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Power Spectra of Internal Gravity Waves

1. INTRODUCTION

This report answers a question implied in three earlier publications (Dewan, 1979; Dewan

and Good, 1984, 1986). The question is "Can the so-called universal spectral model of Garrett

and Munk (1972, 1975, 1979) be explained by physical similitude arguments?" The apparent

success of the similitude argument In Dewan and Good (1984, 1986) suggests that it, indeed, can

be done. The original models of Garrett and Munk (GM) cited above were based on a

combination of empirical observations of oceanic internal gravity waves plus the general

properties of these waves that can be deduced from the equations of motion such as dispersion

relations and so-called "wave functions". Subsequently, VanZandt (1982) showed that the
universal spectral model also applies to the internal waves in the atmosphere. The term
"universal" in both contexts, however, must be understood as somewhat of an exaggeration.

For example, the amplitude of the spectra fall "mostly within a factor of 2" (GM, 1972, GM,
1975) and the log-log slopes of certain wave number spectra are between 5/3 and 2 (GM. 1972)

or 2.5 (GM, 1975) or, in the case of the atmosphere, nearly 3 (Dewan et al, 1984).

In an earlier paper (Dewan, 1979) It was suggested that the GM spectral model might be
applicable to the atmosphere; but, the situation studied in that paper involved exceptionally

(Received for publication, 17 September 1990)
a In Section 6 it will be mentioned that, in the atmosphere, a change of altitude can cause
the amplitude of the temporal PSD to change by a factor of 200.
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vigorous waves in the stratosphere. No attention was given there to the "universal" amplitude

pioperty: but it was suggested that the waves involved were interacting sufficiently to provide a
"cascade effect" to explain spectral slope. An analogy to turbulent cascades was made there.

Historically speaking, the turbulent cascade was first described in a poem by Richardson

(1922): "Big whirls have little whirls that feed on their velocity, and little whirls have lesser
whirls, and so on to viscosity (in the molecular sense)." In Dewan (1979) a detailed argument
was presented for the case that a similar thing could be occurring for atmospheric gravity

waves and that "Big waves have little waves that feed on deformation, and little waves have

lesser waves to turbulent dissipation (in the eddy sense)." Kolmogorov deduced his inertial
range spectrum for velocity fluctuations, € = c i E2/ 3 k -5/3 (e Is the dissipation rate, k the wave

number and cia universal constant of order unity) by means of a similitude argument based on
the Richardson poem. In Dewan (1979) 0 = c2 C2/ 3 k, -5/3 (k, is horizontal wave number and

c 2 *c1 ) was derived in exactly the same manner via the second "poem". In this report I wish to

extend the argument in Dewan (1979) in order to attempt to find a physical explanation of the

remainder of the GM spectral model.

In apparent contradiction to the above approach, Dewan and Good (1984, 1986) explained

the universal spectrum, 'T'u (k.) = c3 N2 k-C (where Tu (k.) is the PSD for horizontal velocity

fluctuations, N is the buoyancy frequency and k z the vertical wave number) which is observed

In the stratosphere (Dewan et al, 1984), and troposphere (Daniels, 1982, and Endlich and

Singleton, 1969) by means of an argument based on "saturation" rather than on "cascade"

effects. Again, a similitude argument was basic to this approach in spite of the fact that

several other, more detailed arguments were also presented. This work was subsequently

augmented by Smith et al (1987) who, among other things, deduced the value c3 above and,

most Importantly, predicted the altitude dependence of the dominant vertical wave number

which they called m,.

In subsequent years there have been further tests of the "saturation hypothesis" (in the

form of the I' (kz) = N2 k' dependence). For example see Fritts et al (1988), Gardner et al

(1989), Gardner and Voelz (1987), Gardner (1989), Hass and Meyer (1987) and Wu and Widdel
(1989). More recently Tsuda et al (1989) wrote: '"The fact that the argument of the saturated

gravity wave spectral model of Dewan and Good (1986) and Smith et al (1987) Improves as the

observed spectra are improved suggests that the model is essentially correct, in spite of the
heuristic nature of some of its assumptions."

Most recently, Hines (1990)t re-examined these "heuristic assumptions" and seems to have

put the entire program on a more extended physical footing. In addition, he also raised the
question that the saturation picture may give the correct answer for the wrong reason. While

this seems not to have disturbed the similitude argument In Dewan and Good (1984, 1986),
Hines' new physical picture is very stimulating to further progress with this problem. The

t A detailed response to the criticisms of Hines (1990) Is postponed to a future publication.
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reader is encouraged to examine Hine's paper for the details; but, his approach involves

strongly interacting waves and the "compliant wave number" regime first discussed by Munk

(1981). In this regime the small waves (m > m) are doppler shifted and strongly modified by

critical layer processes due to the convective effects of the large waves. In a word, Hines' new

picture has made one thing very clear for the present purpose, and this Is that the success of

the IPu (k) = c 3 N 2 kz spectrum no longer argues agajt cascade processes which is ours.t In

fact the opposite is true; that is to say, the cascade effects in waves, as suggested in Dewan

(1979), appear more valid when viewed from the perspective of Hines' "wave-interaction"

suggestion. Usually one regards "saturation" as implying that, as waves grow, they eventually

reach a "saturated amplitude" above which they "dump energy" directly from their large scales

into small turbulent scales. In contrast, Hines' picture of strongly interacting waves is

consistent with cascade processes of energy flowing from large to small scale via intermediate

scales. A second benefit here from the Hines picture Is its agreement with the long discussed

and disturbing fact that gravity waves are not the weakly interacting waves that theorists

would prefer them to be for calculational convenience. Rather they are unavoidably strongly

Interacting. The latter point has been emphasized in the oceanic internal wave context by

Holloway (1980, 1981).
For completeness it should be mentioned that certain previous authors have raised the

question of whether or not the GM model or the saturated spectrum is related to buoyancy

range (BR) turbulence. Weinstock (1985), for example, has suggested that the saturated

spectrum may be the (BR) turbulence as described by Lumley tt (1964), which also has N2k-3

dependence. This view was also suggested by Holloway (1983) and Gargett (1981). Also, Sidi et

al (1987) showed, on the basis of saturation, that the temporal part of the GM spectrum would

have a o-1 dependence and he considered this as a form of BR. In what follows I will, in

contrast, get a -2 dependence, but in general, I am at this point somewhat in overall

agreement with the general idea that the GM spectrum may be of "BR turbulence". On the other

hand, the word "turbulence" in this context is very misleading in the sense that one usually

assumes, by definition, that turbulence does not obey dispersion relations. As discussed in

Dewan (1985), there may exist fluctuations that are between the extremes of turbulence and

waves which continue to retain dispersion relations and limited propagation properties, and

yet have very active nonlinear mode interactions. Perhaps this is what physically happens in

BR "turbulence" as well as in the "universal spectrum range of gravity waves"; and, it would

explain why similitude arguments based on cascades are successful (if indeed the main

predictions I make here are found to be valid in future experiments).

