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ON THE GORTLER INSTABILITY IN HYPERSONIC FLOWS:
SUTHERLAND LAW FLUIDS AND REAL GAS EFFECTS !

Yibin B. Fu, Philip Hall, and Nicholas D. Blackaby
Department of Mathematics
Oxford Road
University of Manchester
Manchester M13 9PL
U.K.

Abstract

The Gortler vortex instability mechanismin a hypersonic boundary layer on a curved wall
is investigated in this paper. Qur aim is to clarify the precise roles of the effects of boundary
layer growth, wall cooling and gas dissociation in the determination of stability properties.
We first assume that the fluid is an ideal yas with viscosity given by Sutherland’s law. It
is shown that when the free stream Mach number M is large, the boundary layer divides
into two sublayers: a wall layer of O(M3/?) thickness over which the basic state temperature
is O(M?) and a temperature adjustment layer of O(1) thickness over which the basic state
temperature decreases monotonically to its free stream value. Gortler vortices which have
wavelength comparable with the boundary layer thickness (i.e. have local wavenumber of
order M~%/?) are referred to as wall modes. We show that their downstream evolution is
governed by a set of parabolic partial differential equations and that they have the usual
features of Gortler vortices in incompressible boundary layers. As the local wavenumber
increases, the neutral Gortler number decreases and the centre of vortex activity moves
towards the temperature adjustment layer. Gortler vortices with wavenumber of order one
or larger must necessarily be trapped in the temperature adjustment layer and it is this
mode which is the most dangerous. For this mode, we find that the leading order term in
the Gortler number expansion is independent of the wavenumber and is due to the curvature
of the basic state. This term is also the asymptotic limit of the neutral Goértler numbers
of the wall mode. To determine the higher order correction terms in the Gortler number
expansion, we have to distinguish between two wall curvature cases. When the wall curvature
3/2

is proportional to (2z)~%/? where z is the streamwise variable, the Mach number M can be

scaled out of the problem and we show that in the O(1) wavenumber regime, Gortler vortices
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are again governed by a set of parabolic partial differential equations and therefore the higher
order correction terms in the Gértler number expansion are not uniquely determined and
are strongly dependent on nonparallel effects. In the large wavenumbe: limit, however,
nonparalle] effects become of second order; Gortler vortices evolve downstream in a quasi-
parallel manner and the Gortler number expansion has its first three terms independent of
nonparallel effects. In the more general case when the wall curvature is not proportional to
(2z)~3/2, the effect of the curvature of the basic state persists in the downstream development
of Gortler vortices; non-parallel effects are important over a larger range of wavenumbers and
they become of second order only when the wavenumber is of order higher than O(M/4),
In the latter case the Gortler number expansion has the first two terms independent of
nonparallel effects; the first term being due to the curvature of the basic state and the
second term due to viscous effects. The second term becomes comparable with the first term
when the wavenumber reaches the order M3*, in which case another correction term can
also be found independently of nonparallel effects. Next we investigate real gas effects by
assuming that the fluid is an ideal dissociating gas. We find that both gas disscciation and
wall cooling are destabilizing for the mode trapped in the temperature adjustment layer,
but for the wall mode trapped near the wall the effect of gas dissociation can be either

destabilizing or stabilizing.
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1 Introduction

This paper is an extension of our previous paper Hall and Fu (1989) on the linear development
of Gortler vortices and the reader is referred to that paper for a more detailed review of the
relevant literature. In that paper, we assumed that the fluid was an ideal gas with the viscosity
given by Chapman’s law. It was found that when a hypersonic boundary layer first loses
stability to Gortler vortices, the vortices are necessarily trapped in the logarithmically thin
temperature adjustment layer over which the temperature of the basic flow changes rapidly
to its free stream value. In other words, the mode trapped in the temperature adjustment
layer has a smaller Gortler number than any other mode. As a consequence of this reginn of
vortex activity being thin (which leads us to consider Gértler vortices of small wavelength),
the perturbation equations governing the downstream development of the vortices reduce to
ordinary differential equations within the order of approximation considered if the appropriate
“fast” streamwise dependence of the instability is built into the disturbance flow structure.
Thus the non-uniqueness of the neutral stability curve associated with incompressible Gortler
vortices disappears at high Mach numbers and a unique neutral curve with distinct left and
right branches is obtained.

However, a real fluid has its viscosity given by the more complicated Sutherland’s law.
Although in most of the previous investigations on compressible boundary layers Chapman’s
viscosity law has been adopted as an approximation to Sutherland’s law, such an approximation
is poor for hypersonic flows in which the fluid temperature varies significantly across the
boundary layer. Thus it is of interest to investigate how our previous results are modified
if the more realistic Sutherland’s law is adopted. This is one of the problems which we are
addressing in the present paper.

The other problems which we consider are the effects of gas dissociation and wall cooling
on the flow stability. For a hypersonic boundary layer, the temperature near the wall is
typically of order O(M?) where M is the free stream Mach number, and gas dissociation must
necessarily take place. Also, in practical situations, walls can not possibly withstand such high
temperatures and they must be cooled. Thus it is also of special interest to clarify the precise
roles of these two mechanisms in the stability properties of hypersonic boundary layers.

The major difference between Goértler vortices in incompressible and hypersonic flows is that
the presence of the temperature adjustment layer at the edge of a hypersonic boundary layer
where the basic temperature field decreases rapidly to its free-stream value enables hypersonic
Gortler vortices to be concentrated well away from the wall. In the incompressible case we
know from the work of Hall (1982,1983), and Denier, Hall and Seddougui (1990) that at order
one Gortler numbers unstable Gaortler vortices are not localized within the basic boundary

layer. At higher Gortler number the most dangerous Gortler vortices have a wavelength small




compared to the boundary layer thickness and are trapped near the wall. At order one Mach
numbers this situation does not change significantly and the nonparallel problem has been
discussed by Wadey (1990) and Spall and Malik (1989). In the latter two investigations the
nonparallel equations were solved numerically following the approach of Hall (1983), the main
result obtained was that the neutral position or growth rate of a Gortler vortex is a function
of it’s upstream history. However the numerical calculations of Wadey (1990) suggest that as
the Mach number increases the position where an unstable Gortler vortex locates itself moves
towards the edge of the boundary layer. That result is consistent with what we shall find in
this paper.

The present paper is limited only to the linear regime of vortex growth ; nonlinear aspects of
incompressible or low Mach number Gortler vortex growth have been discussed by Hall (1988),
and Wadey (1990). For a detailed account of the nonlinear regime the reader is referred to
the review paper by Hall (1990). Before going on to discuss the work presented here we
also note that hypersonic boundary layers are alsc susceptible to instabilities not induced by
streamline curvature. Thus, for example, Cowley and Hail (1990), Blackaby, Cowley and Halil
(1990), Smith and Brown (1990) have discussed the role of Rayleigh or Tollmien-Schlichting
wave instabilities in hypersonic boundary layers. Thus any nonlinear investigation of Goértler
vortices at hypersonic speeds must allow for the possible interaction of the vortices with other
finite amplitude instability mechanisms.

This paper is organized as follows. In §2 and in the first part of §3 we discuss the basic
state. Here we discuss the significant changes in the basic state which occur when Sutherland’s
law is used instead of the Chapman law. In particular, the logarithmically thin temperature
adjustment layer found for Chapman fluids is now replaced by a more complex adjustment layer
of O(1) thickness. We shall see later that this difference will strongly affect the downstream
evolution properties of Gértler vortices.

In §3 we formulate the linear stability problem for a hypersonic boundary layer and the
linear perturbation equations are obtained in the usual manner by superimposing a Gértler
vortex structure on the basic state and linearizing the Navier-Stokes equations. When Chap-
man’s law is used, these perturbation equations can be reduced to a set of ordinary differential
equations after the wavelength of the vortices is scaled by the thickness of the logarithmically
thin adjustment layer. However, here we show that because the temperature adjustment layer
is of O(1) thickness when Sutherland’s law is used, non-parallel effects are more pronounced
and their effects are different for different wall curvatures. To be more specific, when the
wall curvature is proportional to (2z)~3/2, the curvature of the basic state only gives rise to
an O(M 3/ 2) wavenumber independent term in the Gértler number expansion and its effect is
not present in the downstream development of Gértler vortices in the neighbourhood of the

neutral position; whilst in the more general case when the wall curvature is not proportional




to (22)~%/2, the curvature of the basic state not only gives rise to an O(M3/?) wavenumber in-
dependent term ir the Girtler number expansion, but it also affects the downstream evolution
of Gértler vortices in the neighbourhood of the neutral position and thus affects the determi-
nation of other higher order correcticn terms to the Gortler number expansion. Sections 4 and
5 are respectively devoted to the discussion of these two cases.

In section 4, we show that in the special curvature case x(z) = (2z)~%%, the Mach number
can be scaled out of the problem; in the O(1) wavenumber regime, the perturbation equa-
tions are partial differential equations and they have to be solved numerically by a marching
procedure. We present our numerical results which show that neutral curves depend crucially
on what initial perturbations we impose and where we impose them. In the large wavenum-
ber limit, nonparallel effects are negligible and a simple asymptotic expression is obtained for
the Gértler number in terms of the wavenumber. In section 5, we show that because of the
persistent effect of the curvature of the basic state, non-parallel effects are important over a
larger range of wavenumbers and they become negligible only when the wavenumber is of order
larger than O(M'/4). Thus for wavenumbers of order O(M®) with a < 1/4, the perturbation
equations which govern the downstream evolution of Gértler vortices are partiai differential
equations and the situation is similar to the O(1) wavenumber case discussed in section 4.
When a > 1/4, nonparallel effects are not so pronounced and the Gortler number expansion
has the first two terms independent of nonparallel effects; the first term due to the curvature
of the basic state and the second term due to viscous effects. The second term becomes com-
parable with the first term when the wavenumber reaches the order O(M?3/8), in which case
another correction term can also be found independently of nonparallel effects.

To complete our stability analysis, we devote section 6 to the wall mode which has wave-
length comparable with the boundary layer thickness. This mode is nonparallel and neutral
curves have to be obtained by solving a set of partial differential equations. Our numerical
results show that neutral curves, although non-unique, all decrease monotonically with the
wavenumber and tend to a constant value in the large wavenumber limit, thus matching in the
large wavenumber limit with the mode trapped in the temperature adjustment layer.

In section 7, we investigate real gas effects and wall cooling effects. We assume that the
fluid is an ideal dissociating gas. After dissociation has taken place, the fluid becomes a gas
mixture. We first determine the constitutive properties of the gas mixture and then show how
our previous results for ideal gases are modified when gas dissociation is taken into account.
We show for the mode trapped in the temperature adjustment layer that the leading order
Gortler number is decreased by both gas dissociation and wall cooling and thus we conclude
that both these mechanisms are destabilizing. For the wall mode, neutral curves are not
unique and so we cannot draw any general conclusion. For the case we consider, the neutral

curves corresponding to the two models intersect, so the effect of gas dissociation can be either




destabilizing or destabilizing. Finally in the last section we give some further discussion.

2 Basic state

Consider a hypersonic boundary layer over a rigid wall of variable curvature (1/A)«(z*/L),
where L is a typical streamwise length scale and A is a lengthscale characterizing the radius of
curvature of the wall. We choose a curvilinear coordinate system (z*,y*, z*) with z* measuring
distance along the wall, y* perpendicular to the wall and 2* in the spanwise direction. The
corresponding velocity components are denoted by (u*,v*,w*) and density, temperature and
viscosity by p*,T* and p* respectively. The free stream values of these quantities will be

signified by a subscript co. We define a curvature parameter § by

L
6=, (2.1)

and consider the limit § — 0 with the Reynolds number R defined by

R= "_°°@°2 (2.2)
Foo
taken to be large so that the Gortler number
G = 2R'/?§ (2.3)

is O(1). In the following analysis, coordinates (z*,y*, z*) are scaled on (L*,R~Y/2L, R~1/2L),
the velocity (u*,v*,w") is scaled on (ul,, R-Y/?u%,, R-1/?y* ) and other quantities such as
p*,T*, and pu* are scaled on their free stream values with the only exception that the pressure p*
is scaled on p3 us2 and the coefficient of heat conduction k* is scaled on p?,. All dimensionless
quantities will be denoted by the same letters without a superscript *. Then the Navier-Stokes

equations are given by

% + -ﬁ—(Pva) =0, (24)

PDr =5 * 3‘3,( §Z>+ aiO‘g:)’ (25)

+ o (u(?;) + ;,,(ug”), (26)

ogr - -re+ 2 {0-] )"’”"}+5‘3—< ZB)+ g0+ mluge) (27)

pes g = M1 = MG + (5P + (7 - M0 - o Gyr1 22




18, 8T 14, 0T
+;5;(k537)+ aaz( Oz 520
YM?*p = (1 + a)pT. (2.9)

(2.8)

Here we have used a mixed notation in which (vi,vs,v3) is identified with (u,v,w) and
(z1,22,23) with (z,y,2). Repeated suffices signify summation from 1 to 3. The functions
A k,cp and h denote in turn the bulk viscosity, the coefficient of heat conduction, the specific
heat at constant pressure and the enthalpy per unit mass. The constants 4, M and o are in

turn the ratio of specific heats, the Mach number and the Prandtl number defined by

‘3 ’2
e o Y _ U _ HooCpoo
. - ?RT‘ =2 7T T
Poo Y ~-] 0

where R is a gas constant and ae. = y/YRTY is the sound speed in the free stream. Finally, the
function a in the equation of state (2.9) denotes the percentage by mass of the mixture which
has been dissociated. Later in §7 we skall give the expression for a for a specific dissociation
model used in our discussion. In equations (2.5)—(2.8), the operator D/Dt is the material
derivative and it has the usual expression appropriate to a rectangular coordinate system.

