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CLASSIFICATION OF INTERMITTENT DEPENDENT OBSERVATIONS

by
P. A. Jacobs and D. P. Gaver

1. THE PROBLEM

Consider the following classification problem. Suppose there are J items

(e.g., diseases) each of which has a characteristic Signature which ,iec in

time; the Signature of Item i is

Yi(t)=Oi+Xi(t) i=1,2,...,] t=0,1,2,.... (1.1)

For the moment {Xi(t)} is an unspecified multivariate (or univariate)

stochastic process, but one that stays near 0i in finite time and has some

stationary or steady-state behavior. In many cases, paths of Xi(t) will appear

somewhat "continuous," so successive Xi(t)'s are not well-modeled as iid

random variables. One could think of Yi(t) as physical indices characteristic

of a particular disease, e.g., blood pressure, heart-beat pattern, cholesterol

levels. Examples from equipment reliability are also of interest; here physical

indices might be vibration, variations in heat level, oil leakage, and even fuel

consumption in the case of engines.

In many circumstances Yi(t) is only observable occasionally, at times

unrelated to the value of Yi(t) but driven by other forces such as the

scheduling of a routine physical exam or system inspection. Suppose that the

Signature and the identity of the item associated with the Signature are both

observed at time t = 0, on such an occasion. Suppose that, later on, however,

only the Signature of an item is observed. The first question is: What is the

probability that, given the Signature value observed, its originating item is

any particular one of the J candidates?

In Gaver and Jacobs [19891, the processes {Xi(t)) are assumed to be

univariate Gaussian and a Bayesian classification procedure is studied. In this
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paper, Section 2 assumes (Xi(t)) are multivariate normal autoregressive

processes. In Section 3, {1Ki(t)) is a univariate Cauchy autoregressive process

whose marginal distribution has longer tails than the Gaussian. A Bayesian

classification procedure for the Cauchy data is studied. In Section 4, we study

the behavior of the univariate Cauchy and Gaussian classification procedures

when autoregressive data having the wrong marginal distribution are

presented to them. The results suggest that the Gaussian classification

procedure is biased towards classifying a Signature produced at time t as being

associated with the same item that produced the Signature at time 0. The

Cauchy classification procedure is biased towards classifying a Signature

produced at time t as being associated with a different item than the one

producing the Signature at time 0. These effects are strongest for small times
/

t. The largest number of misclassifications occur for small times t when the

Gaussian classification procedure is presented with Cauchy data and a

different item is associated with the Signature at time t than the item

associated with the Signature at time 0; in this situation the Gaussian

procedure is relatively less sensitive to the change in the item associated with

the Signature. Misclassifications by the Cauchy classification procedure are

modest in comparison to this extreme case.

In summary, it is important to realize that the performance of a Bayesian

classification procedure can be influenced by its underlying distributional

assumptions. A classification procedure based on Gaussian distributional

assumptions can be reluctant to classify a new observation coming from a

different item as being associated with a new item. A classification procedure

based on Cauchy distributional assumptions can be reluctant to classify a new

observation which comes from the same item as that being associated with

the same item. Hence, if there is uncertainty about the underlying

distribution of the data, it might be better to combine results of several

classification procedures based on different distributional assumptions.
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2. THE MULTIVARIATE NORMAL CASE

2.1 The Classification Question

Assume for illustration that the Signature of Item j is multivariate AR(1):

Yj(t) = Oj + Xj(t) (2.1)

where 0j, Yj(t), and X1(t) are d-dimensional column vectors. The process

{Xj(t)} is a vector AR(1) process

Xj(t) = AjXj(t- 1)+ Ej(t) (2.2)

where Aj is a dxd matrix and {Ej(t)}is a sequence of d-dimensiona column

vectors which are independent multivaiite normal with mean 0 and

variance-covariance matrix Aj. The variance-covariance matrix for Xj(t+l)

is

Fj(t+ 1) = E[X(t + 1)xT(t + 1)] = AjFj(t)AT + Aj. (2.3)

We will assume A1 and Aj are such that there is a finite unique solution to

the equation

Fj = AjFjAT +A (2.4)

Assume Xj(O) has a normal distribution with mean 0 and variance-

covariance matrix Fj. It follows that IX (01 is a stationary sequence with

mean 0 and variance-covariance matrix j.

The conditional distribution of Xj(t) given Xj(O)= x is multivariate

normal with mean Ax and variance-covariance matrix

3



Ai(t)= _AjA 1 (A). (2.5)
n=O

Thus, r1 = lir Aj(t).
t-4-

The conditional distribution of the actually observable Yj(t) given

Yj(O)=y(O) is multivariate normal with mean Oj+A (y(0)-0 i) and variance-

covariance matrix A)(t).

Operational Scenario: There are, potentially, J items. Let C(t) be the identity

of the item whose Signature is observed at time t. Put pi(t) - P{C(t)=j}.

