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Abstract

The G6rtler vortex instability mechanism in a hypersonic boundary layer on a curved wall

is investigated in this paper. Our aim is to clarify the precise roles of the effects of boundary

layer growth, wall cooling and gas dissociation in the determ;nation of stability properties.

We first assume that the fluid is an ideal 6as with viscosity given by Sutherland's law. It
is shown that when the free stream Mach number M is large, the boundary layer divides

into two sublayers: a wall layer of O(M 3/2 ) thickness over which the basic state temperature

is O(M 2 ) and a temperature adjustment layer of 0(1) thickness over which the basic state

temperature decreases monotonically to its free stream value. G6rtler vortices which have

wavelength comparable with the boundary layer thickness (i.e. have local wavenumber of

order M- 3/ 2 ) are referred to as wall modes. We show that their downstream evolution is

governed by a set of parabolic partial differential equations and that they have the usual

features of G6rtler vortices in incompressible boundary layers. As the local wavenumber

increases, the neutral G6rtler number decreases and the centre of vortex activity moves

towards the temperature adjustment layer. G6rtler vortices with wavenumber of order one
or larger must necessarily be trapped in the temperature adjustment layer and it is this

mode which is the most dangerous. For this mode, we find that the leading order term in

the G6rtler number expansion is independent of the wavenumber and is due to the curvature

of the basic state. This term is also the asymptotic limit of the neutral Gortler numbers

of the wall mode. To determine the higher order correction terms in the G6rtler number

expansion, we have to distinguish between two wall curvature cases. When the wall curvature

is proportional to (2x) -3 /2 where x is the streamwise variable, the Mach number M can be

scaled out of the problem and we show that in the 0(1) wavenumber regime, G6rtler vortices

1This research was supported in part by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.Additional support
was provided by USAF under Grant AFOSR89-0042 and SERC.
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are again governed by a set of parabolic partial differential equations and therefore the higher

order correction terms in the G6rtler number expansion are not uniquely determined and

are strongly dependent on nonparallel effects. In the large wavenumbe" limit, however,

nonparallel effects become of second order; G6rtler vortices evolve downstream in a quasi-

parallel manner and the G6rtler number expansion has its first three terms independent of

nonparallel effects. In the more general case when the wall curvature is not proportional to

(2x) 3/2 , the effect of the curvature of the basic state persists in the downstream development

of G6rtler vortices; non-parallel effects are important over a larger range of wavenumbers and

they become of second order only when the wavenumber is of order higher than O(M1/4 ).

In the latter case the G6rtler number expansion has the first two terms independent of

nonparallel effects; the first term being due to the curvature of the basic state and the

second term due to viscous effects. The second term becomes comparable with the first term

when the wavenumber reaches the order M' ,", in which case another correction term can

also be found independently of nonparallel effects. Next we investigate real gas effects by

assuming that the fluid is an ideal dissociating gas. We find that both gas dissociation and

wall cooling are destabilizing for the mode trapped in the temperature adjustment layer,

but for the wall mode trapped near the wall the effect of gas dissociation can be either

destabilizing or stabilizing.
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1 Introduction

This paper is an extension of our previous paper Hall and Fu (1989) on the linear development

of G6rtler vortices and the reader is referred to that paper for a more detailed review of the

relevant literature. In that paper, we assumed that the fluid was an ideal gas with the viscosity

given by Chapman's law. It was found that when a hypersonic boundary layer first loses

stability to G6rtler vortices, the vortices are necessarily trapped in the logarithmically thin

temperature adjustment layer over which the temperature of the basic flow changes rapidly

to its free stream value. In other words, the mode trapped in the temperature adjustment

layer has a smaller G6rtler number than any other mode. As a consequence of this reginn of

vortex activity being thin (which leads us to consider G6rtler vortices of small wavelength),

the perturbation equations governing the downstream development of the vortices reduce to

ordinary differential equations within the order of approximation considered if the appropriate

"fast" streamwise dependence of the instability is built into the disturbance flow structure.

Thus the non-uniqueness of the neutral stability curve associated with incompressible Grtler

vortices disappears at high Mach numbers and a unique neutral curve with distinct left and

right branches is obtained.

However, a real fluid has its viscosity given by the more complicated Sutherland's law.

Although in most of the previous investigations on compressible boundary layers Chapman's

viscosity law has been adopted as an approximation to Sutherland's law, such an approximation

is poor for hypersonic flows in which the fluid temperature varies significantly across the

boundary layer. Thus it is of interest to investigate how our previous results are modified

if the more realistic Sutherland's law is adopted. This is one of the problems which we are

addressing in the present paper.

The other problems which we consider are the effects of gas dissociation and wall cooling

on the flow stability. For a hypersonic boundary layer, the temperature near the wall is

typically of order O(M 2 ) where M is the free stream Mach number, and gas dissociation must

necessarily take place. Also, in practical situations, walls can not possibly withstand such high

temperatures and they must be cooled. Thus it is also of special interest to clarify the precise

roles of these two mechanisms in the stability properties of hypersonic boundary layers.

The major difference between Gbrtler vortices in incompressible and hypersonic flows is that

the presence of the temperature adjustment layer at the edge of a hypersonic boundary layer

where the basic temperature field decreases rapidly to its free-stream value enables hypersonic

G6rtler vortices to be concentrated well away from the wall. In the incompressible case we

know from the work of Hall (1982,1983), and Denier, Hall and Seddougui (1990) that at order

one Gbrtler numbers unstable Girtler vortices are not localized within the basic boundary

layer. At higher G6rtler number the most dangerous Gbrtler vortices have a wavelength small
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compared to the boundary layer thickness and are trapped near the wall. At order one Mach
numbers this situation does not change significantly and the nonparallel problem has been

discussed by Wadey (1990) and Spall and Malik (1989). In the latter two investigations the

nonparallel equations were solved numerically following the approach of Hall (1983), the main
result obtained was that the neutral position or growth rate of a Gbrtler vortex is a function

of it's upstream history. However the numerical calculations of Wadey (1990) suggest that as

the Mach number increases the position where an unstable G6rtler vortex locates itself moves
towards the edge of the boundary layer. That result is consistent with what we shall find in

this paper.

The present paper is limited only to the linear regime of vortex growth ; nonlinear aspects of

incompressible or low Mach number G6rtler vortex growth have been discussed by Hall (1988),

and Wadey (1990). For a detailed account of the nonlinear regime the reader is referred to

the review paper by Hall (1990). Before going on to discuss the work presented here we

also note that hypersonic boundary layers are also susceptible to instabilities not induced by

streamline curvature. Thus, for example, Cowley and Hall (1990), Blackaby, Cowley and Hall

(1990), Smith and Brown (1990) have discussed the role of Rayleigh or Tollmien-Schlichting

wave instabilities in hypersonic boundary layers. Thus any nonlinear investigation of Girtler

vortices at hypersonic speeds must allow for the possible interaction of the vortices with other

finite amplitude instability mechanisms.

This paper is organized as follows. In §2 and in the first part of §3 we discuss the basic

state. Here we discuss the significant changes in the basic state which occur when Sutherland's

law is used instead of the Chapman law. In particular, the logarithmically thin temperature

adjustment layer found for Chapman fluids is now replaced by a more complex adjustment layer

of 0(i) thickness. We shall see later that this difference will strongly affect the downstream

evolution properties of Gbrtler vortices.

In §3 we formulate the linear stability problem for a hypersonic boundary layer and the

linear perturbation equations are obtained in the usual manner by superimposing a G6rtler

vortex structure on the basic state and linearizing the Navier-Stokes equations. When Chap-

man's law is used, these perturbation equations can be reduced to a set of ordinary differential

equations after the wavelength of the vortices is scaled by the thickness of the logarithmically

thin adjustment layer. However, here we show that because the temperature adjustment layer

is of 0(l) thickness when Sutherland's law is used, non-parallel effects are more pronounced

and their effects are different for different wall curvatures. To be more specific, when the

wall curvature is proportional to (2x) - 3 /2 , the curvature of the basic state only gives rise to
an O(M 3 /2 ) wavenumber independent term in the Gbrtler number expansion and its effect is

not present in the downstream development of G6rtler vortices in the neighbourhood of the

neutral position; whilst in the more general case when the wall curvature is not proportional

2



to (2z)-3 /2 , the curvature of the basic state not only gives rise to an O(M 3/2 ) wavenumber in-

dependent term in the G5rtler number expansion, but it also affects the downstream evolution

of Gbrtler vortices in the neighbourhood of the neutral position and thus affects the determi-

nation of other higher order correction terms to the G~rtler number expansion. Sections 4 and

5 are respectively devoted to the discussion of these two cases.

In section 4, we show that in the special curvature case n(x) = (2x) - 3/1, the Mach number

can be scaled out of the problem; in the 0(l) wavenumber regime, the perturbation equa-

tions are partial differential equations and they have to be solved numerically by a marching

procedure. We present our numerical results which show that neutral curves depend crucially

on what initial perturbations we impose and where we impose them. In the large wavenum-

ber limit, nonparallel effects are negligible and a simple asymptotic expression is obtained for

the G~rtler number in terms of the wavenumber. In section 5, we show that because of the

persistent effect of the curvature of the basic state, non-parallel effects are important over a

larger range of wavenumbers and they become negligible only when the wavenumber is of order

larger than 0(M'/4 ). Thus for wavwnumbers of order O(M') with a < 1/4, the perturbation

equations which govern the downstream evolution of Gbrtler vortices are partial differential

equations and the situation is similar to the 0(1) wavenumber case discussed in section 4.

When a > 1/4, nonparallel effects are not so pronounced and the Grtler number expansion

has the first two terms independent of nonparallel effects; the first term due to the curvature

of the basic state and the second term due to viscous effects. The second term becomes com-

parable with the first term when the wavenumber reaches the order O(M 3 /8 ), in which case

another correction term can also be found independently of nonparallel effects.

To complete our stability analysis, we devote section 6 to the wall mode which has wave-

length comparable with the boundary layer thickness. This mode is nonparallel and neutral

curves have to be obtained by solving a set of partial differential equations. Our numerical

results show that neutral curves, although non-unique, all decrease monotonically with the

wavenumber and tend to a constant value in the large wavenumber limit, thus matching in the

large wavenumber limit with the mode trapped in the temperature adjustment layer.

In section 7, we investigate real gas effects and wall cooling effects. We assume that the

fluid is an ideal dissociating gas. After dissociation has taken place, the fluid becomes a gas

mixture. We first determine the constitutive properties of the gas mixture and then show how

our previous results for ideal gases are modified when gas dissociation is taken into account.

We show for the mode trapped in the temperature adjustment layer that the leading order

G6rtler number is decreased by both gas dissociation and wall cooling and thus we conclude

that both these mechanisms are destabilizing. For the wall mode, neutral curves are not

unique and so we cannot draw any general conclusion. For the case we consider, the neutral

curves corresponding to the two models intersect, so the effect of gas dissociation can be either
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destabilizing or destabilizing. Finally in the last section we give some further discussion.