The basic state is given by
(v, v, w) = (2(z,y), 9(z,9), 0), T =T(z,y),

p=p(z,y), u=p(z,y) (2.10)
By substituting (2.10) into the governing equations (2.4)—(2.9) it is straightforward to obtain
the reduced equations satisfied by the basic state. The reader is referred to the book by
Stewartson (1964) for a detailed discussion of these basic state equations. If we define the

Howarth-Dorodnitsyn variable § and a similarity variable n by

v Yy
7 — 5d d = —, 2.11
y /o pey and M NoT (2.11)

then the continuity equation is satisfied if @ and % are written as

= _ gl = _ _1__ _- !
w=fm, 9= =/ + £ [ el (212)
Here the functions f(n) and T(n) must satisfy
"+ (prf"Y =0, (2.13)
Z(PRT'Y + 5T + Ay - DMPB(f"Y? = 0, (2.14)

if the z-momentum and energy equations are to be satisfied. These equations must then be

solved such that f, f' vanish at the wall, f',T = 1 at infinity and either 7/ = 0 or T specified

at the wall. The y-momentum equation gives
op
dy ~




to leading order so that p = p(z). In our following analysis, we assume that there is no pressure
gradient along the streamwise direction and therefore we can take p = constant. Equation (2.9)

then reduces to

14 a(T)pT = 1. (2.15)

Note that in obtaining (2.13) and (2.14) we have not made any constitutive assumptions so
that they are valid for dissoiiated gases (to be discussed in §7) as well as for undissociated
ideal gases (to be discussed in §3—§6).

3 The perturbation equations

We first assume that the fluid is an ideal (one component) gas undergoing no dissociation so
that @ = 0. Then we can assume that (i). the specific heats are constants; (ii). the coefficient
of heat conduction is linearly related to the shear viscosity and (iii). the enthalpy h is given
by h = ¢pT. These assumptions lead to the results

- 1

k=g, &=1, p:-T=. (3.1)

(Note that all of these quantities have been non-dimensionalized). Then the basic equations
(2.13) and (2.14) simplify to

&Y =0, (32)

JEDY + 5T+ (- MRS = 0. (33)
These two equations can then be solved if we make an constitutive assumption about the
viscosity 4. In the previous paper, Hall and Fu (1989), we used Chapman’s viscosity law. Here
we use Sutherland’s viscusity law, the dimensionless form of which is given by
F3/2
T +m’

i=(1+m) (3.4)

where 7 is a constant. Equation (3.4) is exact in the sense that it is derivable from the kinetic
theories of gases (see Chapman and Cowling (1970) for a discussion of its validity, also compare
(3.4) with (7.9)). At high Mach numbers we know from the work of for example Freeman and
Lam (1959) that the basic state splits up into two distinct regions. Near the wall a boundary
layer forms in which the downstream velocity approaches it’s free-stream value of unity whilst
the temperature decreases from it’s value at the wall and ultimately decays algebraically at
the edge of the layer. In the next region this algebraic decay is taken up and the temperature
then approaches exponentially the free-stream value of unity.

As mentioned above an explicit analytical solution for the equations (3.2) and (3.3) is not

possible. However, an asymptotic analysis in the large Mach number limit shows that the




boundary layer can be divided into two regions: an inner region 7 = O(M~/2) and an outer

region 1 = O(1). In the inner region, we define Y,T and F(Y) by
Y = MYV, T =MT, F(Y)=M%f (3.5)

Then equations (3.2) and (3.3) give

(1+ m)(j—;)’ + FF" =0, (3.6)
ltﬁl(%)wﬁw(y' 1)(1+rh)(f/”’%2 =0 (3.7)

to leading order. These equations are to be solved numerically subject to the conditions
F(0)= F'(0)=0, T(o0)=0, F'(o0)=1,
T'(0) = 0 if the wall is thermally insulated, (3.8)
T(0) = nT,, if the wall is under cooling,
where T, is the wall temperature scaled on M?Ty, when the wall is thermally insulated and n
is the wall cooling coefficient.
In Fig.1 we have shown the results of our numerical integration of the wall layer equations
(3.6) and (3.7). The temperature profiles are plotted for three values of the wall cooling
coefficients: n=0.2, 0.6 and 1.0 and were calculated with vy = 1.4,0 = .72,m = .509. The

asymptotic profile for large Y given by equation (3.10) is also plotted there for comparison.
For large Y, equations (3.6) and (3.7) have the asymptotic solutions

D
F=Y~ﬂ+_(y_ﬂ)3/,+---, (3.9)
- 914 mpP 1
== -t (310

where both 8 and D are to be determined by a numerical calculation. The numerical vaiues

of B corresponding to four values of the wall cooling coefficients are listed in Table 1 together
with the values of F”(0), 7(0) and 7(0).

Table 1
n=0.2 n=0.4 n=0.6 n=0.38 n=1
F”(O) 0.1517 0.1997 0.2317 0.2560 0.2758

/(00 1.8192x 1072  1.7976 x 102  1.3909 x 10~2 7.6872x 10-2 0
T(0) 3.286x10"2 6.572x10"2  9.858 x 1072  1.3144 x 10-!  1.643 x 10~*
B 3.1808 2.8366 2.6301 2.4840 2.3721




The asymptotic expressions (3.9) and (3.10) imply that in the region n = O(1),

B

f(n

- (n)
f—n—M1/2+M%+%: (3'11)
T=T(n+--. (3.12)
On substituting (3.11) and (3.12) into (3.2) and (3.3), we obtain to leading order
L+ m) | =—f"] +nf"=0, (3.13
( ) (T n mf nf \ )
- !
(1+m) [ VT ., .
> T +7T" =0. 3.14
4 T+m K (3.14)
These two equations are to be solved numerically subject to the matching conditions
- D . 91+m)?1
as 1]—+0, f(?])N-nT/;-, TN_U_Z——?-*-”.’ (315)
and the conditions at infinity
f'(00) =0, T(o0)=1. (3.16)

The result from such a numerical calculation is shown in Fig.2. In this figure the asymptotic
result is the one given by (3.15).
It can be shown from (3.13) and (3.14) that

f'(n) = ﬁm (-1%)1/cr (% + 1) (T_\j—;)‘*’/" (=T, (3.17)

80 that after (3.14) has been solved numerically, the function f"(n) can be computed easily
from this equation. Also, we note that whilst the solution of (3.14) is independent of the inner
region solution and thus of the conditions at the wall, the function f is dependent on the inner
region solutions through the matching constant D.

We now assume, as in Hall and Fu (1989), that the flow is perturbed to spanwise periodic
stationary vortex structure with constant wavenumber a. The linearized stability equations
for these Gortler vortices are then found by linearizing the Navier-Stokes equations (2.4)—(2.9)
about the basic state and retaining the leading order terms in the high Reynolds number limit.

We obtain .
_ _ _ g _ 1_
78Uz +30y) + (Ba” + 2)U - (BUy)y + 7m0V

- { Fatone + 01 + (p) | T~ a7, =0, (3.18)




1 2 1 1 T 4
?(1—’@ +KuG)U + §I7VU-2' - §ﬁU=y - BUy + ?(ﬁVz + V) + (Ra® + '%)V - g(ﬂVv)v

1 1__ 2, _ 4, -
+Py - [‘7’13‘(’—“—’: + 9y + §kGT?) + FHley — il + 5(/“’1/)1/ + fiz )T
2 1,
- B, Ty — 3pu, 3p.vu]T + 3;1.,,zaW 3wl7Wv =0, (3.19)

BziaU + %ﬁiaUz + fyiaV + %pz’av; —iaP - —ﬁ(ﬁz + By )iaT

4
aW, + 3W,) — —ua2W + (W), = 0, (3.20)

f(
2, - 1, _ .
ﬁ(uTx + 9T,)T - ﬁ(u,_. + 3,)T — TE(UTx + 9Ty)

1
+ '=(U:: + Vy)

T (TU—rTV)-}-za,(-)—O (3.21)

T2

T - 2(y - L)M?*pa, U, + -J’,,V + -T:('z'LT,, +3T,) + ;azT

T° T

1, - - 1, - 1_.- 1,
- {fi(ﬁTz +0Ty) + (v - 1)M?pal + ;(#Tv)y} T - ;#TuTy - ;(#Ty)u =0. (3.22)

~

Here i = dp/dT, whilst (U,V,W), P and T denote the vortex velocity field, pressure and
temperature, respectively. Equations (3.18)—(3.22) differ from equations (2.11a-e) given in
Hall and Fu (1289) only in that the bulk viscosity is taken to be zero here; that assumption is
actually implied in that paper.

It was shown by Hall (1982) that in the incompressible case the neutral curve for small
wavelength vortices has G ~ a* and that the vortices are confined to a layer of depth a=1/2
where the flow is locally most unstable. Hall and Malik (1989) extended this approach to the
above system for M = O(1) and wrote

G=goa*+qad+---.

They found that the leading order growth rate a?6* has 6* given by

2?7,
273

_2 .
. _ B M
=B (T B (3.23)

In the neutral case, §* = 0 and (3.23) then determines the neutral Gértler number go as a
function of 7. The most unstable location n* is where go has its minimum. In Hall and Fu
(1989), it is found that whe: (‘hapman’s law is used, n* mcves away from the wall as the Mach
number increases. It is also found that the basic state temperature is O(M?) over most of
the boundary layer and decreases rapidly to its free-stream value over a logarithmically thin
adjustment layer sitting at the edge of the boundary layer. It is in this thin layer that 5*
lies and hence where go has it’s smallest order of magnitude in the large Mach number limit.

Thus it is concluded that the thin temperature adjustment layer is most susceptible to Gértler




vortices. From the preceding discussion in this section we see that when Sutherland’s law is
used, the logarithmically thin temperature adjustment layer corresponding to Chapman’s law
is now replaced by a more complex temperature adjustment layer of O(1) thickness. If we
still use (3.23) with 6* = 0 to calculate the orders of go in the inner layer n = O(M~'/?) and
the outer temperature adjustment layer 7 = O(1), we find that go = O(M*5/?) in the former
and go = O(1) in the latter. Hence once again the temperature adjustment layer is most
susceptible to Gortler vortices with wavenumber of order one or larger. It should be noted,
however, the above conclusion is based upon a large wavenumber argument. In section 6 we
shall show that the wall layer = O(M~/?) is actually of order M3/? thickness in terms of
the physical variable y. Thus Gortler vortices with wavelength comparable with the boundary
layer thickness must be trapped in the wall layer and have a = O(M -3/ 2). 1t will be shown
in section 6 that this wall mode has neutral Gortler number decreasing monotonically and
has the centre of Gortler vortex activity moving towards the temperature adjustment layer as
the wavenumber increases. Therefore, the minimum Gortler number corresponds to the mode
trapped in the temperature adjustment layer and the latter is indeed the most dangerous mode
when the whole range of wavenumbers are considered. It should also be noted that the result
go = O(1) for the temperature adjustment layer is obtained by taking the large Mach number
limit of the O(1) Mach number results. By doing so we have actually missed a term related
to the curvature of the basic state which is not important for the case M = O(1) and a > 1,
but is important in the large Mach number limit. As we shall show later on, the curvature
of the basic state produces an effective Gortler number of order M3/2 in the absence of wall

curvature so that instability can not occur for G = O(1).

3.1 The strongly unstable inviscid mode

Let us first confine our attention to the mode trapped in the temperature adjustment layer. It is

easy to show with the aid of expressions (3.11) and (3.12) that in this temperature adjustment

layer, _
Uy + Uy = —WUBM”2 + "—;TT' - 7°T'] + o(1), (3.24)
where
B lim M-/ fo " P(n)dn. (3.25)

An investigation of the y-momentum equation (3.19) shows that the Gortler number must be

of order M3/2 in order to enter the leading order analysis. Thus we write

1

5#(2)G = G*(z) M3/, (3.26)
so that for a given constant Gortler number G we compute G*(z) using

G*(z) = %n(z)GM'a/z. (3.27)

10




For convenience, we also define another function Q(z) by
B
Q(z) = Ty (3.28)

so that
W, + O, + %n(z)Gﬁz = (G* - Q)M3/? 4 o M3/?). (3:29)

With the use of this relation, we can deduce from the perturbation equations (3.18)—(3.22)
that

V = O(M3AT), W = O(M34T), P = O(M3?T), U =0(M{'T), (3.30)
and that for fixed 7,
2 _ o
Oz ’

where
3 1
1/MT 3.

We therefore look for asymptotic solutions of the form
T = exp (M3 [ pa)de) {To(e,m) + M~ Tia,m) +-),
U= M exp (Ma“ / zﬁ(ﬂdz) {Us(,m) + M~3/*U;(2,m) + -},
V= M3/4exp (M3/4 /zﬂ(z)dz) Vo(z,m) + M'3/4V1(z,17) +.-), (3.31)
W = M**exp (Ma/“ / ) ,B(z)d:c) {(Wo(z,n) + M~3*Wy(z,m) + -},

P =1V exp (M [ Ba)da) (Polam) + Mz + ),

where the spatial amplification has been taken care of using the WKB method and §(z) is
the local growth rate to be determined. On substituting (3.31) into (3.18)—(3.22) and then
equating the coefficients of like powers of M, we obtain a hierarchy of equations. To leading

order, we find that V; satisfies the differential equation

i 37] - BT, = -—\/—_—.—(G Q)T'Vy, (3.32)
whilst To, Wo and Py are related to Vp by
1
To = T — Lo, iaWo= ——mn 0V p _ BV20V (3.33)

T V2:TB V2T On’' ° T Tek2 an°

and Uy does not appear in our leading order analysis. Here ko v2za is the local wavenumber.
Equation (3.32) subject to V, vanishing at 7 = 0,00 is a Sturm-Liouville problem which has

solutions if

(Gt _ Q)T'

o — <0
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This means that
g*>20 if G*>Q, p*<0 if G°<Q,

since T/ < 0. It then follows that neutral stability (8 = 0) occurs at the position z = z,, where

G*(zn) = Q(zn) (3.34)

at zeroth order. Therefore, in view of the definitions (3.27) and (3.28), the neutral Goértler
number has the expansion

2B

G= WM 3/2 4 higher order correction terms. (3.35)

For the rest of this paper we shall take Gy to be the zeroth order approximation to the “critical
inviscid Gortler number”, thus Gy is obtained by retaining only the first term on the right
hand side of (3.35). An important point concerning (3.35) is that the first term on the right
hand side is independent of z,, if the wall curvature varies like a:_Ta; in the latter situation
nonparallel effects dominate and the vortex growth rate is smaller. Thus to determine the
higher order correction terms to the neutral Gortler number, we have to distinguish two cases,
namely, (i). s(z) = (22)~%/2 and (ii). x(z) # (22)~3/2. They will be treated separately in the
next two sections.

On the other hand, equation (3.32) can also be interpreted as an eigenvalue problem which
determines the growth rate B(z) at a given value of & corresponding to any wavenumber .
The appropriate boundary conditions are deduced as follows. As 7 — 00, T — 1 and equation
(3.32) reduces to

Vo -,
o k*Vo =0,
so that Vg ~ exp(——l::n) and the asymptotic condition
oo 5
— +kVop=0 3.36
a1 +£Vo (3.36)

should be imposed at “infinity”. As n —» 0, T — A?/n* where from (3.15b) A = 3(1 + 7m)/o.
Equation (3.32) reduces to

Vo L 8% k2A* (G* - Q)k* 4A?

i - Vo = — - . Vo, 3.37
o "Tnon g ° Vzp (3.37)

which has the solution .

Vo ~ exp( kAz) (3.38)

0 p 37’3 * ¢

Hence the asymptotic condition

Vo kA?

T ?Vo =0 (3.39)

should be imposed at “zero” (which is taken to be some small value in numerical calculation).

12




The eigenvalue problem (3.32), (3.36) and (3.39) was solved numerically by employing a
fourth order Runge-Kutta method. In Fig.3, we have shown the dependence of the growth rate
on the local wavenumber. The plot clearly shows that as & — 0, A% — 0 whilst as £ — oo,
f? — constant. These features are also borne out by the asymptotic analysis given in the
following subsection. The inviscid mode we have described above therefore has growth rate
proportional to M % and we refer to it as the strongly unstable inviscid mode. We note that
when G* = Q the growth rate vanishes. In this case it is necessary to look for evolution of the
vortices on a shorter lengthscale in the streamwise direction; that problem will be addressed
later in this paper and we shall refer to the inviscid mode in that regime as the near neutral

inviscid mode.

3.2 The small and large wavenumber limits of the strongly unstable inviscid
mode

First, we note that as £ — 0, we are approaching the scalings for the wall mode (see §6) which
has wavenumber k& ~ O(M~3/ 2) and which is trapped in the wall layer. Thus Gortler vortices
are appropriately governed by (3.37). The solution (3.38) shows that vortices decay to zero in
the thin layer 7 = O(k'/3) near the wall. This is also verified by the obvious shift to the left of
the first mode eigenfunctions in Fig.4 with decreasing k. It can then be deduced from (3.37)
that 82 has to be O(k) in order to enter the leading order analysis.

Next, in the large k limit, a WKB analysis of (3.32) shows that Gortler vortices will be
trapped in an O(k~1/2) thin layer centred at = #* where $2 has a maximum. Thus we

introduce a new variable ¢ by

¢ =k"P(n-1%, (3.40)
expand (G* - Q)/(VIZS?) as
G*-Q 7-1/2 71
=X+ k MAE A4, 3.41
Toogr = + 1+ 2+ (3.41)
and look for solutions of the form
Vo(z,m) = VO(2,0) + E/2V3(2,0) + k2 V(2,0) + -+ . (3.42)

On substituting (3.40)—(3.42) into (3.32), equating the coefficients of like powers of k, and
then solving the resulting set of equations, we find that to leading order, Ao is determined as
T*(n*)
A= —=—. 3.43
T(n) (3.43)
At order k~1/2, ), is determined as A, = 0 if we insist that 42 attains its maximum at 7 = n*.
At order k1, VJ is found to satisfy the parabolic-cylinder equation

Ve 1
T’o - Zf4vo° -aVy =0, (3.44)
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where

e Py 1 @ 1 7
£ \/-T(n ){2TI( t)dna( )} C; a= 227—,2(7") {ﬁ'(‘f]‘) d’r]'Z(A—o)} . (345)

If we impose the condition that the disturbance is confined to the k~1/2 layer we must choose

@ = —(1/2) — s, where s is a non-negative integer. This condition determines the infinite

sequence of eigenvalues
14 2s

V=2T(n*)

The eigenfunctions corresponding to the eigenvalue A,, are given by

Az =Xz = Ao -

LA ,\0) (3.46)

VO = V2 = emi¢ He,(¢), (3.47)

where He,(§) is a Hermite polynomial.

With the aid of the numerical values for T given earlier in this section, we find that

V2z 32 1+ 2s
= 0.5786{1 — 0.5297
G*-Q { E

and that n* = 2.3228. Both these numerical values and the concentration of vortices in an

+--} (3.48)

O(k~1/2) region are confirmed by the numerical results shown in Fig.3 and Fig.5.

In closing this section, we note that results given here for hypersonic flows are in sharp
contrast with related results for incompressible flows. In a recent paper, Denier, Hall and
Seddougui (1990) have discussed the spectrum of the large Gortler number eigenvalue prob-
lem. It was found that the inviscid Gortler vortex eigenvalue problem has an exact solution
with the spatial growth rate increasing monotonically from zero and tending to infinity at
large wavenumbers. In the high wavenumber limit viscous effects become important when the
wavenumber is O(G%) and a maximum growth rate is achieved in that regime with the growth
rate tending to zero in an O(G%) regime as discussed by Hall (1982). At small wavenum-
bers the growth rate tends to zero and the vortices spread out above the boundary layer. In
fact when the wavenumber is O(G:'il‘) an eigenvalue problem related to that for Tollmien-
Schlichting waves is recovered but at even smaller wavenumbers nonparallel effects dominate
and the problem must be solved numerically as in Hall (1983). The major difference we have
found above for hypersonic Gortler vortices is that the growth rate tends to a finite value as
the local wavenumber tends to infinity; we shall see later that this has a significant effect on

the way in which viscous effects come into play at high wavenumbers.

4 Neutral instability with x(x) ~ (2x)~3/2

We now proceed with the determination of the higher order correction terms in the neutral

Gértler number expansion (3.35). In the case when the curvature x(z) = (22)~3/3, G*(z) =
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Q(z) and the O(M?/3) term on the right hand side of (3.29) vanishes for all z. The implication
of this is that for this special distribution the curvature of the basic state is exactly counteracted
by wall curvature over an O(1) interval in z, in the more general case that is only the case over
an asymptotically small interval. An investigation of the perturbation equations (3.18)—(3.22)
with the aid of the equations (A1)—(A5) given in the Appendix then reveals that the neutral

Gortler number must expand as
G =2BM>*? + G + o(1), (4.1)
and that the perturbation quantities have relative orders
U= O(MLIV), T=0(V), W=0(), P=0(V)

where G = O(M?) is to be determined. We therefore look for the following form for the
solutions for (3.18)—(3.22):

1 . . -
U=_JW—U(3)7')+"" V=V(.’B,T])+---, W=W(z,"7)+"') (4'2)
1
P=712‘—;13(3a77)+"'a T=V2zé(z17’)+"':

where the insertion of the factor /2z is purely for convenience.

On substituting (4.2) into (3.18)—(3.22) and then equating the coefficients of like powers
of M, we obtain, to leading order,

2550y 4y - pre0 250
T {g,v 25— 3%(’%")16 - %%‘}} (43)
% = TV a3l gReTy + %%(%6—‘;)
A A ) )
Aot iy« 1n L ki) <227 (44
32,7 %8;}7’) = _pT'ikV - %pzl}% + kTP
- %[m I'ikf — n% + %ﬂE’TW + 2z%—vz, (4.5)




a0 aT' 06 T

aan(Tan) —(n+ UT)0n+ 77
iy 7108 BT Briay 9,00
+ 01+ T —Uan( )+0T ]+2za . (4.7)

Here k °F +/za. It can be seen that (4.4)—(4.7) are independent of U and the latter is
determined from (4.3) after (V, W, T, P) have been determined. Since these leading order
perturbation equations are parabolic with respect to the variable z, they have to be solved
by specifying the perturbation quantities at a given upstream position and then marching
downstream. We therefore expect that neutral stability would depend crucially on what initial
conditions we impose and where we impose them. However, before we present our numerical
solutions of these equations, we first consider a special case: the large wavenumber limit for

which a simple asymptotic solution is possible.

4.1 Large wavenumber limit

In the large wavenumber limit, the length scale over which vortices vary is small compared
with the lengthscale over which the boundary layer grows. Then we expect that nonparallel
effects do not come into our leading order analysis. This is indeed the case, as we show below.

For large k, vortices are confined to a thin layer of O(€'/?) thickness centred on 17 = 7*
where,

e 1/k, (4.8)

and where 7* is the most unstable position to be determined in the course of our calculation.

We therefore define a new variable ¢ by
¢ =€(n-1").
An investigation of equations (4.3)—(4.7) shows that when ¢ — 0,

b§=0(&V), W=0("V), P=0(1?V)

G =0(1/e), 5‘% —0(1/). (4.9)

Hence we look for the following form of asymptotic solutions for (4.3)—(4.7)
G = '}Z(Go + 61/2( l‘l + €G2 + €3/2G3 + .. ‘),
€
V=(Votel?Vi+..)E, W= (Wo+eW+-)E, (4.10)

P=(?Po+ P +--), f=(00+ &/26, +..)E,

where

E=exp {3 [((u(o) + 6u(8) + - Yis}, (¢11)

16




and where Vg, V; etc. are functions of ¢ and z. Note that E here represents the fast variation
of the perturbation quantities along the streamwise direction whilst the dependence of V5, Wy
etc. on z represent the slow variation of perturbation quantities due to the nonparallel effect
of the boundary layer growth. In effect we have described the fast variation of the disturbance
by a WKB type of expansion in the streamwise direction. Here we are only concerned with
neutral stability, so we set fo = 81 = §2 = 0. On substituting (4.10) into (4.3)—(4.7) and then
equating the coefficients of like powers of ¢, we obtain a hierarchy of matrix equations. To

leading order, we have

0‘T1 . 1 aVQ
o = —~ Tz%’ ZWo=—-'—--a—¢,
_ #o W _ 2# Ty
Py = o 00 Go = 0T, (4.12)
where Ty = T(n*), Ty = T'(n*) and fio = B(T,). To next order, we deduce that
G, =0. (4.13)
At next order we find that Vo must satisfy the parabolic-cylinder equaticn
v, 1, .
Sz~ 3V -l =0. (4.14)
Here _ 2 /o
—o)\/4 5= 0Ty -1/2 3 - __2& 9°Go
(=¢X7, a=Cs sﬂéTéA ’ 3Go\ on* J, _." (4.15)
If we impose the condition that the disturbance is confined to the €'/ layer we must choose
a=-1/2-s, s=0,1,--, (4.16)
The smallest G2 corresponds to s = 0 and we then have from (4.15b) that
1/2
3Go 6%Go
= —— —— . 4'1
G (2T02 on® (4.17)

The centre of vortex activity n* is determined by the condition that G, attains its minimum

there:
(BGO

After solving (3.14) numerically for the ba.slc state temperature T, we then use (4.12d) and
(4.18) to determine 7*, and (4.12d) and (4.17) to determine G and G;. We find that

Ja=n = 0. (4.18)

n* =3.001, Go=154834, G, =34.3175,

so that
G = 15.4834k* + 34.3175k> + - .. (4.19)
Finally, we remark that the above analysis is valid as long as the local wavenumber k = \/2za

is large. This means that the far downstream evolution of Gortler vortices can always be
described by the above theory.




4.2 Numerical results for k ~ O(1)

When the wavenumber is O(1), the perturbation equations (4.3)—(4.7) are parabolic with
respect to = and they have to be solved numerically subject to some initial conditions imposed
at some upstream position Z. For computational purpose it is convenient to eliminate P and

W among (4.4)—(4.5). After some manipulation, we obtain

184V 2z 83V 4gT' 82V k*T?

~F T T =T T o7 Badr — 522, T 2% 4.20
T ont + B 8zdn? gT 63:617 L a: Z;a ( )
BO0_ BT 2T T'o 42590
oT 02 ‘oT2  oT ")a _V+2m8z
T 10 BT Bargs
1 -~ a. =Tk 01 21
+i+ T - 2o (G + Bl (421)
where o
o = 120
22 20 ]
az = R[2EqTT — nT' + nsz]g—,
an
_ 1 Al "'IT1 T I YT
az = — (1——)T+ T ( 'mT' + oT' + pnT")
5 72 Y A
P I CA _G} 6,
2 20
BT ., 1,57 pT'. 0B 1 awm o
- - 7 —_—| ——— = —k2 -— — " _1",2
= {-EL g+ 3B - B - PR 4 graavr - 7
_ L2 _ff _ l T2 El‘éz E‘lz T _ 27"
G-I+ gH T T

WOV 0 3OV & T8V W

“=~Fr g~ 5T o ~ BT Gy~ o
- J ad T A2
+E2T2{2—"—'T'+E+T ;o } v BLOWs o, %6W3

B B T ' E2paT? B 8zon 0z '
. E’Tzzz 86
6 — p’ nam’
_.. 0%
_ 2
a; = -2cTk Gndz’
3T T 2p,m | W
=S I _BppiZ
o { T p & on?




In these equations, W3 and W are given by

__p O opTt pT'06 [1 8 AT Rl
3= 572 o2 +(0T2 = 0T3)6n T o\ T ) ak 8, (4.22)
= 19V
W=—55, TWs (4.23)

The finite difference scheme used here is similar to that used by Hall (1983), Wadey (1990) for
incompressible flows. The reader is referred to the latter papers for a more detailed discussion.
Our implementation of the numerical scheme is as follows. We first specify V, U and § at a
given upstream position Z. Then we use the finite difference scheme to march downstream and
thus calculate the evolution of the initial perturbation with respect to the streamwise variable
z. The position of neutral stability is defined as the place where a certain energy measure has

zero growth rate. We use the following five energy measures to monitor the energy variation:

E = J/ > U%dy = vz / = U%Tdn, (4.24)
0 0
oo _ . oo o
E = / (V2 + W)dy = vz / (V2 + W?)Tdn, (4.25)
0 0
o - oc | .
Es = / Vazhdy = 2 / §Tdn, Eq= Umae, (4.26)

= [T h—\/?_w/ 1(66Z (4.27)

We give results for several measures of the vortex strength in order to show the relatively large
variation of growth rates associated with different flow quantities. Depending on the initial
conditions and on which energy measure we use, the disturbance can either grow or decay
initially. In the former case, there is only one neutral position corresponding to each pair
(a,G): the energy will reach a maximum at some downstream location and then decay to zero
monotonically. The corresponding neutral curves only have right branches. The region on the
left of a neutral curve is unstable and the region on the right is stable. In the latter case, if
the Gortler number is large enough, there are always two neutral positions: the energy will
reach a minimum at some downstream location, then grow to reach a maximum and finally
decay to zero monotonically. The corresponding neutral curves have distinct right and left
branches. The region above a neutral curve is unstable and other regions are stable. For the
special curvature case discussed in the present section, the flow is always stable for z >> 1, since
according to the asymptotic result obtained in the previous subsection, the flow is neutrally
stable where G ~ &* for & > 1 so that x(z) must increase at least as quickly as ¢'/? if the

vortex is to be unstable for z > 1.
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At a neutral position, we calculate the local wavenumber a; and local Gortler number G
defined by
@z = k = V2za, G, =rx(z)(22)**G =G. (4.28)

By fixing a and varying G, we obtain a series of such points (az, G;) and thus plot a
neutral curve. In our calculation, a is fixed at 0.1; the step lengths along z and 7 directions
are taken to be 0.1 and 0.05 respectively; and the lower boundary of the O(1) temperature
adjustment layer is taken to be 0.8 whilst infinity is approximated by 20.8.

