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1. INTRODUCTION

The current generation of interior ballistic codes rely on turbulence models which

incorporate little if any of the underlying physics of the gas-particle motion in a gun tube.

Indeed, more often than not, the fictitious length scales and adjustable constants employed

are based on experiments which have no relationship to the flow being modeled. The result

at best is post predictive in nature and no claim to physical representation can be made.
To put turbulence sub-models in a ballistic setting on a more realistic footing, this study

was undertaken. A new mathematical approach to the problem is presented and results for

the single phase, turbulent case are given. In a companion paper the flow in a two-phase
jet is analyzed and compared to data obtained at BRL.

Turbulence is prevalent in practically all naturally occurring flow processes and has

challenged, without adequate resolution, the best scientific minds for over a century. The
problem is especially hard due to the very large number of coupled degrees of freedom

involved. Hence the description of such fluid flows cannot proceed via usual techniques of

approXimating the system by a linear one and using perturbation techniques around the
linearized limit. Despite the existence of an enormous body of theoretical literature on the

subject, there is still no "standard" theoretical treatment of fully developed turbulence. In

our previous works we took a statistical approach to this problem (Domokos,

Domokos-Kovesi and Zoltani 1988), following the pioneering works of Martin, Siggia, Rose

(1973) and De Dominicis and Peliti (1978). In this approach one considers the classical

equations of motion of a fluid, viz. the Navier-Stokes equations, perturbed by a random

force. From the physical point of view, the random force represents the fluctuations in the
fluid; s presence is necessary in order to avoid unstable, non-turbulent solutions of the

equations of motion. The statistics of the random force, in turn, generates a statistical
distribution of the components of the flow velocity. The correlation functions computed

from the latter distribution can be compared directly with the results of measurements.

An application of the technique developed by these authors to the case of turbulent channel

flow led to a reasonable agreement with the available experimental data, cf. Burgett

(1989). The approach adopted there consisted of a combination of analytical and

numerical me.hods: an analytic approach was followed and numerical computations were

used only for the computation of Fourier transforms, integrations, etc. While this

approach led to a considerable reduction of computational complexity, it became clear that

a straightforward application of those techniques to problems like fluid flow in jets would

lead to an unreasonably large amount of computing time.
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There are basically two features of the approach which make the computations

difficult. First, there is no easy way available to satisfy the constraint imposed by the

equation of continuity on the various velocity correlation functions; second, the

approximation methods used are essentially perturbative in nature, hence, one has to labor
very hard in order to achieve a reasonable accuracy.

In this work we describe some further developments in the statistical theory of fully

developed turbulence which are designed to avoid the difficulties outlined above. First, we

describe a technique by means of which the equation of continuity can be automatically

satisfied. (We explicitly describe the procedure for the case when the fluid may be
regarded an incompressible one, although the method can be generalized to arbitrary,

compressible flows.) Second, we develop a variational approach to the computation of

correlation functions. This enables us to avoid perturbative approaches altogether.

The paper is organized as follows. In the next section we briefly review the statistical

approach to turbulent flows as described in Domokos, Domokos-Kovesi and Zoltani (1988).

In Sec. 3 we introduce vector potentials which enable us to satisfy the equation of

continuity identically. We also discuss the method of imposing various symmetry

requirements on the correlation functions. We work out explicitly the constraints imposed

by the requirement of cylindrical symmetry. The variational approach is described in Sec.
3.2. A sample calculation is presented in Sec. 4: some correlation functions of an

axisymmetric jet are calculated by means of the techniqe developed here. Sec. 5 contains a

discussion of the results.

2. REVIEW OF THE STATISTICAL APPROACH

Throughout this paper, a condensed notation is used. We consider a class of systems

described by a classical equation of motion of the general form:

a X + F[X] = f(x). (2.1)t

Here X stands for an element of the vector space of dynamical variables. F[X] is an

autonomous map of the vector space upon itself; x stands for both spatial coordinates and

the time variable, x = (x,t). Finally, f(x) represents a Gaussian random force acting upon
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the system; it plays the role of a disordering field, driving the system described by eq. (2.1)

away from a non-chaotic behavior. Specifically, if the system is an incompressible fluid

described by the Navier-Stokes equations, X is identified with the velocity field, u. The

map F[X] reads:

F[u11=(u + 9 p- vV2u, (2.2)

with the velocity field satisfying the constraint, V.u = 0. In that case, the quantity p (the

pressure divided by the density), is not an independent dynamical variable: it can be

explicitly expressed in terms of u. Due to the constraint upon u, we are free to assume that

the perturbing random force is solenoidal.

