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CLASSIFICATION OF INTERMITTENT DEPENDENT OBSERVATIONS

by
P. A. Jacobs and D. P. Gaver

1. THEPROBLEM
Consider the following classification problem. Suppose there are ] items
(e.g., diseases) each of which has a characteristic Signature which wvariec in

time; the Signature of Item i is
Y;i(t)=0; +X;(t) i=12,.,] t=0,12,.. (1.1)

For the moment {X;(1)} is an unspecified multivariate (or univariate)
stochastic process, but one that stays near 6; in finite time and has some
stationary or steady-state behavior. In many cases, paths of X;(t) will appear
somewhat “continuous,” so successive X;(t)’s are not well-modeled as iid
random variables. One could think of Y;(t) as physical indices characteristic
of a particular disease, e.g., blood pressure, heart-beat pattern, cholesterol
levels. Examples from equipment reliability are also of interest; here physical
indices might be vibration, variations in heat level, oil leakage, and even fuel
consumption in the case of engines.

In many circumstances Y;(t) is only observable occasionally, at times
unrelated to the value of Y;(t) but driven by other forces such as the
scheduling of a routine physical exam or system inspection. Suppose that the
Signature and the identity of the item associated with the Signature are both
observed at time t = 0, on such an occasion. Suppose that, later on, however,
only the Signature of an item is observed. The first question is: What is the
probability that, given the Signature value observed, its originating item is
any particular one of the }J candidates?

In Gaver and Jacobs [1989], the processes {X(t)} are assumed to be

univariate Gaussian and a Bayesian classification procedure is studied. In this




paper, Section 2 assumcs {Xi(t)} are multivariate normal autoregressive
processes. In Section 3, {Xj(t)} is a univariate Cauchy autoregressive process
whose marginal distribution has longer tails than the Gaussian. A Bayesian
classification procedure for the Cauchy data is studied. In Section 4, we study
the behavicr of the univariate Cauchy and Gaussian classification procedures
when autoregressive data having the wrong marginal distribution are
presented to them. The results suggest that the Gaussian classification
procedure is biased towards classifying a Signature produced at time t as being
associated with the same item that produced the Signature at time 0. The
Cauchy classification procedure is biased towards classifying a Signature
produced at time t as being associated with a different item than the one
- producing the Signature at time 0. These effects are strongest for small times
t. The largest number of misclassifications occur for small times ¢ when the
Gaussian classification procedure is presented with Cauchy data and a
different item is associated with the Signature at time t than the item
associated with the Signature at time 0; in this situation the Gaussian
procedure is relatively less sensitive to the change in the item associated with
the Signature. Misclassifications by the Cauchy classification procedure are
modest in comparison to this extreme case.

In summary, it is important to realize that the performance of a Bayesian
classification procedure can be influenced by its underlying distributional
assumptions. A classification procedure based on Gaussian distributional
assumptions can be reluctant to classify a new observation coming from a
different item as being associated with a new item. A classification procedure
based on Cauchy distributional assumptions can be reluctant to classify a new
observation which comes from the same item as that being associated with
the same item. Hence, if there is uncertainty about the underlying
distribution of the data, it might be better to combine results of several

classification procedures based on different distributional assumptions.




2. THE MULTIVARIATE NORMAL CASE

2.1 The Classification Question

Assume for illustration that the Signature of Item j is multivariate AR(1):

Y](t)=6]+Xl(t) (2.1)

where 9;, Y;(t), and X(t) are d-dimensional column vectors. The process

{X j(t)} is a vector AR(1) process

X](t)=A]X](t—1)+E](t) (22)

where A; is a dxd matrix and {Ej(t)}is a sequence of d-dimensiona’ column

vectors which are independent multivariate normal with mean 0 and

variance-covariance matrix A;. The variance-covariance matrix for Xj(t+1)
is

Ti(t+1)=E X(t+l)XT(t+1)]=A]-l"]-(t)A;.r+A (2.3)

J J:
We will assume A; and A; are such that there is a finite unique solution to

the equation

—AT.AT ‘
Fj=ATjAT+A). (2.4)

Assume X;(0) has a normal distribution with mean 0 and variance-

covariance matrix ;. It follows that {Xj(t)} is a stationary sequence with
mean 0 and variance-covariance matrix ["..

The conditional distribution of X;(t) given X;(0)=x is multivariate

normal with mean Aﬁ»x and variance-covariance matrix




-1 T
A/;(t): %A;‘A}(A;’) .
n=

(2.5)

Thus, l‘] = lim A](t)

t—yo0

The conditional distribution of the actually observable Y;(t) given

Y;(0)=y(0) is muliivariate normal with mean 9j+A;(y(0)—6j) and variance-

covariance matrix Aj(t).