In Fig.6-Fig.12, we have given the results of our numerical calculations. Fig.6 shows five
different neutral curves obtained when we use the five different energy measures (4.24)—(4.27)
to monitor the energy growth. Fig.7 shows three different neutral curves which are obtained
when we impose three different initial conditions at the upstream position Xy = 20, whilst Fig.8
shows three different neutral curves which are obtained when we impose an initial condition
at three different upstream locations. In two of these graphs, we have also plotted the two
term asymptotic result (4.19). As we expect, although these neutral curves have distinct left
branches, their right branches all converge to the unique large local wavenumber limit. We
can see from Fig.8 that as the initial location of the disturbance moves towards the leading
edge, the neutral curves move progressively up and across to the right. This is contrary to
the corresponding results found by Hall (1983) for incompressible flows. Finally, Fig.9—Fig.12
show the typical profiles of the four perturbation quantities as they evolve downstream, with
the initial conditions given by (iii) in Fig.6 and X, = 20,G = 1000. In order to see how the
the centre of vortex activity evolves downstream, we have normalized each of the perturbation
quantities by its maximum. It is clear that as the vortices evolve downstream (and thus as the
local wavenumber increases), they become more and more concentrated, which agrees with the
asymptotic result found in the previous subsection that in the large local wavenumber limit,

Gortler vortices are trapped in a thin layer of depth O(k~1/2) centred at n = 3.001.

5 Neutral instability with x(x) # (2x)~3/2

When the wall curvature is not proportional to (2z)~3/2, the O(M3/2) term on the right hand
side of (3.29) only vanishes at the leading order neutral position and its effect will persist in
the downstream development of Gortler vortices. An important consequence of such an effect
is that non-paralle] effects will be important over a larger range of wavenumbers than was
the case for the special curvature case. Suppose we measure the order of the wavenumber by
writing it as a = O(M<). Then we will show in this section that non-parallel effects continue to
be dominant for @ up to and including 1/4. For @ > 1/4, non-parallel effects become negligible
compared with viscous effects and an analytical expression can be obtained for the second

order correction to the Gortler number expansion. This second order correction becomes of
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the same order as the leading order term due to the curvature of the basic state when a = 3/8.

In this case a higher order correction term can also be obtained.

5.1 O(1) wavenumber regime—the near neutral inviscid mode

In the O(1) wavenumber regime, it is convenient to determine the stability properties by
considering the evolution of Gortler vortices in the neighbourhood of the leading order neutral
position z, given by (3.34). Thus we shall fix the Gortler number as given by

G= (2zn)3/2n(a:,,)M

(5.1)

and determine the second order correction say &, to the neutral position z, so that Gértler
vortices with G given by (5.1) are neutrally stable at location z, + &,,. Replacing z,, by z,, — 2,
in (5.1) then gives the appropriate expansion of the Gortler number for vortices neutrally stable
at z = z,,.

It can be shown that in the neighbourhood of z,, the second term in the expansion of
k(z)G/2 will force a growth rate of order M'/2. Hence we shall consider the evolution of

Gértler vortices in an O(M~1/2) neighbourhood of z,, by defining a new variable X by
X = (z — z,) M2, (5.2)
and look for asymptotic solutions of the form
T=To(X,n)+--, V=M"PVXn+- -,
W= MPWo(X,n)+ -+, P=MPy(X,n)+ . (5.3)
Equation (3.29) becomes
Ul + U0y + —;-n(z)Gﬁz = EXM + o(M), (5.4)
where
g def 4G - Q)

de
Note that it is this term that gives rise to a local growth rate of order M!/2. On substituting

lz:::,.- (5.5)

(5.3a-d) into the perturbation equations (3.18)—(3.22), dropping higher order terms and then
eliminating Vo, Wy and P, from the resulting equations in favour of Tp, we find that Vo, W,

and Py are related to T by

Vo = —Ta—x:, (56)
Lo 10V,
ZkWo = —T-%’ (57)
/3 2
Py = - Y22 0o (5.8)

0= =371 §xX o’
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and that T} satisfies the equation

2 2 1l
ai(z {a o TR T T

1T 2. BXT
on? T' 69 I

71~ ) 1T T =0 (59)

where k % v2zna. We can interpret (5.9) as the turning point equation associated with the
breakdown of the WKB structure in z of the expansions (3.31), indeed the evolution equation
(3.32) is retrieved from (5.9) by taking X to be large. Since this breakdown is associated
with a simple zeru in z of the right hand side of (3.32) we expect that the local behaviour of
the disturbance should now be expressed in terms of Airy functions. Equation (5.9) admits

separable solutions of the form

To(X,n) = $(X)¥(n), (5.10)
with @ and ¢ satisfying
¢"(X) -wXé(X) =0, (5.11)
3 27" i T ET!

¥"(n)

¥'(n) - [K*T? - TT'(

T 72~ ppe) ) -k =) =0, (5.12)
where the separation constant w is to be determined by solving the eigenvalue problem (5.12)
subject to appropriate boundary conditions. By a simple substitution z = Xw!/3, equation
(5.11) reduces to the standard form of Airy’s equation W"{z) — zW(z) = 0 which has two

independent solutions Ai(z) and Bi(z), so the solution of (5.11) is given by
H(X) = aAi(w*X) + bBi(w* 3 X), (5.13)

where a and b are two constants to be determined by initial conditions.
To solve (5.12), we first note that in the large wavenumber limit, equation (5.12) takes

the same form as equation (3.32). Therefore, the solution of (5.12) can be written in terms of

Hermite polynomials as
¥(n) = ¢, = e ¢ - He,(¢) (5.14)

and from (3.41) the eigenvalue w expands as
w, = (1---Z24.., (5.15)

where Ao, Az, and { are defined in turn by (3.43), (3.46) and (3.45a).
In the O(1) wavenumber regime, equation (5.12) has to be solved by a numerical integration,
and in general an infinite number of eigenvalues w,(s = 0,1,---) and eigenfunctions 1, can be

obtained. Then the general solution of (5.9) can be written as

To = i {a,Ai(w, X) + b,Bi(w, X )} v.(n), (5.16)
=0
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where a, and b, are constants to be fixed by initial conditions at X = 0. From (5.6), Vy is

given by

Vo= \/-2;_,"1; i {a, At (W, X ) + by Bi'(w, X )} wstps(n). (5.17)

=0

It is clear that once To(X,n) and Vo(X,7) are specified at X = 0, the coefficients (a,,b,) and
hence the evolutionary behaviour of the perturbaticn field (Vo, Wo, 7o, Po) will be completely
determined.

The correction term to the neutral position can be defined as the position where a certain
energy measure has zero growth rate. It is obvious that such a position would depend upon
what initial conditions we impose at X = 0 and what energy measure is employed to monitor
the energy growth. In principle then it is an easy matter to determine the local neutral position
associated with any initial perturbation, we note however that before growth of the vortices
occurs they will have an oscillatory behaviour in X since both Airy functions are oscillatory
on the negative real axis. Clearly this occurs because the boundary between instability and
stability is controlled by inviscid effects in this regime, there is no counterpart to this result in
the behaviour of Gértler vortices or for that matter Tollmien-Schlichting waves in incompress-
ible lows. We further note that appropriate forms for the initial conditions can be obtained
from the receptivity problems associated with wall roughness or free stream disturbances, see
Deuier, Hall, and Seddougui (1990) and Hall(1990). We merely note in passing here that it is
reasonable to expect that the type of mode discussed above is more likely to be stimulated by
free-stream disturbances since the effect of wall roughness is diminished by the wall layer over
which the wall roughness must diffuse before reaching the unstable adjustment layer.

This is certainly typical of the evolution of Gortler vortices in growing boundary layers. In
the present problem, non-parallel effects dominate in the evolution of Goértler vortices mainly
through the O(M3/2) curvature of the basic state. As we increase the wavenumber, viscous
effects will gradually come into play in the evolution of Gortler vortices and nonparallel effects
will become less important. In the following subsection we consider wavenumbers of order
M?*/4, This is the maximum order at which nonparaliel effects are dominant. We shall show
that when the wavenumber is increased further abuve this order, nonpcrallel effects become

negligible.

5.2 The O(M'/%) wavenumber regime—the nonparallel viscous mode

When the wavenumber reaches the order M!/4, the streamwise lengthscale is still O(M~/?)
(implying that the local growth rate is O(M/2)), but the vertical lengthscale becomes of
O(M~1/8) (as we expect that vortices would be trapped in an O(M~1/8) thin layer). We

therefore define two new independent variables X and £ by

X=(z-z)M'?, €= (g-n" M8, (5.18)
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where n* is the center of vortex activity. For convenience, we define a small parameter ¢ by
e M-8, (5.19)
An analysis of the perturbation equations (3.18)—(3.22) shows that
V=0("T), W=0(3T), P=0(e5T). (5.20)

We now assume that T = O(1) and scale (V,W,P) by (¢~*,¢73,67%). Then by neglecting

terms of relative order higher than €? in the perturbation equations (3.18)—(3.22), we obtain

ox + HV = ST ¢ s )
ez.ﬁ%—f 23\/’;?"8;: 0, (5.21)

%g—Z—TP+§-pTW+3\/‘;Tn%¥+ -—“\/;_I-V
Wz__\/%ji’%ﬂ.%g_f{ﬂ._%iv, (5.23)
_\/‘7’_; = _%3—3; - %T:—ZT +é. (2_%7;_&?7%(%%?), (5.24)

where W %" aW, a e M~1/44 and where we have used the same notation to denote the scaled

perturbation quantities. Elimination of V, W, and P in favour of T among these equations then

gives . _
a T 2 - aT .4 - 2 EXT1
= 0. (5.25)

where To = T(n*),T1 = T'(n*), io = &(To) and where 7* is chosen at higher order such that the
vertical structure of T' can be expressed in terms of parabolic cylinder functions which vanish

at 7 = +o00. The solution of the above equation is easily found to be expressible as the product
of an Airy function multiplied byew. As before the Airy function grows or decays
exponentially for large X and is oscilatory on the negative real axis. However the presence of
the exponential factor now leads to a crucial change in the nature of the streamwise evolution
of the disturbance. We refer to the fact that the exponential factor, induced by viscous effects,
now means that in the stable regime the disturbance decays exponentially rather than oscilating
as was the case previously. This result is consistent with the usual result of stability theory

that inviscid disturbances change from being oscilatory to being exponential in character when
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instability occurs; viscous instabilities on the other hand are exponential in nature either side
of the stability boundary. The local neutral position can only be obtained by specifying an
initial disturbance and finding where the solution of the evolution equation begins to grow.

If we let @ < 1, then to leading order equation (5.25) reduces to
6T N EXT
ox? v 2$nT1 2
which matches with the asymptotic form of (5.9) when k > 1.
On the other hand, if we let @ > 1, then to leading order (5.25) reduces to

T=0 (5.26)

( EXT,
vV E(EnT1 2

which shows that the second order correction term to the leading order neutral position becomes

+ %a‘*ﬁ?ﬁ"’) T =0, (5.27)

independent of nonparallel effects and is given by

V2T 2,544
X=X, = - 15T 28
n aETluo od, (5 )

On replacing z, by z, — M~/2X,, in (5.1) and expanding the resulting expression in the
neighbourhood of z,,, we obtain the following expression for the Gortler number for Gortler

vortices neutrally stable at location z = z,:

2BM3/2

= am@an

+aGo+---, (5.29)

where -
22z, 3T
UKZQTl )
The expression (5.29) is valid for wavenumbers of order M*,1/4 < a < 3/8. When the

wavenumber reaches the order M3, the second order correction term in (5.29) is as large as

9o = (5.30)

the first term and a more accurate asymptotic expression can be obtained. That situation will
be discussed in the following subsection. We have seen above that in the O(M %) wavenumber
regime viscous effects come into play and modify the evolution of the near neutral inviscid
mode, for that reason we refer to the mode in this case as the nonparallel viscous mode. We
further note that the strongly unstable inviscid mode connects directly with the parallel viscous
mode discussed below. Thus we have shown above that the nonparallel viscous mode connects
with the near neutral inviscid mode in the vicinity of the right hand branch of the neutral
curve. Hence the initial stages in the evolution of the right hand branch of the neutral curve
are governed by an interplay between viscous and inviscid effects. We further note that, in
view of the limiting form (5.29) valid for large a, as the wavenumber increases the neutral

Gortler number will also increase.
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3
5.3 The O(M?%) wavenumber regime—the parallel viscous mode

When the wavenumber becomes of order M3/8, viscous effects are of the same order as the
centrifugal acceleration of the basic state in the determination of the Gértler number, and the
leading order inviscid result (3.35) is to be modified. We assume that to leading order the

Gortler number now expands as

2BM?3/?

€=

+ a*go. (5.31)

Here the first term is due to the curvature of the basic state and the second term is due to
viscous effects and is to be determined.

For convenience, we introduce a small parameter € and an O(1) constant N by

d

lig,

def.

¢ é Ny, (5.32)

so that (5.31) can be written as

_ 2BN 1, g
T k(20 )(22,)32 € €t

G (5.33)

To determine the higher order correction terms to the Gortler number expansion, we shall first
fix the Gortler number as given by (5.33) and consider the evolution of Gértler vortices in the
neighbourhood of the leading order neutral position z, defined by (5.31), aiming at finding the
second order correction say e, to the neutral position. As we have remarked at the beginning
of the first subsection, replacing z,, by z,, — €%, in (5.33) would give the appropriate expansion
of the Gortler number for vortices neutrally stable at z = z,,.