2 Basic state

Consider a hypersonic boundary layer over a rigid wall of variable curvature (1/A)>(x*/L),
where L is a typical streamwise length scale and A is a lengthscale characterizing the radius of

curvature of the wall. We choose a curvilinear coordinate system (x*, y*, z*) with x* measuring

distance along the wall, y* perpendicular to the wall and z* in the spanwise direction. The
corresponding velocity components are denoted by (u*, v*, w*) and density, temperature and

viscosity by p*, T* and 11* respectively. The free stream values of these quantities will be

signified by a subscript oo. We define a curvature parameter 6 by

b L L (2.1)

and consider the limit 6 --+ 0 with the Reynolds number R defined by

R = u*Lp:° (2.2)

taken to be large so that the G6rtler number

G = 2R"/2 6 (2.3)

is 0(1). In the following analysis, coordinates (x*, y*, z*) are scaled on (L*, R-1 / 2L, R-1 i 2L),

the velocity (u*,v*,w*) is scaled on (u*,R- 1 /2 u*o,R-1 / 2u * ) and other quantities such as
p*, T*, and /* are scaled on their free stream values with the only exception that the pressure p*

is scaled on pU2 and the coefficient of heat conduction k* is scaled on a*. All dimensionless

quantities will be denoted by the same letters without a superscript *. Then the Navier-Stokes

equations are given by
0 + - (pPv) = 0, (2.4)

Du Op a Ou, 0 Ou
P- - + -( s-) + -(A-), (2.5)

Dv 1 2 ap { 2 a a o
P- + 2Gru =-Re F + ; ( 1-

+ -(t ) + (A-), (2.6)ay O z Oz

Dw Oep 8 2 ,avp o) + av, ) +w ) aw
=_ R + -57A-is~-- -(i-) (2.7)

DT 1)My[(OU 2 +, Oh, Dp
pc,- =('' - 1+ ( ]+ (7 _1)M2[1 _ P( )'
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10 OT 108 OT
(k) + -((k-), (2.8)

7YM 2p = (1 + a)pT. (2.9)

Here we have used a mixed notation in which (Vl,V 2 ,V3) is identified with (u,v,w) and

(XI,X 2 , X3 ) with (x,y,z). Repeated suffices signify summation from 1 to 3. The functions

A, k, cp and h denote in turn the bulk viscosity, the coefficient of heat conduction, the specific

heat at constant pressure and the enthalpy per unit mass. The constants -y,M and a are in

turn the ratio of specific heats, the Mach number and the Prandtl number defined by
s2 29

7 =c °,M 2 1o _ or oc
CP M 7- 0 Z- koo '

where R is a gas constant and ao, = V 7-?TE is the sound speed in the free stream. Finally, the

function a in the equation of state (2.9) denotes the percentage by mass of the mixture which

has been dissociated. Later in §7 we shall give the expression for a for a specific dissociation

model used in our discussion. In equations (2.5)-(2.8), the operator D/Dt is the material

derivative and it has the usual expression appropriate to a rectangular coordinate system.

The basic state is given by

(u, v, w) = (-&(x, y), u(x,y), 0), T = T(x,y),

p = P(X,y), A = F2(X,y). (2.10)

By substituting (2.10) into the governing equations (2.4)-(2.9) it is straightforward to obtain

the reduced equations satisfied by the basic state. The reader is referred to the book by

Stewartson (1964) for a detailed discussion of these basic state equations. If we define the

Howaxth-Dorodnitsyn variable 9 and a similarity variable 77 by

and Y (2.11)

then the continuity equation is satisfied if ra and v are written as

1= (), = 1 1 p(]. (2.12)

Here the functions f(q) and T(i7) must satisfy

ff" + (pjf")' = 0, (2.13)

1(PkP'),+ f'+ (y - l)M 2p(f,,)2 = 0, (2.14)

if the z-momentum and energy equations are to be satisfied. These equations must then be

solved such that f, f' vanish at the wall, f', T = 1 at infinity and either T' = 0 or T specified

at the wall. The y-momentum equation gives
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to leading order so that p = p(x). In our following analysis, we assume that there is no pressure

gradient along the streamwise directlon and therefore we can take P = constant. Equation (2.9)

then reduces to

[1 + ct(T)]pT = 1. (2.15)

Note that in obtaining (2.13) and (2.14) we have not made any constitutive assumptions so

that they are valid for disso-.iated gases (to be discussed in §7) as well as for undissociated

ideal gases (to be discussed in §3-§6).

3 The perturbation equations

We first assume that the fluid is an ideal (one component) gas undergoing no dissociation so

that a = 0. Then we can assume that (i). the specific heats are constants; (ii). the coefficient

of heat conduction is linearly related to the shear viscosity and (iii). the enthalpy h is given

by h = cPT. These assumptions lead to the results

1k=p, c=i, p= . (3.1)

(Note that all of these quantities have been non-dimensionalized). Then the basic equations

(2.13) and (2.14) simplify to

ff + T - O, (3.2)

(&T,), + fT, + (y _ 1)M2i(f,,)2 = 0. (3.3)
T T

These two equations can then be solved if we make an constitutive assumption about the

viscosity p. In the previous paper, Hall and Fu (1989), we used Chapman's viscosity law. Here

we use Sutherland's viscusity law, the dimensionless form of which is given by

(I + in-) +3/2(3.4)

where fh is a constant. Equation (3.4) is exact in the sense that it is derivable from the kinetic

theories of gases (see Chapman and Cowling (1970) for a discussion of its validity, also compare

(3.4) with (7.9)). At high Mach numbers we know from the work of for example Freeman and

Lam (1959) that the basic state splits up into two distinct regions. Near the wall a boundary

layer forms in which the downstream velocity approaches it's free-stream value of unity whilst

the temperature decreases from it's value at the wall and ultimately decays algebraically at

the edge of the layer. In the next region this algebraic decay is taken up and the temperature

then approaches exponentially the free-stream value of unity.

As mentioned above an explicit analytical solution for the equations (3.2) and (3.3) is not

possible. However, an asymptotic analysis in the large Mach number limit shows that the
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boundary layer can be divided into two regions: an inner region 77 - O(M- 1/ 2 ) and an outer

region 7 = 0(1). In the inner region, we define Y,T and F(Y) by

Y = M1/2 7  T = M-2 T, F(Y) = M' 1 2 f. (3.5)

Then equations (3.2) and (3.3) give

F"
(1 + fn)(-)' + FF" = 0, (3.6)

1___ + ____ (f" )2+ . + FP'+(7-y -1)(1 + f) (F/) = 0 (3.7)

to leading order. These equations are to be solved numerically subject to the condition.

F(0) F'(0)= 0, T(oc)= 0, F'(oo) = 1,

T'(0) 0 if the wall is thermally insulated, (3.8)

T(0) = nT. if the wall is under cooling,

where T,, is the wall temperature scaled on M 2T when the wall is thermally insulated and n

is the wall cooling coefficient.

In Fig.1 we have shown the results of our numerical integration of the wall layer equations

(3.6) and (3.7). The temperature profiles are plotted for three values of the wall cooling

coefficients: n=0.2, 0.6 and 1.0 and were calculated with -y = 1.4, a - .72,vf = .509. The

asymptotic profile for large Y given by equation (3.10) is also plotted there for comparison.

For large Y, equations (3.6) and (3.7) have the asymptotic solutions

D
= O+ (y _03)3/o + ,(39)

S_ 9(+ ) 1 (3.10)

a 2  (y _ )4

where both 0 and D are to be determined by a numerical calculation. rhe numerical vdluei

of 0 corresponding to four values of the wall cooling coefficients are listed in Table 1 together

with the values of F"(0), P'(0) and '(O).

Table 1

n=0.2 n=0.4 n=0.6 n = 0.8 n= 1

F"(0) 0.1517 0.1997 0.2317 0.2560 0.2758

T'(O 1.8192 x 10- 2 1.7976 x 10- 2 1.3909 x 10- 2 7.6872 x 10-2 0

2T(0) 3.286 x 10- 2 6.572 x 10- 2 9.858 x 10- 2 1.3144 x 10-  1.643 x 10-1

/3 3.1808 2.8366 2.6301 2.4840 2.3721
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The asymptotic expressions (3.9) and (3.10) imply that in the region 77= 0(1),

f=77M/ 2 + f(77 (3.11)

T' = Pb(77) +. - -(3.12)

On substituting (3.11) and (3.12) into (3.2) and (3.3), we obtain to leading order

(1 + fa) (I+ f + =77" 0, (3.13)

+ in-_ ,

a1 + I +h VI t +  17P6  =  . (3.14)

These two equations are to be solved numerically subject to the matching conditions

D 9(1+ih) 2 Ias 7 + 0 ( 7 13 aa 2 774 + .. ,(3 .15)

and the conditions at infinity

f'(oo) = 0, T(oo)= 1. (3.16)

The result from such a numerical calculation is shown in Fig.2. In this figure the asymptotic

result is the one given by (3.15).

It can be shown from (3.13) and (3.14) that

f"( D 3 + 1 ((t )+/f, (3.17)
(1 + h) 1 + Ib 01k 0, / -aNITJ

so that after (3.14) has been solved numerically, the function f"(77) can be computed easily

from this equation. Also, we note that whilst the solution of (3.14) is independent of the inner

region solution and thus of the conditions at the wall, the function f is dependent on the inner

region solutions through the matching constant D.

We now assume, as in Hall and Fu (1989), that Lhe flow is perturbed to spanwise periodic

stationary vortex structure with constant wavenumber a. The linearized stability equations

for these Gbrtler vortices are then found by linearizing the Navier-Stokes equations (2.4)-(2.9)

about the basic state and retaining the leading order terms in the high Reynolds number limit.

We obtain 1 + %1
+ VU) (pa2 + L.)U - (AU +

- oat(.i + iH ) + (Afuy),} T - AT, = 0, (3.18)

8



12_ - 1 )-
T(;- + ,icLG)U + - U -5 , JU, + -=(uV + V) + (fta +
T 3 3 T'2

+P - [ + '% + 1 rG t2) + 1 - 2 + -+ 2- 4]T

2 4 2 . 1

- [rIT - X + 4 + 2 pviaW - 1iapW, = 0, (3.1)

T1,iaV + 1 -iaUV + p.iaV + 1 iaV - iaP - 2 + rv)iaT

I~XL 3 3 ~ 3

14
- T(,W ± 9W ,) - W (AWY)y = 0, (3.20)

2 - -1 1

y3(u.+ ;DTv)T - T(;u-. + Dy~)T - 72('-+ ;DTV)

+ (U + V1) - -('U -1- --V) + ia(-) = 0, (3.21)

U - 1 +M) 1 2rT + + +1( +2TTU - 2(-t - , + v + I -f+ + a2T
T1-~ 22 1T'~ T orTTI

7-2 uT Tv- T)+(7- 1)M (A- - 0. (3.22)1 0-

Here j2 = dft/d', whilst (U, V, W), P and T denote the vortex velocity field, pressure and

temperature, respectively. Equations (3.18)-(3.22) differ from equations (2.11a-e) given in

Hall and Fu (1989) only in that the bulk viscosity is taken to be zero here; that assumption is

actually implied in that paper.

It was shown by Hall (1982) that in the incompressible case the neutral curve for small

wavelength vortices has G a4 and that the vortices are confined to a layer of depth a - 1/2

where the flow is locally most unstable. Hall and Malik (1989) extended this approach to the

above system for M = 0(1) and wrote

G = goa 4 + ga 3 +."".

They found that the leading order growth rate a26* has 6 given by
-" 2 --

+( - 2 )go. (3.23)

In the neutral case, P = 0 and (3.23) then determines the neutral G6rtler number go as a

function of 17. The most unstable location )7* is where go has its minimum. In Hall and Fu

(1989), it is found that whei Chapman's law is used, 7i* moves away from the wall as the Mach

number increases. It is also found that the basic state temperature is O(M 2 ) over most of

the boundary layer and decreases rapidly to its free-stream value over a logarithmically thin

adjustment layer sitting at the edge of the boundary layer. It is in this thin layer that i7'

lies and hence where go has it's smallest order of magnitude in the large Mach number limit.

Thus it is concluded that the thin temperature adjustment layer is most susceptible to G6rtler

9



vortices. From the preceding discussion in this section we see that when Sutherland's law is

used, the logarithmically thin temperature adjustment layer corresponding to Chapman's law

is now replaced by a more complex temperature adjustment layer of 0(1) thickness. If we

still use (3.23) with 6 = 0 to calculate the orders of go in the inner layer ?7 = O(M-'1 ) and

the outer temperature adjustment layer 7 = 0(i), we find that go = O(M I/2 ) in the former

and go = 0(1) in the latter. Hence once again the temperature adjustment layer is most

susceptible to Gbrtler vortices with wavenumber of order one or larger. It should be noted,

however, the above conclusion is based upon a large wavenumber argument. In section 6 we

shall show that the wall layer 77 = O(M-1 /2 ) is actually of order M 3/ 2 thickness in terms of

the physical variable y. Thus G6rtler vortices with wavelength comparable with the boundary

layer thickness must be trapped in the wall layer and have a = 0(M- 3 / 2 ). It will be shown

in section 6 that this wall mode has neutral Gbrtler number decreasing monotonically and

has the centre of G6rtler vortex activity moving towards the temperature adjustment layer as

the wavenumber increases. Therefore, the minimum Gbrtler number corresponds to the mode

trapped in the temperature adjustment layer and the latter is indeed the most dangerous mode

when the whole range of wavenumbers are considered. It should also be noted that the result

g0 = 0(1) for the temperature adjustment layer is obtained by taking the large Mach number

limit of the 0(1) Mach number results. By doing so we have actually missed a term related

to the curvature of the basic state which is not important for the case M = 0(1) and a > 1,

but is important in the large Mach number limit. As we shall show later on, the curvature

of the basic state produces an effective Gbrtler number of order M31 2 in the absence of wall

curvature so that instability can not occur for G = 0(1).

