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ON A CLASS OF UNSTEADY THREE-DIMENSIONAL NAVIER

STOKES SOLUTIONS RELEVANT TO ROTATING DISC FLOWS:

THRESHOLD AMPLITUDES AND FINITE TIME SINGULARITIES 1

Philip Hall,

Mathematics Department

University of Manchester,

England.

P. Balakumar,
High Technology Corporation,

Hampton, VA.

Abstract
A class of exact steady and unsteady solutions of the Navier Stokes equations in cylindri-

cal polar coordinates is given. The flows correspond to the motion induced by an infinite disc
rotating with constant angular velocity about the z-axis in a fluid occupying a semi-infinite

region which, at large distances from the disc, has velocity field proportional to (x, -y, 0)
with respect to a Cartesian coordinate system. It is shown that when the rate of rotation

is large Karman's exact solution for a disc rotating in an otherwise motionless fluid is re-

covered. In the limit of zero rotation rate a particular form of Howarth's exact solution

for three-dimensional stagnation point flow is obtained. The unsteady form of the partial

differential system describing this class of flow may be generalized to time-periodic equilib-

rium flows. In addition the unsteady equations are shown to describe a strongly nonlinear

instability of Karman's rotating disc flow. It is shown that sufficiently large perturbations

lead to a finite time breakdown of that flow whilst smaller disturbances decay to zero. If the

stagnation point flow at infinity is sufficiently strong the steady basic states become linearly

unstable. In fact there is then a continuous spectrum of unstable eigenvalues of the stability

equations but, if the initial value problem is considered, it is found that, at large values of

time, the continuous spectrum leads to a velocity field growing exponentially in time with

an emplitude decaying algebraically in time.
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1. Introduction.

Our concern is with the strongly nonlinear instability of the boundary layer on a rotating disc, the

important feature of our investigation is that the stability problem which we discuss corresponds to an exact

solution of the Navier Stokes equations. In addition our investigation uncovers a class of exact steady and

unsteady Navier Stokes solutions relevant to the flow over a rotating disc immersed in a three-dimensional

stagnation point flowfield.

The importance of the stability problem for the boundary layer on a rotating disc is due to the fact that

the flow can be thought of as a prototype stability problem for boundary layer flows over swept wings. Some

years ago Gregory, Stuart and Walker (1955) showed that the flow over a rotating disc is highly unstable

to an inviscid 'crosasflow' instability associated with the highly inflectional velocity profiles which occur in

certain directions. Their calculations pointed to the particular importance of a stationary mode of instability

associated with an effective velocity profile having an inflection point at a position of zero flow velocity. The

structure of the Gregory, Stuart and Walker mode in the nonlinear regime was later discussed by Bassom

and Gajjar (1988), the latter authors show that in that regime a nonlinear critical layer structure develops.

This mode is apparently the one most preferred in an experimental situation if the background disturbance

level is sufficiently small. However, though most experimental investigations of the rotating disc problem

have clearly identified the stationary crossflow structure described by Gregory, Stuart and Walker (1955),

some experiments have pointed to the existence of a second type of vortex structure associated with some

type of subcritical response caused by another type of instability, see for example Federov et al (1976).

A possible cause for this second type of stationary vortex structure is the viscous stationary crossfiow

vortex identified numerically by Malik (t986) and described using essentially triple-deck theory by Hall

(1986). Later MacKerrell (1987) was able to show that this mode is destabilized by nonlinear effects and

therefore might cause the subcritical instability observed experimentally. However a key feature of the

mechanism described by Hall (1986) is that the crucial balance of forces leading to instability is one between

Coriolis and viscous forces, thus in swept wing flows this mechanism is possibly not operational. An alter-

native source of finite amplitude instability in more general three-dimensional boundary layers is the one

discussed " tM' pa-r. Though we shall formulate and solve the resulting nonlinear interaction equations
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in cylindrical polar coordinates it is easy to see the relevance of the structure we find to flows more naturally

described in Cartesian coordinates.

In Section 2 we shall formulate the nonlinear interaction equations describing the flow over a rotating

disc immersed in a three-dimensional stagnation point flow. In Section 3 we shall discuss some steady

equilibrium states of these equations, in particular we describe the nonunique nature of the solutions of

these equations. In Section 4 we concentrate on the unsteady forms of the interaction equations and discuss

the linear and nonlinear instability of the flow over a rotating disc in an otherwise still fluid. Our calculations

in that Section point clearly to a threshold amplitude response of the flow; thus a sufficiently large initial

disturbance causes an unbounded velocity field to develop after a finite Line. The singularity structure

associated with this 'blow-up' is discussed in Section 5. Since the interaction equations which we derive in

Section 3 are obtained without neglecting any terms in the Navier Stokes equations the singularity discussed

in Section 5 is a singularity of the full Navier Stokes equations in three dimensions. Finally in Section 6 we

draw some conclusions.

