
J.

c NAVAL POSTGRADUATE SCHOOL
Ln Monterey, California
N

- TI

.p,,, STAtS V

0' R A D %3 

T IELECTE

FEB 0 41991

'1FISISS EEDT

A TOOLKIT FOR DESIGNING USER INTERFACES

by

Susan Lynn Dunlap

March 1990

Thesis Advisor: Michael J. Zyda

Approved for public release; distribution is unlimited

91 201 054



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRI.BUTION /AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Postgraduate School Code 52 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME OF FUNDINU /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMOER
ORGANIZATION (If applicable) I

8c. ADDRESS (City, 5tate, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classificaton)

A TOOLKIT FOR DESIGNING USER INTERFACES

12. PERSONAL AUTHOR(S)
Dunlap, Susan L.

13a. TYPE OF REPORT 13b TtME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S. PAGE COUNT

Master's Thesis FROM TO 1 990. March 78

16. SUPPLEMENTARY NOTATION
Ihe views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Departmrent of Defense or the U.S. Governm'ent.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Interface; Graphics

19. ABSTRACT (Continue on reverse if necessary and identify by block nymber)

Current methods of developing user interfaces for IRIS workstation applica-
tion programs are inefficient. In order to help speed the development of com-
lex graphics programs, IRIS workstation users need a toolkit that will assist

in the design and implementation of user interfaces for graphics programs.
his project presents the preliminary work on an interface generator for the
ilicon Graphics, Inc. IRIS workstation. The NPS Interface Builder (NPS IB) is
esigned to speed the creation of application programs by allowing a user to
efine an interface graphically rather than by writing "C" code. The program
rovides on-screen editing, facilitated by a number-of program features. NPS
B can be used to develop the basic framework of a graphics program, or. can be
ser to enhance the capabilities of an already existing graphics application.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

OUNCLASSIFIED/UNLIMITED 0l SAME AS RPT 0 DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) ,2c. OFFICE SYMBOL

IProf Michael J_ Zvd a (408) 646-2305 Code 52zk
"D FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete * U.S. Governmeni Printlng Office, 198-11101-4.

UNCLASSIFIED



Approved for public release; distribution is unlimited

A Toolkit for Designing User Interfaces

by

Susan Lynn Dunlap
Lieutenant, United States Navy

B.A., Northwestern University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1990

Author: _ _ _ _ ___

Susan L. Dunl4

Approved by: _a___esisAdvisor

Leigh W. Bradury, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii



ABSTRACT

Current methods of developing user interfaces for IRIS

workstation application programs are inefficient. In order

to help speed the development of complex graphics programs,

IRIS workstation users need a toolkit that will assist in

the design and implementation of user interfaces for

graphics programs. This project presents the preliminary

work on an interface generator for the Silicon Graphics,

Inc. IRIS workstation. The NPS Interface Builder (NPS IB)

is designed to speed the creation of application programs by

allowing a user to define an interface graphically rather

than by writing "C" code. The program provides on-screen

editing, facilitated by a number of program features.

NPS IB can be user to develop the basic framework of a

graphics program, or can be user to enhance the capabilities

of an already existing graphics application.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced Q
Justificatio

Distribution/

Availability Codes
Avail and/or

Dist Special

iii



TABLE OF CONTENTS

I. THE NEED FOR AN INTERFACE SYSTEM 1----------------1

A. CURRENT INTERFACE DESIGN METHOD ------------- 1

B. DEVELOPMENT OF INTERFACE BUILDERS AND
TOOLKITS 2------------------------------------2

1. Dialogue Management System (DMS) -------- 4

2. NASA Ames Panel Package 5-----------------5

3. Slider and Button Package 6---------------6

4. NPS Interface Builder 6-------------------6

C. NAVAL POSTGRADUATE SCHOOL GRAPHICS AND
VIDEO LABORATORY 7----------------------------7

D. SUMMARY OF THE CHAPTERS 8---------------------8

II. NPS INTERFACE BUILDER PROGRAM DESCRIPTION ------- 9

A. SYSTEM OVERVIEW 9-----------------------------9

III. THE NPS INTERFACE BUILDER PROGRAM --------------- 16

A. DESIGN ISSUES ------------------------------- 16

1. NPS Interface Builder User Interface 16

2. NPS Interface Builder Program Design 18

B. DATA STRUCTURES ----------------------------- 20

1. Saving Graphics Information ------------- 20

2. The Linked List Structure --------------- 24

C. SYSTEM STARTUP ------------------------------ 24

D. MAIN DRIVER ROUTINE ------------------------- 25

E. REDRAW/RESIZE CODE -------------------------- 27

F. DRAWING ALGORITHMS -------------------------- 31

iv



1. Control Palette Window Drawings --------- 31

2. Design Window Drawing ------------------- 32

G. EDIT DESIGN MODE ---------------------------- 37

1. IRIS Picking Mode ----------------------- 37

2. Control Selection ----------------------- 38

3. Creating Record Structures for Saving
Graphics Information -------------------- 38

H. MOVE CONTROL MECHANISM ---------------------- 39

I. RUN CONTROL MECHANISM ----------------------- 43

IV. NPS INTERFACE BUILDER MESSAGE BUFFER ------------ 45

A. PURPOSE OF THE MESSAGE BUFFER --------------- 45

B. OPERATION OF MESSAGE BUFFER WINDOW ---------- 45

V. NPS INTERFACE BUILDER OUTPUT -------------------- 51

A. SAVING INFORMATION TO OUTPUT FILES ---------- 51

B. SUPPORT ROUTINES FOR THE "C" LANGUAGE
OUTPUT FILE --------------------------------- 54

C. THE ASCII OUTPUT FILE AND THE RE-EDIT
FEATURE ------------------------------------- 56

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK ------- 59

A. CONCLUSIONS AND LIMITATIONS ----------------- 60

1. Controls -------------------------------- 60

2. Color ----------------------------------- 61

3. Icon Labelling -------------------------- 62

B. FUTURE WORK --------------------------------- 62

1. Expanded Inventory of Controls ---------- 63

2. Adding Controls to NPS Interface
Builder --------------------------------- 63

3. Interactive Size, Shape, and Color
Adjustment ------------------------------ 64

v



4. Improving Interface of NPS Interface
Builder------------------------------------- 64

LIST OF REFERENCES----------------------------------------- 66

INITIAL DISTRIBUTION LIST--------------------------------- 67

vi



LIST OF FIGURES

2.1 NPS Interface Builder Program Layout ------------ 10

2.2 Sample NPS Interface Builder Window

Rearrangement i-----------------------------------11

2.3 Design Window with Fixed Control ---------------- 12

2.4 Sample Interface Created with NPS Interface
Builder ----------------------------------------- 13

2.5 NPS Interface Builder ASCII File Output
Listing ----------------------------------------- 14

2.6 NPS Interface Builder "C" Language File
Output Listing ---------------------------------- 15

3.1 Program Layout Showing Included Files ----------- 19

3.2 Toggle Box Record Structure --------------------- 21

3.3 Dial Record Structure --------------------------- 22

3.4 Vertical Slider Record Structure ---------------- 23

3.5 NPS Interface Builder System Menu --------------- 26

3.6 Code to Set Global Coordinates for Drawing
Control Icons ----------------------------------- 29

3.7 Program Code for Drawing Floating Control ------- 33

3.8 Program Code for Drawing Fixed Controls --------- 35

3.9 Toggle Box Drawing Routine ---------------------- 36

3.10 Record Creation and List Maintenance for a
Toggle Box -------------------------------------- 40

3.11 Searching Linked Lists for a Control ------------ 41

3.12 Code for Reconnecting a Moved Control Structure
in the Linked List ------------------------------ 43

3.13 List Traversal and Toggle Box Operation --------- 44

4.1 Structure that Defines a Line of Text ----------- 46

vii



4.2 Structure that Defines Message Buffer Window 47

4.3 Code for Constructing Ring Buffer --------------- 48

4.4 Adding a Line of Text to the Ring Buffer -------- 50

5.1 Code for Writing from Linked Lists to Output
Files ------------------------------------------- 53

5.2 Code for Entering Information into the Toggle
Box Array --------------------------------------- 55

viii



ACKNOWLEDGMENTS

I wish to thank LT Laura J. White, USN, and Rosemary

Lande for their work on the graphics class program that was

the initial version of NPS IB. Although that work was

abandoned in favor of another approach, their help on the

project was invaluable in that it gave me a basic apprecia-

tion for graphics and a better understanding of the "C" pro-

gramming language.

Thanks to LT Michael DeHaemer, USN, and LCDR Richard M.

Prevatt, USN, for their assistance when I got stuck.

Thanks to Dr. Michael J. Zyda who persevered as my

thesis advisor.

ix



I. NEED FOR AN INTERFACE SYSTEM

This project is the preliminary work on an interface

generator for the Silicon Graphics, Inc. IRIS workstation.

The result of this project is the NPS Interface Builder (NPS

IB), which is designed to speed the creation of application

programs by allowing a user to define an interface

graphically rather than writing "C" code. The development

of the NPS IB iepresents a unique departure from previous

methods of user interface development. This is because the

NPS IB is capable of converting a user-specified picture

into usable "C" code.

A. CURRENT INTERFACE DESIGN METHOD

Design of a user interface represents a considerable

time investment for programmers. For some p.cogrammers, user

interface concerns can mean an unwelcome diversion of time

and energy away from an application program. Besides

considering how the user interface should look, the program

developer has to produce the actual implementation by

writing original "C" code routines to draw the interface and

produce the interaction between interface and program. This

methodology is grossly inefficient, since it means that each

user wishing to develop a graphics program for the IRIS

workstation must essentially reinvent the wheel by coding

his own interface. In addition to being inefficient, this

I



method o-C programming results in a wide disparity in the

appearance of user interfaces across graphics programming.

