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Abstract

We study the costs incurred by an implementation of the hp-version of the finite element
for solving two-dimensional elliptic partial differential equations on a shared-memory parallel
computer. For a collection of benchmark problems, we systematically examine the costs in CPU
time of various individual subtasks perfdrmed by the finite element solver, including construction
of local stiffness matrices, elimination of unknowns associated with element interiors, and global
solution on element interfaces by a preconditioned conjugate gradient method. Our general
observations are that the costs of the "naturally" parallel computations associated with local
elements are significantly higher than any global computations, so that the latter do not represent
a significant bottleneck to parallel efficiency. However, memory conflicts place some limitations
on the sizes or number of local problems that can be handled efficiently in parallel.
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1. Introduction. The fiaite element method is a standard computational tool for solving
partial differential equations arising from engineering analysis. Variants include the standard
h-version, which uses low-order basis functions and achieves accuracy by refining meshes [12];
the p-version, which uses a fixed mesh and achieves accuracy by increasing the order of the
basis functions; and the hp-version, which combines these two approaches. See [7] for a sur-
vey and comprehensive list of references on the p- and hp-versions. For the first and last of
these techniques, which divide domains into local elements and compute associated local stiffness
operators, a large component of the required computations can be implemented very naturally
on parallel architectures. In particular, for the h-version, domain decomposition methods (e.g.
[8],[9],[10],[11],[23],[241,[28]) group collections of elements into subdomains, or super-elements;
construction of all local stiffness operators associated with super-elements, as well as elimination
of degrees of freedom internal to super-elements, are independent of one another, so that they can
be performed in parallel on separate processors. For the p and hp-version, one can think of the
space of high-order basis functions in each element as analogous to the grouping of h-elements into
super-elements. Then, just as for domain decomposition methods, construction of local operators
and partial elimination can be done in a natural way on independent processors. A combination

of these points of view, with multiple high-order elements collected into super-elements, is also
possible.

After the fully local computations have been performed, the result is a subproblem with
unknowns on super-element interfaces. If an iterative method such as the conjugate gradient
method (CG) is used to solve this subproblem, then much of the required computation is also
local, so that there is a large amount of natural parallelism. However, these computations entail
some interaction across super-element interfaces, and, in addition, CG requires some global com-
putations. Moreover, convergence of such methods is often significantly accelerated by some type
of global preconditioner [3],[8],[9],[10],[11], which may be less natural to implement in parallel.
The effects of both super-element interactions and global operations on overall performance on
parallel architectures is not well-understood.

In this paper, we describe the results of an experimental study of an implementation of the
hp-version of the finite element method for solving two-dimensional linear elliptic problems on a
shared-memory parallel computer. We examined the computational costs of the various subtasks
required by the hp-method, including:

- construction of local stiffness matrices;

- partial elimination of unknowns associated with purely local elements;

- CG iteration;

- preconditioning derived from low-order elements.

Our goals were to determine how efficiently such computations can be done on parallel architec-
tures, and what bottlenecks may exist that limit efficiency. Some particular issues dered F]
were: .............

- the relative costs of the various individual subtasks;

- the effects of global operations, especially preconditioning, on overall perfor Ice and
parallel efficiency;
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- the overhead of using unassembled local matrices to perform the matrix-vector products
required by CG; and

- whether there are any limitations associated with the "natural" subdivision of problems
based on independent elements.

Our tests were performed on an Alliant FX/8, an eight-processor shared-memory computer with
a fast cache memory and vector processors. In addition to examining the general issues of parallel
implementation, we also considered the effects of the latter two architectural features. In general,
we found that the dominant costs come from the local computations, especially the construction
of local stiffness matrices, and that global computations required for fast convergence do not
represent a significant bottleneck. There are some drawbacks to having local computations that
operate on large sets of data, though, which appear to be architecture-related, derived from
inefficient data movement for parallel processing.

An outline of the paper is as follows. In §2, we present the continuous model problem used for
experiments, and we describe the hp-version of the finite element method used for the discretiza-
tion. In §3, we give a high level description of the solution algorithm and a detailed description
of our implementation. §4 contains the main results of the paper, a series of experimental results
for a set of benchmark problems. These include overviews of iteration counts and CPU times, as
well as several refinements of timing statistics showing where computational efforts are spent, as
well as analyses of the effects of synchronization and vectorization. Finally, in §5, we summarize
our observations and discuss their implications for computations on other classes of problems and
parallel computers.

2. The Model Problem and its Finite Element Solution. Consider the model problem
(0 Ou 0.0u\

!a y + y =b~ f onfl

clu
u =gd on D, 5-= g, on rN. (2)

Here, 11 C R 2 is a bounded domain with piecewise smooth (e.g. polygonal) boundary, r = rDUrN
is the-boundary of fl, a, b, f, gd and g. are functions that satisfy the usual conditions guaranteeing
existence and uniqueness of the solution, and n, is the conormal. We are interested in the weak
solution of(l) - (2), i.e. u E HD(O) =- {u E H1(O1)I u = 0 on rD} such that

fu Ov Bu Oy / fv
B(u, v) a L j La. +b6 d d -= fu dz dlJ+Jf d Fex &Z Y 8Y gnvds F(r)

holds for any v E HL(fl). HI(fl) denotes the usual Sobolev space.
We now give a general description of the hp-version of the finite element discretization of (1)

- (2). Let P =f {f} denote a partitioning of f) into open subdomains such that

= uai

(where (I denotes the closure of Q). Assume that fl is a curvilinear polygon, typically a triangle
or quadrilateral. Let

r i  u, r'

2 I



3  2 2

3

A4 4  Al

Figure 1: The standard element C.

denote the set of (curved) open sides of Qi', and let

denote its vertices. Assume that either

1. !D n W = f l, i.e. Wi and 1j have common entire sides; or

2. fi n W = Ai = Aj, i.e. Ili and W have one vertex in common; or
3. ni 0.

The set (uij r i) u (UijAi) will be denoted the frame of the partitioning P.
On every ST E P, we use a set of linearly independent functions 4O E HI(fli), j = 1,...,pi,

called shape functions, which are divided into three categories:

Internal shape functions: I C {4(- E H1 (W) I t ( ) = 0 on r'}.
Side shape functions: S C {4(sj) E H(fl) I 4V(sj) = 0 on Fi - ri}.
Nodal shape functions: Af C {4 (A 'j ) E H1 (ni ) -V

Ar'j )  0 on Ak, k # i}.

The following typical examples will be used in the sequel. Let " = (-1, 1) x (-1, 1) be called the
standard element. The nodes and sides of E are given by

Al = (1,-1), A2 = (1, 1), A3 = (-1, 1), A 4 = (-,-1),

=t - {( , 7)1 f = 1, 1,7 < 1}, r2 = {(f , 101 If I < 1, 1 = 1),
1,3 = {(V, 17) I = -1,1,71 < 1}, r 4 = {(,1)I I+ < 1,' - -}

*(See Fig. 1.) Let

2ij() -- Pj-.(t)dt, j > 2, (3)

where P,(t) is the Legendre polynomial of degree j [13]. Thus, 46i(f) is a polynomial of degree
j and Oi(-l) = 0. Two spaces, Q(p) and Q'(p), are defined as the span of the following shape
functions on C:

Internal shape functions: For Q(p),

3 2 j, k p

3
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and for Q(p),
S)(, j,k>2,j+k<p.