The quantity playing the central role in theories of this type is the generating

functional of the correlation functions. It can be expressed in terms of the probability

distribution of the random force as follows. Let K stand for the correlation operator of the

random force. Then the generating functional of the correlation functions of X is given by

the functional integral:

DX exp - [((a X - F), K(a X - F)) + (j,X)], (2.3)
St t

where (.,.) stands for a scalar product over the vector space, involving integration over

space-time variables and summation over tensor indices, whereas j is an arbitrary function:

the functional derivatives of Z with respect to j give the correlation functions. The

cumulants are generated by the functional W = -lnZ. Letting f to be a white noise, viz.

K(xl,x 2) = k b(tl - t 2)6 3(x, - X2) (where k is a constant) is often a satisfactory choice.

The functional weight of integration, DX, is proportional to the (infinite)

determinant,

Det (a - F/"X). (2.4)

It was shown by Domokos, Domokos-Kovesy and Zoltani (1988) that the latter can be

expressed in terms of a functional integral over Fadeev-Popov ghosts (Itzykson and Zuber
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1980). The central questions are: what is a satisfactory implementation of the constraints

imposed upon X (in the case of an incompressible fluid flow, the constraint V.u = 0) as well

as the development of suitable approximation techniques for the computation of Z (or its

functional derivatives).

3. THE MATHEMATICAL APPROACH

3.1 Incompressible Flow: Vector Potentials and Symmetries. An incompressible flow

is characterized by the fact that the velocity field is solenoidal. Any solenoidal vector field

is obtained as the curl of a vector potential. Hence, we write, u = V , A, where A is the

vector potential. It is also well known that, given the velocity field, the vector potential is

determined only up to the gradient of an arbitrary scalar function: A and A + V If give rise

to the the same velocity field. (This is called the gauge freedom in electromagnetic theory:

we adopt the same terminology here.) The scalar function, H can be chosen so as to

simplify the problem of determining the vector potential. The equation satisfied by the

vector potential is obtai-ied by substituting the relationship, u = V , A into the

Navier-Stokes equation. This is straight forward and we do not reprduce the result here.

Correspondingly, in the statistical theory discussed by Domokos, Domokos-Kovesi and

Zoltani (1988) and briefly reviewed in the preceding section, one first determines the

correlation functions of the vector potential; the velocity correlation functions are then

obtained by taking the curl with respect to every argument.

It is worth remarking that this way of satisfying the incompressibility constraint is

not the only pos ibility: it would be possible to take the constraint into account by means

of the Fadeev-Popov method, see Itzykson and Zuber (1980). However, the method

described here is simpler and leads to results more quickly than any other approach we

know of. This is due to the gauge freedom just described.

In what follows, we use a gauge such that the component of the vector potential along

the mean flow vanishes. ("Axial gauge".) On denoting the mean flow by U, the condition

to be satisfied is: U.A = 0. This can always be achieved. In fact, let B be a vector

potential which reproduces the velocity field , but its projection onto U is not necessarily

zero. Then, in order to satisfy U.A = 0, with A = B + VH, the scalar H1 has to satisfy the

differential equation,

U.B + U.VH =0. (3.1.1)
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There remains a residual gauge freedom, viz. a function h satisfying U.Vh = 0 can always be

added to any solution of (3.1).

Any symmetry requirement should be now imposed upon the correlation functions of

the vector potentials instead of the correlation functions of the velocity field itself. A
symmetry of a flow means that the correlation functions are invariant under a subgroup of

the Euclidean group. For instance, homogeneous turbulence means invariance under
translations, hence, the n-point correlation function of the vector potential depends on the

n-I coordinate d.,ferences only, not on the coordinates themselves. Likewise, in the case of

isotropic turbulence, the correlation functions of order 2n are proportional to the n-fold
direct product of the metric tensor with itself, whereas correlation functions of odd order

vanish.