Operational Scenario: There are, potentially, ] items. Let C(t) be the identity
of the item whose Signature is observed at time t. Put pj(t) = P{C(t)=j}.
Assume that it is known that the Signature observed at time 0 comes from
Item i; that is, C(0) = i and Y(0) = Y;(0) = y(0). If it has been a long time since a

Signature from item i has been observed, it is reasonable to suppose that
P{C(0)=1,(0) = y(0)}

- e

1 y p—
expl-3(y0-0) T (300} (29
the long-run or steady-state distribution. Further,

P{C(t) =1, Y(t) = y(t|C(0) = i,Y(0) = y(0)}

= pitflen ] expl -0 -mit) 2050 -mit)} - (2
where
m;(t) = 8; + A;(y(0) - 8;) (28)
and
(0= A1) 29




For j#1i, we will assume the conditional distribution of Y(t) given C(0) =1,
Y(0) = y(0), C(t) = j is multivariate normal with mean mi(t) = 9] and variance-
covariance matrix I';= Z;(t), since it is still a long time since a Signature from
Item j is observed.
It now follows that
P{Y(t) e dy(¢)|C(0) = i, Y(0) = y(0)}
J -0.5

= Spjefenzio)]  ee{-2{y0-mw) 26 y0)-mi6)}. @10

j=1 ?

Thus, the posterior probability of the identity of the item associated with
the Signature is

P{C(t) = IC(0) = i,Y(0) = y(0), Y(t) = y(t)} =

py(of 0] exp =3 (3(0)-m; ) 2 (y(6)-m; )}

1

| _
X[Zpk(t)lzk(t)l—ojexp{"%()’(t)_mk(t))Tzk(t)_l(Y(t)_mk(t))}:l - (217)
k-1

2.2 The Probability of an Incorrect Classification

In this section we assume that the item that is associated with the
Signature at time t given the last complete observation at time 0 will be
estimated to be that one which maximizes the posterior probability (2.11).

For a simple illustration we will suppose that there are only J=2 possible
items with known parameters 8; and 5.

Given Y(0)=y(0), C(0)=1, and C(t) = 1, the conditional distribution of Y(t) is

multivariate normal with mean




m;(t) = 0, + Al (y(0) - 0) (2.12)

and variance-covariance matrix

t-1 T
() = Z(A{‘) AAL. (2.13)
k=0
Let the matrices H;(t) and H; be such that
(2.14)

and
(2.15)

It follows that
Y(t)my(t)+ Hy(t)U (2.16)
where U is a d-dimensional column vector each of whose components are
independent standard normal random variables; the notation = means equal
weaisiribulea. Thus, givin Y(0) = y(0), C(OY =1, C(p) =1,
T -1 d..T
(Y()-my(8) Z4()7(Y(t) - my(1))-U" U (217)

and

T 1507 (Y(1) - mo (1)
(1) - ma (1) + (V)T () (my(t) -mp(t) + (L) (218)

where mj(t) = 0, and Z)(t) = I';, Thus, the probability of a misclassification is




P{classify the item as 2|C(01 = 1,Y(0) = y(0),C(t) = l}

1
1 I é i
= P{;Tég(l?l{;)!}} > exp{—%u7 U+ %(a(t)+ H](t)U)TrEl(a(t)+ H](t)U)} (2.19)

where

a(t) = 0;+ Ai(y(0) - 8;) - 6. (2.20)
Example: Assume A; = A, A; =A fori=1,2, and pi(t) = p2(t); then

P{wrong classification [C(0) = 1,Y(0) = y(0),C(t) = 1}
1

- P](l‘%)‘]z > exp{_éuv"u%(a(m H(OU)' T (a(t)+ H(t>U)} (221)

where

t-1 T .
A(t) = ZA"A(A“) = H(OH(E)’;

k=0

= limA(t) = HH is the solution to the equation

f—o0
I'= ATAT + A;
and

a(t) = 6, + Al(y(0)-98,)- 0,

Note that as t—ee




P{wrong classification |C(0) = 1, Y(0) = y(0),C(t) = 1}

> 1>{1 > exp{—% viu+ %(e, -0, +HU) T71(0; -0, + uu)}}

- P{l > exp{%(fh - ez)T(uuT)_l(el ~0,)+(0 - 92)T(HT)_1U}}

- p{—%(el ~0y)" (HHT)_l (01 -02) > (6 -ez)T(uT)_1 U}. (2.22)

A Simulation

Table 1 gives the results of a simulation experiment for the case 8; = (1,1)T
0.1 09
A= 04 05

and

In this case,
{ 54 38 }
F=] 38 45 ]
Figure T shows contours from a bivariate normal distribution having mean
©; and variance-covariance matrix I'.
In each replication two independent vector random variables are
generated; one is Y(0) which has a normal distribution with mean 0, and
variance-covariance matrix IT; the other is U, whose components are two

independent standard normal random variables. For each time t = 1, 2, ..., 40,

Y(t) is calculated as




Y(t) = m(t) + HOU. (2.23)

with m(t) = 6; + At (y(0) - 0;); Y(t) has the same distribution as a Signature
from Item 1 when the Signature at time 0 is also from Item 1. There are 1000
replications. Table 1 presents the fraction of replications for which the
incorrect classification is made of Item 2 being the one producing the
Signature at time t; that is those replications for which
1
A) 1

[W]z > exp{%()’(t)— OZ)T r‘](y(t)— 92) - E(Y(t)‘ OI)TA(t)—l(y(f) _ 91)}

(2.24)
Note that the fractions are not independent since common random numbers
are used.

The contours of the distribution in Figure 1 suggest that it is more lik:ly
to make a misclassification if 83 = (2,2)T than if 8; = (-2,2)T; the fractions in
Table A support this. The fractions in Table A also suggest that the probability
of misclassification is an increasing function of t. This observation is

supported by the fact that the variances of the components of Y(t) increase as t

increases.
TABLE A. FRACTION OF MISCLASSIFICATION
91 = (l,l)T
Time: 1 2 3 4 5 10 20 30 40

0,=02,2)T 0.10 0.13 0.16] 020 | 021 ] 0.30 039 | 041 0.41

8, = (-2,2)T 0.04 0.06 0.061 0.07] 007 [ 0.09 0.09 1 009 | 009




3. CAUCHY UNIVARIATE MODEL

In this section we consider Bayesian classification for a time series model
having marginal distributions with a longer tail than the Gaussian
distribution.

We assume that

Yi(1) = 6; + X;(1)
with
Xi(t) = piXi(t-1) + &i(t)

where |p;l<1; (ei(t)} are independent sequences of independent identically
distributed Cauchy random variables with location parameter 0 and
precisions [(l —|p,~|)oz,-]_o'5 ; and X;(0) has a Cauchy distribution with parameters
0 and a}o's. Under these assumptions {Xj(t); t = 0, 1, 2, ...} is a stationary
sequence of random variables with marginal Cauchy distribution having
parameters 0 and a?)'s

It follows that

P{Y;(0) € dy(0),Y;(t) e dy;(1)}

q -

2 2111 t N t 2]
0‘1[0‘,- +(y(0)- 6;) ] ;%’(1 -|pil )[(ai(l—lpil )) +(y(t)—91—P,-(y(0)‘9i)) } :
(3.1)

Let C(t) denote the identity of the item associated with the Signature at
time t and put P{C(t)=i}=pi(t); then

P{Y(t) e dy(t),C(t) = i|C(0) = i, Y(0) = y(0)}

= Pi(t)%ai(l -|pil ){((1;(1 ~loil ))2 +(v(t)-6;- o} (y(0)- 6, ))ZJ

10




= pi(t)—ai(tfai(t)? + (O -mi()’] (32)
Thus,

-1

/
P{¥(¢) e dy()C(0) =1, Y(0) = y(0)} = zp,-(t)-j;aj(t)[a,mz +(y()- m,-(t))z}
j=1

where «;(t) and m;(t) are defined in (3.2) and it is natural to define

m;(t) = 6; and aj(t)= o forj#i. Hence, given item i is associated with the

Signature at time 0, the posterior probability that item j is associated with the

Signature observed at time t is
P{C(£) = JIC(0) = i, Y(0) = ¥(0), Y(t) = y(1)} (3.3)

-1
—-—p,-(t)a,-(t>[a,~(t)2+(y(t>—m,~<t))2]
-1

] _
X{ ZPk(f)ak(t)[(’lk(t)2 +(y(t) - mk(t))2] 1}
k=1

3.2 The Probability of Making an Incorrect Classification

In this section we assume that the item associated with the Signature at
time t given the last complete observation at time 0 is estimated to be that one
which maximizes the posterior probability (3.3). For simplicity we will

suppose there are J=2 possible items with known parameters 6; and 6>.

First
P{Y(t) € dy(t)|Y(0) = y(0).C(0) = L,C(t) = j}
- Layoffasoff + sy mof | (34
where

11




aq(t) = al[l -|P1|t]; o (t) = az (3.5)
m(t) = 61 + p3 (y(0) - 6 );ma(t) = 6. (3.6)

Note that given Y(0) = y(0), C(0) =1 and C(t) = 1,
d t 4 —
Y(t)[ 61 +pi(y(0)- 91)]+ (1 -l )alw = my(t)+ o ()W

where W is a Cauchy random variable with location parameter 0 and
precision 1. Hence, the probability of making the incorrect classification of
estimating Item 2 as being associated with the Signature at time t given Item 1

is responsible for Signatures at time 0 and time t and Y(0) = y(0) is
P{Classify as Item 2|C(0) = 1,Y(0) = y(0),C(¢) = 1}

- -1
- P{”Z“) aa(t] et +(v()- 02| > arof 2 +(v()-m)? ] c10)=1,Y(0) = y(0).cl0)= 1}

_ {__E‘M[az (m1(8) + o (W  85) ]—] [al(t) +{aa (W) ] |c(0) = 1,Y(0) = (0), C(t)—]}

t) oq(t)

) |22 +(m(t)+ ca(W - 0, |
2 Sea(tar(t) > IC(0) = 1,Y(0) = y(0),C(t) = 11.

1+W2

(3.7)
Note that as t—0, o;(t)—>0, and m(t)—y(0). Hence, the conditional probability

of a wrong classification tends to

| [ +60-ar]
1+ W?

=0, (3.8)

As t—oo, a1(t)> g, m(t)> 01 and the conditional probability of a wrong

classification tends to

12




P{%azal(l+w2) > [a% +(aW + 6y - 92)2]}.

If o = oy = & and pa(eo) = pi(ee), then as t—ree

P{incorrect classification|Y(0) = y(0),C(0) = 1,C(t) = l}

= P{a2(1+ wz) > a2[1+[W+MJ2]}
- P{w2 > [w +(—el-§@]2}

= P{W >‘M}
2a

which increases as o increases and decreases as |61 - 92| increases.

