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the theory is well suited for finite element approximations as it incorporates both C"
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a simple three-node stretching-bending finite element is developed and applied to the
problem of cylindrical bending of a symmetric carbon/epoxy laminate for which an exact
solution is available. Both the analytic and finite element results were found to be in
excellent agreement with the exact solution for a wide range of the length-to-thickness
ratio. The proposed higher-order theory has the same computational advantages as first-
order shear-deformable theories. The present methodology, however, provides greater
predictive capability, especially, for thick-section composites. t
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1. INTRODUCTION

In composite laminates made of high stiffness and strength fiber-reinforced plies, the defor-
mation effects due to transverse shearing and transverse normal stretching can often be signifi-
cant, especially in thick laminates and those subject to short wavelength loading. These
effects are more pronounced in composites than in homogeneous materials due to their inher-
ently high material compliancy in the transverse directions relative to the axial fiber direction.
Furthermore, composite laminates exhibit much lower strength in the transverse directions and
ar the ply interfaces, thus being particularly susceptible to matrix cracking and delaminations.

The modeling of laminated composite pl!ates and shells has been the subject of intensive
research in the last two decades. Following the pioneering developments of Reissner, 1,2

Hildebrand et al., 3 and Mindlin 4 in the analytic treatment of homogeneous elastic plates, a
great number of displaccmcnt-based, stress-based, and mixed formulations for application to
laminate composites have been explored (e.g., refer to the recent review papers by Reissner,
Reddy, 6 Noor and Burton, 7 and references therein). Reddy 6 groups laminate theories into
three general classes: (1) equivalent single-layer theories (two-dimensional); (2) layer-wise theo-
ries (two-dimensional); and (3) continuum-based theories (two- and three-dimensional). Of
the three classes, the single-layer displacement theories are the simplest and most economical
to use.

One commonly recognized drawback of the single-layer displacement theories, however, is
that all six components of stress, obtained from constitutive relations, are discontinuous at the
ply interfaces whereas, according to elasticity theory, only the inplane stresses are discontinu-
ous and the transverse stresses maintain continuity across the laminate thickness. However,
when the transverse stresses are obtained by integrating the elasticity equations of equilib-
rium, accurate stress distributions can be recovered. To resolve the issue of transverse
stresses in a direct fashion, Reissner 9 10 proposed a mixed variational principle which uses the
three displacement components and three transverse stresses as the independent variables.
Although from an analytic standpoint this approach appears to have some qualitative advan-
tages; from a computational perspective it possesses the characteristics deficiency of all stress
and mixed formulations 11 which has a relatively large number of stress parameters which need
to be solved in order to obtain element stiffnesses with the implication of an additional and
often significant computational cost. Thus, in large-scale applications and, particularly, in com-
putationally intensive nonlinear analyses, the elements of choice are those that provide the
best compromise between accuracy and computational cost, with the displacement-based
theories emerging as the preferred framework. In what follows we narrow our focus on the
single-layer displacement theories and propose a new theory which is specifically formulated
with a view on the computational aspects of thin and thick composite laminates.

In a single-layer displacement-based theory, the basic assumption is that concerning the
through-thickness approximations of the displacement components. The displacement compo-
nents are expanded across the total laminate thickness with respect to the thickness coordi-
nate. The expansion coefficients (or the plate/shell kinematic variables) are functions of the
inplane coordinates (and time, in dynamics). Commonly, the inplane displacements tic
expanded with a polynomial of the same degree, m, whereas the transverse displacement expan-
sion may be of th, c2xTcrent degree, n. Thus, the notation {m, n) may be conveniently used
to distinguish between the various single-layer theories.



The simplest and most extensively explored approximation is {1, 0} (i.e., a linear inplane
displacement and a constant transverse displacement, totaling five kinematic variables) or what
is often referred to as the first-order shear deformable theories. 12 -14 These theories, which
are extensions of the Mindlin theory, enforce zero transverse normal deformation by virtue
of n = 0. When formulated from the principle of virtual work, the resulting two-dimensional
variational principle requires only C0 continuous kinematic fields, thus providing a convenient
framework for developing simple and computationally efficient finite elements.> 19

Other developments have focused on higher-order theories- those which include transverse
shear and disregard iiansvcrse normal deformations {m>l, 0}, and those that account for
both transverse shear and transverse normal deformations {m 2 i, n 2- 2}, with the latter
class of theories being less prevalent. 2 -22 Although, in general, higher-order theories provide
more accurate approximations of the laminate deformations, strains and stresses, they have not
been particularly suited toward finite element approximations due to the presence of one or
more limitations such as: (1) incorporating a large number of kinematic variables requiring
C° or higher continuity; (2) imposing natural edge-boundary conditions that involve such non-
classical quantities as higher-order stress resultants; and (3) the inability to model appropriate
transverse stress boundary conditions at the top and bottom laminate surfaces. Other com-
mon deficiencies include the requirement of "shear correction" factors that tune the trans-
verse shearing properties, '2 1 and some theories lack a variational basis. 2 3

Recently, Tessler 24-26 has developed a higher-order {l, 2} theory for homogeneous plates
which incorporates "field-consistent" transverse strains and is devoid of all aforementioned limi-
tations. The novel feature of that theory is a displacement variational principle requiring
only C and Ct continuity for the plate kinematic variables, which allows the development of
efficient plate finite elements having an expanded applicability range. One such element, a
three-node triangle with five engineering degrees-of-freedom (dot) at each node, 2 4 has demon-
strated the same computational efficiency as its Mindlin counterpart. 15 In this paper, an
extension of this theory to laminaied composite plates and the derivation of an efficient three-
node plate finite element are presented.

In Section 2, the development of the {1, 2} laminate plate theory from three-dimensional
elasticity is presented. This is achieved by expand~ng the three Cartesian displacements in
terms of the thickness coordinate using linear and parabolic distributions tor the inplane and
transverse displacements. Additionally, independent expansions are used for the transverse
strains. By requiring exact transverse stress boundary conditions at the top and bottom plate
faces and the indepenient transverse strains to have equivalent mean values to those obtained
from the assumed displacements directly, improved expressions for the transverse shear and
transverse normal strains are obtained. Employing the three-dimensional virtual work princi-
ple yields a set of seven partial differential equations of equilibrium and exclusively Poison
boundary conditions. The theory reduces to one of coupled 10th-order stretching-bending and
0th-order transverse stretching.