To an end-user, each graphics program presents a new and

different set of interface challenges to master.

Certain types of interface controls seem to remain

constant throughout graphics programs. Sliders are used to

rotate, scale, or translate objects. Checkboxes are used to

indicate that some function should be performed, such as

printing data or verifying information. Dials can be used

to represent mechanical devices such as a shipboard rudder

angle indicator. Although the uses of the controls can vary

from program to program, the basic operating mechanisms

remain the same. This is what makes it possible to

incorporate these controls into a standard library of

controls. With the addition of routines to specify the

placement and checkout of the controls, an interface builder

for the IRIS workstation is born. The use of an interface

builder can result in a considerable time-savings for the

application programmer, and its use of a standard set of

controls has the potential to relieve the problems caused

for end-users by the large numbers of disparate interfaces

that currently exist in graphics programming.

B. DEVELOPMENT OF INTERFACE BUILDERS AND TOOLKITS

Increase in the memory capacity of modern computers has

been accompanied by a corresponding increase in the

sophistication and size of application programs. As the

2



capabilities of the computer have expanded, end-users have

demanded software that best utilizes the powers and

abilities of their machines. This has resulted in an

explosion of large, complex programs with highly

sophisticated user interfaces. Often these programs are of

such size and complexity that they are beyond the

capabilities of just one person to write and debug.

Computer-aided software engineering is intended to

reduce the time needed to create a software application,

while at the same time improving the quality of the software

produced. Reference 1 notes that the definition of

computer-aided software engineering includes the use of

tools which provide leverage at any point in the software

development lifecycle. Interface generators, like the NPS

IB, provide leverage in both the design and implementation

phases of the lifecycle by allowing a designer to visually

develop the interface and then automatically create the code

for it.

Interface generators are also valuable tools for

prototyping. Prototyping permits a software developer to

quickly build an executable system which may not be

complete. This system can then be demonstrated to users and

subsequently can be easily modified if required.

Prototyping saves time and money by permitting modifications

to a system before the implementation phase of the software

3



lifecycle. An interface generator such as the NPS IB can

provide prototyping capability.

Interface generators are available commercially for

nearly every computing machine on the market. Such systems

include Interface Builder, which permits users to build

interfaces for application programs on the Next computer

[Ref. 2], and C-scape [Ref. 3], which permits users to

create custom interfaces for personal computers. In

addition, several interface generators and toolkits have

been developed specifically for the IRIS workstation family

of computers. These include the following packages.

1. Dialogue Management System (DMS)

Reference 4 reports on an experimental research

project at Virginia Tech called the Dialogue Management

System. Developed for the Silicon Graphics IRIS 2400

workstation, DMS is described as a comprehensive system for

interface management. The system is comprised of three

components, including a dialogue component which provides

for interaction between an end-user and the application

program, a computational component, which contains all

semantic processing algorithms, and a global control

component, which manages sequencing between the dialogue and

computational components. DMS provides for interactive

development of all three components, including a tool for

direct manipulation of graphical objects when developing an

interface. The developers of DMS report that this

4



tool-based approach is much faster than conventional source

coding. In fact, they say, the use of DMS for implementing

an interface provides a nearly four-to-one improvement in

speed over the use of programming for developing the same

interface.

2. NASA Ames Panel Package

The NASA Ames Panel Package was developed by David

Tristram at NASA Ames Research Center [Ref. 5]. The package

is public-domain software, and provides a user-interface

toolkit for the Silicon Graphics family of workstations.

The Panel Package provides a panel library consisting of

actuators, which are controls such as dials or sliders, and

panels, which contain groups of actuators. Demonstration

programs created using the panel package show that the

package is a very powerful and professional-looking toolkit.

Unfortunately, use of the panel package relies upon an

understanding of package features, as well as a good

understanding of the "C" programming language. Reference 3,

which is the documentation manual for the panel package, can

help a user get started. The time overhead required to

learn the system does not offset the usefulness of the

package. But the speed of producing an interface must

inherently be slower than methods such as DMS since the user

must deal directly with raw code.

5



3. Slider and Button Package

The Slider and Button (S & B) package is a tool for

providing windows of sliders and buttons only on the Silicon

'raphics IRIS 4D workstations. The S & B package consists

of support routines which open a graphics window, draw the

buttons and sliders, and provide the interaction mechanism

between the controls and the end-user. The S & B package is

quick and easy to use. The application programmer does not

have to understand detailed operation of the package to use

it. In this, the S & B package can realize a considerable

time-savings for the programmer.

4. NPS Interface Builder

The NPS IB is the product of this study. It was

designed to help speed the creation of application programs

by allowing a user to define an interface graphically rather

than writing "C" code. The program allows a designer to

select interface controls from a standard set of controls,

and to interactively specify the placement of those controls

in a graphics window. The NPS IB produces as output the

skeleton of a graphics program, written in "C" code, with

designer-specified controls in place. The application

programmer then builds his program upon this interface

foundation. The NPS IB program can save time and effort for

an application programmer, since it generates "C" code from

a programmer-specified picture.

6



C. NAVAL POSTGRADUATE SCHOOL GRAPHICS AND VIDEO LABORATORY

The Naval Postgraduate School's Graphics and Video

Laboratory has been developed for use by students in

beginning graphics courses and for those students desiring

to pursue master's thesis topics in graphics or graphics-

related areas. The equipment currently in the lab consists

of two Silicon Graphics IRIS-4D/12OGTX workstations and one

IRIS-4D/70GT workstation. These machines support project

work from graphics courses as well as research work for

master's thesis topics. The NPS IB program can benefit

graphics course students and thesis research students

equally as well. For the graphics student, NPS IB can

produce the framework for a first graphics program--a

framework upon which the student can build a graphics

project as his learning and expertise grow. A graphics

thesis student might use the NPS IB program to build

supplemental command and control windows for a thesis

program.

Thesis students using the Graphics and Video Laboratory

have produced many visual simulators for various Department

of Defense interests. These projects have included the

Fiber Optic Guided Missile (FOGM), which modeled the flight

of a missile over the terrain of Fort Hunter Liggett,

California, and the Moving Platform Simulator, which

featured the display of moving vehicles over terrain at Fort

Hunter Liggett. These are just two examples of thesis

7



programs which could have benefited from use of the NPS IB

program.

D. SUMMARY OF THE CHAPTERS

The remainder of this study discusses design and

implementation issues considered in creating NPS IB.

Chapter II provides an overview of the NPS IB, from its

operating environment to program features. Chapter III

discusses program specifics including graphics support and

implementation considerations. Chapter IV discusses

cperation of the program message buffer. Chapter V focuses

on the format of NPS IB output, along with the routines that

produce the output. Chapter VI contains conclusions,

limitations, and future directions.

8



II. NPS INTERFACF BUILDER PROGRAM DESCRIPTION

A. SYSTEM OVERVIEW

The NPS IB is a menu-driven program consisting of a

design window, a control palette window, and a message and

instruction window, shown in Figure 2.1. The design window

represents the application programmer's easel, of sorts,

c'on which the layout of the user interface is designed.

The control palette window contains representations of the

user interface controls from which the application

programmer can choose. The message and instruction window

provides messages that confirm menu choices and that offer

instructional help designed to guide the programmer through

use of the program. The design window offers a resize

option so that the user can alter window size. The control

palette and the message buffer windows are moveable and can

be placed as the user desires. A sample rearrangement is

depicted in Figure 2.2.

To design a user interface, the application programmer

chooses the edit design feature from the selection menu. A

control can then be selected from the control palette

window. The system asks the user to give the control a name

and to specify any additional maximum, minimum, or initial

values. The system then draws a floating picture of the

control in the middle of the design window. The programmer

9



Figure 2.1 NPS Interface Builder Program Layout

uses the mouse to maneuver the floating control about the

design window, allowing the determination of its placement.

To drop the tool into its place in the window, the

programmer clicks the middle mouse button, and a fixed

picture of the control is drawn in the location specified.

Figure 2.3 illustrates the design window with one fixed tool

in place. By continuing to select tools from the tool

palette window and dropping them into location in the design

window, the application programmer can thus build a complete

user interface. An interface created by this method is

shown in Figure 2.4.

10



Figure 2.2 Sample NPS Interface Builder Window
Rearrangement

Menu options include a move control selection, so that

positions of fixed controls can be altered or adjusted if

necessary, and a delete control selection, so that fixed

controls can be eliminated from the design window entirely.

The run controls option permits the programmer to test the

operation of controls in the design window. The reset

selection clears all fixed controls from the display window

without saving any graphics information and is essentially

akin to clearing a slate. The save design option writes the

current state of the design window to two output files--an

ASCII file listing of graphics information for each control,

11



Figure 2.3 Design Window with Fixed Control

and a "C" language output file containing the skeleton of a

graphics program that the user can compile, link, and

execute. A sample ASCII file listing is presented in Figure

2.5, while a sample "C" language graphics program skeleton

is illustrated in Figure 2.6. The ASCII file output

provides the NPS IB program with its re-edit capability.

The "C" language output file provides the user with a

foundation for the application program.

