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1. INTRODUCTION

In composite laminates made of high stiffness and strength fiber-reinforced plies, the defor-
mation cffects due to transverse shearing and transverse normal stretching can often be signifi-
cant, especially in thick laminates and those subject to short wavelength loading.  These
ctfects arc more pronounced in composites than in homogeneous materials due to their inher-
ently high material compliancy in the transverse directions relative to the axial fiber dircction.
Furthermore, composite laminates exhibit much lower strength in the transverse dircctions and
at the ply interfaces, thus being particularly susceptible to matrix cracking and delaminadons.

The modeling of laminated composite plates and shells has been the subject of intensive
research in the last two decades. Following the pioneering developments of Reissner, "
Hildebrand et al.,> and Mindlin* in the analytic treatment of homogeneous elastic plates, a
great number of displaccmcnt-based, stress-based, and mixed formulations for application to
laminate composites have been explored (e.g., refer to the recent review papers by Reissner,’
Rc:ddy,6 Noor and Burton,’ and references therein). Rf:ddy6 groups laminate thcorics into
three general classcs: (1) cquivalent single-layer theories (two-dimensional); (2) layer-wise theo-
ries (two-dimensional); and (3) continuum-based thcories (two- and three-dimensional). Of
the three classes, the single-layer displacement theories are the simplest and most cconomical
to usec.

One commonly recognized drawback of the single-layer displacement theories, however, is
that all six components of stress, obtained from constitutive relations, are discontinuous at the
ply interfaces whereas, according to elasticity theory, only the inplane stresses arc discontinu-
ous and the transversc stresses maintain continuity across the laminate thickness. However,
when the transverse stresses are obtaincd by integrating the clasticity equations of cquilib-
rium,8 accurate stress distributions can be recovered. To resolve the issue of transverse
stresses in a direct fashion, Reissner”!? proposed a mixed variational principle which uses the
three displacement componcents and three transverse stresses as the independent variables.
Although from an analytic standpoint this approach appears to have somc qualitative advan-
tages; from a computational perspective it possesses the characteristics deficiency of all stress
and mixed formulations'! which has a relatively large number of stress parameters which nced
to be solved in order to obtain element stiffnesses with the implication of an additional and
often significant computational cost. Thus, in large-scale applications and, particularly, in com-
putationally intensive nonlinecar analyses, the elements of choice arc thosc that provide the
best compromise between accuracy and computational cost, with the displacement-based
theories emerging as the preferred framework. In what follows we narrow our focus on the
single-layer displacement theories and propose a new theory which is specifically formulated
with a view on the computational aspects of thin and thick composite laminatcs.

In a single-layer displaccment-based theory, the basic assumption is that concerning the
through-thickness approximations of the displacement components. The displacement compo-
nents arc expanded across the total laminate thickness with respect to the thickness coordi-
nate. The expansion coefficients (or the plate/shell kincmatic variables) are functions of the
inplane coordinates (and time, in dynamics). Commonly, the inplanc displaccments arc
expanded with a polynomial of the same degree, m, whercas the transverse displacement expan-
sion may be of the dilferent degree, n. Thus, the notation {m. n} may be conveniently used
to distinguish bctween the various single-layer theories.




The simplest and most extensively explored approximation is {1, 0} (i.e., a linear inplanc
displacement and a constant transverse displacement, totaling five kincmatic variables) or what
is often referred to as the first-order shear deformable theories.'?'* These theories, which
are extensions of the Mindlin theory,4 enforce zero transverse normal deformation by virtue
of n = 0. When formulated from the principle of virtual work, the resulting two-dimensional
variational principle requires only C° continuous kinematic fields, thus provndmg a convenient
framework for developing simple and computationally efficient finite clements.’

Other developments have focused on higher-order theories; those which include transverse
shear and disregard iransvcrse normal deformations {m>1, 0},” and those that account for
both transverse shear and transverse normal deformations {m = i, n = 2}, with the latter
class of theories being less prevalent. 20-22 Although, in general, higher-order theories provide
more accurate approximations of the laminate deformations, strains and stresses, they have not
been particularly suited toward finite element approximations due to the presence of one or
more limitations such as: (1) incorporating a large number of kinematic variables requiring
C° or higher continuity; (2) imposing natural edge-boundary conditions that involve such non-
classical quantities as higher-order stress resultants; and (3) the inability to model appropriate
transverse stress boundary conditions at the top and bottom laminate surfaces. Other com-
mon deficiencies include the requirement of “shear correction” factors that tune the trans-
verse shearing pr()pcrties,zo’21 and some theories lack a variational basis.?>