In Section 3, a three-node plate element based on the displacement variational statement
of Section 2 is developed. There are seven kinematic variables in the formulation; however,
because the two higher-order displacement variables do not have spatial gradients in the varia-
tional statement, they are ,ssumed to be uniform within the element domain (C-1 continuous)
and are statically condensed out at the clement level. The inplane membrane displacements
are assumed to vary linearly across the clement while the bending variables are interpolated

2



using anisoparametric shape functions. t5 Each element node has five engineering dof
involving three displacements and two normal rotations. The transverse shear relaxation
parameter t6 is also emploed to completely eliminate shear locking in the thin regime.

In Sectio,- 4, there is a brief discussion on the computation of accurate throt';h-thickness
distributions of the transverse stresses via a global smoothing technique. 27-28 In Section 5,
analytic and finite element solutions to the problem of cylindrical bending of a symmetric
carbon/epoxy laminate are presented. Results are compared with Pagano's exact elasticity solu-
tion. 29 In Section 6, concluding remarks regarding the merits of the present composite plate
analysis are presented.

2. ANALYTIC BASIS OF HIGHER-ORDER PLATE THEORY

The present theory is developed in the following manner: the Cartesian displacement
components ui (i = x, y, z) are expanded with respect to the dimensionless thickness coordi-
nate = z/he[-1,11, where uz has the special parabolic form:

ux(x,y,z) = u(x,y) + hey (X,y) (a)

Uy(x,yz) = v(xy) + h6x (X,y) (b) (1)

U z(X,y,z) = w(x,y) + &w1 (x,y) + (&
2+C)w2(x,y) (C)

where = 0 designates the position of the middle surface Sm, 2h is the total plate thickness
and C is a constant which makes w(x, y) a weighted-average transverse displacement defined
in accordance with Reissner,2 that is,

h
3 f uz(1-&2) dz (2)

-h

Substituting Equation Ic into Equation 2 and solving for C results in*

C = -1/5 (2a)

The expansion coefficients of the inplane displacements u, v, Ox, Oy are also defined as
weighted-average kinematic variables:

h h

u= u x dz, v = Udz (3)
-h fh

h h

ex 2h3 fuyz dz, y = 3  ux z dz (4)

-h -h

The Ir' ,csnl ill n I r %, dillrs rm Ihal in Rcfrcncc 24 by Iactor o1 2/3 .
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where u and v denote the midplane displacements along the x and y directions, respectively,
with Ox and Oy denoting rotations of a transverse normal about the x and y axes, respectively
(see Figure 1). W

U Z, Uz

X, Ux

Figure 1. Plate notation

For a general composite layup composed of N plies, the stress-strain relation for each indi-
vidual kth ply (k = 1, 2,..., N) is governed by a three-dimensional Hooke's Law of the mono-
clinic form:

(k) (k)

aYX all C12  C13  0 0 C16  Exxx xx

ay 22  a 23  0 0 C2 6 C
YY Iyy

Czz C33  0 0 C3 6  Czz (5)
Tyz  C4 C4 S 0 yz

xz (SyM.) C55  0 Xz

SXxy ¢66  xy

where the elastic constants Ifij (k) corresponding to the laminate x-y coordinates are related to
the ply principal direction constants Cij(k) as

=.(k) . a. . C (k) (6)
].m jn mn
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with aij denoting the appropriate cosine functions of the coordinate rotati(,n between the ply
principal material directions and laminate coordinates. 30

The inplane strain-displaccment relations are obtained in the usual manner as,

{Ex, XXy= {U x x  , UY, x, uy, x}

{+ h&K X , + h Y , + h& xY0 (7a)

{Uy, ,y x,y ,y ,x + h (Vx,x +yy)}

A major departure from a conventional displacement formulation is the way the transversc
strains are introduced into the theory. Here, the transverse strains are cxpanded indepen-
dently in a field-consistent polynomial form, 24'

3 2
E I n a _i= n b  (i=x,y) (7b)

'z n' i-in

n=O n=O

The expansion coefficients an and bin are obtained by requiring the weak transverse strain
compatibility

minimize J Czz - Uzz2 dz(8a)

-h

h
minimize f [ iz - Uz i - u ~ Jdz (i=xy) (8b)

-h

TI'ic pproach of cxp;nding [ie displIcmcnt gradicnts u.t (i X. y, z) niroduccd in Rckr -nc, 24 is quivalnl to lilt' prcscni one
has.cd on the Iransvcrc strain cxpanslons.
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and the satisfaction of the exact stress boundary conditions at the top (k = N) and bottom
(k = 1) plate faces

t( 1)(x,y,-h) T (N)(x,y,h) = 0 (i=x,y) (9a)

C(I ) (x,y,-h) = a (xy"h) = 0 (9b)ZZ'Z ZZ'Z

where the minimization in Equation 8 is performed witn respect to the unknown expansion
coefficients. While Equation 9a is the statement of zero shear tractions at the top/bottom
plate faces, Equation 9b results from the transverse equilibrium equation of three-dimensional
elasticity

(k) + -r(k) + o(k ) = 0 (ignoring the body force, (10)
XZ'X yz*y ZZZ

in which conditions Equation 9a are incorporated.

The resulting transverse shear strains have the parabolic distribution satisfying traction-
free boundary, conditions

I = (1- &2) _y. (i=x,y)
iz 4 izO

(Ul)
{xz0' ,yz (={w + ay, w + 8 }0z z ,X y ,y X

which agree with Reissner's transverse shear strains.1,2

T e resulting cubic transverse normal strain can be written as

C C +T IC (12)

where
Ezo= wj/h

T i ' ,Y =(8 8 , w 2 /h
2 , e + 8y

X0 xyYo yx ,y 8x,x+ y)y

6



in which

= h {22(E) r -- [P,(&)/14 + P3( )] s.}

3. 1 1r~ =(Ci/33(k=I) "(Ci 1(k=s)

s. = (i/E33)(k=l) + (C3i/33) (,=N) (i=1,2,6).

For i =3,

28¢($s = - h [6P1( ) - P()

where Pi (.) dcnotc Lengcndrc polynomials:

P(&)= &, P2(W) = (3 2-1)/2, P3 (W) = C(52 - 3)/2

It can readily be verificd that for a homogeneous plate Equation; 11 and 12 satisfy the three-
dimcnsionIl cqii':'rium Equation 10 exactly.

The plate equations of equilibrium together with the natural boundary conditions arc
obtained from the three-dimensional statement of virtual workt which, neglecting body forces,
may be written as:

af ,(k)6 + a(k)6C + a(k)6 + (k) -1(k) 6 + T(k) Sy dVff axx xx yy yy zz zz 'xy xy"xz xz yz 6 yz)d

'V

-ff q- 6Uz(x,y,h) dxdy + ff q" 6u,(x,y,-h) dxdy

S. S"

- ff (Tx6U+ T6u + T6u) dsdz = 0 (13)

t e IiIic MI alll 1x- rc :irdcd is I 'weak" lornm of lhe virtual work principit du t t i h c ust the cmit comp t' ilihv
requir c lt will h le th;iosve strains (st:e 1,.quation 9).