The vortices under consideration vary on small lengthscales in both z and 7 directions.
In the streamwise direction, their growth rate can be shown to be O(1/¢) so that they evolve
on an O(e) lengthscale. In the 7 direction, they are confined to an O(e!/2) thin viscous layer
because of their small wavelength character. We therefore define two new variables X and ¢
by

T —ZTp n-—n°

X = p 3 = —el—ﬁ—, (5.34)

where 7* is the centre of vortex activity and is to be determined.

We now look for asymptotic solutions of the form
T= oO(X,C) + 61/201(X’<') + 602(Xa<) +-- )

V= G_Z[W(X, C) + 61/2%(X’c) + 6V2('X’<) + - ']a
W = 3 [Wo(X, () + €2Wy(X, () + eWa(X, () + -+, (5.35)
P = e S[Py(X,¢) + €2 Py (X, () + ePa(X,C) + - .
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Here the relative orders of the perturbation quantities are deduced from the perturbation equa-
tions (3.18)—(3.22). On inserting these expansions into the perturbation equations (3.18)-(3.22),
expanding all coefficients there about £ = z, and 7 = n*, and then equating the coefficients
of like powers of €, we obtain a hierarchy of equations. To leading order, the Gortler number

go in (5.31) is determined as a solvability condition for (Vo, 6p) and is given by

_2V2zf gTo

= 5.
go=-——"—F— (5.36)
whilst 8y, Wy and P, are related to V5 by
O'T1 R 1 aVO Ho a‘/O
0 = —_‘———'_‘V’ W = ——_————— P = - ——— 5_
0= ~smmia > Wo=-mmae PR ac (5:37)

where Tp = T(n*), Ty = T'(7*), Bo = &(To) ko = &(zn). Note that (5.36) is of the same
form as (5.30), as we would expect.

To next order, we obtain three expressions similar to (5.37) for 6;, W1 and P; in terms of
Vi and V; and the condition that

dgo
dn |"l =n* = 0 (5‘38)
which implies that n* is where go attains its minimum.

If we carry on one order higher, we find from a solvability condition for (V2,6;) that V;

must satisfy the evolution equation

Vo 2(1 + 0)Tozs OV

- p2 ¥ _
3c? 3% X a*Vo +bXVo =0, (5.39)
where Fos 52
z_ 20Tn0 9o,
“= T390 o2 In=at >0,
N { 2BN k1 3 k1 1 }
b= — =)= - 5.40
3 !Joﬂo(zl‘n)s/z(ﬁo T 2%) + Ko 2z, (5.40)

and where x; = &/(z,). The solutions of (5.39) which satisfy the conditions Vo — 0 as [(| — oo

can be written as

Vo = Vom(X,() = exP{Z(_l-::Lao)bT;;:(X (m+ 5 \/b—)}

U ("m - %) (46)1/4C) y M= 0, 172: M) (5'41)

where U is a parabolic cylinder function. The neutral position &, can be taken to be the point
where 0Vo/0X = 0, so that the mth mode is neutrally stable at

X=:i:,,=(m+; ‘/:— (5.42)
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The most unstable mode corresponds to m = 0. We therefore have

B = % (5.43)

With the expression for &,, determined, we can now replace ¢, by z, — €&, in (5.33) and then
expand the two terms on the right hand side up to and including the O(1/€3) term, hence

obtaining the expansion

2B M3/? g 1 1 390 0290

O ey S T e

(5.44)

for Gortler vortices which are neutrally stable at position z,,.

As is to be expected, the Gortler number expansion (5.44) agrees in the special case
x = (22)~3/3 with the combination of (4.1), (4.10a), (4.12d) and (4.17) (note that the small
parameter ¢ there corresponds to €/4/2z, here). This means that in the large wavenumber
limit, the relation (5.44) is a universal expression for the neutral Gortler number, which is
valid for all wall curvatures.

Finally in this subsection we stress that a more unstable version of the parallel viscous mode
can be obtained by taking go bigger than the value given by (5.36), in that case we must allow
for a growth rate of order M { and then (5.36) is replaced by an equation to determine that
growth rate. This structure then enables a direct connection between the strongly unstable
inviscid mode and the parallel inviscid mode at relatively high Gortler numbers with G- Gy ~
M?%. The analysis for this more unstable regime is essentially identical to that given by Denier,

Hall, and Seddougui (1990) in the incompressible case.

6 The wall mode

It has been established in section 3 that as the wavenumber becomes large, Gortler vortices
become increasingly trapped in the O(1) temperature adjustment layer. Thus the preceding
three sections are devoted to Gortler vortices which have wavelength of O(1) or smaller and
which are trapped in the temperature adjustment layer. Clearly it is possible for vortices
of wavelength smaller than the thickness of the transition layer to be excited, far enough
downstream the local wavenumber will become comparable to the adjustment layer thickness
and the previous analysis will apply. However before this occurs the vortices must be described
by an analysis which takes account of the fact that they are of wavelength much larger than
the adjustment layer thickness, we shall now address that situation. In fact it can be deduced
from the definition (2.11) and (3.1c) that the variation dy of the physical variable y and the
variation of the similarity variable d7 satisfy

dy = V2zTdn. (6.1)
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The wall layer which corresponds to n = O(M~1/2) with T = O(M?) is therefore actually of
oM 3/ ?) thickness in terms of the physical variable y, whilst the temperature adjustment layer
is still of O(1) thickness. Thus a natural scale for larger wavelength vortices is provided by the
thickness of the wall layer, the appropriate size of the Gértler number is found by rescaling
the vortex wavelength and velocity field by the scales relevant to the wall layer. Such Gortler
vortices are referred to as the wall mode and are studied in the present section to complete
our stability analysis.

Since in the large Mach number limit the boundary layer thickens by O(M?3/2), we should
rescale (y,z) by a factor M3/ and the corresponding velocity components likewise. This
effectively replaces all “R-1/2"g by “R-1/2}f3/2" 1t is therefore appropriate to rescale the

Gortler number G and the wavenumber a by defining
G = M~3(z)(22)**G, k= +2zM*a. (6.2)

In the wall layer, the basic state is from (2.12) and (3.5) given by

M3/2 .
1=F(Y), 7= V22 [-TF(Y)+ F(Y)UY)], (6.3)
where v
Q)¢ / Tdy. (6.4)
0

The various partial derivatives of u,v and u which appear in the perturbation equations
(3.18)—(3.22) have to be computed before we can deduce the relative orders of the pertur-
bation quantities. Such expressions are given in the Appendix to this paper. With the aid of
these expressions, we can show from (3.18)—(3.22) that the relative scalings of the velocity,

pressure and temperature disturbance fields are given by
V = 0(M3*U), W = O(M*?U), T =0(M?U), P=0(MU). (6.5)
We therefore look for solutions of the form
U=0(@=Y)+---, V=M"V(Y)+. .,
W=M¥W(=,Y)+ -, P=MP(Y)+: -, (6.6)
T = M*%(z,Y)+---.

On substituting (6.6) into the perturbation equations (3.18)—(3.22) and then equating the
coefficients of like powers of M, we obtain to leading order the following set of partial differential

equations which govern the evolution of Gortler vortices in the wall layer:

7 i .2 " . 5 ]
lF'-"-‘i-f-‘-’EH((Hm)\/%-’“— FQ)U_(H-m)_a_ 1 80

77 5 "oy 2 " 2273 22T 7 For)

29




" i ~ " 1

V2zT? (2.7,-)1"5/2 oY 2 oY \73/2) | 2272
. F" 7
FG+TF-(F - Q-—Q’

{ +IP (P -5 } @) iF
(GrmP o0 000, iim (00 1, 0800 0 20
3v2zT3/3 0z 2zT 8Y’ 3y/ozF | 628Y 2z 22T 8Y?

1+ M Q7' aU 8V F av

+

. l
2 (2;,;)3/21""5/2 ar ( % 207

" 4(1 +7n) 8 1 av

2T2

1 a_P_ 1,15 2 4 ' 2 ?2 "
Vor 5% {T2[2GF +TFF +T'F? — (F? + FF")Q]
Lo F"Q F”T’Q) (14 m)F"T!
6T3/2( T T? 677/2
214+4m) 8 1 , 5 " 14+m QT'F" g
3T ay[fs/z("TF TR+ —— ez | (22)3/2
_(1+m)F" 96 O 8§ 14 7 " -\ 00
T3t Bz 2. oY) 3. (eayireiat 07 M )5y
~ 7] -~ SR 4
Mﬁc - (1+m)~a(sz) -0, (6.8)
3. (22)T3/? 3.(2c)VT OY
1+m QT 7 1+m 1+ T .
"% aepen’ ‘/_( T2 TBY)+ 2 Vaeloh'
(1+m)eV . 14w FI' . i/2z, ,0W F oW
e — P et = (Fl 5 - oo 59)
3v2zT Y 3 2z732 T kT ' 0z 2z Y
4(1+m)\/— (i) 147 K2 _1_ (kW) 0, (6.9)
EY 3 V2zk?T 8Y | /T 6Y
- FT, ( ___F_aé)+i(ﬂ__9_.a_ﬁ.+__l _‘?z)
(2a:)T3 8z 2208Y’ T'8z 2eTOY 22T 0Y
1 . T 7 kW
—(—=U - === 6.10
tY7F Vet T Vet (6.10)
af .. )14 ) F" aU T &
2772 (2z)T3/2 6Y ¢§'5T=
( 08 _F 68, (1+mE* VT,
8z 2z 0Y T o.2z

30




FT 1 .
~{ o+ sa -1

Fi? + 1+'r'n_6_(T’) 5

2zT5/2  20(2z)T OY " T3/2
(Q+m)T' 86 1+ a( 1 86
20(22)T5/20Y  o(2z)T 0Y \/_6Y

Obviously, this set of partial differential equations have to be solved numerically to deter-

) = 0. (6.11)

mine the evolution properties of Gértler vortices in the wall layer. We further note that the
downstream velocity component of the perturbation now does not decouple from the other
disturbance quantities. For the purpose of numerical calculation, it is convenient to eliminate
the pressure perturbation P and W from the above five equations. After some manipulation,
we obtain

0 F'\/T( 2y0 - _VEBF o, P08 T F\/_)aU
Yl 1+m 8:2: (1+7 )\/“ 270y T\oF " 1¥m'oY

] 1 m Ul "
+{ Fr ,-ﬁ(F —3€T)}é+{l'e’:f‘2—-—-———FQ ~}I'J, (6.12)
(1+m)WT 2 'T3/2 27572 (1 +@m)WVT

2§ ' I 06 [ N !
802_0F\/—( ) aF\/::T’_ﬁ_*_ oT _Ja - QT
Yy 1+ 6:1: 1+m0Y (1+ﬁz)\/5 (1+m)\/_
Filig oFT' 1 Fpr g

— . — -1) — - — — 0, 6.13
3y (Lt m)VT 270~V - Ft i } (6.13)

- 20(y - 1)F"—— +{icz'_f'2+

v FVT - (22) 3V +(3T’F ). \/_ (22) 82V
9Y: 1+m 8z0Y? T 0z0Y
FI Fuj’-l 31‘-'112 j’w £ 2,45/2 3V
e — . —_— “, . 4
+1+fn(\/rfpf Y I ROy = ,Z}“ (6.14)
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The above equations are to be solved subject to the following boundary conditions:

AtY =0,
ov

U=V = W 0,
8 , , ,
i 0, if the wall is thermally insulated (6.15)
= 0, if the wall is under cooling.
AsY — oo, }
7-0,7-0 % ~0, 60 (6.16)
'Y

The precise large Y decay behaviour of the perturbation quantities can be deduced from
the perturbation equations (6.12)—(6.14), but the derivation is tedious. However, the far
downstream limit of such decay behaviour can be deduced very easily from the condition that
the solutions of the wall mode under consideration in the double limit £ — 0o and ¥ — oo
should match with the inviscid solutions (3.32) and (3.33) when k — 0 and 5 — 0 there. In the
limit & — 0, equation (3.32) reduces to equation (3.37) and the latter has solutions confined
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to a thin layer 7 = O(k'/3) near the wall. It can be shown that in the further limit 7 — 0, the
solution of (3.37) has

and from (3.33),
Ca C3
To — g Wo — pr g
where ¢;,¢; and c3 are all functions of z. By the above-mentioned matching condition, the
relations (6.17) and (6.18) with 7 replaced by Y are also the far downstream, large Y decay

behaviour of the perturbation quantities in the present problem.

(6.18)

For any initial disturbance located at a given downstream position, we can determine the
position at which the disturbance becomes neutrally stable by integrating these equations using
the same marching procedure as the one used in solving the system of equations (4.3)—(4.7).

As an illustrative example, we impose the following initial disturbance at the location z = 50:
7(50,Y) = Y%~ Y", V(50,Y)=6(50,Y) = 0. (6.19)

The wall curvature is taken to be +/2z and the wall is assumed to be thermally insulated. For
a given wavenumber and a given Gortler number, we can march downstream until we reach
the neutral position where a certain energy measure has zero growth rate. We then calculate
the local wavenumber k& and the local Gértler number G at the neutral position. By fixing
the wavenumber a(= k(2z)~1/?) at 1 and varying the Gortler number M ~3/2G from 0.0001 to
0.03, we obtain a series of neutral points (k,G). Fig.13 shows the neutral curves corresponding

to the following three energy measures:

B = / * 2y = Vs M/ / = 0tay, (6.20)
0 0
(o . ~ . oo . - -
E, = / (02 + V2 + W2)dy = \/%Mm/ (0% + V2 + W?)Tay, (6.21)
0 0
3/3
B= [ )2 =223 & yay (6.22)

Fig.14—-Fig.17 shows the downstream evolution of Gortler vortices corresponding to the above
conditions with M~3/2G = 0.001. We observe that all neutral curves decrease monotonically
with respect to the local wavenumber and that Gortler vortices become increasingly more
and more shifted to the right (i.e. towards the temperature adjustment layer) as they evolve
downstream. This is certainly to be expected since in the large local wavenumber limit the
wall mode has to match with the mode trapped in the temperature adjustment layer. By
taking the large wavenumber limit of the wall mode equations we can show that the neutral
curve should tend to the limit G = 2B = 1.2543. In order to realize this limit numerically we

have to carry out our calculation at very large wavenumbers. This prceents some numerical
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difficulties, because on one hand, if we fix the Gértler number and vary the wavenumber,
the initial conditions soon become incompatible with the differential equations since for large
wavenumbers Gortler vortices have to be trapped in a region away from the wall; on the
other hand, if we fix the wavenumber and vary the Gértler number, a large local wavenumber
corresponds to a large downstream neutral position and there contamination from the “finite
infinity” becomes important because of the algebraic decay behaviour (implying that we have
to choose a larger infinity). Finally, we remark that the z-derivative of 8 in the expressions for
W3 and W could be eliminated with the aid of equation (6.13) to give a different formulation
and thus to provide a check on our numerical scheme. We have done so and have obtained
identical results.