Assume that it is known that the Signature observed at time 0 comes from

Item i; that is, C(0) = i and Y(0) = Yj(0) = y(O). If it has been a long time since a

Signature from item i has been observed, it is reasonable to suppose that

P{C(o) = iY(0) = y(O)}

pi(O)( 27 )dIril) 5 exp{ -l(y(O) -oi)Tr-1 (y(o) - oi)} (2.6)

the long-run or steady-state distribution. Further,

P{C(t) = i,Y(t)= y(t)IC(O) = i,Y(0) = y(0)}

= Pi(t)[(2Kr)' i(t)]- expl-lI(y(t) - mi(t))Tyi(t)-1 (y(t) -M(t))} (2.7)

where

mi(t) = 0 i + A (y(0) - 0i) (2.8)

and

Yj(t ) = Ai(t). (2.9)
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For j i, we will assume the conditional distribution of Y(t) given C(0)= i,

Y(0) y(O), C(t) = j is multivariate normal with mean mj(t) =- 0, and variance-

covariance matrix Fj = E,(t), since it is still a long time since a Signature from

Item j is observed.

It now follows that

P{Y(t) e dy(t)IC(O) = i,Y(O) = y(0)}

= I [(27r)djXj(t)j] exp{-I(Y(t) - mj(t)) Tri(t)-1 (y(t) - mj(t))} . (2.10)

j=1

Thus, the posterior probability of the identity of the item associated with

the Signature is

P{C(t) = jC(0) = i,Y(0) = y(0),Y(t) = y(t)} =

pj(t)I j(t)1-0'5 exp{ (y(t) - mj(t))rzj(t)-(y(t)- mj(t))}

x XPk(t)zk(t) - )'5exp{ - l (Y(t) -mk(t)) T Zk(t)-l(y(t) mk(t))}] 11

2.2 The Probability of an Incorrect Classification

In this section we assume that the item that is associated with the

Signature at time t given the last complete observation at time 0 will be

estimated to be that one which maximizes the posterior probability (2.11).

For a simple illustration we will suppose that there are only J=2 possible

items with known parameters 01 and 02.

Given Y(0)=y(0), C(O)=I, and C(t) = 1, the conditional distribution of Y(t) is

multivariate normal with mean

5



M I(t) = 1 +At (y(O)-0 1 ) (2.12)

and variance- cov aria nce matrix

S T

k=

Let the matrices Hi(t) and Hi be such that

Hj(t)Hj (t)T yit (2.14)

and

HilHiT =-i (2.15)

It follows that

Y(t)l M 1(t) + IlI I(t)U (2.16)

where U is a d-dimensional column vector each of whose components are

independent standard normal random variables; the notation d en equal

(Y (t) - M 1() T Yi(0)1(y(t)_-mi(t)) UTU (2.17)

and

(Y(t) - m2,() Y) X(0t 1 (Y(t) - m 2 ()

t=(m1(t)-1m2 (t)+ 111(t)U) 2;2(t)- (m](t)- m2 (t) + 1()) 2.8

where M2(t) =02 and E2(t)=IF2. Thus, the probability of a misclassification is

6



p~ classify the item as 21C(0 i 1, Y(0) = y(0),C(t) =1I}2t + t U
-PjP 2(t)IY,,(t)i u.5exp{- -(InI(t) -m 2 (t) + H1(t)U)TY,2 (t) '(Ml(t)-m(t+Ht))

2

P(t 2 >~~) 2 x U 7'U +I((t) l (tUT r1((t) F (thud (2.19)

wvhere

a(t) =0 1 + A'(y()0) -j0 2. (2.20)

Example: Assume Ai = A, Ai A for i = 1, 2, and p, (t) = p2(t); then

Pjwrong classification IC(0) 1, Y(O) =y(O), C(t) = 11

kAt= > exp{ U TU + I (a(t) + H(t)U)T -- I (a(t) + H(t)U)} (2.21)

where

A(t) - A'A(Ak) I~~itT
k=)

r = lrn A(t) fillF is the solution to the equation
t-*oo

l-= ArA T+ A;

and

a(t) = 01 + At(y(0) -O1)- 02.

Note that as t--4-

7



P{wrong classification IC(O) = 1, Y(O) = y(O),C(t) = 1}

- I) > exp{-2UIU + 1-(01 -02 -11U)"F-(01-02 + 1iU)tj

1) (0 -2) I 0 2 _ 02T 1_ - (.21-2

A Simulation

Table I gives the results of a simulation experiment for the case 01 = ( 1 , 1 )T

[01 0.9]A=0.4 0.5

and

A=K 0 1 ]

In this case,

Fz[5.43.]F= 3.8 4.5 '

Figure I shows contours from a bivariate normal distribution having mean

O and variance-covariance matrix F.

In each replication two independent vector random variables are

generated; one is Y(0) which has a normal distribution with mean 01 and

variance-covariance matrix r; the other i,; U, whose components are two

independent standard normal random variables. For each time t = 1, 2, ..., 40,

Y(t) is calculated as

8



Y(t) = m(t) + H(t)U. (2.23)

with m(t) = 0, + At (y(O) - 01); Y(t) has the same distribution as a Signature

from Item I when the Signature at time 0 is also from Item 1. There are 1000

replications. Table I presents the fraction of replications for which the

incorrect classification is made of Item 2 being the one producing the

Signature at time t; that is those replications for which

1

2A(t)I 2 expf I(y(t)- 0 2 )T F-(y(t) _ 02)- 1(y(t) _o1)TA(t)-l(y(tA) -1I2 )2
(2.24)

Note that the fractions are not independent since common random numbers

are used.

