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Abstract

This report describes some of the problems, achievements, and directions of investi-
gation of three areas of research. The first is the investigation of parametric nonlinear
programming problems using numerical bifurcation and continuation methods and with
applications to design optimization and parametric control systems. The second part cen-
ters on investigation of various numerical methods for the solution of nonlinear optimal
control problems. The analysis of convcrgcnce in infinite dimensional bpaces, discretiza-
tions, and numerical implementations are in progress for Newton's, penalty, augmented
Lagrangian, and interior point methods. The third part ot this research program is the
development of combinatorial optimization techniques to solve the central problem of multi-
target tracking, i.e., the data association problem of partitioning observations into tracks
and false alarms. The problem formulation, algorithm design, and real-time solution in-
volve techniques from probability and information theory, system identification, filtering,
control systems, combinatorial optimization. and advanced computer architectures, includ-
ing massively parallel computers. The data association problem for general multi-target
tracking problems is posed as a class of multi-dimensional assignment problems. The
algorithms under development are based on a recursive Lagrangean relaxation scheme,
construct high quality suboptimal solutions in real-time, and use a variety of techniques
ranging from two dimensional assignment algorithms, a conjugate subgradient method for
the nonsmooth optimization, graph theoretic properties for problem decomposition, and a
branch and bound technique for small solution components. These algorithms are being
implemented on massively parallel computer architectures for increased performance and
real-time identification.
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1 Introduction

This report describes some of the problems, achievements, and directions of investi-

gation of three areas of research. The first is the investigation of parametric nonlinear

programming problems using numerical bifurcation and continuation methods with appli-

cations to design optimization and parametric control systems, and represents a potential

for a real extension of our understanding of basic phenomena, global sensitivity, robustness,

and multiplicity of solutions in much the same way that these theoretical and numerical

techniques have helped the understanding of dynamical systems and nonlinear equations.

Thus the objective in this aspect of the research program is to develop the analytical and

numerical techniques to map out regions of qualitatively different behavior and to locate
the "stability" boundaries of these regions in parameter space. The latter is important be-

cause drastic changes in the optimum occur in the presence of singularities which, in turn,

define these "stability" boundaries. Such knowledge allows for the uncertainty in system

and model parameters and yields information about the expected behavior when control

parameters are varied to enhance the performance of the system under consideration. In

addition to providing a global-like sensitivity analysis, these metiods are quite efficient in

computing multiple optima. Several model problems taken from the very active area of

design optimization are being investigated to test and illustrate the value and applicability

of these continuation and bifurcation methods, as well as to provide motivation and focus

for further development. A preliminary theory and numerical implementation have been

completed as described in detail in Sections 2 and 3.

The second part centers on investigation of various numerical methods for the solu-

tion of nonlinear optimal control problems. The analysis of convergence in infinite dimen-

sional spaces, discretizations, and numerical implementations are in progress for Newton's,

penalty, augmented Lagrangian, and interior point methods. A longer term goal is the in-

vestigation of parametric problems in nonlinear control systems including but not limited

to the nonlinear optimal control problem. Some of the initial results in this direction are

described in Section 4.

The third part ot this research program is the development of combinatorial op-
timization techniques to solve the central problem of multi-target tracking, i.e., the data

association problem of partitioning observations into tracks arl fr-!e alarms. The problem

formulation, algorithm design, and real-time solution involve techniques from probability

and information theory, system identification, filtering, contrnl wstemz. comb-,intoria! u)p-

timization, and advanced computer architectures, including massively parallel computers.

The data association problem for general multi-target tracking problems is formulated
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as a class of multi-dimensional assignment problems. The algorithms under development

are based on a recursive Lagrangean relaxation scheme, construct high quality subopti-

mal solutions in real-time, and use a variety of techniques ranging from two dimensional

assignment algorithms, a conjugate subgradient method for the nonsmooth optimization,

graph theoretic properties for problem decomposition, and a branch and bound technique

for small solution components. These algorithms are being implemented on massively par-

allel computer architectures for increased performance and real-time identification. The

current status and results of this research effort are described in Section 5

The technical information concerning publications, lectures, graduate students, col-

leagues, and awards is contained in Section 7.