Let us now concentrate on the two point correlation function; the construction of the

,enwral ni-point correlation function proceeds in a similar fashion. For the sake of

.1t'finiteness, we choose a coordinate system such that its third axis coincides with the
direction of the mean flow, U. Due to the fact that the relationship between the vector

p;'.,tential and the velocity field is a linear one, a Reynolds decomposition of the vector

potential leads to one of the velocity field. Let us write,

A =<A> + a,

U = V x <A>,
<a> = 0,

u' = V x a, (3.1.2)

where u' stands for the fluctuating part of the velocity field and <...> denotes, as usual,

the expectation value of a quantity. In an axial gauge we have:

A 3 = a3 =0, (3.1.3)

so that only the components of the vector potential transverse to the mean flow are
nonvanishing. (These components are denoted by subscripts/supersciipts in capital letters,

A, B, etc.)

The two-point correlation function of the vector potential a(x,t) can be decomposed
in a basis of second rank tensors in the plane perpendicular to the mean flow. A basis of
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such tensors consists of three elements. Correspondingly, the two-point correlation

function can be written as follows:

R S
Z AB <a A(x't 1) a B(x 2 t 2)> = 6AB Z + fAB E RSx 1 x 2 Z 2

+ (IAX2 B + X2 AX1 B) Z3, (3.1.4)

where 6 and c are the Kronecker and Levi-Civita tensors, respectively. Th u
AB AB

functions Z1, Z 2 and Z3 are invariant under rotations around the third axis and they are

symmetric functions of their arguments, (x1,tz) and (x 2,t 2). (The antisymmetric product of

the two coordinates has been inserted in front of Z2 so as to satisfy the permutation

symmetry of the correlation function with all three invariant functions being symmetric.)

Thus we found that the two point correlation tensor of an incompressible fluid has

three independent components only. Cylindrical symmetry of the flow further reduces the

number of independent elements to two. In fact, cylindrical symmetry means that the

correlation function is invariant under rotations around the third axis; the tensors E and

are the only invariant ones under such rotations; hence Z3 = 0.

We now give the explicit expressions of the velocity correlation functions for a flow of

cylindrical symmetry.

GA = 6AB 913D23 Z1,

G A3 =- 913[X1AZ2 + a2AZ1],

IRS 0R0 S Z R R R]Z.

G 33= b ,2 Z+[2+xi R  +X 2  2 RZ 2 (.1.5)

The notation used in this and subsequent equations is the following. The first

subscript denotes the argument in the correlation function; the second subscript or

superscript refers to the vector component. The summation convention is used throughout.

Cylindrically symmetric turbulent flows of incompressible fluids have been, of course,

discussed previously, cf. Batchelor (1946), Chandrasekhar (1950), Trevino (1982). Whcrc
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they overlap, our results agree with those of these works. The present approach is,

however, more general, since it can be applied to flows of arbitrary symmetry and it is

more explicit than the treatment of Trevino (1982).

Finally, we just mnntion that the present construction can be generalized in a

straight forward fashion to compressible flows where both the velocity field and the density

field are dynamical variables. In that case one has to introduce two vector potentials with

a correspondingly enlarged group of gauge transformations; this problem will be discussed

elsewhere.

3.2 Variational Principles for the Correlation Functions. In this Section we return

to the condensed notation used in Sec. 2. Consider the expression of the generating

functional of the cumulants, as quoted there. We have:

W[j] = -In r DX exp - [((0 - F),K(O - F)) + (j,X)], (3.2.1)
J t t

The averages of the various quantities are given by functional derivatives of W,

6W
G(1) =- <X(xi)> =

6(x

b2W
G(1,2) <X(x,) X(x 2 )> = - + C(1)G(2) , (3.2.2)bj(x 1) 6 j(x2)

etc. Instead of the functional argument j, we can now introduce G(1) as a functional

argument, by means of a Logendre transformation in function space. Let us define a new