The contours of the distribution in Figure 1 suggest that it is more lik-ly

to make a misclassification if 02 = (2,2)T than if 02 = (- 2 ,2 )T; the fractions in

Table A support this. The fractions in Table A also suggest that the probability

of misclassification is an increasing function of t. This observation is

supported by the fact that the variances of the components of Y(t) increase as t

increases.

TABLE A. FRACTION OF MISCLASSIFICATION

01 = (1,1)T

Time: 1 2 3 4 5 10 20 30 40

0 2 = (2, 2 )T 0.10 0.13 0.16 0.20 0.21 0.30 0.39 0.41 0.41

02 = (-2,2)T 0.04 0.06 0.06 0.07 0.07 0.09 0.09 0.09 0.09

9



3. CAUCHY UNIVARIATE MODEL

In this section we consider Bayesian classification for a time series model

having marginal distributions with a longer tail than the Gaussian

distribution.

We assume that

Yi(t) = 0i + Xi(t)

with

Xi(t) = piX(t-1) + ei(t)

where I pi I <1; {E(t)} are independent sequences of independent identically

distributed Cauchy random variables with location parameter 0 and

precisions [(1 -pil)ai -° '5; and Xi(0) has a Cauchy distribution with parameters
-0.5

0 and oci Under these assumptions {Xi(t); t = 0, 1, 2, ...} is a stationary

sequence of random variables with marginal Cauchy distribution having
-4).5

parameters 0 and c.

It follows that

P{Yi(0) E dy(O),Yi(t) - dyi(t)}

I iai[ 2 + (y(O) Oi )2 -1 aiI- - pilt [i ilt ))2 + (y(t)- 0i -p (y(O)- 0i)) .

(3.1)

Let C(t) denote the identity of the item associated with the Signature at
time t and put P(C(t)=i}=p(t); then

P{Y(t) r dy(t),C(t) = iIC(0) = i,Y(O) = y(0)}

= pi(t)l (1 _i[ait ))2 +(y(t) -0 -pt(y(O) - 0 ))2

10



Thus,

P{Y(t) E dy(t)IC(O) =i,Y(O) = y(O)= pj(t)-aj(t) aj(t)2 +(y(t)- mj(t))2

j=1

where a (t) and mi(t) are defined in (3.2) and it is natural to define

mj(t) = Oj and ajj(t) = cxj forj # i. Hence, given item i is associated with the

Signature at time 0, the posterior probability that item j is associated with the

Signature observed at time t is

P{C(t) = jjC(O) = i,Y(O) = y(O),Y(t) = y(t)} (3.3)

=pj(t)cx;(t)[aj(t)2 + (y (t) _-i(t)

3.2 The Probability of Making an Incorrect Classification

In this section we assume that the item associated with the Signature at

time t given the last complete observation at time 0 is estimated to be that one

which maximizes the posterior probability (3.3). For simplicity we will

suppose there are J=2 possible items with known parameters 01 and 02.

First

P{Y(t) E dy(t)IY(O) = y(O),C(O) = 1,C(t) = j}

Slozj(t)[(aj (t))2 + (y(t)- mj(t))2l (3.4)

where

11



al(t) = ali IPit];a2 (t) = a2  (3.5)

mnl(t) = 01 +p'(y(O)-O1);m2 (t) = 02. (3.6)

Note that given Y(O) = y(O), C(O) = 1 and C(t) = 1,

t [0 t ajW0-0/] (= 1) - m, t + a, )
_~),O + pI(y() - 01)] + (i - Im11t)aw m()+ 1 (W

where W is a Cauchy random variable with location parameter 0 and

precision 1. Hence, the probability of making the incorrect classification of

estimating Item 2 as being associated with the Signature at time t given Item 1

is responsible for Signatures at time 0 and time t and Y(0) = y(O) is

P{Classify as Item 21C(O) = 1,Y(O) y(O),C(t)= 1}

P 2 (W a 2([ U2(M)2 + (Y(t) - 02)2] > al(t)[a,(t)2 + (Y(t) - ml(t))2 ] IC(O) = 1,Y(O) = y(O),C(t) =

= p P2(t) a2(t) [2 + (ml(t)+ l(t)W  - -c0l +aj 1  = IY(O) y(O),C(t) =
= [pl~t)alt2

a2 (t)a 1(t)> 2 jC(O) = 1,Y(O) = y(O),C(t) = I

(3.7)

Note that as t-40, ocj(t)-O, and ml(t)-4y(O). Hence, the conditional probability

of a wrong classification tends to

[a2+(y(O)-0 2 )2
1)0 L 2  1} = 0. (3.8)

As t-+-, 0xj(t)--)oxj, mi(t)-O and the conditional probability of a wrong

classification tends to

12



2(-aal + W2) >[a 2 + (ctW + 81- _ 2)2].(9

If (X2 = aC1 = ax and P2(-) = pl(-), then as t-*oo

Pfincorrect classificationY(O) = y(O),C(O) = 1,C(t) = 1}

=P Pa2 (i+W 2 )> a2 i+[W+ (01a 2)]

=P{W2> [W+ a601_2)l2}

=P{W> 01-02 }(3.10)
which increases as a increases and decreases as 101 021I increases.

13



4. ARE BAYESIAN CLASSIFICATION PROCEDURES ROBUST?

In this section the robustness of the univariate Cauchy and Gaussian

classification procedures against misspecification of the form of the marginal

distribution will be studied.

