancements that have been made
to ELLA's join mechanism.

6 Connectivity Enhancements

Earlier versions of ELLA only allowed a single identifier after the '--+' of a JOIN
statement, possibly followed by up to two indices (one for rows of makes and one for
function set rows). This form of 'join to' structure was felt to be too limited in the light
of the function type work and multiple makes. Thus the structure of the JOIN statement
has been enhanced to the following form

JOIN unit - joinval.

where

joinval joinvall
joinval CONC joinvall

joinvall joinval2
[INT name a integer .. integer] joinvall

joinval2 name
10 name
joinval2 [integer)
joinval2 [integer .. integer]
( joinval <<, joinval>> )

with the 'unit' clause remaining unchanged, and < <, joinval> > representing zero, one cr
more repetitions of ", joinval".

A JOIN statement takes the value delivering part of the 'unit' and connects it to the
value requiring part of the 'joinval'. Only in the particular case of joining IOidentifieri
to IOidentifier2, where both identifier1 and identifier2 are function types, is it irrelevant
which way round the JOIN is done i.e. IOidentifierl - IOidentifier2, or IOidentifier2
IOidentifierl. Examples of join statements are

JOIN something -> (name[3] CONC name[2], name[4), namel[2..3)).

JOIN somethingolse -> [INT k=2. .5 (funca[k), func..b[k)).

In addition to supplying extra syntactic constructs the JOIN mechanism has been extended
to allow 'complete joins', and 'individual joins'. Complete joins allow all input or output
signals of an identifier to be joined in one statement. Thus multiple makes no longer
require separate JOIN statements for each row e.g.

10
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FN PART - (enuml: in, *num2: ip) -> (onum2, enuml): (res2, val).

FN MULTPART a ([6) [33 [43 (onuml, onum2):in) -> [5) [3) [4) (onum2, enuml):
( MAKE [5) [3] [4) PART:part.
JOIN in -> par-t.

OUTPUT part

Individual joins are in a sense the opposite of this since they allow identifiers to have their
signals joined one at a time. Thus single makes which used to require all their inputs to
be supplied in one statement can now have them spread over several statements e.g.

FN PART - (onuml: in, enum2: il) -> (enum2, onuml): (ros2, vall).

FN USE-PART = (onuml:in) -> ((onum2, onuml):out):

( MAKE PART:part.
JOIN in -> part[l],

res2 -> part[2J,
part[l] -> out[],
parst[2] -> out[2].

Individua, joins and complete joins are really extremes of the join mechanism, between
them there is a variety of partial joins which allow signals to be connected in different
ways, and it is up to the user to make the connection decisions.

6.1 Connectivity Transformation Example

The example in this section illustrates how a circuit using the new connectivity con-
structs can be transformed into a circuit which would be valid in earlier versions of ELLA.

Consider the following circuit

TYPE ty a NEW (tllt21%3).

FN F a (ty:in) -> ty: ...

FN G = (ty:in) -> ty: ...

FN DEL * (ty) ->ty:DELAY(?ty,1).

FN MAIN (ty:in) -> (ty:out):
( MAKE F:f,

[53DEL: del,
G:g.

JOIN (in, f COIC del, g) -> (f, del COIC g, out).

11
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where function MAIN merely joins its input to some function F then delays the output of
F through five unit delays before passing the signal into function G. The output of MAIN
being taken as the output of G. Trnsforming the function MAIN to remove the extended
joins, and hence produce a function which would be valid in ELLA V4, gives

FN MAIN r (ty:in) -> ty:
C MAKE F: f,

E5)DEL: del,
G: g.

JOIN in - .

JOIN f -> d*l[1].
JOIN dl[1] -> del[2].
JOIN del[2] -> dol[3).
JOIN dol[3] -> d.e[4].
JOIN del[4) -> dell5).
JOIN dol[3 -> g.
OUTPUT g

It can be noted that the statements with connections from del[1] to del[4] could have been
put into a multiple join statement of the form

FOR INT i = 1..4 JOIN del[i] -> del[i+1).

however at present the transformations in ELLA replace higher level constructs with lower
level ones.

6.2 Regular Array Example

In this example a basic function called CELL is taken and combined to form an array
of cells. Such an array can provide the basis for a systolic array. This example makes
use of the extensions to the MAKEs, JOINs and function types. A particular example is
illustrated in figure 1.

12
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11 ri12 111

r2

Figure 1: Array with rn = 3, n = 4

TYPE a ..