We conclude this section by stating the most important results of our investigation of the
wall mode. We have shown that the wall layer can support a disturbance trapped in the wall
layer with wavelength comparable with the wall layer thickness. This mode is dominated by
nonparallel effects and has a neutral Gortler number which is a monotonic decreasing function
of the vortex wavenumber. In the limit of high vortex wavenumbers the mode takes on a struc-
ture essentially identical to that found for the small wavenumber limit of the inviscid modes of
wavelength comparable with the adjustment layer thickness. Moreover in this limit the vortex
has a neutral Gortler number which approaches from above the zeroth order approximation to

the neutral Gortler number of the wall modes.

7 Real gas effects

In our previous discussions, we have assumed that the fluid under consideration is an ideal gas
undergoing no dissociation. Our asymptotic analysis based on the large Mach number limit
has yielded some revealing results about the stability properties of hypersonic boundary layers.
However, in the large Mach number limit, we would expect that the wall temperature should
be well above the temperature at which dissociation takes place. Take a boundary layer over

a thermally insulated wall as an example. The temperature at the wall is given by

Ty = =(7 - 1)M?T,,

when the Prandtl number is unity. At a standard altitude of 53 km, the air temperature T
is 283K. If we take v = 1.4, M = 25, then T\, = 35,375 K. Since at the far lower temperature
of 2500 K, the oxygen molecules in the air have already begun to dissociate, it is clear that an
investigation which takes gas dissociation into account is vitally important!
A complete theory on real gas effects should at least incorporate the following important
chemical reactions:
0, =20, N,;=2N,
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N+O=NO, N+O=NO*+e".

However, in order to expose the most important features and at the same time keep the algebra
to a minimum, we begin our investigation by eliminating the less essential complications which
arise from the detailed composition of air and confining our attention to a pure dissociating

diatomic gas. The dissociation process is therefore denoted by

Ay = A+ A (7.1)

In our following discussion, O; and N, will be chosen for numerical illustration. F*  -rmore,

we assume that the fluid under consideration is an ideal dissociating gas which the
relation ,

a —_ 2‘! . Ze—Td/T’ | f'2)

1-a2 p Ty
(see Becker (1968), p. 36, or Lighthill (1957), p.6). Here o, p and T have the same meanings
as defined in §2, whilst py and Ty are respectively the characteristic pressure and temperature
for dissociation.

For the gas mixture of A and A;, Dalton’s law gives

_ _nl.‘RT nz.‘RT
PEptp=—— + = (7.3)

where p; is the pressure which the ith component would exert individually if alone in volume
V at temperature T, n; are mole numbers and R is the universal gas constant. Here we use
subscript 1 to signify component gas A; and subscript 2 for A. Assume that the weight of a

mole of gas A is m, the molar weight of gas A, is then 2m. We therefore have

n2m+ny-m
p= (7.4)

Na-m _ N2
T np-2m+ny-m 2ng +ng
With the use of (7.4) and (7.5), we can rewrite the equation of state (7.3) as

(7.5)

p=(1+a)RT, (7.6)

where R = R/(2m) is a gas constant.
On inserting (7.6) into (7.2), we obtain
o pa _7
— = b4 -T4T i
T—a=~ 7 e , (7.7)
where pg = Py/(RTy) is the characteristic density for dissociation. pg, Py and Ty are in

general functions of T, but their variations over a large temperature range are very slight.
Their typical values are given in Table 2 (taken from Lighthill (1957)).
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Table 2

T4°K)  Pylatoms) pg(gm/cm3)
Oxygen 59000 2.3 x 107 150
Nitrogen 113000 4.1 x 107 130

It should be noted that for atmospheric values of p, pa/p is at least 105. Thus although
pd, Tq and pq are called characteristic quantities, they are not typical of the actual values
of p, T and p at all. For p4fp = 10°, (7.7) shows that a is 0.05 (5% dissociation) when
T/T4 = 0.057, and « is 0.95 (95% dissociation) when T'/T4 = 0.116. For densities typical of
the upper atmosphere, with (say) pg/p = 107, these values of T'/T; would be reduced to 0.045
and 0.076 respectively. For a fixed value of pg/p = 4 x 10® and Ty/Ts = 4 x 103, the variation
of a with respect to T/T,, is plotted in Fig.18.

Relation (7.7) was first obtained by Lighthill (1957) from quantum mechanics, and there-
fore the ideal dissociating gas discussed here is also called the Lighthill gas. Using a purely
mathematical argument, Becker (1968) has shown that the Lighthill gas is a special case of a
more general class of gases. An important property of Lighthill gases is that A; and A have

the same specific heats at constant volume, that is,
Cu1 = Cu2. (7.8)

7.1 Constitutive properties of a dissociating gas

In order to see the complications which arise from gas dissociation, let us first recall that an

ideal gas has the following properties which have greatly simplified our previous analysis:

(i) The equation of state has the simple form P = RpT as compared with (7.6);
(ii) Specific heats ¢, and ¢, can be taken to be constant;

(iii) The coefficient of thermal conduction k is proportional to the shear viscosity u and the

Prandtl number ¢ = pcp/k is usually taken to be constant;

(iv) The viscosity can be taken to be related to the temperature by Chapman’s law, or more

accurately, by Sutherland’s law.

When part of an ideal gas has been dissociated, the gas becomes a mixture of two component

gases and all of the above properties are changed. We have shown above that the equation of
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state is modified to the form given by (7.6). In this subsection, we derive the corresponding
expressions for u, k and c,. Our derivation is based on work discussed in “The mathematical

theory of non-uniform gases” by Chapman and Cowling (1970).

The viscosity u

In the kinetic theory of gases, different expressions for the transport properties 4 and k have
been found depending on what model is used for the interaction of the gas molecules. For
example, for a simple gas which consists of smooth rigid elastic spherical molecules, u is
proportional to +/T, whilst if the gas is taken to consist of smooth rigid elastic spherical
molecules each of which is surrounded by a field of attractive force, u is given
o BTy ),

where ¢ is the diameter of the molecule, S the potential energy of the mutual attraction of two

p= (7.9)

molecules when in contact, m the molecular weight. Relation (7.9) is known as Sutherland’s
viscosity law.
For a binary mixture of gases, Wilke’s law gives an approximate expression for the viscosity

of the mixture:
b= T1 + T2
T w3 TEL =
H1 * B3 B + M2
where y; and p; are the viscosities of the two component gases; z; and z; denote the propor-

(7.10)

tions by volume of the two gases in the mixture. Since by Avogadro’s law equal volumes of

different gases contain an equal number of molecules or moles, we have
ny l-a (D) 2a

= ’ Ty = = .

n+n l+a n+n l+a

In (7.10), pt12 and p2; are the mutual viscosities of the two component gases and are given by

RT(m, + 1/2 S
R

T = (7.11)

ma 1

5m
. ~H12 = g, (7.12)

Hi2 = 163, [

T m
where ¢;3 can be taken to be (¢1 + ¢2)/2, whilst the expression for Sy3 has to be found empir-
ically. Lindsay and Bromley (1950) suggested that S;; = /5152. Here ¢; and S, (i=1,2) are
constants appearing in (7.9), associated with u;.

With the aid of (7.9) and (7.12), we can now write down the appropriate expressions for
the viscosities of the component gases. These are

AiT3/2 . 1‘137‘3/2
M=pis t= 1,2, ma= T15, M= #2/2, (7.13)

5 Rm,; 5 3Rm,
A= 162\« 4a = 16c3,V =« ' (7:14)

where we have made use of the fact that m; = 2m,.

Here
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Coeflicient of thermal conduction &

For a pure gas, the coefficient of thermal conduction is related to the viscosity u by the simple
formula

k= feyu, (7.15)
where f is a constant and v/ f is usually defined as the Prandt! number.
For a binary gas mixture, Wassiljewa’s formula gives
_ T + T2
B R BE

where k; and k; are the thermal conductivities of the two component gases and k;5, and ks

(7.16)

are the mutual thermal conductivities.

It is suggested in Chapman and Cowling (1970, p.256) to put
k12 Dy;’  kn "Dy’

where the coefficients a3 and aj; are regarded as functions of m;/mg, which are determined

(7.17)

semi-empirically, and for Sutherland’s model the diffusion coefficients D11, D13 and D3, are
given by
Dy = iy, Dip= =i, Dyp= - (7.18)
11 5p1“1’ 12 Bt 12, 22 5p3y'2’ .

where p; is the density of the ¢th component gas, when pure, at the pressure and temperature
of the actual mixture.

If we take ay3 = az; = 1 for simplicity and further make use of the above relations, relation
(7.16) then becomes

B (f2/ f)u2
k=cyf1 { + ) , (719)
1+ 2. -E—,; 1+ ?",’* . fl‘;
where we have used the fact that for an ideal dissociating gas, cy; = cy2 def. ¢y; whilst f; and

fa are the constants appearing in (7.15) corresponding to gases A; and A respectively.

For easy comparison, we rewrite (7.10) here, making use of the relation (7.12),

K1 K2
o 1435

Comparing (7.19) with (7.20) shows that we can almost write k = ¢, fip for the gas mixture,
only if f; = fi. It is therefore desirable to investigate the values of f; (for diatomic gases) and
fa (for monatomic gases).

For all smooth spherically symmetrical molecules, it has been shown that taking f; = 2.5
provides a very good approximation. However, for diatomic and polyatomic gases, a variety of

expressions have been suggested for f. One of these is Eucken’s formula:

f=3(07-5) (7.21)
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This formula is valid under the assumption that the transport of momentum and translational
energy is unaffected by the internal molecular motions, and that internal energy is transported
at the same rate as momentum.

For diatomic gases, there are 3 translational degrees of freedom, two rotational degrees of
freedom and on the average one vibrational degree of freedom (may vary between zero and

two depending on whether vibration has been fully excited or not). Thus the internal energy

is given by RT o
1 3
ST e ¢ — 1 — —, .2
(Recalling that 2m is the molecular weight of A). Consequently, the specific heats are
Oe 3R R -
Cy1 = -aTl = %, Cp1 = Cu1 t+ -2-7;"- (7.23)
We then have
%t q33 f=l=175 (7.24)
Cy1 3 o 4 o )
At lower temperatures when the vibrational mode is not excited,
G SED, L 5RO T R
1730, T3 T 3
and therefore
7
==-=14 = 1.90.
f=14, f
At the other limit when the vibrational mode is fully excited,
7 RT 7, R 9 R
@ =30 =30 @ =3y)
and hence
) = g =129, f=168.
Therefore, in general,
1.68 < f < 1.90. (7.25)

In passing, we note that for monatomic gases, there are only three translational degrees of

freedom and therefore

ezzé-%—-3=%. (7.26)
Comparing (7.26) with (7.22) then shows that monatomic and diatomic gases have internal
energies differing only on their zero point energies and that the basic assumption cy1 = cy3 for
an ideal dissociating gas is indeed valid. Also, the f value 2.5 for a monatomic gas can actually
be read off from Eucken’s formula (7.21) by noting that cy2 = 3R/(2m), ¢ = 5%/(2m) and

v=5/3.




We now return to (7.19). From the above discussion, it is appropriate to put ¢, =
IR/(2m), fi = 7/4, fa = 5/2. The coefficient of thermal conduction k for the mixture
is then given by the formula

21R H1 10 117
k= m ——— 7.27
8m{1+;}ﬂu+ 7 1+2::m: ( )

Specific heats of the mixture

The specific internal energy for A and A; both have the same expression

SERT
2m

The total internal energy of the mixture is then given by

E= ?;T(Zm n1 + m- ny). (7.28)

Since A and A; do not necessarily have the same zero-point energy, relation (7.28) should be
modified to

3
E= ZRT(?ITL n+m- ’nz)+ RTdnz, (7.29)

where the last term represents the difference of zero-point energies of A over A,.
On dividing (7.29) by the total mass of the mixture (2mn, +mn;), we obtain the expression

for the specific internal energy of the mixture:
e = 3RT + RTya. (7.30)

With the aid of this relation and the equation of state (7.6), we can easily calculate the
specific enthalpy as follows:

h=e+ % = (4 + )RT + RTya. (7.31)

To calculate specific heats, we have to first of all evaluate (8a/6T), and (0a/0T),. From

(7.7,
da Taa(l-a) Oa T4
(=1 3—a> Grh=g0+
It then follows from (7.30) and (7.31) that

Td)Z a(l )
2-a’

1 2
) 5a(l-a?). (7.32)

= (4+a)R+ %(1 + By a1t (7.33)

)
The quantity (8h/0p)r which appears in (2.8) can now be calculated with the use of (7.31)
and (7.2). The result is

ey = ).,.-3§R+9_?(

(G = - a1t = (14 ) a(1-a). (7.34)
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7.2 Modification of the basic state

As we have remarked before, the basic state equations (2.13) and (2.14) are independent of
constitutive assumptions and therefore also valid for the gas mixture under consideration,
although now 5, &, k and &, are calculated from the more complicated expressions (7.6),
(7.10), (7.27) and (7.33), respectively. In these expressions, the function a is given by (7.7).

After non-dimensionalization, these equations become

1
) = ———ar 7.
i= (1+'ﬁ’l1)T3/2 !12(14'7711)1-13/2 (7 36)
T+ + 4 75%(T + ) T+ﬁu+§§-1%"(7’"+ﬁts)’
o (1+ ml)'_rf’/2 (1042/7)(1 + my )T3/? (7.37)
T+ 4 25T +ms) Tty +§ - 122(T + )
1 Ty \a 2
cp—1+4a+ (1+T T) a(l — a), (7.38)
2
o Pd -1y (7.39)
l-a Poo
where s s V35
m1=ﬁ,m2=T:°1m = T:o2’
A c? A 3¢
PR T A__3=J_1 7.40
2= \/_C 2¢}, ( )

For the purpose of asymptotic a.nalyms, it is convenient to define two new constants a and b

by
Ty

— Pd 2 p=
Then equation (7.39) becomes
ol aT’ _bM3
1—_? = —me ) , (7.42)

which displays the physical fact that dissociation will take place in the hottest region where
T = O(M?).