7



where 6 is the variational operator; S+ and S- denote the top and bottom plate surfaces
which are taken free of shear tractions and loaded by normal pressures,

T (N)(x,y,h) = 0 (i=x,y), a (N)(x,y,h) = q*(xy) oniz z=

t (1)(x,y,-h)= 0 (i=xy), a()(x,y,-h)= q'(x,y) on S' (14)
iz ZZ

where Ti (i = x, y, z) denote the prescribed tractions on the part of the edge boundary So
(henceforth, the barred symbols will denote quantities prescribed at the plate edges). Integrating
Equation 13 across the plate thickness results in the two-dimensional plate virtual work principle

ff {N6u +Ny6v+ N (6u + v )+ Nz6(wl/h)
xf f x y 'y xy y ,x z

s
iin

+ M68 + My68 + M (6e + 66 )+ Mz6(w 2/h
2)

x yIx y x'y xy x ,x y'y z

+ Qx(6w + 68y) + Qy(6W + 68) }dxdy

- J q(6w + 6w2) + q 26w} dxdy

Sm

f {Nxn6U + Nyn 6v + Mxn 6 y yn 6x + Qzn6W + Qz6W + Z 6w 2 }ds =0 (
ca (15)

where the plate stress resultants are defined in Appendix A. Integrating Equation 15 by
parts results in

ff I - [Nx,x+ Nxyy] 6u - [Ny'y+ Nxy,x ] 6v

S

+[ - M + Qx] 68y+ [- M - M + Qy] 66[Mx,x xy,y x y y,y xy,x y x

- [Qx,x + Q yy+ qj] 6w + [N T/h - q2] 6w1

+ [M /h2  qj 6W2 }dxdy

8



+ { (Nxn- &N) Su + (Nyn - RN) 6v + (Mxn- 4M ) so + (Myn - Myn) 66

C

+ (Qzn - Qzn ) 6w + Qz 6wl + QZ26w2} ds

+f { NxnU + Nyn v+Mxn y Myn x Qzn6w ds =0 (16)

C
u

where

Nxn Nxn + n, N N n + Nn QnQn -n,xn x yn xy x yy n= xnx y

M M n + M n M M n + Mn(xn xx xyy yn xy x y y (17)

and

{nx , n = {cos(x,n), cos(y,n))

where the C., and Cu are parts of the boundary C (CuUC 0 = C and CunCa = 0 ) surround-
ing the middle surface Sm where the tractions and displacements are prescribed; nd n and S
denoting the outward normal and tangential coordinates.

Thus, the variational principle provides seven equations of equilibrium written as:

(6u): N + N = 0 (18a)x ,x xy, y

(6v): N + N = 0 (18b)xy, x y,y

(68y): + M - Qx = 0 (18c)y Mx,x xy,y

(68 x ) + M - Qy = 0 (18d): Mxy,x y,y

(6w): Qx,x + Q y + q, = 0 (IBe)

(6wl) Nz/h -q2 = 0 (18f)

(6w 2 ): M /h - 4 = 0 (18g)
z 5

9



and the associate boundary conditions:

(a) Poisson boundary conditions

Nxn Nxn N =N i M,- = M Q zn on (19
xn n yn M xn= Mxn' Myn ynI Qzn C (z19n)

(b) Vanishing higher-order shear resultants

Q - Qz2 = 0 on C (20)

(c) Displacement boundary conditions

u = u, v= , e x= a w = w on Cu (21)

The plate constitutive equations relating stress resultants to strains are summarized in Appen-
dix B. Upon their introduction into Equation 18 there result two sets of equilibrium equa-
tions in terms of displaccmcnt variables:

QaLa2u = L alq (22)

w +RbLblu + Sbq (23)

where

q T {q1, q2}, uT = (U v, w, ex, y} and wT =w19 w2} (24)

The Qa, Rh, and Sh arc various stiffness coefficient matrices. The Lal and LbI are first-order
linear differential operators, and the La2 is a second-order linear differential operator. The
explicit forms of these matrix operators are rather cumbersome and, for this reason, they are
not presented here. Note that Equation 22 contains five second-order coupled partial differen-
tial equations of equilibrium in the five displacement functions u, v, w, Ox and Ov (i.e., a 10th-
order system), whcrcas Equation 23 has two zero-order equations in the w1 and w2
displacements.

10



The solution to a typical plate boundary-value problem is obtained by solving Equation 22
for u subject to the boundary conditions of Equations 19 and 21, and then solving the "auxil-
iary" system of Equation 23 for w. The computation of stress resultants follows from the
plate constitutive equations (Appendix B), while the stresses are computed from the three-
dimensional Hooke's Law in Equation 5. In Section 4, there is a brief discussion of an alter-
native procedure for recovering accurate transverse shear stresses.

2.1 Remark

The plate theory can be reduced to a shear-deformable one by enforcing infinite rigidity
in the transverse normal material direction (C3 3 = co) and setting C 13 = C23 = 0. Further-
more, with the additional assumption of infinite rigidity in the transverse shear directions (C44
= C5 5 = 00), the theory yields results of the classical laminate plate theory (see Section 5).

3. FINITE ELEMENT DEVELOPMENT

The particular form of the variational principle (see Equation 15) lends itself well to the
development of simple and efficient finite elements comparable in computational efficiency to
the first-order shear-deformable elements.15 "18 Recognizing that Equation 15 contains gradi-
ents of u, v, w, 0x and 0y that do not exceed order one implies C) continuity of these vari-
ables. In addition, Equation 15 has no gradients of w1 and w2; therefore, C 1 continuous
approximations, which are discontinuous at the element boundaries, can be employed for these
variables.

An important simplification due to w I and w2 being C 1 continuous is that their dof can
be conveniently eliminated at the element level via static condensation. Alternatively, the
elimination of w1 and w2 can be performed in the variational statement by realizing that in
Equation 15 the grouped terms associated with the arbitrary variations 6w 1 and 6w 2 must van-
ish independently. The result is Equation 18f and Equation 18g which, by using the
constitutive relations for Nz and Mz (Appendix B), can be readily solved for wl and w2; these
are then replaced into Equation 15 prior to the finite element approximation. With this
approach, Equation 18f and Equation 18g are satisfied exactly whereas the static condensation
at the finite element level accomplishes the same purpose consistent with the finite element
approximations.