2. The equations for combined disc-stagnation point flows.

With respect to cylindrical polar coordinates (r, 0, z) the Navier Stokes equations may be written

0+(u V)u + =!VP+vA +, V

0 0 /(2.1)
div u = 0,

where (u, v, o) is the velocity field corresponding to (r, 0, z) and p, p and v are the fluid pressure, density and

kinematic viscosity respectively. The operators V and A appearing in (2.1) are the gradient and Laplacian

operators in cylindrical polar coordinates. We define dimensionless time and axial variables T and C by

U,,2 ' Accession For T=Kt, C -- z (2.2a, b)
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where K is a constant. We seek a solution of (2.1) in the form

u = Krfi(C,T) + 1{KTU(C,T)e"'O + c.c.},

= (Orv(C, T) + i{iKyU(C, T)e219 + c.c},

(2.3a, b, c, d)

W = (Kv) * t(C, T),

P 1 AK2r2 + vKP(C, T) + 17 2K2r2{J(T)e20G + c.c.}.

p 2 2

Here 7 , A are constants whilst c.c. denotes 'complex conjugate'. We note that (2.3) reduces to Karman's

solution for the flow over a rotating disc if we choose fl = K and set y = 0. If we substitute (2.3) into

(2.1) we find the crucial result that the nonlinear terms in the radial and azimuthal momentum equations

generate no terms proportional to e•*4 i. This means that (2.3) is an exact Navier Stokes solution and we

find that the equations to determine the functions appearing in (2.3) are

Ir + fA2 + Y21U12 _ (,, 2 + -2+%

f;T + 2 U V + a VC = V C , ( 2 .4 )

eT + 1DO( = -P + ec,

21!+ID = 0,

and

UT + =2fU+ U( - + UC (2.5)

From now on we shall restrict our attention to the situation when 0l = K; note that Karman's solution

is retrieved by letting 7 --o 0. Before writing down boundary conditions appropriate to (2.4), (2.5) it is

perhaps worthwhile commenting on the motivation for the choice of the special form (2.1). In a recent

paper, Balakumar, Hall and Malik (1990), investigated the instability of Karman's solution to nonparallel

Rayleigh modes of wavenumber n in the azimuthal direction. These high Reynolds number modes can be

made nonlinear in the manner suggested by the vortex-wave interaction structure of Hall and Smith (1990).
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In that structure the amplitude of the nonparallel mode with azimuthal wavenumber n is adjusted until it

drives a mean flow correction comparable with the unperturbed state. For 0(1) values of n it turns out that,

because of the comparable size of the three disturbance velocity components in the analysis of Balakumar,

Hall and Malik (1990) , only the n = -b2 modes can be made strongly nonlinear in the manner described by

Hall and Smith (1990) and then the appropriate form of the disturbed flow is (2.1). However the structure

(2.1), suggested by the interaction described by Hall and Smith, is applicable at all Reynolds numbers rather

than just at high Reynolds numbers where the work of Balakumar, Hail and Malik (1990) applies. Thus we

can interpret (2.1) as a 'mean field' type of disturbed flow with the 6-dependent part representing a wave

superimposed on Karman's solution which now evolves in time as the disturbance develops. We note that

in this evolution procedure no terms in the Navier Stokes equations have been neglected.

We close this section with a discussion of the boundary conditions required to enable a solution of the

system (2,4), (2.5). We assume that as the flow evolves the mean (with respect to 6) part of the velocity

field, i.e. (i, t, t) , satisfies
UA= 0, 11= 1, 0 =0, =0,

(2.6a, b)
r4=0, V=0, C-0oo.

Next we assume that the wavelike part of the flow satisfies

U= 0, C=0, U=e'NT, C -oo (2.7a,b)

where N is a constant dimensionless frequency. In order that the fs, and U equations are consistent with the

above conditions A and J must be choosen such that

A = _Y2, J = -iNeNT. (2.8a, b)

Having made the above choice of boundary conditions we can seek solutions of (2.4), (2.5) which are periodic

in time with period - , the steady states of (2.4),(2.5) are then found by setting N = 0. It follows from the

form of the nonlinear terms in (2.4), (2.5) that periodic solutions have (12, V, tb) independent of time so that
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(12, V, tD) and U satisfy

iNU + 2U + DUC = UC + iN

e 2 +y2 iU12 _ e2 + taU =Y 2 +,U

NO~ + ibl1C = C
(2.9)

26,+ v = 0

f=O, V=1, ID=O, U=0, C=0

fA=iD=O, C-oo, U=1, C=oo

where we have replaced U(C, T) by eiNT U(C). The nonperiodic solutions satisfy

UT + 2fAU + aUc = UC + iNeNT

UT + u2 +9y1U12  V 2 + gU( = 72 + U,

VIt + 2UVt + 00(~ = VC

21U + wv = 0

(2.10)

f=, V=1, 0=0, U=O, =0 
(.0

U=V=0, C=0, U=e i 'T ,  =oo

U=, C), I = O(C), U =& (C), T= O

Thus the periodic solutions can be found by integrating an ordinary differential system, (2.9), wheras the

unsteady modes satisfy a parabolic partial differential system. For that reason we have been required in

(2.10) to give initial conditions to completely specify the problem for Ui,,, tD and U. Furthermore we note

that (2.10) can be regarded as the appropriate nonlinear initial value instability problem for the periodic

problem (2.9). In the next section we shall discuss the solutions of (2.9), the solution of (2.10) will be

discussed in §4.
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3 Equilibrium solutions of the interaction equations.

