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TRANSVERSE KLYSTRON

I. Introduction

Scanned beam modulation, recently proposed in the Soviet Union, suggests po-

tentially diverse applications for generation of high power coherent radiation. An

initiating impact has been made through the invention of the gyrocon and the

magnicon.1'2 Both devices utilize an electron beam deflected transversely with an

RF input signal, and injected into an interaction cavity, scanning in-phase to the

cavity mode. All the electrons in the beam are, thus, in the right phase with the

field, ready for efficient energy transfer. The efficiency is much higher than those

achieved with usual modulation schemes. For example, in usual cyclotron maser

devices such as a gyrotron,3 density modulation is obtained through the negative

mass instability. Although the majority of electrons are bunched at the right "hase

to the interacting field, the bunching is not perfect in the sense that a small portion

of the electrons remain at the reverse phase, reducing the overall efficiency. In this

sense a magnicon (gyrocon) can be called a super-bunched gyrotron (klystron). This

"super-bunching" is automatically obtained through the transverse modulation.

Perhaps the most important technical issue on practical application of the scan-

ning beam will be the requirement on the beam brightness, i.e. the phase space

density of electrons. A high brightness is strictly required in both the gyrocon and

the magnicon scheme, and in fact, it is expected that the requirement applies to

any use of scanning beams in order not to smear out the transverse modulation.

Developments in various types of high brightness electron guns,2 especially those

with field emission are, thus, essential to practical utilization of scanning beams.

Manuscript approved November 1, 1990.



Once the requirement is fulfilled, scanning beams are expected to be used poten-

tially in a variety of ways. The configuration in this paper is one example out of

those varieties.

Mako and Godlove 4 recently propos-d a variation of the conventional klvstron

which utilizes the scanning beam. They call it a transverse klystron in the sense

that the beam modulation is done in the direction transverse to the electron beam

propagation (scanning beam). Instead of free space drift as in the conventional

klystron,5 the modulated beam is injected into a region with a vertical magnetic

field which bends the electron trajectory. On exiting from the bending magnet the

electrons get bunched in its propagation direction. This longitudinal bunching is

basically due to the drift path difference between modulated and equilibrium orbits.

The operation frequency range is expected to be from a few hundred MHz up to a

few GHz, which is appropriate for applications in communication, remote sensing,

RF linear accelerators, and power bearmng.

One of the advantages of the scanning modulation over the conventional longi-

tudinal modulation is seen when the beam voltage is high (-MeV). The advantage

comes from the fact that the transverse mass of a relativistic electron is proportional

to -ym, while the longitudinal mass is proportional to y3 rm. Here, y is the electron

energy relative to its rest mass. Scanning beam modulation is, therefore, easier by a

factor of -2. Another advantageous feature of the above transverse klystron scheme

is with the bending magnet. That is, the longitudinal effective mass of an electron

gets negative in the magnet and consequently, the electron bunching is enhanced

2



by the longitudinal self-field. This feature has previously been pointed out by Lau'

in a different context. Along with these advantages the system is estimated to have

high gain and efficiency without any help of extra passive cavities. The total system

can be compact and simple. The next two sections provide an analytic estimation

on how the bunching is accomplished in this system.

The transverse klystron concept described above does not have a guide magnetic

field. Therefore, it is important to use a high energy electron beam to cancel out the

transverse electrostatic field as much as possible. Even though the current is limited

to a rather low value, the output power can be high since the electron energy and

the efficiency are high. For a truly high power operation, however, we are pushed

to a high current regime rather than a high voltage regime. A guiding magnetic

field is essential in this regime, and various considerations are made in Sec. IV for

this case. Finally, conclusions are made in Sec. V.
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II. Single particle analysis

A schematic view of the device is shown in Fig. 1. A well collimated electron beam

enters into the modulation cavity. There, the transverse momentum is modulated by

the input signal, and through a ballistic drift, the beam gets displaced transversely

by the time it reaches the bending magnet. The magnet modifies the transverse

displacement into a longitudinal, and thus produces a longitudinal bunching of the

electrons at the output cavity.

The z-axis indicated in Fig. 1 is the longitudinal coordinate axis along the unper-

turbed equilibrium beam orbit. Let us define a transverse coordinate r such that its

unit vector f lies in the direction of modulation. In the bending magnet f is a radial

unit vector and accordingly, the coordinate axis r rotates along the magnet. With

another transverse coordinate y, in the direction going into the paper, (r, z, y) form

right-handed local Cartesian (cylindrical) coordinates outside (inside) the magnet.

The longitudinal coordinate z is related with the usual angular coordinate 0, by

z =- r06 inside the beAiding magnet. Here r0 is the unperturbed orbit radius. Hence,

the z coordinate of an arbitrary point is measured by the distance from the center

of the modulation cavity to the projected point onto the z-axis in i direction. We

denote the entry and the exit coordinates of the bending magnet with zi, and z"t,

respectively. The drift distances between the modulation cavity and the magnet

entry, and between the magnet exit and the output cavity are denoted with L1 and

L2 , respectively (L1 = zi).

4



Our primary concern for the rest of this paper is to estimate the longitudinal

displacement 5z of an electron with respect to the unperturbed electron departed

at the same time, i.e.,

bz(t) = z(t) - zo(t)

where z(t) is the actual electron position, zo(t) = vo(t - to), v~o is the equilibrium

beam velocity, and to is the departure time at z = 0.

A. Modulation cavity

Let us imagine an electric field

E, = Eo cos wt

in an input cavity, which modulates the transverse electron momentum. The field

oscillates with a driving frequency w. The modulated transverse velocity is given

by

V = -ccoswt , (1)

where c is the speed of light, to is the time at which the electron is located at the

center of the modulation cavity, and E0 is a small dimensionless parameter that

measures the strength of the modulation;

co = 2eEof/7rp.oc , (2)

where t is the cavity length, e is the absolute electron charge, and Pxo is the

initial longitudinal momentum. Here we have assumed £ = 7rv~o/w for a maximum

deflection. A more realistic value of co can be given for a specific choice of mode.

5



For a TM2 10 mode in a rectangular cavity, as an example, the electric field is zero

on axis and accordingly, the modulation is obtained by an oscillating magnetic field.

Note that the longitudinal momentum is a dynamical constant, and the change in

the longitudinal velocity is only through the change in the energy, &Y, which is in

the second order in co. Hence, the longitudinal displacement bz at 0 < z < zi,, is

proportional to co, and can be neglected.

B. Initial conditions at the magnet entry

Through a ballistic drift from the modulation cavity, the electron obtains a trans-

verse displacement at z = zi-

bri,, = -( eoLl /Ozo )cos wt0, (3)

where #,,0 = Vfo/C. Moreover,

br' : -(eo/#3.o)coswto , (4)

where the prime denotcs a derivative with respect to z.

As Fig. 1 shows the bending magnet is assumed to have finite edge angles,

v, and V2. When the magnet edge is not normal to the equilibrium beam orbit, a

modification must be taken for br'. The change in br is of the second order, and can

be neglected. For simplicity in analysis we neglect any effect of the vertical fringe

field, and assume that the vertical magnetic field, By, rises instantaneously at the

edges. Intuitively, making the edge angle vi positive is equivalent to superposing

a normal magnet (vi = 0) with two triangular sector magnet~s of which the upper

6



(lower) part has an opposite (same) polarity. It is clear that the incident parallel

beam would get diverged. Hence, a positive angle v, enhances the pitch angle br',

and creates more path difference between the modulation and the output cavities

so that the electron bunching is more efficient. Another advantageous role of the

positive angle v1, as we will see below, is that the electrons are kicked in the vertical

(y) direction to yield a focusing even without a finite field index.7

Let us now quantify these arguments. Figure 2 is a schematic picture near the

magnet entrance. br' at point A is given by Lq. (4). The electron, however, enters

into the magnet later at point B. Between the two points the electron trajectory is

straight. The coordinate system, on the other hand, rotates following the curved

longitudinal axis. The rotated angle at point B is ba = (br,, /ro)tan v, so that the

effective pitch angle is enhanced to

,L 1  e0
br -(1 + -- tan vi)-- coswto (5)

A further effect of the edge angle is observed in the vertical (y) direction. Let us

denote the vertical displacement with by, and its gradient with by'. Wifl, a linear

polarization of the modulation signal, as we are assuming in Sec. IIA, these are

nonzero due to the finite beam emittance. With a circular modulation, they are the

same as br and br' except for a 90 degree phase difference. Assuming a stepwise

rise of the vertical magnetic field at the entrance,

B11 = Bo0 O(z - r tan vi)
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where O(z) is a step function. This field alone, however, does not satisfy the

Maxwell's equation, div B = curl B = 0, which is obvious because the field lines

cannot be simply stopped at z - r tan vL. The accompaning radial field satisfies

I dzB, - Boyy tan vl

This radial field gives electrons a vertical impulse, and changes the vertical velocity

to

,6y•, = 6y'(1 - L•
S=- Ltan zl) (6)

r0

The positive edge angle, therefore, reduces the vertical pitch angle and gives rise to

a beam focusing. A simple example of the focusing can be seen when we require

(L 1 /ro)tanvi = 1, i.e. by',, = 0. With an exit angle v2 = vi and with a field index

n = 0, it is obvious that the electrons will be focused at L 2 = L 1 .

C. The bending magnet

We assume the fields of the bending magnet to be8

2
B, = -Born-- ,

ro

B, = B o,(1 n r
ro

Bt = Boz

where n = -(ro/Boy)[OBY/arI,=o is the field index, and the guide field B0, is zero

in the present section. The equilibrium orbit is defined by

Vz0")'0

r0 -8



2 / _ 2 2 / 2( 1(

-o(t) - o ),o( - t0 )

Yo

where Qoy = eBoy/mc is the nonrelativistic electron cyclotron frequency.

Assuming dynamical quantities have small perturbations from the equilibrium

values, i.e. -y = o + 6y, r = br, y = by, and z = z0 + bz, we substitute these

quantities into the equation of motion and linearize with respect to the small per-

turbations. The resulting equations of motion are

br" + k 2c=by'+ (7)

k~r roO3' 'YO

byl" + kIcby = -kbr' , (8)

br b tv , i n'
bz' + _ - (9)

rO VzO

where kr = (1 - n)1/2 /ro, k- = n 1/2/ro, kz = Boz/(roBou), and bV.,in = 6V.(Z = in)

is a constant. For the present section, assuming a zero electron temperature, b

and bV,in are proportional to e0 , and is neglected. Moreover, kz = 0 without the

guide field. Equations (7) - (9) are readily solved with the initial conditions (3),

(5), and (6) to give

Eo
br(z) = - cos Wto

± L, tan v) sin k/.(z - zi,) + Lik, cosk,(z - zin) (10)

byy'. '(1 -- Ltan v) sin k(z-zin)+ kLlcos k(z-zin)] (11)•iy z -L, ky ro

6z(z) = (I _ n)_/2 CosWt
9k,



I + L, tanvi) (1- cos k,(z - zi,,)) + L Iksink,(z - zin) (12)

At the end of the magnet k,(z - zi,) = (1 - n)1/2a, where a is the subtended angle

of z-axis in the bending magnet over the radius r0 .

D. Focusing conditions

Since the electron beam has been modulated transversely, refocusing of the beam

at the position of output cavity is important. Furthermore, focusing in y-direction

is also preferred to overcome the beam spread due to the finite emittance. The

bending magnet with positive edge angles provides the required focusing. The

focusing requirements in both directions are

(A) bro,, = -L 2 6r,', ,

(B) byo.t = -L26y',,

where quantities with the subscript "out" stand for the values immediately after

the magnet exit.

Using the solution given by Eq. (10) we can express each side of the condition

(A) as
Wto I( L tnv)o+a i ( )

6r = . coswto 1 + L tan v, ± V- sin +(e - n)'/2 a + €i]

OZO ro-r• = B-ocs/ (1 + ~-'tanu V1 + • cos [(1 - n)/'12c + '

/ 3 z0

L2 -

I(+ ±L tan V)2

10



where , =: (1 - n)' 2 L1 /(ro + L, tan vi) and 01 =tan-' ,. Here, the extra factor

involving tan V2 has been multiplied to account for the effect of the edge angle v2 at

the magnet exit by the same reason as at the magnet entrance. Substituting these

into the condition (A) we find a focusing condition in the r-direction,

(1 - n)'/ 2 a = 17r -_€1 - 0 2  (13)

where I is an integer preferably 1 in the experiment, 02 = tan-' 2, and 62 =

(1 - n)'/ 2 L 2 /(ro + L 2 tan -2). Similarly, using Eq. (12), we translate the condition

(B) into

n 1/2 = M - 01 - 02 ,(14)

where m is an integer preferrably either 0 or 1, 0i = tan-1 ',q (i = 1,2), and

m?= n 1/ 2 Lj/(ro - Li tan vj).

Now imposing the condition (13) to Eq. (12), the longitudinal displacement tz

at the magnet exit, and thus at the output cavity, is given by

6z", = E3  - -)(ro + L, tan vi) L + + 1 coswto (15)

Equation (15) suggests that for a given value of ýj the optimum displacement is

obtained when ý2 = 0, or equivalently, L 2 = 0. The configuration with no second

drift region has still another advantage that the electron bunching, which has been

obtained in the bending magnet, is not deteriorated by the effect of a longitudinal

self-field. A positive field index also enhances the displacement. The focusing

condition (13), however, shows that a large value of a is necessary when 42 = 0 or

n-1.

1I



E. Electron density

Let us imagine a string of particles distributed uniformly at an initial time. Let

z0j be the initial location of the j-th particle. The electron distribution after the

bending magnet is determined by displacements bz. of the individual particles;

z3j =-t0o cos kzoj ,

where k = w,/vo, and ILO is the coefficient of coswt 0 in Eq. (15). We can express

the line density of the electron distribution at a given instantaneous time with

n(z) = _(z - Zoj - ,zj) , (16)

where 6(z) is the Dirac delta function, and the summation is over all electrons.

Fourier-analysing the density n(z),

n(z) = J dp eipz , (17)

we find
00

pP = no E (-i)'Jn(p1Lo)6(p + Mk) , (18)

where no is the equilibrium line density, and J, is the m-th order Bessel function

of the first kind. Substituting Eq. (18) back into Eq. (17) we obtain the electron

line density

n(z) = n 0 1 + 2 Jm(mkpo) sin mkz (19)

Considering just the fundamental harmonic, the amplitude, 2noJ 1( (kpo), obtains its

maximum value 1.16no at kpo = 1.841. In case kpo < 1, we can approximate the

12



density modulation in the fundamental harmonic

bn(z) -- nokpo sin kz (20)

Density modulation becomes difficult on low frequencies. In the conventional two-

cavity klystron the electron bunching is given with p0 = LE0 /(Oo7o2 ), where L is

the drift length. For a relativistic electron beam, say y > 2, therefore, the bending

magnet with a transverse modulation can easily achieve an order of magnitude

higher modulated density for the same modulation strength (Co) and a comparable

device size. Furthermore, when we increase the current, the electron bunching

is deteriorated by the self-field in the conventional klystron, while the self-field

enhances the bunching in the present scheme, as we will see in the next section.

13



III. Some collective effects

A. Effect of the longitudinal self-field

We assume that the electron beam is cold. As we saw in Sec. II the logitudinal

displacement 8z is developed on drifting through the bending magnet. Let us denote

bz(z) ==(z)coswto , (21)

where p(z) is the amplitude of the displacement, having bounary values p(zi,) = 0,

and p(zZt) = #o. Here, wto is a convective constant attached to each particle, and

an equivalent expression in the space-time coordinate is wt - kz with k = w/vo.

A collection of particles with tz as in Eq. (21) form a density perturbation in the

fundamental harmonic
6n
- = kp(z)sin(wt - kz) , (22)
no

where kIL(z) < 1 is assumed. In the limit of krb << 1, where rb is the electron beam

radius, the density of Eq. (22) produces a longitudinal electric field

E. = gnoek 2)U(z)cos(Wi - kz) = gnoek2 5z(z) , (23)

where g = (1 + ln(a/rb))/y2, and a is the radius of a perfectly conducting wall.

Using this field for the longitudinal equation of motion, and rearranging Eq. (7) for

the radial, we arrive at a set of coupled equations;

br" - ,2r = K 2,z' , (24)

z" + k = -r- , (25)
1o
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where k,' = gk noe /(m-yv2), cd = ('y02- (1 - n))/r 2, Kr2 = 7y/ro, and use has been

made of by = 7yoV, 0oV1/c2 and 5vl/v•o = bz' + br/ro for Eq. (24).

An intuitive understanding of the implication of the two equations can be made

by neglecting the br" term. We immediately find that the coefficient of bz" in

Eq. (25) can be negative, implying an effective negative mass"'9 for the longitudinal

motion. For n = 0, the effective mass is mn!ff = -( 0/Z30)m. The negative mass

will result in an exponential growth of the displacement.

Equations (24) and (25) are decoupled in the limit r0 -+ oo. This limit represents

the free space drift, showing a longitudinal plasma oscillation with a wavelength

27r/ks. This oscillation sets an upper bound for the drift length between the magnet

exit and the output cavity. k5L2 < 1 is required not to deteriorate the modulated

density achieved in the bending magnet.

Equations (24) and (25) are solved easily, though a little algebra is needed.

Along with the initial conditions 6z = 0, bz' = -6rin/ro, br = brin, and br' = br,

where 6ri. and 6r. are as in Eqs. (3) and (5), the solutions are

___p_ p(p2 _ r2

&r(z) = 6rip+ 2 cosp_(z - zi2 ) - -22 Kip sinp_(z - zi,)

- - -` P+(Pv. ±-- t'+ sinhp+(z - ziX26)p2_ __ coshp+(z -z,.) + 6r,., 2

pKI

bz(z) - ri= (p- sin p(z - z,.) + p+ sinhp+(z - z,))
rop2

-r! ' (coshp+(z - zin) - cosp-_(z - zin)) (27)rop2

(11 V2)[p2 2 )11/2, p2A2 2 + 211/2.

where p± = (1/:/F)[p2 : (kr + k,)]l/2, and p2 
- [(kr + k2)2 +4 ko,'-2.

15



These solutions have an exponential dependence in z with the e-folding rate

of p+. p+ is zero for k, = 0, and in this case the solutions reduce to the former

solution in Sec. II (Eqs. (10) and (12)). When k, is comparable to k,, p~ro is of

order unity, and hence, a significant enhancement of electron bunching is observed.

Since k, is proportional to (70I0o)-/2 for given frequency and current, the effect is

large especially for low electron energy. It is noticed that the positive field index

increases p+. The oscillation wavenumber p- also increases by the space charge

effect, and this brings the focal point closer to the magnet.

B. Effect of the energy spread

Let us imagine an electron whose energy is -y = -o + 6-. Here yo = (1 +r(ollo/c) 2 )1 /2

is the equilibrium beam energy. The energy mismatch 6y may be caused by the

beam temperature and/or by the voltage ripple at the electron gun. We neglect,

however, the energy variation due to the input modulation and to the self-field, so

that the energy may be treated as a dynamical constant. An effect of the finite

emittance angle is also neglected since it is assumed to be much less than Co. We

estimate the influence of &y on bz.

In the free drift regions outside the bending magnet 6z is produced by the

longitudinal velocity difference, vz - v20 ;

b-,1 = L, + L2 .t_ (28)

In the bending magnet, we already have the governing equations (Eqs. (7) and

(9)). Here, care must be given to the integration constant bv,,i, since it is related

16



to 67 ; bvZ,"? = (6 Y/Yo)(vo/(-yo - 1)). Solving the radial equation first, using the

initial conditions bri,, and r',, as in Sec. II, and substituting the solution into the

longitudinal equation, the total electron displacement is found as follows.

6z = 6bZe + 8Z-.Y, 2

where

67 roa + -- sin(1 - n)' /2a (29)
o- o2° 1- n) (1 -n)3/2

and bz90 is the displacement in a monoenergetic beam estimated previously (Eq. (15)).

Adding the contributions of Eqs. (28) and (29) the total displacement due to 6Y is

given ;

z -y6L7 ro sin(l - n)1/'a - roa (30)
z o + ( - n) 3/ 2  1-n '

where L = L, + L 2 + r0 a is the total equlibrium path length. Notice that 6z,

vanishes when the quantity in the square bracket is zero. The effect of energy

spread on the longitudinal bunching, therefore, can be taken away, even though the

spread deteriorates transverse focusing. If 67 is due to the electron temperature, or

more exactly, if the equilibrium kinetic distribution function is independent of time,

the additional displacement in (30) results in a degradation of density modulation

which is estimated to be

n(z) _ 1 + 2 0 exp In m 2 k 2 .2 J,(mkuo)sinmkz

nO m=1

where a = >.

17



IV. Guiding magnetic field

In previous sections we have considered a transverse klystron without the guiding

magnetic field. In the configuration, we have implicitly assumed that the electron

energy is sufficiently high for a given electron current so that the electrostatic defo-

cusing effect may be neglected. A moderately high output power can be expected

even with a relatively low current since the electron energy is high. The paraxial

beam envelope equation'0 shows that the electrostatic defocusing is determined by

tne relativistic perveance I/- 3/ 3 . The perveance must be kept as small as possible

in order to achieve a high efficiency. This is because any spread in .rin, and br'in

will result in the spread in bzout, and thus in deterioration of density modulation.

It is expected, therefore, that the output power will be saturated at certain limiting

current. Obviously, the limiting current increases with the electron energy.

Beyond the limiting current, stable transport of the electron beam ultimately

requires a guiding magnetic field. The guide field, however, wipes out the scanning

beam modulation. The residual E x B drift of the guiding center is usually small

unless the input power for modulation is extremely large. As we will see in Sec. IVA

the electron bunching is rather inefficient if we rely on the small guiding center shift.

A slow adiabatic contouring of the guide field between the modulation cavity and

the bending magnet has been considered by Mako and Godlove4 in order to enhance

the guiding center shift. Here, various other options are considered.

18



A. Beam centroid orbit inside the bending magnet

Let us consider a solid pencil beam injected into the bending magnet. The electro-

static force is not negligible in the presently interested high perveance regime. At

the beam centroid, however, the electrostatic forces cancel by symmetry, and the

equation of motion is identical to the single particle orbit. Hence, the governing

equations are already given in Sec. II (Eqs. (7)-(10)). For simplicity, we choose a

field index n = 0.5. The solution, however, turns out to be insensitive to this choice.

Equations (7) and (8) can be combined into a complex form to give the transverse

trajectory

bR = r + i6y
Y0 v z,t 1 70 LV.,in) )ik_(z-zi.)

+ (k+ýf, t - iR _L I
rok2 VZO k+ + k_

1 7o 2 bV ,i)eik+(•_•z) ,(31)

k+ ± 1- (k i.,, + ± RiRn - k-ro•0  v eo

where k± = (/kz + 4k-r2 ± kz)/2, and 61Rin, and bRk, are unspecified initial conditions

at z = zin in complex forms similar to bR. Here, use has been made of b-y

703pfl.0t,,n. It is noted that kr differs from k_ by two orders of magnitude, for a

guide field of an order of a kilogaus, and for the equilibrium orbit radius of a few

tens of centimeters. Hence, k+ ,z k, > k- - (k,/kZ)k,.

The longitudinal displacement Sz is obtained by Eq. (9) using br given by the

real part of Eq. (31).

-z n vzo0  - Zin)
fz = 1 1 ) n Vzo 1

19



1 k+rin + byn- k+r7O v, sin k-_(z - zi,)
rokzk- 1-n vo

1

- kzb_+yi - br:n](1 - cos k-(z - Zin)) (32)

Here, we have dropped the fast oscillating terms since they have a negligible contri-

bution after integration. Now we wish to express (32) in terms of the guiding center

coordinates. A little geometrical exercise shows that the guiding center R, = (rc, yC)

at the magnet entrance is given by

Rin = rin + Li_ ,Yin

Substituting this, and neglecting small terms proportional to k,.ikz, we have the

intuitive result

d5V.,in I - 0, (33)
VzO

where a = (Zot - zin)/ro. Here, the first term is the displacement due to longitudinal

velocity variation, as in the conventional klystron, and the second term is due to

the path difference along the circular guiding center orbit. All other details of the

initial conditions are wiped out because of the strong guide field. Hence, our effort

in subsequent sections will be focused to finding the ways of modulating the two

quantities, v. and r,.

Since we are interested in a high current beam, we should be more concerned

with the effect of self-field. The transverse electrostatic field is not a worry since

we have a strong guide field. The longitudinal self-field is our concern. Its effect

is contained in the scaling parameter k, as we saw in Sec. III. In previous sections
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the the longitudinal self-field was a merit. The effective negative mass actually

helps the electron bunching. In the presence of a guide field, however, the negative

mass instability is turned off. This can be understood when we imagine how the

effective mass of an electron becomes negative. When the electron is forced in one

azimuthal direction the electron is accelerated in that direction and the Larmor

radius changes. And then, this radius change, in turn, results in an azimuthal

acceleration in reverse direction to the force. Hence, to have a negative mass, the

radius change is essential, which is prevented in the presence of a guide field. To see

this more explicitly we observe the equation of motion including the space charge

effect. Starting from Eqs. (7), (8) and (25) we average the equations over fast time

scale defined by a strong guide field. Then the equations reduce to those for the

guiding center r, and average longitudinal displacement z,

C() kz 1 kz .rz r.bz'(z) (34)

z,'(z) + k-zc(z) r- (35)

The solution to these two equations contains parameters p± which are similar to

the ones in Sec. 111.

= 2 (k, + Y()2 k 1 (36)v/2= kz]

1/2 1/2
( k,2+ Y k2) + 4 ky, 2 K2k2(7p'= k•+• k (37)

Since ky/k, -. O(00-2), ky -. 10-' cm-' and typically, k, > 10-2 cm-', k,2 is the
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most dominant quantity in (36) and (37). Hence,

k•
p + k Y, ,ik,

p_-• ko I

and the solution is approximated to

I r~in blZ,:n (38z'(z) -z:5 , + ) sin k,(z - zin) (38)

Notice that the negative mass effect has been turned off with its tiny growth rate

p,. The solution (38) reduces to the former solution (33) without considering the

space charge effect when k,(z - z,,) << 1. The former grows indefinitely, while the

latter saturates at kL = 7/2, and then decays. Here L is the total drift length.

This is merely due to the free space plasma oscillation. As a numerical example, if

I = 100 A, -y = 2, and w = 1010 sec-', then k, is approximately 10-2 cm- 1. and the

saturation occurs at L = 1.5 m. If we either increase the current to a kiloampere or

decrease the energy to - = 1.48, however, the saturation length reduces to 15 cm.

B. Resonant modulation

Let us first consider a situation where the whole system, from the electron gun to

the output cavity, is immersed in a guide field. High perveance electron beams

would prefer this situation. The disadvantage is, as mentioned previously, that

the (transverse) beam modulation is difficult. Field contouring or multiple passive

cavities may be employed to enhance the modulation. As an alternative option we

consider here a resonant modulation, i.e., matching the cyclotron frequency to the
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modulation frequency. The system can be more compact (no drift region) and be

relatively simple. To estimate how much magnetic field is required and how much

beam current is allowed with the resonance condition we consider the simple solid

beam stability requirement ;

2 
2

" Wz

where vP and wL are relativistic plasma and cyclotron frequencies, respectively. For

"- = 2 and w = w, - 1011 sec' (16 GlIz), the required guide field B 0 is 11.4 kG,

and the limiting current density J, is - 52 kA/cm2. On the other hand, for = 2

and w = 1010 sec- 1 (1.6 GHz), B 0 = 1.1 kG, and Jc, - 0.5 kA/cm 2 . These numerical

values show practical applicability of the resonant modulation at frequencies of a

few GHz.

Now let us consider the beam centroid motion in the modulation cavity;

eEo
-wr - - coswtomy70

where w.. = eBo2 /-fomc, the overdots denote time derivatives, and the coordinate

system is identical as before except that the z = 0 point is now chosen at the

entrance of the input cavity rather tbhn at the center. Let us also denote the initial

time to to be the time at which the particle enters into the cavity. Equating W,, = W,

and using initial conditions r(to) = ÷(to) = y(to) = ý(to) = 0, the solution shows

that the guiding center R, = (rc,yc) = (r + ,/w,y - /aw) at time t is

R,= (2C'-c[sinwt, -sin wt], 0 )
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where el = eVo/2hirp~c is the normalized input signal strength. Here I' = E0 f, f

is the cavity length, and h7r = wtt is the total phase change of input signal during

the transit time At. Comparing to the previous normalization, e1 -- e0/4 for h = 1.

It is noticed that the resonance has no effect on the location of the guiding center.

At times w(t - to) = (2n + 1)7r (n = integer), the guiding center shifts maximally,

and it can be shown that the beam centroid orbit satisfies

[r - -. sinwto +y 2 = [(2n +l)r

Hence, the Larmor radius grows linearly in time.

Even though the resonant modulation does not enhance the guiding center shift

directly, the growth in Larmor radius gives us indirect ways of enhancing it. Note

again that the radial location of the guiding center is given by r, = r + y/W,. Here

rc oscillates with a small amplitude 4e 1c/w because the growing dependences of r

and y cancel each other. By breaking the cancellation, therefore, we can restore the

linear growth. To do so, we may have, for example,

(i) an instantaneous kick in the y direction,

(ii) an instantaneous raise of the guide field.

We have already seen an example of (i) at the magnet entrance with a finite edge

angle. In this case a radial fringe field kicks the beam in the y direction. Assuming

the magnet entrance is located at the end of the modulation cavity, the guiding

center shift is estimated to be

rc= ' [4 - . .-(2n + 1)7r tan j sinwto
W row2
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Hence, a negative edge angle is required to enhance the shift. The enhancement

is not efficient since vz/(row) is small for a frequency above a GHz. This suggests

that the fringe field is too weak. An external radial field, therefore, might be more

useful.

A stepwise rise of the guide field changes the Larmor radius. Conservation of

canonical momentum, Pe = -ymver - (er/c)Ae, estimates

RL1 = 1 + (B~o/B~1 ) (39)

RLO 2

where RL1 (RLo) is the Larmor radius in the field strength B., (B. 0 ). Hence, we can

convert 25 % of the Larmor radius into guiding center shift with a raise of B 0 -- 2B 0 .

Care must be given here to the longitudinal motion since a magnetic cusp introduces

an additional kick in the longitudinal direction. This kick introduces modulation of

v. in the second harmonic.

C. Modulation outside of the guide field

Even though high perveance beams prefer the whole system immersed in a guide

field, ease of scanning modulation without a guide field forces us to consider config-

urations in which the modulation cavity is located out of the guide field. The guide

field is assumed to have a half cusp structure, i.e. B, = O(Bo0) at z < zi,, (z > zj,).

In such a configuration a focusing lens may be placed right after the electron gun

so that the beam waist is located down at the position of the cusp. On entering

into the half cusp, part of the longitudinal energy is transferred to the transverse

energy so that the electrons gyrate around the field lines. The Larmor radius is
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RL = bri,,/ 2 , where bri, is the radial displacement at the cusp with respect to the

symmetry axis of guiding field lines. Hence, we have a guiding center r, = brin/2,

which oscillates with a coswto dependence. As described in Sec. IVA this oscillat-

ing guiding center can be transformed into an electron bunching when a bending

magnet is placed on top of the guide field. The electron bunching, however, can be

achieved even without the bending magnet since some of the longitudinal energy has

been transferred to the transverse energy, and as a result, the longitudinal velocity

has been modulated. Since the energy is conserved across the cusp, the velocity

modulation is estimated to be

8v2  .

With a coswt0 dependence in brin, therefore, ebv, results in an electron density

modulation at the second harmonic to the modulation frequency.
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V. Conclusions

Scanning beam modulation has recently been brought into great attention as a new

technique for generation of high power coherent radiation with high efficiency. The

transverse klystron scheme investigated in this paper utilizes the ease of scanning

modulation at a relativistic beam energy. The system can be operated with high

efficiency and gain without any auxiliary passive cavities. As a result, the total

system can be simple and compact. In this paper we have obtained an analytic

solution to the scheme. Characteristics of the electron density modulation on var-

ious design parameters are clarified. Focusing properties of the bending magnet,

the effect of energy spread, and the effect of longitudinal self-field have also been

considered. It is noted that the density modulation is enhanced by the self-field

through an effective negative mass, and that there exists a condition that gets rid

of the effect of energy spread.

Efficient operation of the transverse klystron without the guide field strictly re-

quires a high brightness and a low perveance of the electron beam. To relax the

requirement on low perveance, we consider employing a guide magnetic field. With

the guide field the electron density modulation is obtained through a guiding center

shift and a longitudinal velocity modulation. The longitudinal velocity modula-

tion is obtained when the electrons cross a discontinuous guide field. As possible

methods for overcoming the difficulty in scanning modulation in the presence of

guide fields, a resonant modulation and a configuration with a half cusp field have

been investigated. The resonant modulation requires an additional procedure which
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converts the resonant Larmor orbit into guiding center shifts. The half cusp field

can be employed either with or without the bending magnet to produce a desired

density modulation.
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Fig. 2 - Blown-up picture at the magnet entrance. Rotation of the coordinate axis effectively enhances the
radial pitch angle
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