3.1 Thin-Regime Considerations

By expressing Equation 15 in dimensionless form, it can further be shown that this varia-
tional principle is of a penalty-constraint type analogous to that of the Mindlin theory (c. g.,
refer to Reference 18). In the thin regime as h - 0, it enforces the Kirchhoff constraint of'
the vanishing transverse shear angles, that is

( -Y z 0 Y Z 0 { W +  8 y , W y+ 8 x } -* 0 ( 5

'ryzo (hix0 Y, ~Y x (25)

and the inextensibility of the transverse normal

11



w, w2 -) 0 (26)

Whereas Equation 26 imposes no restrictions upon element interpolations for wl and w2, the

Kirchhoff constraints (see Equation 25) require field consistency in the interpolations for w,
15-18

0. and Oy which may be achieved through the use of anisoparametric shape functions. 5 1  In
addition, an element-level relaxation of the transverse shear penalty parameter may be neces-
sary when the field consistency is violated; for example, when excessive kinematic boundary
restraints exist. 16

In what follows, anisoparametric interpolations for a three-node element are summarized.

and a brief discussion on the implementation of shear relaxation is presented. To distinguish

element approximations from their analytic counterparts, the former are superscribed with ain .

which, in the present notation, signifies a characteristic length scale of the discretization.

3.1.1 Three-Node Anisoparametric Interpolations

3 3 Ca Linear
u (x,y) = u V (xy) = v ivi Shape

i 1 i=1 Functions

3 3
0e2 (x,y) = Xi' 0 e (x,y) = z C (27)

i= 1 i=1 (27)

where j are the area-parametric coordinates given as

Ci (ci + bix + aiy)/2A (A is the triangle area)

and ai, bi, and ci, are coefficients of nodal coordinates
a. = xk-x., b. = yy, c.i  ~-y
1i Yj-Yk' = x Yk- x kY j

C o Quadratic

91 3 
Shape

w (xy) = iw. + x~i (bkNi+3 - b N k+3)/8 Functioni=1 1j+

+ yi (a.Nk+ 3  i+3)/8] (28)

where Ni are quadratic shape functions

N i = Ci (21i ), Ni+ 3 = 4Ci C

12



and the subscripts assume the values:

i= 1,2,3; j= 2,3,1; k=3,1,2.

w1 (x,y) = W C-1 Uniform
Functions

w2 (x,y) = (29)

Introducing Equations 27 through 29 into Equation 15, and performing the necessary varia-
tions with respect to the displacement dof and integrating over the element domain, the ele-
ment stiffness equilibrium equations are derived. The Wt and Wt dof are then eliminated
using static condensation yielding a three-node clement with five engineering dof at each
node; i.e., {ui, vi, wi, Oxi, Oyi} (i = 1, 2, 3) (see Figure 2).

Stea I io

KEY: ou, v, W, 0 0y dof 3 i2 dof

Figure 2. A three-node stretching-bending plate element with
transverse shear and transverse normal deformation.

3.1.2 Shear Relaxation

The shear relaxation parameter, 0 2s, is a multiplier introduced in the transverse shear con-
stitutive equations for the element

= s G-y(30)

The parameter is determined from the diagonal transverse shear, kS0, and bending, kh 0 , stiff-
ncss coefficients corresponding to rotational dof of the "unrelaxed" clement stiffness matrix: 15-18

13



0=1
S 1 + 2 (Z k /Z k) (31)

S D

where the summations are carried over all six diagonal terms. The use of shear relaxation
avoids locking in the thin regime.

The computer implementation of this three-node plate element, enabling its use with the
general purpose finite element code ABAQUS, is discussed in Reference 31.

4. TRANSVERSE STRESS CALCULATIONS

Due to their heterogeneous nature, laminated composite plates generally exhibit ply-
interface discontinuities in the inplane stresses, as well as in the transverse strains. Also, the
inplane strains ire continuous across the laminate thickness and the transverse stresses are
also continuous, although their through-thickness gradients may be discontinuous at the ply
interfaces.

Since the present theory relies upon continuous strain distributions across the entire lami-
nate (as do all single-layer displacement theories), accurate inplane stresses can be recovered
from the ply constitutive law (see Equation 5); however, the direct recovery of transverse
stresses in this manner are often erroneous producing nonphysical discontinuities at the ply
interfaces.

To obtain accurate, through-thickness continuous transverse shear stresses, one needs to
integrate the three-dimensional equilibrium equations using the inplane stresses obtained from
the constitutive relations (see Equation 5 and refer to Reference 8), that is

0 (k)
=

-_ra(k) + (k) ) dz
xxy,y

-- fu E12'I E13 P E1 Tk e cxJ~~~ 1(1'6 3 YYJ
¥xy

+ {C16, C2 6 , C36, C66 k) 3 x dz. (31a)

1y
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(k)_(()+ k ) )z
yz= - + a ) dz

-k) }

Jy Eyy dz (31b)
zzz

L.Y xy

where the strains are defined in Equation 7a and Equation 12. Having obtained the trans-
verse shear stresses, the transverse normal stress, azz k), can be found either by integrating
Equation 10 or applying Hooke's Law (see Equation 5). As will be shown in Section 5, in
this plate theory both approaches yield accurate predictions for aCr ; however, the Hooke's

Law stress recovery yields slightly discontinuous transverse normal stresses at the ply interfaces.

While in the context of this plate theory, as well as others, 8 the equilibrium stress-recov-
ery approach has been effective; its application to the finite element method is not straightfor-
ward. For instance, in the case of the present finite element, all strain gradients in Equation
31 vanish identically (the strains are constant within the element domain); therefore, the
direct utilization of these finite element strain gradients will always result in zero transverse
shear stresses.

To overcome this difficulty, a global smoothing procedure 27,28 yielding continuous solu-
tions for the strains and their normal gradients across the entire plate domain was employed.
The strain gradients were then used in Equation 31 to compute accurate through-thickness dis-
tributions of the transverse shear stresses. For complete details on the global smoothing pro-
cedure the reader is referred to Reference 28.

5. RESULTS AND DISCUSSION

Numerical studies are carried out for the problem of cylindrical bending of a
carbon/epoxy symmetric angle-ply (30/- 30I.) laminate subjected to a sinusoidal transverse pres-

sure q = qo->in(;rx/L) for which an exact elasticity solution is available 29 (see Figure 3a).
This problem is rather challenging, exhibiting significant inplanc sh ar coupling in each ply of
the laminate. The ply material properties are taken as

15



EL =25 x 106 psi, ET = 106 psi

GLT= 0.5 x 106 psi, G'r = 0.2 x 106 psi (32)

VLT VTT = 0.25

where L and T denote the longitudinal and transverse ply material directions, respectively.