In order to relate the GM formalism to similitude arguments I will first give a brief review

of their formalism in Section 2 and then present the derivation of the temporal part of their

formalism in Section 3. In Section 4 a number of testable PSD's are derived which are then

t On the other hand, since it refers to interaction between a single large scale region and a
single small scale region, it does not necessarily imUix that a cascade is involved.

tr Compare Phillips, p. 293 (1980) whose discussion is highly to be recommended especially

in conjunction with what he says on p. 232 regarding "promiscuous" mode interaction.
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collected in Section 5 where predictions for future tests are described. In Section 6 a limited
comparison between theory and experiment is made which demonstrates that the predictions

are not unreasonable in the sense that they appear to be of the right order of magnitude.

Finally, still further experimental support is obtained by comparing the altitude dependence of

a temporal PSD of velocity fluctuations with the altitude dependence of dIssipatiohl rate, C,

since the theory says that there is a direct relationship between them.

2. A BRIEF REVIEW OF THE GARRETT-MUNK (GM) FORMALISM

The GM (1972, 19 7 5 )t formalism for the spectral model of internal oceanic gravity waves
begins with the spectrum for scalar energy per unit of mass which they designate by E (k ,. 0)
where k. is the vertical wave number and (o is the radial frequency (k. , the horizontal wave
number is also used). They represent this spectrum as being factorable:

E (k z , (o) - E' B(wo) A(X)
k (2.1)

Z.

where kz. represents the vertical wave number for the scale where the energy begins to decrease

rapidly with kz . It also is the "dominant" or "characteristic" wave number in the sense that, as

Smith et ia (1987) have shown, "most of the energy lies within a factor of 3 of the mode at

(kz/21/3)." The A, is a non-dimensional wave number:

X a (kx/k .) or (kz/kz.). (2.2)

Also A(X.) - (t - 1) (I + X.)-t.

In GM (1975) the value t = 2.5 was chosen. In their formalism non-dimensional quantities
were used by making use of normalization with representative scales of time and distance.

For example, all frequencies were normalized by N where N is the "extrapolated ViIs1i

frequency" in their depth dependent buoyancy frequency profile given by i = Ne -y' / where i is

the dimensional local frequency, - the depth and b the characteristic length for this depth

dependence.

t More recent versions appeared in GM (1979) and Munk (1981).
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The "hats" over the letters were used by GM to designate dimensionalityt Wave numbers

were normalized by M m b 2xr In the following I will try to avoid use of their non-

dimensional approach because (a) in the case of the atmosphere it is known that this would

give an incorrect scaling with respect to "N", and (b) the dimensional approach is more

convenient for the experimental comparisons that will be made.

Both BMw) and A(.) are defined so they integrate to unity. This will be equally valid even

when dimensional terms are used because the integrals themselves are dimensionless. Thus

we have

IB(o) dco = 1; andJ A(X) d. = 1 (2.3)

where o is the inertial frequency. In order to obtain the spectra ("power spectral densities" to

be more exact, henceforth denoted by "PSD's") of velocity components, GM use what they call
"wave functions" in a manner to be shown below. In addition, they integrate over X or W in

order to obtain the one dimensional PSD's. For example, in order to obtain the PSD with
respect to kZ of the horizontal velocity fluctuations, u, they use

N E B( ) A(k/kz° ) U (c)dw (2.4)

where

-2 n (0 2 + (0 )
. 2(W)a (2.5)

2

and where U (w) is the wave function for horizontal velocity, again, 0o, is the inertial

frequency, E' is a dimensionless energy which has been empirically determined, and n is a

dimensionless parameter relating to buoyancy frequency which I shall set = 1 for the

atmospheric model. The correct dependence on N is. from Dewan and Good (1984. 1986),

t In this paper I shall use this notation exclusively to refer to the GM model. The new model
being presented assumes that all quantities have dimensions.



a N'kzfor the universal part (i.e. high wave number) of the spectrum. Smith et al (1987)

brought this into the context of the GM formalism by writing it as

'T'u(ka =a 2
3 1+ kz (.)

Notice that it is here that the dependence on N differs from the GM model, but is supported by

atmospheric observations (Dewan and Good, 1986). Smith et al (1987) found a value for a, as
has been mentioned, and it is a = 1/6 (compare Hines, 1990).

The vertical velocity, v, wavefunction is given by GM (1972, 1975) as (n = 1)

2 2
-2 O) -O(2.7)

V((0) N2

Thus

j E' B(o) a(k./kz.) -2 (2.8)

"(k z)k ( ow ) d o.(2 8

Similar relations hold for the kx type PSD's where in that case one uses a kx/kx.

The o dependence, for example, is given by

-2 ~ max(o) =U ((o) E' B((o) A (X) dX (2.9)

-2

=U ((o) E' B(co)

from Eq. (2.3).

t In actual fact, Smith et al (1987) used a slight modification of this for convenience.
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In order to obtain PSD's for displacements one employs the relevant velocity component

wave function and divides it by o2 . For example, the PSD for vertical displacement, , as a

function of co, is given by

2'I'(W) = V( )E 0 B(€) (2.10)

(0)

and so on.

It should be mentioned that Garrett and Munk (GM) (1972, 1975) obtained these wave

functions in a complicated way; but, they can be obtained directly from the polarization

relations wh.,n suitable approximations are made.

The values of E and B(w) in the GM models are

(€ _ _2 _IN 1
0 2 21/2 (2 .11)t

and

_5-2 A2
E=2nx10 N /M . (2.12)

(i.e. E' = 2n x 10-5.
In the next section I will deduce E B() from a similitude argument. The above model is

strictly an "empirical fit". In both cases, it should be pointed out, a "non-equatorial" model is
assumed. This is because something unphysical happens when one sets co, = 0.

t Here (o, and (a are dimensional.
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3. A SIMLITUDE ARGUMENT FOR E B(0)tt

As was mentioned previously, a rationale has been given in Dewan (1979) for an
atmospheric gravity wave cascade and that this leads to the observed k - 5 / 3 dependence. In the

x

present section the same strong mode-interaction cascade picture will be used to derive E (O.

The cascade assumption made here will also entail an additional premise, that is, the wave

cascade is in steady state. In other words, I shall assume, as in Dewan (1979) and as in the

case of inertial range turbulence, that the input and output of the cascade are both equal to the

dissipation rate, e, and remain approximately constant over time.

These assumptions make it easy to obtain E B(o), for, the latter energy spectrum can only

depend upon two parameters, namely w and e. These have the dimensions of T -1 and

L2 T -3 respectively. The dimensions of E B(o) are of velocity variance per frequency band-

width or L2T "1. Thus

L- Co ,)2a 1) b .  (3.1)
T T

For equality, a = 1, b = -2 thus

E B(w) = a' QED. (3.2)
20

where a' is a universal constant of order unity. (Here B(o) (ol / w2 ) and

E - (a'e / ot).]