2 Predictor-Corrector Continuation Algorithms

Predictor-corrector continuation methods for tracing solution paths of an under de-

termnined nonlinear system F(w) = 0 where F : R" + 1 -' R' have proven to be robust and

effective procedures, particularly for solving problems ranging from homotopy methods for

nonlinear equations, continuum mechanics, and optimization to the study of parametric

dependencies in dynamical systems. (The parametric optimization problems discussed in

the next section represent a primary source of problems in this work.) Although these

methods are quite robust, they have been considered slow and computationally inten-

sive, primarily because of the extensive linear algebra required in both the prediction and

the correction phases. To increase the computational efficiency and robustness, a general

Adams-Bashforth predictor-corrector continuation procedure, valid for both homotopy and

parametric problems, has been developed by Lundberg and Poore [6]. This nonstandard

ordinary differential equations technique employs a, Newton-like procedure in the correc-

tion process and a variable order and an adaptive stepsize control in the prediction phase

to efficiently and robustly trace out paths of solutions in these parametric problems. We

[6] have showm these procedures to be highly efficient and in many respects superior to

existing path following algorithms.

3 Parametric Problems in Nonlinear Programming and Control

3A Problem Statement. The parametric nonlinear programming problem is that of

determining the behavior of the solution(s) as a parameter or vector of parameters o E IIY

varies over a region of initerest for the problem

Minimize f(.R,,o

Subject To 1h(i, a) = 0 (3.1)

(x,a 0) _0
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where f : IRf+r : IR, R--+ R q and g : +r -+ IRP are assumed to be at least twice

continuously differentiable. Most applied problems contain parameters; some may be fixed

but not known precisely and others may be varied to enhance the performance of the

system. Good local information about the rates of change of the variables with respect to

the parameters can be obtained by differentiating the Karush-Kuhn-Tucker conditions and

thib procedure can be rigorously justified at regular points of (3.1) by the implicit function

theorem. Sensitivity is due to a "nearby" singularity in the problem, and thus we have

investigated these singularities extensively [10,18,21,22]. These singularities arise from a

loss of strict complementarity, a loss of the linear independence constraint qualification, or

the singularity of Hessian of the Lagrangian on the tangent space to the active constraints

[18].

To our knowledge, numerical continuation and bifurcation techniques have not been

systematically developed for the fully constrained problem. These same methods, however,

have been highly successful in the numerical study of dynamical systems and nonlinear

equations, and thus the current objective is to develop numerical continuation and bifur-

cation techniques in parametric nonlinear programming in the near term and in control

systems in the longer term. In addition to yielding a global-like sensitivity analysis of the

parametric problem, numerical continuation and bifurcation methods also yield an effective

method for computing multiple solutions.

To test and illustrate the value and applicability of our methods as well as to provide

motivation and focus for further development, we are investigating several model prob-

lems taken from the very active area of design optimization. We are confident that the

techniques currently under development for parametric constrained optimization problems

will be very useful for investigating sensitivity, stability, and multiple optima in structural

design and control problems. Our first publication on this problem is that of Lundberg

and Poore [7].

3B Status of the Numerical Algorithms. To develop a numerical continuation

and bifurcation approact to the parametric nonlinear programming problem, a theoretical

development of the singularities in parametric nonlinear programming and a thorough

understanding of a good continuation code are required. Tiahrt and Poore [10,18,21,22]

have investigated singularities and persistence of the minima a.s well as critical point type in

nonlinear parametric programming and Lundberg and Poore [6] have developed en Adams-

Bashforth predictor-corrector continuation method which employs variable order and an

adaptive stepsize control to efficiently and robustly trace out paths of solutions in these

parametric problems. (This nonstandard ODE technique uses a Newton-like method in
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the correction process.) To explain the current status of these numerical investigations, we

first pose the parametric programming problem as a system of nonlinear equation, [18,21].

From the Fritz John first-order necessary conditions, there exist q + p + 1 real numbers in
v, A := (A,,..., Aq) and it =pp,..p), not all zero, such that

h(x,v,A, p;a)

F(x, v, A, p; a) = (x, a) =0, (3.2)

V 2 .PT p + AT A - 02

where C = vf(x, a)- < A, h(x, a) > - < tp, g(x, a) > is the Lagrangian. In the presence

of a constraint qualification, the usual normalization is to delete the last equation and

set ' = 1; however, the loss of the linear independence constraint qualification leads to

a singularity which is generally, but not always, characterized by multipliers tending to

infinity. This nonstandard normalization for the multipliers v, A, and p replaces multipliers

tending to infinity by v -- 0. This system system contains all solutions of the Fritz John or

Karush-Kuhn-Tucker first order necessary conditions as well as minima, maxima, saddle

points, and both feasible and infeasible solutions.