3.1 The strongly unstable inviscid mode

Let us first confine our attention to the mode trapped in the temperature adjustment layer. It is

easy to show with the aid of expressions (3.11) and (3.12) that in this temperature adjustment

layer,

= + V,/ - (2x) 3/ 2 [BM 3/2 + - 7
2T'] + o(1), (3.24)

where
Bdef. lira M - 3 /2 00°

B:= M-M 3 1  0 T(77)d17. (3.25)

An investigation of the y-momentum equation (3.19) shows that the Gbrtler number must be

of order M 31 2 in order to enter the leading order analysis. Thus we write

1 (x)G = G*(z)M 3/2 , (3.26)

so that for a given constant Gbrtler number G we compute G*(x) using

G'(x) = 1,(x)GM3/2. (3.27)
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For convenience, we also define another function Q(x) by

Q(X) = B (3.28)
(2x ) 3 /2 '

so that

u;, + 'vv + 2K(x)Gtt 2 = (G* - Q)M 312 + (3.29)

With the use of this relation, we can deduce from the perturbation equations (3.18)-(3.22)

that

V = O(M 3 /4T), W = O(M 3 / 4 T), P = O(M 3/ 2 T), U = O(MI 'T), (3.30)

and that for fixed 7,
0= (M3/4),

where
clef L+

M =*1/M1 2.

We therefore look for asymptotic solutions of the form

T = exp (M3/4Il(x)dx) {To(x,7) + M- 3 1 4Tl(X, 7) +

U = M 1 exp (M3/4 8(x)dx) {Uo(x,r) + M- 3 1 4 U1 (x,ii) +

V = M 3 /4exp (M34 f(x)dx) {Vo(x,X) + M-a 4 vI(xt) +'"}, (3.31)

W - M 3/ 4 exp (M3/4 J (x)dx) {Wo(X,7) + M- 3 / 4 W(X, 77) +

P = M 3 / exp (M3/4 O(x)dx) {Po(x,77) + M- 3 1 4p(x,77) +.

where the spatial amplification has been taken care of using the WKB method and P3(z) is

the local growth rate to be determined. On substituting (3.31) into (3.18)-(3.22) and then

equating the coefficients of like powers of M, we obtain a hierarchy of equations. To leading

order, we find that V0 satisfies the differential equation

L 2Vo 2T' oVo -2 2 = 2
77 -T 07 7----#Vo = (G' - Q)Vo, (3.32)

whilst To, Wo and Po are related to Vo by

1" 1 Dyo - a V
T = - _- 2 Vo, iaW o = r2 87 ' Po = Po22 ' (3.33)

and Uo does not appear in our leading order analysis. Here k d" V2'xa is the local wavenumber.

Equation (3.32) subject to Vo vanishing at 71 = 0, oo is a Sturm-Liouville problem which has

solutions if (G" - Q)T' < 0.
2



This means that

0
2 >0 if G*>Q, 02<0 if G*<Q,

since V < 0. It then follows that neutral stability (8 = 0) occurs at the position x = x, where

G*(x.) = Q(x.) (3.34)

at zeroth order. Therefore, in view of the definitions (3.27) and (3.28), the neutral G6rtler

number has the expansion

G =  2B )3/2 + higher order correction terms. (3.35)

For the rest of this paper we shall take GN to be the zeroth order approximation to the "critical

inviscid Gbrtler number", thus GN is obtained by retaining only the first term on the right

hand side of (3.35). An important point concerning (3.35) is that the first term on the right

hand side is independent of x,, if the wall curvature varies like xT2 ; in the latter situation

nonparallel effects dominate and the vortex growth rate is smaller. Thus to determine the

higher order correction terms to the neutral G6rtler number, we have to distinguish two cases,

namely, (i). K (M) = (2X)- 3 / 2 and (ii). n(x) $ (2x) - 3/2. They will be treated separately in the

next two sections.

On the other hand, equation (3.32) can also be interpreted as an eigenvalue problem which

determines the growth rate /(x) at a given value of x corresponding to any wavenumber k.
The appropriate boundary conditions are deduced as follows. As 77 -+ 0o, 1 - 1 and equation

(3.32) reduces to
892 V0  2
-V - k V = 0,

so that V , exp(-k7}) and the asymptotic condition

OVo+kV = 0 (3.36)

should be imposed at "infinity". As 7 --+ 0, T -, A2/774 where from (3.15b) A = 3(1 + fn)/a.

Equation (3.32) reduces to

a2Io 8 OVo k2A4 V = (G* - Q)k 2  4A- 2 .
- !a 8  _ V 2

- - 0 , (3.37)

which has the solution kA2  (.8
V0~exp(-y ). (.8

Hence the asymptotic condition
a Vo kA1
a07 kA 2 V = 0 (3.39)

should be imposed at "zero" (which is taken to be some small value in numerical calculation).
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The eigenvalue problem (3.32), (3.36) and (3.39) was solved numerically by employing a

fourth order Runge-Kutta method. In Fig.3, we have shown the dependence of the growth rate

on the local wavenumber. The plot clearly shows that as k -+ 0, p32 -+ 0 whilst as k --+ oo,

02 --+ constant. These features are also borne out by the asymptotic analysis given in the

following subsection. The inviscid mode we have described above therefore has growth rate

proportional to M2 and we refer to it as the strongly unstable inviscid mode. We note that

when G* = Q the growth rate vanishes. In this case it is necessary to look for evolution of the

vortices on a shorter lengthscale in the streamwise direction; that problem will be addressed

later in this paper and we shall refer to the inviscid mode in that regime as the near neutral

inviscid mode.

3.2 The small and large wavenumber limits of the strongly unstable inviscid

mode

First, we note that as k -- 0, we are approaching the scalings for the wall mode (see §6) which

has wavenumber k _, O(M- 3 /2) and which is trapped in the wall layer. Thus G~rtler vortices

are appropriately governed by (3.37). The solution (3.38) shows that vortices decay to zero in

the thin layer 7 = 0(k1 /3 ) near the wall. This is also verified by the obvious shift to the left of

the first mode eigenfunctions in Fig.4 with decreasing k. It can then be deduced from (3.37)

that P2 has to be 0(k) in order to enter the leading order analysis.

Next, in the large k limit, a WKB analysis of (3.32) shows that Gbrtler vortices will be

trapped in an O(k - 1/2 ) thin layer centred at 77 = 77* where 82 has a maximum. Thus we

introduce a new variable C by

C kl/2( - 77*), (3.40)

expand (G* - Q)/(v2' W 2 ) as

- = Ao + k-1/2A, + k-A 2 +..., (3.41)

and look for solutions of the form
Vo(X,7) = V(z,C) + k-' 2Vo'(XC) + k-V2(x,) +.... (3.42)

On substituting (3.40)-(3.42) into (3.32), equating the coefficients of like powers of k, and

then solving the resulting set of equations, we find that to leading order, A0 is determined as

2(77*) (3.43)

At order k-1/2, A is determined as A1 = 0 if we insist that 132 attains its maximum at 7 = 27*.

At order k1, Vo is found to satisfy the parabolic-cylinder equation

' V l4 - aV° =0 (3.44)
2  4"1o
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where

= 1 d2 ( 1 1/4 A2T/(7v I d2 (1_ 1/ (3.45)

If we impose the condition that the disturbance is confined to the k-/2 layer we must choose

= -(1/2) - s, where s is a non-negative integer. This condition determines the infinite

sequence of eigenvalues

i 2 =7.+2s d,1 )  (3.46)1\2 = )12, = NO -- '(')o'

The eigenfunctions corresponding to the eigenvalue A2, are given by

Vo° = V~o = e-4 Heo( ), (3.47)

where He.(C) is a Hermite polynomial.

With the aid of the numerical values for T given earlier in this section, we find that

/-Q2 = 0.5786{1 - 0.52971 + 2s + (3.48)G*--Q k:

and that 77" = 2.3228. Both these numerical values and the concentration of vortices in an
O(k-1/ 2) region are confirmed by the numerical results shown in Fig.3 and Fig.5.

In closing this section, we note that results given here for hypersonic flows are in sharp

contrast with related results for incompressible flows. In a recent paper, Denier, Hall and

Seddougui (1990) have discussed the spectrum of the large G6rtler number eigenvalue prob-

lem. It was found that the inviscid Gbrtler vortex eigenvalue problem has an exact solution

with the spatial growth rate increasing monotonically from zero and tending to infinity at

large wavenumbers. In the high wavenumber limit viscous effects become important when the

wavenumber is O(Gk) and a maximum growth rate is achieved in that regime with the growth

rate tending to zero in an O(GT) regime as discussed by Hall (1982). At small wavenum-

bers the growth rate tends to zero and the vortices spread out above the boundary layer. In

fact when the wavenumber is O(G 1 ) an eigenvalue problem related to that for Tollmien-

Schlichting waves is recovered but at even smaller wavenumbers nonparallel effects dominate

and the problem must be solved numerically as in Hall (1983). The major difference we have

found above for hypersonic Gbrtler vortices is that the growth rate tends to a finite value as

the local wavenumber tends to infinity; we shall see later that this has a significant effect on

the way in which viscous effects come into play at high wavenumbers.

4 Neutral instability with r,(x) - (2x) -3 / 2

We now proceed with the determination of the higher order correction terms in the neutral

Gbrtler number expansion (3.35). In the case when the curvature i.(z) = (2m) -3 /2 , G*(z) =

14



Q(z) and the O(M/ 2 ) term on the right hand side of (3.29) vanishes for all x. The implication

of this is that for this special distribution the curvature of the basic state is exactly counteracted

by wall curvature over an 0(1) interval in x, in the more general case that is only the case over

an asymptotically small interval. An investigation of the perturbation equations (3.18)-(3.22)

with the aid of the equations (Al)-(A5) given in the Appendix then reveals that the neutral

G6rtler number must expand as

G = 2BM 3/ 2 + G + o(1), (4.1)

and that the perturbation quantities have relative orders

U = 0(--±V), T = O(V), W = O(V), P = O(V),

where O = (M ° ) is to be determined. We therefore look for the following form for the

solutions for (3.18)-(3.22):

U=-1C(x,,)+--..., V=Q(x,7)+..., W=W(Xti)+ , (4.2)

1-P= v2xej(X,77)+'"-, T=V2M6(X,,7)+...,

where the insertion of the factor vix is purely for convenience.

On substituting (4.2) into (3.18)-(3.22) and then equating the coefficients of like powers

of M, we obtain, to leading order,

-v { ' T ( )  o} (4.3)
L! + a+'

OP~~~4] -4' LL 4 p
Ti T ± O T V±077 T 077

T aoP 2 3 ai77~
- - 1 a f7

4Ai, - -TikW + A - - - 2xr7( -3T 077'  3 3 L9 W7 aX (4.4)

o (A a = 3 - ikW + ikTP

--7,TI 7T-, + TkW+2x -
3 5

L9V 77O 00 77T, 2x190
ikfv (I +') +(4.6)
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1 4~ 10 1 f + .- 06) (4+

+ 0[ + - a + Tk + 2T a a7 T "+ i2a  + OX~"(47

Here k t'f. v"ma. It can be seen that (4.4)-(4.7) are independent of C1 and the latter is

determined from (4.3) after (Vi, W, i, P) have been determined. Since these leading order

perturbation equations are parabolic with respect to the variable x, they have to be solved

by specifying the perturbation quantities at a given upstream position and then marching

downstream. We therefore expect that neutral stability would depend crucially on what initial

conditions we impose and where we impose them. However, before we present our numerical

solutions of these equations, we first consider a special case: the large wavenumber limit for

which a simple asymptotic solution is possible.

4.1 Large wavenumber limit

In the large wavenumber limit, the length scale over which vortices vary is small compared

with the lengthscale over which the boundary layer grows. Then we expect that nonparallel

effects do not come into our leading order analysis. This is indeed the case, as we show below.

For large k, vortices are confined to a thin layer of O(e'/ 2 ) thickness centred on 77 = 14*

where,
=' 1 (4.8)

and where 4* is the most unstable position to be determined in the course of our calculation.

We therefore define a new variable 0 by

0 = -E1 (77 -'*).

