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1.0 INTRODUCTION

As the channel length of MOS transistors decreases, the magnitude
of the electric field between the source and drain increases. As
a result of the increased field strength, carriers moving through
the channel become more energetic and are said to be "hot". The
channel electric field is strongest near the drain and scattering
in this region can deflect the hot carriers toward the gate oxide
where they may generate interface states at the Si-SiO barrier
or are trapped in the gate oxide. Trapped charge in the oxide
will affect the threshold voltage, saturation current and trans-
conductance of the device. An increase in the number of inter-
face states will reduce the transconductance and subthreshold
swing. The long term effect of this process is transistor
parameter drift.

2.0 DISCUSSION

Test structures consisting of transistors with drawn gate lengths
of 0.65 to 10 microns (N-channel) and 0.75 to 10 microns (P-chan-
nel) were packaged and subjected to hot carrier stress. Four
different drain voltages were utilized in an attempt to extrapo-
late device lifetime information from accelerated stress condi-
tions. The gate bias was selected to provide maximum substrate
current. This substrate current is a result of impact ionization
in the channel and is indicative of the relative quantity of hot
carriers present in the channel. Figures 1 through 16 demon-
strate the behavior of the substrate current as a function of
gate voltage. The substrate current increases first with Vg,
reaches a maximum, then decreases. The maximum in I_. can be
explained as follows. Assuming that the impact ioniza ion occurs
uniformly in the pinch-off region, the substrate current can be
written as Isub=Id*A*Lp where Id is the drain current; A is the
ionization coefficient, the number of electron hole pairs gener-
ated per unit distance; and Lp is the length of the pinch-off
region. For a given Vd, as Vg increases, both Id and Vdsat
increase. When Vdsat increases, the lateral field (Vd-Vdsat)/L
decreases, causing a reduction of A. Thus there are two con-
flicting factors. The initial increase of Isub is caused by an
increase of drain current with Vg, and at larger Vg, the decrease
of Itub is due to the de rease of A. Maximum Iub occurs where
the two factors balance. Table 1 lists the ga e and drain bias
voltages selected for maximum substrate current for the N- and P-
channel transistors.

The transistors were stressed for many hours at -550 C. The low
temperature enhances the hot carrier effect as a rIsult of an
increase in the electron trap density in the oxide and in in-
crease in the carrier mean free time between collisions. The
increase in mean free time between collisions allows the carriers
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to gain more momentum between collisions and thus they become
"hotter".

Table 1. Transistor bias conditions for maximum
substrate current.

N-channel devices P-channel devices

Drain Gate Drain Gate
Voltage (v) Voltage (v) Voltage (v) Voltage (v)

4.5 2.1 -4.5 -1.7
4.2 1.9 -4.2 -1.6
3.9 1.8 -3.9 -1.5
3.6 1.7 -3.6 -1.4

All device characterization was performed with an HP4062B Semi-
conductor Parametric Test System under the control of an HP9836
computer. Threshold voltage was determined by extrapolation of
the Id vs. Vg curve at Vd=O.1 volt. Transconductance and sub-
threshold slope were also measured with Vd=0.l volt. Saturation
current was measured at Vg=Vd=3.3 volts. C-V profiling of the
individual gate to channel capacitors was not possible as the
test structures utilized a common gate connection. Prior to each
characterization, all devices were left at room temperature with
all pins grounded for at least 24 hours. This was done because
it has been shown that devici characteristics are not stable
immediately after stressing. Grounding all device pins for an
additional 24 hours resulted in no further change of device
characteristics.

3.0 N-CHANNEL DEVICES

Figures 17 through 28 demonstrate the change in dc characteris-
tics such as threshold voltage, saturation current and transcon-
ductance for N-channel devices subjected to hot electron stress-
ing. For sake of brevity, plots for devices bias at 3.6 volts
and devices with channel lengths greater than 0.9 micron are not
included. The plots not included showed no appreciable change in
parameters with time. Figures 17 through 28 show various amounts
of degradation depending on bias conditions and channel length.
One trend which is apparent in all of the plots is that there is
a gradual saturation of the degradation. The probable cause is
the accumulation of electrons in the oxide near the drain which
would alter the electric field so as to force the drain current
deeper into the substrate and thereby decrease the number of hot
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electrons near the Si-SiO interface. The accumulated electrons
cause an increase in the threshold voltage and a decrease in both
saturation current and transconductance. Cham, et al, hypothe-
size that enough charge accumulates near the drain to form a
depletion l2yer and thereby increases the series resistance of
the device. If this was true, then for P-channel transistors
the depletion layer formed would decrease the effective gate
length and move the drain closer to the source. Continuation of
thi's process would lead to source-drain punch-through.

4.0 P-CHANNEL DEVICES

Figures 29 through 43 show the change in dc characteristics for
P-channel devices subjected to hot electron stressing. As with
the N-channel devices, plots are omitted for devices biased at
-3.6 volts and devices with channel lengths greater than 1.4 mi-
crons, as these devices showed no discernible change with time.
Similar to the N-channel devices, the degradation seems to satu-
rate. However, the degradation in the P-channel devices satu-
rates much more abruptly. The accumulation of electrons in the
oxide decreases the magnitude of the threshold voltage and also
increases the saturation current and transconductance. The in-
crease in current means there is a greater number of hot elec-
trons near the Si-Si0 2 interface available to degrade the device.
The sudden stop in degradation implies that there are a limited
number of sites available for electron trapping and once these
sites are filled, no further degradation occurs. These data show
that filling of the available traps occurs before a depletion
region is formed and the effective gate length is reduced.