Hence, for Q(p), there are (p - 1)2 internal shape functions, and for Q'(p) there are (p -
2)(p - 3)/2 internal shape functions when p > 4, and none when p < 4.

Side shape functions: For both Q(p) and Q(p), the side shape functions are given by

*8 1 7( ) =(-+,) ,(~), .0'(.4)f ?I) 0,(f) (L1,~ ,.

Thus, there is a total of 4(p - 1) side shape functions.

Nodal shape functions. For both Q(p) and Q'(p), the four nodal shape functions are given
by

7)= 2E1 2z~) (~)~)=(+)(~1

=7 (+)( i) 4),)= (2+1 2;1

Here, Q(p) contains all polynomials of degree p in each variable, and Q'(p) both contain all
polynomials of total degree p. For some choices of p, internal or side shape functions are not
present, and the method can reduce to the standard h-version. Also, the spaces Q(p) and Q'(p)
could be defined as the span of some other shape functions. For example, Q(p) is the span of
all functions of the form fj(f)fk(ij) where {fi(4)} are Lagrange polynomials with interpolation
points chosen to be the (p + 1) Gauss-Lobatto quadrature points [25]. Similar sets of standard
shape functions can be defined on a triangular element.

Assume that Ti(f, 7) is a mapping of the standard element C onto fl'. Let Q" denote either
Q(p) or Q'(p), and let

V = { ( f Hl(f) I u(ii) = v(T 1'(z, y)), V E Q*}.

We impose on Ti the usual conditions of the finite element method, e.g. if Wl is a parallelogram
then T is a linear mapping. Thus, the basis functions of V can easily be constructed using the
three categories of standard shape functions. The finite element solution UPE E V is defined by

B(uFE, v) = F(v) for all v E V. (4)

Condition (4) uniquely defines UFE except when rD = 0, in which case UFE is determined up to
a constant.

Accuracy of uFE is achieved either by increasing the degree p of the shape functions, or by
refining the partitioning P. Consider the case where P partitions a rectangular domain Q into
an m x n rectangular grid composed of squares with side h. The following results contain typical
error bounds for the finite element solution in the energy norm

IIu - UpEjE - B(u - UFE, U - UFE)1/2 - inf B(u - v, u - v)112 .
v

See [7] and references therein for further details.
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Theorem. (1) Suppose h is such that clh - 1 < m, n < c2 h- 1 and u E Hk(fl). Then

hit - UFE 1E : Ci-._ INUIHk,

where a = min{k - 1,p} and C depends on k, c1, c2 and the discretization (Q(p) or Q'(p)), but

is independent of u, h and p.
(2) If u is analytic in A1, then for any fired h > 0,

HIU - UFElE < De-',

where D depends on u and h and P > 0 depends on the region in which u is analytic.

Thus, for very smooth problems, the p and hp finite element solution displays exponential con-
vergence.

For our investigation, we will restrict our attention to the case where 1 = (-1, 1) x (-1, 1);
P partitions 12 into a uniform n x n grid; T is a bilinear mapping; a;.d f = 0, rD = 0. We will
consider the constant coefficient case a = b = 1. To ensure a unique solution, we will constrain
the solution at the corners of Of.

3. The Solution Algorithm and its Implementation. Formal specification of the finite
element solution uFE as a linear combination of the basis functions of V leads to a system of
linear equations

Sa = 8,

where S is the global stiffness matrix and a is the vector of coefficients of the basis functions. In
this section, we present the algorithm used to solve this problem and describe the details of our
implementation.

3.1. The Solution Algorithm. Conceptually, the algorithm can be divided into four steps.

1. Construction of the local stiffness matrices. The global matrix has the form

S = i

where Si is the local stiffness matrix associated with f1i. Formally, Si is a large, sparse matrix
with nonzero entries determined from shape functions in W2'. In the following, Si will also be
identified with the local matrix of order pi given by the Gramm matrix (Bos (u, v)], where

Bn-(u, v)= ,a L't +b----dzdy (5)

and u and v range over all shape functions in 1i. The local contribution si to s is determined
similarly from {F(v)}. For our study, we do not form S or s explicitly, but work directly with
the local versions of Si and si.

2. Condensation of the local sliffness matrices. The local stiffitess matrices and right hand sides
have the form

Si 5BT  Ci ' si i "(6

54



A, corresponds to interactions among internal shape functions, C, corresponds to interactions
among side and nodal shape functions, and Bi corresponds to interactions between internal shape
functions and side and nodal shape functions. Before solving for the unknowns associated with
the frame of the partitioning P, the unknowns associated with the interior W1' can be decoupled
from the system. This process of condensation, or elimination of internal unknowns, entails
computing the Schur complement

C, = C, - BTA71 B,, (7)

and modifying the right hand side in a similar manner:

Ei = ci - BTA7 1bi. (8)

We will also normalize these quantities so that all local diagonal matrix entries are one, i.e.

- D1/2 ,CD" 1/ 2 ,  = (9)

where Di = diag(ei). This is equivalent to scaling the shape functions.

3. Computation of the frame unknowns. After the internal unknowns are eliminated, the result
is a system of linear equations

Sa= £ (10)

for the unknowns associated with the frame of P. Here

and 6i and 4 are determined from (9) and (8). We solve (10) using the preconditioned conjugate
gradient method (PCG) (22]. For the preconditioner, we use the submatrix of S associated with
nodal unknowns. That is, if the entries of S are arranged in the form

UT QJ'

where Q corresponds to connections among nodal unknowns and R corresponds to connections
among side unknowns, then the preconditioner for (10) is given by

0 Q .

It is shown in [31 that the condition number of the resulting preconditioned matrix is

O(1 + (logp) 2). (11)

Hence, the number of PCG iterations required for convergence is independent of h. and it grows
very slowly as a function of p.

4. Computation of the internal unknowns. After the unknowns 6i associated with the boundary
I', have been computed at step 3, the internal unknowns a associated with fl i can be computed
by solving the system

Aii bi - Bii,

6
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Figure 2: The nonzero structure of the local stiffness matrix for the Q(p) discretization. Solid
lines indicate nonzeros, dashed lines delineate the sets Z, S and J', dotted lines delineate blocks
of size p - 1, and "o" identifies a zero band.

using the Cholesky factorization of Ai computed in step 2.

3.2. Local Stiffness Matrix Computations. Assume that the finite element discretization
is made on an n x n element grid, and we have a parallel architecture with k processors where
k divides n2. The first two steps of the solution algorithm, construction of the local stiffness
matrices and condensation, are naturally parallelizable. There are n2 elements, so that there are
n2 local stiffness matrices to be constructed, each of which contains a subblock corresponding to a
set of internal unknowns to be eliminated. All of these computations are obviously independent,
so that they can be executed in parallel. Each processor has n2/k elements assigned to it, for
which it constructs the associated local stiffness matrices and then performs the corresponding
condensation.