In order to begin the solution of (2.9) by some appropriate numerical method it is convenient to discuss

a limiting form of that system which can then be used to begin the calculation. The first limit we consider

is -y --+ 0 in which case the problem for U, t and tb becomes uncoupled from that for U and is in fact simply

Karman's solution. Thus we know that in the limit -y -+ 0, '(0) s .50, V'(0) = -.61. Another known flow is

found in the limit -y - oo. In that limit we write

(3.la, b, c, d)

U= Uo+...

where the functions appearing in the above expansions are functions of the stretched variable - r . In

this limit the problem for %o, Uo, tDo decouples from Vo and we obtain the system

iNUO + 2foUo + foU = U01 + iN,

4 + ul 2 + fto4 = 1+ iC,

211o + iD = 0, (3.2)

fjo=0, 'Do=0, Uo= 0 , =0,

fAo = 0, Uo = 1, t - 00.

In the special case N = 0 we can relate (3.2) to a special case of the three-dimensional stagnation point flows

considered by Howarth (1951), Davey (1961), Banks and Zaturska (1988). We recall that, with respect to

Cartesian coordinates z, y, z Howarth identified the class of exact Navier-Stokes solutions given by

= f'(7), = g'(7), w - (Uf (7) + Vg(1)), (3.3)

where I is a length and

7= (U 'Z. (3.4)

Here f', g' satisfy
f, - (f + g)f" = +'.

S U + f)g 1 + 
(3.5)
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with a = V/U and subject to
f =g=f'=g'=O, r7=O

(3.6)
f= 9= 1, --+ .

These solutions correspond to a three-dimensional stagnation point flow above the plane z = 0. In the special

case a = -1 we can relate f' and g' to the functions Uo, Uo with N = 0 by writing

2%iof'-g', -a0o=f-g, 2Uo-f'+g'.

Davey (1961) gives f" = 1.2729,g" = -. 8112 which suggests that for large y the solutions of (2.9) with

N = 0 are such that

e(0) = 1.042,y + .. ,

(3.7a, b)
U'(O) = .231,y +....

However we shall see below that the solution of (2.9) is not unique so Davey's solution correspond to only

one of our solutions at large values of 7. For nonzero values of N a similar asymptotic structure can be

obtained but the coefficients in the expansions (3.7a,b) will, of course, be functions of the frequency. Before

giving the results of our numerical investigation of (2.9) we note that, for 7 >> 1, the dominant terms in

the steady state solution of (2.3a,b,c) are such that

(uvw)-rK7(uo+Uocos29, -Uosin29, WO) (3.8)

where without any loss of generality we have taken UO to be real. If we transform (3.8) to Cartesian

coordinates we obtain a velocity field

V - Ky[zo + zUo, yi/o - yUo, K (3.9)

and comparison of (3.3), (3.9) then confirms our previous result (3.6).

In practice the numerical solution of (2.9) and indeed the reduced large y problem, (3.2), is not straight-

forward. The reason why there is a difficulty with the numerical solution of (3.2) was first discussed by

Davey (1961) and later in more detail by Schofield and Davey (1967). In order to see what this difficulty is

we consider the large C limit of the equations to determine (U, V, tD, U) in (2.9) with N = 0. Suppose that

for C >> 1 we write

(zA,,V "U)=(U + ij+ W++ W., I+U+)
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where u+,+, w+ and U+ are small and for simplicity we assume that U+ is real. It is an easy matter to

show that the linearized equations for (u+, v+, tw+ , U+) can be reduced to

02 woo ) u+= 472u+ ,

(3.1Oa, b)

I -2 IA- -- )V

and U+ , w + can be found in terms of u+, v+. Thus for large C we can write

u + = AemC + Aaem =( + A3e-" ( ,

+ = Blew -C.

Here inl, m 2 , m3 are given by the values of m which satisfy

2m-=-w.-IV Ti 8?, rm, < 0, (3.11)

and we note that two of the required values will be complex when -t > -s. Thu3 we have five independent
8

constants woo, A,, A2 , As and B, which can be iterated upon in order to satisfy the conditions at C = 0.

It follows that there will be a continuum of solutions of (2.9) since there is no reason to ignore any of the

decaying exponential solutions. Clearly it is to be expected that w.. will vary in this continuum so the

solutions can be labeled by the size of the inflow towards the disc at infinity. This situation persists in the

large -y limit where w _ y; Schofield and Davey (19F7 ' argued that the solutions should in this case be fixed

by discarding the slowest decaying exponential. Whilst it is certainly true that this fixes the solution, there

is no basis for making such an assumption. Having made that assumption Schofield and Davey concluded

that, in our notation, w., = 87. Interestingly enough we shall see later that this choice of w. fixes the

boundary between linearly stable and unstable solutions of (2.9). We now present results obtained for the

system (2.9) in the steady case N = 0.

As mentioned above, at large values of C we have five constants, A1, B1 , A 2, A 3 ,wOO at our disposal

once the constant - has been fixed. In our calculations we fixed y,w.. and iterated on the remaining four

constants until the required boundary conditions at C = 0 were satisfied after integrating the differential

equations in (2.9) from a suitably large value of C to the origin. This integration was carried out using a
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fourth order Runge-Kutta scheme or a compact finite difference scheme We restricted our attention to the

cases y = .02, .1, .5 and in Table I we show the values of W'(0), 0'(0), yU'(0) obtained for the different values

of?-y, w,, shown. We see that for each of the values of y there are values of w2 greater and less than 8-y. For

each of the values of ? used we were able to find solutions of (2.9) only for wo, less than some critical value.

Thus for example when y = .02 we were unable to find solutions of (2.9) for w. greater than-.355. Our

calculations suggested that this minimum value decreases when y increases. In Figures (3.1-3.4) we show the

functions U, V, e, U for different values of -, w.. Further solutions of (2.9) were obtained by fixing w,, and

varying 7. In particular we obtained solutions for the case w2 = 8, and our results are shown in Figures

(3.5-3.6). We recall that Davey obtained solutions of the large 7 problem in a different context and that his

results were obtained by neglecting the slowest decaying exponential solution at large C. Having made that

approximation Davey found numerically that W2 - 87t to the numerical accuracy of his calculations. Thus

we expect that our results in Figures (3.5-3.6) should reduce to those of Davey at sufficiently large values

of C. In fact we have in these figures shown Davey's results expiessed in our notation and we see that our

results approach (3.7) for large y. However we stress at this point that there is no reason why the solutions

of (2.9) obtained by rejecting a particular decaying exponential solution of that system at large C should

be preferred, we hope to shed some light on the selection mechanism for the different solutions later in this

paper.

4 Time-dependent solutions of the interaction equations

We shall now discuss the solutions we have obtained for the unsteady form of the interaction equations.

We restrict our attention to the case when the stagnation point flow vanishes at infinity. This means that

we are in effect discussing the finite amplitude instability of Karman'F solution. In the Appendix we shall

give a limited discussion of the more general problem with -y 0. The appropriate simplified form of (2.10)

is found by setting y = 1 and applying the conditions U 0, C = 0, 0oo; we obtain
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U - UT = 2AU + tDUC,

,(<- r = i1 + IU12 - iJ + tA(,

VC - V, = 2W + iD,

(4.1)
= = U =0,V= V 1, =0,

U = U= 0, =00,

= fi(C), v -O(C), U = C(C), T = 0.

The above system is parabolic in T and can be solved by marching forward in time from T = 0; we

note here in passing that fv cannot be specified arbitrarily at T = 0 and must be deduced from fi via the

equation of continuity. For large values of T the solution of (4.1) will approach Karman's solution if that

flow is stable. We can therefore regard (4.1) as the nonlinear initial value instability problem for Karman's

rotating disc flow. However, we should bear in mind that (4.1) describes only finite amplitude disturbances

with azimuthal wavenumbers ±2.

In the first instance we restrict our attention to small initial perturbations from Karman's solution, we

therefore write

(, i ,) = (, V, 0) + (u', v*, U')

where (fi, V) is Karman's solution and u* etc are small. We now substitute

(UV, ID, U) = (fs + ii, b + b, W + S,)

in (4.1) and linearize to obtain the following decoupled problems:

- OT =2W + iWU,

U = O, C = 0, oc, (4.2)

U= U,T = 0,

10



and
*c - T = 2fii - 2DO + + ZDO,

tCC - 6 = 2 + 2fD + O + fvbC,

2t + dvc = 0,
(4.3)

i= b= d = 0,C = 0,

= = 0,= = 00,

(fi, ) =(u', v), T = 0.

It should be pointed out that in the above equations we have in effect assumed that O(U*) - O(u*)

O(v*); a modified form of the equations can be derived when O(U*) - O(u*)i. In that case a nonlinear term

1&12 must be inserted into the right hand side of the f equation. This particular case would be important

only if the 0 problem were unstable. We can integrate (4.2),(4.3) formally by taking a Laplace transform

in time, when the transform is inverted the nature of the solution will depend crucially on whether either of

the eigenvalue problems
- ay = 2+y + ',

Y(O) =Y(oo) = ,(4.4)

or o" - oy= 2fiy- 20z + '+ zi',

z" - oz = 2fz + 21,D + iz' + ZV',

(4.5)
2y+ z' = 0,

X(0) = Y(O) = z(O) = Y(oo) = z(oo) = 0,

has an eigenvalue a with positive real part. Thus we shall now discuss these eigenvalue problems.