The results from the study were obtained analytically from the present Higher-Qrder
Theory, shown as HOT-ANALYTIC (for the analytic solution approach refer to Reference
24), an exact elasticity approach,29 designated as EXACT, the classical laminate plate theory
(CPT), and the present finite element analysis, designated as HOT-FEM. Also, results corre-
sponding to the shear-deformable version of the present theory (see Remarks 2.1) are pre-
sented and labeled in the figures as SHEAR-DEFORMABLE.

Figure 3b depicts a twenty-element finite element discretization of a narrow strip spanning
one quarter of the loading wavelength (i.e., L/2). Appropriate symmetric boundary conditions
and multiple-point kinematic constraint equations are enforced to simulate the cylindrical bend-
ing of the plate. In Figure 4, the percent error of the maximum midplane transverse dis-
placement is plotted versus the half wavelength of loading-to-thickness ratio (L/2h). As L/2h
decreases, the observed deflection becomes dominated by transverse shear and transverse i1or-
mal deformations. The thick regime improvement in accuracy afforded by the inclusion of
both of these effects in the present theory is clearly evident.

The remainder of the discussion concerns the strain and stress predictions for the
moderately thick (L/2h = 10) and thick (L/2h = 4) deformation regimes. Figures 5 and 6
depict through-thickness distributions of the maximum inplane (exx and Yxy) and transverse Yz
and ezz) strains, respectively. The observed departures from the exact elasticity solutions,
particularly at the outer fibers for L/2h = 4, can be attributed to the linear distributions for
ux and uy in the present theory. Note that their thickness variations according to the elastic-
ity solution become increasingly nonlinear in the thick regime.

Figure 7 shows the distributions of the maximum transverse shear rxz and transverse nor-
mal azz stresses. These stresses were computed following the conventional Hooke's Law
stress recovery (see Equation 5), designated as HOT-HOOKE, and by integrating the
three-dimensional equilibrium equations of elasticity (see Equation 31), designated as
HOT-EQUIL. It is of interest to note that while the equilibrium-based transvcrsc shear
stress (rxz) recovery yielded superior results over those obtained from Hooke's Law, the trans-
verse normal stress (azz) recovery is highly accurate by both methods.
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Figure 3. (a) Carbon/epoxy [30/-30]s laminate subject to sinusoidal pressure
in cylindrical bending; (b) finite element discretization.
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Figure 4. Percent error of maximum midplane deflection versus L/2h ratio.
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Figure 5. Distributions of inpiane strains across thickness for L/2h =10 and 4.
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Figure 6. Distributions of transverse strains across thickness for L/2h = 10 and 4.
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Figure 7. Distributions of transverse stresses across thickness tor L/2h =10 and 4.

6. CONCLUDING REMARKS

A computationally viable {1, 2} higher-order plate theory for stress analysis of composite
laminates was presented. The theory incorporates both transverse shear and transverse nor-
mal deformations and is based on linear through-thickness expansions for the inplane displace-
ments and a special parabolic distribution for the transverse displacement. In addition,
independent expansions were used for the transverse strains, satisfying exact transversc stress
equilibrium at the top and bottom plate surfaces and having equivalent mean values to those
obtained directly from the assumed displacements. From the three-dimensional virtual work
principle, the two-dimensional plate variational principle is derived, giving rise to a coupled
10th-ordcr stretching-bending theory subject to exclusively Poisson boundary conditions and
two "auxiliary" 0th-order transverse stretching equations.

To demonstrate the theory's computational aspects, an efficient three-node stretching-
bending plate element was developed. It was shown that the higher-order transverse displace-
ments can be eliminated either directly from the variational statement or via static
condJensation at the element level. With the use of the latter approach, a 5-dof-per-node cle-
ment was produced, having the same computational efficiency as a comparable first-order shear-
deformable element. In addition, an effective approach for the recovery of reliable transverse
stresses was discussed.
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In closing, the practical benefits of the proposed laminate plate analysis are: (1) there

are no requirements for "shear correction" factors; (2) reliable three-dimensional distributions

of displacements, strains and stresses are attainable; (3) the range of applicability includes
both thin- and thick-section composite laminates; and (4) the finite element formulation repre-

sents a viable enhancement over the widely used first-order shear-deformable models.
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APPENDIX A. PLATE STRESS RESULTANTS AND STRAINS

Stress Resultants

NT = {Nx , Ny, N , N N = i ( x a , z, ay } ( k ) d z  (A.1)
X xy} L f xx, yy zz, xy

k=l hk-1

MT = {M, M z M k {(z(za ( (k) 2 (k) (A.2)
0 xy L yy ZZ

k=l hk-

(k) (k) (k) ,,

( z), (zk + z dz

T h N 5 - (k) (k) (A.3)
={Qx' Qy} =  (i - t) xz ' yz

k=1 hkl

Plate Strains

T
X Eyo , EZo YXYo} = {U,x, V y, wl/h, u + V } (A.4)

K = {Xo , Yo ,  I O, }  = {yx, y w2 /h 2 , Yx,+ 'y , y (A.5)

,x xyy

y=(xzo, yzo {, x+ y W,y +0x) A6

6roplied Normal Tractions

q, = q- q, q 2 = q*+ q (A.7)
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Prescribed Edge Stress Resultants

h

{N xn' N yn}= f {TT Iy dz (A.o)
-h

h

Mxn, yn }  f ,Tyz dz (A.9)

-h

h

{Qzn' Qz1, QZ2 I f z {1, &, &2 115} dz (A.10)

-h

Note: From (A. 10), one can readily verify that the vanishing conditions on Q,
(i = 1, 2) in Equation 20 imply that Tz must vary parabolically as (I _2) across the plaie

thickness.
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APPENDIX B. PLATE CONSTITUTIVE RELATIONS

Invoking Hooke's Law (see Equation 5) into the plate stress resultants (Appendix A)
yields the plate constitutive relations which can be expressed in matrix form as

N A B 6- CIMJ D flEE] (B. 1)Q 0 0 G y

where the vectors of plate stress resultants and strains are defined in Appendix A; the
constitutive matrices of elastic coefficients are:

Membrane Elastic Stiffness

A = [Aij] (i,j =1,2,3,6) (3.2)

where

N h

A . f C(k) dzAij ij d

k=1 h k 1

Membrane-Bending Coupling Elastic Stiffness

B = [Bij] (ij = 1,2,3,6), (B.3)

where

B f. IC(k) z+iq C 3 dz (i = 1,2,3,6; q 1,2,6)
k-i hk-1

N h

B = Ci3 )3 dz (i = 1,2,3,)

k=1 hk 1
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Bending Elastic Stiffness

D = [D ij] (i,j = 1,2,3,6), (B.4)

where

N h

D qk c(k)z2 + 2 C (k ) } + (k)2 dz for q = 1,2,6Dqq f qq q3 @qZ 33 q,

k=l hk_ 1

and

Nk

D f k r c(k)02 d33 L 33 dz
k=l hk-l

D f c (k)z2 + (c (k) (k) )z+ (k) 1 dz
qr ii h k 2 +Cq3 r+Cr3 q u33 q r I

k=1 hk_1  (q,r = 1,2,6)

N I c(k) z+C(k) *l dz (q 1, 2, 6)

Dq3  q3 3 3 33 q 3 d

k=l hk-1

Transverse Shear Elastic Stiffness

G = [G ij (i,j = 5,4), (B.5)

where

N. ,(k - 2)

G. f c 4k[ (1 _&)]2 dzGij = ij [-4 ( I - )] d

k=l h k-1

24



REFERENCES

1. REISSNER, E. On the Thjeory of Bending of Elastic Plates. Journal of Mathematics and Physics, v. 23, 1944, p. 184-19 1.
2. REISSNER, E. On a Vatriational Thjeorem in Elasticitv. Journal of Mathematics and Physics, v. 28-29, 1950, p. 90-95.
3. HILDEBRAND, F. 1B. REISSNER, E.. and T1HOMAS, G. 1B. Notes on the Foundations of the Theory of Small Displacemnents oif

Orthotropic S/hells. NACA TN, no. 1833. 1949.
4. MINDLIN, R. D. Influence of Rotato~y inia and Shtear on Flexural Motions of Isotropic, Elastic Plates. Journal of Applied Mechanics

v. 18, 1951. p. 31-38.
5. REISSNER, E. Reflections on the Theory of Elastic Plates. Appi. Mech. Review, v. 38, no. 11, 1985, p. 1453-1464,
6. REDDY, J. N. On Refined Computational Models of Composite Laminates, Int. J. Numer. Meths. Eng., v. 27, 1989, p. 361-382.
7. NOOR. A. K., and BURTON, W. S. Assessment of Shear Deformable Theories for Muftilayered Comnposte Plates. Appl. Mech. Rev.. v. 42,

no. 1, 1989, p. 1-12.
8. LO, K. H., CHRISTENSEN, R. M., and AU, I- M. Stress Soluttion Determination for Higher-Order Plate Theory. lnt. J. Solids and

Structures, v. 14, 1978, p. 655-662.
9. Reissner, E. On a Certain Mixed Variational Thjeorem and a Proposed Application. Int. J. Numer. Meths. Eng., v. 20, 1984, p. 1366-1368.

10. REISSNER, E. On a Mixed Variational Theorem and on Shear Defornable Plate Theory. In(. 1. Numer. Meths. Eng., v. 23, 1986,
P. 193-198.

11. SPILKER, R. L Hybrid Stress Formulations for Multiaver isoparametric Plate Elements in Fnat~e Element Methods for Plate and Shell
Structures, Vol. I: 'Element Technology. T. J. R. Hughes and E. Hinton, eds., Pineridge Press, Swansea, U.K., 1986, p. 175-199.

12. YANG, P. C., NORRIS, C. H., and STAVSKY, Y. Elastic Wave Propagatorn in Hleterogeneouss Plates. Int. J. Solids Siruct., v. 2, 1%6,
p. 665-684.

13. DONG, S. B., and TSO, F. K W. On a Laminated Orthotmopic Shell Theory Including Transverse Shear Deformation. J. AppI. Mech., v. 39,
1972, p. 1091-1097.

14. REDDY, J. N. A Simple Higher-Order Theory for La.inated Composite Plates. J. AppI. Mech., v. 45, 1984, p. 745-752.
15. TESSLER, A. and HUGHES, T. J. R. A Three 'ode iindlin Platt Element w..ith Imnproved Transverse S/hear. Comput. Meths. AppI.

Mech. Eng., v. 50, 1985, p. 71-101.
16. TESSLER A. A Piori ldentificatio,; ol Shear Locking and Stiffening in Triangular Mindfin Elenents. Com put. Mcths. Appl. Mech. Eng.,

V53, 1985', p. 183-200.
17. TESSLER, A A C"-anisr.paramettic Three-Node Shallow Shell Element. Comput. Meths. Appl. Mech. Eng, v. 78, 1990, p. 89-103.
18. TESSLER. A Sh. jr-Lkfortnable Bending Elements with Penalty Redaradon in Finite Element Methods for Plate and Shell Structures,

Vol. 1: Eier'-ni Technology, T. J. R. HUGHEIS and E. I IINTON. eds., Pincridge Press, Swansea. U. K., 1986, p. 266-2.90.
19. IIUGHES, T.I. R. The Finite Element Method. Linear Static and Dynamnic Finite Elemnent Analysis. Chapter 5, Prentice-l lall, Englewood

Cliffs, NJ, 1987.
20 HTE.J . n UC .ARftdTery for Lamninated Anisoa'opic, Cylindrical Shells. Journal of Applied Mechanics, v. 41,
1974, p. 471-476.

21. NELSON, R. B., and LORCH, D. R. A Refined Theory for Laminated Orthotropic Plates. J. AppI. Mech., v. 41, 1974, p. 177-183.
22. LO, K. H., CHIRISTENSEN R M. and WUJ, E. M. A lligher.Order Theory of Plate Deformation. Part 1: Homogeneous Plates, and

Part 2: Laminated Plates. iouinal of Applied Mehcanics, v. 44, 1977, p. 663-676.
23. VALISETTY, R. R., and REI WIFELD, L. W. A Theory for Stress Analysis of Comnposite Laminates. Proc. 24th SDM Conf., AIAA

Paper 83-0833-CP, 1983.
24. TESSLER, A A Higher-Order Plate Theory with Ideal Finite Elenent Suitability. Compur. Meths. AppI. Mech. Eng. To be published, v. 85,

1991.
25. TESSLER A A Higher-Order Plat Theory withi Ideal Finite Element Suitability. U.S. Army Materials Technology Laboratory,

MfL TR A9-85, September 1989.at
26. TESSLER, A An Improved Higher-Order Theory for Orthotropic Plates. Proc- 13th Annual Composites Review, 1988, p. 59-65.
27. T ELR , FREESE, C., ANASTASI R SERABIAN, S., OPLINGER, D., and KATZ, A. Least-Squares Penalty-Constraint Finite

Element M'thod for Generating Strain Fids Arom Moire Fringe Patterns, Photomechanics And Speckle Metrology. SPIE Vol. 814, 1987,
p. 314-323.

28. TESSLER A and FREESE, C. A Global Penaly- Constraint Finite Element Formulation for Effective Strain and Stress Recover.
Presented at the 8th Army Conference on Applied Mathematics and Computing, Cornell University, 1990.

29. PAGANO, N. J. Influence of Shear Coupling in Cylindr.ical Bending of Anisotropic Laminates. J. Composite Materials, v. 4, 1970.
p. 330-343.

30. LEI[IKNITSKII, S. G. Theory of Elasticityv of ar, A.,isotropic Elastic Body. Holden-Day, Oakland, CA, 1963.
31. SAE.TI IER, E. and TESSLER, A. User-Defined Subroutine Interface fr use of iIOT3 Plate Elemnent in AIIAQUS, U.. S. Arnw Materials

Technology Laboratory, MTL TR (to appear in 1991). f

25



DISTRIBUTION LIST

No. of
Copies To

1 Office of the Under Secretary of Defense for Research and Engineering, The Pentagon,
Washington, DC 20301

Commander, U.S. Army Materiel Command, 5001 Eisenhower Avenue, Alexandria, VA 22333-0001
1 ATTN: AMCLD

tomldnder, U.S. Army Laboratory Command, 280U Powder Mill Road, Adelphi, ".1D 2C732-114S
I ATTN: AMSLC-IM-TL
I AMSLC-CT

Commander, Defense Technical Information Center, Cameron Station, Building 5, 5010 Duke
Street, Alexandria, VA 22304-6145

2 ATTN: DTIC-FDAC

I Metals and Ceramics Information Center, Battelle Columbus Laboratories, 505 King Avenue,
Columbus, OH 43201

Commander, Army Research Office, P.O. Box 12211, Research Triangle Park, NC 27709-2211
1 ATTN: Information Processing Office

Commander, U.S. Army Electronics Technology and Devices Laboratory, Fort Monmouth,
NJ 07703-5000

1 ATTN: SLCET-DT

Commander, U.S. Army Missile Command, Redstone Arsenal, AL 35898-5247
1 ATTN: AMSMI-RD-ST
1 Technical Library

Commander, U.S. Army Armament, Munitions and Chemical Command, Dover, NJ 07801
2 ATTN: SMCAR-TDC

Commander, U.S. Army Natick Research, Development and Engineering Center, Natick,
MA 01760-5010

1 ATTN: Technical Library

Commander, U.S. Army Tank-Automotive Command, Warren, MI 48397-5000
1 ATTN: AMSTA-R

Commander, U.S. Army Engineer Waterways Experiment Station, P.O. Box 631, Vicksburg,
MS 39180

1 ATTN: Research Center Library

Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD 21005
1 ATTN: SLCBR-DD-T (STINFO)
1 SLCBR-IV-M, Dr. W. H. Drysdale
1 SLCBR-TB-W, Dr. J. Walter

Director, Benet Weapons Laboratory, LCWSL, USA AMCCOM, Watervliet, NY 12189
1 ATTN: AMSMC-LCB-TL

Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E.,
Charlottesville, VA 22901-5396

3 ATTN: AIFRTC, Applied Technologies Branch, Gerald Schlesinger

Commander, U.S. Army Aviation Systems Command, Aviation Research and Technology Activity,
Aviation Applied Technology Directorate, Fort Eustis, VA 23604-5577

1 ATTN: SAVDL-E-MOS

Director, Langley Directorate, U.S. Army Air Mobility Research and Development Laboratory,
NASA-Langley Research Center, Hampton, VA 23665

I ATTN: Aerostructures Directorate

Naval Research Laboratory, Washington, DC 20375
I ATTN: Code 5830

Office of Naval Research, 800 North Quincy Street, Arlington, VA 22217-5000
I ATTN: Mechanics Division, Code 1132-SM



No. of
Copies To

U.S. Navy David Taylor Research Center, Bethesda, MD 20084
1 ATTN: Code 172

U.S. Air Force Office of Scientific Research, Boiling Air Force Base, Washington, DC 20332
I ATTN: Mechanics Division

Commander, U.S. Air Force Wright Research & Development Center, Wright-Patterson
Air Force Base, OH 45433-6523

i AI1N: wRDC/1ML...

NASA - Marshall Space Flight Center, MSFC, AL 35812
1 ATTN: EHO1, Dir, M&P lab

1 Committee on Marine Structures, Marine Board, National Research Council, 2101 Constitution
Avenue, N.W., Washington, DC 20418

U.S. Army Research Office, P.O. Box 1Z2?11, Research Triangle Park, NC 27709
1 ATTN: Dr. Robert Singleton
1 Dr. Gary L. Anderson, Chief, Structures and Dynamics Branch, Engineering Sciences

Division

NASA - Langley Research Center, U.S. Army Aerostructures Directorate, USAARTA, Hampton,
VA 23665-5225

1 ATTN: Dr. Wolf Elber, MS 266

NASA - Langley Research Center, Hampton, VA 23665
1 ATTN: H. L. Bohon, MS 243

George Washington University Center - at NASA - Langley Research Center, Hampton, VA 23665
1 ATTN: Professor A. K. Noor, Mail Stop 246C

NASA/GSFC, Greenbelt, MD 20771
1 ATTN: Mr. William Case, Mail Code 725

Ship and Submarine Materials Technology, DTRC-0115, Annapolis, MD 21402
1 ATTN: Mr. Ivan L. Caplan

Director, Structures Directorate, USA MICOM, Redstone Arsenal, AL 35898 E24/
1 ATTN: AMSMI-RD-ST, Dr. Larry C. Mixon

Benet Laboratories, Watervliet Arsenal, Watervliet, NY 12189-4050
1 ATTN: Dr. Giuliano D'Andrea, Chief, Research Division
1 Dr. John Vasilakis, Chief, Applied Mechanics Branch

Office of Naval Research, Solid Mechanics Program, 800 North Quincy Street, Arlington, VA
22217-5000

1 ATTN: Dr. Roshdy Barsoum, Code 1132

Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge,
MA 02139

1 ATTN: Professor K. J. Bathe
1 Professor David Parks

Massachusetts Institute of Technology, Department of Astronautics and Aeronautics,
Building 73, Room 311, Cambridge, MA 02139

1 ATTN: Professor Ted H. H. Pian

I Professor S. N. Atluri, 3irector, Center for the Advancement of Computational Mechanics,
Georgia Institute of Tech,;ology, Mail Code 0356, Atlanta, GA 30332