Consider the construction of the local stiffness matrices. The entries of 5, (6) are determined
using (5). For general operators and domains, these entries must be computed by some quadrature
rule that depends on the coefficients a and b, the shape of fli, and the mapping T from C to fli.
In general, the resulting local stiffness matrix Si is dense, although its nonzero structure may
also be affected by these criteria. For rectangular elements, the shape functions specified in §2
have the form O(x)Ok(y) where Oj is a polynomial of degree j. Therefore, (5) simplifies to an
expression of the form

B. (u, v) = J a9(X)(X)Ok(y)O,(y) + bj(z)Oi(x)Ok(y)W,,(y) dxdy. (12)

7



In this study, we are restricting our attention to the case where a and b are constant. For

these problems, (12) further simplifies to

Bg(u, v) = aI.(j,k,1, m) + b I,(j,k,l,m), (13)

where
I.(j,k, 1, m) = I,(j,)I(k,m), IV(j,k,l,m) Io(j,l)I(k,m) (14)

and ndIo( t) .s, t (,t)= . (15)

This reduces the costs of constructing Si, since (15) can be computed in closed form, and many
entries are zero. In particular, for both the Q(p) and Q'(p) discretizations, Si has order pi =
0(p4), but only 0(19) entries are nonzero. (See the Appendix.) For example, for the Q(p)
discretization, if the rows and columns of Si are ordered using the lexicographic ordering of
shape functions

322 ''" p2 23 ""($,I) ... §S2)053

*(.@N,), 4 (.A,), 9 (.'',), 4 (A,4),

then the nonzero structure for the Q(p) discretization is shown in Fig. 2.
In our code for constructing the local matrices, each entry of Si is computed using (13) - (15),

where the indices j, k, 1, and m range over all values corresponding to the lower triangle of Si.
I,, I, Io and 11 can be thought of as representing FORTRAN functions, and (15) is computed
in closed form using (23), (27), (28) and analogues for handling side and nodal shape functions.
The routines corresponding to 10 and I are called only if the result is nonzero, as specified by
(- ). Thus, the construction of Si entails 0(1) scalar computations per entry, giving a total cost
of 0(p 4 ). Computation of a zero entry entails several queries about the indices j, k, I and m
and at most three floating point operations; computation of a nonzero entry entails subroutine
calls to I., Is, J0 and 1, the latter two of which require on the order of 10 scalar floating point
operations.

Now consider the other purely local operation, the condensation of the local stiffness matrix,
to produce the Schur complement C'i of (7). To perform this step, we compute the Cholesky
factorization A. = LiLT, and then compute hi = L71 Bj and C - Bhi. These operations
were implemented using (a slightly modified version of) off-the-shelf software from the BLAS2
subroutine library, which is designed to take advantage of vector architectures [16]. A general
description of the algorithm is as follows. Assume that in (6), Si has order p and Ai has order
A 5 p. For any matrix M with the same dimensions as Si, let

m ., = (miss, M+s,&, .... 7n, )

denote the column vector consisting of entries it through -y of the v'th column of .1. and let

M I, = [ m , , , ] , p < p , < r < , I i f ' >: 5

8



1 /A A p1 pp

A

A -----------

Figure 3: Submatrices and subvectors used for internal elimination. Quantities used for a
Cholesky factorization step are shown on the left. Quantities used to compute the Schur comple-
ment are shown on the right.

M,, is a submatrix of M in the lower left hand coner of M. (See Fig. 3.) In the following
code fragment, M initially contains the local matrix Si of (6); as the computation proceeds,
the contents of M are dynamically modified. In steps 1 through A, the lower triangle of A, is
overwritten by the Cholesky factor Li, and BT is overwritten by AT. In steps A + 1 through P,
the lower triangle of C, is overwritten with that of di,.

for pu = I to p do
r.. 4-- min{- 1,A)

MWO4- MJ:J - IM&"tU

if (p :5 A) then
M s4-- (16)

..... P ,-r,+ : "p, M,

endif
*nddo

Except for uaonly the lower triangle of M is referenced. In the program used to implement
this computation, only the lower triangle of M is stored, by column in packed form. That is, the
contents of the array containing M are

MM1,19M3,9 ... I bt, f rn2,2, M3,2 .... corn M . . 3,, . e fowin

(Since the vector is, therefore, not avable in contiguous storage, m03:... is accumu-
lated in a temporary vector at each step of the outer (p) loop.) The submatrices and subvectors
of M used in one step of internal elimination are depicted graphically in Fig. 3.

The algorithm (16) is essentially the "GAXPY" form of Gaussian elimination [18, 21. 22). in
which the main large-scale operation at each step is a matrix-vector product

4- A (17)

The computations are arranged to take advantage of architectures with vector registers, by con-

puting (17) as a linear combination of the columns of Mi. Our implementation is essentially thlat

9



of the BLAS2 library [16].1 In principle, the vector mp,, can be accumulated in one or more
vector registers without being stored to memory until the computation (17) is complete.

For the Q(p) and Q'(p) discretizations, this implementation of the condensation step requires
0(p4) floating point operations. This is determined by the cost of the matrix-vector product
(17), and it is also strongly influenced by our choice of implementation. Consider the Q(p)
discretization, where A = (p - 1)2 and p = (p + 1)2. A feature of the BLAS2 software used for
(17) is that only the nonzero entries of the vector mm,,, are used for the linear combination
of columns of M5.. There are at most 3 such nonzeros for steps 1 through A, and an average of
2.5(p- 1) nonzeros for steps A + 1 through p. At step j, the block M. contains (p+ 1)2 - (p - I)

rows. Hence, the number of floating point multiplications performed is approximately

(p-1)
2  (p+1)2

3[(p+ 1)2 - (, _ 1)] + 2 .5(P- 1)[(p + 1)2 - (I&- 1)] 15p' + 26p3.
=t _(p-1)2+1

These computations are vectorized, but they do not take full advantage of sparsity, since M, is
treated as a dense matrix. An implementation that operated only on the nonzeros of AIM, would
require 0(p2) operations.

It is evident from this discussion that many factors contribute to the cost of construction and
condensation of the local stiffness matrices. As we have noted, our program takes some advantage
of the special structure of the test problem, but it does not make full use of sparsity in either
construction or condensation. By way of comparison, consider the situation for more general
problems, where the 0(p4) entries of Si are computed by applying a quadrature rule to (5) or,
for rectangular domains, (12). Typically, O(p) quadrature points are used in both the X and y
coordinates, so that (ignoring the costs of function evaluations), (5) will require O(pP) floating
point computations. For (12), this cost can be reduced to O(p5 ) by taking advantage of the tensor
product structure [27]. The condensation is, asymptotically, an 0(ps ) computation. Of course,
asymptotics also do not tell the whole story, since in general we work with relatively small values
of p (on the order of 10); we expect asymptotic characterizations to be pessimistic for these values
[5]. Both construction and condensation allow for significant amounts of vectorization, e.g. in
the quadratures for construction and as in §3 for condensation. Our implementation is intended
to take advantage of special problem structure in a "natural" way: in the matrix construction,
by performing some computation for each entry, but not performing unnecessary quadratures;
and in the condensation, by handling sparsity only in the manner inherited from standardized
software. We believe that this implementation gives % plausible picture of the relative costs of
construction and condensation; for more complex problems, absolute costs will be higher.

Step 4 of the solution algorithm, recovery of the internal unknowns, also entails purely local
computations. However, because the solutions to our benchmark problems are identically zero,
we did not experiment with this stage of the algorithm.

3.3. Computation of the Frame Unknowns. Next, consider the solution of the global
linear system (10) by the preconditioned conjugate gradient method. We use the standard imple-
mentation of PCG, as described for example in [22], Algorithm 10.3.1. Each step of the iteratioi

'We used a slight modification of the subroutine DTPMV from the BLAS2 library. DTPMV computes a
matrix-vector product w - Lv where L is a lower triangular matrix stored in packed form; our modification allows
variations on outer loop counters to handle rectangular subblocks of L.

10



requires a matrix-vector product by the coefficient matrix S, a preconditioning solve of the form
w 4-- Q- 1 v, and a set of vector operations consisting of three inner products a *.- VTw and three
d,.xpy's to .- avt + v2 . (This is one more inner product than specified in (221. The extra one is
used for a stopping test; see §4.1.)

The preconditioning operator and vectors required by PCG are represented with global in-
dices; implementation issues associated with these quantities are discussed in §3.4. In this section,
we focus on the matrix-vector product, which shares some of the purely local character of the
local stiffness matrix computations. The global matrix S is not constructed explicitly; instead
the matrix-vector product is computed as

W= wi = Eevi=, (18)
i i

where the sum is taken over all elements, and Ci is the Schur complement associated with an
individual element. The vector vi is gathered from a globally indexed vector v, the local matrix-
vector product wi = Ctvi is performed, and then wi is used to update the global vector w. Hence,
the steps required for the local matrix-vector product are:

a. Index and copy: determine the indices in v corresponding to vi and copy vi from v.

b. Arithmetic:. w = Civi.

c. Update: accumulate wi into w.

For the parallel implementation, each processor performs this computation on all elements
assigned to it. Ignoring any memory conflicts, all processors can read from the global vector
v and compute the local matrix-vector product independently, so that steps (a) and (b) can
be implemented with a high degree of parallelism. However, for the program to be correct, no
more than one processor can write into a given location of w at any time. We enforce this by
synchronizing all writes into w, so that execution of step (c) by different processors is performed
serially. (See §3.4 for the method used to achieve this.) For the arithmetic step (b), recall that
only the lower triangle of 0C, is stored, by column. The actual computation has the form shown in
the following code fragm,,t, in which 7 = p- A is the order of C, and for the sake of simplicity,
the subscript i is omitted:

for p = I to 7 do
t+ - (19)

onddo

That is, multiplication by the lower triangle is done using a linear combination of the columns,
and the additional inner product and accumulatimn for the upper triangular multiplication is
performed in the same loop. No extraneous vector writes (of wi) or reads (of columns of C,)
need be performed. (Thus, this is also essentially a BLAS2 type computation [161.) For our test
problems, approximately 50% of the entries of C, are nonzero; however. as in the coidensation.
C, is treated as a dense matrix.

3.4. Other Coding Conventions. We conclude this section with an outline of our coding
conventions. All code was written in Alliant FX/8 FORTRAN and compiled using the global
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"-0" optimization switch. All vectorizable loops were preceded with the Alliant compiler direc-
tives VECTOR and (for global inner products) ASSOC. Thus, all computations are fully vectorized.
Although parallelism on the Alliant FX/8 can be achieved using compiler constructs, the com-
piler does not permit easy control of individual processors, and it also does not permit data
driven synchronization of the type required for the matrix-vector product. To circumvent these
difficulties, we implemented all the local computations described above using the scheduling
program SCHEDULE [191. For a local computation such as construction of the local stiffness
matrix, SCHEDULE runs on k processors by initiating k processes consisting of n2 /k matrix
constructions. This is a relatively simple use of this software which has the property that any
overhead associated with it is amortized over n2/k large-scale computations. Compiler-generated
parallelism is explicitly prevented using Alliant FORTRAN compiler directives (i.e. NOCONCUR).
Synchronization of the updates required by the matrix-vector products in PCG is enforced using
SCHEDULE's lockon and lockoff primitives, which force processes to spin-wait when access to w
is restricted. Finally, to handle SCHEDULE's requirement that multiple copies of subroutines
be used simultaneously, all compilation was done with the "-recursive" switch.

Computations not discussed in detail above are the construction and factorization of the
preconditioner, and the preconditioning and vector operations (inner products and scalar-vector
products) performed during the PCG iteration. All these computations are global operations,
in the sense that they are concerned with global quantities associated with the nodal and side
unknowns. Constructing the preconditioner consists of assembling the (global) nodal operator
Q from entries of the local stiffness matrices, and then computing the Cholesky factorization
Q = LL T. The factorization was performed using band elimination [22]. The preconditioning
operation consists of forward-solves w +- L-1v and backsolves w +- L-Tv. The preconditioning
and vector operations all contain a large amount of natural parallelism, but not at the element
level. As a result, parallelism for these tasks was handled using Alliant compiler directives
(CONCUR).

4. Experimental Results. In this section, we present the results of a series of numerical
tests of the algorithm of §3. For several problems, we give a general overview of costs, and then
we show how these costs are broken down by individual computational tasks. Our objectives
are both to show how the methods perform, and to understand what aspects of algorithms and
computer architecture affect performance. In particular, we examine the influences of local and
global computations required by algorithms, and of architectural considerations such as number
of processors, vectorization and cache memory. We remark that we are not examining the issue
of accuracy of the computed solution here. Correlations between accuracy requirements and cost
will be discussed in a subsequent report [4].

4.1. Machine independent results. For most results presented in this section, we used
benchmark problems with the Q(p) discretization on n x n grids, with p = 4, 8, and 16, and n = 4,
8, 16 and 32. In addition, we have observed (4] that often the Q(p) and Q'(p) discretizations
provide solutions of comparable accuracy when pQ _ v 12pQ, so that we examined the Q'(p)
discretization with p = 6, 11 and 23, on the same grids. The choices for degree represent

moderate, large and very large values. The values p = 16 for Q(p) and p = 23 for Q'(p) are larger

than values typically used in practice and are studied primarily to see trends in the data: these
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values were not considered on the 32 x 32 grid. Tables 1 and 2 show the number of global and
local unknowns of various types associated with these problems. 2

In all experiments, the problems were posed with a =_ 0, so that the solution to (10) is & 0.
The stopping criterion for the PCG iteration was based on the relative error in the energy norm,

( &{j4())//(&(0), 6(0))1/2 __..5 X 10- 3,

where {&b()} are the PCG iterates and the initial guess {&(0)) is a vector of random numbers
between -1 and 1. Table 3 shows the number of iterations required to reach this stopping
criterion. Note that these iteration counts are consistent with condition numbers of the form
(11).

4.2. Overview of timing results. We first give a general overview of CPU times needed
to solve these benchmark problems. For all experiments, reported times are in seconds, and they
represent averages over three runs. The timings were determined from the "user time" returned
by the Unix function etime; the measurements exclude timing overhead [1]. Speedup is defined
to be the ratio of CPU time using one processor to CPU time on multiple processors; the same
program was used in all experiments, so that the timings on one processor include a small amount
of overhead associated with the scheduler.

Tables 4 and 5 show timing statistics and speedups for the Q(p) and Q'(p) discretizations, re-
spectively, for the entire solution procedure. Table 6 shows the efficiencies of these computations,
defined to be the ratio of speedup to number of processors. These results show that, in general,
speedups are higher for both larger values of p and for larger grid sizes. For the Q(p) shape
functions, efficiency on 8 processors ranges from 40% for the smallest grid (4 x 4) and polynomial
degree (p = 4), where scheduling overhead is high; to a maximum of 85%, corresponding to maxi-
mum speedup of slightly under 7. There are some examples of slight declines in efficiency when p
increases from 8 to 16. The Q'(p) shape functions incur larger costs and they have slightly higher
efficiencies, but otherwise they are qualitatively similar to the results for Q(p) shape functions.