IT m=

FN CELL =((a->a): xin, (b->b): yin) -> ((a->a): xout, (b->b): yout):
( JOIN (10 xin, 10 yin) -> (I0 xout, 10 yout). )

FN ARRAY = C(W(a->a):ll, [n)(b->b):l2) ->

([mJ(a-a):rl, [nJ(b->b):r2):

M AKE [m) [n]JCELL: cell.

* INTERNAL JOINS #

FOR IT j = 1. .m-1 IT i z 1. .n-i
JOIN (cell~j) [i) El cell~j) [i [2)

-> (cell [j] [iP1] [ll, Coll [j+i) [i) [2)).
FOR 117 i = 1. .n-l JOIN coll~m] Li)[1) -> cell [m] [i+i) [1).
FOR lIT j a 1. .m- I JOIN celli Ej n) [2) - >cell Ej +1)[n]J[2].

* EDGE JOINS *
JOIN I011 -> LINT j a 1. .m cell[ [1)El [I)]

1012 -> LINT ± a 1. .nl co1ll)l Li) [2),
[INT j a Il..m4cellj 03n) [13 -> Iorn,

LINT ± a 1. .n) cellEm) Li)[2) -> I0r2.

13
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This example shows how partial joins can be used to connect the array. However the joining
of the cells within the array requires several statements. By redefining the specification of
CELL the internal connections of array can be made more succinct. This is achieved by
defining CELL as a function-set of two elements i.e.

F1 CELL2 a ((a->a)->(a->a):x, (b->b)->(b->b):y): (JOIN x->x, y->y.).

where 'x' describes the horizontal information and 'y' the vertical. Then the function
ARRAY can be re-written as

FN ARIIRAY2 - ([m](a->a):l1, [n(b->b):l2) ->
([m3(a->a) :r1, [n] (b->b) :r2) :

MAKE m] [n)CELL_2: cell.
LET vert - (INT j - I..mJEINT i a 1..nJ 10 cell~j][i][2J,

horiz w [INT i a I..n][INT j = 1..mJ I cell[j][i][1).
JOIN

1011 CONC horiz -> horiz CONC IOrl,
1012 CONC vert -> vert CONC IOr2.

where ARRAY_2 has exactly the same functionality as ARRAY yet its internal connectivity
is described in a much simpler way. A complete description of the enhancements to the
function type/set mechanism for describing such functions as CELL_2 can be found in [10].

7 Timescaling

The timescaling enhancements for ELLA come in two parts. First the introduction of a
new language primitive, second, the introduction of hierarchic time regions. The language
primitive is a sample-and-hold construct which will allow synchronous descriptions to use
ELLA time to describe clock periods other than one per time tick. The hierarchic approach
will allow users to wrap up ELLA functions into regions which operate with clock periods
either faster or slower than the surrounding region. These two features are related by a
transformation and the simulator makes use of this fact.

For example, a hierarchically faster region running at four times the rate of the outer
region, say, would be transformed into a region which has its inputs held constant for four
time units and its output sampled ever four time units. The outer region would then have
its delay times multiplied by four. Thus both regions would appear to operate within the
same time frame, however only the inner region would change each time unit (the outer
region effectively changing only every four time units). Thus users have at their disposal a
new timing primitive which can be accessed either explicitly or implicitly. For a complete
description of the enhancements and the implications on the ELLA system the reader is
referred to [5-8].

14
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7.1 Sample Primitive

The new sample-and-hold primitive occurs in the same syntactic position as the DELAY
primitive, that is it is the sole contents of a function body. The syntax of the new primitive
is of the form [6]

SAMPLE(interval-size, initia-value, skew)

or

SAMPLE(interva-size)

where if ommitted 'initia-value' and 'skew' default to ?type and zero, respectively. The
'skew' value determines the sample point and its value must be less than the interval-size.

The semantics of this function are given informally as

* At a time 't' if (t-skew) is some multiple of the interval size then take the current
input value, otherwise the output remains unchanged.

A formal definition of the semantics of SAMPLE may be found in [8].

The functionality of SAMPLE may be demonstrated by considering the following example

TYPE ty = NEW (tl[t21t31t41t1t61t7[t8[un).

FN SMP = (ty) -> ty: SAMPLE(4,un, 2).