An investigation of equations (4.3)-(4.7) shows that when e - 0,

6 = O(je2 ), V = O(C1/2 V), P = o(C-/2),

0(i/6 ), a = O(1/f2). (49)

Hence we look for the following form of asymptotic solutions for (4.3)-(4.7)

T4 (Go + d1/ , (; + CG2 + C 3/2G3 +" )

V = (VO + E1/2V1 + .)E, W = (61/ 2Wo + EWl + -)E, (4.10)

(-1/2Po+P 1 +...), 6=(2 o+,Es/ 201+..)E,

where

B - exp %8 (o(0) + e112 Pi(o) + ... )do}, (4.1)
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and where V0, V etc. are functions of 0 and x. Note that E here represents the fast variation

of the perturbation quantities along the strearnwise direction whilst the dependence of Vo, W

etc. on x represent the slow variation of perturbation quantities due to the nonparallel effect

of the boundary layer growth. In effect we have described the fast variation of the disturbance

by a WKB type of expansion in the streamwise direction. Here we are only concerned with

neutral stability, so we set o = = 02 = 0. On substituting (4.10) into (4.3)-(4.7) and then

equating the coefficients of like powers of c, we obtain a hierarchy of matrix equations. To

leading order, we have
o= -, 1 a

0 p VO two= -

T 0 04'4
Po= AP0 9€ Go= 2T 0 (4.12)

where To = T(,I*),T = T'(77*) and 2o = (2(To). To next order, we deduce that

G1 =0. (4.13)

At next order we find that Vo must satisfy the parabolic-cylinder equation
a2Vo 1

_(jC2 V _ &Vo 0. (4.14)

Here A-'L (2 OGo
AC1/ 4 ,  a L72= A ,- A 2 2T (4.15)

,6,T2 "o 3Go 97 7( 15

If we impose the condition that the disturbance is confined to the f1/2 layer we must choose

a = -1/2 - s, s = 0, 1,..., (4.16)

The smallest G2 corresponds to s = 0 and we then have from (4.15b) that

I (3Go a 2Go '/2

G2 = (3co82  ' (4.17)

The centre of vortex activity q* is determined by the condition that Go attains its minimum

there:
(--c-)0 =,. = 0. (4.18)

After solving (3.14) numerically for the basic state temperature P, we then use (4.12d) and

(4.18) to determine q*, and (4.12d) and (4.17) to determine Go and G 2. We find that

= 3.001, Go = 15.4834, G 2 = 34.3175,

so that

G = 15.4834k 4 + 34.3175k3 + (4.19)

Finally, we remark that the above analysis is valid as long as the local wavenumber k = vxa

is large. This means that the far downstream evolution of G~rtler vortices can always be

described by the above theory.
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4.2 Numerical results for k , 0(1)

When the wavenumber is 0(1), the perturbation equations (4.3)-(4.7) are parabolic with

respect to x and they have to be solved numerically subject to some initial conditions imposed

at some upstream position i. For computational purpose it is convenient to eliminate P and

W among (4.4)-(4.5). After some manipulation, we obtain

1 a4 f7 2x 3V7 4P' 0V7 k2'2 2fx7 9
T- T - 2x- = a, (4.20)

"a 07'2 aT 877 T 8X

+ [ 1 -+ T 2] T , (4.21)
T a T77 T a1

where

al = 77k T

a2 =~k2[ -7P T  - i{T' 1 77 
2T 2 ] 49

a3 _ -- (A' 77T +/ A" + p77'"

+ 1T 2+ 12 + 2'q2TT + T j)

fk2T'[A +f 1 ftT' AtT) _ ft 1 12,I
a4T +3T 2 - (+ ')(T"T- T

-2(A - 1) 12 + 4 2(E p2 + T1 - 2T,2

fT 3 ftT

+ 2k2 q ( 47) -+.._-._lTT' - 4,] - )

3T' 0 3V 8 a3T' a2Vf7 82 T of a" W3as - -v -T)T - a'()T 0 8i9,

2 22 , + T +T' T' + T 2 W 3  2PW 3T + T + M' PA A z cpa? 11='

=9 2 i
a,7  -2x- -2:-3T 7T2A 82W

as = - = - '-29 7
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ag={72k2 + 71' + 2T +TJ 1 37712 -1 O+(A A 1T T-- •7

In these equations, W 3 and W are given by

S- +,0 +  ' - -T + f-10(-1 -) - 2 9,#  (4.22)

1 aj
--- + W3. (4.23)

77L917

The finite difference scheme used here is similar to that used by Hall (1983), Wadey (1990) for

incompressible flows. The reader is referred to the latter papers for a more detailed discussion.

Our implementation of the numerical scheme is as follows. We first specify V, U and 0 at a

given upstream position . T'cn ve use the finite difference scheme to march downstream and

thus calculate the evolution of the initial perturbation with respect to the streamwise variable

x. The position of neutral stability is defined as the place where a certain energy measure has

zero growth rate. We use the following five energy measures to monitor the energy variation:

B= = [ 0 2 dy = v/2 - 2Pd 77, (4.24)

B2 '(V + W2 )dy = ,/5fj (V2 + W2 )Td 7, (4.25)

E3 = v2"xddy = 2x I 0Td7 , E4 = Um, (4.26)

Es=o (U)2dy = 1 f)2d 7  (4.27)
T0 a7

We give results for several measures of the vortex strength in order to show the relatively large

variation of growth rates associated with different flow quantities. Depending on the initial

conditions and on which energy measure we use, the disturbance can either grow or decay

initially. In the former case, there is only one neutral position corresponding to each pair

(a, 0): the energy will reach a maximum at some downstream location and then decay to zero

monotonically. The corresponding neutral curves only have right branches. The region on the

left of a neutral curve is unstable and the region on the right is stable. In the latter case, if

the GOrtler number is large enough, there are always two neutral positions: the energy will

reach a minimum at some downstream location, then grow to reach a maximum and finally

decay to zero monotonically. The corresponding neutral curves have distinct right and left

branches. The region above a neutral curve is unstable and other regions are stable. For the

special curvature case discussed in the present section, the flow is always stable for x > 1, since

according to the asymptotic result obtained in the previous subsection, the flow is neutrally

stable where 6 , 4 for k > 1 so that K(x) must increase at least as quickly as 1l/2 if the

vortex is to be unstable for x > 1.
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At a neutral position, we calculate the local wavenumber a. and local Gbrtler number G.

defined by

a, = a = v"'a, G. = n(x)(2x)3/2O = G. (4.28)

By fixing a and varying 0, we obtain a series of such points (am, G) and thus plot a

neutral curve. In our calculation, a is fixed at 0.1; the step lengths along x and 77 directions

are taken to be 0.1 and 0.05 respectively; and the lower boundary of the 0(1) temperature

adjustment layer is taken to be 0.8 whilst infinity is approximated by 20.8.

In Fig.6-Fig.12, we have given the results of our numerical calculations. Fig.6 shows five

different neutral curves obtained when we use the five different energy measures (4.24)-(4.27)

to monitor the energy growth. Fig.7 shows three different neutral curves which are obtained

when we impose three different initial conditions at the upstream position X0 = 20, whilst Fig.8

shows three different neutral curves which are obtained when we impose an initial condition

at three different upstream locations. In two of these graphs, we have also plotted the two

term asymptotic result (4.19). As we expect, although these neutral curves have distinct left

branches, their right branches all converge to the unique large local wavenumber limit. We

can see from Fig.8 that as the initial location of the disturbance moves towards the leading

edge, the neutral curves move progressively up and acroas to the right. This is contrary to

the corresponding results found by Hall (1983) for incompressible flows. Finally, Fig.9-Fig.12

show the typical profiles of the four perturbation quantities as they evolve downstream, with

the initial conditions given by (iii) in Fig.6 and X 0 = 20, 0 = 1000. In order to see how the

the centre of vortex activity evolves downstream, we have normalized each of the perturbation

quantities by its maximum. It is clear that as the vortices evolve downstream (and thus as the

local wavenumber increases), they become more and more concentrated, which agrees with the

asymptotic result found in the previous subsection that in the large local wavenumber limit,

Gbrtler vortices are trapped in a thin layer of depth O(k - 1/2) centred at 7 = 3.001.

5 Neutral instability with (x) (2x) - / 2

When the wall curvature is not proportional to (2x )- 3 / 2 , the O(M 3 / 2 ) term on the right hand

side of (3.29) only vanishes at the leading order neutral position and its effect will persist in

the downstream development of Gbrtler vortices. An important consequence of such an effect

is that non-parallel effects will be important over a larger range of wavenumbers than was

the case for the special curvature case. Suppose we measure the order of the wavenumber by
writing it as a = O(M"). Then we will show in this section that non-parallel effects continue to

be dominant for a up to and including 1/4. For a > 1/4, non-parallel effects become negligible

compared with viscous effects and an analytical expression can be obtained for the second

order correction to the Gbrtler number expansion. This second order correction becomes of
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the same order as the leading order term due to the curvature of the basic state when a = 3/8.

In this case a higher order correction term can also be obtained.

5.1 0(1) wavenumber regime-the near neutral inviscid mode

In the 0(1) wavenumber regime, it is convenient to determine the stability properties by

considering the evolution of Gbrtler vortices in the neighbourhood of the leading order neutral

position x1 given by (3.34). Thus we shall fix the Gbrtler number as given by

G -- 2B _M3/2 (5.1)G=(2x,,)3/2r(X,,)

and determine the second order correction say in to the neutral position xz so that G6rtler

vortices with G given by (5.1) are reutrally stable at location xz + in. Replacing x" by z, - in

in (5.1) then gives the appropriate expansion of the G6rtler number for vortices neutrally stable

at X = X..

It can be shown that in the neighbourhood of Xz, the second term in the expansion of

r(x)G/2 will force a growth rate of order M 1/ . Hence we shall consider the evolution of

G6rtler vortices in an O(M-'/ 2) neighbourhood of Xn by defining a new variable X by

X = (X - Xn)M 1/ 2 , (5.2)

and look for asymptotic solutions of the form

TTo(X, 77) +.. ., V 12o(X, 77) +.,

W = M1/2 Wo(X, 77) + .. ,P = MPo(X 77) + ... (5.3)

Equation (3.29) becomes

tv, + Dvv + ltr(x)G 2 = EXM + o(M), (5.4)

where
E d f. d(G* - Q) 1, (5.5)

dx
Note that it is this term that gives rise to a local growth rate of order M 112. On substituting

(5.3a-d) into the perturbation equations (3.18)-(3.22), dropping higher order terms and then

eliminating Vo, Wo and Po from the resulting equations in favour of To, we find that V, Wo

and Po are related to To by

Vo = 2X~ P' 0o (56)
1 Oxo

ikW 0 = -- I a-,(5.7)

V Tn02VPo= (5.8)
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and that To satisfies the equation

02 f 02To 2T" t9To 22 _I,1 __ , T 1 2 EXT'
[k -),)TOT )T]To - To = 0, (5.9)

where k = . 2v/-na. We can interpret (5.9) as the turning point equation associated with the
breakdown of the WKB structure in x of the expansions (3.31), indeed the evolution equation

(3.32) is retrieved from (5.9) by taking X to be large. Since this breakdown is associated

with a simple zer,, in x of the right hand side of (3.32) we expect that the local behaviour of

the disturbance should now be expressed in terms of Airy functions. Equation (5.9) admits

separable solutions of the form

To(X, 77 ) = €(X))(77), (5.10)

with and 0 satisfying

"(x)- wx(X) = 0, (5.11)

- - - TT'(T2 V)(77) - k 2 • E (7) = 0, (5.12)

where the separation constant w is to be determined by solving the eigenvalue problem (5.12)

subject to appropriate boundary conditions. By a simple substitution z = Xw"/3 , equation

(5.11) reduces to the standard form of Airy's equation W"(z) - zW(z) = 0 which has two

independent solutions Ai(z) and Bi(z), so the solution of (5.11) is given by

O(X) = aAi(w 1 3 X) + bBi(w"/3 X), (5.13)

where a and b are two constants to be determined by initial conditions.

To solve (5.12), we first note that in the large wavenumber limit, equation (5.12) takes

the same form as equation (3.32). Therefore, the solution of (5.12) can be written in terms of

Hermite polynomials as

0(7) = Vb = e-iW • He.( ) (5.14)

and from (3.41) the eigenvalue w expands as

E 1 A2,
W( = 2,,..( 1 -") (5.15)

where )O, A2, and are defined in turn by (3.43), (3.46) and (3.45a).