It is not surprising that this is Identical to the result found in Tennekes and Lumley (1972)

for the inertial range frequency spectrum. More interesting is the fact that, in the turbulence

case, Eq. (3.2) does not agree with experiment. In view of this, Tennekes (1975) subsequently

did a more careful analysis of isotropic inertial range turbulence in which he took into

account the advective doppler effects of large eddies upon the measured frequencies of the

small eddies when the latter are measured in the Eulerian frame. He obtained

*00) = 0 2/3 q2/3 -5/3 (3.3)

tt The hat notation is dropped.
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(where 1/2 q2 is the mean kinetic energy per unit mass) which does agree with experiment. As

will be discussed below, in the case of oceanic gravity waves the c- 2 dependence seems to be

correct, whereas, from VanZandt (1982), in the case of the atmosphere there is evidence for

cc 5 / 3 . The Tennekes argument offers a way to explain the difference, and it would entail

verifiable predictions regarding q. For the details see the Appendix.

In Dewan and Good (1986) physical interpretations of the similitude results were given. As

was mentioned, these interpretations have been questioned by Hines (1990). Similar physical

pictures for the cascade are available. For example, one can imagine that each band-width

around a given frequency, o, has an associated velocity variance which I will call v2 (co). The

latter is related to e and r(co), the "mode interaction time" of the co mode. In other words, z(o)

is the time needed for the "co-band" in question to give up a significant fraction of its "kinetic

energy per unit mass", v2 (co). We are here assuming strong interactions. In this case r begins to

become somewhat "comparable" to the period of the mode in question (compare Dewan, 1985).

I therefore let r - cl. Thus v2 (co) would scale as £/o. Next I make an assumption similar to

one found in Dewan and Good (1986) and let the band-width, Ao), scale as (o. Then, I find from

this that

E B(co) ----- = (const.) -- (34)Ac)

as in Eq. (3.2). But this argument of Aw - w is exactly the sort of thing Hines (1990) finds

inadequate because, left unanswered are some questions: (a) why is Aco - co? If the answer is

that you have wave-packets of frequency, say, o, and that they all contain a comparable

number of oscillations, then the next questions are (b) why should that be true, and (c) why

should all the wave-packet scales get "equal representation" in time? To avoid such questions

we must, for now at least, let the similitude argument stand on Its own feet. This is regrettable

because it will be shown below that in this model, E = -__ (which makes a lot of physical sense

in my cascade picture since most of the energy is at frequency o and hence v2 (co) - E/0) I

represents most of the "E" to be found. Is It really impossible to answer the embarrassing

questions raised by Hines?

A way out of this dilemma was suggested, in private communication, by D. Fritts. His

suggestion Is that a "dynamical similarity" exists at all relevant scales "like fractals". Fritts'

suggestion, it should be pointed out, is totally consistent with the cascade picture espoused in

the present paper. In fact, such fractal scaling should be directly caused by the cascade

process. Put another way, the relationship between self-similar cascades in turbulence and

self-similar fractals is well known. See for example Mandelbrot (1975 and 1983). The point

here is that it is postulated that waves too can have self-similar cascades (Dewan, 1979 and the

discussion above) and this gives rise to the self-similarity conditions Ao - o and Ak - k, and

the "equal representation" assumptions which were previously left unexplained In Dewan and

9



Good (1986) and Smith et al (1987). The cascade hypothesis, therefore, answers at least the
main questions and objections raised by Hines (1990).

Experiments suggested below involve simultaneous measurements of PSD's and C as well as

k., etc. If the predictions of the cascade model hold up, then the present "theory" will have

been "verified". It would be desirable, then, to go beyond similitude arguments: however, as in

the case of inertial range turbulence it Is not entirely clear how this could be done rigorously.
Dimensional analysis, or similitude, can sometimes be surprisingly powerful and, at the same

time, very simple. It would constitute a grave error to mistake this simplicity for lack of rigor
or substance in my view. The inertial range turbulence model of Kolmogorov, which is based

ex tirely on similitude, is the most rigorous and experimentally valid model for this type of
turbulence yet published. It has stood the test of time for one-half century.

4. THE STRONG-MODE-INTERACTION MODEL FOR THE "UNIVERSAL SPECTRUM'

A comprehensive PSD model can be obtained from the results of Section 2 (the GM
formalism) and Section 3 (the similarity argument for E B(o)). From these I will obtain
41, (k,), I' (o), Iv (o), 'Tu (kx ) and IF, (kx). In addition it will be possible to obtain the

constants of order unity such as a and a" from certain consistency requirements and, in

addition, the quantities k. and kx.will be obtained from dimensional and physical

considerations.

4.1 The Vertical Wavenumber PSD's of Horizontal Velocity T. (k.) and

Vertical Velocity TV (kZ)

The equation for 'u (kz) was given as Eq. (2.6). Following Smith et al (1987) the value of ot

in this equation can be obtained from the relation

2f
k m  2 f'kmax OaN2 (I + 

-
k

N2 k z (kz) dkz= ,z lk2dk. (4.1)= z (z) kz =  3 1 +z z
40 0 Itzo

This represents (Dewan and Good, 1986 and Smith et al, 1987) an overall saturation condition
(cf. alternate interpretation by Hines, 1990).

When the operations are carried out is is possible to obtain (in a manner similar to Smith
et al, 1987)

10



u i [Il (kl.l/k)-3] (4.2)

In Dewan and Good (1986) and Smith et al (1987) the theoretical value for k,.. was not

discussed. An indication is however to be found in Dewan (1985) where it is argued that the

largest possible wave-number for a "wave" is given by kmax i 2n (N3/)1/2. It was pointed out

that this wave number would correspond to the case where the shortest period wave would lose

a substantial amount of energy through mode interaction in one period, thus rendering it close
to "turbulence". "km " can also be recognized as the well known "buoyancy wave number". I

have chosen the 2x following Woods (1974). This buoyancy wavenumber" choice for k.a has

already been mentioned in passing by Munk (1981); but, he did not state his rationale. In
contrast, Hines (1990) suggested that Eq. (4. 1) be solved in order to determine kmax.

The value of a' in Eq. (3.2) for E B(co) can be obtained with the help of the GM formalism in

the following way. From Sections 2 and 3 we have

t. (k.) f E B(o) "Z, U ((o) do (4.3)

X " kz/k (4.4)

U (0)N(0 +cot )/Oi (4.5)

A (Xz) 2 (1 + X1)"-3 (4.6)

and

2 B((o) = --- (4.7)0

11



If Eqs. (4.4) to (4.7) are inserted into Eq. (4.3) and the integral performed and if the result is
equated to the expression for Iu (k) in Eq. (2.6), then one can obtain a relation between a and

2  () £
k 2 . (8) -i"(4.8)

z,

Solving for a'

a k t. (4.9)

Notice the dimensionless combination in the square brackets. Let us set it equal to a
dimensionless constant and solve for kz, to obtain

k = C( (4.10)

where Cz is a dimensionless universal constant to be obtained from experiment. The physical

meaning behind Eq. (4.10) is important. Both Hines (1990) and Munk (1981) have pointed out

that the large scale waves can doppler shift the small scale waves and that for a certain
critical value of the vertical wave number, mc (to use their notation), the waves can be forced

to approach their critical layer. Hines gives mc = N/(2 Vrm.) where v,. represents the root

mean square velocity due to the large waves. Munk refers to his m c as the boundary for
"compliant waves".

In Eq. (4.10), kz, can be seen to represent the quantity m c above provided that the "cascade"

picture be kept in mind. The reason is as follows. It has already been mentioned in Section 3
that v 2 (o,) - e/wi and since E B(o)) _ 6- 2 it follows that the main contribution to v2 is v2 ((oi)

and hence it is approximately true that v2rm. £/Co. Hence, kz, - N/v in Eq. (4.10) which is

to say that kz. indeed separates free from compliant waves as suggested by Hines (I am ignoring

constants of order unity in this statement).
Next, consider Tv (kz), the PSD for vertic. J velocity. The GM formalism gives

12



(kz) E B(o) V ( ko) k (4.11)

where V (co) (22 (4.12)

Using Eq. (4.7) for E B(o), Eq. (4.6) for A(Xz) and Eq. (4.9) for a' and the fact that N >> lot ,

Tv (kz) = 3 S N__ (1 + z)'' (4.13)V 4 k 3

zO

ctN2

Comparing Eq. (4.13) to T. (kz) = -- (I+

(kz) _ 3 wi

'u (kz) 4 N (4.14)

This ratio, it is easy to show, also holds for Tu (k) and Tv (kx) , and since a typical value of

(co/N) is 10-2 it is clear that the vertical wave motions are usually about two orders of

magnitude smaller than the horizontal motions. The value of a in Eq. (4.13) is given by

Eq. (4.2) and hence depends weakly upon (kzm /k,) _ (N/o) 1/ 2 (since km 2 N 1

kZ. aCz(N 2 W'/))

Notice that, when one sets oi = 0 in some of the above equations, some results are obtained
which are not experimentally correct. For example , (kz) is presumably not zero at the

equator. Thus this model is not applicable to regions close to the equator.

4.2 The Temporal Frequency, o, PSD's: If u (0), TV ( D)

Using the GM formalism we can obtain the horizontal velocity PSD from

13



k z m/kz Z-.2
S00) = f / E B(CO) A(k.) U (co) dX. (4.15)

Next we use Eq. (2.3), Eq. (4.6) (for A(Xz)), Eq. (4.7) (for E B(co)), Eq. (4.5) (for U (Co)), Eq. (4.2) (for

a) and Eqs. (4.9) and (4.10) (for a'), to obtain

S2 2

Pu Qc ) 2 2) (4.16)

The quantities in Eq. (4.16) are given in units of radians (eg radians/sec) and Pu is in

(m2 /s 2) /(iadians/sec). In comparing Eq. (4.16) with certain data these w7its must be changed
to (m2 /s 2) /(cycles/sec). To make the conversion one multiplies the right side by 2 n.

It is important to note that, in Eq. (4.16), when co >> Co, the frequency dependence goes as

o - 2 . This is similar to the frequency dependence in the GM model. The frequency PSD for
vertical velocity fluctuations is given by

I (Co) = A (X) E B(co) V (a)) dX (4.17)

where V (co) is given by Eq. (4.14). In a manner exactly similar to Eq. (4.16) the result is

'i P( 3o)= (CI-2-j [,_A (4.18)

again with the previous 2 x option. Also the dependence when Co >> co, is similar to the GM

model in that the dependence goes as wo; that is to say, it is constant.

2

Note that this implies that -V = Pu -when co >> co.
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4.3 The Horizontal Wavenumber, kx, PSD's: '1u (kz). 'Fv (kz)

As has been mentioned the form T (kz) = (CONST.) e2 / 3 k-5 3 was derived in Dewan (1979)

for both velocity components (u and v). In that paper, however, certain things were left out of

account. For example the following Items were omitted: (a) the wave function effects on

velocity component PSD's, (b) the roll off effect seen in the GM formalism that takes place at

the dominant wave number kx, and (c) the numerical value of the constant of order unity. The

purpose of the present section is to finish this task.
From the above mentioned form for T' (kx) one is led to the assumption, in the context of

the GM formalism, that

2/3 5/3

x.

where -X k/kX,. I have chosen to commence with the horizontal velocity component because

the latter is involved in the Hines-Munk critical layer mechanism. From the GM formalism

N
Pu (k)= E B(o) A U (0) do. (4.20)

I x,

2-5/3
Again, A(X) = (s - 1)(1 + X)-s and setting s = 5/3, A (\X) (1 + x . Again using

E B(o,) = a" C1c/2, and U (o) = 2 + o )/o and performing the integral,

ac F.(8/9) -/3
'P (k() =kX c (1 + X), . (4.21)

The value of t" is obtained by equating Eq. (4.21) to Eq. (4.19)

( 0 ( 9(3 ) (4.22)
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a l

from Eqs. (4.9) and (4.10) and Eq. (4.23) below.t
Again we note the dimensionless combination in Eq. (4.22) and in a manner similar to

Eq. (4.10) we obtain

k = C. (4.23)

which has an important physical interpretation in the context of the Hines-Munk critical

layer picture. The horizontal phase trace velocity is given by €o/k x . For a critical layer to

occur, (o/K) = U where kis the critical wave number at that frequency, co. Unlike the

case for k. where only one k. is critical, one has k (c)) which is to say it is frequency

dependent. From the cascade assumption (CAo) ~ U2 hence

2
2 ca Ci
X E (4.24)

Thus the physical meaning of kx. is that it is the value of k for the lowest wave frequency.i.e.
X

Cl) ----0.

It should be noted that since k ((o) depends on Co, this may provide a clue to the

interpretation of the co dependence found by Pinkel (1981, 1984). That is to say, when a
' u (co, kx) spectrum is obtained, our approach would indicate that at frequency (o,

kX = C e and that the dominant wave number is frequency dependent. That is to say
the roll off point in k1 dependence would change with frequency.

t As has been mentioned, when Eq. (3.2) or (4.7) is integrated between (o and N, and the

normalization of B (), see (2.3), is used, one obtains E = a e c£i . But E = q2, the velocity
variance; thus, to within a constant of order unity, c', we have q2 =

16



In order to obtain Tv (kx) one makes use of Eq. (4.14) which also holds for Tu.vt (kx). That

is we use Tv (k) a -. (k) obtaining

= ' ] C2/3 /3X(k) 14N C2 k 5 /3  )

c x) (4.25)

A final caution is In order here. In the case mentioned In Dewan (1979) the fluctuations

were exceptionally severe and were, in fact, previously interpreted as ordinary turbulence. In

addition, the velocity components were comparable in size. The present model, however, is

not intended for unusually high energy situations. It is intended to represent the usual

background" "universal" case. In this sense, the experimental data discussed In Dewan (1979)

do not represent "confirmation" of the present model. The latter awaits future experiments.

A similar case of exceptionally high energy gravity waves is discussed in VanZandt et al
(1990) where Tv (co) falls, not as (o° , as in the less excited case, but as -513 [as would be

expected for ' u (ao)]. In both of these situations, (that is, Dewan (1979) and VanZandt (1990)]

the observed departure from the predicted PSD may be due to the cause suggested by Van Zandt

(1990). This is, namely, that the vertical velocity component measurements are contaminated

by the effects of the very large horizontal components of the velocities.

5. COLLECTION OF PREDICTIONS

5.1 Model Equations

N2

=u(k a-N (1 + Xz) - 3 (m 2 /s 2)/ (rad/m)

Z,

Xz "W (k/kz.) '  k " C z 4 ( N co1/)5

a.=[In (kz/k) (3)] - '

t This means T, od t.
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T ( ) (1 + )-3 (m 2 /s2)/(rad/m) (5.2)

Ze

,, £2/3

'Vu(k) 2 k 3 (1 + )-/3 (m2/s 2)/(rad/m)

X4'

cc C
21 3

c" = 3 X -k/k (5.3)
3C

2 '
z

k' (1. = ==

[02 - (2r) (m2/s2 ) (cycles/sec)

,(() = 25o

5.2 Suggestions for Future Tests of Tis Model

Clearly, future tests would involve measurements of simultaneously with power spectral
measurements of velocity fluctuations. n situ and remote measurements of e have been
performed by Barat (1975), Cadet (1977), and Hocking (1988a. 1988b, 1985) for example.

The values of kz, and kx, could be obtained directly from the relevant PSD's (from the "roll

off' characteristics) and, by utimng known values of N, e, and Cor the values of Cx and Cz can be
obtained from the equations for k, and k, above. The dependence of these and the PSDs on

wo could be checked by conducting experiments at various latitudes. Such dependences are all,

of course, entirely new predictions.

18



It seems that the most convenient tests of the predicted C dependence of these gravity waves
would Involve the frequency PSD's (Eqs. (5.5) and (5.6)). If these obtain verification it would
then be appropriate to test the more difficult to measure T(k) PSD's for c dependence.

Oceanic measurements of c together with appropriate PSD's would also play an important

role in the verification of this model n spite of the difference of N dependence upon depth.

Sonar would then replace radar as the instrument of choice.

6. ORDER OF MAGNITUDE COMPARISON WITH EXPERIMENT

If simultaneous measurements of PSD's and e in the atmosphere or ocean were presently

available it would be possible to put the present model to a test immediately. Unfortunately.
no such data seem to exist yet. It is nevertheless possible to find out if the theory predicts

quantities "within the bounds" of observation. In carrying out this exercise I learned that the

model is rather elaborately "interconnected" and hence "vulnerable" to quantitative

observation. For example, k.. and C. enter into the PSD coefficient in both a direct and

(through }x) Indirect way.

In the following, "reasonable" values for the unknowns were used and the relevant papers

cited.

6.1 Atmospheric Comparison

As mentioned in Section 4.1. the Tu (kz) PSD for the atmosphere has been found to be

valid. We therefore turn to a frequency PSD namely Tu (o) and compare it with experiment.

For convenience I list, on the basis of Section (5.1). the following useful equations:

kz C z X2,"2/kZ. kZM 2n'VJ , X .. 2/k (6.1)
max Zmax

uT) (3) C- 2 c (2/ct 2~c 26.2)

J(0) 8 z 1W, 6.2)

T J(N)=(Q) C' E (1/N2i) 2n 6.38 z (6.3)
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,t =F[,,(,.==/,J.- -
L RX 2)](6.4)

The "typical" values for the parameters will be chosen to be

= 5 x le m 2 /s 3  Cadet (1977)
N = 10-2 rad/s VanZandt (1982), his Fig. 1
o01 = 1 0

-4 rad/s (-400N) VanZandt (1982), his Fig. 1
Cz = 0.2 (chosen because of experimental agreement)

Ct = 0.235 [from (6.4)

From these the following results can be obtained: kz. -- 8.9 x 10-4 rad/m, Xz = 7 km,

k = 2.8 x I0-1 rad/m, X . = 22 m. A comparison between these numbers and those found

in Smith et al (1987) (Xz. in stratosphere - 5 kn), and Dewan and Good (1986) (X Zmj, - 40 m)

shows that these length scales are acceptable. The PSD's 'Fu (col) and TP (N) are

u(CO) = 1.4 x 106 (m 2/s 2)/(cycles/sec); [cf. 10 - 1063 ]

T U(N) = 69 (m 2/s 2)/(cycles/sec); [cf. 101.8 or 63 - 103.5].

The values indicated by "cf" are the experimental ranges taken from VanZandt (1982).
Fig. 1. Thus, I conclude that if I choose Cz = 0.2 I can get "good" agreement with experiment.
Is the value for C z, "a universal constant of order unity", a reasonable value? The answer is

yes as can be shown by considering Bond (1929).
It has been mentioned that VanZandt (1982) observed that 'Iu (w) had a Q)-5/3 rather than a

(6-2 dependence. In this case one would be forced to alter the present model along the lines of
Tennekes (1975) as was mentioned earlier W, Section 3. See Eq. (3.3). This modification is

very simple. E B(o) would then become proportionalt to (01/ oC -5/3 . I feel that such a

modification would be indicated once the present model has been at least partially validated
by direct measure-ments of e when 'Tu (w) or 'P (w) were simultaneously measured, and if the

w0- / 3 continued to be observed.

t A detailed argument for why 06- 5/3 should be correct for the atmosphere while o-2

applies to the ocean will be found in the appendix.
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It is possible to put the present model to one further test at this time. According to Eq. (5.5)
the T u (co) PSD is linearly dependent on E. Measurements of E In the mesosphere have been

made by Hocking (1988) and found to be of order 0.1m 2 s-3 at 86-88 km altitude. Comparing

this to e = 5 x 10"4m 2s- found In the stratosphere by Cadet (1977) (11 km) it is found that the
present theory predicts that Hu (o) at the higher altitude can be 200 times as large as It Is at

the lower altitude. Has this been observed? According to Balsley and Carter (1982) "In the
o-5/3 portions of the spectra, the spectral energy density/unit mass is about 250 times smaller
in the troposphere (8 km) than in the mesosphere (86 kIn)". This is encouraging. Of course a
valid test would require simultaneous measurements of - and 'Fu (o) at such altitudes. For
example, Balsley and Garello (1985) found a ratio of about 50 n 'u (co) between 13 km and

87 km.
Between 50 and 250 we have a factor of 5; but the GM model claim is that these PSD's are

generally within a factor of 2. This might imply that, in this sense, the atmosphere is more
variable. An Interesting discussion about e and universality will be found In Munk (1981),
sections 9.9.6 and 9.9.7.

It can be seen from the above that in the case of atmospheric spectra such as u v (Qw) and
Fu.v(kj ,the present model's dependence on F makes it desirable to abandon the use of the

word "universal" for such PSD's. Since e varies over a large range in the ocean it is curious
that these PSD's have not been reported as being very variable there.

6.2 Oceanic Comparison

The appropriate values for "typical" oceanic values are as follows:

e = l0 (M2r/sec3 ) Woods (1974) and GM (1972), p. 251
also Monin and OzmLidov (1985)

N = 3.5 x l0 (rad/sec) GM (1972), 2 cycles/hv

c =  7 x 10-5 (rad/sec) GM (1972), 0.04 cycles/hv, p. 261

M = 7.7x 10 (rad/m) GM (1972), 0.122 cycles/km

E' = 2 x e GM (1972), p. 252

C, = (0.2) (from previous section)

Next to each quantity at least one reference is given for support. Perhaps the most variable
parameter is P which Monin and Ozmldov (1985) indicate can vary over a very wide range
depending upon depth, location, and weather conditions. Values listed by them (pp. 124-129)
go from 10-10 to 10-5 m2 /sec 3 . The "hat" notation Is, as was mentioned above, from GM who
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use it to mean "dimensional" to distinguish the quantities in their model which are primarily
non-dimensional. The quantity Cz was set equal to 0.2 as it was in the previous atmospheric

comparison since Cz Is presumed to be a universal dimensionless constant.

As has already been mentioned the GM model gives a scaling with respect to N which

differs from the present one. This matter cannot be further investigated here. In what follows

one can only determine if the present model is, in some sense, reasonable. The following are

presented for comparison:

-2V( -2tO

12E' (2 + (01

GM model: '*'(o)= {33 J [ 2  21 (6.5)

Present model: 'P(O)= {(2 x) (a) K2-O 2+ (6.6)
Cz

,t = [In (k /k.) - 1

and

GM model: T U (k) = (1.5) (3/2)} [ + (6M k: (6.7)p- [ xj-"

Present model: T (k) = { [I + xj'
Z,

(6.8)

The values k7, Xz., km= and Xz are obtained from Eq. (6.1). Table 6.1 shows the

comparisons between the models.
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Table 6.1 Comparison of Present Model with "Observations".

PeetMdl"Observation"

X z = 0.48 m X zm =1 1 meter Woods (1974)

z= 107 m ,z,= 170 m Holloway (1981), p. 58

c= 0.256

k, = 5.9 x 10-2 rad/n - I

kzm x = 13 m -1

[-( - 1.51 x le (m21s2) ([(] =5.8 X le (m2/s2) (Sai)

= part of T,, (6o) [Eq. (6.6)] = part of'T, (€o)c. [Eq. (6.5)]
aN2-2 In2/2 2 2 2n1.6x1 /s N E' _5x-2 m/sk S3 (rad/m) A2 k (rad/m)

z, M Z,

= part of Tu (kz) [Eq. (6.8)] = part of u (kz)c

[Eq. (6.7)]

t In order to avoid problems with dimensional inconsistency, it would appear necessary

to ascribe the units m2 ra to , in the present context (pointed out to me by T. Van Zandt

in a private communication).

TP (co) = 62 (m 2 /s 2) / (cycles/sec) 56(m 2 / s 2 )/(cycles/sec)

[Eq. (6.6)]

'P (N) = 1.2 x l0 (m 2 /s 2)/(cycles/sec) 1.7 x 1e (m 2 /s 2 )/(cycles/sec)

[Eq. (6.6)] Both from GM (1972), Fig. 4. See text.

Note that the 'Pu (o) comparisons were performed in three ways. First the values of the
"curly brackets" in Eqs. (6.5) and (6.6) were compared, then 'u (w1) from Eq. (6.6) was compared
with the value derived from Fig. 4 of GM (1972). The same was done for 'Pu (N) from Eq. (6.6).

23



To make the comparisons, the graphical values had to be multiplied by
3.5x0 rad/s _ cycles/sec.

2x rad/ cy
Regarding Tu (kz) there was a difference in slope. The present model gives (1 + ,z)- in

comparison to (I + %)- 2-5 InGM (1975). We do not know whether or not the difference is real or

due to a difference in data processing. For example, omission of "pre-whtening ' techniques
could explain the differences. As can be seen, the values of the curly brackets are comparable.
In general, the numerical values in Table 6.1 agree to within a factor of about 3 or better.

What has been proven in Sections (6.1) and (6.2)? All that was accomplished was that the
model appears to give the correct order of magnitude. In some circles this is called a "sanity

test". The model is not"obviously wrong", in other words.

7. CONCLUSIONS

A similitude model, based mainly on a wave interaction cascade, has been given to
"explain" the GM model from physical considerations. By necessity, the model has
experimental consequences that remain to be tested. These, at present, are Its main virtue. If
future experiments validate the model then it will have demonstrated predictive value. The
main experiments suggested include simultaneous measurements of a and certain PSD's as
given in Section 6.

The exact roles of "saturation" due to "instability" and "cascade" due to "nonlinear mode-
interaction" are not entirely clear at present; but it appears as if both are taking place.
Holloway (1980) has pointed out that nonlinear mode-interaction can, in and of itself,
represent "saturation" of a type with critical Richardson number - 4. Both types of
"saturation" might take place and be related to each other and bring about the observed
spectra. Obviously the situation is not completely understood yet however.

As has been mentioned previously there has been some question of whether or not the
waves discussed in this paper should be called turbulence of some kind (e.g. "buoyancy

turbulence", or "2-dimensional turbulence") - see Gage (1979), Trefethen and Panton (1989), Sidi
et al (1988), Weinstock (1985), Holloway (1983) and Gargett et al (1981). The above discussion
shows that wave properties exist (like propogation, dispersion relations, wave functions, and
polarization relations) and yet, at the same time there are some of the properties of turbulence
such as self-similar cascades in these velocity fluctuations. We seem to be dealing with a
hybrid dynamics for which no name yet exists. Does this mean that we need a new word like
"waveulence" or "turbundulence". or will "buoyancy turbulence" be altered in meaning to stand

for the above?
Regarding the term "universal spectrum", the predicted dependence of Tuv ((o) and TUN (k)

upon e indicates that, if the model proposed here is valid, these spectra would be much "less"
universal than the TUNv (kz) spectra. It was also mentioned that the slope of the Tu (co)
spectrum may be -2 or -5/3 depending upon the conditions (see the Appendix).
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Appendix

Convective Effects upon the Eulerian Spectrum for Energy as a Function of 0o: EB(wO)

In the text it was mentioned that the frequency spectrum of horizontal velocity

fluctuations had an w- 2 dependence for internal gravity waves in the ocean whereas in the

atmosphere van Zandt showed evidence for an o 5 1 3 dependence. It was also mentioned in the

text that Tennekes (1975) gave an argument in the context of turbulence that might possibly be

adapted to the case of waves and might therefore be useful in explaining the difference in w

dependence in oceanic and atmospheric observations. The purpose of this appendix is to carry

out this suggestion.

Tennekes (1975) pointed out that the Kolmogorov dimensional arguments for inertial

range, or cascade, turbulence lead to

0) 
(A-t)

wherC OL (C' fI. the velocity fluctuation PSD, the subscript L designates "Lagrang/an

description", and PL is a constant of order unity. He then pointed out that experimental
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evidence contradicts (A-i). He next showed that for sufficiently large Reynolds number based

on "outer length", the inertial range would turn into an "inertial advective" range which

includes the advective effects of large eddies upon the small eddies. This changes the Eulerian

spectrum which now would no longer resemble the Lagrangian spectrum due to the doppler

effects. More specifically he showed that advective doppler effects cause the Eulerian

frequency PSD for velocity fluctuations to have the following form:

( q-/ 3 E 2/3)

E ((0) = PE (05/3 (A-2)

where PE is a constant of order unity, the subscript E designates Eulerian frame, and q is the

root mean square velocity fluction due to the turbulent field. This relation will be derived

below.