To explain the development, please keep in mind that singularities in the above system

can only arise from a loss of strict complementarity, a loss of the linear independence

constraint qualification, or the singularity of Hessian of the Lagrangian on the tangent

space to the active constraints [18,21]. The easiest singularity to treat is that of the loss

of strict complementarity, which corresponds to a bifurcation point whose branches can be

delineated by activating and deactivating the particular constraint(s) in question. Since

the signs of the inequality constraints and corresponding multipliers can be monitored to

detect these bifurcations, the problem of path following and bifurcation detection in one

parameter can be simplified to

[ V1 L.x, V,, A, ,.; a)

F(x, v,, A, fi; a) h (x, a) 0. (3.3)
a') - (x, a)

1,+ < j, ji > + < A, A > -3

where and ji are obtained from g and It by deleting constraints and multipliers cror-

responding to inactive constraints. (This is essentially an "active set strategy.") Given a

general predictor-corrector continuation method [6], the development of numerical c(-it in-

ation and bifurcation techniques for constrained optimization thus begins with the tailoring

of the numerical linear algebra and singularity detection methods to this formulation of

the problem.

6



In the continuption process, one also adds an augmenting equation to specify how the

correction is made back to the path after a prediction, so that the coefficient matrix in the

linear systems that must be solved at each point along the path are of the form

W CT where W= A T  ] (3.4)

and AT represents the derivative with respect to x of the active constraints. The last two

rows and columns in J, represented by the matrices CT, D, and B, arise from the multiplier

normalization above and the augmenting equation. An effective framework for developing

both the numerical linear algebra and singularity detection is a slight modification of

Keller's bordering algorithm [4,5], which reduces the linear systems involving J to those

involving W. Then null and range space methods and the direct factorization of W, which

are extensively developed and used in optimization [1, Section 10.2], can be adapted to the

continuation problem with one modification. Since in the continuation process one follows

paths of all types of critical points including minina, the Hessian of the Lagrangian on

the tangent space to the active constraints need no longer be positive definite. Thus the

linear algebra methods need to be modified, e.g. by replacing a Cholesky factorization by

a LDLT factorization using the Bunch-Kaufman algorithm [2].

As discussed above the loss of strict complementarity can be detected by monitoring

sign changes in an inactive inequality constraints and multipliers corresponding to active

equality constraints. Thus methods must be developed for the remaining two singularities.

Changes in the signature of the Hessian of the Lagrangian on the tangent space to the

active constraints can be accomplished directly for null space methods, and using results

on Schur complements [19] and closely related inertia results [3], we [8] have been able to

develop efficient methods for this detection for both the range space method and the direct

factorization of W. Loss of the linear independence constraint qualification occurs when

v -+ 0 since then there is a nonzero vector A such that AA = 0. We are also investigating

methods based on the factorization of the constraint matrix AT. The systematic devel-

opment of these methods will be reported in a forthcoming work of Lundberg and Poore

[7,8].

3C A Numerical Example from Design Optimization. As a simple illustration of
the above procedures we consider the following problem from design optimization [20]:

Minimize d

Subject To V ,E(d, h;p) = 0 (3.5)

0 < h < 1.5
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where E(d, h;p) = -pd + (Vi- - 17+/ (h -hd) 2 /2"1T7h, and p is the parameter.

This problem is used to model the determination of the unloaded height h of a sinmple

two bar planar truss with semi-span 1, which minimizes the displacement d under a fixed

load p. The solution paths z(p) = (d(p), h(p), A(p), p(p)) of (3.5) were tracked using our

continuation method. The following plot gives the displacement d as p varies.