In the 0(1) wavenumber regime, equation (5.12) has to be solved by a numerical integration,

and in general an infinite number of eigenvalues wo(s = 0, 1,...) and eigenfunctions 0, can be

obtained. Then the general solution of (5.9) can be written as

00

To= F {a.Ai(woX) + bBi(wX)} 2p,(77), (5.16)
2=0
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where a, and b, are constants to be fixed by initial conditions at X = 0. From (5.6), V0 is

given by

T' Z {aoAi'(wX) + b8Bi'(woX)}woo(rj). (5.17)
a=0

It is clear that once To(X, T7) and Vo(X,77) are specified at X = 0, the coefficients (a,,b) and

hence the evolutionary behaviour of the perturbaticn field (V, W0 , To, P0) will be completely

determined.

The correction term to the neutral position can be defined as the position where a certain
energy measure has zero growth rate. It is obvious that such a position would depend upon

what initial conditions we impose at X = 0 and what energy measure is employed to monitor

the energy growth. In principle then it is an easy matter to determine the local neutral position

associated with any initial perturbation, we note however that before growth of the vortices

occurs they will have an oscillatory behaviour in X since both Airy functions are oscillatory

on the negative real axis. Clearly this occurs because the boundary between instability and

stability is controlled by inviscid effects in this regime, there is no counterpart to this result in

the behaviour of G6rtler vortices or for that matter Tollmien-Schlichting waves in incompress-

ible flows. We further note that appropriate forms for the initial conditions can be obtained

from the receptivity problems associated with wall roughness or free stream disturbances, see

Denier, Hall, and Seddougui (1990) and Hall(1990). We merely note in passing here that it is

reasonable to expect that the type of mode discussed above is more likely to be stimulated by

free-stream disturbances since the effect of wall roughness is diminished by the wall layer over

which the wall roughness must diffuse before reaching the unstable adjustment layer.

This is certainly typical of the evolution of Ghrtler vortices in growing boundary layers. In

the present problem, non-parallel effects dominate in the evolution of G6rtler vortices mainly

through the O(M 3/2 ) curvature of the basic state. As we increase the wavenumber, viscous

effects will gradually come into play in the evolution of Ghrtler vortices and nonparallel effects

will become less important. In the following subsection we consider wavenumbers of order
M 1 /4 . This is tht. maximum order at which nonparallel effects are dominant. We shall show

that when the wavenumber is increased further aibuve this order, nonparallel effects become

negligible.

5.2 The O(M 1 / 4 ) wavenumber regime-the nonparallel viscous mode

When the wavenumber reaches the order M 1/ 4, the streamwise lengthscale is still O(M -1/)
(implying that the local growth rate is 0(M1/ 2)), but the vertical lengthscale becomes of

O(M - 1/8 ) (as we expect that vortices would be trapped in an O(M - /8 ) thin layer). We

therefore define two new independent variables X and by

X = (X - X")M 11 2 ,  = (77 - 7*)M / 8, (5.18)
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where 17* is the center of vortex activity. For convenience, we define a small parameter e by

ef. M-118. (5.19)

An analysis of the perturbation equations (3.18)-(3.22) shows that

V = O(,-4T), W = O(C-3 T), P = O(E- 5T). (5.20)

We now assume that T = 0(1) and scale (V,W,P) by (C 4,- 3 ,c- 5). Then by neglecting

terms of relative order higher than c2 in the perturbation equations (3.18)-(3.22), we obtain

OV 2 C 4 0 ( f 8 V

T2 3 • (2,) '

2 1 OP 2 OW 0, (5.21)

1 OW p 4p W OV "
a+ Tx + 2 . V

,2 1 0__ [1 &W
4 E (2 ) -2 T O) = 0, (5.22)

1 8V 1 TT

2x" +  T OX + c * V"'TnT V, (5.23)

V T OT &2pT2 2 T_ __a -T7! 7 -' jx- -aT' T~ (2XnjT'T (T-F) (5.24)

where WV i &W, & 42 M-1/4a and where we have used the same notation to denote the scaled

perturbation quantities. Elimination of V', W, and P in favour of T among these equations then

gives
82 1 - 8" 14 EXT1
- +a(1 a )a o.- 4 2 o 2T + V.To 2

= 0. (5.25)

where o = iT 7"), T, = T'(77*),/po = TI(To) and where 77" is chosen at higher order such that the

vertical structure of T can be expressed in terms of parabolic cylinder functions which vanish

at 77 = oo. The solution of the above equation is easily found to be expressible as the product

of an Airy function multiplied bye 2 . As before the Airy function grows or decays

exponentially for large X and is oscilatory on the negative real axis. However the presence of

the exponential factor now leads to a crucial change in the nature of the streamwise evolution

of the disturbance. We refer to the fact that the exponential factor, induced by viscous effects,

now means that in the stable regime the disturbance decays exponentially rather than oscilating

as was the case previously. This result is consistent with the usual result of stability theory

that inviscid disturbances change from being oscilatory to being exponential in character when
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instability occurs; viscous instabilities on the other hand are exponential in nature either side

of the stability boundary. The local neutral position can only be obtained by specifying an
initial disturbance and finding where the solution of the evolution equation begins to grow.

If we let a C 1, then to leading order equation (5.25) reduces to

02T EXT1 T=0 (5.26)jX2 + =0 (526

which matches with the asymptotic form of (5.9) when k > 1.

On the other hand, if we let a > 1, then to leading order (5.25) reduces to

2 )T = 0, (5.27)

which shows that the second order correction term to the leading order neutral position becomes

independent of nonparallel effects and is given by
Y:X-24p4a4'

x " = x -- ,(5.28)

On replacing x,, by X, - M-1/ 2 X, in (5.1) and expanding the resulting expression in the

neighbourhood of x,,, we obtain the following expression for the G6rtler number for Gartler

vortices neutrally stable at location x = x,:

G 2M / + a4 0 +'", (5.29)

where
go = -2 0T (5.30)

The expression (5.29) is valid for wavenumbers of order M', 1/4 < a < 3/8. When the

wavenumber reaches the order M 3 1 , the second order correction term in (5.29) is as large as

the first term and a more accurate asymptotic expression can be obtained. That situation will

be discussed in the following subsection. We have seen above that in the O(M ) wavenumber

regime viscous effects come into play and modify the evolution of the near neutral inviscid

mode, for that reason we refer to the mode in this case as the nonparallel viscous mode. We

further note that the strongly unstable inviscid mode connects directly with the parallel viscous

mode discussed below. Thus we have shown above that the nonparallel viscous mode connects

with the near neutral inviscid mode in the vicinity of the right hand branch of the neutral

curve. Hence the initial stages in the evolution of the right hand branch of the neutral curve

are governed by an interplay between viscous and inviscid effects. We further note that, in

view of the limiting form (5.29) valid for large a, as the wavenumber increases the neutral

G6rtler number will also increase.
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5.3 The O(Mi) wavenumber regime-the parallel viscous mode

When the wavenumber becomes of order M 3/8 , viscous effects are of the same order as the

centrifugal acceleration of the basic state in the determination of the G6rtler number, and the

leading order inviscid result (3.35) is to be modified. We assume that to leading order the

G6rtler number now expands as

G _ 2BM 3/ a 4g. (5.31)
x(x,,)(2x,,)3/12 ato (.1

Here the first term is due to the curvature of the basic state and the second term is due to

viscous effects and is to be determined.

For convenience, we introduce a small parameter e and an 0(1) constant N by
def. 1 .

C -, N dd. M 3 /2 4, (5.32)
a

so that (5.31) can be written as

2BN 1 go (533)n(x,,)(2x,,)3/2 '.; + 74'533

To determine the higher order correction terms to the Gbrtler number expansion, we shall first

fix the G6rtler number as given by (5.33) and consider the evolution of G6rtler vortices in the

neighbourhood of the leading order neutral position x7, defined by (5.31), aiming at finding the

second order correction say el, to the neutral position. As we have remarked at the beginning

of the first subsection, replacing x, by x,, - c-,, in (5.33) would give the appropriate expansion

of the G6rtler number for vortices neutrally stable at x = x,,.

The vortices under consideration vary on small lengthscales in both x and 77 directions.

In the streamwise direction, their growth rate can be shown to be 0(1/c) so that they evolve

on an O(c) lengthscale. In the 7 direction, they are confined to an 0(E'/2) thin viscous layer

because of their small wavelength character. We therefore define two new variables X and

by
X=__-"_ _ 77-r7*

=7-1- ,(5.34)
f C1/2

where 7" is the centre of vortex activity and is to be determined.

We now look for asymptotic solutions of the form

T = Oo(X,) + f1/201(X,() + E02(X,() +

v = -~2 [Vo(X, () + ,E"V(X,() + eV(xC) + ...

W = 3 / 2 [Wo(X,C) + '/ 2W 1 (X,C) + CW2 (X,C) + .], (5.35)

P = C-s/ 2[Po(X,C) + C112 Pi(X,C) + CP2(XC) +..
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Here the relative orders of the perturbation quantities are deduced from the perturbation equa-

tions (3.18)-(3.22). On inserting these expansions into the perturbation equations (3.18)-(3.22),

expanding all coefficients there about x = x, and n = i', and then equating the coefficients

of like powers of c, we obtain a hierarchy of equations. To leading order, the Gbrtler number

go in (5.31) is determined as a solvability condition for (Vo, 0) and is given by

g - 2V - o'. (5.36)gO = ow/oT 1

whilst 00, Wo and Po are related to Vo by

00o= 2at Vol iWo= a __ I Po=- To,0 o (5.37)

where To = T( 7*), T = T'(77*), po = fT(To) no = K(x,). Note that (5.36) is of the same

form as (5.30), as we would expect.

To next order, we obtain three expressions similar to (5.37) for 01, W, and P in terms of

V and Vo and the condition that
dg ," O, (5.38)

which implies that 7" is where go attains its minimum.

If we carry on one order higher, we find from a solvability condition for (V2, 2) that Vo

must satisfy the evolution equation

92Vo 2(1 + a)Poxn OVo - 2V0 + ;XV = 0, (5.39)
0(2  

3po OX

where

3go aq2 IM
" '7 > 0,

- 2xn'°T 2B.N ,ci 3
b= - Bo o(2)3/2( oo + ) +o 2 (5.40)

and where ri = '(Xn). The solutions of (5.39) which satisfy the conditions Vo -* 0 as IC! - oo

can be written as

Vo-V (x,c)-- exp 4(1 +o)Tozn X -(m+)) 2

-U (m , (4a)1/4( m= , (5.41)

where U is a parabolic cylinder function. The neutral position in can be taken to be the point

where 8V/OX = 0, so that the mth mode is neutrally stable at

=v4d (5.42)
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The most unstable mode corresponds to m = 0. We therefore have

n =-.(5.43)

With the expression for in determined, we can now replace Xn by Xn - fn in (5.33) and then

expand the two terms on the right hand side up to and including the 0(1/f 3 ) term, hence

obtaining the expansion

2BM 3 /2  go 1 1 3go O2go (544)+  3 +IX 2 5.44)

for Gortler vortices which are neutrally stable at position Xn.

As is to be expected, the G~rtler number expansion (5.44) agrees in the special case

n = (2x) - 3/2 with the combination of (4.1), (4.10a), (4.12d) and (4.17) (note that the small

parameter e there corresponds to E/V'T" n here). This means that in the large wavenumber

limit, the relation (5.44) is a universal expression for the neutral G~rtler number, which is

valid for all wall curvatures.

Finally in this subsection we stress that a more unstable version of the parallel viscous mode

can be obtained by taking go bigger than the value given by (5.36), in that case we must allow

for a growth rate of order M, and then (5.36) is replaced by an equation to determine that

growth rate. This structure then enables a direct connection between the strongly unstable

inviscid mode and the parallel inviscid mode at relatively high G6rtler numbers with G - GN

M2. The analysis for this more unstable regime is essentially identical to that given by Denier,

Hall, and Seddougui (1990) in the incompressible case.

6 The wall mode

It has been established in section 3 that as the wavenumber becomes large, G&rtler vortices

become increasingly trapped in the 0(1) temperature adjustment layer. Thus the preceding

three sections are devoted to G6rtler vortices which have wavelength of 0(1) or smaller and

which are trapped in the temperature adjustment layer. Clearly it is possible for vortices

of wavelength smaller than the thickness of the transition layer to be excited, far enough

downstream the local wavenumber will become comparable to the adjustment layer thickness

and the previous analysis will apply. However before this occurs the vortices must be described

by an analysis which takes account of the fact that they are of wavelength much larger than

the adjustment layer thickness, we shall now address that situation. In fact it can be deduced

from the definition (2.11) and (3.1c) that the variation dy of the physical variable y and the

variation of the similarity variable d77 satisfy

dy = V2Pdq. (6.1)
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The wall layer which corresponds to 17 = O(M- 1/ 2) with T = O(M 2 ) is therefore actually of
O(M3 /2) thickness in terms of the physical variable y, whilst the temperature adjustment layer

is still of 0(1) thickness. Thus a natural scale for larger wavelength vortices is provided by the

thickness of the wall layer, the appropriate size of the Grtler number is found by rescaling

the vortex wavelength and velocity field by the scales relevant to the wall layer. Such Gbrtler

vortices are referred to as the wall mode and are studied in the present section to complete

our stability analysis.