In order to ascertain the conditions necessary for advective effects to become important,

Tennekes made use of the fact that such effects are most prominent at the highest frequencies.

In inertial range turbulence the highest frequency is known to be

°C.o.= (A-3)

where the subscript c.o. refers to "cut off". The kinetic energy (per unit mass) in the

Lagrangian and Eulerian frames at ., are designated 2-u (o.) and u(

respectively. Note that (c.o. is the highest frequency for the L frame but not for the E frame

since doppler effects can make frequencies shift upwards. Tennekes compared these energies

and found

lu 2(WC.O)-Re 1/6 _ 1/ 6

I U 2 (0 (A-4)
2 L ( c.o.)

where I is the outer scale of the cascade and Re is the Reynolds number. Thus for large enough

Re, the Eulerian energy at the Lagrangian frequency cut off can be significantly larger than the

corresponding energy in the Lagrangian frame due to advection.

In order to deduce the PSD in the Eulerian (E) frame, that is (A-2). Tennekes used
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r (A-5)

which is the frequency in E due to q advective doppler effects on eddies of scale r caused by the
largest scale eddies. From Kolmogorov's theory he used

-Lu 2 2/32/3.
2 "(O)-E r (A-6)

Inserting (A-5) into (A-6), by elimination of r,

S2/32 uE ,) - (A-7)

Using the fact that the PSD is the "kinetic energy", i.e. l-u 2 per unit frequency he obtained
2

E- E (q)
2/3

5/3 ' (A-8)

This differs from (A-1) in the same way that atmospheric waves seem to differ from oceanic
waves. Thus in the case of cascade turbulence (A-2) is valid when Re in (A-4) is sufficiently
large.

Now we turn to the question of what happens to the frequency spectra of waves. As will be
shown, a "frozen waves" hypothesis which is analogous to the "frozen turbulence" implied by
(A-5) appears to be Justified. I shall start by assuming it is valid and then subsequently
present evidence that it is indeed justified.

We start by deriving a counterpart to (A-4) for waves with the idea that the result will

possibly indicate a difference between ocean and atmosphere. The highest or "cut off'
frequency for internal waves is the buoyancy frequency N. This replaces the (,e.o. in the

Tennekes argument. The first question to answer, then, is what is the value of I u 2 (N)?

From the main text we have

0) a) EB ((o) = a'e
2 (A-9)

o3)
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Setting Co = N in (A-8) and Ao = ( as discussed in the text in the context of fractal self-

similarity, we obtain

1-u2 L(N) ~ L (N) * N = WE (A- 10)
2 L LN

In order to obtain I u 2 (N) we follow Tennekes by assuming the frozen hypothesis and2E

commence with Lagrangian spatial dependence. From the main text we have

Wu (kz) a" E2/3 k - '/ 3 . (A-i1)

Notice here that I have chosen the horizontal velocity components only. This is because

the vertical components at any wave number are smaller by a factor of (!---i as shown in

Equ.'s (4.14) and (5.4). Next. the frozen assumption gives

(0 = q kx (A- 12)

which is our counterpart to Tenneke's (A-5) above. This assumes that for the high Eulerian
frequencies, wE' one senses only the convective effects due to spatial scales which are caused

by the wave field as a whole. The latter effect is of course due to q, the r.m.s. velocity (compare
Hines, 1991). Solving (A-12) for kx and substituting the result into (A-I l) we obtain (under our

assumption) an estimate for (1 E ((OE)' the Eulerian PSD for velocity fluctuations:

F2/3 E) 51
T ) (A- 13)

In order to obtain I u 2 (N) we again multiply by the appropriate band width. But since
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(Eq. A-13) was obtained from (A- 11) which is a density, not in (i) but in k, we must multiply Wu

by Ak. Also, oE = N is the relevant frequencv. What then does one use for Ak? The answer is

Ak = N (using A-12 with oE = N and using Ak = k as before). Thus we have
q

N2/3 R-) 2 /3 .

We finally arrive at the ratio [in analogy with (A-4)]

2 , (N/q)- / 3  N1/3 q2/3

lu 2 (N) ' -CI/3 WAI)
2 L

where (A-10) was used. But, as shown in the main text,

N
q 2=f E B (o) d (o) (A 16)qr E~i~(0) (A- 16)

Solving (A-16) for E and inserting into (A-15),

u2 (N) 1/3
2 E(A-17)

Iu 2 (N)2 L

to within constants of order unity.
This equation states that as the ratio N/o, increases, the convective effects upon the higher

frequencies increases and, as a consequence of the earlier arguments of Tennekes that were

described above and which continue to hold under the present assumptions, the PSD for

energy changes from
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co (A-18)

to

EB (oE) 2/3 q2/3 (o-5/3 C o ( - 5 / 3

1/3 (A- 19)(0i

where I have omitted constants of order unity. In Eq. (A-19) 1 used (A-14) with (oE replacing N.

The Eulerian PSD was then obtained by then dividing 1 u 2 (W) by the bandwidth o in the2 E (E) bytebnwdhE i h

usual way. and thus I obtained the middle term of (A-19).

The next question is whether or not (A- 17) can explain the difference between the slopes
observed between oceanic and atmospheric temporal frequency spectra. In the main text.
when comparisons were made between observations and theory, approximately the following
values were employed.

Atmospheric: N = 2.2 x 10-2 rad/sec*. (0i = 
10-4 rad/sect (500 N)

Oceanic: N = 3.5 x 10- 3 rad/sec, (0 = 7 x I0 - 5 rad/s (29°N)

[9 x I0 - 5 rad/s (39°N)

A closer look at Table 1 of GM (1972) p. 237 shows that his Fig. 1 is really based on data
such that 39 0 N is a more appropriate latitude [this is based on a weighted average of o ] thus
we will replace (0 above, for the ocean, by 9 x 10- 5 rad/s (in brackets). This would not change

any conclusions in the main text. Thus, from (A- 16) we have

t These values are not exactly the same as those in Section 6.1 of the main text. There I used

N = 10- 2 rad/s and (, = 1 0 -4 rad/s (40'N). The present values here I believe to be more
accurate. They change no conclusions of the main text however. The new value of %. = 3.5 km

instead of 7 km. X,, , = 7.9 m instead of 22 m and ,,1 (N) = 14 (m2 /s 2 )/(c/s) instead of
69(m2 /s 2 )/(c/s) . This last value takes it lower than the experimental minimum of 63; but.
remember that the point of the present appendix is to show that the -5/3 slope is valid and
this would change 11u(N) to a higher value. For these reasons the conclusions of the main text
were left unchanged.
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1/.3 u2

Atmospheric: N ) 6.0

2

Oceanic: (N /=E = 3.4

These are in the ratio of (6/3.4) = 1.8 which, as can easily be shown, is just sufficient to

convert the atmospheric PSD slope from &(C/ to (2 . In other words, reducing the PSD at

(o = N in van Zandt's Figure 1 by 80% steepens his slope from -5/3 to -2 on the log-log graph.