S= W - (j,G 1). (3.2.3)

One readily verifies with the help of (3.2.1) that S1 is a functional of G(1), its first

functional derivative being given by the expression:
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A 1) (3.2.4)
6G(1) - j1

The functional S1 can be determined from a functional differential equation obtained

by combining eqs. (3.2.1) thru (3.2.4). This gives:

=-In DXexp-[((atX-F),K(OtX-F))-(6S-,X)]. (3.2.5)

The differential equation can be solved by iteration; one usually takes as a zeroth

approximation the functional:

S,° = S[G1] = ((9 tG, - F[G1 ]),K( tG1 - F[GIj) (3.2.6)

The principal advantage of the functional S, is that it becomes stationary if the

external "source", j, is put equal to zero, see eq. (3.2.4). hence, one may determine S, up
to a certain accuracy, but thereafter a calculation of G, does not have to rely upon any

perturbative approximation scheme. This procedure can be generalized if one is interested

in determining the higher order correlation functions as well as the average of the

dynamical variable itself. We outline the procedure for a scheme aimed at determining the
functions G1 and G2. It is necessary to introduce a bilinear source, h(1,2), in addition to j,

viz.

W[jh] I ln DX exp - [((a X - F),K(8 X - F)) + (j,X) + (X,hX)]Jt t
(3.2.7)

Similarly to the procedure outlined above, one now performs a double Legendre transform

in order to obtain a functional, S2[GI,G 2]:

S2 = W[j,h] - (Gjj) - Tr(hG2 ), (3.2.8)

8



where the trace is understood in the operator sense. One readily verifies the relations,

6S 2

bS23- (3.2.9)

Thus, S2 is stationary in both G, and G2 in the limit of vanishing sources. The

equation obeyed by the functional S 2 can be determined in the same way as eq. (3.2.5). We

merely quote the result:

6S2  bS2
2-, Tr(G;-)

-ln DX exp-[(( X-F),K(8'.X-F)) - (--2 6X) -(X,--2 )1.

Jt t b' G
(3.2.10)

Just as for the equation obeyed by S1, the only known method of solving (3.2.10) is by
iteration. We give here the first approximation to S2:

62S
S21 = S[G ] + Tr( G,-G1G2) - Tr(lnG 2). (3.2.11)

(This form of S2' is obtained by changing to an integration variable, Y = X - G, in eq.
(3.2.10); thereafter S[Y + G1] is expanded in powers of Y up to quadratic terms. The

functional differential equation is then solved by quadrature.)

Functionals of the type (3.2.10) were first used by De Dominicis and Martin (1964)
and Domokos and Suranyi (1964); the differential equations obeyed by such functionals was
obtained by Cornwall, Jackiw and Tomboulis (1974). In the papers just quoted, it is also

shown that higher order correlation functions can be computed by the application of either
one of the variational principles described above. In this work, however, we concentrate

upon the average flow (corresponding to GI) and the two point correlation function. For

this purpose, the use of the variational principle based on the functional S 2 is best suited.
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4. CALCULATION OF A CYLINDRICALLY SYMMETRIC JET

As an illustration of the technique developed above, we now perform a computation
of some properties of a free jet, with a cylindrically symmetric mean flow. We use the

variational principle (3.2.8) and compute the functional S2 in the first approximation, cf.

eq. (3.2.11). The power of the variational principle lies in the fact that one can use a
Rayleigh-Ritz method in order to minimize S2. This leads to a considerable reduction in

the complexity of computation: instead of solving coupled partial differential equations for

the correlation functions, one tries to guess the form of the vector potential for the mean

flow and of the functions Z, and Z2 in (3.1.5), leaving a few free parameters. On

substituting this form into the expression of S2, the problem reduces to the computation of

integrals and the minimization of the expression so obtained as a function of the

parameters. The success of such an approach depends on finding a reasonable funtional

form of <A> and of Z, and Z2 . This can be accomplished only by a judicious use of one's

physical intuition and by trial and error.

In this calculation we want to simplify the calculation as much as possible: we guess

some simple functional forms which could reproduce the main features of the experimental

data.