13
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(3.10)



4. ARE BAYESIAN CLASSIFICATION PROCEDURES ROBUST?
In this section the robustness of the univariate Cauchy and Gaussian
classification procedures against misspecification of the form of the marginal

distribution will be studied.

4.1 Gaussian Data.
In this subsection we assume that the Signatures of the Items form
Gaussian time series. In particular we assume that
Yi(t) = 6; + X;(t) 4.1)
with
Xi(t+1) = p;Xi(t) + &(t) 4.2)

where {€i(t)} are independent identically distributed normal random variables
with mean 0 and variance oiz and lpil < 1. The independent random variable
X i(0) has a normal distribution with mean 0 and variance
cr,-(oo)2 = aiz/(l— plz) Thus {X;(t),t20} is a stationary sequence of normal
random variables with mean 0 and variance 6;(e0)2. Let C(t) be the identity of
the Item associated with the Signature at time t.

As was shown in Gaver and Jacobs (1989), the conditional distribution of

Y(t) given Y(0)=y(0), C(0)=i, C(t)=i is normal with mean
mi(t) = 6; +(y(0) - 6;)p; (4.3)

and standard deviation

5i(t) = i(eon1-p2. (4.4)

14




For simplicity we will assume P{C(t) = i} = pi(t) = p(t) and there are 2 Items

NI=

with parameters 6; and 0,; thus, p(t) =

Suppose the Cauchy procedure is used to estimate the identity of the Item
associated with the Signature at time t; that is, the Item which maximizes the
posterior probability (3.3) is the estimate of the Item associated with the

Signature. Hence, the probability of an incorrect classification is

P{Classify as Item 2/C(0) = 1, Y(0) = y(0),C(¢) =1}

{ f((f)) |2 (m(t)+ o112 - "2)2]—1 >[at? *(‘"“’Z)Z]_l}

- 2771
- Plag(Ban(t] a0 + (m(0)+ or()Z- 02| > {H__(";fg)z) }

571
~ o1 p2t
=P a2a1(1‘|m|t)[az(t)2+( 1)+ 01(t)Z - 63) ] ]> 1+ 6;((3 IIPF) Z
(1-

(4.5)

where Z is a standard normal random variable.
Note that as t—0

P{Classify as Item 2/C(0) = 1,Y(0) = y(0),C(t) = 1}

~1

2 oy (o -]
=P a2a1(1—|p1|t)[a% +(m (t)+ o1(t)Z - 63) ] > 1+[ 2] )} t 2Z2
(1-lmnl")

15




:p‘am( I [ o + (mi(6)+ o1(0)Z - 92)] (l‘l”ﬂ‘){(l‘b"'t)*[of )]z(Hlpllt)zz}_]}

2
- ”{ e +(y(o>-oz)2]<["1(°°’} 222}

a0 (04

Thus, the conditional probability of an incorrect classification does not tend to
0 as t—e as it would if the correct model were used; see Gaver and Jacobs
(1989) (3.6).

Note that as t— e

P{Classify as Item 2/C(0) = 1,Y(0) = y(0),C(t) = 1}

o

Plaga] a2 271 [ (=) ]
= P{agoy| a5 + (61 + 01(> )2—92)] >l1+ V4 : (4.7)

If oy = ap = 1, then the above equals

{[1+ (01(c2)Z+ 6y - 6,) ] [l+ (01(=)Z)" ]_I}

16




= P{(c:rl(oo)z)2 > (o1(e=)Z+ 6 - 92)2}

_ R
—P{Zz>(z+—ﬁ) }

_ |61 - 64
= P{Z > 201() } (4.8)

which is the same as if the correct model had been used to make the decision;
see (3.9) of Gaver and Jacobs (1989).

Now we consider the case in which a different Item is associated with the
Signature at time t than the one associated with the Signature at time 0. Once
again for simplicity we assume 67 = 02 = G, p; = p2 = p with |pl < 1and for the
Cauchy model a; = a; = a. Let 6() = 6/ \fljp—z and o(t) = c(oo)\/l_—pﬁ. We
will assume Item 1 is associated with the Signature at time 0 and Item 2 is
associated with the Signature at time t.

For the Gaussian classification procedure of Gaver and Jacobs (1989), the

probability of an incorrect classification is

P{classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2}
-1/2 1 2 2
=P{(1-p2) 1 expl—5 [82 + 6lee )Z~(81+ (y(0)-81)pY)] /o(ee) (1-p2))
1 2 2
>exp{~75 (82+0(x )Z-82) /0(e) }}
1 1 2 2
=P{— In (1-p2)—5{6; + o(e= )Z~(61+ (y(0)-61)pY)] /(0(=) (1-p2))
1 2 2
>=5 (0(e2)Z) /o(e) }

2 2
=P{ (1-p2)6(e0) In (1-p2) +[0; + (oo )Z~(01+ (y(0)-61)pY)]
<(1-p2) (6(e=)Z) ) 49)

17




where Z is a standard normal random variable. As t—0

2
P{classify as 1| Y(0) = y(0), C(0) = 1,C(t) =2} - P {(Z + 927—(0@) < 0} =0; (4.10)

that is, if the Item associated with the Signature at time t is different than the
one associated with the Signature at time 0, then as t—0, the probability of an
incorrect classification using the Gaussian procedure on Gaussian data tends
to 0.

As t—eo, the probability of an incorrect classification,

P{classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2}

02-6,Y ~162-61l
b —_— i 2p = e 1l
-1 {(Z * o(e) ) <Z P{Z< 20(=) } (4.11)
Suppose now the Cauchy classification procedure is used on the Gaussian
data with Item 2 associated with the Signature at time t and Item 1 associated
with the Signature at time 0. The probability of an incorrect classification

P{classify as 1} Y(0) = y(0), C(0) = 1, C(t) = 2}

5 1 5 -1
=Pla(1-| p [D[[a(1-| p [D]2+[02+0(=)Z-[0+(y(0)-6)pt]] ] >0lo2+(By+6(e2)Z07) | }

2 2 2
=P{(1-|p | ) [02 + (6(=)Z) 1>[(a(1- | p| ) + [62 + 6(e0 )Z = [6; + (y(0)-61)pt]] 1) (4.12)

As t—0

Piclassify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2)

—P{0>[0; + o(e0)Z - y(O)]z} =0; (4.13)

18




that is, as t—0, the probability of a correct classification for the Cauchy
procedure tends to 1 for the case in which the Item associated with the
Signature at time t is different from the one associated with the Signature at
time 0, even though the data are Gaussian.

Ast o oo

P{classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2}

02-61 Y | 0261 |
—)I’{Zz > (Z + (=) ) } = P{Z < —W} (4.14)

Hence, as t-—»eo the probability of an incorrect identification tends to the same

normal tail probability for both the Cauchy and Gaussian classification
procedures.

Thus, for the two limiting cases t—0 and t—e, both the Cauchy and
Gaussian procedures have the same misclassification probabilities for the
scenario in which the Item associated with the Signature at time t is different
than the one associated with the Signature at time 0. Note that these are
theoretical limiting results with all parameters known.

To investigate further the behavior of the two classification procedures
on Gaussian data when Item 1 is associated with the Signature at time 0 and

Item 2 is associated with the Signature at time t, let

2
gi(y(0),Z) = (82+0(o2)Z~[61+(y(0)-61)p']) .

The conditional probability of an incorrect classification by the Gaussian

procedure is from (4.9)
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P{Classify as Item 1]Y(0) = y(0),C(0) = 1,C(t) = 2}

=P{(1-p2)6(==)? In(1-p2) < (1-p2) (6(==)Z)” ~g(y(0),2))
2P{(1-p2)0(e=)? In(1-p2) < (1~ | p | 1) (6(0)Z)* —g:(y(0),2))
>P-a2(1-1p |9 |plt< (1-1p |9 (6(e=)2)* —gi(y(0),Z))
for t sufficiently close to 0. From (4.12) it follows that the conditional

probability of misclassification for the Cauchy procedure is

P{(1- | p [)(6()Z)* ~g:(y(0),2) > &*(1- | p |t} [1- | p | -1]).

Hence for t sufficiently small, the incorrect Cauchy procedure will tend to
have fewer misclassifications than the Gaussian procedure applied to
Gaussian data in the scenario in which different Items are producing the

Signatures at time 0 and t.

4.2 Cauchy Data
In this subsection we assume the Signatures form time series with

Cauchy marginal distributions as in Section 3. In particular, we assume that
Yi(t) = 6; + X;(t) (4.15)
with
Xi(t+1) = piXi(t) + (t) (4.16)

where [g;(t)} are independent identically distributed Cauchy random variables
with location 0 and precision (-1 p; | o105 with lpil <1. The independent
random variable X;(0) has a Cauchy distribution with location 0 and precision

-1/2 : . :
o /2 Under these assumptions {Xj(t)} is a stationary sequence of random

. . T : -1/2
variables with marginal Cauchy distribution having parameters 0 and a; &

Further, the conditional distribution of Y(t) given Y(0) = y(0), C(0) =i, C(t) =i

is Cauchy with location parameter
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mi(t) = 6; + p;(y(0) - 8;) 4.17)

and precision parameter a;(t)-1/2 with
ai(t) = o(1- | Pi ). (4.18)

Let C(t) be the identity of the Item associated with the Signature at time t.

For simplicity we will assume there are two items with parameters 6; and
;. Further P{C(t) = i} = pi(t) = p(t).

Suppose the Gaussian procedure of Gaver and Jacobs (1989) is used to
estimate the identity of the item associated with the Signature at time t; that
is, the item which maximizes (2.12) of Gaver and Jacobs (1989) is the estimate
of the Item associated with the Signature at time t. Hence, the probability of

an incorrect classification is

P{Classify as Item 2|C(0) = 1,Y(0) = y(0),C(t) = 1}

c(0)=1,
N 1[(v(-6) | . 1 1y()=m®) T vy
=P exp[——z—[ 52() } }> Gl(t)expl—E[T(t):l ZE(:))_—Iy(O)I (4.19)

where
m(t) = 01 + py(y(0)- 6y) (4.20)
01(t) = oy(e=)y/1- pF! (4.21)
o1() = 01/ (1—P12);02(°°)=02/ (1-/?%) (4.22)
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and o, i = 1, 2 are the assumed standard deviations of the normal

distributions. We will assume o1 = 63 = G; p; = p2 = p. o4 = ap. Hence,

P{Classify as Item 2|C(0) = 1,Y(0) = y(0),C(t) = 1}

o L meeaew-o Pl 1 | 1faw)’
=P c;(m)exp{ 2( o() ) } G(t)exp{ 2( o0 ) } (4.23)

where W is a Cauchy random variable with location parameter 0 and

precision 1.