The above eigenvalue problems were solved numerically; no unstable eigenvalues of either system were

found so we conclude that the Karman's solution is stable to small amplitude perturbations of the type

discussed here. In fact no discrete stable eigenvalues were obtained either, this is because both eigenvalue

problems have a continuous spectrum over part of the plane a, < 0. The origin of this continuous spectrum

can be seen from (4.4) by taking C >> 1. We see then that the two exponential solutions of the equation

for y both decay if a is within the parabola a, = -oa/i4, where w. = il(oo). Thus in this region we

can always find a solution of (4.4) by combining the two independent solutions for y to satisfy the required
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condition at the wall. A similar continuous spectrum can be seen to exist for the system (4.5); we expect

the continuous spectra play an important role in the initial value problems (4.2),(4.3). Indeed since there is

apparently no discrete spectrum associated with (4.4),(4.5) it is clear that the initial value problem must in

some sense be described completely by the continuous spectrum.

The initial value problem can be solved by taking Laplace transforms and inverting for particular forms

of the initial perturbation, these inversions cannot in general be carried out analytically but their large time

behaviour can be approximated asymptotically in a routine manner. Rather than use the Laplace transform

method we shall instead look directly for the large time behaviour of (4.2),(4.3). We shall in fact restrict

our attention to (4.2), but a similar approach can be used for (4.3).

Suppose then that w.. denotes the limiting value of 2 at large values of C, we choose to express U in

the form

S= N(,T)e - ' , (4.6)

where the function N then satisfies the modified equation

N -+- (w. - Q)NC + (- 2oo + W.1)N = NT + 20N. (4.7)2

At this stage we assume that all the exponential time dependence of the disturbance has been taken out

by the substitution (4.6) so that N has only an algebraic dependence on T. It is well-known for the heat

equation that the similarity variable -. essentially replaces C when the the initial value problem is solved.

Here the situation is slightly more complicated and we must seek a solution of (4.7) for 0 - 0(1) and

S= O(T) for large values of T. Thus for C = 0(1) we write

N= TON()+...,

where j is to be determined and N0 satisfies the ordinary differential equation

No" + (w - )No' + 2 + ) No = fiNo. (4.8)2

This equation must be solved subject to No = 0, C = 0 and the resulting solution will then have No - cc

for large C, here c is an arbitrary constant which can be set equal to unity but whose actual value depends
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on the form of the initial disturbance. Now let us find the required form for N in the upper region, before

doing Lo we note that the constant j is left unknown at this stage since it plays no role in the zeroth order

solution in the lower region. In the upper layer we write

Nv = V)+...,(4.9)

where X is the similarity variable - " Note here that the matching condition with the lower layer now

requires that for small X, Ro - X.

The equation to determine g'o is found to be

• +.zVo - (j +-)o = 0. (4.10)

In order that the disturbance decays to zero at large values of X we must insist that 0 behaves like the

exponentially decaying solution of the above equation; since it must also go to zero like X for small X we can

show that the required solution is

S21e U(-n--, 2-ix)
'0=2 (4.11)

U'(-n- ., 0)

Here n is an odd integer, U(a, z) is the parabolic cylinder function whilst the constant j has been choosen

to satisfy the matching condition at X = 0, this gives

3 5 7(4.12)1 = -i' -i' - +'"(.)

It follows that the solution will be dominated by the j - - eigensolution for large enough values of the

time, the overall amplitude of this and the other decaying modes can only be determined by solving the

initial value problem. In order to verify the above large time behaviour of the solution of the linearized

perturbation equation for U we integrated (4.2) forward in time from T = 0 for the three cases:

CASE a U* = ce-O'

CASE b U" = CcosCe-C,

CASE c =e-(( - 2)2 .

We note that it is sufficient for us to consider real initial data for ZY if we are solving (4.2). The results

we obtained are shown in Figure (4.1); in order to pick out the dominant exponential decay factor of "
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we have plotted (Iog(TI(J'(O,T))T. On the basis of our discussion above we see that this quantity should

tend to -- !JLz -. 2 for large T. We see that each of the above cases leads to results consistent with our

predictions. A similar analysis to that given above for (4.2) can be given for (4.3), again the outcome is that

a two-layer structure is required to describe the large time behaviour of the disturbance, furthermore the

functions fi, 0 are found to decay exponentially for large T with the same decay rate as that found above.

We shall now report on some calculations carried out for the full nonlinear problem (4.1) with initial

conditions

f= =O, 0=6Ce -( -2)2 , (4.13)

for 6 = .35, .45, .55, .65 . The results obtained for the initial conditions given above are typical of those we

have found for a wide range of disturbances. The results we found are shown in Figure (4.2a,b,c,d,) where

we have shown the growth rates (log 00 u2dC) , (log U2d)",(og -V2d), (1og(UC(0,T).T1)T

For the two smaller values of the amplitude constant 6 we see that the disturbance decays to zero so

that Karman's solution is stable, note that Figure (4.2a) for 6 = .35 confirms the linear decay rate, -. 2,

at sufficiently large values of T when the disturbance field is now small. The calculations for the three

larger values of 6 demonstrate that Karman's solution is subcritically unstable. At a finite value of T our

calculations encountered a singularity and could not be continued further. We did, of course, check that

the singularity remains when the C and T step lengths were decreased. In Figures (4.3a,b,c,d) we show the

velocity field for the case T = 3.3,6 = .55. Further calculations for other initial disturbances confirmed the

threshold type of response described above.

Thus we have found that Karman's rotating disc solution is unstable to finite amplitude n = +2

modes wheras in the linear regime we have stability to this type of disturbance. We have made no attempt

to investigate the dependence of the required threshold amplitude of the instability for different initial

disturbance profiles. For the case discussed above instability occurs when the disturbance velocity field is of

size comparable to the unperturbed state. Thus this particular type of disturbance is unlikely to be present in

an experimental investigation so that it is unlikely that the this disturbance would cause transition. However

it is not unreasonable to expect that a detailed investigation of a more general class of initial conditions
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would isolate much more dangerous disturbances likely to cause instability in an experimental facility with

moderate background disturbances.

5. The structure of the Singular solutions

Suppose that the singularity encountered in the numerical calculations occurs at time T = T. For 0(1) values

of C then we expect that the inviscid terms in (2.9) will dominate the flow; thus in the neighbourhood of

we expect that U - V - U - 0 - O(T - T)- 1 . We therefore expand the velocity components as

us(C)

(5.la, b, c, d)
W (C) + ...,

_ (J.(C)T-T

We can then show from (2.9) that the system to determine (u,, v,, w,, U.) is

-2 2u2

Vs = 2us-v + wus+ws ,

(5.2a, b, c, d)

U. = 2U. u + w.oUC ,

w,( + 2u, = 0

(5.3a,b)

U, = .= U. = . C=00.
Since the boundary conditions and differential equations for U, and v, are the same we can write

U. = Av.

where A is a constant. In fact the equation for v, is easily integrated to give

= _ }dC+_.(-_

where Q is a constant and w,.. is w,(oo). It is sufficient for us to choose Q = 1 and write the u, equation

in the form

us = u,2 + 6v,2 + wav,C (5.4)
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when 6 is a constant to be specified and it lies in the range (-oo, oo). The case 6 = 0 corresponds to U, = v,

and in that case the equations for u,, w. can be integrated directly to give

W= w.O0u - 1)2

u s -I n , --
( 5 , 5 a , b )

It is easy to show that (5,5b) then defines a single-valued function us = "a (C) satisfying

u0~1, C -*0

(5.6a, b)

For small values of C the above solution must be matched onto a wall layer solution valid for ( = O(T-T)-I.

However we will now return to the more general case 6 $ 0; it is easy to show that w. satisfies

, = w O 2  1r ( -A - -_ _ ) d C + _I t
, = - 6w.ef.... • -.- + wows' (5.7)

2

and for large values of C we then find that

W, ~ -W,, + Be-.-, (5.8)

where B is an arbitrary constant which is fixed by the condition w, (0) = 0. For small values of C we can

show that ws, v. have the forms
V, ~-. -bC +...

(5.9a, b)
w. - 2C -+ ac + -- ...

where a, b are constants fixed by the choice of the arbitrary constant B appearing in the large C form of

w.. In Figure (5.1) we show the function w. obtained by integrating (5.7) for three values of 6. In these

calculations we have fixed w,, = -1. It remains for us to show how the inviscid forms (5.9) for C << 1

can be matched onto a wall layer solution valid for C = O(T - T)-i. If we define the similarity variable

(T C then, in view of (5.9), we see that the appropriate expansions are
=(T - ))

u= "T")

(T - T)W °(17) + ",5.0,bc

(T- 1)i
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The equations to determine uo v , W are found to be

uo+ /2uO' + lu° + W
2

V + V/2vo' + Z --- w' + 2u ,

w°o + 2u=O, (5.11)

u° = °=w° =O, 17=0

uo,.1, vo-77, wo'-,), 77-0,

From the asymptotic forms of the equations for uo, v0 , w0 at large 7 we find that there are three free constants

which can be chosen so that the required conditions at 77 = 0 are satisfied. Thus we conclude that the viscous

wall layer at C = O(T - T)-i smoothes out the singular inviscid solutions so as to satisfy the boundary

conditions. We conclude then by noting that the singularity structure given above is of course a singularity

of the full Navier Stokes equations; in the physical situation we would anticipate that as the singularity

develops the flow becomes unstable to disturbances with a more general 6 dependence. Presumably the

growth of these other modes destroys the singularity structure and the Navier Stokes equations remain valid.

6. Conclusion

We have seen in the previous section that sufficiently large initial perturbations to Karman's rotating

disc flow lead to the development of a singularity of the Navier Stokes equations. We note that the structure

of the singularity we have described does not depend at zeroth order on the nature of the underlying basic

state. Therefore it is likely that the singularity structure we have found could be set up by sufficiently large

amplitude perturbations to other basic states.

If we assume that the structure we have found can be induced experimentally then a question of some

importance is that of how the singularity can be controlled through the Navier Stokes equations once it has

begun. Since no terms in the Navier Stokes equations have been neglected in the analysis leading to the

singularity it might appear that the singularity must be controlled by an alternative set of field equations.

However we do not believe that is the case, more precisely we believe that once the singularity has begun to

develop the velocity profiles associated with it will be massively unstable to inviscid modes with azimuthal

wavenumbers : ±2; these modes will then grow and prevent the further development of the singularity.
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The latter conjecture could of course be verified by Navier Stokes simulations, we do not attempt such an

investigation here.