4.1 Gaussian Data.

In this subsection we assume that the Signatures of the Items form

Gaussian time series. In particular we assume that

Yi(t) = Oi + Xi(t) (4.1)

with

Xi(t+l) = piXi(t) + Fi(t) (4.2)

where tEi(t)) are independent identically distributed normal random variables

with mean 0 and variance T2 and I PiI < 1. The independent random variable

X j(0) has a normal distribution with mean 0 and variance

= 0/ (l I). Thus (Xi(t),t>0) is a stationary sequence of normal

random variables with mean 0 and variance oi(-o)2. Let C(t) be the identity of

the Item associated with the Signature at time t.

As was shown in Gaver and Jacobs (1989), the conditional distribution of

Y(t) given Y(0)=y(0), C(0)=i, C(t)=i is normal with mean

m(t) = i + (y(0) - Oi )p t (4.3)

and standard deviation

1 p2t  (4.4)

14



For simplicity we will assume P(C(t) i) = pi(t) = p(t) and there are 2 Items

with parameters 01 and 02; thus, p(t) =

Suppose the Cauchy procedure is used to estimate the identity of the Item

associated with the Signature at time t; that is, the Item which maximizes the

posterior probability (3.3) is the estimate of the Item associated with the

Signature. Hence, the probability of an incorrect classification is

P{Classify as Item 21C(O) = 1,Y(O) = y(O),C(t) = 1}

PjaZt)I[a2 (t)2(ml(t)+ al(t)Z 0-2)2 ] > [a,(t)2 + (ai(t)Z)2 ] }
=P a2 (t)aj(t)[a2 (t)2+ m t+atZ_022 >1+aW2-

=P a2aI (1-IP1It)[a2 (t)2 + (ml(t) + al (t)Z-_ 02)2]F > 1+ al Pi-

(4.5)

where Z is a standard normal random variable.

Note that as t-40

P{Classify as Item 21C(O) = 1,Y(O) = y(O),C(t) = 1}

=P a 2 a il IpiltI)[a2+ (ml(t)+ 'I(t)Z- 02)2] > 1 +[ (i )2 Z2

15



=P a2a, I-I ,1 )[a2+ ("11 ,W + Or 0Z -02/ - , 2 1 zV 1 )[ ( )L 2] > 2 Z211}

= Ptaa2 (1 2 ~I)a + (-I (t) + 11(0Z - 02)] > i-~~i( I)[~~](1 +IP~it~2

=ja + (mi W) + al(0)Z - 02)2]< aja2[1Ii t) + [al (_)12(1+ Ipl1)z2]}

2 +1 - 1P,: I, aZ

[a2 (y(O) _2)2 [,J_ I 2}

1 2al(o)[a2 +(y(O) _ 02) 21<' Z2} (4.6)

Thus, the conditional probability of an incorrect classification does not tend to

0 as t--oo as it would if the correct model were used; see Gaver and Jacobs

(1989) (3.6).

Note that as t-oo

P{Classify as Item 21C(O) = 1,Y(O) = y(O),C(t)= 1}

=P a2aI a2+(01 + l(o)Z -022 > L 1+( 1  . (4.7)1 1 al

If C = 0X2 = 1, then the above equals

P +[ (al (oo)Z + 01 - 02)2] - > [I + (a,()Z)2]-

16



= P{(al,(ee) Z), > (C() z+ 01 - 02 )2

P{z 2 >(Z+(Q )f21

Pi { > }a(- (4.8)

which is the same as if the correct model had been used to make the decision;

see (3.9) of Gayer and Jacobs (1989).

Now we consider the case in which a different Item is associated with the

Signature at time t than the one associated with the Signature at time 0. Once

again for simplicity we assume al = 02 = 0, P1 = P2 = P with IP I < 1 and for the

Cauchy model al = a2 =a. Let 0(00) = CF/. 4i7P and c(t) = (()4~ 1-Pt. We

will assume Item 1 is associated with the Signature at time 0 and Item 2 is

associated with the Signature at time t.

For the Gaussian classification procedure of Gayer and Jacobs (1989), the

probability of an incorrect classification is

Piclassify as 11I Y(O) = y(O), C(0) = 1, C(t) = 21

=p((J-p 2 l) exp(-1 [02 + (00 )Z-(0i+ (y(O)-OiP t)] /0(00) (1-0t))

12 2
>exp(- 2 (02+0(0 )Z-0 2) /0(-0)

=P -1 I 1pt-1 2 /(()2 (-~
2n (1- 2  0[2 + 0(00 )Z-(01 + (y(0)-O])P911((0)(-p9

(>(0 )Z) 2/0(00) 2

22

=P( (1-p 2t)(o) In (1-p2t) +102 + (( )Z-(01 + (y(O-Oi0p912

<(1-p 2 l) (0(-0)Z) 1(4.9)

17



where Z is a standard normal random variable. As t-40

Piclassify as 11 Y(O) = y(O), C(0) = 1, C(t) = 2) -- P Z + y ( ) < 0 0; (4.10)1(Z (() ) < 10=0;(.0

that is, if the Item associated with the Signature at time t is different than the

one associated with the Signature at time 0, then as t->O, the probability of an

incorrect classification using the Gaussian procedure on Gaussian data tends

to O.