In this case SMP samples the input signal every 4 units with the sample point occurring
after 2 units. A typical simulation run then gives the following result

TINE 0 1 2 3 4 5 6 7 8 9 10 11

input : tli t2 t3 t4 %5 t6 t7 t8 ti t2 t3 t4
output un un %3 3 t3 t3 t7 t7 t?7 t7 t3 t3

7.2 Hierarchical Timing

Hierarchical timing is obtained by the use of the FASTER and SLOWER constructs.
Both constructs appear in the same syntactic position as the SAMPLE primitive, i.e. the
sole contents of a function body, and they instantiate a function to run at a simulation
rate faster or slower (respectively) than the enclosing region.

The syntax for the FASTER construct is

FASTER(function-name, interval-size, initial-value, skew)

15
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or

FASTER(function -name, interval-size)

where, 'function-name' is the name of the function which is to have its clock rate set
at 'interval-size' times faster than the surrounding region. The parameter 'initial.value'
determines the initial output value of the faster region and 'skew' sets the input sample
position, if omitted 'initial-value' and 'skew' default to ?type and zero respectively. A
similar syntax follows for SLOWER i.e.

SLOWER(function.name, interval-size, initial-value, skew)

or

SLOWER(function.name, interval-size)

again if omitted 'initial-value' and 'skew' default to ?type and zero respectively. The re-
striction of the size of 'skew' for FASTER and SLOWER is the same as for SAMPLE.

7.3 An Example Transformation

In this section a very simple circuit is shown to demonstrate how the FASTER and
SLOWER features are transformed to circuits with sample primitives. Consider the fol-
lowing ELLA circuit which is shown in figure 2.

TYPE a a NEW (alia2).

FN DEL = (a) -> a:DELAY(?a,2).

FN F = (a:in) -> a: DEL in.

FN S = (a:in) -> a: DEL in.

FN FAST a (a) -> a: FASTER(F4,al,2).

FN SLOW - (a) -> a: SLOWER(S,3,a2,1).

FN MAIN = (a:in) -> a: DEL(SLOW(DEL(FAST in))).

16
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in_

Figure 2: Faster and Slower

This circuit has little practical use and is given merely to illustrate the transformation
procedure. The functions FAST and SLOW are transformed to remove the FASTER and
SLOWER constructs using one of ELLAs in-built transformations. The resulting circuit
can then be described in the following way.

MAC NEWDEL{INT period} n (a) -> a: DELAY(?a, period*2).

FN FSAMPLE = (a) -> a: SAMPLE(4, al, 2).

FN SSAMPLE = (a) -> a: SAMPLE(12, a2, 4).

FN NEW-FAST = (a:in) -> a: FSAMPLE(NEWDEL{1}in).

FN NEW-SLOW = (a:in) -> a: NEWDEL{12}(SSAMPLE in).

FN NEW-MAIN = (a:in) -> a:
NEWDEL4](NEWSLOW(NEWDEL4}(NEWFAST in))).

The functions FAST and SLOW have now been transformed so that they have a SAMPLE
function at the end and beginning of their respective new forms. Because SAMPLE is a

core primitive, functions F.SAMPLE and SSAMPLE are needed to instantiate particular
instances. It can be seen that the delays external to the timescaled regions have also
been transformed. If function NEW.MAIN is now simulated its 'clock' will be that of the
common timebase.

7.4 Retiming Example

In this section we apply the new retiming constructs to a simple 'parallel to serial to

parallel' circuit.

17
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Consider the following circuit diagram.

2 2

n-1 n-1
n _ n

which corresponds to the following ELLA description

TYPE word = ...

MAC INTERPOLATE a ([INT n~word:input) -> word:
(SEQ

TYPE intcount a NEW ic/Cl. .n);
FN INC = (intcount:in) ->intcount:

ARITH IF in *n THEN 1 ELSE in+1 FI;

PVIR count ::a ic/i;

LET out = input[[count)J;
count :=INC count;

OUTPUT out

MAC DECIMATE {INT n) - (word:n.,value) -> Enjuord:

CSEQ
TYPE intcount - NEW ic/(l. .n);
FN INC = Cintcount:in) ->intcount:

ARITH IF in =n THEN 1 ELSE in+l FI;

PVAR count ::= ic/i;
PVAR out ::= [n~zeroword;

LET pastout z out;
out[Ecount]) :- neivalue;
count := INC count;
OUTPUT pastout

FN SCU a (word:input) -> word: ...