Recently, Tessler**2% has developed a higher-order {1, 2} theory for homogencous plates
which incorporates “field-consistent” transverse strains and is devoid of all aforemeniioned limi-
tations. The novel feature of that theory is a displacement variational principle requiring
only C° and c! continuity for the plate kinematic variables, which allows the development of
efficicnt plate finite clements having an cxpanded applicability range. One such element, a
three-node triangle with five engineering dcgrees-of-freedom (dof) at each node, 24 has demon-
strated the same computational efficiency as its Mindlin counterpart. 5 In this paper, an
extension of this theory to laminated composite plates and the derivation of an efficient three-
node plate finite element are presented.

In Section 2, the development of the {1, 2} laminate plate theory from three-dimensional
elasticity is presented. This is achieved by expanding the three Cartesian displacements in
terms of the thickness coordinate using linear and parabolic distributions tor the inplane and
transverse displacements. Additionally, independent expansions are used for the transverse
strains. By requiring cxact transverse stress boundary conditions at the top and bottom plate
faces and the independent transverse strains to have equivalent mean values to those obtained
from the assumed displacements directly, improved cxpressions for the transverse shear and
transverse normal strains are obtained. Employing the three-dimensional virtual work princi-
ple yields a sct of scven partial differential equations of cquilibrium and exclusively Poison
boundary conditions. The theory reduces to one of coupled 10th-order stretching-bending and
Oth-order transverse stretching.

In Section 3, a three-node plate clement based on the displacement variational statement
of Section 2 is developed. There are scven kinematic variables in the formulation: however,
because the two higher-order displacement variables do not have spatial gradlcnts in the varia-
tional statement, they are wssumed to be uniform within the clement domain (C continuous)
and are statically condensed out at the clement level. The inplane membrane displacements
arc assumed to vary lincarly across the clement while the bending variables are interpolated




using anisoparametric shape functions.'> Each clement node has five engincering dof

involving thrce displacemenis and two normal rotations. The transverse shear relaxation
parametcrl(’ is also emplo,ed to completely eliminate shear locking in the thin regime.

In Sectior 4, there is a brief discussion on the computation of accurate throvzh-thickness
distributions of the transverse stresses via a global smoothing tcchniquc.27'28 In Scction §,
analytic and finite clement solutions to the problem of cylindrical bending of a symmetric
carbon/epoxy laminate are presented. Results are compared with Pagano’s cxact clasticity solu-
tion.?? In Section 6, concluding remarks regarding the merits of thc present composite plate
analysis are presented.

2. ANALYTIC BASIS OF HIGHER-ORDER PLATE THEORY

The present theory is developed in the following manner: the Cartesian displacement
components u; (i = x, y, z) are expanded with respect to the dimensionless thickness coordi-
nate & = z/he(-1,1], where u; has the special parabolic form:

ux(x.y,z) = u(x,y) + hiey(x.y) (a)
uy(x.y,z) = v(x,y) + hiex(x.y) (») (1)
u (x,y,2) = w(x,y) + ewi(x,y) + (£%4C)w,(x,y) (e)

where § = 0 designates the position of the middle surface Sp,, 2h is the total plate thickness
and C is a constant which makes w(x, y) a weightcd-average transverse displacement defined
in accordance with Reissner,” that is,

h

w = %}—1 j uz(l-gz) dz (2)

-h
Substituting Equation Ic into Equation 2 and solving for C results in*
C = -1/5 2a)

The expansion cocfficients of the inplane displacements u, v, 6y, 6y arc also defined as
weighted-average kincmatic variables:

h h
=L =L | 3)
u >h j u dz, v T f uy dz &
-h -h
h h
=3 =3 )
ex- 753 I uyz dz, Sy = 33 j u .z dz (4
-h -h
*The proesent notation tor wa ditiers from that in Relerence 24 by a lactor of 2/3.




where u and v denote the midplane displacements along the x and y directions. respectively,
with 6 and 6Oy denoting rotations of a transverse normal about the x and y axes, respeciively

(see Figure 1).
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Figure 1. Plate notation

For a general composite layup composed of N plies, the stress-strain relation for cach indi-
vidual k' ply (k = 1, 2,..., N) is governed by a three-dimensional Hooke's Law of the mono-

clinic form:

- B (k) .
O x E“ 612 613 0 0 615 ( € ex
oy'y 622 Cps 0 0 Eizs Eyy
% - 633 0 0 Css €ss (5)
Tyz 6“ 6“5 0 sz
Txz (Sym.) Css O A