Since in the large Mach number limit the boundary layer thickens by O(M 3/2 ), we should

rescale (y,z) by a factor M 3/2 and the corresponding velocity components likewise. This

effectively replaces all "R-1/ 2"s by "R- 1/2 M 3/2 33. It is therefore appropriate to rescale the

G6rtler number G and the wavenumber a by defining

= M-3/2 (X)(2x) 312G, k = V/2M 3 /2 a. (6.2)

In the wall layer, the basic state is from (2.12) and (3.5) given by

M 3/ 2

= F'(Y), i - - [-TF(Y) + F'(Y)ft(Y)], (6.3)

where ,dy 4e. fYd.
( j TdY. (6.4)

The various partial derivatives of u, v and A which appear in the perturbation equations

(3.18)-(3.22) have to be computed before we can deduce the relative orders of the pertur-

bation quantities. Such expressions are given in the Appendix to this paper. With the aid of

these expressions, we can show from (3.18)-(3.22) that the relative scalings of the velocity,

pressure and temperature disturbance fields are given by

V = O(M 3/12 U), W = O(M 3/ 2 U), T = O(M 2U), P = O(MU). (6.5)

We therefore look for solutions of the form

U = U(z,Y) + ... , V = M3 /2 V(,Y) +...,

W = M 3/2 V(X,Y) +... P = M 2f>(X,Y) +., (6.6)

T = M 20(X,Y) +....

On substituting (6.6) into the perturbation equations (3.18)-(3.22) and then equating the

coefficients of like powers of M, we obtain to leading order the following set of partial differential

equations which govern the evolution of G6rtler vortices in the wall layer:

1 ,soU - s.r + (k F,,n Ca( h 1 o90

T' ft 2z 0Y 'Z X2~v 2xt Ty 72Y9
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+ " 1+'7)P -+{FF"- I -nT ()}-- (6.7)

{ T TJ(x32
(1 + t"' flo 8 I 1+ fn 82U -1 nt,7II n a2 C92

2xT IDy 3i/ ay OxOY

+1ZT +8nU 1 -V F OV
______- 

+ -(P~-7
2 (2x)3/2it5/2 T xI 'T - Y)

T 2  T Ffl]4(l + n) 8 81a/f
3.(2x)T aY (

_____ 1 1 22 2+± ,-2x! Y 2- { O[F + TFF' + T'F2 - (F + FF")fl]

(1 + fn-(F F + "tn( + fn)F"____

2+ fn)a 11 +_ fn T!'F"' _ _

+3T 8Y43/2 -'F+Ff)+ 4 T~f(2x)3/2

(1±+ f)F" ao- - n80 1+f _-3~ F)a

2 ,/--t 3 / 2 F8x x- ;~j7 3 .( 2x) 3 /2T5 / 2 (3f - 81

+ (1 + fn!t k7CV (1 + fn) 8(ikfV) = 0, (6.8)
3 -(2x)1;3/2  3 .(2x)V'T- 09Y

Ai .f OI n ajT'- 1 +. fn

U+ V~ f7FlW2 Y 2xT 3/2 8x 2 2X;1

+~~ 4 1+ n 'T7. (i - in0 ~kf~ 0 69
3 f 2 :T I-2X-kT aY = 0,(610

+ -- Vy2x:3T 2  ax)~3/ 2Y OY +2= Y

01 8 F a~ C1vTk~
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FT' +1(1 +h) )F" 2  1+i f a .

-P-2 2± ,.- - 2!P/2+ 2a(2x)TD YT3/2'

- (1+i yI' 0 1±mD( 1 ) o=. (6.11)

2o(2x)TP5 /2 1Y -,T)j _______

Obviously, this set of partial differential equations have to be solved numerically to deter-

mine the evolution properties of G6rtler vortices in the wall layer. We further note that the

downstream velocity component of the perturbation now does not decouple from the other

disturbance quantities. For the purpose of numerical calculation, it is convenient to eliminate

the pressure perturbation P and W from the above five equations. After some manipulation,

we obtain

PVT= a 0 v~F"2 - F" 00 T' F .a(I"
-Y 1+- '(2x)5 (l+ 7 i,)vS 2TDY ( 2T +f

+{ FF" VT-F" 3F"T)} + { ,22 F"I C} (6.12)+ (1 + in)J V/T 2y 3/ )2T0/ + (1 + ?h)V/TJU, (.2

o ~ (2x) -O -4FxVY - U¢ ;
TY--I - 1 +f. ( 9X 1= + f Y + ( + -i)VY T *+& )Vr

a. - k2T2 aFT' I F '2 T" 3;12 "-
o(+- -1) . + 0, (6.13)

-(I ± /+ &)V7 -2 T 2T T2 J

a4f F'-v'T a f7_ 3T'F' %7 .(2x_) a2f
T 1+i4 .(2x) 8 x 8 Y2( + F)
OY- q-1 -+- fn x2a-' 1{ ( + fn 1 a- aY

F' ; F"T' of'2  T4 D V+ P -- ui+ F,- + k2tS 2 "(2x)-57= Zai, (6.14)
=1

where 4T' a3V 6T" 12T'2  k 2
a

al_ f + +
- T ' -3 T r(T &P2"])

+/4T(3) 24"T'/24T' h T 2!TII± + F / 2 "f7

T+- 2r 1 n a

(f(4)0(3)P 36t 2  6P224P 321
+

-kjil k4! + k2!f3 2 (iF - F"n) IV,

a2 = T!f' + ( P'-F") !t/2 (2)tW3 _F1 t 3/2 . 2x)L2W3

, T/ 2 F" F'ijv'r7k22,] FP/2 _ a2W
-rL - 2 T)
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FT'V'f- 2F'T 3/ 2  5T"2 T +2]
S 1+ fn 4T- + -2 + T-y

{Ffl2 F F) !FF, (1 + ) P T " 3S,'12)

a: -~ ( + )F1 - )0 W - T l -F+T~-
k 2

TS1C5
QT,. 2! OCT -i- 9C+ -k

1 2T2p1./
(1 +1-)v/x 2v/2 aY 2 Ox'

a4 1 [1pF2  + TFF'+ V 2 - (F12 + FF")D]

+F(3) + /F,, 3F"11T'3 T"F + T'F' 3FT'2  k2i3/2 j

2 7T / 2 +T= 22 / x

(2 8 F 86 1 F' 8

( 7" - F_
V/-2x- 2tO Y T 2w= -.0 -F + v.T + P0.

The above equations are to be solved subject to the following boundary conditions:

At Y= 0,

W3~ ~~ -2v2x

3 'Y 0,+ 3

aDY

=7- 0, if the wall is thermally insulated (6.15)

= 0, if the wall is under cooling.

As Y --- oo,

1 - 0, f -- 0, Of --+0, 6-+ 0. (6.16)

The precise large Y decay behaviour of the perturbation quantities can be deduced from

the perturbation equations (6.12)-(6.14), but the derivation is tedious. However, the far

downstream limit of such decay behaviour can be deduced very easily from the condition that

the solutions of the wall mode under consideration in the double limit k -* oo and Y -+ oo

should match with the inviscid solutions (3.32) and (3.33) when k -+ 0 and 77 -- 0 there. In the

limit k --+ 0, equation (3.32) reduces to equation (3.37) and the latter has solutions confined
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to a thin layer 77 = O(k'/ 3) near the wall. It can be shown that in the further limit 7/ - 0, the

solution of (3.37) has
Cl (.7Vo 7-6.17

and from (3.33),
C2  C3 (6.18)

778 
77

where cl, c2 and c3 are all functions of x. By the above-mentioned matching condition, the

relations (6.17) and (6.18) with 17 replaced by Y are also the far downstream, large Y decay

behaviour of the perturbation quantities in the present problem.

For any initial disturbance located at a given downstream position, we can determine the

position at which the disturbance becomes neutrally stable by integrating these equations using

the same marching procedure as the one used in solving the system of equations (4.3)-(4.7).

As an illustrative example, we impose the following initial disturbance at the location x = 50:

(1(50,Y) = Ye-Y3 , V,(50,Y) = O(50,Y) = 0. (6.19)

The wall curvature is taken to be -'x and the wall is assumed to be thermally insulated. For

a given wavenumber and a given Gbrtler number, we can march downstream until we reach

the neutral position where a certain energy measure has zero growth rate. We then calculate

the local wavenumber k and the local G6rtler number G at the neutral position. By fixing

the wavenumber a(= k(2x)- 1/ 2) at 1 and varying the Gbrtler number M- 3 /2 G from 0.0001 to

0.03, we obtain a series of neutral points (k, 0). Fig.13 shows the neutral curves corresponding

to the following three energy measures:

E= O i 2dy = V2-XM 312 J U2TdY, (6.20)

E2 = 1j ([2 + f2 + 1V 2 dy = V/2iM 3 / 2 f (CT2 + V2 + fVW2 )TdY, (6.21)

0 OC )2 M- 3 2  0 1
E 3 =- dy _ ( _ dY. (6.22)

Fig.14-Fig.17 shows the downstream evolution of Gbrtler vortices corresponding to the above

conditions with M-3/ 2 G = 0.001. We observe that all neutral curves decrease monotonically

with respect to the local wavenumber and that G6rtler vortices become increasingly more

and more shifted to the right (i.e. towards the temperature adjustment layer) as they evolve

downstream. This is certainly to be expected since in the large local wavenumber limit the

wall mode has to match with the mode trapped in the temperature adjustment layer. By

taking the large wavenumber limit of the wall mode equations we can show that the neutral

curve should tend to the limit 0 = 2B = 1.2543. In order to realize this limit numerically we

have to carry out our calculation at very large wavenumbers. This prcrents some numerical
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difficulties, because on one hand, if we fix the G6rtler number and vary the wavenumber,

the initial conditions soon become incompatible with the differential equations since for large

wavenumbers Grtler vortices have to be trapped in a region away from the wall; on the

other hand, if we fix the wavenumber and vary the G6rtler number, a large local wavenumber

corresponds to a large downstream neutral position and there contamination from the "finite

infinity" becomes important because of the algebraic decay behaviour (implying that we have

to choose a larger infinity). Finally, we remark that the x-derivative of 0 in the expressions for

W3 and W could be eliminated with the aid of equation (6.13) to give a different formulation

and thus to provide a check on our numerical scheme. We have done so and have obtained

identical results.

We conclude this section by stating the most important results of our investigation of the

wall mode. We have shown that the wall layer can support a disturbance trapped in the wall

layer with wavelength comparable with the wall layer thickness. This mode is dominated by

nonparallel effects and has a neutral Gbrtler number which is a monotonic decreasing function

of the vortex wavenumber. In the limit of high vortex wavenumbers the mode takes on a struc-

ture essentially identical to that found for the small wavenumber limit of the inviscid modes of

wavelength comparable with the adjustment layer thickness. Moreover in this limit the vortex

has a neutral G6rtler number which approaches from above the zeroth order approximation to

the neutral G6rtler number of the wall modes.

7 Real gas effects

In our previous discussions, we have assumed that the fluid under consideration is an ideal gas

undergoing no dissociation. Our asymptotic analysis based on the large Mach number limit

has yielded some revealing results about the stability properties of hypersonic boundary layers.

However, in the large Mach number limit, we would expect that the wall temperature should

be well above the temperature at which dissociation takes place. Take a boundary layer over

a thermally insulated wall as an example. The temperature at the wall is given by

= 1(-Y - ')M 2T,
2

when the Prandtl number is unity. At a standard altitude of 53 kin, the air temperature T.o

is 283K. If we take y = 1.4, M = 25, then T.. = 35,375 K. Since at the far lower temperature

of 2500 K, the oxygen molecules in the air have already begun to dissociate, it is clear that an

investigation which takes gas dissociation into account is vitally important!

A complete theory on real gas effects should at least incorporate the following important

chemical reactions:

O2 20, N2  2N,
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N+O;NO, N+O-NO++e- .

However, in order to expose the most important features and at the same time keep the algebra

to a minimum, we begin our investigation by eliminating the less essential complications which

arise from the detailed composition of air and confining our attention to a pure dissociating

diatomic gas. The dissociation process is therefore denoted by

A 2 F A + A. (7.1)

In our following discussion, 02 and N 2 will be chosen for numerical illustration. F- -rmore,

we assume that the fluid under consideration is an ideal dissociating gas which the

relation
a 2  Pd T e-T/T .2)

1 -a 2  p Td

(see Becker (1968), p. 36, or Lighthill (1957), p.6). Here a, p and T have the same meanings

as defined in §2, whilst Pd and Td are respectively the characteristic pressure and temperature

for dissociation.

For the gas mixture of A and A 2 , Dalton's law gives

nIRT n2 RT
P=P+P2= V + V ' (7.3)

where pi is the pressure which the ith component would exert individually if alone in volume

V at temperature T, ni are mole numbers and R is the universal gas constant. Here we use

subscript 1 to signify component gas A 2 and subscript 2 for A. Assume that the weight of a

mole of gas A is m, the molar weight of gas A 2 is then 2m. We therefore have

ni •2m + n2 M (7.4)
V

n 2  m n 2  (7.5)
n 1 •2m+n 2 .m 2n,+n 2 (

With the use of (7.4) and (7.5), we can rewrite the equation of state (7.3) as

p = (1 + a)RpT, (7.6)

where R = R/(2m) is a gas constant.

On inserting (7.6) into (7.2), we obtain

- = e e-Te/T (7.7)
1-a6 p

where pd = PdI(RTd) is the characteristic density for dissociation. Pd, Pd and Td are in

general functions of T, but their variations over a large temperature range are very slight.

Their typical values are given in Table 2 (taken from Lighthiil (1957)).
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Table 2

Td(*K) Pd(atoms) pd(gm/cm 3)

Oxygen 59000 2.3 x 107 150

Nitrogen 113000 4.1 x 107  130

It should be noted that for atmospheric values of p, Pd/P is at least 105. Thus although

Pd, Td and Pd are called characteristic quantities, they are not typical of the actual values

of p, T and p at all. For Pd/P = I05, (7.T) shows that a is 0.05 (5% dissociation) when

T/Td = 0.057, and a is 0.95 (95% dissociation) when TITd = 0.116. For densities typical of

the upper atmosphere, with (say) pd/p = 107, these values of T/Td would be reduced to 0.045

and 0.076 respectively. For a fixed value of Pd/P = 4 x 10' and Td/Too = 4 x 10', the variation

of a with respect to T/To is plotted in Fig.18.

Relation (7.7) was first obtained by Lighthill (1957) from quantum mechanics, and there-

fore the ideal dissociating gas discussed here is also called the Lighthill gas. Using a purely

mathematical argument, Becker (1968) has shown that the Lighthill gas is a special case of a

more general class of gases. An important property of Lighthill gases is that A 2 and A have

the same specific heats at constant volume, that is,

Cv1 = Cv2. (7.8)

7.1 Constitutive properties of a dissociating gas

In order to see the complications which arise from gas dissociation, let us first recall that an

ideal gas has the following properties which have greatly simplified our previous analysis:

(i) The equation of state has the simple form P = RpT as compared with (7.6);

(ii) Specific heats cp and c,, can be taken to be constant;

(iii) The coefficient of thermal conduction k is proportional to the shear viscosity A and the

Prandtl number a = pzc/k is usually taken to be constant;

(iv) The viscosity can be taken to be related to the temperature by Chapman's law, or more

accurately, by Sutherland's law.

When part of an ideal gas has been dissociated, the gas becomes a mixture of two component

gases and all of the above properties are changed. We have shown above that the equation of
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state is modified to the form given by (7.6). In this subsection, we derive the corresponding

expressions for A, k and cp. Our derivation is based on work discussed in "The mathematical

theory of non-uniform gases" by Chapman and Cowling (1970).

The viscosity As

In the kinetic theory of gases, different expressions for the transport properties A and k have

been found depending on what model is used for the interaction of the gas molecules. For

example, for a simple gas which consists of smooth rigid elastic spherical molecules, /A is

proportional to vT, whilst if the gas is taken to consist of smooth rigid elastic spherical

molecules each of which is surrounded by a field of attractive force, A is given

5 RmT 1  S (79)/1= 1/61 (

where c is the diameter of the molecule, S the potential energy of the mutual attraction of two

molecules when in contact, m the molecular weight. Relation (7.9) is known as Sutherland's

viscosity law.

For a binary mixture of gases, Wilke's law gives an approximate expression for the viscosity

of the mixture:
X1 X2 (7.10)

El + -2 P
JAIA 1 .2 M71 + 2

where , and A2 are the viscosities of the two component gases; x, and X2 denote the propor-

tions by volume of the two gases in the mixture. Since by Avogadro's law equal volumes of

different gases contain an equal number of molecules or moles, we have

nI  1 - a n2 2a(711)
ni+n 2  1+a' nj +n2 +oa

n (7.10), 112 and /121 are the mutual viscosities of the two component gases and are given by

5rm1 [RT(m, + M 2) 1/2 A 12 m2 1

16c12 L2--lm2 J /i , =
'r= , (7.12)

where c1 2 can be taken to be (cl + c2 )/2, whilst the expression for S12 has to be found empir-

ically. Lindsay and Bromley (1950) suggested that S12 = V/T2. Here c, and S, (i=1,2) are

constants appearing in (7.9), associated with Ai.

With the aid of (7.9) and (7.12), we can now write down the appropriate expressions for

the viscosities of the component gases. These are
AiT 3 /2  12 _A 3T3 /2

Ai -T+3/2 i= 1, 2 , A12P 
=  TS /21 =A12/2, (7.13)

Here

A 5 =m5 5 3RmN
A, = p = T , (7.14)

where we have made use of the fact that mi = 2m2.
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Coefficient of thermal conduction k

For a pure gas, the coefficient of thermal conduction is related to the viscosity it by the simple

formula

k = fc.A, (7.15)

where f is a constant and -y/f is usually defined as the Prandtl number.

For a binary gas mixture, Wassiljewa's formula gives

+ L 1X (7.16)
+

where k, and k2 are the thermal conductivities of the two component gases and k12, and k2 1

are the mutual thermal conductivities.

It is suggested in Chapman and Cowling (1970, p.256) to put

k_ Dil k2 _ D22

k12  D12, k - 02, D-' (7.17)

where the coefficients a12 and a2 l are regarded as functions of ml/M 2 , which are determined

semi-empirically, and for Sutherland's model the diffusion coefficients D1 1, D12 and D22 are

given by

= 6 6 6

5p, 5-pl, D 2  A =- (7.18)

where pi is the density of the ith component gas, when pure, at the pressure and temperature

of the actual mixture.

If we take a12 = a21 = 1 for simplicity and further make use of the above relations, relation

(7.16) then becomes

k = c1f Al +  21fI)1 ' (7.19)

where we have used the fact that for an ideal dissociating gas, ci = c cv; whilst fi and

f2 are the constants appearing in (7.15) corresponding to gases A2 and A respectively.

For easy comparison, we rewrite (7.10) here, making use of the relation (7.12),

Al A2 (7.20)+ El. A 1 + 2x • 2_
X1 J12 2 0412

Comparing (7.19) with (7.20) shows that we can almost write k = cvfjit for the gas mixture,

only if f2 = fl. It is therefore desirable to investigate the values of f, (for diatomic gases) and

f2 (for monatomic gases).

For all smooth spherically symmetrical molecules, it has been shown that taking f2 = 2.5

provides a very good approximation. However, for diatomic and polyatomic gases, a variety of

expressions have been suggested for f. One of these is Eucken's formula:

f = (9,y - 5). (7.21)
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This formula is valid under the assumption that the transport of momentum and translational

energy is unaffected by the internal molecular motions, and that internal energy is transported

at the same rate as momentum.

For diatomic gases, there are 3 translational degrees of freedom, two rotational degrees of

freedom and on the average one vibrational degree of freedom (may vary between zero and

two depending on whether vibration has been fully excited or not). Thus the internal energy

is given by 1 TT 3RT
el - T . ~ -( +1 (7.22)

2l (-2m)3 22m1)

(Recalling that 2m is the molecular weight of A). Consequently, the specific heats are

0e, _ 3 3? (7.23)
CV1 -T 2m' C(pl-Cvl+

We then have
c=- 3 1.33, f -= 1.75. (7.24)

Cu1  3 4

At lower temperatures when the vibrational mode is not excited,

53?T 5 R, =7

and therefore
7

=-= 1.4, f = 1.90.
5

At the other limit when the vibrational mode is fully excited,

73?T 73? 9(3?
el= :(-), C1 = 2 )m CPI =

and hence
9

7=-= 1.29, f=1.68.
7

Therefore, in general,

1.68 < f < 1.90. (7.25)

In passing, we note that for monatomic gases, there are only three translational degrees of

freedom and therefore 1 3?T 33?T
e2 = 1....- 3 = 3 . (7.26)

2 m 2m

Comparing (7.26) with (7.22) then shows that monatomic and diatomic gases have internal

energies differing only on their zero point energies and that the basic assumption cui = c2 for

an ideal dissociating gas is indeed valid. Also, the f value 2.5 for a monatomic gas can actually

be read off from Eucken's formula (7.21) by noting that c2 = 3R/(2m), Cp2 = 5R/(2m) and

-y= 5/3.
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We now return to (7.19). From the above discussion, it is appropriate to put c,, =

3R/(2m), f, = 7/4, f2 = 5/2. The coefficient of thermal conduction k for the mixture

is then given by the formula

k=21R f /4 10 A2 (7.27)

8m 1+ El +7 l+ 2 -M  J(.
Z1 A12 Z2 A12

Specific heats of the mixture

The specific internal energy for A and A 2 both have the same expression

3RT

2m

The total internal energy of the mixture is then given by

3RTE = -y--(2m. -n + m-" n2). (7.28)

Since A and A2 do not necessarily have the same zero-point energy, relation (7.28) should be

modified to
33T. 1

E = L-- (2m. ni + m. n2) + -3?Tdn2, (7.29)
2m2

where the last term represents the difference of zero-point energies of A over A 2 .

On dividing (7.29) by the total mass of the mixture (2mn, +mn2), we obtain the expression

for the specific internal energy of the mixture:

e = 3T + RTda. (7.30)

With the aid of this relation and the equation of state (7.6), we can easily calculate the

specific enthalpy as follows:

h = e + =(4 + a)RT + Tda. (7.31)

P

To calculate specific heats, we have to first of all evaluate (Oa/oT)p and (Oa/oT)p. From

(7.7),
aa Tdd a(l - a) Ta 1 Td 1 1-a 2 ). (7.32)(T-T) T2 2-a TT T ) T 1 -2 a1 S.(.2

It then follows from (7.30) and (7.31) that

ae -Tds )2.C(1 -C) , Td )2 a(,1  ,)
c. A) + =( ) ( (7.33)

T 2-a 2 =(4+a)T+ (l+T).(-&).

The quantity (Oh/ap)T which appears in (2.8) can now be calculated with the use of (7.31)

and (7.2). The result is

oh ) (T+Td). 1 Td a(, (7.34)

2p
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7.2 Modification of the basic state

As we have remarked before, the basic state equations (2.13) and (2.14) are independent of

constitutive assumptions and therefore also valid for the gas mixture under consideration,

although now p, jT, k and E are calculated from the more complicated expressions (7.6),

(7.10), (7.27) and (7.33), respectively. In these expressions, the function a is given by (7.7).

After non-dimensionalization, these equations become
1

P 1 (7.35)

(1 + fnI)T 3/ 2  -A2 (1 + f 1 )p 3/2

+ fn I . 2a + ) + + . (T + fn3)' (7.36)

(1 + fh1)T 3/2  + (10A 2 /7)(1 + ,izi) T3/2  (7.37)

1 Td ) .a(1 -a 2 ), (7.38)
zp=l+ja+ (i+T )a~-o(738

S=de(7.39)

1-a 2  poo

where
S1 = ,m2 =2

A2 = A2 _ c 1 A3 =/3 1 (7.40)

For the purpose of asymptotic analysis, it is convenient to define two new constants a and b

by

a = PdM 2, b= Td (7.41)Poo T.OM 2 "

Then equation (7.39) becomes
a2  aT bM2

1 -a2 = M2e--, 
(7.42)

which displays the physical fact that dissociation will take place in the hottest region where
T = O(M 2).