Fig 3.1: Feasible Solutions of (3.5)

-- - 0 Fold 0 Bifurcation

d

C -- -Minimuzers Maamizers

d, dinplac.ment

F
-- -- e , loa

f
G g

This plot represents a projection of the feasible solutions of (3.5) into the (p, d) plane.

and the dot labeled with e, f and g indicates three distinct bifurcation points with p = d = 0

and h = 0, 1.41 and 1.5, respectively. Bifurcation points a, c, e and g result from a loss

of strict complementarity in which an inequality constraint becomes weakly active. The

path of maximizers branching from point a corresponds to h < 1.5 active and i1 < 0. and

changes type at the singular point g, becoming the path of minimizers labeled G. The

other path branching from point a passes through f, across which the one eigenvalue of
X72£T changes sign. At f there is a change in type resulting in the path of maxIiniZcr

labeled F.

Extreme sensitivity of the solution of (3.5) to variations in p occurs at the fold points

b and d (p = ±.3704) at which there is a loss of linear independence in the active constraint
gradients, and 12 =,. This is also the case at the bifurcation point e, where in addition.

strict complementarily is violated. One cannot compute near or past these points without

the normalization v2 + ATA + IT 1 - /_ = 0, since near these points an unnormalized

multiplier is unbounded. When the system is at a state near these points, small variations
in load p can result in very large changes in the solution, or the loss of (local) existence

of a solution. The latter case is illustrated near b where increasing the parameter past
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p .3704 results in the loss of the solution and a "snap through" of the truss to a state

represented by path D. Similar behavior occurs near d and c.

Not pictured above are branches of infeasible solutions of (3.5) emerging at a, c,e

and g (h > 1.5 or h < 0). (In some problems such paths may provide the opportunity

for further branching to other feasible paths.) A path of feasible singular points with

p = d = 0 branches from c through f to g, and can be parameterized by /12. The slutions

to (4.1) need only be stationary points of the potential energy E(d, h;p). However, all

path segments, exclusive of the segments from d to e and from c to b, do correspond to

physical states of the system (where E is minimized).

Finally, note the multiple solutions in the diagram which are easily computed via these

continuation procedures.

4 Nonlinear Optimal Control

The optimal control probleir tinder considration in this work can be described as

Minimize J[x, u] := I(x(to). x(t,)) + j f0 (t,x,?u)dt

Subject To .i = f(t,x(t),u(t))

B(a(to ), a.(t )) = 0

h(t,x,u) = 0

g(t,x, 11) > 0

it E Q
(x"11) E W/" ([to, tj]l " x L'([to, t,], IR' )

where x is an ,-vector, u is an m-vector, B is a 'oundary operator, Q is a closed convex

set, and W 'P([t 0,t 1], 11V') is the usual Sobolev space which can be characterized via the

Sobolev imbedding theorem as consisting of those absolutely continuous vector functions

with the first derivative in LP([to, tfl, 13"). The functions o, fo, f, B, h, and g are assumed

to be at least C 2 with respect to their arguments. In this formulation, we assume that

the t o and tj are fixed; however, we stress that the more general problem in which c =

p(to, x(to), tl, r(tl )) and the end points (ti, x(ti)) are allowed to vary can be transformed

into this problem by a standard transformation that introduces two new state variab- -.

Our interest in this problem is two fold. First, working with W. W. Hager of the

University of Florida, we are investigating the convergence of various numerical methods

(Newton's, penalty, augmented Lagrangian, interior point methods) in the appropriate

infinite dimensional spaces and will then work on the discretization and numerical solution
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of these problems. One paper has been submitted for publication [16], one is in preparation

/17], and a third is planned.

The second area of interest is in the parametric problem obtained by inserting pa-

rameters in the above problem. The interaction of multiple and bifurcating states in the

absence of controls, periodic phenomena, chaotic behavior, and bifurcating controls arising

from the dynamical systems and holonomic constraints is open to investigation. Giveni a

certain phenomena arising from a dynamical system, the problem may be to control this

phenomena, to determine multiple solutions, or to investigate the dependence of a solution

on the system parameters over a wide range, i.e. global sensitivity. (The latter is also

important in adaptive control.) The development and use of theoretical and numerical

bifurcation and continuation methods in dynamical systems and nonlinear equations has

been spectacularly successful in analyzing and understanding the phenomena represented

by these systems, but we know of no systematic treatment or works on the constrained

nonlinear parametric control problem parallelling that found in dynamical systems. Thus

a long term goal of this research program will be the investigation of parametric problems

in nonlinear control systems including but not limited to the nonlinear optimal control

problem.