Let us examine now the Navier-Stokes operator entering the expression of the

functional S2:

N[u] = a u1 - VV2u + (U5 )+ a p (4.1)t5

We are interested in fully developed turbulence: that means that it is described by a

stationary ensemble. Hence the term containing the time derivative can be omitted from
(4.1). Next we notice that if one introduces dimensionless quantities (as we shall do in

what follows), the coefficient of the viscous term, V2u, becomes proportional to 1/Re, where

Re stands for the Reynolds number. Hence, for flows of large Reynolds numbers (Re - 104 ,

say), it is safe to omit the viscous term too, as long as we are interested in the behavior of

the fluid on scales substantially larger than the dissipation scale. Thus, we are going to

work with the truncated Navier-Stokes operator,
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n1 [u] + dp, (4.2)

with

n'[u] = uS0 ui .

The next task is to eliminate the pressure from the generating functional. To this

end, we regard the pressure as one of the fluctuating dynamical variables and carry out the

functional integration over it explicitly. Using an operator notation as before, we have to

compute a functional integral of the form:

Dp exp-j[n + Vp] K [n + Vp]. (4.3)
J

This is a standard Gaussian integral. The result of the computation, to be inserted into

the expression of the functional S2, is the following:

f T

Dp exp-J[n + Vp] K [n + Vp] = exp--Jn K n, (4.4)

with

T -1
K = K - (VK)" [VKV + a2] VK, (4.5)

where - denotes the transpose of an operator.

In the last equation we inserted a constant a2 in order to make the inverse of the

operator VKV well defined on large length scales (equivalently, at small wave numbers).

T T
Evidently, K is the transversepart of K, VK = 0. We now have to make a physical
assumption about the correlation operator, K. We argue that the stirring force should

point in the direction of the mean flow: this is both intuitively plausible and it is the

simplest way of satisfying the requirement of cylindrical symmetry of the problem.

Otherwise, we assume the the correlation to be of short range. Hence we take, (cf. Sec. 2):

11



K (x,x') = k b 6 63(x - x,). (4.6)
ij i3 j3

In order to obtain a finite result even in the limit a -4 0, we have to assume that k is
proportional to 1/a. With this, the transverse part of K becomes:

K Tij (x ' = a e-alz - z'i I2(x A x) i35j3 ,  (4.7)

where a is a constant independent of a. At the end of the calculation one may take a - 0,
although there is some evidence that a finite a (just as in an Ornstein-Zernike process)

gives slightly better results, cf. Burgett (1989), Ch.6.

We are now ready to compute the functional S21, eq. (3.2.11). Clearly, the first term

reads:

S[U] = Jd3xd3x' ni[U(x)]K ..(x,x')n [U(x')] (4.8)1J

On expressing the average velocity as the curl of its vector potential, U = V - A and

using (4.6), we obtain in the axial gauge:

-azi -z2 1 ASa RMaS=ad 2xdzldz2 e [-E A E e9 A
3 S ARM

( R S aRA S)2]Z, [...], (4.9)3 RS ...

where the second factor in square brackets has the same structure as the first one, but it ic

evaluated at z2 . We now notice that the second term in both square brackets in the last

equation is a total derivative. Consequently, upon integration by parts, its contribution

becomes proportional to a and hence it is small for small values of that parameter.

Therefore, that term can be omitted without substantially affecting the iesults and we shall

do so in this paper.
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We next compute the functional derivatives of (4.9) in order to generate the second

term of S21 in eq. (3.2.11). This is a straight forward procedure and we merely quote the

result.

625-azl-21NA RB o

= 2a e- z- Z21 2a(zI-Z2) N C aR aN2(x -X2)
AA(xl,zl) bA (X2,Z2)

A B

NA RM PB QS+ a2 fa A e a a A 62(X I - X2 )} (4.10).
N RM PQ S

In this equation and from now on, x1, etc. stand for the transverse components of the

position vector, whereas zi, etc. denote the longitudinal component of the same vector.

The symbol f(z) stands for the sign function, f(z) = z/ I z . Unlike in the expression of S,

we now cannot omit terms of 0(a) or 0(a2), for there are no terms of 0(1) present in eq.

