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INTRODUCTION

Mechanical analogs were considered necessary in the last
century for visualizing electromagnetic phenomena. Mechanisms
were familiar objects, while electricity and light represented
terrae incognitae. The situation was reversed in 1914 when
Butterworth first used an equivalent electrical circuit to
represent a mechanically vibrating system. This was followed by
Van Dyke's independent discovery in 1925 that the same circuit
characterized the impedance behavior of a piezoelectric
resonator. Mason subsequently introduced, in the 1930s, acoustic
transmission lines, mechanical ports, and piezoelectric
transformers, thereby extending the circuit to encompass
electro-mechanical conversion devices of wide generality. Today,
the Mason equivalent circuit is universally used for bulk and
surface acoustic wave device characterizations. It has also given
rise to a variety of alternative formulations such as analog
networks, KLM circuits, and systems models. The pervasive nature
of electronics technology in the modern world has now resulted in
a situation where an electrical network is often more familiar
than the actual mechanical structure that it represents. The
outlook has turned completely around!

A powerful motivation for using equivalent circuits to
characterize piezoelectric devices is that the using equipment is
often itself completely electrical in nature. The whole ensembie
thus becomes subject to analysis or synthesis from a single
perspective, i.e., network theory. In this report are described a
brief history of circuit eqguivalents through the Mason circuit,
followed by a presentation of newer descriptions of
piezoelectrically vibrating structures, specifically, analog
networks and KILM circuits.

BUTTERWORTH-VAN DYKE AND MASON MODELS

The use of equivalent electrical networks to represent
mechanical systems 1s pervasive today, particularly with respect
to the depiction of piezoelectric resondtors and transducers.
This is a complete reversal of the situation existing less than
one hundred years ago. One has only to read the works of Maxwell
(1) and Kelvin (2] to see how ardently mechanical explanations
were sought for electrical phenomena. Other analogies are
treated in references (3] and (4]. )

Electrical network elements are schematic representations of
differential equations representing electrical variables; some
of these are shown in Fig. 1. All elements but the transmission
line (TL) have no spatial extent associated with them. Analogies
between systems are based on the isomorphism of the associated
differential equations.

The situation where electrical phenomena were interpreted in
mgchanlcal terms was reversed in the case of electrically driven
vibrators when Butterworth (5}, and, independently, Van Dyke



(61,[7] established the equivalence of the mechanically vibrating
system to a certain purely electrical network, when both were
viewed at the electrical input terminals.

The Butterworth-van Dyke (BVD) [8]-[11] circuit consists of
a series string of capacitor, resistor, and inductor, all
shunted by a second capacitor. It represents the input
immittance of a piezoelectric vibrator in the vicinity of a
single resonance. When the vibrator is not freestanding, but is
instead loaded at its mechanical ports for operation as a
transducer, the representation is that of the three-port shown
in Fig. 2. This representation is due to W. P. Mason [12]. The
elements are constant in value.

Mason later gave an exact three-port circuit, [13], shown
in Fig. 3, for the case of a one-dimensional resonator, driven
piezoelectrically in a single mode, with the applied field
normal to the direction of the wave propagation. This network
contains three lumped elements that are transcendental functions
of frequency. He stated that these were necessary to take into
account the acoustic wave propagation in the crystal. Mason's
contributions have been pervasive in the area of evuivalent
circuits of bulk and surface wave resonators and transducers
(14]-[22].

It was soon realized that a distinction had to be made
according to whether the direction of the driving electric field
was along or normal to the direction of acoustic wave
propagation. In the latter case the electrical input circuit
[23] consists only of a shunt capacitor, usually denoted C,; in
the former case, the input circuit consists additionally of a
series capacitor of value -C,. The case where field and
propagation are perpendicular is referred to as "crossed-field,"
or "unstiffened"; when they are parallel it is known as "in-
line," or "stiffened." 1In the case of a simple thickness mode
excited in a crystal plate, the two situations are called
"lateral-excitation," or LE (field perpendicular to the
thickness direction along which the wave:s propagate), and
"thickness-excitation," or TE. In the TE case, the self-
generated field of the wave produces a reaction that leads to the
negative C,; this field also produces an effective elastic
stiffness that is increased over the isagric value, hence the
name "stiffened." This increase is often, kut not always,
absent when LE is used; the appellation "unstiffened" 1is
therefore a misnomer and is to be used with caution.