12



Figure 2.4 Sample Interface Created with NPS

Interface Builder

13



/* This is the ASCII output file for a window created with
NPS Interface Builder */

/* save the window size */
lowerleftX 5
lowerleftY 5
upperrightX 1275
upperrightY 1004

/* toggle box information */
togglebox
title Cancel
controlid -1
controlnum 1
Xcoord 24.96
Ycoord 30.56
lowerleftxbound 23.78
lowerleftybound 29.31
upperrightxbound 26.15
upperrightybound 31.81
togboxend

/* dial information */
dial
title Speed
controlid -4
controlnum 2
Xcoord 13.90
Ycoord 49.20
maximumvalue 50.00
minimumvalue 0.00
lowarleftxbound 10.12
lowerleftybound 45.19
upperrightxbound 17.68
upperrightybound 53.21
dialend

/* vertical slider information */
verticalslider
title Rotate
controlid -5
controlnum 3
Xcoord 27.52
Ycoord 49.00
maximumvalue 360.00
minimumvalue 0.00
startvalue 180.00
lowerleftxbound 27.14
lowerleftybound 41.48
upperrightxbound 27.90
upperrightybound 56.51
vsliderend

Figure 2.5 NPS Interface Builder ASCII File Output Listing

14



#includeinterfaceglobal .h

ma ino(

short value;
int wintoken;

maketogbutton("Cancel", 24. 96, 30.56, 23. 78,29.31, 26. 15, 31. 81,1)

makedial (Speeds, 13. 90, 49.20, 10.12, 45.29, 17. 68,

53.21, 50.00, 0.00, 0.00, 0. 00,1);

makevlider ("Rotate",27.52,49.00,27.14, 41.48,

27. 90, 56. 51,0 .00, 360. 00, 180.00,1);

checkboxnum - 2;
dialnun - 2;
vslidernumi - 2;

/* initialize the window
wintoken - initwindow("custom windcwl,5,5, 1275, 1004):

/* enter a drawing loop/
while (TRUE)

winset (winioken);
while (qtest () ) 'loop while there is som~ething on the queue

switch(gread(&value')

case REF.RAW:

winset (wintcken);
reshapeviewport 0;
win:c :nstraintS();
update-ma.nwinrdowfl
break;

case LEF7MC'SE:
if (value -1

runcontrolso;
draw-picture));
swaptuffers

?hreak;
case FIGHTMOUSE:

break;

default:

break;

drawpicture
swaptuffers ()

Figure 2.6 NPS Interface Builder "C" Language
File Output Listing

15



III. THE NPS INTERFACE BUILDER PROGRAM

A. DESIGN ISSUES

The design of NPS IB encompassed two major concerns.

The first area of concern involved the development of the

user inter ie for the NPS IB program. The second area of

concern involved the actual development and implementation

of the program itself, including data structures and

routines to support program functionality.

1. NPS Interface Builder User Interface

References 7 and 8 were consulted in an attempt to

design the NPS IB program user interface in concert with

recommended theories, principles, and guidelines of user

interface design. The principle of consistency was the

first and foremost principle considered, followed by the

ability of the program to offer informative feedback and to

offer simple error handling. In addition, two interaction

styles were defined for the user interface, to include use

of program menu selections and direct screen manipulation of

objects of interest. The use of program menu selections

structures user decision-making and surports program

consistency, since each sequence of actions in the program

must start with a menu selection. Each menu selection,

then, is followed by the same set of actions in each

selection category. In the edit design mode, for example,

16



the same sequence of actions is followed for each control

selection: pick the control of interest, give the control

name and value attributes, then place the control in its

desired position in the design window.

The ability of the program to offer informative

feedback and to offer simple error handling is made possible

by both menu selection and direct manipulation of objects of

interest. Since the user can point at control icons and can

use the mouse to manipulate icons in the design window, the

results of his actions are immediately observable. Simple

error handling is provided by menu selections which allow

the user to move or delete control icons from the design

window, along with corresponding direct manipulation of

icons to be moved or deleted. User feedback is also

supported by the message buffer window, which provides

instructions and verification information, such as

confirmation that a control has been deleted.

A particular design issue of interest was the

placement of the cursor and the floating control icon after

its selection from the control palette window in the edit

design mode option. Originally, the program design called

for a click on the icon drawing of interest and for

subsequent dragging of an icon clone from the control

palette window into the design window. It was discovered,

however, that this type of action between two concurrently

running graphics windows was quite complicated, and the idea

17



was abandoned in favor of a new approach. The selected

solution to the problem was to set the cursor to the middle

of the design window and to use the mouse x and mouse y

coordinates as the center x and center y for a drawing of

the floating control. The user could then use the mouse to

manipulate the cursor about the design window, with cursor

movement mirrored by the floating control icon. The user is

not as likely to be surprised by the unexpected cursor jump

from the control palette window to the design window, since

the action of selecting a control and placing it in the

design window is broken up by the program request for user

keyboard input. Since the user's hand must leave the mouse

to operate the keyboard, the impact of the cursor jump from

control palette window to design window is reduced

considerably.

2. NPS Interface Builder Program Design

Three issues were considered in designing the

structure of the NPS IB program. The first issue was that

of saving graphics information for each control placed in

the design window. This involved selecting an appropriate

data structure for storing a variety of information about a

single control. Data structures are discussed in the next

part of this chapter. The second issue considered in

designing the program was modularizing the program so that

each group of routines in a single file performed one type

of functionality for the program.

18



A final issue considered was the integration of

program routines with the graphics program main event queue.

It was decided that controls would be defined first, before

entering the queue loop, in a window that would run

concurrently with the design easel and the message buffer.

Routines to process actions involving controls would be

governed by global boolean variables inside the event queue

loop. Display of controls drawn as a result of some user

action would also take place within the event queue. Figure

3.1 illustrates basic program layout.

#define MAIN /* define MAIN for global variable
recognition */

#include "interface.h" /* definitions for variables and
structures */

/* main driver routine */
main()
{

... (open main window)

... (open control palette window)

... (open message buffer window)

... (define controls)
while (!exitprogram)
... (process event queue tokens)
... (redraw, if necessary)
... (change input window, if necessary)
... (process mouse hit, if necessary)
... (process routines to manipulate controls)
... (send informative messages to message buffer window)
... (display controls)
swapbuffers(;

Figure 3.1 Program Layout Showing Included Files

19



B. DATA STRUCTURES

1. Saving Graphics Information

As noted in Section A of this chapter, a critical

program design issue involved selection of a data structure

that would hold graphics information for each control drawn

in the design window. A record structure is chosen for this

job, primarily because of its ability to group individual

data elements of different data types as a single unit.

This feature of the record structure is important since

controls have a number of attributes of different data

types, such as character type titles, floating point x

center and y center coordinates, and integer identification

numbers. The record structure is advantageous also because:

(1) it allows the information about a control to be treated

as a single data element, and (2) it permits separate use of

any single data field within the record element itself. The

ability to treat a data structure as a single element means

that records can be manipulated in ways which correspond to

the actual manipulation of control icons. Deleting a

control icon, for instance, is as easy as eliminating the

record structure for that particular icon. The ability to

address single data fields of a record means that current

values and coordinate values can be easily updated or

changed.

The NPS IB program uses a different record structure

for each control in the program. This is necessary since

20



different types of controls have different attributes. The

record for a toggle box is displayed in Figure 3.2. The

title field holds the name of the toggle box, as entered by

the user. The nun field holds a unique value which enables

use of the IRIS picking mechanism since it becomes the

loadname of the control. The onoff field represents a

boolean value indicating whether the toggle box is turned on

or off. The Xcoord and Ycoord fields hold the center x and

center y coordinates which are determined when the tool is

positioned in the design window. The llxbd, urxbd, llybd,

and urybd fields represent the lower left x, upper right x,

lower left y, and upper right y bounds of the control.

These boundaries are used to identify controls in the design

window when in the operate control mode.

/* define the structure which will hold graphics information
about toggle boxes */
typedef struct atogboxrecord

char title[50]; /* holds user-input title */
int num; /* unique number used as loadname of the

control */
int onoff; /* indicates tog box on or off position */
float Xcoord; /* center x coordinate of the control */
float Ycoord; /* center y coordinate of the control */
float llxbd; /* lower left x boundary coordinate */
float urxbd; /* upper right x boundary coordinate */
float llybd; /* lower left y boundary coordinate */
float urybd; /* upper right y boundary coordinate */
struct atogboxrecord *next; /* next pointer */

togboxrecord, *ptogboxrecord;

Figure 3.2 Toggle Box Record Structure

21



A dial record is shown in Figure 3.3. Fields in the

dial record with the same name as fields in the toggle box

record also share the same functions. Four additional

fields in the dial record require explanation. The max

field is used to save the user-input maximum value for the

control, while the start field is used to record the

user-input minimum value. The current field holds the

current value of the dial at any given time, and the theta

field holds the current rotation angle of the dial needle.

/* define the structure which will hold graphics information
about dials */
typedef struct adialrecord

char title[50]; /* holds user-input title */
int num; /* unique number used as loadname of the

control */
float max; /* holds user-input maximum value */
float current; /* holds control current value */
float start; /* holds user-input initial value */
float theta; /* holds current dial needle rotation

angle */
float Xcoord; /* center x coordinate of the control */
float Ycoord; /* center y coordinate of the control */
float llxbd; /* lower left x boundary coordinate */
float urxbd; /* upper right x boundary coordinate */
float llybd; /* lower left y boundary coordinate */
float urybd; /* upper right y boundary coordinate */
struct adialrecord *next; /* next pointer */

dialrecord, *pdialrecord;

Figure 3.3 Dial Record Structure

The record for a vertical slider is illustrated in

Figure 3.4. Again, fields in the vertical slider record

with the same names as fields in the dial and toggle box

records also share the same functions. Two additional

22



fields in the vertical slider record require explanation.

The min field holds the user-input minimum value for the

slider, and the position field holds the center x coordinate

of the slider button.

/* define the structure which will hold graphics information
about vertical sliders */
typedef struct averticalsliderecord

char title[50]; /* holds user-input title */
int num; /* unique number used as loadname of the

control */
float max; /* holds user-input maximum value */
float min; /* holds user-input minimum value */
float current; /* holds current value of the control */

float start; /* holds user-input initial value */
float Xcoord; /* center x coordinate of the control */
float Ycoord; /* center y coordinate of the control */
float position; /* holds current position of slider

button */
float llxbd; /* lower left x boundary coordinate */
float urxbd; /* upper right x boundary coordinate */
float llybd; /* lower left y boundary coordinate */
float urybd; /* upper right y boundary coordinate */
struct averticalsliderecord *next; /* next pointer */

I verticalsliderecord, *pverticalsliderecord;

Figure 3.4 Vertical Slider Record Structure

The horizontal slider record structure is an exact

duplicate of the vertical slider record and is not reprinted

here. The horizontal and vertical slider record structures

could have been combined into one set of records, however,

it was decided that the program made more logical sense if

each control had its own grouping of records.

23



2. The Linked List Structure

Each control record structure contains an additional

field called next, which holds a pointer to another record

structure of similar type. Linking the records together in

this way is advantageous for several reasons. Control

records can easily be added to or deleted from the linked

list. The linked list structure eliminates the need for

keeping global counters that would dictate how many times to

call the drawing routine for a particular control. The

count is provided instead by a traversal of the linked list,

which visits each control record exactly once. The linked

list structure provides control over the composition of the

design window, since pointers can be rerouted to eliminate

drawing of selected controls. This scheme is used to move

controls in the design window. Pointers are temporarily

routed around the control to be moved while its new

placement is determined. When the control is fixed in

place, the pointers are reconnected and the control is drawn

in turn when the list is traversed.

C. SYSTEM STARTUP

The executable program file is interface. While in the

directory containing the executable file, type interface to

start the program. Three windows open and run concurrently

during NPS IB operation.

The design window opens to full screen size, but can be

immediately resized if the user desires. The control

24



palette window opens in the upper right hand corner of the

screen and draws its inventory of controls. The message

buffer window opens in the lower left hand corner of the

screen and displays opening messages and advice. The

locations of both the control palette and message buffer

windows can be moved to different positions if the user so

desires.

The user must select an option from the system menu in

order to operate the program. The system menu is shown in

Figure 3.5. The system menu is a popup menu with

roll-off-the-side options, and is invoked by depressing the

right mouse button. Releasing the right mouse button on the

menu selection desired prompts the system to execute the

action for that selection. The user can select any menu

option at any time during program execution. If the user

chooses a menu option that is not meaningful, however, no

action is taken. The save design option chosen at this

point writes only the lower left x and y coordinates and the

upper right x and y coordinates of the design window to its

output files.

D. MAIN DRIVER ROUTINE

The NPS IB main driver routine is located in the file

interface.c. The main driver routine directs program action

based on user menu selection. Evaluation of user menu

selection is made in the routine handletoken, located in the

file handletoken.c. The routine handletoken switches on the

25



Figure 3.5 NPS Interface Builder System Menu

value of the menu selection, sets appropriate global boolean

variables based on the user menu selection, sends

appropriate messages to the message buffer window, and

returns to the main routine. As the main routine cycles

through the event loop, if-loop constructs governed by the

global boolean variables are evaluated. On evaluation of a

true boolean variable, the if-loop is entered and routines

performing the action corresponding to the user menu

selection are executed. A switch statement might have been

used here with equal effectiveness.

26



Each cycle through the event loop also draws the three

concurrently running windows. This is to ensure that the

keyboard input window, which pops up when user input is

required and closes when user input is complete, is fully

erased from any of the window which it might overlay.

The majority of constant and global variable definitions

are located in the include file interface.h. Control record

structures are also defined in this file. Global variables

defined in interface.h include those which govern program

action and which establish size for control icon drawing. A

small number of global constant definitions are located in

the include file sbglobal.h. The original version of this

file belongs to the S & B package, which was described in

Chapter I. The sbglobal.h file became part of the NPS IB

program because original plans for the program called for

integration of the S & B package as a feature that would

quickly create button and slider windows, however, this

feature of the NPS IB program was never fully implemented.

Although this feature of the program was never realized, the

sbglobal.h file, with a few modifications, remains a part of

the NPS IB. The sbglobal.h file contains constant

definitions for color and size of program icon drawings.

E. REDRAW/RESIZE CODE

When the NPS IB program executes, the design window

opens to full screen size. In the original program design,

27



the full screen design window was the only size design

window offered. This was considered too constraining for a

user, however, who might have need for a variety of sizes of

control windows. It was decided to offer the user an option

to resize the design window, and to enable the user to move

the control palette and message buffer windows to new

positions as well.

The user can select the resize or move option by using

the right mouse button to pull down the menu from the title

bar of the window in question. This pull down menu is not a

product of the NPS IB program, but rather is a creation of

the window manager. The selection of a resize or move menu

option generates a program REDRAW token which must then be

processed by the main event queue. The NPS IB program

contains code which will relocate and redraw windows when

the REDRAW token is received. This code is drawn from the

S & B package program.

When the resize option is indicated for the design

window, the user manipulates the mouse to interactively

sweep out a new size for the window. The click of any mouse

button drops the newly sized window into place. Resize code

for the design window records the new window coordinates and

uses them to compute new x and y ratios of world to screen

coordinates. The new ratio values in turn are used to

recalculate global variables for drawing controls. This

code is illustrated in Figure 3.6. Recalculating the global

28



/this routine calculates global coordinates for tool drawing
aetglobalcoordinates lldz, Ildy, urdx, urdyI
int llda~lldy~uzd~x~urdy;

set sralex - 120.0.) (float) (urdx - (float (Ilds))
set acaleY - l00.0/U(float)(urdy)-(flost, (lldyn);

/determine width of tog button
togbuttonwidth - 3TTONVID)TH - set scaleX;
togbuttonweidth2 -togbuttonvidth'2;

/- determine height of tog button -/
togbuttonlT - UT(TONT * Oet acaleY;
togbuttonlT2 - togbuttoHlT '2;

/- determine outline parameters of tog button
togbuttorn_outlinex - BUI'OROUfLIntWILTH s et _agcalex:
togbutton outlineY - BVTTOMOL'TLINEVIDTH s et acaleY:

/- deter-mine width of dial box -
dialwidth -DIALVIC'H I aet _ caleX;
dialwidth2 dialeidth,2;

/- determine height of dial box
dialHT -DIALHT a et-acalex;
diAlh4T2 dial42;

/- determine dial outline paramcters
dialoutlineX - DIALO1'7LINEVIDTM * et _ caleX;
disloutlintY - DIA.LOVT'LXZ:DTH act acalel;

/- determine dial radius*
znsideradius - dialwidth2 - dialoutlineX - 0.3;
outradius - dialwidth2 - dialoutliiel - 0.1:

/* determine width of vertical slider bar
vertbar-idth b AlDTH * set _ caleX;
vertbarwidth: - ertbarwidth 72;

"determine height of vertical slider bar
verttarHT B A".-: - set scaleY;
vertbarMl! v ertbarM-7 2;

*determine width of slider button
vertsliderwidtt SLILEPWInh * aet scaleX:
vertaliderwidth vertsiiderwicitthT

I- determine height of slider button.
vertoliderMT SLI0ZPWIL Th - set scaleY,2;
vertsliderHT2 -vertasliderir'2;

/determine width of slider bar xnside
vertinsidebar-idth - nsideBAPWl-Tf. - set scaleX:
vertinsidebarwidth2 vertingioetarwdth, Z:

,determine width of horizenta' slider bar
hzbaridth BA"- - act scaleX:
hzbarwidth2 -hzbarwecdtth 1;

/- determine height of hcrizontal slider bar
hzbarMT -SAAWIDTH - set acaley;
hzbarHT2 -hzbarK2W2;

/1 determine width of slider button
hislider,.idth -SLIDZftUIDTM * at acaleX,2;
hzslidereidth2 -haslidervidth/2;

1* determine height of slider button -i
hzslxderH? SLIDERWIDTM - set acaleY;
hzaliderHT2 -hzsliderT/21;

/- determine width of slider bar insaide
hzinaxdebarwidth - nsideMA~w1VH acst acaleY7
hzinsidebarwidth2 hzinaidebarvidth'2;

Figure 3.6 Code to Set Global Coordinates for

Drawing control Icons

29



variables based on new x and y ratios is necessary to

prevent distortion of icon drdwings in the resized design

window.

Drawing of controls in the main window is accomplished

in the world coordinate system. This was done to facilitate

integration of NPS IB with the S & B package program, which

draws sliders and buttons in world coordinate system

coordinates. Although the S & B package program was never

fully integrated with NPS IB, the world coordinate system

remained the basis for NPS IB control drawings.

Unfortunately, using the world coordinate system means that

some distortion of the dial icon may occur if the design

window swept out by the user does not approximate a square.

This occurs because world coordinates may be stre.ched

longer along one axis of the design window if the window

does not approximate a square. This has the effect of

stretching the dial circle in the direction of the long

axis, making it look more oval than circular. This problem

can be resolved by adjusting the world coordinate system to

compensate for the longer windowv axis.

Resize and redraw code works the same way for the

control palette window as for the design window. New window

coordinates are obtained, ratios calculated, global

variables computed, and the window is redrawn. Redraw code

for the message buffer is much simpler, however, since this

window always remains the same size. To effect a move of

30



the message buffer window, it is necessary to obtain the

lower left x and lower left y coordinates of the new window

position and enter them into the window record structure.

The message buffer window is then drawn in its new position.

F. DRAWING ALGORITHMS

1. Control Palette Window Drawings

Four controls are drawn in the control palette

window after the main routine opens the window up. These

four controls are a toggle box, a dial, and two versions of

a slider, one oriented lengthwise along the y axis and the

other oriented lengthwise along the x axis.