L “xy i [ E"f_j i Yxy ]

where the elastic constants C'ij (k) corresponding to the laminate x-y coordinates arc related to
the ply principal direction constants Cij(k) as

(k) (6)




with aj; denoting the appropriate cosine functions of the coordinate rotation between the ply
principal material directions and laminate coordinates.>’

The inplane strain-displacement relations are ootained in the usual manner as,

i g

]
-~
=]
[«
[+
R
(=
—~—

{Exxn eyy’ ny} % .X

]
—~~
™
<
(-]
+
=2
o
=
»

, Ey°+ hg Ky , Y °+ hE ny} (7a)

A major departure trom a conventional displacement formulation is the way the wransverse
strains are introduced into the thecory. Here, the transverse strains are cxpanded indepen-
. . . . 4 *
dently in a ficld-consistent polynomial form,>%

3 2
€ =E " a, Y, =E " bin (i=x,y) (7b)

The expansion coefficicnts ap and bj, are obtained by rcquiring the weak transverse strain

compatibility

h
- 2

minimize J l:ezz - uz,z] dz (8a)
-h
h

2

minimize f [Yiz T Ty, ] dz  (i=x,y) (8b)

-h

*The approach of expanding the displacement gradients u (i = Xy, 2) introduced in Reference 24 is equivalent to the present one
based on the transverse sirain expansions. .




and the satisfaction of the exact stress boundary conditions at the top (k = N) and bottom
(k = 1) plate faces

rgi)(x,y,-h) = rgf)(X.y,h) =0 (i=x,y) (9a) (
oii?z(x,y,-h) = o:(:r:?z(x,y,h) =0 (9b)

where the minimization in Equation 8 is performed witn respect to the unknown cxpansion
coefficients. While Equation 9a is the statement of zero shear tractions at the top/bottom
plate faces, Equation 9b results from the transverse equilibrium equation of three-dimensional
elasticity

L)L 0 )

XZ,X vz, 22,z (ignoring the body force, (10)

in which conditions Equation 9a are incorporated.

The resulting transverse shear strains have the parabolic distribution satisfying traction-
frec boundary conditions

=2 (1. p2 L
Yi, =3 (1- €2) Yiz, (i=x,y)

{szo, szo} = {w,x+ By, w‘y+ ex}

which agree with Reissner's transverse shear strains. '

Tre resulting cubic transverse normal strain can be writtcn as

- T
€.~ € . + k" 4,
where
EZO - wl/h
T
K = (k T = (9 9 R 2
Xy’ kYo Z, KXYO) ( v,x" "X,y wz/h ! eX,x+ 6

T
$(8)" = {dy, 941, 94, 05}

6




in which

#(8), = & (22(6) £, - 22 [PL(£)/14 + By(D)] 5.}

rpo= GG (@ e Y
s, = @80 o @ 8,0 (m1,2,6).
For i = 3,

where Py (&) denote Lengendre polynomials:
Pl(g) = E) Pz(g) = (352‘1)/2, 93(5) = E;(Sﬁz‘B)/Z

[t can rcadily be verified that for a homogeneous plate Equations 11 and 12 satisly the three-
dimensional cquit™rium Equation 10 exactly.

The plate equations of equilibrium together with the naturdl boundary conditions arc
obtaincd from the three-dimensional statement of virtual work’ which, ncglecting body forces,
may be written as:

18

H’J (o (k)ée + o}()l;)ésy}ﬁ Gil.-:)aszz+ }((l;)éy + '.(k)éY + r(k)éy ) dav

T Xy Xz Xz yz 'yz

- jf q’ duz(x,y,h) dxdy + ”‘ q- &1 (x,y,-h) dxdy

- (Téu+Téu+Tdu ) dsdz = 0
[ X X Yy v zZ 2 (13)
3
g
"Ihe statement can be regarded as a weak” form of the virtual work principle due 1o the use v the mean compatibility
requirement tor the trmsverse striains (see tguation B). )




where & is the variational operator; ST and S™ denote the top and bottom plate surfaces
which arc taken free of shear tractions and loaded by normal pressures,

ng)(X.y,h) = 0 (i=x,y), Oig)(x,y.h) = q*(x,y) on S°

rgi)(x.y.-h)= 0 (i=x,y), oii)(x,y,-h)= q (x,y) on §° (14)

where T; (i = x, y, z) denote the prescribed tractions on the part of the edge boundary So
(henceforth, the barred symbols will denote quantities prescribed at the plate edges). