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ABSTRACT

The main problem of artificial satellite theory is a restricted two body problem

in which the Legendre Polynomial representation of the cylindrically symmetric

potential contains only the first two terms. A generalized asymptotic expansion is

used to obtain a first order approximation. The solution at the critical inclination

is seen to be of a different type than at other inclinations. The solution is finite for

all eccentricities and inclinations when suitably restricted in time.
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NOTATION

a right ascension in spherical coordinates
,3 declination in spherical coordinates
y vernal equinox
c cos io
co eccentricity of the initial instantaneous ellipse
ho initial magnitude of angular momentum
i inclination
i0  initial inclination
J2  coefficient of second Legendre polynomial in the representation of the

gravitational potential
J 3/2(J2R2 /P0o)
Ki undetermined constants used in the solution
Po hg/ 2GM where G is the gravitational constant and Al is the mass of the

primary body
R equatorial radius of the primary body
r magnitude of the position vector to the satellite
s sin i0
T kinetic energy of the satellite
t time
to initial value of time
u po/r
V gravitational potential
t-o initial value of the argument of perigee
0 angle measured from the ascending node to the satellite

within the reference plane
0 initial value of 0

fQ longitude of the ascending node measured from
fQ0 initial value of l
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A. INTRODUCTION

The main problem of artificial satellite theory is a restricted two body problem

in which the Legendre Polynomial representation of the cylindrically symmetric

potential contains only the first two terms. Deceptively simple in statement, the

main problem continues to evade satisfactory solution. We make no attempt to

survey the vast literature pertaining to the main problem, nor to recount the history

of the so-called critical inclination. In fact, every effort is made to make the solution

as accessible to the non-specialist as to the astrodynamicist.

Our goals in attempting to obtain a solution are twofold. First, we desire a

solution employing a coordinate system based upon physical events rather than an

abstract set of transformations. For instance, the use of averaged quantities such as

the "mean orbital plane" or other such non-physical artifices is eschewed. Second,

we seek a solution which does not tend to infinity at any inclination and which

places no constraints on any dependent variable.

Needed for the solution are a coordinate system, asssumptions concerning

the dependent variables involved, and an algorithm for calculating the unknowns.

These are outlined in detail in the first chapters, after which the solution is obtained

through extensivc use of MACSYMA. A discussion of the critical inclination problem

follows.

Because the purpose and scope of this work are nearly identical to those

of Snider [Ref. 1], there are many similarities in organization, notation, and lan-

guage. The principal difference in treatment lies in the geometry used rather than

in approach. Snider's original approach is succesfully employed using an alternate

geometry, and his influence in this work is pervasive.



B. ORBITAL KINEMATICS

Figure 1 shows the reference system of spherical coordinates (r-,o. 3), The

radial distance r is nie-,ured from the center of the planet 0 to the satellite .'. T,e

line 0' is in a direction fixed with respect to an inertial coordinate system. The

right ascension a is the angle measured in the planet's equatorial p!ane eastward

from the line 0-y. The declination or latitude fi is the angle measured northward

from the equator. The position vector r of the satellite in the spherical coordinate

system is

r = r(cos o cos 3)bl + r(sin o cos 3)b 2 + r(sin 3)b 3  (1

where (bl.b 2. b 3 ) are orthonormal base vectors fixed in the directions shown.

polar axis

5

Figure 1: Spherical coordinate system.

Figure 2 shows how we can locate the satellite by its polar coordinates (r,9)

within a rotating orbital plane that contains its pobition and velocity vectors. Here

8 is the argument of latitude, i.e., the angle measured in the orbital plane from the

a2ia



equatorial plane and intersects the equatorial plane in the line of nodes. makintg all

angle Q with the O line.
orbital plane

Figure 2: Orbital plane

\Ve introduce another orthonormal set of basis vectors (B1 .B2, B3 ) which

move with the satellbte so that B1 is in the direction of the position vector r, B2 is

alFo in the orbital plane and B3 = B1 × B 2.

The basis (blb 2.b 3 ) may be transformed into the basis (B.B 2,.B3 ) by a

succession of three rotations. First the basis (bl, b 2, b) is rotated about the b3

direction by the angle Q. next the basis is rotated about the new first coordinate

vector by the angle i, and finally the basis is again rotated about the new third

coordinate vector by the angle 0. The two sets of base vectors are related by the

product of the rotation matrices representing each successive rotation:

(.,)
B2

B3

cos in 0 1 0 CO i Solfsl 0 b
= siO osf 0 0 cosi sin -sin0 CosQ 0 (2)

0 0 1 0 -sin i cozi 0 0 1 b3

3



or

B2
B2

( cos~cosQ -sin~cosisinQ cos~sinQ?+sin~cosicosQ2 sinO sini bi
-sin0cos) - cosOcosisinQ -sin0sinQ + cosOcosicos( cos0sini b2

sin i sin Q - sin i cos Q cos i ba

The position vector r has only one component in the rotating basis:

r = rB 1  (3)

Using the first of Equations (2), we obtain the components of r in the fixed basis:

r = r(cos0cos Q - sin0cosisin Q)bj

+ r(cos 0 sin Q + sin 0 cos i cos Q)b 2 + r(sin 0 sini)b 3  (0)

Equating the components of Equations (1) and (4), we can obtain the following

relations among the angles (a, 3 ) of the spherical coordinate system and the astro-

nomical angles (i. Q, 0):

sinj3 = sin 0sini (5)

cos;3 = cos 0 sec(a - Q)

The velocity dr/dt of the satellite is obtained by differentiating (3) with

respect to the time 1:

dr dr dB1
- = B + r (6)

dt dt dt

Since the orbital plane must contain the velocity vector, we have to enforce

dB 1 •t B3 = 0 (7)

Substitution of Equation (2) into Equation (7) leads to a relationship which uncou-

pies the equations for Q(0) and i(0):

dQ tan 0 di

dO sini dO (S)

4



The velocity (6) can then be written

dr dr dO( di )
dt B + r- (1 + tan0coti B2  (9)

In the following part of this paper, we obtain expressions for r(O), i(0), P(0),

and dt/dO(O). The position and velocity vectors of the satellite are then calculated

from the formulas in this chapter. The classical orbital elements p, e, and W are

the semilatus rectum, eccentricity, and argument of perigee of the instantaneous

(osculating) ellipse determined by the position and velocity vectors. If needed, p(O),

e(O), and w(O) can be obtained from our solution r(O) and dt/dO(O):

r 
4

p-GM ( )2
\dO]

e cos(O -) = - 1

r

esin(0 - L)

Numerical integration of the expression for dt/dO(O) allows a transformation between

0 and t. Figure 3 shows the satellite at time t and its relationship to the various

variables used.

This method employs the true, rather than mean, orbital plane to specify the

satellite's position and is due to Struble [Ref. 2, 3, 4].

C. EQUATIONS OF MOTION

The expressions in spherical coordinates for the kinetic and potential energies

per unit mass of a satellite orbiting around an oblate planet are respectively:

T 1 [(dr)' 2 r( d,) + 2 CS23da ]  (0
T~ ()+ ( dt dir2cos2I3(-] (10)

= GA! +JR 2  - 3sin2)

r 2r 2

5



° -- r0 0°

r(t

n initial instantaneous ellipse

0,10

Figure 3: Satellite at time t.

where G is the gravitational constant, Al is the mass of the planet, and R is the

equatorial radius of the planet. Substitution of these equations into Lagrange's

equations

d a(T - V ) 6=

results in the following equations of motion:

dr -rc(s3)'r cos - - -a' (12)

(r2 C2 Oda I-

r ( ) + r2sin3Ccos )-  = (3

6



Initial conditions are established by requiring that at the initial time to the

orbital parameters of the Keplerian two body ellipse, determined by the initial posi-

tion and velocity vectors, are known. The actual orbit is then tangent to this initial

instantaneous ellipse (see Figure 3). Equating the initial position and velocity vec-

tors given by Equations (3) and (9) to the two body expressions, we obtain

r(to) Po dr eoho sin(0o - wo) (14)
1 + eo cos(9o - wo) -(to) = Po

dO(to) = ho (15)
ro [I + tan 0o cot io(dO

i(oo) = io (16)

Moo) = Qo (17)

Here ho = VIUM1Io is the initial value of the satellite's specific angular momentum

about the center of the planet. The subscript 0 on a symbol denotes that the

parameter is evaluated at the initial time to.

We immediately have two integrals of the equations of motion:

T + V = constant (18)

and
r2 cos 2 Oda = constant (19)

dt

Equation (18) states that the mechanical energy of the satellite remains constant.