Redwood and Lamb (24)~-[28) recognized that the three lumped
transcendental elements employed by Mason could be replaced by
the more graphic transmission line (TL) representation shown in
Fig. 4. This figure is drawn for the "in-line" case. The TL
schematic chosen by Redwood and Lamb is that of a coaxial cable.
An alternative schematic is that of the two-wire TL, also known
as a Lecher line; the lumped-circuit equivalents of the two-wire
line are shown in Fig. 5. Fig. 4 is redrawn in the two-wire




manner in Fig. 6. The Lecher line was used extensively by
H. Hertz in his electromagnetism experiments. When the
transmicssion-line schematic is thus redrawn it is easy to see
that the piezoelectric excitation occurs in series with the
forces appearing at the mechanical ports. One may. in fact,
split the piezo transformer into two parallel pieces and place
them at the TL ends as seen in Fig. 7. The mechanical forces
have here been set to zero as indicated by the short circuits
placed at the mechanical ports.

ANALOG NETWORKS

Figure 7 places in evidence the concept of excitation taking
place by the imposition of piezo tractions at the surfaces of the
crystal plate, instead of volumetrically distributed throughout
the crystal due to the interaction of the electric field and the
dipoles. The piezoelectric portion of the constitutive relation
between the elastic stress field and the electric field intensity
is

Tij = = exijBk- (1)

The force~-tractions acting are the derivatives:

Fy = Ti5,i = 7 ekijBk,i- (2)
The electric field suffers a delta-function discontinuity at the
TE electrodes; this can be interpreted as a piezo-traction
impressed at the surfaces.

In Fig. 8 are shown the physical interpretations of the
various circuit elements that comprise the electrical equivalent
circuit of a crystal resonator with electrodes that have mass,
but whose mass can be considered to be lumped at the surface.
Figure 9 gives the complete network for a TE plate supporting a
single piezoelectrically excited simple thickness mode. Also
shown is the BVD lumped equivalent valid in a small fregquency
region about a single resonance.

Figure 10 introduces additional symbols associated with the
BVD circuit, and shows the effect of placing a "load" capacitor,
Cr,» 1n series with the crystal resonator. This is usually the
means employed to adjust the resonator frequency of operation in
an oscillator. The combination can be exactly expressed in terms
of a tour-element BVD circuit having modified values. Strictly
speaking, the simple BVD network shown is obtained directly only
in the LE case, where no negative capacitor is present.
Otherwise, the negative C, appears in series with the ¢y, and
the modified capacitance ratio r' is just r - 1. Ofte~ T >> 1,
so the modification is slight. 1In the LE case, it is not
desirable to place the load capacitor in series; the load
capacitor is placed in parallel, and the resultant modified
elements are easily determined. The immittance behavior of the
BVD network is shown as a function of frequency in Fig. 11.



When, as in Fig. 9, more than one mode is driven, the
piezo transformers are extended to the other TLs in the manner
shown in Fig. 12. Figure 13 gives the network for a single

driven mode, with physical interpretations of the various
elements superimposed.

The resonator equivalent circuit for all three modes
driven, with no forces applied at the mechanical ports, may be
bisected by the methods of network theory to give the
representation of Fig. 14. Each TL is of length equal to one-
half of the plate thickness; the piezo transformer turns ratios
are functions of the piezoelectric coupling coefficients, Xy,
for mode m.

By a partial-fractions expansion about the poles of the TL
impedance, each mode may be represented exactly with lumped
elements, as shown in Fig. 15. The circuit elements differ, of
course, for each mode. This is an extended version of the BVD
circuit, with each shunt branch realizing a single harmonic of
the mode.

Use of transmission lines to represent acoustic waves 1in
distributed structures leads to a "building-block" approach to
equivalent circuit realizations ([29]. This is illustrated in
Fig. 16 showing a thin-film piezo layer deposited on a substrate;
the circuit realization is given in Fig. 17.

in the brief discussion above, the TL circuits have been
introduced without a consideration of the specific analogies
between the electrical and mechanical variables. A more detailed
treatment leads to the introduction of "normal coordinates" [30]
to represent the TL variables, since, e.g., the three motions
in an infinite plate supporting simple thickness motion represent
the eigenmodes of the system, and each is accorded its own TL.
At the boundaries, one must transform between the normal
coordinate basis particular to the crystal type and its
orientation, and the laboratory coordinate system. This is
accomplished in network terms by the transformer arrangement of
Fig. 18, where the turns ratios are the eigenvector components
of each mode (29)],(31]). The complete representation of a
thickness mode plate is shown in Fig. 19.