Code for drawing the control palette window is

located in the file tool window.c. First, global variables

for drawing control icons are calculated based on world to

screen ratios as described in the previous section of this

chapter. Then the center x and center y of each control are

established. The control center x and center y are fixed

points specified in the global include file tglobal.h. This

means that positions of controls in the window can be

altered by editing the tglobal.h file rather than by

accessing the drawing code directly. A single pass through

the drawtools routine then draws each control icon. For

each rectangular portion of each control drawn, the lower

left corner and upper right corner points are calculated,

utilizing center points and global size variables. Text

drawing is accomplished in the same way. For circle

31



drawing, the center x and y points are given in tglobal.h

and the radius is calculated based on the size of the dial

outline box. A control identification number is loaded onto

the names stack as the largest portion of each control is

drawn. This number identifies the type of control for the

IRIS picking mechanism.

2. Design Window Drawing

Code for drawing control icons in the design window

is located in the file draw.c. The code in the file handles

two cases of drawing controls in the design window. The

first case involves the drawing of a floating control tied

to the mouse cursor, which the user can then move about the

design window to determine control placement. The second

case involves drawing a fixed control which appears in the

design window after the user clicks the middle mouse button

to set placement of the floating control.

Four separate routines accomplish the drawing of the

four controls. The separation of control drawing routines

permits the use of the same drawing code for drawing of both

floating and fixed controls. Figure 3.7 shows the code used

to select the appropriate drawing routine for the floating

control icon. The routine switches on the variable tool-

picked, which holds the identification number of the type of

control selected from the control palette window. The case

statement is entered when toolpicked matches a control

identification number, and subsequently the appropriate

32



/* this routine determines which floating tool is to be
drawn */
drawthefloatingtool(fx,fy)
float fx,fy;
{
switch(toolpicked)
{
case TOGBOX:

/* draw a toggle box */
drawfloatl = TRUE;
drawthetogbox(fx,fy,titlebuffer);

break;

case DIAL:

/* draw a dial */
drawfloat2 = TRUE;
drawdial(fx,fy,titlebuffer,curnum);

break;

case VSLIDER:

/* draw a vertical slider */
drawfloat3 = TRUE;
drawvertslider(fx,fy,slidertitle,curnum);

break;

case HSLIDER:

/* draw a horizontal slider */
drawfloat4 = TRUE;
drawhorizslider(fx,fy,slidertitle,curnum);

break;

default:

qdevice(INPUTCHANGE);
qdevice(RIGHTMOUSE);
qdevice(LEFTMOUSE);

break;
)

Figure 3.7 Program Code for Drawing Floating Control

33



control drawing routine is called. Because the same code is

used for drawing floating and fixed controls, it became

necessary to number th- drawfloat variable in order to

prevent side effects to the other controls when any floating

control was being drawn. By numbering the drawfloat

variable, it was possible to draw just a floating dial, for

example, and still cycle through the drawing code for the

other controls without any adverse affects, even though that

code also contained provisions for drawing floating

controls. Figure 3.8 illustrates the code used to draw

fixed controls in place in the design window. After a

control is selected from the control palette and dropped

into place in the design window, a record structure is

created for the control and entered into the control linked

list. This reduces the drawing algorithm to a traversal of

four linked lists, with the proper drawing routine called

for each control encountered in the traversal. As each

control in the list is traversed, pointers access the

information for that control and provide the information to

the drawing routine.

Each control drawing routine is configured to handle

the drawing of a floating or fixed control. The routine for

drawing a toggle box is shown in Figure 3.9 as an example.

If a floating control is to be drawn, the routine is entered

with the x and y coordinates of the cursor, which at this

point has been placed in the center of the design window.

34



1* this routine draws the design window picture by calling
individual tool
drawing routines *
drawthepictureoC

/* for the number of toggle boxes we have ... *
for (togboxcurrent = togboxhead; togboxcurrent 1=NULL;

togboxcurrent = togboxcurrent->next)

/* ... draw them */
drawthetogbox (togboxcurrent->Xcoord, togboxcurrent->Ycoord,

togboxcurrent->title);

/* for the number of dials we have ... *
for (dialcurrent = dialhead; dialcurrent != NULL;

dialcurrent = dialcurrent->next)

/... draw them */
drawdial (dialcurrent->Xcoord, dialcurrent->Ycoord, dialcur-

rent->title, dialcurrent->current);

/* for the number of vertical sliders we have ... *
for (verticalslidercurrent = verticalsliderhead;

verticalslidercurrent != NULL; verticaislidercurrent=
verticalsl idercurrent->next)

/* ... draw them *1
drawvertsl ider (verticalsi idercurrent->Xcoord,

verticalslidercurrent->Ycoord,verticalslidercurrent->title,
verticalslidercurrent-> current);

/* for the number of horizontal sliders we have .. *
for (horizslidercurrent = horizsliderhead;

horizslidercurrent != NULL; horizslidercurrent=
horizslidercurrent ->next)

/* ... draw them */
drawhorizslider(horizslidercurrent->Xcoord,

horizslidercurrent-> Ycoord,horizslidercurrent-> title,
horizslidercurrent-> current);

/* end drawthepicture */

Figure 3.8 Program Code for Drawing Fixed Controls

35



/* this routine draws the checkboxes in the main window *
drawthetogbox (tx,ty, string)
char *strzng;
float tx,ty;

float xl,z2,yl,y2;

/- save the matrix on top of the stack *
pushmatrix();

if (drawfloatl)

/* translate the tool to where we want it
tranalate(tx,ty,0.0);

/* need to draw the tool at 0.0 so it may be properly translated ,

tXc - 0.0;
ty - C.0:

/draw the button outline/
xl - tx. - togbuttonwidth2;
x2 - xl 4 togbuttonwidth;
yl - ty - togbuttonHT2;
y2 - yl 4 togbuttonHr:
RG~color (BUTTONOUTLINE);
if ('drawfloat)

loadna,e (togboxcurrent->nun);
rectf (zl,yl,x

2
,y

2
);

/- draw the button inside
xl - xI 4 togbutton_outlineX;
x2 - x2 - togbutton_outlineX;
yl - yl + togbutton_outlineY;
y:- y2 - tog.,..ton_outlineY;

if (drawflcatl)

RGBcolor )F.YTTONNSIDEOYFi;
rectf (xl,y.,x2,y2 ;

else

if (togboxcurrent->onoff - ON)

RGBcolor (BL!TTONINSIDEON);
rectf ~l,yl~z2,y2);,

else

RGBcolor (BtTTONINSIIDLOFF);
rectf (xl,yl,x2,y2);

/* draw the button title/
RG~color (TITLECOiOP);
xl - tx + 25 s etsCaleX;
Yl - ty - togbuttonHT2 * set scaleY;
CeOV2 (xl,yl);
charstr (gtring);

/* restore the top of the matrix stack
Popmatzixfl:

drawfloatl - TALSE;

Figure 3.9 Toggle Box Drawing Routine

36



The drawing matrix is saved on top of the stack, and the

routine if-loop construct is entered. In the if-loop

construct, the computer is instructed to translate the

drawing of the control to the position of the cursor. This

ties the drawing of the control to the position of the

cursor and creates the floating effect of the control. The

x and y coordinates passed into the routine are then set to

zero, and become the center x and center y for drawing of

the control. This means that the icon is drawn at

(0.0,0.0,0.0) and then translated to the position of the

cursor. The top of the matrix stack is then popped.

If a fixed control is to be drawn, the drawing

routine is entered with the control record x and y

coordinates, which were saved when the user dropped the

floating control into the design window. The if-loop

construct of the routine is skipped, eliminating the

translation portion of the routine. The saved x and y

coordinates are then used to calculate coordinates for

control drawing. In addition, a unique identification

number is loaded with the largest portion of the fixed

control drawn. This number is used to identify the control

for the IRIS pick mechanism.

G. EDIT DESIGN MODE

1. IRIS PickinQ Mode

The IRIS picking mechanism can be used to identify

objects on the screen that appear near the cursor. When the

37



picking mechanism is invoked, the system loads the product

of the window projection transformation matrix and the

picking matrix at the top of the matrix stack. This maps

objects to be picked to their proper coordinates. The

system then records hits for any routines that draw into the

picking region [Ref. 9].

2. Control Selection

The IRIS picking mechanism is used to select

controls in the control palette window. When a control is

picked, its identification number is loaded into the

variable toolpicked. The user is then asked to give the

control name and value attributes. The code to perform

this action is located in the file process.c. The nametool-

picked routine switches on the value of toolpicked in order

to make proper queries to the user for obtaining control

information. The nametoolpicked routine calls the keyboard

input routine in order to permit users to enter information.

When proper information for the control has been obtained,

the system draws a floating control as described in Section

F of this chapter.

3. CreatinQ Record Structures for Saving Graphics
Information

When the user clicks the middle mouse button to drop

a control into the design window, a record structure is

allocated for the control, and all graphics information is

immediately recorded into the proper field. The code for

accomplishing this is also located in the file process.c.

38



Figure 3.10 shows creation of a record structure and saving

of graphics information for a toggle box. The code

illustrated also shows the insertion of the record into the

linked list. If it is the first record in the list, the

head and tail pointers are set to that record and the next

pointer is set to NULL. If the record is not first in the

list, the record is just appended to the list and the tail

pointer is adjusted to that record. This process works the

same way for the other controls, thus code for those

operations is not reprinted here.

H. MOVE CONTROL MECHANISM

The NPS IB program would be terribly constraining if

users were locked in to any one placement for a control.

The move control mechanism gives a user the ability to move

controls that have already been placed in the design window.

The routines that provide NPS IB with its move capability

are located in the file move.c. In addition, move.c

contains the routine which will delete a control from the

design window.