As t-->-, the probability of an incorrect classification,

P{classify as I I Y(0) = y(O), C(0) = 1, C(t) = 2)

PZ+020 < Z2 Z -< ¢ j (4.11)

Suppose now the Cauchy classification procedure is used on the Gaussian

data with Item 2 associated with the Signature at time t and Item 1 associated

with the Signature at time 0. The probability of an incorrect classification

P{classify as 1 I Y(O) = y(O), C(0) = 1, C(t) = 2)

=P~a(1- p1 t)[[ (1.-  I p It)]2+ t02+ (o)Z- 01+(y(O)- 1 )pt]] ] >a[a 2+(02+ c(o )Z- 2) 2 }

2 2 2

=P{(- p It)) [(X2 + (c(oo)Z) ]>[((f1- I p It)) + [02 + O(Yo )Z - [1 + (Y(O)-01)Pt]] 1). (4.12)

As t- 0

P(classify as 1 IY(0) = y(O), C(O) = 1, C(t) = 2)

2
---)P{0>[02 + o(,o)Z - y(O)] } = 0; (4.13)
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that is, as t-O, the probability of a correct classification for the Cauchy

procedure tends to 1 for the case in which the Item associated with the

Signature at time t is different from the one associated with the Signature at

time 0, even though the data are Gaussian.

As t -) -

P{classify as I I Y(0) = y(O), C(0) = 1, C(t) = 2)

~-P{Z2 > Z +~ 020 2=j < - a(4.14)

Hence, as t-4- the probability of an incorrect identification tends to the same

normal tail probability for both the Cauchy and Gaussian classification

procedures.

Thus, for the two limiting cases t-0 and t-->, both the Cauchy and

Gaussian procedures have the same misclassification probabilities for the

scenario in which the Item associated with the Signature at time t is different

than the one associated with the Signature at time 0. Note that these are

theoretical limiting results with all parameters known.

To investigate further the behavior of the two classification procedures

on Gaussian data when Item I is associated with the Signature at time 0 and

Item 2 is associated with the Signature at time t, let

2
gt(y(0),Z) = (02+0(oo)Z-[01+(y(0)-01)pt])

The conditional probability of an incorrect classification by the Gaussian

procedure is from (4.9)
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P{Classify as Item IIY(O) = y(O),C(O) = 1,C(t) = 2}

=P{(1-p2t)CF(.) 2 ln(1-p 2t ) < (1-p 2 t ) ((()Z)2 -gt(y(0),Z)}

>P{(1-p 2t)G(o) 2 ln(1-p 2t) < (1- I P I t) (((o)Z)2 -gt(y(O),Z))

>!P{-C2(1- I p It) Ip t < (1- I p It) (0(,o)Z)2 -gt(y(O),Z))

for t sufficiently close to 0. From (4.12) it follows that the conditional

probability of misclassification for the Cauchy procedure is

p(1-I p I t)((oo)Z) 2 -gt(y(0),Z) > aC2(1- I p It) [1- I p I t1]).

Hence for t sufficiently small, the incorrect Cauchy procedure will tend to

have fewer misclassifications than the Gaussian procedure applied to

Gaussian data in the scenario in which different Items are producing the

Signatures at time 0 and t.

4.2 Cauchy Data

In this subsection we assume the Signatures form time series with

Cauchy marginal distributions as in Section 3. In particular, we assume that

Yi(t) = Oi + Xi(t) (4.15)

with

Xi(t+l) = piXi(t) + ei(t) (4.16)

where {ei(t)) are independent identically distributed Cauchy random variables

with location 0 and precision [(1- 1 pi I )a ]-°0 with I pi I < 1. The independent

random variable Xi(0) has a Cauchy distribution with location 0 and precision
-1/2

oXi Under these assumptions (Xi(t)) is a stationary sequence of random

variables with marginal Cauchy distribution having parameters 0 and a i-1 / 2

Further, the conditional distribution of Y(t) given Y(O) = y(0), C(0) = i, C(t) = i

is Cauchy with location parameter
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mi(t) = 0i + p,(y(O) - 0i) (4.17)

and precision parameter ai(t) - 1/ 2 with

ai(t) = 0(1- I p3 It). (4.18)

Let C(t) be the identity of the Item associated with the Signature at time t.

For simplicity we will assume there are two items with parameters 01 and

02. Further P(C(t) = i) = pi(t) - p(t).

Suppose the Gaussian procedure of Gaver and Jacobs (1989) is used to

estimate the identity of the item associated with the Signature at time t; that

is, the item which maximizes (2.12) of Gaver and Jacobs (1989) is the estimate

of the Item associated with the Signature at time t. Hence, the probability of

an incorrect classification is

P{Classify as Item 21C(O) = 1,Y(O) = y(O),C(t) = 1}

PI1e 1J 1[(Y( ) ]21 >1 Y-tMm(t) 21 C(O) =1,
02)1 i2' pl - 'tY( =(O), (4.19)

Ua 2 a-o) U2 Cri M 2 a1 (t M~ C(t) = 1

where

"I] (t) = 01 + pt (y(O)- 01) (4.20)

al (t) = Orl() 1-p2t (4.21)
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and aj, i = 1, 2 are the assumed standard deviations of the normal

distributions. We will assume o3 = 02 = 0; Pi = P2 = P, (X1 = 2 . Hence,

P{Classify as Item 21C(O) = 1,Y(O) y(O),C(t) = 1}

P-)2} I I(a(t)W )2}}

g( m (-) a(t) 2 at(t))(.3

where W is a Cauchy random variable with location parameter 0 and

precision 1.