By interconnecting transformers of the kind shown in
Fig. 18, one is able to represent the juxtaposition of plates
with various boundary conditions. Two media joined by welded
boundaries (stress and displacement continuous across the
interface) are represented in Fig. 20. Often the connections are
simplified considerably, because of either the relative crystal
orientations, or because of the materials, or both.

One of the virtues of the analog form is the ease with which
the building-block approach can be used to accommodate more
difficult situations. One such is Mindlin's problem, where



mechanical surface tractions applied to a rotated-Y-cut quartz
plate produce not only mechanical-acoustic motion, but also
electromagnetic radiation [32]-([34]. Figure 21 models this
situation.

A systems approach to equivalent networks has been taken by
Hayward [35],[36]. In this method, Laplace transforms and
linear systems theory are used to produce a circuit
representation that is cast in signal-flow graph form.

Additional equivalent networks have been developed to model
magnetostatic waves [37] and bulk acoustic wave resonators of

piezoelectric semiconductors [38]. This latter network is given
in Fig. 22. The procedure can be applied in finite element
simulations [39]. When a resonator is coated with electrodes

that are of a thickness such that wave propagation within the
electrodes cannot be neglected, the lumped inductors seen in
Figs. 8 and 9 must be replaced by TLs. An example is shown in
Fig. 23.

KLM EQUIVALENT CIRCUITS
The Krimholtz, Leedom, & Matthaei (KLM) equivalent

circuits [40]-[44] are quite different in nature from all of the
foregoing, and have the following advantageous features:

I\ They are exact, in the one-dimensional approximation, and
for a single mode type (for example, a ceramic resonator
stack) .

s An arbitrary number of stacked transducers is accommodated,
but each must be acoustically identical.

2 A simple network representa*ion is produced, having:

- series reactance or shunt susceptance (dispersive);
- piezo transformer or immittance inverter (dispersive);
~ acousti. transmission lines (nondispersive).

s Mechanical ports are not in series with piezo voltage.

s Arbitrary spatial variation of piezo excitation is allowed:
- "in-line" (stiffened modes)
- "crossed-field" (unstiffened modes)

s Simplifying algorithms exist for certain excitations.

The KLM networks have the following disadvantageous
features:

v Single modal type allowed, with density and stiffness
constant, or averaged.

v Members of the stack are all connected either in series,
or all in parallel.

v Circuit components are dispersive; this is unphysical.

v Networks are equivalent only at the three ports:

- no building-block approach is possible.

v Complexity is traded from network schematic to component

values:

- Fourier transforms F(k), spatial, of excitation



TABLE 1. XIM CIRCUITS

Excitation Electrical Input TL Feed Spatial Variation
In-Line Series C and X,
"stiffened" o transformer, Qp parallel even function

o Z-inverter, K series odd function
Crossed-Field Shunt C, B,
"unstiffened" o Y-inverter, J parallel even function

o transformer, @ series odd function

S

F(k) = spatial Fourier tiansform of the excitation function;
K is proportional to F(k); J and &g are proportional to

k times F(k); &, is proportional to 1/F(k); X; and

B, are proportignal to H{|F(k)|?}.

- Hilbert transforms H{|F(k)]|?)
v Frequency doma’n operation only:; elwt
- no time domain, transient operation.

These features are summarized in Table 1.

Figure 24 shows the KLM circuit for a thickness-stretch plate of
thickness 1 with electrodes on the major surfaces.

CONCLUSICN

A brief review has been given of the genesis of equivalent
networks for piezoelectric resonators and transducers. This led
to a consideration of various types of representations, such as
lumped element, multimode, analog, systems, and KLM types.
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LUMPED, TEE, FORM OF A TRANSMISSION - LINE SECTICN.

Figure 5.
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LUMPED, PI, FORM OF A TRANSMISSION - LINE SECTION

Transmission line lumped equivalents.
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