18
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FN BLOCK - ([nlword:input) -> [njiord:
( LET inter w INTERPOLATE input.
OUTPUT DECIMATE {n} (SCU inter)

FN FASTBLOCK = ([njuord: in) -> [niword: FASTER(BLOCK, n).

where the body of function 'SCU' has been left unspecified, this function represents some
form of Serial Computation Unit. The keyword 'FASTER' in the function FASTBLOCK
signifies entry into a region where the internal clock of the function 'BLOCK' is chang-
ing 'n' times faster than the outer clock. The circuit is thus modelling a parallel to
serial (INTERPOLATE), a serial computation unit (SCU), and a serial to parallel (DEC-
IMATE) function, where 'n' parallel signals are transformed into 'n' sequential signals
which then pass through a computation unit running at 'n' times the outer rate, before
being re-grouped in parallel. This circuit follows the format of the Silage [2] interpolate
and decimate constructs.

The effect of the faster region on the way signals are handled is shown in the following

example where SCU is taken as

FN SCU - (word:input) -> word:input.

Consider the case where n=4, and 'word' is an enumeration type defined by

TYPE word a NEW (al I a2 I a3 I a4 I bi I b2 I b3 I b4 I bn ).

Then simulating the function 'BLOCK' with the input

input = (al, a2, a3, a4) for t = 0..3

input = (bl, b2, b3, b4) for t 4..7

input = (bn, bn, bn, bn) for t - 8

gives the following result

TIME BLOCK inter (internal node of
0 ? ? ? ? al function BLOCK)

1 al? ? ? a2
2 al a2 ? ? a3
3 al a2 a3 ? a4
4 al a2 a3 a4 bl
5 bl a2 a3 a4 b2
6 bl b2 a3 a4 b3
7 bl b2 b3 a4 b4
8 bl b2 b3 b4 bn
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Simulating the function FASTBLOCK with the input

input = (al, a2, a3, a4) for t = 0 Ui.* tinner a 0..3)

input a (bl, b2, b3, b4) for t a I (i.. tinnor a 4..7)

input a (bn, bn, bn, bn) for t = 2

gives the following result

TIME FASTBLOCK
0 ? ? ? ?
1 al a2 a3 a4

2 bl b2 b3 b4

The results show that FASTBLOCK behaves in the same manner as BLOCK however
from the user point of view FASTBLOCK only requires two simulation time units. In
the transformations such regions of hierarchical timing will be transformed to a common
time frame and sample-and-hold constructs would be appropriately placed in the circuit.
A user could of course have written the circuit with sample-and-hold constructs from the
outset, however the use of the hierarchical timing means that such detail can be hidden.

8 Conclusions

This document has described language extensions to ELLA that have been carried
out for the SPRITE project. All the language features described are available in the cur-
rent release of the SPRITE-ELLA system. These features include multiple LETs, multiple
MAKES, enriched JOINs, named output signals and the inclusion of timescaled regions. In
addition to this SPRITE also has access to the enhancements of the function type mecha-
nism carried out under the IED (Information Engineering Directorate) ELLA Behavioural
Synthesis project.
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A Syntax of Multiple Declaration

The full ELLA syntax will not be described in this appendix, only those parts which have
changed as a result of the work detailed in this document are given. For a complete de-
scription of the syntax the reader is referred to the ELLA language reference manual [3].

In this appendix the following convention and notation will be adopted

<< statements >> an zero, one or more 'statements'

name an a let, make or function terminal name
declaration == a TYPE, INT, CONST, FN or MAC declaration
printitem == a set of output strings or names
faultitem == a set of output strings or names
unit = a value delivering ELLA clause

nullname == a blank character

integer = a non-tagged integer
value == an ELLA CONSTant value

step == a step in a BEGIN ... END clause
sequencestep == a step in a BEGIN SEQ ... END clause
seqchoice == Sequential CASE chooser with value delivering clause

A.1 Syntax

applicative statements:

step LET letitem <<, letitem>>

declaration
MAKE makeitem <<, makeitem>>
<< FOR multiplier >> JOIN joinitem <<, joinitem>>
PRINT printitem <<, printitem>>
FAULT faultitem <<, faultitem>>

letitem nameslist a unit

nameslist name
( nameornull, nameornull << , nameornull>> )

nameornull name
nullname

sequential statements:

soquencestep :- LET lotitem <<, letitom>>
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VAR varitem <<, varitem>>

STATE VAR statevaritem <<, statevaritem>>
PVAR pvaritem <<, pvaritem>>
statement

declaration
PRINT printitem <<, printitom>>
FAULT faultitem <<, faultitem>>

varitem -namoslist := unit

statevaritem nameslist INIT values

pvaritem nameslist ::= values

statement varnameslist := unit
( <<statement;>> statement )
[INT name = integer..intoger) statement
IF boolean THEN statement FI
IF boolean THEN statement ELSE statement FI
CASE unit OF seqchoice <<ELSEOF statement>> ESAC
CASE unit OF seqchoice <<ELSEOF statement>>