5 Combinatorial Optimization and Multi-Target Tracking

5A Problem Statement.

The third part ot this research program is the development of combinatorial opti-

mization techniques to solve the central problem of multi-target tracking, i.e., the data

association problem of p)artitioning observations into tracks and false alarms. Although

combinatorial optimization is the niatural framework for the formulation of these problems.

the corresponding techniques have long been considered computationally too intensive for

real-time applications and for good reason. The resulting optimization problms, which

are formulated here as multi-dimensional assignment problems, ace NP-hard. To further

appreciate the difficulties, one only has to examine the trade-offs between two current

methods in multiple target tracking: track while scan and batch. For the former, one

essentially extends tracks a scan at a time using for example a two dimensional assignment

or a greedy algorithm. This methodology is real-time, but results in a large number of

partial and incorrect assignments, and thus incorrect track identification. The fundamen-

tal difficulty with this approach is there is simply not enough information in one scan at

a time processing to properly partition the observations into tracks and false alarms. To

obtain the required information, one needs to consider several scans all at once, i.e. the

batch approach, but it is this batch approach that is considered computationally too inten-
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sive for practical real-time applications. Given the ever-present need to identify all tracks

in real-time, the challenge to combinatorial optimization is to design fast algorithms for

advanced computer architectures that will solve the underlying data association problem,

and thus the track identification, in real-time.

What we have accomplished is the real-time or near real-time of many data association

problems by exploiting sparsity and problem decomposition, by developing a Lagrangian

relaxation algorithm for the construction of 'high quality' suboptimal solutions, and by

using advanced computer architectures such as massively parallel architectures. In the

subsections to follow, the problem formulation, algorithms, current results, and parallel

comiputing issues are discussed.

5B Physical Model. A number of objects or targets, say 100 - 10,000, are assumed to

obey somie unlerlying physics from which one can formulate physical 1,Lws for the equations

of motion. Most models for real-time application are )ased on linear systems theory

wherein each target is assumed to obey an equation of the form

dx - F(t). + F(t)u + G(t)w
'it

z= H(t)+ v

where F(t), F(t), G(t), H(t) are assumed to be known, x is the state variable, u is the

input or control function, w is the input or process noise, v is the observation error, and z

is the output or o)served quantity. What differentiates one target from another might be

initial state values or parameters in F(t), F(t), G(t), H(t); these time dependent matrices

can also vary from target to target in a more general way.

At a set of scan times {t&,}a" pictures of the objects are taken, and the obsernation..

are recorded as {. =,} = for scan time tk. Here, K represents the number of scans.) Nk is

the nunber of observations on scan k. and the zero index, ?k = 0, corresponds to a (hilniny

or missed observation.

Given this description, the data association problem is that of partitioning the obser-

vations into tracks and false alarms [11,12] in such a way that the paths or tracks of the

objects can be identified. Smoothing, filteriiig, and prediction techniques are then used to

obtain further information about past, present, and future states of the objects.

5C Mathematical Formulation of the Data Association Problem. In what fol-

lows, the term track of ob.ervations is used to denote a sequence of observations { :i k ',

one from each scan, that might be generated by the target or object. Since the potential

11



number of tracks of observations is too large to consider computationally, a gating pro-

cedure is employed to remove unlikely tracks of observations and thus introduce sparsity

into the problem [11].

Given a track of observations {z I '_,the filtering problem is to estimate the state

up to the current time tk. The first use of filtering and system identification is in the devel-

opument of a score function since measurement error in the track of observations is scored

against the filtered track. Specifically, Kalman filtering, recursive system identification,

and adaptive filtering techniques are particularly relevant to this problem.

Using K scans of information, the next task is to formulate a K-dimensional assign-

ment problem whose solution gives an optimal partitioning of observations into tracks and
false alarms. Given a track of observations (z 1 ,..., z/ ), define the 0-1 variable

1 if (z , . !,{ 1 ,z) is assigned to a track,z, ... ,,. 0 otherwise.

The score of the assignment of the observations (zl,...,Z ) to a track is defined to be

--ln i ,,, ..... ) if (z ,.. ., zN.) passes gating,
00 if (z,,...,z I .) fails gating,

where p,,"," ... ,K is a composite probability density function involving probabilities for

ineasurement error, false alarms, missed detections, track life, initiation, and finite sensor

r(solution [13].