P{Classify as Item 21C(0)= 1,Y(0) y(O),C(t) = 1}

--  { (a [l 1 -lp I1
2  W2  1 (pt (y ( O) - O)+(O - 02 )+a(t ) W ) 2

- p2t > exp -(lp2t).(oo)2 2 +-

1 2t a 2[l -lpi t] W 2 +(pt(V (O) - O )+(O1 -9 2 )+a(t)W)2

2P+ >e P 1 () 2  2 a(-ff

(4.24)

J~LP 0 > xp~ (Y(O) - 2) 2 d::0;I 2 ( )
thus, the probability of misclassification tends to zero as t--40 even though the

incorrect model is being used; the correct Cauchy procedure also has a

probability of misclassification tending to zero as t--,O. As t-4oo

P{Classify as Item 21C(0) 1,Y(0)= y(0),C(t) = 1}

:){l> expo2 2O( - 2
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=P {1>exp.. 1() [(0 - 02 )2 + 2(01 - 2 )aW]}}

P{O > j(01 -9 62 + (1+ 02)Aw}

P{W < - 61 - 021}

which is the same as (3.10) the corresponding probability when the correct

Cauchy procedure is used.

To further explore the behavior as t--*-O, let

gt(W,Y(0)) = [P'(y(O)-O)I) + (01-02) + (1- I P I t)WI

and

B(t) = (X2(1- I p I)2

For t small (4.24) becomes

P{Classify as item 21Y(O) =y(0),C(O) = 1,C(t) = 11

=p(G.)2j +I p 19 1)n(l -p2t) + B(t) > (1+ Ip 1 t) gt(W,y(O)))

! j02I p I t+B(t) > (1+ I p I 9~gt(W,y(0)))

I (C2 p I 1+13(t0 > gt(W,y(O)))

=P(C2(I p It) +B3(t) > &X+gt(W,y(0))I

= I p I- t)) + (I- Ip I t) B(t) > (1- 1 p It) [(a2+gt(X,y(0))])

=p(c(X[( 2+gt(VV,y(0))I - > (1- I p It) [ICt(1- I p I t)2+ (aC(1- I t)W~)2 ]1
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which is the conditional probability of misclassification for the Cauchy

procedure on Cauchy data. Hence for small t, the incorrect Gaussian

procedure will tend to have fewer misclassifications than the correct Cauchy

procedure for the scenario in which the same item is associated with the

Signature at both times.

Now we consider the case in which the Item associated with the

Signature at time t is different than the one associ.Led with the Signature at

time 0. Once again for simplicity we assume cxl = (X2 = aC, PI = P2 = P with

I p I<I and for the Gaussian model (1 = 02 = a. Let (00,) = 0/(I-p 2)0"5 and
0.5

0y(t) = 0(0) (I-p 2l) . We will assume Item 1 is associated with the Signature

at time 0 and Item 2 is associated with the Signature at time t.

For the Gaussian classification procedure of Gaver and Jacobs (1989) the

probability of an incorrect classification is

P{classify as 1i Y(0) = y(0), C(0) = 1, C(t) = 2)
-05 1 2 2

=P{(1-p 2t) exp{- 2 [02 + aW - (01 + pt(y(0)-Oi))] / -( ) (1-p 2t)}

1 2 2
>exp-2(02 +aXW-0 2 ) /0(-)}}

11 2 2

=pl In (1-p 2t) - 1 [02 + aW - (01 + Pt(Y(O)-01))] /{((o) (1-p 2t)}
1 2 2

>-(W) /0(-)

2 2
=P(IO(- ) (I-p 2t ) In (1-p2t ) +(02 + 0tW-(01 + pt (y(O)-01))) (4.26)

2
<((aW) (1-p2t ))

where W is a standard Cauchy random variable.

As t--O, the probability of an incorrect classification,

Piclassify as 1 I Y(0) = y(O), C(0) = 1, C(t) = 2)
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2
-4P{(02+oXW-y(O)) < 0) = 0.

Hence as t-+O, the probability of an incorrect classification tends to 0 for the

Gaussian procedure on Cauchy data.

As t--oo, the probability of an incorrect decision

Pclassify as I Y(O) = y(O), C(0) = 1, C(t) = 2)-P((02 + oaW-0 1)2 <(oLW) 2

02-01 2 2 102-A I
=PW I ( ) <W )=PW> 20x

Suppose now the Cauchy classification procedure is used on the Cauchy

data with Item 2 associated with the Signature at time t and Item 1 associated

with the Signature at time 0. The probability of an incorrect classification is

Piclassify as 1 I Y(O) = y(O), C(0) 1, C(t) = 2)

I pI t)[X2(1- p It + [02+oXW-(01+pt(y(O)-O1))] 2

2 -1
> [Xa2 + (02 +0CW-0 2 )] I

2
=F{((- I p I t)[(2 + (aW)

>[a2 (lI p 1I) 2+ [02+aW-(l+Pt (Y(0)-0I))]1. (4.27)

As t-40, the probability of an incorrect classification
2

P(classify as 11 Y(O) = y(O), C(O) = 1, C(t) = 2) -4 P(0>(0 2+ctW - y(O)) } = 0.