Now, from Equations (1) and (19)

dr . b3 = r2Cos 3 d  = ho cos io (20)
dr dt



Equation (20) states that component along the polar axis of the specific angular

momentum of the satellite remains constant. Inserting Equations (3) and (9) into

Equation (20), and applying the initial condition (15), we obtain

dt r2 cos i / di )
dO hocos +tancoti- (21)

This allows the independent variable to be changed from t to 9.

Letting u = po/r, and using Equations (5), (20), and (21), we can rewrite the

remaining equations of motion (12)-(13):

di -2Ja sin 0 cos 0 sin icos2 z (22)
dO -- + 2Ju sin 2 0 cos3 i

d2 u cos 2 i Jcos 2 i[u2(1 - 3sin2 sin2 i)
To2-- + U - C2 + C2

+ 2 udusin 0cos0( 1 -3cos 2 ) 4 ud- 2 sin 2cos2i-2du) sin2 0 cosi] (23)

4JdiO9o~ d 02 (d').
4 J2u sina3cCS6 2u-Acos 0(2+ sin 2 i) + d U-d sin 0 cos 2 i

The terms with d2u/dO on the right side of (23) can be eliminated, yielding the

equivalent equation

d +u 2os2 Jcucos 2-sin 0cosO(3  2 - 1 )-
d-2 I ddOs

-4 a u -sin 3 0 cos 0 cos (3 - cos 2 i) (24)
dOJ

(c4 + 4Juc2 sin 2 0 cos 4 i + 4u2J 2 sin 4 0 coss i)

Here we have introduced the shorthand notation c = cos io, s = sin 0, J =

3J 2R2 /2p0.

8



The differential Equations (22)-(23) are coupled by the nonlinear terms and

apparently cannot be solved analytically. If we expand the right sides of (22) and

(24) in a Taylor series expansion in powers of J, the equations simplify to

d i - 2 J u sin 0 c o s 0 sin i c o s 3  i + 4 j U S 3 s n 3 0 C S + ( j )2 5di-2Jusincssiiosi+ 4J 2 u2sc3 sin3 9OcosO + 0(J 3 ) (25)

w- C2

d 2u cos2 i J cos 2 i "-4u sin_2 0 cos4 i
dc 2  c2  + u 2 1+ sin 2 (7 cos 2 i-3)]

+ 2udosin0cos0(1-3cos2i)-2 - 2 sin 2 Ocos 2i (26)
4J~u in2 cos i f2~ ~3u sin2 9 cos4 i

4J2u sin 2 0 c o s 6  u2[_l + 3sin 2 0(1 - cos 2 i)] + 3uSi2 I*

+u- sin~cosO[4sin2i +sin 2 0 (1 - 3cosi)] + sin29cos2i + 0(J3 )

Using (8) together with (25) yields

d- = -2Jucsin 2 0 + 4J 2u 2c3 sin 4 0 + 0(J 3 ) (27)dO

Each of the neglected terms in Equations (25)-(27) are indicated by the 0

symbols. These are terms which will be multiplied by J to the third power or higher.

Note that the Equations (25)-(26) are identical to those used as the starting point

in the analysis of Eckstein, Shi, and Kevorkian [Ref. 5].

D. METHOD OF SOLUTION

We will use a perturbation technique to solve Equations (25)-(27). Following

Erddlyi [Ref. 6], we define the order relations 0 and o as follows. For two real-valued

functions f(x) and 9(x), we define the relation f = O(g) if there exists some real

constant such that If 1 _< 4 191 for all x in some domain of interest. Similarly, we

define f = o(g) as x -+ x. if for all f > 0, there exists some neighborhood of xo such

that If 1 : fIgI within that neighborhood.

9



The series E,, a,,(O, J)J is said to be a generalized asymptotic approximation

to N terms of f(O, J) with respect to the scale {jn} as J -+ 0 if

N
f(0, J) = Z an(O, J)JN + o(JN) as J --+ 0

n=O

Let D be some subset of the real line to be determined. We will say that the

above generalized asymptotic approximation holds uniformly for 0 E D if

N

f(O, J) - a(O, J)jN = o(JN) as J --. 0
n0

uniformly for 0 E D. In order to get uniformity it will sometimes be necessary to

bound the independent variable 0, thus determining D. Note that these definitions

differ from the usual asymptotic expansion definitions in that we allow the coefficient

functions ai to be functions of both 0 and J.