(4.10). However, we notice that the quantity a can be scaled out of the expression S 21. In

fact, on looking at the structure of eqs. (3.1.4), (3.2.11), (4.9) and (4.10),we realize that

upon the rescaling, z -, (1/a)z, A -. (1/a 5 )A, and ZAB -. (1/a3)ZhB the expression of S2'

is multiplied by an overall factor 1/ a4. This, however, can be absorbed into the constant

entering the expression of the force correlation function; at any rate, the location of the

stationary point of the functional S 21 is independent of the value of a. (We remark,

however, that higher order approximations to S2 do not have this scaling property.)

The reader certainly notices that our approach has been quite general and the results

obtained so far are applicable to almost any flow geometry. We now specialize to the case

of a cylindrically symmetric free jet. Such jets have a characteristic velocity, namely the

mean flow velocity at the centerline of the jet exit, U0., and a characteristic length, d,

namely the diameter of the jet at the exit. From now on, as is customary, we measure all

velocities and distances in these units. However, in order to keep the notation simple, this

is not indicated explicitly in the formulae. (For instance, a velocity component denoted by

U is understood to mean U/Uo., or an axial distance, z, is to be interpreted as z/d.)

A cylindrically symmetric mean flow can be described in the axial gauge by means of

a vector potential which has a tangential component only. Specifically, in cylindrical

coordinates (xl = r cosV, x2 = r sinVo), we choose a trial function for the vector potential of
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the form:

A = JU(O,z) R(z)2 [1 -exp(-r 2/R(z) 2)], (4.11)
o

with the other two components vanishing. Here U(O,z) stands for the mean velocity along

the jet axis; the quantity R(z) characterizes the radius of the jet at distance z from the

exit. The choice of such a functional form is motivated by its simplicity and by various fits

and approximate calculations of free jets; see, e.g. the classic text of Hinze (1975). This

vector potential gives rise to an axial and a radial component of the mean velocity of the

form:

-r 2/R(z)2
Uz(r,z) = U(O,z) e

{dlnU(0,z) -r2/R(z)2
Ur(r,z) = . ' R(z) 2 (1 - e )

dz

R(z) dR [1 - (1 + r 2)e-r 2 R(z) 2 }. (4.12)
dz R2

Next we impose the requirement of cylindrical symmetry on the two-point

correlation function, ZAB , cf. eq. (3.1.4):

AB'B

ZAB = 6AB Z, + f Z2.

(4.13)

In order to simplify the computation, we arbitrarily set Z2 = 0. There is no strong physical

motivation for this choice; it simplifies the calculations to a considerable extent, albeit at

the cost of some loss of accuracy. We assume the following functional form for ZI:

- f(z - Z2)2 - g(x 1 
A -x 2 A)(x 1

A -x 2 )
Z,= A efZ

[U(0,z1 )U(0,z 2 )] (1 + BM) e . (4.14)

In this equation, the parameters A, B, d, 6, f, and g are treated as variational parameters,
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although later we found that the results are rather insensitive to the choice of d and we

ended up using a plausible value, d = 1/2. The expression M is defined as follows:

A A A AX1  Xj X2 X2

M (X I XI + X2 (4.15)
R(zI)2 R(z 2 )2

The radius of the jet was assumed to be a linear function of z, R(z) = a + bz, with the

parameters a and b being also varied. We did not, however, vary the functional form of the

mean velocity on the jet axis: although this is possible in principle, we used a fixed form in

order to simplify the calculational task. We used the following simple modification of

Spalding's formula (Hinze 1975), which is quite accurate for z > 2:

1.35
U(O,z) =/ (4.16)

1 + 0.0 38 2

The next task is to insert the expressions of the vector potential of the average flow

and of the two point correlation function into the functional S21 and to minimize that

expression with respect to the parameters. The operations are elementary, but extremely

tedious to carry out by hand, although this is not impossible. They are, however, easily

carried out by a symbolic manipulation program. We carried out the differentiations and a

part of the integrations by using the program "Maple", (Char et al. 1985). The search for

an extremum of the functional was done numerically. All computations were done on a

Sun 3/160 computer. In order to carry out the search for the extremum, one needs starting

values of the parameters. These were obtained by comparing Uz(r,z), eq. (4.12), to a few

data points from Zoltani and Bicen (1990a); we also chose, arbitrarily, f = g = 1 as

starting values. (The values of f and g cannot be read off directly from the data.)