The typical size of initial amplitude associated with (4.13) required to cause the development of a singu-

larity was found to be comparable with a typical basic state velocity. Thus experimentally the breakdown we

have described could only be provoked by a disturbance amplitude unlikely to be present in an experimental

situation. However it would be very surprising if the initial amplitude required to induce the singularity

could not be significantly reduced by allowing a much more general initial perturbation. A possible way of

isolating the most dangerous type of initial perturbation would be to formulate the Energy Stability problem

associated with the interaction equations.

Another open question following our discussion in Section 3 is that of which, if any, of the different

equilibrium states for non zero y are most physically relevant. Our linear instability analysis in the Appendix

strongly suggests that all those equilibrium states with w. < 8, are not relevant physically since they are

linearly unstable. It remains an open question as to whether nonlinear effects are able to further reduce the

class of physically realizable flows.

One of the authors, PH, wishes to thank SERC and AFOSR for partial support of this work.
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Appendix. The linear instability problem for the steady states with - 0 0.

Here we shall discuss the instability of the steady equilibrium solutions of (2.9) with N = 0. We denote

this steady state by (?, b, i2, C) and suppose that we consider the instability of this flow to a time-dependent

small perturbation (t, i, ,2, I) such that

(, = (U,',*,W, , U), T= 0. (Al)

From (2.10) the linearized perturbation equations for (fl, 0, e, 0) are

07 + 2uU + 2W + ±00 +,7C = , ,

i1+ 2?, + 2Y 2U - 2Dib + ,A + i fi = ,
(A2)

OT + 2U + 2f .D + b + ib =

26 + tD = 0,

subject to
,i====0, C=0,

(A3)

6=0=0=0, C=oo.

and (Al). Again the initial value problem can be solved by a Laplace transform in T but the form of (A2)

means that the resulting ordinary differential equations in C must be solved numerically. Following our

approach in §4 we consider the eigenvalue problem a -- a(y) obtained by replacing 8 T by a in (A2) and

applying (A3). The structure of the disturbed flow at C = oo is then found by letting C --+ oo in (A2) after

replacing 8 T by a and aC by m; the appropriate equations to determine m are

(m2 - w..,m- o)& = 2fi,

(m'2 - wom - a)i = 2,y&, (M~a, b, c)

(in2 - WOm - a) = 0.

Thus m is given by 2-m = ,. - +4

(A2ab)
2m. = ,. /wL + 4[a' + 2-)].

The first of these equations corresponds to (A4c) and leads to the continuous spectrum a, < --- found

in §4. However (AUa,b) lead to the continuous spectra,

2
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The positive root corresponds to the case when fs = -- y" in (A4a,b) and, surprisingly, we obtain an unstable

continuous spectrum for 7 > 0. However, it remains to be seen whether this unstable continuous spectrum

can induce a physically relevant exponentially growing solution. In order to answer this question we shall

now seek a large time solution of (A2); the structure we choose is based on th: assumption that at large

times the unstable spectrum (A6a) effectively dominates the flow. The first step in our solution procedure

is the substitution

(i'Oa, ,) = (u+,7+,w+,U+)exp{. - 4T+2yT (A7)

The functions u+,V + etc. are then found in the regions where -= 0(1),( = O(Ti). In the region where

C = 0(1) we write

(u+, V+,,,W+,U +) = T' , ( + +O',,,Uo+) + "' "

where u+ etc. depend only on C. The problem for these functions is obtained from (A2) and solved subject

to
+ = + = Wo+= o+ = C =o

0v>~= c = 0

and the unknown quantities u0 (0), v+ (0), wo are chosen such that

u 7-C, U " -- , vo -* 0 exponentially --. oo

The constant j again remains unknown in the solution of the C = 0(1) problem; however an investigation of

the problem with C = O(Ti) shows that matching with the above solution can only be achieved if j is again

determined by (4.12). Thus we conclude that the steady state solutions with wo, > 87 are linearly unstable

and so not likely to be observed.
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TABLE I

rWO(0) V (0) 7 U'(0)