Let us suppose that each of i, u, and Q have formal generalized asymptotic

expansions for some suitably restricted values of 0:

2 0 > ik(O, J)Jk (28)
k=O

00

u ;:Z 1 Uk(O,J)J k  (29)
k=O

00

l 0k(O,J)Jk (30)
k=O

Brenner and Latta [Ref. 7] found that a modification was needed to their

time-like variable M in order to avoid resonance. They accomplished this by means

of an additional variable w which multiplied M, allowing secular term elimination.

Analogously we introduce the variable y which may be added to integer multiples of

0. In this way we too will avoid resonances except perhaps at certain inclinations.

10



The explicit form is then

Y E Yk(0,J)Jk  (31)
k=O

We further stipulate that for J = 0, u assumes the Keplerian two body

solution and that y is the true anomaly. This forces

y Z O -wo +JYi + J 2y 2 2"" (32)
true anomaly

uZ 1-+ eocosy +JuI+J 2u 2 +... (33)

Keplerian solution

An algorithm for the perturbation procedure is then:

Let n=1
Substitute Equations (28), (30), (32), (33) into the equations of motion
Equate coefficients of Jn
Solve for the nth order solution
Iterate on n

Having chosen a coordinate system, made assumptions concerning the vari-

ables, and given an algorithm for determining the unknowns, we are prepared to

give the solution in the following chapter.

E. SOLUTION

Substituting Equations (33) and (28) into (25) and equating the terms mul-

tiplied by J yields

dil sceo sceod- -scsin 20- - sin(y + 20)+ -- sin(y - 20) (34)
2O 2

A solution to this equation is

sc sceo sceoi = -cos20 + - cos(y + 20) + --20cos(y- 20)
=2 6 2~co~

+ K, cos(2y - 20) + K 2  (35)

11



The last two terms may be added because they are, to lowest order, homogenous

solutions to Equation (34). The term multiplied by the constant K, was added to

eliminate secular terms in i2. Note that differentiating this term with respect to 0

produces terms multiplied by J, from Equation (32). The constant K2 was added

to satisfy the initial condition (16), which implies that i1(0o) = 0 so

Ac sceo sce 0
K2= -- cos 200 - - cos(30o - wo) - -i- cos(Oo + Lo) - K, cos 2w0

Substituting Equations (28), (32), (33), and (35) into (26), and equating

terms multiplied by J yields

dO--2- + U, 3=1 - - +--+ eg - + 1) + [(2 + 5e2)S 2 - 2eg1 cos 20

+24(9s2+8) cos 2y + (11s2- 6) cos( + 20) (36)
4 3

15S2 " [ 2  2s ]
+--(3s - 2) cos(2y + 20) + [LO(3s - 2) - cos(2y - 20)

2 + o 2 +-s 2 cosy+eo-- -siny

In the above equation, the cos y and sin y terms would produce secular terms 0 sin y

and Ocosy in ul. Choosing dy1/dO = 5s 2 /2 - 2 will eliminate these possibilities.

Integrating yields

Yi 5 - _ 2) (0 - Oo) + K.3[sin(2y - 20) + sin 2woI (37)

The term multiplied by K3 was added to eliminate secular terms in u2. The constant

terms in (37) were added to satisfy the initial condition y(Oo) = 0o - Wo.

A solution to lowest order of Equation (36) is then

U2 + eg  +1+ [_S2(2 +5e2) +2egl cos20
2 1- 41230 0

+2 ( 9S 2 - 8) cos 2y + -O(-lls 2 + 6)cos(y + 20)

12 24

12



2 [!2 1
L 2(-3 + 2) cos(2y + 20) + [(3s - 2) - j cos(2y - 20) (38)

2sKA2
- I +K 4 cos(y - 20)

+Ks cos(y - 00 + wo) + K6 sin(y - Oo + wo)

The term multiplied by K 4 was added to eliminate secular terms in u2. The terms

multiplied by K 5 and K6 were added to satisfy the initial conditions (14).

The calculations proceed by substituting Equations (28), (32), (33), (35),

(37), and (38) into (25) and equating terms multiplied by J2:

di2  [K Ceo2(15 - 4)1d-= K,+ 24s 4)] sin(2y -20) +... (39)

For brevity we have indicated on the right side of Equation (39) only the term that

would produce secular terms in i2. Removal of this term by making its coefficient

zero determines Ki. Equation (39) is then integrated to determine i2.

It should be noted that i2 is needed for the determination of the constants

K 3 and K 4 in the equation for u 2, so integration is required.

Continuing the procedure by equating the terms multiplied by j2 in the

expansion of Equation (26) determines Y2, K3, and K 4 . Final values of all the

constants are listed in the Appendix.