Thus, the probability of an incorrect identification using the Cauchy

procedure tends to 0 as t-0 for the case in which the Item associated with the
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Signature at time t is different from the Item associated with the Signature at

time 0.

As t-oo, the probability of an incorrect identification

P{classify as I I Y(0) = y(O), C(0) = 1, C(t) = 2)

2 (02-01)) 2 102-61I
-*P{W >(W+ -)"=P{W> 2-

the same as for the Gaussian procedure.

Hence, for the two limiting cases t--0 and t--oo both the Cauchy and

Gaussian procedures have the same misclassification probabilities for the case

in which the Item associated with the Signature at time t is different than the

one associated with the Signature at time 0. Note these are theoretical

limiting results with all parameters known.

To further explore the differences between the Gaussian and Cauchy

procedures for the scenario of different Items associated with Signatures and

Cauchy data, let

2
gt(W,y(O)) = [cxW + 0 2-01-p t(y(O)-01) . (4.28)

From (4.26) for the Gaussian procedure, the probability of an incorrect

classification

P(classify as I I Y(0) = y(O), C(0) = 1, C(t) = 2)

2 2
=p((oo) (l-p 2t ) In (l-p 2t) < (ozW) (l-p 2t ) - gt(W,y(0))).

For the Cauchy procedure, the probability of an incorrect classification
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P(classify as 1 1 Y(O) = y(O), C(0) = 1, C(t) = 2)

2= P(a 2(1- j p It)[1. I p I] < (11I wt) (cPW) - gt(W,y(O)))

= p(cx2(1-1I t) Ip I t < (1... 1 t 1 (2W - gt(Wy(O)))

! p~a(oo) 2(I-p 2 t) In (l-p 2t ) < (1- I p I t) (aCW)2 _ gt(W,y(O)))

_p{((oo) 2 (1-p2t) In(1-p 2t) < (1-p 2t) (aW) - gt(W,y(O)))

for t sufficiently small. Thus, for small t the Gaussian procedure will tend to

have more incorrect classifications than the Cauchy procedure for the

scenario of Cauchy data with the Item associated with the Signature at time t

being different than the one associated with the signature at time 0. This

effect is made stronger by the fact that if the Gaussian procedure is used then
2 2

an estimate of 0(00 ) will be needed. An estimate of 0(0 ) for Cauchy data

will tend to be very large since the Cauchy distribution does not have a finite

variance. This effect will be seen in the simulations of the next subsection.

4.3 Results of simulation experiments

This subsection reports on results of simulation experiments to assess the

behavior of the Gaussian and Cauchy classification procedures when they are

confronted with data from the other distribution. For simplicity we assume

there are two Items. In the first subsection the autoregressive process

producing the data is Gaussian. In the second subsection the autoregressive

process producing the data is Cauchy. In both subsections classification

procedures using both the Cauchy and Gaussian distributional assumptions

are assessed. In all cases P, = P2 = 0.5, 01 = 1, 02 = 2. The simulations use the

LLRANDOM random number generator; cf. Lewis and Uribe [19811.
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a. Gaussian Data

The simulation in this subsection uses data from a Gaussian

autoregressive process. We will assume the means of the two Signatures, 0,

and 02, are known and p, = P2 = P is also known. It remains to assess values

for the (presumed known) scale parameters of the two classification

procedures. In particular what should the scale parameter 0x = (XI = aX2 of the

Cauchy procedure be when it is applied to Gaussian data? To obtain

reasonable values for 0; = 02 = a for the Gaussian classification procedure and

oa = 0a1 
= (X2 for the Cauchy classification procedure, the following simulation

experiment was performed. The experiment has 100 replications. In each

replication 100 independent, standard normals are generated. For each

replication, the standard deviation of the data is computed and the maximum

likelihood estimate of ac is obtained numerically assuming a Cauchy density

function of the form

I a
f(x) = -(Xx<o

7E 0C2+X 2 , 0<X ' 0

The medians of the 100 estimates of ax and the 100 standard deviations are

calculated. The values obtained are &M = 1.0 &M = 0.607. Note that the

estimates of (x are using the incorrect model assumption of Cauchy for the

Gaussian data. The value of &M is used in the Gaussian procedure to classify

observations. The value of &M is used in the Cauchy procedure.

Tables 1 and 2 show results fur simulation experiments with 500

replications. In each replication Y(0) is generated from a normal distribution

with mean 01 and standard deviation Y(o-) = a/ I-p 2 with a=1 and p = 0.5.

For Table I Y(t) is generated from a normal distribution with mean
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m(t) = 0, + pt(Y(O)-6 1 )

and standard deviation o(t) = o(eo)-t; namely the Signature observed at

time t is from Item 1. For Table 2 Y(t) is generated from a normal distribution

with mean 02 and standard deviation ;(-0); namely the Signature at time t is

from Item 2.

In both Tables the Gaussian classification procedure assumes aM = 1.0 is

the correct standard deviation. The Cauchy classification procedure assumes

&M = 0.607 is the correct value for a.

The val, as in Table 1 suggest that when the same Item is producing the

Signature at time 0 and t, then the Gaussian procedure produces more correct

classifications for small time t. However, the number of correct classifications

is the same for both procedures for larger t.