.02 -0.35500000 0.51152874 -0.60931513 0.01281756

.02 -0.39000000 0.51089963 -0.61151223 0.01015261

.02 -0.41000000 0.51080189 -0.61208108 0.00945387

.02 -0.45000000 0.51069253 -0.61291648 0.00842226

.02 -0.50000000 0.51062290 -0.61366951 0.00748787

.02 -0.55000000 0.51058552 -0.61424223 0.00677497

.02 -0.60000000 0.51056418 -0.61470076 0.00620302

.02 -0.65000000 0.51055185 -0.61507974 0.00572962

.02 -0.70000000 0.51054493 -0.61540001 0.00532912

.02 -0.75000000 0.51054144 -0.61567522 0.00498469

.02 -0.80000000 0.51054015 -0.61591483 0.00468459

.02 -0.85000000 0.51054034 -0.61612571 0.00442034

.02 -0.90000000 0.51054151 -0.61631296 0.00418557

.02 -0.95000000 0.51054334 -0.61648051 0.00397542

.02 -1.00000000 0.51054560 -0.61663143 0.00378607

.02 -1.05000000 0.51054815 -0.61676816 0.00361447

.02 -1.10000000 0.51055088 -0.61689265 0.00345817

.02 -1.15000000 0.51055370 -0.61700654 0.00331516

.02 -1.20000000 0.51055657 -0.61711115 0.00318377

.02 -1.25000000 0.51055945 -0.61720760 0.00306261

.02 -1.30000000 0.51056231 -0.61729682 0.00295050

.02 -1.35000000 0.51056513 -0.61737962 0.00284646

.02 -1.40000000 0.51056790 -0.61745666 0.00274962

.02 -1.50000000 0.51057324 -0.61759580 0.00257472
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.02 -1.60000000 0.51057830 -0.61771805 0.00242100

.02 -1.70000000 0.51058306 -0.61782635 0.00228479

.02 -1.80000000 0.51058753 -0.61792299 0.00216323

.1 -0.51000000 0.52025270 -0.60663520 0.03934270

.1 -0.55000000 0.51846172 -0.61209594 0.03382640

.1 -0.60000000 0.51796137 -0.61511910 0.03074344

.1 -0.65000000 0.51779186 -0.61725674 0.02852767

.1 -0.70000000 0.51775162 -0.61895371 0.02674543

.1 -0.75000000 0.51777457 -0.62037081 0.02524172

.1 -0.80000000 0.51783140 -0.62158902 0.02393845

.1 -0.85000000 0.51790706 -0.62265639 0.02278891

.1 -0.90000000 0.51799309 -0.62360449 0.02176219

.1 -0.95000000 0.51808449 -0.62445542 0.02083638

.1 -1.00000000 0.51817818 -0.62522548 0.01999520

.1 -1.10000000 0.51836538 -0.62656993 0.01851929

.1 -1.20000000 0.51854617 -0.62770915 0.01726178

.1 -1.30000000 0.51871723 -0.62869011 0.01617416

.1 -1.40000000 0.51887748 -0.62954560 0.01522217

.1 -1.50000000 0.51902693 -0.63029943 0.01438070

.1 -1.60000000 0.51916605 -0.63096949 0.01363075

.1 -1.70000000 0.51929552 -0.63156952 0.01295762

.1 -1.80000000 0.51941606 -0.63211033 0.01234970

.1 -1.90000000 0.51952843 -0.63260051 0.01179769

.5 -0.60000000 0.68197809 -0.66231775 0.20129254

.5 -0.80000000 0.68831733 -0.71390532 0.16251868

.5 -1.00000000 0.69755716 -0.73310149 0.14469129

.5 -1.50000000 0.71653343 -0.75988876 0.11597686
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.5 -2.00000000 0.73026710 -0.77552448 0.09744803

.5 -2.50000000 0.74055061 -0.78614433 0.08420684

.5 -3.00000000 0.74852620 -0.79390866 0.07420619

.5 -3.50000000 0.75489053 -0.79985908 0.06636331

.5 -4.00000000 0.76008693 -0.80457555 0.06003820

.5 -4.50000000 0.76441004 -0.80841092 0.05482446

.5 -5.00000000 0.76806312 -0.81159360 0.05045039
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Figures

Figure (3.1) The function U(C) for different values of y, wo.

Figure (3.2) The function V(C) for different values of 7, w.

Figure (3.3) The "',nction ta(< for different values of -f, w,,.

Figure (3.4) The function yU(C) for different values ofy, wo.

Figure (3.5) The shear 1'(O) for w2 = 87.

Figure (3.6) The shear -yU'(O) for w2 = 87.

Figure (4.1) The growth rate (logTWU'(O,T))T for

(a) U. = Ce- 0, (b) U" = C coo Ce- , (c) U" = Ce- €C_- 2.

The predicted growth rate at large T is _:. _ -. 2.

Figure (4.2a) The growth rate a, = (log foo u'dC)T for 6 = .35, .45, .55, .65.

Figure (4.2b) The growth rate a2 = (logfo7 v2dC)r for 6 = .35, .45, .55, .65.

Figure (4.2c) The growth rate a3 = (log fo0 U2d)T for 6 = .35, .45, .55, .65.

Figure (4.2d) The growth rate a4 = (logTIU'(O,T))T for 6 = .35, .45, .55, .65.

Figure (4.3a) The ve|cxity field t (() for 6 = .55, T = 3.3.

Figure (4.3b) The velocity field '(C) for 6 = .55, T = 3.3.

Figure (4.3c) The velocity field V(C) for 6 = .55, T = 3.3.

Figure (4.3d) The velocity field U(C) for 6 = .55, T = 3.3.

Figure (5.1) The function u,(C) for woo = -1,7 = 0, .5, -. 5.
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Figure (4.1) The growth rate (log T220'(0, T))T for

(a) =Ce- , (b) U* = C cos Ce , (c) U* = Ce().

The predicted growth rate at large T is -~ "'~ -. 2.
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