Q(0) is determined by substituting (30) into (27) and proceeding in the same

way as above. Note that terms in J20 arise in P(0). These must be retained and

will restrict our variable 0 accordingly.

In the form below, use has been made of trigonometric identities in order to

isolate terms containing the quantity (5s 2 - 4) in the denominator. It may be seen

that when (5S2 -4) is zero, each of the variables has a finite limit. Note the necessity

of keeping the PO terms in y and Q.

13



When the quantity (5s 2 - 4) is zero, the terms multiplied by J and j 2 0

combine, allowing the division by (5s 2 - 4) to occur.

r 1+ Cosy + (-3+2)cos(Zy+ 20 )
+~~~~~ ~~~ (-l(+6)csy+ 0

e 2 2

+ 1(3s2 2)cos(2y - 20)

eo[1 5(2+ eo)S4 - 14(4+ ego)s 2 + 24] sin [JO (- - 2)] sin[O + w0o]
+ 12(5s2 - 4)

egs2 15s2 - 14)sin [j0 ( ? -2)] sin [2wo- JO ( - 2)]
+ 6(5s 2 - 4)

2e

-g26cos(y- o + 3wo) + 4(3s2 - 2) cos(y -300 +3wo)

Scos(y-50 0 +3w) + 2 - 2) cos(y - 202wo)

- 164
3eo82 o ~ -40+2o- 42 2+ 1)cos(y +2wo) (40)

8

+ 4(-2 + 5e)S4 -  2e] cos(y + 0o + o)

+ e[6 + 2(1)S 2 - 4(1 + )] cos(y -00 + [-'o)

+ - s[-(14 + .S) + 2e- (cos(y - 30 ++ w)

24 2

2 2

e2o S2 - 2

+ 41 - 00 + 1) o o 3 -2)csy - 20o+ 4+3s + 2oos

+ eos2(o+)co) +y os(3o -2 2 1o) os+2)

16 4

+ s2cos2 0o] + O(J2, -30,...)}

14



y = O-o+J{(5S-22) (0-0o)

e2(-75s6 + 260s 4 - 296s 2 + 112) sin [JO (LI_ 2)] o - JO - 2)]

+ 24(5s2 - 4)2

+ J2O{e°2s 2(_15s + 14)(15s2 13) cos 2wo +oS 13.+
24(5s -4)S _ ~ o 13) cos(Oo + wo)

24(5S2 -4) 2

+ -- (15 - 13)cos(30o-wo) + -(15s2 - 13)cos20o (41)
6 2

15(9e o + 34)s 4 + 4(9eo - 34)s 2 - 56e0]} + O(J 2 , J 30,...)

I 0 eo
= zo+sCJ -cos20 + -cos(y+20)+cos(y -20)

e°(-15s2 +14) sin JO (- - 2)] sin [2w° - JO ( -2)] (42)

12(5s 2 -4)

-cos200 - - cos(30 0 - wo) - ' cos("o+wo) (
-2 6 2

9= fo+cJ Oo-O+ 1 sin20-eosiny

1 1o 0o 1
+ L sin(y + 20) - !- sin(y - 20) - - sin 2O0

6 2 2
0 eO

+ eo sin(Oo - wo) - L6- sin(30o - wo) - L- sin(Oo + wo)
6 2

e%(15s 4 - 45s2 + 28)sin [JO( - -2)] cos [2wo - JO -2)]
+ 6(5s2 - 4)2

+ Cj2{e 2s 2( 15s2 - 14)
+ c 0 12 (5S2 -4) CoS2,0o - eos 2 cos(Oo + wo) (43)

o cos(30o - wo) - s' cos 200 + 2(7 -4)
3 24

+ 1(-s2+6)}+O(J2,J30...)
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t = to+o ]r 2fl + cos 20

eo(-4s 2 + 3) cos(y + 20)
+ eo(S 2 - 1)cosy + 6

eo(-2s2 +1)()

+ 2 cos(y - 20) (44)2

e s2 (15s 2 - 14)sin [JO ( - -2)] sin [2o- JO - 2)]
+ 12(52 -4)

S2 2
+ S2 + eOSv OWOOO- + O)j

+ S2  cos 20o + 6- cos(30o - w-o) + 2 o(o o

+ O(J 2, J3 0,.. .) dO

To check the solution, we can see if the specific mechanical energy (18) of

the satellite remains constant. Substitution of the solution (40)-(42) into Equations

(10) and (11) yields

T + V = GM(1- o) _ G-!. 2 R2(1- 3sin2 3o) + O(j2. j3.2po 2[( to)]3

The first two terms on the right side are easily recognized as the value of the specific

mechanical energy at the initial time to.