An asymptotic analysis of equations (2.13) and (2.14) shows that the boundary layer struc-
ture in the present case is similar to that for an ideal gas. In particular, the boundary layer
can be divided into two regions: an inner region 7 = O(M~/2) and a temperature adjustment
region 7 = O(1). In the inner region, we define new variables Y, T as in (3.5), but now (3.6)
and (3.7) are replaced by

[
)+Fﬂ=, (7.43)




14+ hg(a) vid ! I . hi(a) (Fu)z _
e (1+a'7_T’ T FT + (v - 1)(1 + )= 77 =0 (7.44)
where
"7 20+ A3(1- a) Aza+ 43(1-a)’ ’
Ry def. As(} -a) ~(10A2~A3/7)a , (7.46)
2a+ A3(1-a)  Asza+ Ay(l-a)
1 1 by .
=1+za+g(l+z) all-a) (7.47)
and where o satisfies )
o _ s b/t
a2 - oTe (7.48)

AsY — oo, T — 0 and we expect that a — 0. From (7.45), (7.46) and (7.38) we have
hi — 1, ha = 1 and & — 1. Equations (7.43) and (7.44) can then be approximated by

FII
1+ —=) + FF" =0, 7.49
( 1)(ﬁ) (7.49)
1+ 7y T' / Fil =~ (F")2
—=)+FI'+(y-1)(1+m = =0, 7.50
) (1= 1)1+ m)t (7.50)
which have asymptotic solution
3 D = [3(1 + ml)]’ 1
F=Y g+m+...”1’_[ ~ '(Y—ﬂ)4+ . (7.51)

where both D and § are constants. Therefore, equations (7.43) and (7.44) are to be solved
subject to the boundary conditions (3.8) and the asymptotic conditions (7.51). Results from
such a2 numerical integration are shown in Fig.1 together with those results corresponding to
the undissociated model.

In the temperature adjustment layer 7 = O(1), a is exponentially small which means that
no dissociation takes place in this region. The basic state equations (2.13) and (2.14) reduce
to (3.13) and (3.14) which are appropriate for an ideal gas and which are to be solved subject
to the same matching conditions (3.15) and the conditions (3.16) at infinity.

7.3 Modification of the stability properties

Since the boundary layer structure is similar to that for an ideal gas when dissociation is taken
into account, the qualitative stability properties are also similar with appropriate quantitative
modifications. In particular, we can still show that the mode trapped in the temperature ad-
justment layer is most susceptible to Gortler vortices and the neutral Goértler number expands
as in (3.35), but now the coefficient B is modified since it is the leading order contribution to

the integration of basic state temperature across the whole boundary layer. As for higher order
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correction terms to the Gortler number expansion, The effect of gas dissociation is dependent
on the wall curvature. In the special curvature case, since the second term G in (4.1) is de-
termined by solving partial differential equations in the undissociated temperature adjustment
layer, it is not affected by consideration of gas dissociation; whilst in the more general curva-
ture case, we can see from (5.9) that gas dissociation affects the second order correction term
through E, but in the higher wavenumber case discussed in §5.3, the second order correction
term is not affected by gas dissociation, as is clear from (5.44).

In Fig.19, we have plotted the variation of B with respect to the cooling coefficient both for
the real gas model discussed here and for the ideal gas model used in section 3. It is clear from
Fig.19 that the values of B is decreased by gas dissociation as well as by wall cooling. Therefore,
both gas dissociation and wall-cooling are destabilizing. In our numerical integration of the
boundary layer equations (7.43) and (7.44), we have taken 7, = = 0.508, A, = A3 =1, a =
1.225 x 10°, b = 3.2653. We have also repeated our calculation for a few sets of different values
for the above five constants. We find that the above prediction is still valid.

In order to determine the effects of gas dissociation on the wall mode, we have integrated
the perturbation equations (6.12)—(6.14) with the basic state given by the solutions of (7.49)
and (7.50), subject to the same conditions as those used to produce the neutral curves in
Fig.13. Fig.20 to Fig.22 give a comparison of the neutral curves corresponding to the ideal gas
model and the real gas model with dissociation. We observe that in each of these Figures, the
two neutral curves corresponding to the two models intersect. Therefore, gas dissociation can

have either a destabilizing effect or a destabilizing effect on the wall mode.

8 Further discussion

We have seen above that the Gértler mechanism in a hypersonic boundary layer of a Sutherland
law fluid behaves in a predominantly viscous or inviscid manner depending on whether or not
the wall curvature varies like z—3 where z denotes distance along the wall. When the wall
curvature does not have this special form the vortices evolve over almost the whole of the
wavenumber space in a nonparallel manner subject to viscous effects. The only exception to
this case is at extremely high wavenumbers where the vortices evolve in a quasi-parallel manner
essentially identical to that described for incompressible flows by Hall(1982). Since the special
curvature distribution is possibly of little physical relevance we shall now concentrate on the
results we have found for the more general curvature situation.

The results we have found for the different wavenumber regimes for the general curvature

distribution are summarized in Table 3 below.
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Table 3

wavenumber growth rate neutral value of G

wall mode O(M‘é) 0(1) O(M§)+---
strongly unstable inviscid mode O(1) o(M?) no neutral G
near neutral inviscid mode o(1) O(M%) GN+O(M)+---
nonparallel viscous mode O(M7) O(Mé) GN+O(M)+ ..
parallel viscous mode O(M%) O(M%) O(Mg) + ...

where Gy is as defined below (3.35).

The wall mode which was discussed in section 6 is in fact the counterpart of the so-called
‘acoustic mode’ of the inviscid hypersonic instability theory of flat plate boundary layers. The
latter Rayleigh instability has been discussed by Cowley and Hall(1990) and Smith and Brown
(1990) for Chapman law fluids, and a limited discussion of this mode for Sutherland law fluids
can be found in Blackaby, Cowley and Hall(1990). The acoustic mode and the wall mode
discussed in section 6 have the property that they are concentrated in the wall layer where the
streamwise velocity component of the basic state varies from zero at the wall to almost it’s free-
stream value. The Rayleigh acoustic mode in general evolves in a quasi-parallel manner though
in the presence of strong shocks this is not necessarily the case. The wall mode discussed in
this paper evolves in a nonparallel manner and becomes progressively concentrated towards
the edge of the wall layer as the local wavenumber increases.

When the wavenumber of the vortex becomes O(1) then the disturbance modifies itself so
as to become concentrated in the adjustment layer where the basic state temperature adjusts
rapidly to it’s free-stream value. The counterpart of this mode in the Rayleigh instability
problem is the so-called ’vorticity’ mode investigated by Blackaby, Cowley and Hall (1990) for
Sutherland law fluids, and by Smith and Brown (1990) for Chapman law fluids. We found in
the present paper that when the Gortler number G is as given by (3.27) with G* > @Q and Q
given by (3.28), then the appropriate expansion of the disturbance field is given by (3.31). Thus
the mode has growth rate O(M %) and the growth rate is given by the solution of the eigenvalue
problem specified by (3.32) subject to the condition that V; should vanish at 0,00. Fig. 3
shows that the growth rate increases monotonically from zero as the wavenumber increases
and tends to a constant at large wavenumbers. At large wavenumbers the growth rate can be
matched onto the parallel viscous mode growth rate when the vortex wavenumber becomes
formally O(M *). We note here that the inviscid mode matches directly onto the parallel

viscous mode structure at sufficiently high Gortler numbers. This is exactly the situation with
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the inviscid-viscous connection between temporally growing Gortler vortices in incompressible
flows and is a direct consequence of the fact that the growth rate of the inviscid mode shown
in Fig.3 tends to a constant at large values of the wavenumber. In the corresponding spatially
growing problem for incompressible flows Denier, Hall and Seddougui (1990) show that an
intermediate region is required to make the inviscid-viscous connection and indeed that the
maximum possible growth rate is achieved in that interval. We stress that this intermediate
regime has no connection with the nonparallel viscous mode discussed in section 5. The latter
regime is appropriate only to the inviscid-viscous connection problem at mildly supercritical
values of G. In Fig. 23 we have sketched the dependence of the growth rate on the the
wavenumber for the cases when the Gortler number is mildly supercritical (ie when G differs
only slightly from its value required to overcome the strong O(M %) curvature of the basic
state) and the strongly unstable case with G ~ O(M $). The broken parts of the curve denote
regimes where the growth rate is given by a nonparallel calculation. In Fig.24 we sketch the
neutral curve in the local Gortler number-local wavenumber plane. In this figure we have
indicated the corrections to the neutral curve associated with nonparallel effects.

There are no available experimental results with which we can compare with our calcula-
tions, this is because experiments at the high Mach numbers, say 10 — 30, appropriate to our
work are exceedingly difficult to perform. Thus for design purposes it is fair to say that a
theoretical approach is the only means at this stage to predict the likely evolution of Gértler
vortices in growing hypersonic boundary layers. Current transition prediction methods are all
based on some amplitude growth criterion based on the linear growth of a disturbance. We
have seen above that for a realistic hypersonic boundary layer the regime where vortex growth
is likely to occur is the strongly unstable inviscid one. Hence in any transition prediction
method for a hypersonic boundary layer it would be appropriate to simply compute the local
Gortler number and obtain the corresponding growth rate from Fig.3; this of course should
only be done for wavenumbers less than the neutral value associated with parallel viscous mode
structure.

Finally we close by making a few remarks about the results of section 7 which concerned the
effect of gas dissociation «..d wall cooling on vortex growth. First let us make a few remarks
about the effect of wall cooling, since the most unstable vortices correspond to the strongly
unstable inviscid mode we concentrate on that situation. In that case the main effect of wall
cooling or real gas effects is to alter the quantity B which fixes the scaled Gortler number
above which instability can occur. Fig. 19 shows that for an ideal gas the effect of wall cooling
is to reduce B by a factor of about .5 when the wall temperature is cooled from it’s adiabatic
value by a factor of 10. We find that the eigenvalue problem associated with (3.32) has the
maximum value of § altered only by a small amount when this happens so that at a given

value of the Gortler number the growth rate is increased by a factor of about 1.4 when the
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wall temperature is reduced by a factor of 10 from it’s adiabatic value. By contrast real gas
effects have a negligible impact on the growth rate of the strongly unstable mode. Thus for
example in Fig. 19 we see that, at a fixed value of the cooling coefficient, B varies by only
about 10 percent when the real gas model is used. Thus the critical Gortler number or the
disturbance growth rate is altered only slightly by real gas effects so it would seem that any
transition prediction method could quite sensibly ignore such a complication; certainly the
error associated with doing so would be negligible compared with the inherent error of the
prediction method.
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Appendix: Basic state properties

Listed here are various derivatives related to the basic state, which are used frequently in the
determination of the relative orders of the perturbation quantities.

The temperature adjustment layer

ﬁ:f'(n)=l+M+---, ﬁ:L(-Tf+f'/"1'"dn)=-B—M3/2+-~- (A1)
M, V2z 0 Vez ’
1 . B 1
= | Tdn=——_M5324... = _ A2
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_ M3/2 . , TR F" 2
Up = —W[—TF -+ (F - T)Q + —T:'Q ], (AIO)
1 -
%, = —[-T'F + F"Q], A1l
Uy 2:1:T[ + ] (A11)
9, 8 __,0 FOB
uﬁa_;-*—v-c‘E_FaX_%W’ (A12)
ATy + 79, = --M—m—[-TFF' - T'F? + (F" + FF")Q) (A13)
x 7 (23)3/2 ?
. o FFII
Ulg + Ty = ——5—, (A14)
where
aef. ¥ 3
Q)% [ Tay. (A15)
0
REFERENCES

1.

2.

Becker E. (1968) Gas Dynamics. Academic Press, New York, London.

Blackaby, N. D. ,Hall, P. and Cowley, S. J. (1990). On the instability of hypersonic flow
past a flat plate. ICASE Report 90-40 and submitted to J. Fluid Mech.

Buddenberg J.W. and Wilke J.R. (1949). Calculation of gas mizture viscosities. Indus-
trial and Engineering Chemistry 41, 1345-1347.

. Chapman S. and Cowling ,T.G. (1970), The Mathematical Theory of Non-Uniform Gases,

3rd ed. Cambridge Univ. Press, London and New York.

Cowley, S. and Hall, P. (1990). On the instability of hypersonic flow past a wedge. J.
Fluid Mech. 214, 17.

. Denier, J.P., Hall, P. and Seddougui, S. (1990) , On the receptivity problem for Gértler

vortices: vortez motions induced by wall roughness. ICASE Report No. 90-31.and Phil.
Trans. Roy. Soc. A, In Press.

Freeman, N. C. and Lam, S. H. (1959) , On the Mach number independence principle for
a hypersonic boundary layer. Princeton University Report 471.

. Hall P. (1982). Taylor-Gértler vortices in fully developed or boundary layer flows: linear

theory. J. Fluid Mech., 124, 475-494.

. Hall P. (1983). The linear development of Gértler vortices in growing boundary layers.

J. Fluid Mech. 180, 41-57.

47




10.

11.

12.

13.

14.

15.

16.

17.

18.

Hall, P. (1988). The nonlinear development of Gértler vortices in growing boundary

layers.

Hall, P. (1990) Gértler vortices in growing boundary layers :the leading edge receptivity
problem, linear growth and the nonlinear breakdown stage. Mathematika, In press. (based
on ICASE Report 89-81)

Hall, P. and Malik, M.R. (1987). Gértler vortices in compressible boundary layers. J.
Engrg. Math. 28, 239

Lighthill M.J. (1957), Dynamics of a dissociating gas: Part I Equilibrium flow. J. Fluid
Mech., 2 , 1-32.

Lindsay A.L. and Bromley, L.A. (1950). Thermal conductivity of gas miztures. Industrial
and Engineering Chemistry 42, 1508-1511.

Smith, F. T. and Brown, S. N. (1990). The inviscid instability of a Blasius boundary
layer at large values of the Mach number. J. Fluid Mech. 219, 499.

Spall, R. E. and Malik, M. R. (1989). Goertler vortices in supersonic and hypersonic
boundary layers. Phys. Fluids A 1, 1822,

Stewartson K. (1964). The Theory of Laminar Boundary Layers in Compressible Flows.
Clarendon Press, Oxford.

Wadey, P. (1990). Gértler vortices in compressible boundary layers. Exeter Univ. PhD

thesis and submitted for publication.