The search resulted in the following values of the parameters:

a = 0.25, b = 0.076;

A = 0.0013, B = 2.3

6 = 1.79,

f - 5.6, g -3.7 (4.17)
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In the approximation used, the value of the functional S2 changes rather slowly vith

variations of the parameters f and g. This is due to the fact that in this approximation, the

interaction between the fluctuations and the mean flow is taken into account, but the

mutual interaction of the fluctuations is neglected. (The functional S21 is almost local: it

contains 6 functions and derivatives of 6 functions of finite order.) Hence, the values of f

and g cannot be determined efficiently. This is not a serious deficiency, however: most

measurements determine correlation functions at coincident arguments, which are rather

insensitive to these parameters.

The correlation functions of velocity fluctuations are determined by inserting the

expression of Z into eq. (3.1.5). We summarize the results by listing the expressions of the

axial component of the mean flow and of the correlation functions at coincident arguments.

G = G 22 = 2fA Uz(O,z) e {1 + BX2 + (1/2f)[d(z)2

+ )/2 B d(z) (d(z) - (B-1)/B b/R(z))
+ X4 B b/R (d(z) + (1 - 2B)/4B b/R(z))

+ X5B/4 (b/R(z)) 2]},

G33 = 4gA U,(O,z) e {1 + X2[B - (2B - 1)/4R(z) 2g]

+ X4B/4R(z) 2g},

G 13 = G 23 = A X e U(0,z) { (1 - B) d(z)

+ X2 [B d(z) + (1 - 2B) b/R] + X4 bB/R(z)},

U,(r,z) = U(0,z) eX 2  (4.18)

Here, X2 = &/R(z) 2and d(z) = d/dz(U(0,z)) .

The results listed in eq. (4.18) are evaluated using the parameter values (4.17) and

compared with data taken from Zoltani and Bicen (1990a), (1990b) in Figures 1 thru 4.

(The experimental circumstances there were not exactly identical. In particular, the

Reynolds numbers differ by approximately 30% at the jet exit. However, at large Reynolds

numbers the profile of the mean flow and the correlation functions should be insensitive to

the precise value of Re, cf. the discussion at the beginning of this Section. The data bear

out this conclusion.) In the figures we use conventional notation. The correspondence
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between the notation used in this paper (better suited for theoretical calculations) and the

conventional one, as used in Zoltani and Bicen (1990a), (1990b) is the following. (All

arguments are suppressed, so, for instance, G11 stands for GII(x,x). This does not lead to

any ambiguity.)

<U 2 >
G 3 3 = -

G11 = -
U Ow 2
<W2>

G 2 2 =- Uom2

<uv>
G 13 = -Uo.2

Uz= U (4.19)

5. DISCUSSION

A look at Figures 1 thru 4 shows that overall, the simple trial functions used in our

variational calculation, with the parameters determined by extremizing S2, are in a

reasonable agreement with the data. (The agreement with the data is better at large

values of z. This is understandable on physical grounds: at larger values of z, the statistics

of the flow is closer to the stationary ensemble we have been working with.) In particular,

our assumption of cylindrically symmetric correlation functions appears to be well justified.

This is expected on physical grounds: to a very good approximation, the mean flow is

cylindrically symmetric. Although this does not necessary imply that the correlation

functions themselves should possess the symmetry, one expects violations of this symmetry

to occur on relatively short time scales. Likewise, the assumption about "transverse

scaling", namely that the radial dependence of both the mean flow and the correlation

functions occurs only in the scale invariant combination, X2 = & 2/R(z) 2 appears to be

reasonably well satisfied.

A notable exception is the correlation function G 13, which is predicted to be much too

small compared to the data. Various modifications of the form of the trial functions have
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