As a further check on the solution, we can see if it reduces to previous results

for equatorial and polar orbits, obtained by Danielson and Snider [Ref. 8. Setting

io = 0 and using the independent variable a measured from the line O,, we find that

Equations (40)-(42) reduce to Equations (18)-(22) in [Ref. 8]. Setting i0 = r,/2 and

using the expansion cos(y + J) cos y - Jk sin y, we find that Equations (40)-(42)

reduce to Equations (38)-(41) in [Ref. 81.'

'There are misprints in Equations (37)-(40) of [8]. The term 2e0c, cosy should be added on the
right of Equation (37). The third from last term in Equation (38) should be eu/3cos(330--;(,) 'rle
term -c 2 JI13 should be added on the right of Equation (39). The sign of the second trigonometric
term in the expression for c6 should be changed: (-eo/12 + c3/32)sin(3o + ,,0).
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F. THE CRITICAL INCLINATION

There exist many "solutions" to the main problem. Most of these are un-

satisfactory. Some are so abstruse as to have little or no physical meaning, while

others suffer from having a restricted domain in inclination, eccentricity, or both.

Chief among the difficulties with proposed solutions is their behavior at certain in-

clinations. The most persistent of these troublesome inclinations is the so-called

critical inclination icriL E ± arcsin 2/V/5 (mod r). This manifests itself in the form

of denominator terms like (4 - 5sin 2i), (1 - 5cos2i), or (tani - 2). When i as-

sumes this critical inclination, icrit, each of these terms become zero, rendering the

solutions useless. It is at this point that we must confront the divisor (5s2 - 4) in

Equations (40)-(44). As remarked, each of (40)-(44) has a finite limit at the critical

inclination. How does this come about? At the critical inclination, the quotient

sin(JO(5s2 /2 - 2)/(5s2 - 4) is replaced by the limit, yielding a term in JO. This, in

the parlance of orbital mechanics, is an odious secular term - an unbounded term

which grows with the time-like variable. The expressions (40)-(44) at the critical

inclination are:

= Po/{l+ocosy+J[-- +e c(1--1-

+ +1(-(2+5eo2) cos20 + .(9,; - 8)cos2Y

12 12

+ 2 + 6)cos(y + 20) + L- (-3S2 + 2)cos(2y + 20)
24 24

2

+ Lo (3S2 - 2)cos(2y - 20)

C22 2s cos(y - 00 + 3w,') + f-0 (3s' - 2) cos(y - 300 + 3,, ,0)

16 24

3e0s
2* cos (y -50o +3wo) +-(3 -'2)cos~y - 200+ 1c-)

16 4

8 cos3 - 40 + 2o) - 2 +1)cos(y + 2o) (45)
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+ s[(-2 + 5e2)S 2 - 2 2 cos(y + 0o + Wo)

+4. 1[(6 + 5e2)s 2 - 4(1 + e')]cos(y - Oo + wo)

+ 1[-(14 + 5e2)s 2 + 2e ]Cos(y - 30o + wo)
e2 e2

8(9S2 - 4)cos(y + 3o - wo) + L(-7S2 + 6) cos(y + Oo - wo)

+ 2 (_5S +4)cos(y-- O ) +-(22 1) cos(y +200)
16 4

+ !4(-3S2 + 1)cos(y - 2 0o)+ eo(-3S2 + 2)cosy
4 4

+ eos 2 cos(Oo + Wo) + eT s(30 -wo) +s2 cos 20o
3

+ J20 12o-( 15 (2 + e2)S 4 - 14(4 + e2)S 2 + 24) sin(O + wo)

+ es 2 ( 1 5 S2 _ 14) sin(2wo) + O(j 2, j 3 O,.