The IRIS picking mechanism is used to select the control

to be moved in the design window. The identification number

of the control selected is read into the variable tool-

picked. The routine getcontrolid searches through record

structures in each linked list, attempting to match the

number in the variable toolpicked with the identification

number saved in each record structure. Figure 3.11 shows a

39



/* allocate memory for this guy */
cbr = (togboxrecord*)malloc(sizeof(togboxrecord));

/* store the graphics information */
strcpy(cbr->title,titlebuffer);
cbr->num = controlindex;
cbr->Xcoord = sx;
cbr->Ycoord = sy;
cbr->llxbd = sx - togbuttonwidth2;
cbr->urxbd = (sx - togbuttonwidth2) + togbuttonwidth;
cbr->llybd = sy - togbuttonHT2;
cbr->urybd = (sy - togbuttonHT2) + togbuttonHT;
cbr->onoff = OFF;
cbr->next = NULL;

/* put the guy in the list */
if (togboxhead == NULL){
/* this is the first guy in the list */
togboxhead = togboxtail = cbr;

/* set tail pointer to null */
togboxtail->next = NULL;

)
else
{
/* set the pointer for the last guy in the list to the new

guy */
togboxtail->next = cbr;

/* now reset the tail pointer */
togboxtail = cbr;

)

Figure 3.10 Record Creation and List Maintenance
for a Toggle Box

code segment from the routine used to accomplish this. If

the control is found, the identification number in the

variable toolpicked is replaced by a second number

identifying the type of control found. This is because the

variable toolpicked will be used to determine the type of

floating control icon to be drawn in the design window when

40



/* this routine identifies the tool found in the pick */
getcontrolid()
(

int found = FALSE;

/* set previous and current list pointers to head */
togboxprevious = togboxcurrent = togboxhead;
verticalsliderprevious = verticalslidercurrent =

verticalsliderhead;
horizsliderprevious = horizslidercurrent =

horizsliderhead;
dialprevious = dialcurrent = dialhead;

/* loop through all the lists until we find the guy ... */
while ((!found) && (toolpicked > 0))
{
/* search the list of tcggle boxes */
while ((togboxcurrent != NULL) && (!found))
{

if (togboxcurrent->num == toolpicked){
toolpicked = TOGBOX;
strcpy(titlebuffer,togboxcurrent->title);
if (togboxcurrent == togboxhead)
togboxhead = togboxhead->next;

togboxtemp = togboxcurrent;
found = TRUE;

I
else
{
togboxprevious = togboxcurrent;
togboxcurrent = togboxcurrent->next;

)

... (search remaining list of controls)
) /* end while */
/* end getcontrolid */

Figure 3.11 Searching Linked Lists for a Control

the move is to occur. Any graphics information necessary

for drawing the floating control is transferred from the

record to buffer variables.

If the control to be moved has a record structure at the

head of a linked list, the head pointer is advanced to the

41



next record in the list. This has the effect of removing

the icon drawing from the design window, since the control

drawing algorithm is regulated by a traversal of the linked

list, starting from the head pointer. If the control is not

at the head of a list, the pointer from the structure

preceding the control to be moved is simply redirected to

point at the structure following the control to be moved.

This has the effect of erasing the control from the design

window since the node of the control to be moved is not

visited when the linked list is traversed for drawing.

Erasure of the control to be moved corresponds with the

appearance of a floating control in the design window. The

floating control is labeled with all the attributes of the

previously fixed control. The user manipulates the floating

control to a new position, then presses the middle mouse

button to drop the moved control into place. Drawing the

moved control is simply a matter of saving the new graphics

information and then replacing or reconnecting pointers, as

illustrated in the code segment of Figure 3.12. If the head

pointer was moved, it is replaced at the head of the list.

Otherwise, the pointer preceding the structure for the moved

control is reconnected to the moved control structure. The

delete control mechanism is an extension of the move control

mechanism. Pointers are redirected in the same manner as

for the move control mechanism. But instead of reconnecting

the record structure when the middle mouse is clicked, the

42



/* get the new control coordinates */
togboxtemp->Xcoord = sx;
togboxtemp->Ycoord = sy;
togboxtemp->llxbd = sx - togbuttonwidth2;
togboxtemp->urxbd = (sx - togbuttonwidth2) + togbuttonwidth;
togboxtemp->llybd = sy - togbuttonHT2;
togboxtemp->urybd = (sy - togbuttonHT2) + togbuttonHT;

/* if the control moved had the head pointer, restore it */
if (togboxprevious->next == togboxhead)
togboxhead = togboxprevious;

else
togboxprevious->next = togboxtemp;

Figure 3.12 Code for Reconnecting a Moved Control
Structure in the Linked List

pointers remain in the new configuration. The tool is

eraised from the design window and is not replaced. The

memory occupied by the old record structure is freed and

made available for other use.

I. RUN CONTROL MECHANISM

The run control mechanism provides a user with the

ability to check the operation of controls in the design

window. To invoke the run control mode, the user selects

the run controls option from the program main menu. The

user can then use the left mouse button to operate any

control in the design window. The run control option is

deselected when another menu option is chosen. The code for

the run control option is locatea in the file run.c.

When the run control mode is invoked, the mouse x and

mouse y coordinates are read. The operatecontrol routine

then traverses the four linked lists and compares the mouse

43



x and mouse y locations with the boundary limits for each

control. If the cursor lies within the boundary limits of a

control, that particular control is operated. Figure 3.13

is a code segment illustrating operation of a toggle box.

/* get the world coordinates from the mouse */
wx = ((float) (getvaluator(MOUSEX))-dllx)*set scaleX;
wy = ((float) (getvaluator(MOUSEY)) -dlly) *set-scaleY;

/* now traverse the linked lists to see if we are in within
the bounding box of a control */

/* for the number of toggle boxes we have . . .
for (togboxcurrent = togboxhead; togboxcurrent != NULL;

togboxcurrent = togboxcurrent->next)
{
/* do the boundary test */
if ((wx > togboxcurrent->llxbd) && (wx < togboxcurrent->

urxbd) &&
(wy > togboxcurrent->llybd) && (wy < togboxcurrent->

urybd))
{
/* switch the control to the other position, based on
what position its already in */
if (togboxcurrent->onoff == OFF)
togboxcurrent->onoff = ON;

else
togboxcurrent->onoff = OFF;I

Figure 3.13 List Traversal and Toggle Box Operation

44



IV. NPS INTERFACE BUILDER MESSAGE BUFFER

A. PURPOSE OF THE MESSAGE BUFFER

The NPS IB message buffer window gives the program its

help capability. The message buffer window provides help by

displaying instructions designed to guide a user through

accomplishment of a task made by menu selection. The

message window also provides verification information by

sending a message to the screen when some action has been

completed, such as moving or deleting a control. The

message buffer window gives the NPS IB a means of providing

more informative feedback to the user.

B. OPERATION OF MESSAGE BUFFER WINDOW

Definitions of structures that support operation of the

message buffer are located in the file mess.h. The

structure which defines a line of text to be displayed in

the buffer is illustrated in Figure 4.1. The structure

consists of two pointers; the pointer called ptr is directed

to a string of text which constitutes a line, and the

pointer called next is directed to the next line in the

buffer. The structure which holds attributes of the message

buffer window is shown in Figure 4.2. The variables nlines

and nchars hold the number of lines in the buffer and the

maximum line length for the buffer respectively. These

values will be used to compute height and width for setting

45



/* define a type and structure for each line of the ring
buffer that is the message buffer display.

struct lineinbuf

(

char *ptr; /* ptr to the string for this line */

struct lineinbuf *next; /* ptr to next line in the
buffer */

1;

typedef struct lineinbuf LINEINBUF; /* define a line in
the buffer type */

Figure 4.1 Structure that Defines a Line of Text

the size of the message buffer window. The pointers topline

and lastline point to lines of display buffer text, with

topline directed at the first line of the display and

lastline directed at the last line of the display. The

field winname holds the name of the window opened for the

message buffer, and the fields x and y hold the lower left

corner value of the window. Textcolor defines the color of

the message buffer text, while backcolor holds the color of

the background of the message buffer window. Finally, the

fields width and height hold the computed values of width

and height for the window.

The routines which create and operate the message buffer

window are located in the file mess.c. These routines open

the message buffer window and govern the operation of the

ring buffer. The ring buffer provides the mechanism that

gives the message buffer window its appearance of scrolling

46



/* define a type and structure for the message buffer */
struct messbuf(

long nlines; /* number of lines in the buffer */

long nchars; /* maximum line length for the buffer */

LINEINBUF *topline; /* ptr to top line of the display

LINEINBUF *lastline; /* ptr to last line of the display*/

long winname; /* the name of the window opened for
this message buffer.

long x,y; /* lowerleft corner of ther message
buffer */

short textcolor; /* color of the text in the message
buffer */

short backcolor; /* color of the background in the
message buffer */

long width; /* width in pixels of the message buffer*/

long height; /* height in pixels of the message
buffer */

1;

typedef struct messbuf MESSBUF; /* define type MESSBUF
(need one of these for every defined message buffer) */

Figure 4.2 Structure that Defines Message Buffer Window

text. In the routine createmessbuf, memory is dynamically

allocated to accommodate the structure and values are read

in for the size, location, and color of the window. Then

the ring buffer is created. The code in Figure 4.3 shows

how the ring buffer is set up. For the number of lines

47



/* we are going to build a circularly linked list with links
in only 1 direction.*/

/* say there is no previous guy */
prev = (LINEINBUF *)NULL;

/* build the list backwards */
for(i=O; i < ilines; i=i+l)
{

temp = prev; /* hold the previous guy's loc *

/* get space for this line.
if i == 0, this guy is the last link of the list.*/

prev= (LINEINBUF *)malloc(sizeof(LINEINBUF));

if(i 0)
{

/* save prey as lastline of the buffer */
mess->lastline = prev;

)

/* set the next field at held previous guy */
prev->next = temp;

/* get space for the line of text plus 1 */
prev->ptr = (char *)malloc((ichars+l));

/* stick chars into the string */
strcpy(prev->ptr,"");

) /* endfor all lines in the buffer */

/* at the end of the for loop, prev == ist line. */
mess->topline = prev;

/* must make last line point back at first line */
mess->lastline->next = mess->topline;

Figure 4.3 Code for Constructing Ring Buffer

specified, memory is allocated for the LINEINBUF structures.