In conclusion it appears that we have a quantitative explanation of the difference between

atmospheric and oceanic measurements of Vu (o). One interesting consequence of this is the

following prediction. When (N/(oi )
1

/
3 = 6.0 in the ocean, then one should also see an (6- 5/ 3

dependence! What latitude gives the appropriate (oi? Using N = 3.5 x 10 - 3 rad/s, we are led to

= N = 1.6 x 0 - 5 rad/s (A-20)

But since

(0, = 2Qsin 0 = (1.46 x 10 -4 ) sin

= a rc s in ( 1 _:6 x - . . ...10 
- )  = 6 .3 ON

(1.46 x loe)

This latitude, unfortunately is very close to the equator. As was mentioned in the text, the

present model is not applicable at 0 = 00. This therefore raises the question of whether or not

it is valid to predict the above result from the model.

An alternative test would be to see if there were an extreme northern latitude where the

atmospheric PSD would change to an 0- 2 dependence. That would require (N) = 3.4 and
10-2, 

(W i )

for N = 2.2 x 10 2 , w1 would have to be 5.6 x 10 - 4 rad/s which is not possible. Perhaps with
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sufficiently accurate PSD's the implied changes in PSD slope with latitude could be detected

but such accuracy may be too expensive to be immediately practical. The other tests in the

text are much more practical to perform. If these tests turn out to be positive, then possibly, a

latitude test may be tempting to perform.

We now turn to the question of the validity of the "frozen wave assumption" made above.

The relation between the Eulerian and Lagrangian frequencies where the Lagrangian frame

has a velocity q (presumed horizontal for previously given reasons) is

COE = OL ± qk x  (A-22)

In order to ascertain the value of u E (N) we may use

N
u2(N) f wu (kx dL) dLAk (A-23)

w aere

2~~~ ~ +"02 +k)-5/3

LV- (ki L) 2 L 2  1 Lk k1 + (A-24)OL | 0 OL  .kx,

which represents EB(o)) U) ()x)N from the main text. When (A-22) is used to eliminate k.

X.

from (A-24) one can obtain, for the case ofo E = N and hence k = 8 - L from (A-22),

N 2 + 2 5/3

u2(N)= q3NI(/ 3o * )Ak(UE 2 w- 0 + N - -Wj  LA-25

OL I L/

where the approximation
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k -- - (01 (A-26)X, q

was used. Notice that the relative sign between k. and q was chosen as positive, and therefore,
a positive change of o L in the integration of (A-24) will result in larger rather than smaller

contributions from what was the k x term in (A-23). We regard the contributions of the

opposite case to be comparatively negligible. Now Eq. (A-24) can be written

U2(N) = Ak q3  0 * N'O') (A-27)uE (N = k

where

( L + 0•2
(INT) L 4o 1 - 1 *dcoL (A-28)

t (OL ((Ol + N - OL

where the (2/3) factor is now dropped since Cz , and a' have already been set equal to unity.

Using the usual order of magnitude values, (oi = 
1 0 -4 and N = 10 -2 (rad/sec) a numerical

integration of INT is found to give (3.7 + .4) x 107.
But we seek a convenient estimate of (A-27) which gives the dependence on o i and N

explicitly. It Is clear, by inspection, that the greatest contribution of the integrand would be
for values of 0oL near (o,. For example, if the integrand of (A-27) is called f (coL) [ letting (o, and
N assume the above values] and plotting 0oL = n ),, i.e. as multiples of o,, we would then have

Table A- 1.

37



TABLE Al
n f(n w1 )

1 4.3 x 1011

2 6.8 x 1010
3 2.7 x 1010

10 2.6 x 109

20 7.7 x 108

30 4.2 x 108

40 3.1 x 108

50 2.7 x 108
60 2.7 x 108

70 3.1 x 108

80 4.5 x 108

90 1.1 x 109

100(= N) 4.6 x 1010

From this table we see (a) there is an order of magnitude drop from n = 1 to n =2 in fln to,).

(b) the integrand bounces back but is always an order of magnitude (or two or three) below the
initial value. We are therefore led to compare, numerically, the value of INT, given above,

namely 3.7 x 107 , to the approximation

-2°oi 1
V (Oi 0 -4 0-5/3) 1

0) I (o+ N -
(A-29)

= - =4.3x 107 .

This is acceptable agreement and thus we consider it appropriate to accept the approximation.
When oL = coi kx = N/q from

N - = qkx - N (A-30)

calling Ak =k x = N/q in (A-27) and using INT = W (w ) co, above, we obtain



E Nq. q * _ - 2 N/ (A-31)

2q 2 q q 2  L 5/3 j N

where the (A-29) bracket term was used. Thus

I 2 (N) =2q2 (0 1 2/ 3

2 E ( N) (A-32)

2 (N 2L a' N1
- I' 2 '01q2

and, from (A- 15N)1 = - (w q2)/N (from e co q2 and a'- 1), the ratio

1u 2 (N) 1/3
2 E -=2x
1lU 2 (N) c i )(A-33)

2 L

which is the same as the frozen case (A-17) within constants of order unity.
This proves that, as far as our purposes are concerned, the "frozen waves" hypothesis is

valid. Finally it will be noted that our conclusions were never based on the absolute value of
(A-17) but rather the ratio of this quantity taken from the atmosphere and ocean. For this
reason, plus the fact that the constant of order unity involved would be universal, the
conclusion is independent of the actual value of that constant.
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Notes Added in Proof

1 - The unusual history behind the theory of Kolmogorov and Obukhov regarding inertial

range turbulence is given in "Statistical Fluid Mechanics" by A.S. Monin and A.M. Yaglom,
MIT Press, 1965, vol. 1, pp. 12-17. In addition to the rhyme of L.F. Richardson mentioned in

the text Kolmogorov was also aware of the "4/3" length scaling law of the diffusion by

turbulence of clouds which, as was later realized, follows dimensionally from the cascade

hypothesis.

3 - The present report does not discuss the problems arising from variable N and variable

shears with altitude, their filtering effects. etc. In regard to saturation see Van Zandt, T.,
Fritts, D., Pageoph., 130, p. 399 (1989) who examine some of such effects. The growth of wave

amplitude with altitude is a crucial factor.

4 - The agreement between the model and the e measurements of Hocking and Wu (co)

measurements of Balsley and Carter that is mentioned on p. 21 was not used during my

construction of the present model. It was learnt by the author only at the last stage of writing.
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In other words I claim that it was really a "prediction" that was consistent with an unexpected

observation. This is the reason that I think that simultaneous measurements of xyu (o) and e

are both Justified and worth the effort.

5 - Regarding the simultaneous presence of cascade and saturation it should be clearly stated

that this theory assumes (a) cascade processes control cz and k. dependent PSD's, and

(b) saturation controls the k z PSD of horizontal velocity fluctuations. A planned future report

will describe the simultaneous presence of these two processes in detail and will explain why

(b) does not significantly interfere with (a).
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