± 0 -2315 J -(4)-+00)

+ d20 L (- 105s 4 + 130s 2 - 28) cos 2wo + co'(15 S2 _ 13) cos(Oo ,oo)

148
2

+5 - 13) cos(30 - wo) + -(15 - 13) cos200 (46)
6 2

1 r,(g 2  S4 92 )S2 1 C2 '-'
+ [5(9 0+ 34)s + 4( 9 0 - 34)s - 56 4]}+ O(2'IJdO,)

961,, . o

I io + 8cJ cos 20 + -cos(y + 20) + cosqy - 20)

1 e eo}
- 1 200 - L- cos(30o - o) - "cos(Oo + wo) (47)

2 6c2 0

+j2o---(-15S2 + 14)sin2wo + O(J 2 J3 O,...)
24

isI



11
Ql = 11o + CJ 0o - O + -1 sin 20 - eo sin y

+ sin(y +20) - !sin(y - 20) - 1 sin 200
6 2 2

+ eosin(Oo-wo) - 6-sin(30 - wo) - 2-sin(Oo-wo)

+ cJ20{ (6s2 - 7)cos(2wo) - eos' cos(Oo + Wo) (48)

eos 2  W) 2-esi.cs(30 -w0) - scos 20o + (7s -4)
3 2

+ - +(-s +6) + O(J 2, J 3 0. . . )

t to 1 fr2{1+ J[(-3 2 + 2 ) cos20

" eo(s COSY +eo(-4 S2 + 3) cos(y + 20)+ e0(s 2 - 1)cosy + 6o~s+)O(+O

6

+ eo(-2s2 + 1) cos(y - 20) (49)

±2Ss2]OSu 2" s2 - 1 + cos 200 + cos(300 - ,,0) + __ cos(0o + W'0)

" j20 e 2 " (1.5S2 _ 14) sin(2wo) + O(j2, j30,.... dO
± 24

As can be seen, none of the variables fails to be defined at any inclination or

eccentricity.

A long-standing debate in astrodynamics centers about the nature of the

critical inclination's ubiquitous presence in proffered solutions. Of course something

important does occur at the critical inclination - the line of apsides remains fixed.

That this event should also cause most attempts at solving the problem to fail has

been the subject of much debate and, apparently, misunderstanding.

Examination of Equation (45) shows that when i assumes the critical incli-

nation there result terms in P0. At the order to which we have approximated the
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solution the form of our approximation at the critical inclination differs from that of

all inclinations. In fact, if i - i,, it appears that we can obtain arbitrary accuracy

for sufficiently small J and 0 in some J dependent interval [O,c/Jm], (m constant,

integer, c an 0(1) constant), by taking sufficiently many terms. However, when

i = icrit, the expansion has a restricted range of validity, for 0 in [0, c/J] where c is

an 0(1) constant. In other words, while we have dropped the higher order terms and

higher order secular terms in our solution, it is hoped that away from the critical

inclination it will be possible to improve the approximation to arbitrary accuracy

simply by continuing the method used. Not so at the critical inclination-we are al-

ready confronted with a secular term which cannot be eliminated, regardless of how

many terms we keep in our approximation. We are thus in agreement with Coffey,

Deprit, and Miller [Ref. 9] that the critical inclination is an intrinsic singularity,

independent of the method used to solve the problem. Moreover, there may emerge

other critical inclinations as higher order analyses are performed. It may be that

a higher order approximation will yield other inclinations where secular terms arise

which cannot be eliminated. The well-known critical inclination might be only the

first in a sequence.

Enters now the astrodynamicist, the man in the field. When the equations

of motion are integrated at the critical inclination, no strange effects are reported.

The mathematicians have declared the critical inclination a glaring singularity, yet

everyday practitioners consider it a trifling locale. If a satellite were to start an

orbit at the critical inclination, Equation (45) predicts a secular variation in u(O)

of order J 20. Clearly such slow growth with 0 explains why no appreciable effect of

the critical inclination has been encountered in the intensive numerical integrations

which have been carried out over the years. Additionally, if a satellite is initially at

the critical inclination, Equation (47) states that the expression for its inclination
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also contains a term in J0. This means that the satellite will tend away from the

critical before the secular terms which arise in u(O) at the critical become important.

As the satellite moves away from the critical inclination, the terms in u(O) resume

their bounded trigonometric form. From a practical viewpoint, the critical inclina-

tion problem is in fact a nonproblem. The simplifications and assumptions made

will perforce limit the time over which the solution is valid, further obscuring at-

tempts to physically observe anomalies at the critical inclination. We must concede

that other perturbative forces would play a major role in determining the degree to

which the critical inclination could induce observable effects. This is not to endorse

a variety of patchwork measures now being used to determine satellite motion, such

as "gapping" the critical inclination in order to avoid dividing by zero. The critical

inclination, delicate as though it may be, is perhaps a powerful telltale for faulty

modeling.

G. CONCLUSIONS

As shown, our solution satisfies the goals given in the introduction.