The problem of assigning 0 or 1 to all the variables Zi, .... i, in such a way that each

actual observation is assigned to exactly one track total cost is minimized is called the

a.,. ignment problem which can be formulated as

N, NK

)dil.il.i.z E( s''" c 1  . il ..-. .
il=o iK=O

N2 NK

Subj. To E - .., , 1. ?i = 1 ... ,N 1 ,

i2=0 i.=0

N, Nk - Nk+1 N-E ..E E "1: i,,I ...
I, =0 ikt-1=0 ikt+1=0 iK'=O

/'1 NK -

E... ... ... ..... = 1, ii,. = 1,... ,N h.

it =0 IK- I =0

Z.. . E........ {0,1}, Vi1,...
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An important feature of this formulation is that the number of targets is not required

a priori and is determined as part of the solution process.

5D Algorithms for the Construction of Real-Time Solutions. The basic scheme

currently used employs preprocessing in the form of gating and problem decomposition.

Then the sparse decomposed problems are solved by a recursive Lagrangean relaxation

scheme. A K-dimensional assignment problem is relaxed to a (K - 1)-dimensional one

by incorporating one set of constraints into the objective function using a Lagrangean

relaxation of this set. Given a solution of the (K - 1)-dimensional problem, a feasible

solution of the K-dimensional problem is then reconstructed. The (K - 1)-dimensional

problem is solved in a similar manner and the process is repeated until one reaches the two-

dimensional problem which is solved exactly. The duality gap in this process is generally

quite small and one obtains in general an 6-optimal solution. The full technical description

can be found in the forth coming paper of Poore and Rijavec [111.

5E A Case Study. The following three tables illustrate the solution quality, current

timings, and expected timings for the identification of 100 tracks consisting of straight

lines in two dimensional space-time. The two tables below present a numerical comparison

for the straight lines whose intercepts and slopes are uniformly distributed [0,1000] and [-

0.2,0.2], respectively. The observation errors are assumed to be Gaussian random variables

with a zero mean and standard deviation a. In the following tables the maximum error

of 3a is defined as the mean distance between the tracks at the initial time and ranges

between 1% and 50%. The scan times are spaced 40 seconds apart. These problems are

scale invariant for rn ..aAt = 0.2 x 40 where At denotes the time between scans. Thus

if the observations are taken every 5 seconds, the slopes can range between -1.6 and 1.6.

All computations were performed on Silicon Graphics Personal IRIS, and twenty (20) test

problems were randomly generated and solved to obtain the averaged results given in the

two tables below. Thus an identification reading of 99.95% implies that all but one track

out of 2000 was correctly identified.

W max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans
1.0 100.00 100.00 100.00 99.90 100.00 100.00
5.0 99.30 99.60 99.80 99.85 100.00 99.95
10.0 97.10 99.15 99.80 99.65 99.85 99.70
20.0 95.75 98.20 98.85 98.85 99.05 99.25

30.0 94.50 96.35 97.90 97.70 98.80 98.75
40.0 92.10 94.20 96.30 97.50 97.30 99.25
50.0 93.50 94.20 95.60 95.10 97.25 -

Solution Quality: % of Tracks Correctly Identified

13



The maximum error of 1% corresponds to a high signal to noise ratio, whereas 50% cor-

responds to a very low signal to noise ratio. The identification is of exceptional quality

over all signal to noise ratios and gradually improves as one moves across the table. The

reason for incomplete identification is that one encounters regions of high contention where

many tracks cross. This difficulty is resolved locally on subsequent scans, but other regions

appear. In the next table the solution times are presented.

% max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans
1.0 0.05 0.05 0.06 0.06 0.07 0.07
5.0 0.19 0.31 0.42 0.59 1.01 1.61
10.0 0.66 1.31 1.94 3.24 5.01 6.55
20.0 1.25 3.32 7.15 16.60 27.86 53.45
30.0 1.96 6.01 18.10 52.58 118.15 276.58
40.0 2.14 8.50 28.93 90.69 281.15 506.11
50.0 2.37 11.03 42.98 156.76 379.62 -

Current Solution Times in Seconds

We have mentioned real-time in this work; let us now be specific. Suppose a radar sweep
takes 5 to 10 seconds. The objective then is to process as many scans as possible between

swceps to improve identification and solve the problem in the alloted time. The above
table gives some idea of the capability at the present for 100 targets. To appreciate these

timings further, one must consider the several factors that can significantly improve the

speed. The research code based on the current algorithms is designed for adaptability, not

speed. (A special purpose three and four dimensional assignment code ran between six and

ten times faster than our recursive K-dimensional code used to generate these numbers.)