5.0 ANNEALING

In an attempt to assess annealing characteristics of degraded
devices, other than the short term ones mentioned in reference 3,
various approaches were tried. First, a high temperature bake
(24 hours at 1500 C) with all pins grounded was performed. Post
bake characteristics were identical to those of devices before
baking. The next anneal consisted of putting de-lidded devices
in a UV EPROM eraser for one hour. This also had no effect on
the trapped electrons.

6.0 HOT HOLE INJECTION

For N-channel MOSFETs, it is possible to inject hot electrons or
hot holes into the gate oxide by varying the bias conditions.5

With this in mind, an N-channel transistor was first subjected to
hot electron injection (Vd=5.5 volts and Vg=2.6 volts) and subse-
quently to hot hole injections (Vd-5.7 volts and Vg-0.6 volt). A
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higher drain voltage was selected for hot hole injection to
completely compensate for the previously injected hot electrons.6
Figure 44 shows that the hot electron induced threshold voltage
and saturation current shifts can be recovered by hot hole injec-
tion. These two parameters are very sensitive to trapped charge
in the gate oxide and relatively insensitive to interface states.
Transconductance and subthreshold swing are also sensitive to
trapped charge and very sensitive to the presence of interface
states. Figure 45 shows the transconductance and subthreshold
swing for the same device. It can be seen that the shifts of
these two parameters do not completely recover during hot hole
injection. It is believed that interface states are responsible
for the unrecovered portions of these parameter shifts.

For P-channel devices, hot hole injection is not possible, but
one may conclude that the degradation is similarly caused by both
electron trapping and generation of interface states.

7.0 CONCLUSIONS

This work has shown a saturation effect for hot carrier degrada-
tion in both N- and P-channel transistors. The implication of
this saturation is that device lifetime predictions based on
short term high stress test conditions may be overly pessimistic.
If the device parameters can drift to the point of failure before
saturation, then extrapolated short term testing is valid. How-
eVer, if the degradation saturates before the failure point, the
extrapolated short term testing gives overly pessimistic results.
Testing for hot electron effects in MOSFETs must be performed to
the point of failure or until the degradation saturates.

This work has also shown that bias conditions can affect the type
of hot carrier degradation in MOSFETs. Hot electrons or hot
holes can be injected in N-channel MOSFETs while only hot elec-
trons can be injected in P-channel MOSFETs. In all cases, there
is an irreversible generation of interface states in the devices.

Not included in this work is the effect of dynamic stimulus on
hot carrier degradation. Hot carrier degradation has bsen shown
to be dependent on the transition time of the stimulus. For the
purpose of demonstrating the degradation saturation effect proven
herein, dynamic stimulus was not required. However, the effects
of dynamic stimulus and degradation saturation must be taken into
account when performing a hot carrier reliability evaluation as
these can have a serious impact on life time predictions for a
dynamic circuit.

Currently hot carrier effects are controlled by: using lightly
doped drain structures, by scaling power supply voltages, or
both. As MOSFET technology advances even further below the one
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micron gate, hot carriers will become a greater reliability con-
cern and the need for accurate assessment of their potential
impact will become critical.
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Figure 1. Substrate current vs. gate voltage for long
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W/L =50/0.65, 50/0.9, 2.7/0.65 (microns).
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Figure 5. Substrate current vs. gate voltage for long
N-channel PETs with Vds = 3.9 volts.
W/L =50/1.3, 50/1.6, 50/3.0, 50/10.0 (microns).
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Figure 90. Substrate current vs. gate voltage for lorg
N-channel FETs with Vds - 4.2 volts.
W/L =50/1.3, 50/., 50/.501 (microns).
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Figure 11. Substrate current vs. gate voltag for long
P-channel FETs with Vds = -4.2 volts.
W/L = 50/1.4, 50/1.6, 50/3.0, 50/10.0 (microns).
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P-channel FETs with Vds - -4.2 volts.
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Figure'13. Substrate current vs. gate voltage for long
N-channel FETs with Vds = 4.5 volts.
W/L = 50/1.3, 50/1.6, 50/3.0, 50/10.0 (microns).
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Figure 14. Substrate current vs. gate voltage for short
N-channel FETs with Vds - 4.5 volts.
W/L -50/0.65, 50/0.9, 2.7/0.65 (microns).
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Figure 15. Substrate current vs. gate voltage for long
P-channel FETs with Vds = -4.5 volts.
W/L = 50/1.4, 50/1.6, 50/3.0, 50/10.0 (microns).
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Figure 16. Substrate current vs. gate voltage for short
P-channel FETs with Vds - -4.5 volts.
W/L -50/0.75, 50/0.9, 50/2.6, 2.7/0.65 (microns).
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