If the perturbation procedure is continued, it is anticipated that each of the

additional terms added to Equations (40)-(44) will be multiplied by one of the

factors (J, J3, j 30, J40,...). If we restrict 0 < 1/J, the neglected terms should be

order P. (For an Earth satellite J < 3/2 x l0 - 3 , so for at least 100 revolutions the

relative error should be order 10-6.)

If we restrict 0 < 1, all of the terms of order J2 in the solution (40)-(44) can

be dropped without increasing the order of magnitude of the error. This considerably

simplifies the solution to:
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r Po/{1+eocos [O-Wo+J(0o) ( 2)]

± - +e.( - -_(2+5 0s+2eo cos20

+-02(9S2 -8) cos (20 - 2o) + L-O(-ls2 + 6) cos(30- wo)
12.QLJt.VS 24

2 2

+ L (-3S2 +2)cos(40 2wo) + (3s2 -2) cos2wo

e2
- cos( - 0o + 2wo) + -(3 - 2)c os(O - 30 + 2wo)16 2
C2S2 cos(O - 500 + 2 ,o) + 4eo(3s2 - 2) cos(O - 20o + w0o)

16 4
3eO- 2cos(O - 400 + wo) - 4(.2 + 1) cos(O + Wo)

8 4
+ [(-2 + 5e2)s 2 - 2eg] cos(O + 0o)

+ -[(6 + 5eo)S2 - 4(1 + e2)] cos(o - 0o)

+ I -[-(14 + 5e2)S 2 + 2e ]cos(O - 3 0o)

2 2

+L (9S - 4) cos(O + 300 - 2wo) + -(-7s 2 + 6) cos(O + o - 2wo)
48 8

2

+ -(-52 + 4)cos(O- Oo- 2wo)+ eo(29 - 1)cos(O + 20o-wo)164

+ !4(-3S2 + 1) cos(O - 20o - Lo)

+ !(-3s2 + 2) cos(O - wo) + eoS2 cos(Oo + Wo)

+ os(30o- o) + s(2 cosJ200o + o , J0, .. )}

[ o(3o eo)+o cosO +2,,]

=io + scj- cos 20 + cos(30 - wo) +-cO+wo
12 6 20

1 2 o - o cos(Oo + o)] + O(J 2 , 30,.
-cos2 0  6 0 2 0-.
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lo + cJ[00-0+ 1sin 20 -eo sin(O -wo) + Osif(30 -wo)

+ eO i(0 + wo) - 1 sin 20o + eo sin(Oo - wo) - !-0sin(300 - wo)

- o sin(Oo + wo)] + O(j 2 , j 3 0....

= to +j r2{11+ J[(8+ cos 20

+ eo(s2 - 1) cos(O - wo) + eo (-4 S2 + 3) cos(3O - wo)
6

eo(-2S2 +1)2 + 2
+ 2 cos(O +WO) +s -1+Cos 20o

2 2

+ -~cos(3 0 o - wo) + -os O(Oo + WO)
6 2j

+ O(J 2, j 30'..
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APPENDIX

cSeK(-15s 2 + 14)
= 24(532 - 4)

2 -cos 2o -ceo cos(30o -w o) - c cos(Oo + wo)I 2 - 2 - '6- 2

cSeo(15s2 - 14)
+ 24(5s2 -4) cos 2Wo

K = e(-75s6 + 260s4 - 296s2 + 112)
48(5S2 - 4)2

[15(e2 + 2)s' - 14(e2 + 4)S2 + 24]K4 = eo 0s -4

2

K5eO( 9 2 + 8) cos(20o - 2wo) + L(3s2 - 2) cos(40o-2wo)

- (eoS 2 + K 4) cos(Oo + wo) + O( 2 - 2) cos(3 0o - wo)

2 1
+ !(-3S 2 + 2) cos2wo - 1-[5(2 e2 )S2 +2e 2cos20o

I8 ' 12 0 0

+j(15e2 + 18)s2 (e +1)+ U

,2 2

K6 = +L(6s 2 - 5) sin(200 - 2wo) + -iO(-3s2 + 1)sin(40o - 2wo)

+ [eo(-s + 1) + 2IK] sin(Oo + wo) + eo(3 2 - 2) sin(Oo - wo)

e
2

+ !(-7s2 + 2)sin(30o -wo) + -(-s 2 + 1)sin 2wo
8 4

+ 0[-(5eo + 2)82 + 2eg0
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