Perhaps the most significant speedup can be achieved by what has not been used. Given

a specific K dimensional assignment problem, one most often has a suboptimal or optimal

solution of a closely related K or K - 1 dimensional problem and such a solution should

be used as a hot start. For example, in going from k scans of observations to k + 1 scans,

almost all tracks have been identified, but we are not making use of these hot starts. The

following table gives the expected solution times for this problem.
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% max. error 3 scans 4 scans 5 scans 6 scans 7 scans 8 scans

1.0 0.01 0.01 0.01 0.01 0.01 0.01
5.0 0.02 0.03 0.04 0.04 0.05 0.05
10.0 0.05 0.07 0.09 0.09 0.10 0.15
20.0 0.07 0.10 0.15 0.20 0.20 0.30
30.0 0.10 0.15 0.30 0.50 0.80 1.20
40.0 0.10 0.20 0.40 0.60 1.40 3.00
50.0 0.10 0.20 0.50 1.20 3.00 4.00

Expected Solution Times in Seconds

5F Parallel Implementations. The multi-target tracking algorithms are in the pro-

cess of being parallelized on a massively parallel SIMD architecture. The goal has been to

investigate and understand the issues and algorithms in a parallel computing environment.

The machine chosen for algorithm development and testing was the Connection Machine

CM2 at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. The

Connection Machine consists of a large number (up to 64K) of 1-bit serial processors, each

with 64K bits of local memory. For the purpose of this project, only a small number of the

Connection Machine processors were used, configured into a linear array as requested by

IBM of Owego, New York. The association of regions of space to processors and then the

load balancing for efficiency will not be discussed, since problem formulation is still under

development.

Two of the main issues in implementing algorithms on a massively parallel issues are

balancing the computational loads across the processors and minimizing the communica-

tion paths. To balance computational loads we have developed a dynamic load balancing

strategy that is purely local in nature, i.e. does not assume the existence of the front

end computer. Various improvement of this algorithm, depending on a particular machine

characteristics, are being investigated. Next, a comprehensive strategy for fitting the track-

ing problem to a massively parallel SIMD architecture has been developed. This strategy

starts with dividing the target space into slices that are then allocated to individual pro-

cessors. This strategy is consistent with the objective of minimizing communication. As

an added benefit, the computing loads arising from such allocation are more likely to be

balanced, making the load balancing algorithms cheaper to execute.

The issue of parallel indexing (i.e. indexing parallel arrays by parallel indices) has

turned out to be fundamentally important for efficient implementation of tracking algo-

rithms on a massively parallel SIMD architecture. Most algorithms require at least some

parallel indexing, while some are very heavily dependent upon it. The architecture that
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does not provide an efficient parallel indexing will not be well suited for these tracking

algorithms.

Specifically some of the modules that have been implemented todate include:

a A tracking model to generate the observations. This model is implemented in parallel

and incorporates targets moving with constant speeds in one dimensional space, target

initiation and termination at any time, probability of detection of less then one, false

alarms (clutter) and finite sensor resolution.

b Problem formulation module that formulates a multi-dimensional assignment problem

on the basis of observations and known model parameters.

c A decomposition algorithm to identify disjoint components of the assignment problem.

d A branch and bound algorithm for small multi-dimensional assignment problems.

e The auction algorithm of Bertsekas for the two dimensional assignment problems.

f A dynamic load balancing algorithm.

g Various sorting and utility modules.

Our current thinking leads to the conclusion that the preferred architecture for im-

plementing multi-target tracking algorithms is a shared memory MIMD architecture with

large number of processors, e.g., BBN Butterfly. However, the algorithms are also well

suited to implementation on a massively parallel linear SIMD machine. Such machines are

much less complex and thus likely to be both smaller in size and more economical to build.
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