Because the Q(p) basis functions have lower costs, we restrict our attention to them in the
sequel. Table 7 shows a breakdown of costs and speedups of several of the individual tasks per-
formed by the solution algorithm, for n = 16 and three values of p. This data corresponds to the
third row of each block row in Table 4. The computations are broken into three large-scale steps,
consisting of the construction and condensation of the local stiffness matrices, the construction
and factorization of the nodal preconditioning matrix, and the preconditioned conjugate gradient
iteration for computing the nodal and side unknowns. The first of these steps entails purely local
computations, the second is associated with the global (nodal) mesh, and the third requires both
local and global computations. We see the following trends in this data:

- The costs are dominated by local stiffness matrix computations (construction and elimina-
tion). Since these are purely local, they are very highly parallelizable, and we see speedups
on eight processors of 7.47, 7.25 and 6.86, respectively, for p = 4, 8 and 16 (efficiencies of
93%. 91% and 86%). Thus, efficiencies are generally high, although there is a decline as p
increases.

2 For simplicity of programming, we constrained the four vertices of 0f by adding a constant to the diagonal
entries of (e, associated with these vertices. This corresponds to constraining the vertices by spring supports. It
does not influence any results discussed below.
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Table 1: Number of global unknowns for benchmark problems.

Q(p) Q'(p)
Internal Frame Total Internal Frame Total

4 x 4 grid 144 145 289 96 225 321
p = 4 (Q) 8 x 8 grid 576 513 1089 384 801 1185
p = 6 (Q1) 16 x 16 grid 2304 1921 4225 1536 3009 4545

32 x 32 grid 9216 7425 16641 6144 11649 17793
4 x 4 grid 784 305 1089 576 425 1001

p = 8 (Q) 8 x 8 grid 3136 1089 4225 2304 1521 3825
p = 11 (Q') 16 x 16 grid 12544 4097 16641 9216 5729 14945

32 x 32 grid 50176 15873 66049 36864 22209 59073
p = 16 (Q) 4 x 4 grid 3600 625 4225 3360 905 265
p = 23 (Q') 8 x 8 grid 14400 2241 16641 13440 3249 16689

16 x 16 grid 57600 8449 66049 53760 12257 66017

Table 2: Number of unknowns in each element for benchmark problems.

Q(p) Q'(p)
Internal Frame Total Internal Frame Total

p = 4 9 16 25 .p = 6 6 24 30
p = 8 49 32 81 p= 11 36 44 80
p = 16 225 64 289 p = 23 210 92 302

Table 3: Iteration counts for benchmark problems.

Q(P) Q'(P)
p=i 4 p=8 p=16 p=6 p=l p=23

4 x 4 16 20 27 13 17 24
8 x 8 15 19 26 13 17 20
16 x 16 11 18 23 13 16 20
32 x 32 14 18 - 12 16 -

14



Table 4: Timings and speedups for Q-type shape functions.

Timings Speedups
Number of processors Number of processors

1 4 6 8 1 4 6 8
4 x 4 grid 0.707 0.273 0.244 0.223 1.00 2.59 2.90 3.17

p = 4 8 x 8 grid 2.552 0.795 0.623 0.533 1.00 3.21 4.09 4.79
16 x 16 grid 9.935 2.874 2.134 1.767 1.00 3.46 4.66 5.62
32 x 32 grid 41.564 11.533 8.556 7.071 1.00 3.60 4.86 5.88

4 x 4 grid 3.764 1.095 0.884 0.685 1.00 3.44 4.26 5.50
p = 8 8 x 8 grid 14.652 3.955 2.900 2.259 1.00 3.70 5.05 6.49

16 x 16 grid 57.984 15.389 10.795 8.598 1.00 3.77 5.37 6.74
32 x 32 grid 234.367 61.726 43.171 34.611 1.00 3.80 5.43 6.77

4 x 4 grid 37.186 10.089 7.926 5.826 1.00 3.69 4.69 6.38
p = 16 8 x 8 grid 147.922 40.207 28.984 22.372 1.00 3.68 5.10 6.61

16 x 16 grid 587.828 156.811 111.230 87.065 1.00 3.75 5.29 6.75

Table 5: Timings and speedups for Q'(p) shape functions.

Timings Speedups
Number of processors Number of processors

1 4 6 8 1 4 6 8
4 x 4 grid 0.919 0.314 0.272 0.237 1.00 2.93 3.38 3.89

p = 6 8 x 8 grid 3.488 1.019 0.778 0.643 1.00 3.42 4.48 5.43
16 x 16 grid 13.906 3.886 2.822 2.287 1.00 3.58 4.93 6.08
32 x 32 grid 56.100 15.223 11.084 9.019 1.00 3.69 5.06 6.22

4 x 4 grid 4.232 1.192 0.959 0.736 1.00 3.55 4.41 5.75
p = 11 8 x 8 grid 16.684 4.462 3.230 2.524 1.00 3.74 5.17 6.61

16 x 16 grid 65.974 17.387 12.312 9.625 1.00 3.79 5.36 6.86
32 x 32 grid 266.086 69.846 48.806 38.806 1.00 3.81 5.45 6.86

4 x 4 grid 50.465 13.661 10.678 7.761 1.00 3.69 4.73 6.50
p = 23 8 x 8 grid 201.691 53.934 38.800 30.163 1.00 3.74 5.20 6.69

16 x 16 grid 796.017 211.542 148.829 117.9.14 1.00 3.76 5.35 6.75
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Table 6: Overall efficiency.

Q(p) Q'(p)
Processors Processors

4 6 8 4 6 8

4 x 4 grid 65% 48% 40% 73% 56% 49%

p = 4 (Q) 8 x 8 grid 80 68 60 86 75 68

p = 6 (Q) 16 x 16 grid 87 78 70 90 82 76
32 x 32 grid 90 81 74 92 84 78

4 x 4 grid 86 71 69 89 74 72

p = 8 (Q) 8 x 8 grid 93 84 81 94 86 83
p = 11(Q') 16 x 16 grid 94 90 84 95 89 86

32 x 32 grid 95 91 85 95 91 86
4 x 4 grid 92 78 80 92 79 81

p = 16(Q) 8 x 8 grid 92 85 83 94 82 84

p = 23(Q') 16 x 16 grid 94 88 84 94 89 84

Table 7: Breakdown of timing costs and speedups for Q(p) shape functions on a 16 x 16 grid.

Timings Speedups

p = 4 Number of processors Number of processors
1 4 6 8 1 4 6 8

Construct / condense LSM 6.265 1.614 1.104 0.839 1.00 3.88 5.67 7.47
Construct / factor precon. 0.452 0.127 0.117 0.114 1.00 3.55 3.86 3.96
PCG iteration 3.219 1.132 0.912 0.815 1.00 2.84 3.53 3.95

Complete computation 9.935 2.874 2.134 1.767 1.00 3.46 4.66 5.62

p = 8 Number of processors Number of processors
1 4 6 8 1 4 6 8

Construct / condense LSM 48.594 12.520 8.578 6.703 1.00 3.88 5.66 7.25
Construct / factor precon. 0.497 0.141 0.127 0.121 1.00 3.52 3.91 4.12
PCG iteration 8.893 2.727 2.089 1.774 1.00 3.26 4.26 5.01

Complete computation 57.984 15.389 10.795 8.598 1.00 3.77 5.37 6.74

p = 16 Number of processors Number of processors
1 4 6 8 1 4 6 8

Construct / condense LSM 555.791 147.678 104.142 81.037 1.00 3.76 5.34 6.86

Construct / factor precon. 0.671 0.192 0.172 0.159 1.00 3.49 3.91 4.22

PCG iteration 31.366 8.940 6.917 5.869 1.00 3.51 4.54 5.34

Complete computation 587.828 156.811 111.230 87.065 1.00 3.75 5.29 6.75
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- The construction and factorization of the (nodal) preconditioning matrix represents a small
percentage of the overall cost.