The first structure created gets the lastline pointer. As

48



the routine cycles through the loop, it also allocates space

for text and initializes text fields to empty characters.

The topline pointer is set to the last structure created,

and then the lastline next pointer is directed at the

topline node, thus completing the ring. The window and ring

buffer are then ready for display.

The display routine sets the message buffer window as

the current graphics window, then clears the background and

draws the window border. The routine then cycles through

the ring buffer list and subsequently displays each line of

text as saved in each LINEINBUF structure. The display

routine is called once, near the end of the main driver

program. This means that lines added to the message buffer

routine outside the main driver are not displayed until the

return to main.

Adding a line of text to the ring buffer for display in

the message buffer window is mostly a matter of manipulating

the topline and lastline pointers. This code is shown in

Figure 4.4. The topline pointer is advanced to the next

node in the list. The lastline pointer is also advanced to

the next node in the list, which is the old position of

topline. New text is then copied into the ptr field of the

node pointed to by lastline. This has the effect of wiping

out the old text, which was the previous first line, and

replacing it with new text in a line at the bottom.

49



addlinetomessbufs, str)

MESSBUF *mess; 1* ptr to message buffer *

char str[J; /* character string *

/* push topline ahead to next guy *
mess->topline = mess->topline->next;

/* push lastline ahead to next guy */
mess->lastline = iess->lastline->next;

/* stick in the line at lastline *
if(strlen(str) <= mess->nchars)

strcpy(mess->lastline->ptr,str); /* just stick in the
string *

else

/* only copy the first bytes up to the end of the line
available */

strncpy(mess->lastline->ptr, str,mess->nchars);

Figure 4.4 Adding a Line of Text to the Ring Buffer

50



V. NPS INTERFACE BUILDER OUTPUT

The NPS IB program produces two forms of output. One

type of output is a "C" language graphics program skeleton

that can be integrated with the user's application program

to produce a whole software system. The second type of

output is an ASCII file that lists all graphics information

saved for a particular interface. The information saved in

the ASCII file can be read back into the NPS IB program,

thus enabling a user to re-edit a previously constructed

interface.

A. SAVING INFORMATION TO OUTPUT FILES

When the user elects the save option from the main menu,

the main driver portion of the program calls routine save-

design to create both output files. The savedesign routine

is located in the file save.c. The savedesign routine

obtains a user-input file name by calling the keyboard

routine for user input, and then allocates memory and opens

two files for writing. The user-input file name is appended

with a ".c" extension and is given to the file intended for

use as a "C" language program. An unaltered version of the

user-input file name is given to the ASCII output file.

Naming the files in this manner relieves a user from the

burden of remembering two totally different file names.

Addition of the ".c" extension to the name for the "C"

51



language output file facilitates the compilation and

execution of that file by eliminating the need to copy from

a file without a ".c" extension to a file with a ".c"

extension.

After opening both files, the routine proceeds to write

information to those files. The "C" language output file

gets a global include line, routine name, and declaration of

variables. The ASCII output file gets comments and

coordinates for the size of the design window. The routine

then enters four consecutive loops that traverse the linked

lists and write the information from the lists to the output

file. Sample code for this is shown in Figure 5.1. For the

"C" language output file, the information is saved in the

form of a call to a routine. When the "C" language output

file is linked with support files, this routine will obtain

information from the call to create an array entry for a

particular control. The support routines will use the

graphics information saved in the array to recreate the

interface desianed in the NPS IB program. The information

is transferred from a linked list format to an array format

because the array permits faster access of control current

values by eliminating the need to traverse lists.

When the linked lists are traversed, graphics

information is also saved to the ASCII output file, in the

form of tokens followed by individual control values read in

52



/* for the number of toggle boxes we have ...
for (togboxcurrent = togboxhead; togboxcurrent != NULL;

togboxcurrent = togboxcurrent->next)
{

/* increment toggle box count */
togboxnum++;

/* write them to the file */
fprintf(outfile,"\n maketogbutton(\"%s\",%f,%f,%f,%f,

\n\t\t%f,%f,%d) ;",
togboxcurrent->title,togboxcurrent->Xcoord,

togboxcurrent->Ycoord,togboxcurrent->llxbd, togboxcurrent->
llybd, togboxcurrent->urxbd,togboxcurrent->
urybd,togboxnum);

fprintf(outfiletwo,"V* toggle box information *V\n");
fprintf(outfiletwo, "togglebox\n");
fprintf(outfiletwo,"title %s\n",togboxcurrent->title);
fprintf (outfiletwo,"controlnum %d\n",togboxcurrent->num);
fprintf(outfiletwo,"Xcoord %f\n",togboxcurrent->Xcoord);
fprintf(outfiletwo,"Ycoord %f\n",togboxcurrent->Ycoord);
fprintf(outfiletwo,"lowerleftxbound %f\n",togboxcurrent->

llxbd);
fprintf(outfiletwo,"lowerleftybound %f\n",togboxcurrent->

llybd);
fprintf(outfiletwo,"upperrightxbound %f\n",togboxcurrent->

urxbd);
fprintf(outfiletwo,"upperrightybound %f\n",togboxcurrent->

urybd);
fprintf (outfiletwo, "togboxend\n\n");)

Figure 5.1 Code for Writing from Linked Lists
to Output Files

from the linked lists. The tokens will be used to identify

what the values are when the file is scanned and read back

into the NPS IB program.

Saving iniormation to the ASCII output file ends with

traversal of the last linked list. The remainder of the

savedesign routine writes the rest of the graphics program

skeleton to the "C" language output file. At the end of the

53



routine, both the ASCII output file and the "C" language

output file are closed.

B. SUPPORT ROUTINES FOR THE "C" LANGUAGE OUTPUT FILE

The purpose of the "C" language output file is to

produce a working program with recreation of the interface

designed with the NPS IB program. The "C" language output

file is not a stand alone file, however. It must be linked

with support files and routines in order to operate

correctly. The concept of this portion of the program is

modeled upon the S & B package program. The user-defined

main portion of the S & B package makes calls to routines

defined in separate files in order to create its windows of

sliders and buttons.

The support files and routines for the NPS IB program

"C" language output file are located in the files interface-

global.h, interfacepkg.h, and interfacepkg.c. The files

interfaceglobal.h and interfacepkg.h contain global constant

and variable definitions. Interfaceglobal.h contains mostly

constant definitions for color and size of tools. Inter-

facepkg.h contains global variable definitions for holding

the computed size of controls, positions of slider buttons

and dial needles, x and y boundaries of control icon

drawings, and other variables necessary for operation of the

program. The file interfacepkg.c contains all the routines

needed to support the main portion of the program created by

NPS IB. The routine maketogbutton reads in graphics

54



information for toggle boxes and enters each toggle box into

a toggle box array. Sample code for this process is shown

in Figure 5.2. The routine makevslider reads in graphics

information about vertical sliders and enters each one into

a vertical slider array. Makehslider is the routine that

enters graphics information about horizontal sliders into a

horizontal slider array. Makedial takes graphics

information about dials and reads that information into a

dial array. The routine initwindow sets window parameters

and attributes, and calls the routine setcoordi-nates to

compute the values of global coordinate variables for

drawing control icons.

maketogbutton(title,togx,togy,togllx,toglly,togurx,togury,i-
ndex)
char *title;
float togx,togy,togllx,toglly,togurx,togury;
int index;

/* adds new button to array of buttons */
{
buttonTITLE[index] = title;
togcntrX[index] = togx;
togcntrY[index] = togy;
togllxbd[index] = togllx;
togllybd[index] = toglly;
togurxbd[index] = togurx;
togurybd[index] = togury;
buttonvalue[index] = OFF;)

Figure 5.2 Code for Entering Information into
the Toggle Box Array

55



The routine drawpicture is called from the main driver

program. Four separate drawing routines, one for each type

of control, are called from within drawpicture. For-loops

internal to each drawing routine control the numbers of each

type of control drawn. The for-loop index provides access

to the array of information for each control.

Other routines in the package include those that return

the current value for each control, and those that cause the

controls to operate. The mechanism which runs controls for

the "C" language output file program is exactly the same as

that described for the NPS IB program itself. The mechanism

is detailed in Section I of Chapter III.

C. THE ASCII OUTPUT FILE AND THE RE-EDIT FEATURE

The re-edit feature is selected from the program main

menu. The re-edit feature makes the NPS IB program more

versatile because it permits a user to read into NPS IB the

information for a previously created interface, and allows

continuation of editing on that interface. A re-edited

interface must be explicitly saved if the user desires to

keep it. Changes are not automatically recorded to the

output files.

Operation of the re-edit feature is quite straight-

forward. The NPS IB linked lists are cleared to NULL,

essentially wiping any previous interface out of the design

window. Then the ASCII file is scanned and information read

from the file is used to create new linked lists. When the

56



new linked list is traversed by the program drawing routine,

the new control icons are drawn in the design window.

Routines in two separate files give the NPS IB program

its re-edit option. The file edit.c contains code to read

in a file name, process tokens and values, and build the

linked lists. The file scan.c contains the routines

necessary to scan the ASCII file information.

The format of the ASCII output file is crucial to the

correct operation of the re-edit feature. Comments must be

bracketed according to the "C" language convention for

indicating comments. Tokens must always have the same name,

and a token and its associated value must always appear on

the same line, separated by at least one space. Each block

of information for a control must end with a special token

which then signals the editing routine to process the

information received. If the ASCII file is edited directly

to improper form, or if the user reads in a file not in the

ASCII format, an error will occur.