P{Classify as Item 2/C(0) = 1,Y(0) = y(0).C(t) = 1}

i ) (P60~ o)+ (61~ )+ att)
= Pq4/1 > exp ’Em 2 G(w)p_
2
—r - o] 1 (" (1(0)=61) + (61 - 2) + ()W
=Pﬁ\ﬁ_p2f > exp _l(lﬂj[)J ) ]2 2 O(M)Z )
(4.24)
——t—_L)P 0>exp %%} = (),

thus, the probability of misclassification tends to zero as t—0 even though the
incorrect model is being used; the correct Cauchy procedure also has a

probability of misclassification tending to zero as t—0. As t—ee

P{Classify as Item 2|C(0) = 1,Y(0) = ¥(0),C(t) = 1}

=P ]>cxp(—la i +l[01 —6 +;1W]2
1 20(w)” 2 ol
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- 1){1 > exp{% o(i)z [(61 - 62)° +2(6, - Bz)aW]H
P{O > %(01 - 92)2 +(6y + Bz)aw}

11
=PIW < —~—=|6,-8
{ < 2al‘ﬁ 2|}

which is the same as (3.10) the corresponding probability when the correct
Cauchy procedure is used.

To further explore the behavior as t—0, let
£.(W,y(0)) = [py(0)-61) + (6,-8) + (1~ p [ YW1’
and
B(t) = a2(1- | p [ )W

For t small (4.24) becomes
P{Classify as Item 2|Y(0) = y(0),C(0) = 1,C(¢) = 1}

=P(o(==)X(1+|p|Y In(1-p2) + BO) > (1+ | p 1) g(W,y(O))

<P{-o2|p [t+B() > (1+ | p | Dg(W,y(0))

<P{-o2| p | t+B(1) > g(W,y(0)))

=P{o2(1- | p [ty +B(t) > a?+g(W,y(0))}

2
=P{(o(1-p D) + (1-1p |9 B > (1= p|¥) [o2+g(W,y(O)]}

-1
-1 2 2
=Plala2+g(W,y(0)] > a(l-1p|) [la(1-1p|9] + (@(1-]plOW)] )
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which is the conditional probability of misclassification for the Cauchy
procedure on Cauchy data. Hence for small t, the incorrect Gaussian
procedure will tend to have fewer misclassifications than the correct Cauchy
procedure for the scenario in which the same item is associated with the
Signature at both times.

Now we consider the case in which the Item associated with the
Signature at time t is different than the one associ.ced with the Signature at
time 0. Once again for simplicity we assume a; = 0ty = o, p; = p2 = p with
|p <1 and for the Gaussian model 01 =02 =0. Let () = 0/(1_pz)0‘5 and
o(t) = 6(ee) (I—pzf)o's. We will assume Item 1 is associated with the Signature
at time 0 and Item 2 is associated with the Signature at time t.

For the Gaussian classification procedure of Gaver and Jacobs (1989) the

probability of an incorrect classification is

Piclassify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2}
—J.5 1 2 2
=P{(1-p2) expl—5 [82 + aW ~ (81 + p!(y(0)-61))] /o(e) (1-p2t)
1 2 2
>exp{-5(82+aW-82) /o(e) }}
1 1 2 2
=P{-5 In (1-p2) - 5 [62 + aW - (6; + pX(y(0)-61))] /{o(ee) (1-p2t))
1 2 2
>—5 (@aW) /o(e) |}

2 2
=P{o(ee ) (1-p2t) In (1-p2t) +(87 + aW—(0; + pt(y(0)~61))) (4.26)
2
<(aW) (1-p2)}
where W is a standard Cauchy random variable.

As t—0, the probability of an incorrect classification,

P{classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2)
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—)P{(62+ocW—y(0))2 <0}=0.

Hence as t—0, the probability of an incorrect classification tends to 0 for the
Gaussian procedure on Cauchy data.

As t—oo, the probability of an incorrect decision
2 2
P{classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2} P((6; + aW-8;)" <(a@W))

09,-0; .2 2 |92—91|
o )y < W }=P{W>"—‘—2(x 1.

=P{(W+

Suppose now the Cauchy classification procedure is used on the Cauchy
data with Item 2 associated with the Signature at time t and Item 1 associated

with the Signature at time 0. The probability of an incorrect classification is

P{classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2}
2 2 -1
=Pla(1- | p ID[02(1-1p V) + [82+aW—(8,+pt(y(0)-81))] ]
2.-1
>ofa? + (07 +aW=62) ] }
2
=P{(1-|p D2 + (@W) ]

2 2
>[o2(1-|p )" + [0+ W-(8; +pt(y(0)-8:))] ). (4.27)
As t—0, the probability of an incorrect classification
2
P{classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2} — P(0>(82+aW - y(0)) } = 0.