- The PCG iteration also represents a small percentage of the computation, although it is
more costly than the construction of the preconditioner. The speedups achieved for this
part of the computation are smaller than those of the local matrix computations, but they
are strictly increasing as p increases.

Remark 1 The preconditioning operations and the CG vector operations were implemented in
parallel using compiler directives, and we did not limit the number of processors on which these
computations were performed. As a result, the timings for 4 and 6 processors are underestimates.
However, as we will show below, the contributions of both these operations to overall cost is small,
so that these timings do give a reasonable picture of performance.
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Figure 4: CPU times as functions of n, on loglog scale.
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Figure 5: CPU times as functions of p, on loglog scale.

Figs. 4 and 5 show the asymptotic behavior of the timings from Table 4. as functions of it
and p respectively, in loglog scale. Both figures reflect the fact that costs are dominated by the
local matrix computations. Thus, for any fixed p, there are n2 independent local constructions
and condensations, and the costs grow like n2. For fixed n and large p, growth is slightly slower
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Table 8: Breakdown of timing costs of local stiffness matrix computations on one processor, for
a 16 x 16 grid.

p=4 p=8 p=16

Construct 3.975 33.242 366.280
Condense 2.581 15.056 184.986
Total 6.556 48.298 551.266

than 0(p4), the asymptotic cost; for example, the line segment between p = 8 and p = 16, for
one processor and n = 16, has slope 3.34. For small p, growth is closer to O(p 2.s) because of the
larger cost of computing the O(p2 ) nonzero entries.

4.3. Refined breakdown of costs. We now refine and elaborate on the timing results of
Tables 4 - 7, showing how subsidiary steps of the tasks represented in Table 7 compare in cost.
For these refined statistics, we compute costs on a single processor and supplement these results
with discussion of how synchronization and memory conflicts affect performance on multiple
processors.

First, consider the local stiffness matrix computations, i.e. construction and condensation of
the local matrices. Table 8 shows the CPU times for each of these two steps on one processor,
for n = 16 and p = 4, 8 and 16.3 The results indicate that construction of the local matrices is
more expensive than condensation. Since the matrix construction often involves a less regular
set of computations than the condensation, we expect this phenomenon to be more pronounced
for more general problems.

As noted above (see Table 7), although the local stiffness matrix computations corresponding
to different elements are independent of one another, parallel efficiency declines as p increases.
From Table 7, it is evident that efficiency also goes down as the number of processors grows.
Fig. 6 shows a more detailed picture of these phenomena. The curves represent speedups of
the local matrix computations on four and eight processors, for n = 8, 12 and 16, and p = 4
through 18 in increments of 2. (As above, each curve represents average CPU times over three
runs.) Here, the two sets of curves in each part of the figure correspond to two versions of the
condensation step. The first version is the one used for all experiments described thus far; as
shown in §3, it takes some advantage of sparsity of the local matrices. The second version takes
no advantage of sparsity during the condensation, so that the computation (7) is performed as
though all participating matrices are dense.4 Thus, this version is considerably more expensive.
The same procedure for constructing the local matrices, as described in §3, was used with both
versions of the condensation. The results of these figures show that there is indeed a decline
in speedup as p increases, especially for the more costly version of condensation; in addition,
efficiency is greater on four processors than on eight processors.

To understand these issues, it is necessary to examine the computer architecture in more
detail. A feature of the Alliant FX/8 is that data moves between main memory and compu-

3To prevent calls to the timer from affecting measurements, the data in Tables 8 and 9 was generated separately
from that in Tables 4 and 7, and Table 10 was produced separately from all of these. This is why these tables do
not contain identical subtotals for identical computations.4This entails removing checks for zero entries in the vector m,..,, for the matrix-vector product (17).
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tational elements (i.e. processors) through a cache memory. Main memory and cache memory
are connected by two buses, and cache memory and computational elements are connected by a
crossbar switch with four paths to the cache [1], [17], [26]. Thus, there are two sources of delay
associated with movement of data between memory and processors: (i) it will take longer for
data to move between processors and main memory than between processors and cache memory;
(ii) when multiple processors are used, there will be contention for the buses (between main and
cache memories), and possibly some delay in moving data through the crossbar switch (between
cache memory and processors). We expect the crossbar switch to be less of a bottleneck than
the buses [26]. However, if more than two processors attempt to move data to or from main
memory, some processors will have to wait for access to the buses. Consequently, contention for
the buses will tend to increase any delays caused by the need to move data between main and
cache memories.
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Figure 6: Speedups of local stiffness matrix computations for three meshes, on four and eight
processors.

Although it is difficult to prove rigorously that these observations provide a complete expla-
nation of parallel performance, the results of Fig. 6 are consistent with them. The machine used
for these experiments has a cache memory with 512K bytes, or 64K double precision words. For
the local stiffness matrix computations, each processor works with one block of storage of size
equal to the number of entries in the upper triangle of the local stiffness matrix (approximately
(p + 1)'/2). Consequently, k such blocks of storage fit into cache provided

k x (p + 1)4/2 <65536,

which gives p < 12 for k = 4 and p < 10 for k = 8. Examination of Fig. 6 shows steeper declines
in speedups at precisely these values of p. The delays are greater for dense condensation, which
we attribute to the additional memory references required for this version. We suspect that the
(less pronounced) drops in speedup for smaller problems are partly explained by the lesser delays
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associated with the crossbar switch. In addition, in general we have no control over how data
is distributed between cache memory and main memory, and it may be that the cache is not

used with maximum efficiency even when all local matrices could fit into it. Thus, there may be
some additional congestion between the two levels of memory even for smaller problems. Finally,
note that Fig. 6 suggests that speedup is essentially unaffected by the number of elements. This
is substantiated by the following simple analysis. Let c. denote the cost of processing a single
local stiffness matrix in a serial computation, and assume that the parallel cost is increased to
cp = (1 + 6)c., where 6 (which may increase with k) reflects the delay due to memory contention.
Then the speedup on k processors is

n2 /(kc) = k/(1 + 6),

i.e. it is independent of the number of elements.

Remark 2 The last observation contrasts with our previous statement that speedups are some-
what lower for very coarse grids, i.e. n = 4, especially when p is also small. (See Tables 4 and
5.) For such small problems, smaller speedups are the result of scheduling overhead, which is
amortized over a relatively small amount of computation.

Remark 3 The effects of memory conflicts of the type discussed above can also be diminished
by implementating the condensation with BLAS3-type constructs [15], which are designed to use
cache memory efficiently.