48




0.18

0.14 -

o

-

N
1

°

Basic state temperature in the wall layer
=) (=)
< o
®
Fl

- é)'cotic result for large Y
.. n—O ideal gas model
+++» n=0.6, real gas model
\ | === n=0. 2, ideal gas model
\ L+ n=0. 2, real gas model

Fig.1

L T ¥ LI Ll L) T ¥ 1
2 3 4 5 6 7T 8 9 10 11 12 13 14 15 16
The wall layer variable Y

Basic state temperature in the wolil layer corresponding to
two models. Here n is the cooling coefficient.

49




45

40

35

30

25

20

15

10

6

0

—= Numerical calculation
-« Asymptotic result for small eta

-

-

-

-

-~

——.p,

retans,

LTTO

T T T T T T T T Y T | BNEEES S emmmen ma ma—
10 1.2 14 168 18 20 22 24 26 28 3.0 3.2 34 38 38 40 42

Fig.2. Basic state temperature in the adjustment layer.

50




V226%/(G* - Q)

0.8

0.5 -

0.4 -

0.3 -1

0.2 4

0.1

0.0

Ll | ] | T
2 4 ] 8 10 12 14 16 18
local wavenumber k

-~
-

Fig. 3 The dependence of the eigenvalue V2z8%/(G* - Q) of (3.32) on the
local wavenumber k, which agrees with the results from asymptotic analysis
that as k — 0, v2z0%/(G" — Q) is of order k; whilst as k — oo, vV2z8%/(G* -
Q) tends to the constant 0.5786.

51




0.9 4

0.8

0.7 -

0.6

0.5 +

0.4 -

0.3 1

0.2 1

0.1

.
.
. . ‘e,
: . See.
: SO e
R A A R L
.o
0.0 o —————————————————————————————————————————————————

-
-
-
-

-

Fig. 4 The eigenfunctions of (3.32) corresponding to_a set of decreasing
wavenumbers k. Asymptotic analysis shows that as k — 0, vortices are
confined to a wall layer of O(k!/3) thickness and Vp tends to a constant
when moving away from the wall layer.

52




1.1

1.0 4

0.9 4

0.8 4

0.7 4

0.6 -

0.5

0.4

0.3 -

0.2 4

0.1 4

oeeteanne,
9420000000 sasessestrarss

Y ™ T T T T Y Y T T T T T ey
05 10 15 20 25 30 35 40 45 50 855 680 65 70 75

0.0

Fig. 5 The eigenfunctions of (3.32) corresponding to a set of increasing
wavenumbers k. Asymptotic analysis shows that as k£ — oo, vortices are
confined to an O(k=1/?) thin layer centred at 5 = 2.3228 where —T"/T?
attains its maximum.

53




g

Local Gortler number

400

@ ©
8 8
L1

-+ ES as energy measure
« + E4 as energy measure
- E3 as energy measure
-—= E2 as energy measure
+««- E1 as energy measure

v 1 L] 1 ] 1

1.8 2.0 2.2 2.4 26 28
Local wavenumber

Fig.6. Neutral curves obtained when we impose the following initial coni-
tions at the upstream postion_Xo = 60:
U=eV".e/p, V=0, §=nl.

54




Local Gortler number

4000

2000

1000 —

800

600

400

200

+ « Asymptotic result i
*++ The third initial condition 4
s == The second initial condition 4
* %\ |~ The first initial condition

T T T T - T |
07 08 09 1.0 2.0 3.0
Local wavenumber

Fig.7. Neutral curves obtained when we impose the following three initial
conditions at the downstream location X = 20 and use Es as the energy
measure to monitor the energy growth.

(). U = e-1/n* ce~"/n, V=0, §=9.

(ii). U = n?e=10/7° . g=n
(iii), U = e=0/7° .¢=n ¥

55




Local Gortler number

4000 :
.. Asymgtotlc result
=. X0=6 VN
= X0=20 s
esee xo:=4o .'-
2000
1000 ~—
800
600 -
400 -
200 ~
100 — .
1 ] I ] L Ll
07 08 09 1.0 2.0 3.0

Local wavenumber

Fig.8. Neutral curves obtained when we impose the following initial con-
ditions at three different upstream positions Xo = 20,40,60 and use Es as

energy measure: i i i
U= e-l/n‘ ) e-")/n‘ V=0 8= T]U.

56




1.0

0.9 i
i WA
- ] It
08 i
3
1 [e=x=470
7 H 1 x
0.7 \ | =—x=150
H [: esee x=30
0.8 -
0.5 -
0.4
0.3 +
0.2 +
0.1 R
0.0 i - . l .
0.5 1.0 15 20 25 3.0 35 40 45 50 55 6.0 65 7.0
Fig.9 Normalized streamwise velocity at different downstream locations
1.0 )
0.9 -
0.8 - H
0.7 4 !
7 \ =+ x=470
o x=150
0.6 seee x=3°
0.5 4
0.4
0.3 +
0.2 ~+ ;
1
{
0.1 4 {
}
jl M—
0.0 T T %
0 1 2 3 4 6 ] ? 8 ] 10
Fig.10 Normalized perturbations of V at different downstream locations

57




1.0

0.8

0.8 -

0.4

0.2 4

0.0

-0.2 ~

-0.4 4

-0.6

-0.8 T T Ll T ¥ T T 1
0 1 2 3 4 $ 8 4 8 9
Fig.11 Spanwise velocity perturbation at different downstream locations

1.0

0.9

0.8

=e x=470
= x=150
esee x=3o

0.7 +

0.6 -
0.5 -
0.4
0.3 -
0.2 -
0.1 -

0.0 —

]
0.5 1.0 1.8 2.0 28 3.0 33 4.0 45 5.0
Fig.12 Temperature perturbation at different downstream locations

58




number

Local Gortler

400-1

350
300 -
250 -
T.- E3 as energy measurée
200 - — E2 as energy rmeasure
..o E1 as energy measure
160 -
100 -
50 -
0 ¥ | L | ] LB 1 ]
10 11 12 13 14 15 18 17 18

local wavenumber

Fig. 13 The neutral curves for the wall mode.

59




40 1 1 1 1 ] 1 1 T 1 L] T T
0 1 2 3 4 ] [} ? 8 9 10 11 12
Fig.14 U perturbation at different downstream locations
*10-%
12
lf‘\
10 9 I
[
/ \
8 -~ 'i
4
| i
e | \ ++ x=140
‘X oo x=120
- x=100
\ soe :-ao

T T T T T T T R T
2 4 [ ] 8 10 12 14 16 18 20
Ng.16 V¥ perturbation at different downstream locations

60




*10-*

N

-3 T 1 1 T T T ' 1
[} 2 4 [ 8 10 12 14 16 18
Fig.18 ¥V perturbation at different downstream locations
*10-%
35
30 \
25 -~
- x=140
\ [ ‘-}%
e x‘
20 - \‘ - yuB0
! \i (XY x-eo
{ \
!

L S| T T T T T T T !
1 2 3 4 (-] ¢ 7 ] 9 10 11 12 13
Fig.17 Temperature perturbation at different downstream locations

61




1-0 ................
et
0.9 - p o
-"....'

0.8 - /
’g‘ 0.7 s
3 /

i
0.8 - i
s
/
% 0.5 - !.r’
g /
# /
:El ‘)J‘ - jf
£
| i
% 0.3 - ..‘....‘.
I
0.2 - .f'f
7
0.1 -
e
c.o T p——— T T Y T T T
100 120 140 160 180 200 220 240 260 280 300
Temperature scaled on its free stream value
Fig.18 Variation of alpha with respect to the temperature
07 A e e

bl
o
1

B (integration of T acrvss boundary layer)
o
s b
1 L

o
™
1

*+ Real gas model, Pr=0.72
—Berfect ges model, Pr=0.72
*«» Perfect gas model, Pr=1

aeetatreeres
att
.t
LM

0.1

T Y T T T T T T
0.2 0.3 04 0.5 (X ] 0.7 0.8 0.9
Wall cooling coefficient

Fig.19 Variation of B with respect to the wall cooling coefficient n

1.0

62




Local Gortler number

180

160 -~

140 -

120 -

100 -

80 -

80 -

20 -

- Real gas model
\ ++++ Ideal gas model

¥ ] L} | § | 1 | |
11 12 13 14 15 16 17
Local wavenumber

Fig.20 A comparison of neutral curves corresponding to two models
(E1 as energy measure)

63

18




Local Gortler number

}
140 i
120 -
100
80 - Real gas model
\ «se- Ideal gas model
60
40 S
20 -
L} L} LE | L L L
11 12 13 14 15 16 17

" Local wavenumber

Fig.21 A comparison of neutral curves corresponding to two models
(E2 os energy measure)

64




Local Gortler number

250 -+

== Real gas model
+++« Ideal gas model

100 -

80 -

T T T T T | T T T T
1086 108 110 112 114 {16 118 120 122 124 128
Local wavenumber

Fig.22 A comparison of neutral curves corresponding to two modeis
(E3 as energy measurs)

65

12.8




- e N0 >
- (:m)0 -
uobﬁﬁ:o“i / < (1Yo > _ \\
% % (1)o
(:m)o _
L )0
, e
/7
(¢-m)o
|

-A[aa13oadsa: sounda1 3|quisun £[Buoijs PUV [PIIN3U IWIU 3y} 03 puodssrrod saamd ¢

1addn puw 1amo] 2qJ, ‘s124w| Arepunoq >ruossadAy uy §3213104 I3[3IQ5) IO} AINIDNIIE Ijwl qimo1d ayy £2 313 aqea a—wbvohw

66



I3qUINUSABM [80]

: LETAT
3159Y% [s[rereduocu o spuvdap WOI3D1102 Y3 Am )0 T IPqUINTIA

aqy a3aga awidal 373 wWog jrwde ‘3AIND [RIINIT IY3 0} UCHIIIGI I3pIo 1X9U 3G} JO T 3Y3 I7WIIPUL smolre
[eduIaa 24 ‘8393Y° 3(ereduou uo IIpio [30132 3% spuadap 24103 Y3 IaqunuIAra TIALS I3 1¥ 39Q3 sEpm

aAInD 3y jo jred payusep Y], ‘s1ake] Arepunoq >10osIadAY U1 $3213104 I3[3IQD 10} FAIND [BI3N3T QT HT 3y

<

< (1)o —
- (7)o \ (z-)0

/
,<

Jaquinu JI3IQH [B2°]

67




e A Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’'s Catalog No.

NASA CR-187481
ICASE Report No. 90-85

4. Title and Subtitie 5. Report Date

ON THE GORTLER INSTABILITY IN HYPERSONIC FLOWS: December 1990
SUTHERLAND LAW FLUIDS AND REAL GAS EFFECTS 6. Performing Organization Code

7. Author(s) 8. Performing QOrganization Report No.
Yibin B. Fu

Philip Hall 90-85

Nicholas D. Blackaby 10. Work Unit No.

8. Performing Organization Name and Address 505-90-21-01
Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering
Mail Stop 132C, NASA Langley Research Center NAS1-18605
Hampton, VA 23665-5225 13. Type of Regcrt and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center 14. Spornsoring Agency Code
Hampton, VA 23665-5225

Contractor Report

15. Supplementary Notes

Langley Technical Monitor: Submitted to Proceedings
Richard W. Barnwell of Royal Society

Final Report
16. Abstract
The Gortler vortex instability hanism in a bhyp j¢ boundary layer on a curved wall is investigated in this paper. Our aim is to clarify the precise roles
of the effects of boundary layer growth, wall cooling and gas dissocistion in the d ination of stability properties. We first sssume that the fluid is an ideal
gas with viscosity given by Sutherland's law. It is shown that when the free atream Mach number Af is large, the boundary layer divides into two snblayers: »
wall layer of O(M3/?) thickness over which the baaic state tempersture is O(M?) and s temperstare adjustment layer of O(1) thickness over which the basic
p d ically to its free stream value. Gortler vortices which have length ble with the boundary layer thickness (ie., have
local wavenamber of order ~/7) aze referred to as wall modes. We ahow that their downstream evolution is governed by a set of parabolic partial differential
equations and that they have the asual features of Gortler vortices in incompressible boundary layers. As the local ber i the l Gartler
number decreases and the centre of vortex activity moves ds the P adj layer. Gértler vortices with wavenumber of order ose or larger
must ily be trapped ia the temp adj t layer and it is this mode which is the most dangerous. For this mode, we find that the leading order
term in the Gortler b pangion is independent of the ber and is due to the curvatare of the basic state. This term is also the asymptotic limit of
the neutral Gortler numbers of the wall mode. To determine the higher order correction terms in the Gortler number expansion, we have to distinguish between
two wall curvasure cases. When the wall curvatare is proportional to (22)~*/? where z is the i iable, the Mach number M can be scaled out of the
problem asd we show that in the O(1) b gime, Gortler ices are again g d by a set of parsbolic partial diff isl ions and theref
the higher order correction terms in the Gortler b pansion are not uniquely d ined snd are gly depeadent on parullel effects. In the large
ber limit, b A panallel effects b of second order; Gortler vortices evolve d in s quas llet aad the Gortler sumber
expanmion haa its first three terms independent of nonparallel effects. In the more general case when the wall curvature is not proportionsl to (22)~%/7, the effect of
the curvature of the basic state pertists in the d development of Gortler vortices; non-parullel effects are important over s larger range of weveaambers
and they become & second order only when the wavenumbes is of order higher than O(M 1/4), In the latter case the Gortler number expansion has the first two
terms independent of nonparallel cffects; the first term being due to the curvature of the basic state and the second term due to viscous effects. The second term
becomes comparshle with the first term whep the wavenumber reaches the order M in which case another correction term can also be found independently of
nonparallel effects. Next we investigate real gus effects by assuming that the fluid is an ideal dissociating gas. We find that both gas dissocistion and wall cooling
are destabilising for the mode trapped in the temperature adjustment layer, but for the wall mode trapped near the wall the effect of gas dissociation can be

either destabilisiag or stabilising.

17. Key Words (Suggested by Authorls)) 18. Distribution Statement

hypersonic, real gas, Gortler 02 - Aerodynamics
34 - Fluid Mechanics and Heat Transfer

Unclassified - Unlimited

F'@. Security Classif. {of this report) 20 Secunity Classif. {of thus page) 21 No. of pages 22 Price
Unclassified Unclassified 70 AO4

NASA FORM 1828 OCT 86

NASA-Langley, 1991