The readfile routine in file edit.c processes tokens

read in from the ASCII output file. The routine asks the

scanner to pass it a token number, then switches on the

value of the token to determine which global variable

applies. When the type of the token is identified, the

routine asks the scanner for another token, which it knows

is the value assigned to the token type because of the

arrangement of the ASCII output file. When the routine

57



switches on a token type that denotes the end of a block of

information for a control, the appropriate processing

routine is called to dynamically allocate memory for a

record structure and to enter control attributes into the

record. Linked list maintenance is also taken care of in

the processing routines. These routines are also located in

the file edit.c.

The scanner routines are located in the file scanner.c.

The routine filllinebuf performs file input/output by

reading from the file into a line buffer. As long as the

line buffer is filled with input from tne file, the routine

nexttok can process input. It does this by returning token

codes to the routine gettoken based on characters seen. A

space, for example, is ignored and thus the routine returns

a zero to gettoken. A letter on the other hand, is a

legitimate character, and the code for an identifier is

returned to gettoken for further processing. In gettoken,

an identifier token is compared against a list of specially

selected tokens. If the identifier token matches a token in

the list, the identifier token takes on the value of the

token in the list. This value is then returned to the read-

file routine.

58



VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

The NPS IB provides graphics students at NPS with a

simple interface builder for application programming. It is

quick, easy to learn, and easy to use. An application

programmer, for example, can use NPS IB to create a graphics

program that opens a window and draws three sliders in less

than five minutes. Yet, the NPS IB falls far short of goals

and expectations envisioned for the original project.

Although the basic functionalities of the program are

successfully implemented, the program lacks detailed control

icon drawings and routines which would give the user more

freedom and flexibility to create professional-looking

interfaces. An interface builder should be flexible enough

to permit a user to accomplish almost any action he can

think to perform. The NPS IB fails on this point.

Programming an interface generator is a complex and

difficult task. To provide a user with maximum detail and

functionality, the complexity of the program seems to

increase proportionately. David Tristram of NASA Ames

writes that it took him nearly a year and one-half to

develop and implement his panel package [Ref. 5]. His

result is a slick and professional-looking product with

endless possibilities. But even his program has its

limitations. It lacks an interactive capability, and

59



requires a fairly good understanding of the "C" programming

language to use. To develop a really useful interface

generator for the IRIS workstations, the capabilities of the

NPS IB program must eventually be melded with a product such

as the NASA Ams Panel Package. Since such a product was

the original goal of this study, perhaps the current state

of the NPS IB can be viewed as a foundation work towards

what might one day be a more powerful and productive

interface generator for the Silicon Graphics IRIS

workstation.

A. CONCLUSIONS AND LIMITATIONS

1. Controls

The NPS IB limits a user to three choices of

controls--a togglebox, a dial, and two versions of a slider.

These controls are the most basic ones found in graphics

programs, and as such, the selection of controls provided by

NPS IB should be adequate for the majority of programmers.

Many additional types of controls are possible, however, and

could easily be included in the NPS IB selection. A larger

inventory of controls would make NPS IB a much more

versatile tool.

In addition, NPS IB limits a user to a single icon

representation of each control. This is perhaps the single

greatest restrictive feature of the NPS IB program. Many

versions of toggleboxes, dials, and sliders are possible,

through variation of shape and size. The user should

60



either: (1) be able to pick and chose icons of proper shape

and size from an expanded control palette, or (2) be able to

alter the shape or size of the control interactively after

selecting the control from the palette window. This would

allow for greater user creativity in designing interfaces

and would ultimately result in greater satisfaction for the

user overall.

2. Color

The NPS IB program currently uses a repertoire of

six colors to draw window backgrounds and control icons.

The user is limited to an interface designed in five colors,

unless he edits the color portion of the interface output

file directly. This should not be necessary, however. Just

as a user should be permitted to select shape and size of

controls, he should be allowed to adjust color as well. The

NPS IB program should permit the user to utilize any color

combinations that the IRIS workstation provides. The NPS IB

program does the user a great disservice in preventing him

from exercising the color capabilities of the IRIS machine.

Like shapes and size, color can help to distinguish

variation among various types of controls. Choice of color

scheme for an interface can also be a critical design issue

for an application programmer. Lack of color adjustment on

part of the NPS IB is another serious deficiency of the

program. A mechanism for adjusting color in the NPS IB

61



would contribute greatly to user creativity and

satisfaction.

3. Icon LabellinQ

The NPS IB program labels each togglebox with its

user-input name and each dial and slider with its user-input

name and current value. For a togglebox, the name label is

aligned to the right of and even with the bottom of the icon

itself. For dials and sliders, the name label is centered

on the vertical axis of the control and placed directly over

top of the icon drawing. The current value of dials and

sliders is also centered on the vertical axis of the control

but is placed directly beneath the icon drawing. The NPS IB

limits the user to these label placements. Provisions for

interactive placement of labels and additional text would

make the NPS IB program a more flexible tool for designing

user interfaces.

B. FUTURE WORK

Future work on the NPS IB should be directed in two

basic areas. The first area involves the development of an

increasea control icon inventory and addition of program

routines which would alleviate program limitations and user

restrictions discussed in Section A of this chapter. The

second area concerns improvements to the user interface of

the NPS IB itself.

62



1. Expanded Inventory of Controls

Work in this area should focus upon building a

library of controls, to include such things as palettes,

pucks, checkboxes, radio buttons, meters, and strip charts,

as well as different varieties of toggleboxes, dials, and

sliders. Ideas can be drawn from the user interface

features of the Macintosh or NeXT computers, or from SIGRAPH

videotapes, or even from David Tristram's Panel Package.

The control inventory might also include useful interface

features such as a file finder, input boxes for text, and a

message buffer similar to the one displayed by NPS IB. The

icons representing these functionalities could be

interactively placed in the design window by the user, in

the same way that controls are placed in the design window

now.

2. AddinQ Controls to NPS Interface Builder

Adding a control to NPS IB is currently a multistep

process. The first step involves creating a data record

which will hold all the pertinent graphics information about

the control. The next step is to draw the control icon in

the control palette window. The third step is to make

appropriate changes to files in the NPS IB program which

will draw the control to the design window (draw.c), save

the graphics information for the control (process.c), permit

the control to be moved or deleted (move.c), permit the

control to be operated (run.c), and which will write the

63



graphics data for the control to an output file (save.c).

Steps one and two are not complicated, but step three

involves quite a bit of work. A simpler method of adding

controls to NPS IB needs to be devised, especially if the

inventory of controls is to be greatly expanded. Perhaps

one method of simplifying the process of adding controls to

NPS IB would be to restructure the program so that any and

all changes would be confined to one file or module. This

would save time and effort by reducing the overhead needed

to access many different files or modules for change.

3. Interactive Size, Shape, and Color Adjustment

To allow a user greater control over the appearance

of an interface created with NPS IB, routines should be

added to the program to permit interactive size, shape, and

color adjustments to controls. Sizing and shaping

mechanisms might be patterned after those used by the Sun

workstation Framemaker program or after Apple Macintosh

programs like Macdraw. A color adjustment mechanism might

employ the IRIS workstation's own cedit program. Any

changes to size, shape, or color generated by these routines

would then be saved to the data record for that control and

subsequently written to the NPS IB output file.

4. Improving Interface of NPS Interface Builder

One oft-repeated rule of interface design is that a

program should help prevent a user from committing errors.

Unfortunately, this rule is not often followed in the NPS IB

64



program. Although the message buffer window attempts to

assist a user by offering instructions and verification

information, many user actions are immediately implemented

by the program without seeking confirmation. This flaw in

the program could allow a user to mistakenly delete a

control, and could force him to repeat the process of

selecting, naming, and placing the control over again.

Further work in this area would involve the implementation

of confirmation windows or messages which would give the

user pause to consider his action and would permit him to

back out of the action if so desired.

65



LIST OF REFERENCES

1. Fisher, Alan S., CASE--Using Software Development Tools,
John Wiley and Sons, Inc., 1988.

2. NeXT Inc., Online User's Manual for the NeXT Computer,
Chapter 7, Fremont, California, 1989.

3. Telephone conversation between Mary Ellen Welch, Oakland
Group Inc., and the author, 25 January 1990.

4. Hartson, H. Rex and Hix, Deborah, "Human-Computer Inter-
face Development: Concepts and Systems," ACM Computing
Surveys, Association for Computing Machinery, 1989.

5. Tristram, David A., Online Documentation for the Panel
Package, NASA Ames Research Center, 1989.

6. Tristram, David A., Panel Library Programmer's Manual,
Version 9, NASA Ames Research Center, 1989.

7. Shneiderman, Ben, Designing the User Interface, Addison-
Wesley Publishing Company, 1987.

8. Dumas, Joseph S., Designing User Interfaces for
Software, Prentice-Hall, Inc., 1988.

9. Silicon Graphics, Inc., IRIS User's Guide, GT Graphics
Library User's Guide, Mountain View, California, 1987.

66



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Dr. Michael J. Zyda, Code 52Zk 15
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. LT Susan Lynn Dunlap 2
16795 Gallop Drive
Morgan Hill, California 95037

5. John Maynard 1
Code 402
Naval Ocean Systems Center
San Diego, California 92152

6. Duane Gomez 1
Code 433
Naval Ocean Systems Center
San Diego, California 92152

7. James R. Louder 1
Naval Underwater Systems Center
Combat Control Systems Department
Building 1171/1
Newport, Rhode Island 02841

8. Research Administration, Code 012 1
Naval Postgraduate School
Monterey, California 93943-5000

67