The PCG iteration does not contribute as much to overall cost as the local computations.
Nevertheless, consideration of its individual steps still reveals some interesting properties of the
particular form of the matrix-vector product (18), as well as some differences between global
and local operations. We group the iterations into four subsidiary operations: matrix-vector
products w - Sv; preconditioning solves w 4- Q-'v; and two types of vector operations, inner
products a - vTw and daxpy's w ,- av + v2, of which there are three each. Table 9 shows
a breakdown of the costs of these individual operations on a 16 x 16 grid, using one processor.
and Table 10 further refines the details of the matrix-vector product. Here, "arithmetic" refers
to the computation (19) used to perform the matrix-vector product; "index/copy" refers to the
identification of global locations of local vectors and the copying of entries of global vectors (v
in (18)) to local vectors (vi); and "synchronize/copy" refers to the copy from wi to w, plus the
execution of the synchronization functions that prevent simultaneous writes to shared locations
of w. "I/O" refers to the cost of copying the local stiffness matrix from one memory location to
another. S

These results indicate that the matrix-vector product dominates the PCG iteration. This is
largely a consequence of floating point operation counts (multiplications and additions), which
are summarized as follows:

matrix-vector product: 32n 2p2

CG-vector operations: 24n 2p
preconditioning solves: 4n 3 .

sThis cost is an artifact of the program design, which allows either in-core or out-of-core storage for local
stiffness matrices, but in both caes requires that the local matrix be explicitly read from some source. This data

movement could have been avoided, so that the cost of the matrix-vector is artificially high. It does not, however.

alter our general conclusions. The cost of I/O would be much higher with out-of-core techniques.
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Table 9: Breakdown of timing costs of local stiffness and PCG computations on one processor,
for a 16 x 16 grid.

p= 4  p=8 p=16

Matrix-vector product 2.917 8.310 30.186
Precondition 0.226 0.304 0.441
Inner product 0.047 0.126 0.339
Daxpy 0.062 0.168 0.435
Total 3.252 8.908 31.401

Table 10: Breakdown of timing costs of matrix-vector product, for a 16 x 16 grid.

p = 4 p=8 p=16

Arithmetic 1.861 5.654 21.174
Index/copy 0.634 0.946 1.886
Synchronize/copy 0.296 0.670 1.373
I/O 0.262 1.210 5.449
Total 3.053 8.480 29.882

The first line of Table 11 shows the ratios of operation counts for the matrix-vector products to
operation counts for the other two steps, for n = 16 and several values of p; the data reveals the
dominance of the matrix-vector product. The second line of the table shows the analogous ratios
of CPU times, where the timing data for the CG-vector and preconditioning operations comes
from Table 9, and the data for the matrix-vector product is from the "Arithmetic" entry of Table
10. We see that the results for operation counts agree qualitatively with those for CPU times,
but they do not tell the whole story. For example, in the comparison of matrix-vector product
and CG-vector operations, the ratios for operation counts are smaller than those for CPU times,
indicating that the CG-vector operations are implemented more efficiently. Other factors that
affect performance are vector startups and vector lengths. Each of the n2 local matrix-vector
products requires 4p vector startups, giving a total of 4n 2p startup overhead for the matrix-vector
product; this contrasts with just 6 vector startups for the CG-vector operations. In addition,
we are using only the lower triangle of the matrix di, so that some of the vectors used in (19)
are smaller than the Alliant's basic vector length of 32. Hence, although all these computations
are vectorizable, performance for the matrix-vector is somewhat lower than for the CG-vector
operations. The effect of startup overhead will be diminished on multiple processors, since some
startups will be performed in parallel. In the comparison of matrix-vector and preconditioning
steps, we see that for p ?_ 8, the cost of the preconditioning (band-) solve is higher than the
operation counts predict (i.e. the ratios of CPU times are smaller than the ratios of operation
counts); this is because its typical vector length is the bandwidth, n, or 16 for these data. i.e.
less than 32.

A second general issue, which limits the speedups achieved by the PCG computations (Table A

7), is the need to synchronize the results of local matrix-vector products in forming the global
product (18). Consider the following analysis. Let cp denote the fully parallel part of the local
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Table 11: Ratios of costs of PCG operations on a 16 x 16 grid.

Matrix-vector product Matrix-vector product
vs. CG-vector operations vs. Preconditioning
p=4 p=8 p=16  p=4 p=8 p=16

Ratio of operation counts 5.7 10.7 21.3 4.0 32.0 128.0
Ratio of CPU times 16.2 16.7 27.7 8.0 18.0 48.0

Table 12: Comparison of speedup model with actual speedups of the PCG iteration, for a 16 x 16
grid.

p= 4 p=8 p= 16
Processors Model Actual Model Actual Model Actual

4 3.35 2.87 3.45 3.26 3.66 3.39
6 4.32 3.50 4.56 4.30 5.07 4.65
8 5.06 4.05 5.43 5.03 6.27 5.39

matrix-vector product, consisting of the "index/copy" and "arithmetic" and "I/O" steps; here
we are ignoring any memory conflicts that may exist in these steps. Let c, denote the serial part,
consisting of the "synchronize/copy" steps. The cost of the global matrix-vector product on one
processor is n2 (c. + c,). In a parallel computation, processes will often have to wait for access
to w, and the walt can be as long as (k - 1)c.. Suppose every local matrix-vector product waits
this long. The cost of the parallel computation is then approximately

n2(cp + (k - 1)c),

so that the speedup is approximately

C .+ co (' CP + co
T 2k (20)+c

c(c+ + (k- 1)c,) =  cp + (k - 1)c.) (20)

Since the matrix-vector product dominates the PCG iteration, we will also take (20) as a measure
of the speedup achievable by PCG. Table 12 compares the values of (20) (where cp and c8 are
taken from Table 10) with the actual speedups from Table 7. The results suggest that (20) is a
good indicator of the qualitative behavior of the PCG iteration. We attribute the fact that the
accuracy of the model decreases with additional processors to added memory conflicts.

Remark 4 Although this model is pessimistic in the sense that (k - 1)c. may be a long waiting
time, we have observed empirically that processors do not reach the synchronization step in a
fixed order, so that there are large delays for many local computations. We also note that it
is possible to decrease synchronization overhead using better bookkeeping techniques to identify
specific locations of w that are available.

4.4. Comments on Performance. Finally, we discuss the performance, in terms of floating

point operations, of parts of the code that are both vectorized and implemented in parallel.
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Consider the condensation of the local stiffness matrices, which entail Cholesky factorization
and computation of the Schur complement. To simplify operation counts, in the experiments
considered here we used the dense version of condensation, as described in the discussion of
Fig. 6. For the Q(p) discretization, the floating point operation (multiplications and additions)
counts are:

Factor A, = L,LT: J(p- 1)6 + (p- 1)4 _ J(P-- 1)2

Compute hi = L' 1B,: 4(p- 1)2((p- 1)2 + 1)p
Compute 6i = C - ETE,: 4p(4p- 1)(p- 1)2 .

CPU times on one processor, for n = 16 and p = 8 and 16, are 28.4 and 874.5 seconds respectively,
giving performances in millions of floating point operations per second (Mflops) of 1.55 for p = 8
and 2.35 for p = 16. Based on the speedups for the local computations from Fig. 6 (6.75 for
p = 8 and 5.36 for p = 16), this gives performance estimates on eight processors of 10.5 and 12.6
Mflops, respectively. Similar results were also obtained for the matrix-vector product (18) - (19),
with a maximum rate of 3 Mflops on one processor (for local matrices of order approximately
500).