Thus, the probability of an incorrect identification using the Cauchy

procedure tends to 0 as t—0 for the case in which the Item associated with the
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Signature at time t is different from the Item associated with the Signature at
time 0.

As t—oo, the probability of an incorrect identification

Piclassify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2)

# O b loxe, |,

2
SP{W > (W T

the same as for the Gaussian procedure.

Hence, for the two limiting cases t—0 and t—e both the Cauchy and
Gaussian procedures have the same misclassification probabilities for the case
in which the Item associated with the Signature at time t is different than the
one associated with the Signature at time 0. Note these are theoretical
limiting results with all parameters known.

To further explore the differences between the Gaussian and Cauchy
procedures for the scenario of different Items associated with Signatures and

Cauchy data, let

2
gt(W,y(0)) = [aW + 02-61-pt(y(0)-61)] . (4.28)

From (4.26) for the Gaussian procedure, the probability of an incorrect

classification

P(classify as 1] Y(0) = y(0), C(0) = 1, C(t) = 2)

2 2
=P{o(e0) (1-p2) In (1-p?") < (aW) (1-p2t) — g (W,y(0))}.

For the Cauchy procedure, the probability of an incorrect classification
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P{classify as 1| Y(0) = y(0), C(0) = 1, C(t) = 2)
- Pla2(1-|p |911-1p |11 < (=1 p |9 (W)’ - geW,y(O))
- Pla21-1p |9 plt < 1=] p |9 (@W)’ - g(W,yON)
< P{o(e) (1-p2) In (I-p2) < (1=|p |0 (@W): - g(W,y(0)))

sP{c(oo)z(l—pZ‘) In(1-p2) < (1-p2) (on)2 - g(W,y(0)))

for t sufficiently small. Thus, for small t the Gaussian procedure will tend to
have more incorrect classifications than the Cauchy procedure for the
scenario of Cauchy data with the Item associated with the Signature at time t
being different than the one associated with the signature at time 0. This
effect is made stronger by the fact that if the Gaussian procedure is used then
an estimate of (e )2 will be needed. An estimate of o(e )2 for Cauchy data
will tend to be very large since the Cauchy distribution does not have a finite

variance. This effect will be seen in the simulations of the next subsection.

4.3 Results of simulation experiments

This subsection reports on results of simulation experiments to assess the
behavior of the Gaussian and Cauchy classification procedures when they are
confronted with data from the other distribution. For simplicity we assume
there are two Items. In the first subsection the autoregressive process
producing the data is Gaussian. In the second subsection the autoregressive
process producing the data is Cauchy. In both subsections classification
procedures using both the Cauchy and Gaussian distributional assumptions
are assessed. In all cases p; =p3 =0.5,8; =1, 8; = 2. The simulations use the

LLRANDOM random number generator; cf. Lewis and Uribe [1981].
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a. Gaussian Data

The simulation in this subsection uses data from a Gaussian
autoregressive process. We will assume the means of the two Signatures, 0,
and 05, are known and p; = p3 = p is also known. It remains to assess values
for the (presumed known) scale parameters of the two classification
procedures. In particular what should the scale parameter o = oy = a of the
Cauchy procedure be when it is applied to Gaussian data? To obtain
reasonable values for 6, = 6; = ¢ for the Gaussian classification procedure and
o =y = oy for the Cauchy classification procedure, the following simulation
experiment was performed. The experiment has 100 replications. In each
replication 100 independent, standard normals are generated. For each
replication, the standard deviation of the data is computed and the maximum
likelihood estimate of a is obtained numerically assuming a Cauchy density

function of the form

£ = = &

Ralnd 1 R SX<e

The medians of the 100 estimates of o and the 100 standard deviations are

calculated. The values obtained are 0)4 =10 &y =0.607. Note that the
estimates of o are using the incorrect model assumption of Cauchy for the
Gaussian data. The value of 64 is used in the Gaussian procedure to classify
observations. The value of &) is used in the Cauchy procedure.

Tables 1 and 2 show results for simulation experiments with 500
replications. In each replication Y(0) is generated from a normal distribution
with mean 0; and standard deviation G(e) = o/\f—l——_a2 with 6=1 and p = 0.5.

For Table 1 Y(t) is generated from a normal distribution with mean
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m(t) = 61 + pt(Y(0)-0,)

and standard deviation o(t) = 6(e0)V1-pt; namely the Signature observed at
time t is from Item 1. For Table 2 Y(t) is generated from a normal distribution
with mean 0, and standard deviation o(e); namely the Signature at time t is
from Item 2.

In both Tables the Gaussian classification procedure assumes 6)4 = 1.0 is
the correct standard deviation. The Cauchy classification procedure assumes
Ay = 0.607 is the correct value for a.

The valu2s in Table 1 suggest that when the same Item is producing the
Signature at time 0 and t, then the Gaussian procedure produces more correct
classifications for small time t. However, the number of correct classifications
is the same for both procedures for larger t.