An asymptotic analysis of equations (2.13) and (2.14) shows that the boundary layer struc-

ture in the present case is similar to that for an ideal gas. In particular, the boundary layer

can be divided into two regions: an inner region 77 = O(M-1/2 ) and a temperature adjustment

region 7 = 0(1). In the inner region, we define new variables Y, 1 as in (3.5), but now (3.6)

and (3.7) axe replaced by

(1+ 1 )(hi F " 7 + FF" = 0, (7.43)
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1 + (h 2(a) !f ' +_+ h(a) (F")2

or 1+ "' ++aFT + (-1)(1 + 'i)j-i " = .

where

hi d . A3(1 - a) + 2A3Ct (7.45)
2a + A 3 (1 - a) A 3a + A2 (1 - ai)'

h2 def. A3 (1 - a) (10A 2 A3 /7)a (7.46)
2a + A3 (1 - a) A 3cg + A 2 (1 - a)'

-+ja + 1 + (7.47)

and where a satisfies

1 a2  = aTe- b/. (7.48)1- a*

As Y --* oo, T ._ 0 and we expect that a -+ 0. From (7.45), (7.46) and (7.38) we have

h, -- 1, h 2 --+ 1 and p -I' 1. Equations (7.43) and (7.44) can then be approximated by

F" !

(1 + 7h)(-)' + FF" = 0, (7.49)

+f' (L)' + FT' + -- 1) (1 + i =, (7.50)

which have asymptotic solution

D - 3(1 + fn)1 2  1
F=Y- ([0J/ + , T= (y+T- ) 4  (7.51)

where both D and 0 are constants. Therefore, equations (7.43) and (7.44) are to be solved

subject to the boundary conditions (3.8) and the asymptotic conditions (7.51). Results from

such a numerical integration are shown in Fig.1 together with those results corresponding to

the undissociated model.

In the temperature adjustment layer 7 = 0(1), a is exponentially small which means that

no dissociation takes place in this region. The basic state equations (2.13) and (2.14) reduce

to (3.13) and (3.14) which are appropriate for an ideal gas and which are to be solved subject

to the same matching conditions (3.15) and the conditions (3.16) at infinity.

7.3 Modification of the stability properties

Since the boundary layer structure is similar to that for an ideal gas when dissociation is taken

into account, the qualitative stability properties are also similar with appropriate quantitative

modifications. In particular, we can still show that the mode trapped in the temperature ad-

justment layer is most susceptible to Gbrtler vortices and the neutral Gbrtler number expands

as in (3.35), but now the coefficient B is modified since it is the leading order contribution to

the integration of basic state temperature across the whole boundary layer. As for higher order
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correction terms to the Gbrtler number expansion, The effect of gas dissociation is dependent

on the wall curvature. In the special curvature case, since the second term 0 in (4.1) is de-

termined by solving partial differential equations in the undissociated temperature adjustment

layer, it is not affected by consideration of gas dissociation; whilst in the more general curva-

ture case, we can see from (5.9) that gas dissociation affects the second order correction term

through E, but in the higher wavenumber case discussed in §5.3, the second order correction

term is not affected by gas dissociation, as is clear from (5.44).

In Fig.19, we have plotted the variation of B with respect to the cooling coefficient both for

the real gas model discussed here and for the ideal gas model used in section 3. It is clear from

Fig.19 that the values of B is decreased by gas dissociation as well as by wall cooling. Therefore,

both gas dissociation and wall-cooling are destabilizing. In our numerical integration of the

boundary layer equations (7.43) and (7.44), we have taken fni = fn = 0.508, A2 = A3 = 1, a =

1.225 x 10, b = 3.2653. We have also repeated our calculation for a few sets of different values

for the above five constants. We find that the above prediction is still valid.

In order to determine the effects of gas dissociation on the wall mode, we have integrated

the perturbation equations (6.12)-(6.14) with the basic state given by the solutions of (7.49)

and (7.50), subject to the same conditions as those used to produce the neutral curves in

Fig.13. Fig.20 to Fig.22 give a comparison of the neutral curves corresponding to the ideal gas

model and the real gas model with dissociation. We observe that in each of these Figures, the

two neutral curves corresponding to the two models intersect. Therefore, gas dissociation can

have either a destabilizing effect or a destabilizing effect on the wall mode.

8 Further discussion

We have seen above that the Gbrtler mechanism in a hypersonic boundary layer of a Sutherland

law fluid behaves in a predominantly viscous or inviscid manner depending on whether or not
3

the wall curvature varies like zx- where x denotes distance along the wall. When the wall

curvature does not have this special form the vortices evolve over almost the whole of the

wavenumber space in a nonparallel manner subject to viscous effects. The only exception to

this case is at extremely high wavenumbers where the vortices evolve in a quasi-parallel manner

essentially identical to that described for incompressible flows by Hall(1982). Since the special

curvature distribution is possibly of little physical relevance we shall now concentrate on the

results we have found for the more general curvature situation.

The results we have found for the different wavenumber regimes for the general curvature

distribution are summarized in Table 3 below.
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Table 3

wavenumber growth rate neutral value of G

wall mode 0(M-2) 0(1) O(M!)+..

strongly unstable inviscid mode 0(1) O(M*) no neutral G

near neutral inviscid mode 0(1) O(M ) GN + O(M) +...

nonparallel viscous mode O(M 4 ) O(M 4 ) GN + O(M) +

parallel viscous mode O(M*) O(M*) O(MI) +...

where GN is as defined below (3.35).

The wall mode which was discussed in section 6 is in fact the counterpart of the so-called
'acoustic mode' of the inviscid hypersonic instability theory of flat plate boundary layers. The

latter Rayleigh instability has been discussed by Cowley and Hall(1990) and Smith and Brown

(1990) for Chapman law fluids, and a limited discussion of this mode for Sutherland law fluids

can be found in Blackaby, Cowley and Hall(1990). The acoustic mode and the wall mode

discussed in section 6 have the property that they are concentrated in the wall layer where the

streamwise velocity component of the basic state varies from zero at the wall to almost it's free.

stream value. The Rayleigh acoustic mode in general evolves in a quasi-parallel manner though

in the presence of strong shocks this is not necessarily the case. The wall mode discussed in

this paper evolves in a nonparallel manner and becomes progressively concentrated towards

the edge of the wall layer as the local wavenumber increases.

When the wavenumber of the vortex becomes 0(1) then the disturbance modifies itself so

as to become concentrated in the adjustment layer where the basic state temperature adjusts

rapidly to it's free-stream value. The counterpart of this mode in the Rayleigh instability

problem is the so-called 'vorticity' mode investigated by Blackaby, Cowley and Hall (1990) for

Sutherland law fluids, and by Smith and Brown (1990) for Chapman law fluids. We found in

the present paper that when the G6rtler number G is as given by (3.27) with G* > Q and Q

given by (3.28), then the appropriate expansion of the disturbance field is given by (3.31). Thus

the mode has growth rate O(MI) and the growth rate is given by the solution of the eigenvalue

problem specified by (3.32) subject to the condition that V should vanish at 0, 00. Fig. 3

shows that the growth rate increases monotonically from zero as the wavenumber increases

and tends to a constant at large wavenumbers. At large wavenumbers the growth rate can be

matched onto the parallel viscous mode growth rate when the vortex wavenumber becomes

formally O(MI). We note here that the inviscid mode matches directly onto the parallel

viscous mode structure at sufficiently high Gbrtler numbers. This is exactly the situation with
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the inviscid-viscous connection between temporally growing Gbrtler vortices in incompressible

flows and is a direct consequence of the fact that the growth rate of the inviscid mode shown

in Fig.3 tends to a constant at large values of the wavenumber. In the corresponding spatially

growing problem for incompressible flows Denier, Hall and Seddougui (1990) show that an

intermediate region is required to make the inviscid-viscous connection and indeed that the

maximum possible growth rate is achieved in that interval. We stress that this intermediate

regime has no connection with the nonparallel viscous mode discussed in section 5. The latter

regime is appropriate only to the inviscid-viscous connection problem at mildly supercritical

values of G. In Fig. 23 we have sketched the dependence of the growth rate on the the

wavenumber for the cases when the G6rtler number is mildly supercritical (ie when G differs

only slightly from its value required to overcome the strong O(M2) curvature of the basic

state) and the strongly unstable case with G 0(MI). The broken parts of the curve denote

regimes where the growth rate is given by a nonparallel calculation. In Fig.24 we sketch the

neutral curve in the local G6rtler number-local wavenumber plane. In this figure we have

indicated the corrections to the neutral curve associated with nonparallel effects.

There are no available experimental results with which we can compare with our calcula-

tions, this is because experiments at the high Mach numbers, say 10 - 30, appropriate to our

work are exceedingly difficult to perform. Thus for design purposes it is fair to say that a

theoretical approach is the only means at this stage to predict the likely evolution of G6rtler

vortices in growing hypersonic boundary layers. Current transition prediction methods are all

based on some amplitude growth criterion based on the linear growth of a disturbance. We

have seen above that for a realistic hypersonic boundary layer the regime where vortex growth

is likely to occur is the strongly unstable inviscid one. Hence in any transition prediction

method for a hypersonic boundary layer it would be appropriate to simply compute the local

G6rtler number and obtain the corresponding growth rate from Fig.3; this of course should

only be done for wavenumbers less than the neutral value associated with parallel viscous mode

structure.

Finally we close by mrnirg a few remarks about the results of section 7 which concerned the

effect of gas dissociation a..d wall cooling on vortex growth. First let us make a few remarks

about the effect of wall cooling, since the most unstable vortices correspond to the strongly

unstable inviscid mode we concentrate on that situation. In that case the main effect of wall

cooling or real gas effects is to alter the quantity B which fixes the scaled Grtler number

above which instability can occur. Fig. 19 shows that for an ideal gas the effect of wall cooling

is to reduce B by a factor of about .5 when the wall temperature is cooled from it's adiabatic

value by a factor of 10. We find that the eigenvalue problem associated with (3.32) has the

maximum value of 0 altered only by a small amount when this happens so that at a given

value of the G~rtler number the growth rate is increased by a factor of about 1.4 when the
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wall temperature is reduced by a factor of 10 from it's adiabatic value. By contrast real gas

effects have a negligible impact on the growth rate of the strongly unstable mode. Thus for

example in Fig. 19 we see that, at a fixed value of the cooling coefficient, B varies by only

about 10 percent when the real gas model is used. Thus the critical G6rtler number or the

disturbance growth rate is altered only slightly by real gas effects so it would seem that any

transition prediction method could quite sensibly ignore such a complication; certainly the

error associated with doing so would be negligible compared with the inherent error of the

prediction method.
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Appendix: Basic state properties

Listed here are various derivatives related to the basic state, which are used frequently in the

determination of the relative orders of the perturbation quantities.

The temperature adjustment layer
_ '(-)1 -,Po- B' )

f(,)= + + . ,=- (-Tf + f TdB---M 1  + ... (Al)

7_- Md/1 -... M , - 7 1(A2)
2T Io 2T22"x

Bf"(77) M 312  j"(77) 1
2a:T M 1 +'"= -" 1 +'(A3)

(1 - )BM +..,(A...
- (2z)3/' - (A4)

8 a a a
: gy 8: 28T

1 [E 3! + ,'

fit, + [B, - (2)3/ 2 + L - 77']+.... (A5)

The wall layer
M3/2 .

t = F'(Y), v = -- 3/ [-TF + F'(Y)fl(Y)], (A6)

M-112 m-2

n= = - f(Y), 17v = (A7)

21-0Y), Y V= (A8)

U4T 62
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U- F"(Y)Y,, U = F"(Y)Y, (A9)

M3 / 2  
F T'Fn F"

S L-TF + (F' Tn (A1)
(2z)/2 (F T

= - [-t'F + F"n], (All)
2xT
a ,0 F 0

T+V = (A12)
a, y F X 2a Y'

v + V= -n ( 3/2 [-TFF'- T'F 2 + (F' 2 + FF")n], (A13)

FF"
'IM2 + V% - 2z ' (A14)

where
n(Y) t_ . rdY. (AI5)
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Fig.8. Neutral curves obtained when we impose the following initial con-
ditions at three different upstream positions Xo = 20,40,60 and use E5 as

energy measure:
e - 77~'r, V=0. 9 7 =U.
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