ELSE statement ESAC

varnameslist varname
( varnameornull , varnameornull <<, varnameornull >> )

varnameornull varname
nullname

varname name
varname [integer]
varnamo[[unit]]
varname [integer.. integer)

values value
( value, value <<, value >>)

A.2 Semantics

The following two types of multiple statements are not allowed semantically

i) LET (a, b, c) v STRING [3)bit'O.

ii) (array[l], array[2). array[l]) := THREE.UT.FUNC(input);
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In i) a STRING and a structure are considered to be different objects and so such an
equality cannot be made. This approach is consistent with that adopted for the REFORM
operator.

In ii) the ordering of the left hand side assignments cannot be assumed as they are treated
as parallel statements within the assignment statement. Thus the result of this statement
is undefined. A restriction was therefore placed on such assignment statements not to
allow the same identifier more than once on the left hand side. In some cases this would
be too strong a restriction, for example

(array[l], array[2)) := TWOOUTFUC(input);

However to avoid any potential ambiguity that could arise the compiler implements the
stronger restriction. Of course such statements, as shown above, can always be written
without the use of such assignment statements.
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B Syntax of Function Types, Makes and Joins

The full ELLA syntax will not be described in this appendix, only those parts which have
changed as a result of the work detailed in this document are given. For a complete de-
scription of the syntax the reader is referred to the ELLA language reference manual [3].

In this appendix the following convention and notation wil be adopted

<< statements >> = zero, one or more 'statements'

name an a let, make or function terminal namo
fnname on an upper case function name
type am any ELLA type

fntype == an ELLA function type
unit == a value delivering ELLA clause

integer *= a non-tagged integer

B.1 Type

type :- name
[integerl type
(type <<o type>>)
fntype

fntype :- type -> type

B.2 Function Specification

FN fnname = input -> output: # An ordinary ELLA function #
FN fnname a fnsetspec: # An ELLA function set #

input :- 0
(decs <<, doecs)

output type
)

(decs <<, decs>>)

decs :- type :names
-type

names name <<name>>

fnsetspec :- f ntypespecs <<, fntypspecs>> )
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tntypespecs : nsotdocs : names
fns tdocs

fnsotdecs [integer] fnsotdecs
( fnsotdecs <<, fnsetdcs>> )
tntypo

SEMANTIC NOTES ON FUNCTION SPECIFICATION

In a function set the 'fntype' can be a structure of function types, or rows of function
types or a combination of the two. Unlike previous versions of ELLA there is no restriction
on the sort of components a function set structure may have. Also function sets do not
now need to be explicitly 'MADE' before they are used.

The input/output type given as '()' is a 'void-type' which indicates that there is no
input/output terminal present. At present 'void-type' can only appear in a function spec-
ification as shown or as the input to an implicit function call or as the sole contents of an
'OUTPUT' clause. Extensions of the use of 'void-type' are being considered.

B.3 Multiple Makes

makeitem :- <<integer]>> fnname names

B.4 Partial Joins

joinitem- unit -> joinval

joinval joinvall
joinval CONC joinvall

joinvall joinva12
[lEIT name - integer .. integer] joinvall

joinval2 name
10 name
joinval2 [integer]
joinval2 [integer .. integer]
( joinval <<, joinval>> )
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C Syntax of Timescaling

The full ELLA syntax will not be described in this appendix, only those parts which have
been added as a result of the timescaling are given.

In this appendix the following convention and notation will be adopted

fnspec an an ELLA function specification
fnname an an upper case function name
integer am a non-tagged integer
constant -- an ELLA constant

C.1 Sample

FN fnnamo = fnspec: body. # An ELLA function #

body SAMPLE(integer, constant, integer)
SAMPLE(integer)

where in the case of no constant or second integer being supplied they take the default
values of unknown type and zero. If a second integer is present then its value must be
between + or - the value of the first integer.

C.2 Faster and Slower

FN fnname - fnspec: body. # An ELLA function #

body :- FASTER(fnname, integer, constant, integer)
FASTER(fnname, integer)
SLOWER(fnname, integer, constant, integer)
SLOWER(fnname, integer)

where in the case of no constant or second integer being supplied they take the default
values of unknown type and zero. If a second integer is present then its value must be
between + or - the value of the first integer.
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