By way of contrast, the LINPACK benchmark (for dense elimination with dense matrices of
order 100) on a single processor of an Alliant FX/4 is 2.1 Mflops [14], and on eight processors, the
BLAS2 kernels with arguments in main memory achieve 18 - 20 Mflops ([21], p. 81). Hence, our
performance on vectorized code is at best comparable to that of the BLAS2 kernels. Note that this
is lower than performance achieved for a variety of matrix operations reported e.g. in [21], where
BLAS3-type blocking strategies lead to performance of upwards of 30 Mflops. There are several
reasons for this. First, despite the fact that (17) and (19) are designed to avoid unnecessary
stores of the accumulating products m,:pu and w, examination of the generated assembler code
reveals that the actual computations are not performed efficiently. For example, in principle, the
outer loop of (17) requires a daxpy with one argument (columns of M,) taken from memory, but
no loads or stores to memory; the actual code performs one store, one load, and a daxpy with one
argument in memory. Thus, there are three times as many memory references as is necessary,
leading to a degradation of performance on the order of 50%. Second, we have little control
over management of the cache memory; we suspect that because there are many local matrices
being processed, they are likely to be located in main memory rather than cache memory. The
good performances exhibited in [211 were achieved using hand coded assembler [20]. We believe
that better performance of the techniques under consideration here can be obtained using more
sophisticated coding techniques. However, since these tasks do not have the dominant cost of
the overall computation, further tuning will not affect our conclusions, and we have not pursued
this issue. For more complex problems, e.g. where local stiffness matrices are constructed by
(vectorized) quadrature, it would be imperative to implement the quadratures efficiently.

5. Conclusions. In this paper, we have examined the computational costs of an imple-
mentation of the hp-version of the finite element method on the Alliant FX/8, a shared memory
parallel computer. Our main conclusions are as follows:

1. Costs are dominated by the local computations, i.e. construction of local stiffness matrices
and condensation of these matrices for elimination of internal unknowns.
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2. Global operations, particularly the preconditioning associated with nodal unknowns, con-
tribute a relatively small amount to overall cost.

3. Communication and synchronization costs associated with the use of unassembled local
stiffness matrices for CG iteration do not greatly degrade performance, and their effects are
understood.

4. The likelihood of memory conflicts places limitations on the sizes and number of local
problems that can be handled efficiently. We expect this problem to be ameliorated through
the use of more sophisticated coding techniques such as those available in the BLAS3 [15]
or LAPACK [2] libraries, but we do not expect it to disappear entirely.

Thus the "natural parallelism" associated with the decomposition of problems by elements can
be exploited in a straightforward manner to get good speedups, provided the size or number of
local problems are not too large. These conclusions apply to a particular type of architecture, a
shared memory machine with a relatively small number of processors. We expect similar results
to apply to other machines in- this class, e.g. the CRAY-2.

We now discuss how we expect our observations to carry over to other classes of problems
and computers.
1. Different problem coefficients or domain topologies. As long as the element grid is topologically
rectangular, the general methodology described here should be applicable. As shown in §3, if
the coefficients of (1) are more complex, or if the domain is less regular, then the fully local
computations will more expensive, and we expect these costs to be more dominant. For highly
anisotropic problems (e.g. large a/b) or discretizations with very fiat rectangular elements, there
may be an increase in PCG iteration counts, but we suspect this will not offset the dominance
of the local computations.
2. Use of the h-version. If the h-version is used for discretization, then the analogue of the
solution method presented here is domain decomposition, with local super-elements consisting
e.g. of p2 elements. In this case, for PCG iterations to display convergence rates independent of
problem size, it is necessary to perform some type of modification of the super-element side and
internal shape functions [3],[6J,[10]. We expect conclusions similar to those above to hold for such
methodologies. An alternative for achieving fast convergence is to use standard shape functions
but apply a relatively fine nodal preconditioner [24]. For such a strategy, a larger percentage
of computational effort is devoted to the sparse matrix factorization and solves associated with
preconditioning than we have observed.
3. Adaptive methods. In contrast to the methodology tonsidered here, where all operators were
computed "from scratch," the hp-method is often implemented in a hierarchical manner, where
higher order elements are used to supplement previously computed low order operators. In this
case, the local computations will be somewhat less dominant. Many issues along these lines, such
as load balancing if different order basis functions are used in different elements, as well as mesh
refinement strategies, remain open.
4. Shared memory computers with more processors. Increasing the number of processors will
decrease the costs of the local stiffness matrix computations more than those of the other compu-
tations. For example, for all of the problems of Table 7, we estimate that increasing the number of
processors by as much as a factor of four (to thirty-two) will decrease the local costs significantly.
but the effect the costs of PCG will be small. In such a scenario, for p > 8 local costs will still
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dominate. In light of the fact that our local costs are artificially low, we expect our conclusions
to apply for shared memory machines with on the order of fifty processors. However, for this to
be borne out, it will be necessary for the local matrix computations to be implemented so that
memory conflicts do not limit efficiency.
5. Local memory computers. We do not attempt to make a precise statement about this class of
architectures, but outline some of the issues. The memory conflicts associated with local matrix
computations on shared memory computers should not be a factor on local memory machines, so
that we expect the local computations to be more efficient on the iatter class of architectures. The
matrix-vector products will entail exchanges of data corresponding to super-element boundaries,
but we expect the effect of this overhead to be similar to that of the synchronization required by
the shared memory implementation. It will be necessary to implement the global preconditioner
and other CG operations efficiently.

Appendix. We outline the properties of the shape functions that give rise to sparse local
stiffness matrices for constant coefficient problems. Consider the representation

[(1,1) (1, -) (1,NA)1
S= ($,1) (ss) (SJv) , (21)

(,,) (W,S) ( (,Ar)I

where each entry represents a block matrix containing all terms (5) in which the shape functions
come from the indicated set. Thus, for example, the block (S,I) contains all terms in which u E 8
and v E 1. (In (6), Ai corresponds to (1,").) From properties of the Legendre polynomials, it
can be shown that the following relations hold:

In(1,I): B.($Q,$k,(,)#0 iff j=lorj=±2andk=m: or

k = m or k = m ± 2 and j = 1.

Bi( 3 ' (:r) #0 iff j = m aid I = 2 or 1 = 3.

In (8, 1): B # 0 }
, # } iff j = I and m = 2 or m = 3.

In ./V,2" : B", ,,4) ()) 0 0)

In (N ) a($,) , (22)

In (8,3): B0 1(#(I),0$ )) #0 iff -mis even and j=korj=k±2.

In (A,S): B.(V,( k), 0S0) 5 0 iff j=2orj=3.

In (',A/): B.,,(K "j,, (A(k)) 6 0.

Relations in (1,S), (1,Nr ) and (3,A) are determined from symmetry. [
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As an example of how (22) is established, consider the entries of (j,). Let (fg)
f. 1 f(,)g(f)df. The Legendre polynomials satisfy [13]

(P IPO 1/(2j +1) if -k (3

0 ifj k (23)

P3 -1 = 2 (+I(0- j  (24)

From (3) and (13) - (15), we have

&(§'O), I ) = a (.i,) + b(q, )('k, m). (26)

Consequently, (3), (24) and (25) imply that

1= 12(2j - 1) ( P-( -

so that
o[(Pi, P) + (Fi- 2 , Pj- 2 )] / [2(2j - 1)] if j = I
( -(P),P)/ [2/(2-1(2j 1+(3)] if j = L+2 (27)

(Oj 01) -(P-2, Pj-2) / [2(2T j- 11(2j - 51] if j = 1 +2 (27

0 otherwise.

Moreover, P(l) P-.(f), so that
k, ,n) [(2k - 1)/2] (Pk- 1,Pk_-1) if k (28)

0 otherwise. (28)

Thus, the first term of (26) is nonzero if and only if j = I or j = I ± 2 and k = m; the second
term is handled in an identical way.
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