The values of Table 2 suggest that if a different Item is producing the

Signature at time t, then the Cauchy classification procedure has more correct

classifications at time t for small t even though the data are Gaussian. For

larger t, both procedures have the same number of correct identifications.

b Cauchy Data

In this subsection the data arise from a Cauchy autoregressive process.

The mean Signatures of the two Items, 01 and 02, are assumed known and p =

PI = P2 is also assumed known. It remains to assess values for the scale

parameters of the Gaussian and Cauchy classification procedures. In

particular, what should the scale parameter C = 01 = 02 of the Gaussian

procedure be when it is applied to Cauchy data?
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TABLE 1. GAUSSIAN DATA

Item 1 Produces the Signature at time 0
Item 1 Produces the Signature at time t

Time Fraction Correct Identifications Number of times

t Gaussian Proc. Cauchy Proc. Gaussian Correct Gaussian
/Cauchy Incorrect/Cauchy
Incorrect Correct

1 0.77 0.65 50 0

2 0.68 0.67 5 0

5 0.67 0.67 0 0

10 0.70 0.70 0 0

TABLE 2. GAUSSIAN DATA

Item 1 Produces the Signature at time 0

Item 2 Produces the Signature at time t

Time Fraction Correct Identifications Number of times

Gaussian Proc. Cauchy Proc. Gaussian Correct Gaussian
/Cauchy IncorrectlCauchy
Incorrect Correct

1 0.64 0.71 0 38

2 0.69 0.71 0 6

5 0.64 0.64 1 0

10 0.68 0.68 0 0

To obtain reasonable values for a for the Gaussian classification

procedure and c for the Cauchy classification procedure, the following

simulation experiment was performed. The experiment has 100 replications.

Each replication generates 100 standard Cauchy random numbers. For each

replication the standard deviation of the data is computed and the maximum

likelihood estimate of a is obtained numerically. The medians of the 100
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estimates of a and the 130 standard deviations are computed. The values

obtained are

&M = 13.23 and &M = 1.03.

Note the high value of the standard deviation.

Tables 3 and 4 present results of simulation experiments in which the

data are from a Cauchy autoregressive process. All experiments have 500

independent replications. For each replication Y(0) is generated from a

Cauchy distribution with location parameter 01, and scale parameter 1; that is,

Item 1 is producing the Signature at time 0. For replications reported in Table

4, Y(t) is generated from a Cauchy distribution with location parameter 02 and

scale parameter 1; that is, Item 2 is producing the Signature at time t. For

replications reported in Table 3, Y(t) is generated from a Cauchy distribution

having density function

1 {z(t)
f(x) = nr O(t)2 + (x-m(t))2

with

m(t) = 0, + pt (y(0)-Oj)

and

= 
)p

that is, Item 1 is also producing the Signature at time t.

In both Tables 3 and 4, the Gaussian classification procedure assumes a

standard deviations 01 = 02 =&M. The Cauchy classification procedure

assumes the a-parameters al = a2 = &M.

The rc.sults of Table 3 indicate that for small times t, if the same Item is

producing the Signature at time 0 and time t, then the Gaussian classification
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procedure has more correct classifications even though the data are Cauchy.

For larger times t, the number of correct classifications is the same for both

procedures. On the other hand, the results of Table 4 indicate that if a

different item is producing the Signature at time t, then the Cauchy

classification procedure has many more correct classifications than the

Gaussian procedure for small times t. Once again the number of correct

identifications is the same for both procedures as t becomes larger.

TABLE 3. CAUCHY DATA

Item 1 Produces the Signature at time 0

Item 1 Produces the Signature at time t

Time Fraction Correct Identifications Number of times

Gaussian Proc. Cauchy Proc. Gaussian Correct Gaussian
/Cauchy Incorrect/Cauchy
Incorrect Correct

1 0.98 0.73 124 0

5 0.72 0.69 18 0

10 0.66 0.66 0 1

TABLE 4. CAUCHY DATA

Item I Produces the Signature at time 0

Item 2 Produces the Signature at time t

Time Fraction Correct Identifications Number of times

Normal Proc. Cauchy Proc. Normal Correct Nnrmal
/Cauchy Incorrect/Cauchy
Incorrect Correct

1 0.09 0.74 0 316

2 0.14 0.70 0 282

5 0.67 0.61 0 29

10 0.64 0.64 0 0
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c. Summary

The differences in performance of the two classification procedures

appear for small time t. If the same Item is producing Signatures at both 0

and t, then the Gaussian classification procedure has more correct

classifications for small times t for both Gaussian and Cauchy data. If a

different Item is producing the Signature at time t, then the Cauchy

classification procedure has more correct classifications for both Gaussian and

Cauchy data. The effect is strongest if the data are from a Cauchy

autoregressive process; in this case the Gaussian procedure does very poorly

when different Items are producing the Signatures.

In summary, it is important to realize that the performance of a Bayesian

classification procedure can be influenced by its underlying distributional

assumptions. A classification procedure based on Gaussian distributional

assumptions can be reluctant to classify a new observation coming from a

different item as being associated with a new item. A classification procedure

based on Cauchy distributional assumptions can be reluctant to classify a new

observation which comes from the same item as that being associated with

the same item. Hence, if there is uncertainty about the underlying

distribution of the data, it might be better to combine results of several

classification procedures based on different distributional assumptions.
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