The values of Table 2 suggest that if a different Item is producing the
Signature at time t, then the Cauchy classification procedure has more correct
classifications at time t for small t even though the data are Gaussian. For
larger t, both procedures have the same number of correct identifications.

b. Cauchy Data

In this subsection the data arise from a Cauchy autoregressive process.
The mean Signatures of the two Items, 8; and 8,, are assumed known and p =
p1 = p2 is also assumed known. It remains to assess values for the scale
parameters of the Gaussian and Cauchy classification procedures. In
particular, what should the scale parameter ¢ = 61 = 62 of the Gaussian

procedure be when it is applied to Cauchy data?
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TABLE 1. GAUSSIAN DATA

Item 1 Produces the Signature at time 0
Item 1 Produces the Signature at time t

Time Fraction Correct Identifications Number of times
t Gaussian Proc. Cauchy Proc. | Gaussian Correct Gaussian
/Cauchy Incorrect/Cauchy
Incorrect Correct
1 0.77 0.65 50 0
2 0.68 0.67 5 0
5 0.67 0.67 0 0
10 0.70 0.70 0 0
TABLE 2. GAUSSIAN DATA
Item 1 Produces the Signature at time 0
Item 2 Produces the Signature at time t
Time Fraction Correct Identifications Number of times
Gaussian Proc. Cauchy Proc. | Gaussian Correct Gaussian
/Cauchy Incorrect/Cauchy
Incorrect Correct
1 0.64 0.71 0 38
2 0.69 0.71 0 6
5 0.64 0.64 1 0
10 0.68 0.68 0 0

To obtain reasonable values for ¢ for the Gaussian classification

procedure and o for the Cauchy classification procedure, the following

simulation experiment was performed. The experiment has 100 replications.

Each replication generates 100 standard Cauchy random numbers. For each

replication the standard deviation of the data is computed and the maximum

likelihood estimate of a is obtained numerically. The medians of the 100
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estimates of a and the 1J0 standard deviations are computed. The values

obtained are

oy =13.23 and @)= 1.03.

Note the high value of the standard deviation.

Tables 3 and 4 present results of simulation experiments in which the
data are from a Cauchy autoregressive process. All experiments have 500
independent replications. For each replication Y(0) is generated from a
Cauchy distribution with location parameter 01, and scale parameter 1; that is,
Item 1 is producing the Signature at time 0. For replications reported in Table
4, Y(t) is generated from a Cauchy distribution with location parameter 8, and
scale parameter 1; that is, Item 2 is producing the Signature at time t. For
replications reported in Table 3, Y(t) is generated from a Cauchy distribution

having density function

fx) = % alt)? +()L((><tzm(t))2
with
m(t) = 01 + p(y(0)-61)
and

alt) = (-1p ")
that is, Item 1 is also producing the Signature at time t.

In both Tables 3 and 4, the Gaussian classification procedure assumes a
standard deviations o, = 62 =6)y. The Cauchy classification procedure
assumes the a-parameters o) = 0y = @py.

The results of Table 3 indicate that for small times t, if the same Item is

producing the Signature at time 0 and time t, then the Gaussian classification
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procedure has more correct classifications even though the data are Cauchy.
For larger times t, the number of correct classifications is the same for both
procedures. On the other hand, the results of Table 4 indicate that if a
different item is producing the Signature at time t, then the Cauchy
classification procedure has many more correct classifications than the
Gaussian procedure for small times t. Once again the number of correct

identifications is the same for both procedures as t becomes larger.

TABLE 3. CAUCHY DATA
Item 1 Produces the Signature at time 0

Item 1 Produces the Signature at time t

Time Fraction Correct Identifications Number of times
Gaussian Proc. Cauchy Proc. | Gaussian Correct Gaussian
/Cauchy Incorrect/Cauchy
Incorrect Correct
1 0.98 0.73 124 0
5 0.72 0.69 18 0
10 0.66 0.66 0 1

TABLE 4. CAUCHY DATA
Item 1 Produces the Signature at time 0

Item 2 Produces the Signature at time t

Time Fraction Correct Identifications Number of times
Normal Proc. Cauchy Proc. Normal Correct Normal
/Cauchy Incorrect/Cauchy
Incorrect Correct
1 0.09 0.74 0 316
2 0.14 0.70 0 282
5 0.67 0.61 0 29
10 0.64 0.64 0 0
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¢. Summary

The differences in performance of the two classification procedures
appear for small time t. If the same Item is producing Signatures at both 0
and t, then the Gaussian classification procedure has more correct
classifications for small times t for both Gaussian and Cauchy data. If a
different Item is producing the Signature at time t, then the Cauchy
classification procedure has more correct classifications for both Gaussian and
Cauchy data. The effect is strongest if the data are from a Cauchy
autoregressive process; in this case the Gaussian procedure does very poorly

when different Items are producing the Signatures.

In summary, it is important to realize that the performance of a Bayesian
classification procedure can be influenced by its underlying distributional
assumptions. A classification procedure based on Gaussian distributional
assumptions can be reluctant to classify a new observation coming from a
different item as being associated with a new item. A classification procedure
based on Cauchy distributional assumptions can be reluctant to classify a new
observation which comes from the same item as that being associated with
the same item. Hence, if there is uncertainty about the underlying
distribution of the data, it might be better to combine results of several

classification procedures based on different distributional assumptions.
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