1 Dr. Lawrence C. Bank, The Catholic University of America, Department of Civil Engineering,
Washington, DC 20064



No. of
Copies To

1 Professor Ted Belytschko, Northwestern University, Department of Civil Engineering,
Evanston, IL 60201

1 Professor Fu-Kuo Chang, Stanford University, Department of Aeronautics and Astronautics,
Stanford, CA 94305

I Professor Tse-Yung P. Chang, The University of Akron, Department of Civil Engineering,
Akron, OH 44325

1 Dr. Sailendra N. Chatterjee, Materials Sciences Corporation, 930 Harvest Drive,
Suite 300, Blue Bell, PA 19422

1 Professor Thomas J. R. Hughes, Stanford University, Division of Applied Mechanics,
Durand Building, Stanford, CA 94305

I Professor S. W. Lee, University of Maryland, Department of Aerospace Engineering,
College Park, MD 20742

1 Professor Alan J. Levy, Syracuse University, Department of Mechanical and Aerospace
Engineering, 139 E. A. Link Hall, Syracuse, NY 13244-1240

i Professor J. N. Reddy, Virginia Polytechnic Institute and State University, College of
Engineering, Department of Engineering Science and Mechanics, Blacksburg, VA 24061-0219

1 Professor L. W. Rehfield, University of California at Davis, Department of Mechanical
Engineering, Davis, CA 95616

I Professor Eric Reissner, University of California at San Diego, Department of Applied
Mechanics and Engineering Science, LaJolla, CA 92093

1 Professor John N. Rossettos, Northeastern University, College of Engineering, Department
of Mechanical Engineering, 360 Huntington Avenue, Boston, MA 02115

1 Professor J. C. Simo, Stanford University, Division of Applied Mechanics, Stanford,
CA 94305

I R. L. Spilker, Rensselaer Polytechnical Institute, Department of Mechanical Engineering,
Aeronautical Engineering and Mechanics, Troy, NY 12181

I Dr. G. M. Stanley, Lockheed Palo Alto Research Laboratory, Mechanics of Materials Engineering,
Palo Alto, CA 94304

1 Mr. Joseph R. Soderquist, Federal Aviation Administration, 800 Independence Ave.,
S.W., Washington, DC 20591

1 Mr. D. Erich Weeith, FMC Corporation, MD P95, 2890 De La Cruz Blvd, Box 58123,
Santa Clara, CA 95052

i Dr. E. T. Camponeschi, David Taylor Research Center, Code 2802,
Annapolis, MD 21402

1 Dr. John H. Bode, Honeywell Armament Systems Division, 7225 Northland Dr.,
Brooklyn Park, MN 55428

1 Dr. Paul A. Lagace, Massachusetts Institute of Technology, Room 33-303,
77 Massachusetts Ave., Cambridge, MA 02139

I Mr. Terry L. Vandiver, U.S. Army Missile Command, ATTN: AMSMI-RD-ST-CM,
Redstone Arsenal, AL 35898-5247

I Mr. Peter Shyprykevich, Grumman Aircraft Systems, MS B44-35,
Bethpage, NY 11714

I Professor Isaac Fried, Mathematics Department, Boston University,
Boston, MA 02215

1 Professor C. A. Felippa, Department of Aerospace Engineering Sciences and
Center for Space Structures and Controls, University of Colorado,
Boulder, CO 80309-0429



No. of
Copies To

I Professor A. F. Saleeb, Department of Civil Engineering, University of Akron,
Akron, OH 44325

I Professor Stanley B. Dong, Department of Civil Engineering, University of
California, Los Angeles, CA 90024

I Professor Richard B. Nelson, Department of Civil Engineering, University
of California, Los Angeles, CA 90024

I Dr. R. Badaliance, ATTN: Code 6380, Naval Research Laboratory,
Washington, DC 20375

1 Mr. A. D. Carlson, Engineering Mechanics Division, Naval Underwater Systems
Center, New London, CT 06320

Director, U.S. Army Materials Technology Laboratory, Watertown, MA 02172-0001
2 ATTN: SLCMT-TML
2 Authors

i i I t I t i



C 0 0), Cm 0EaM-4

0O ) 0o. O 0 C , * u- 0.2 ~ O
0 E2 :2 io CoE

LaO E 0j W~o- E 4sO -

~ 0 - 0 4) Q ) 0. fa C 0.0 *6 0- ; C
U- 0.2 o ui ~ 0C 0 .O . a . 0 m ooz

CL D0 r0 e 0 0 0 
>

Q-E EE- o z 0 E E .E. r

zL Z Cr C 0 
0  

.5 L I .CC COO 00 = 00mc15. ; Z

& 0 0 03'- 0 - :3 M 0- US I0.

~0 E 1-..C-E 1S z 0 E -S

> oE E. -E V >~ >0 E

Ca. 0) 0-0 ) 0 Z2o 0 o

E~ -0 Coo C"
>.O~Q m~ 0. c 0h E .~~

E~ OC OD0C E 0 1t a.~ C 0 )E0 a' 0>
.0 c~- - I? C~E

0 0 CL 6. 0-
. 2 0 2 2 .

LLJ ~~~~O- 0I e 0 .C 5. x4. mW N >X

cc E CE a m.Cr ME u a.~L C 0 C -0
a. _ O.Sv a-0. 0 0 o .005 iC..Q1

C a C -0 0 .CO
C.O C 0U -40 0 CO CC LLOV 0 0

0 J 0 00 A- u - . 0 ,. ,5 ~.2- .
O.. CC O~i oo l.. 0

(nCa 0= 00- c.2*~ ~ 0
00-_ 

0
0. (g -~ * a > .c ~0 4S

- CLa a>C 00 0 0 CMC 0LQ 0 0 >.0
0I > 0 oo O 0.. , 0

.~0 >0) 0 0ao0%)1

C'o D 0 0 i m 5 4

Ca CCC -00 o6

*I j C a > 0 2 0)CY a 0 a2 ~ E 3 0

:,oC U 4. * -E0 x .~ 3: -0 ED 0E-o a .Ct
0 Oc r .~0 CD E 0 0 0 C 0 ooXvOE

u a;o IU 0
c - ,oU .. O-- 3 I0 2a~ a6o - L0 7

- 0 QO. 0 < -_.S O-M
.c30 - c - '1 

0
tC o

0 C0- ' ' .

*im Cc t c)c 1a 2 -o0 05 0 -C 00 1
a - CL ) 0 0)C 0 --

0 0 0 -0CEa~C -U~ a
(a~e (a r~E~ CE 0 ) C

6.o 0 0)0i 2 - &=: 0i
Cr- C S0i -'0 Cc 0 U c

. c 8 . 2*5G;3 0 0oE-,~ 4) r 0 0~
mowi~* x .2 9;E ' 0w .2E 8to CL M. 1-0

L---------------------------EL---------------------------c


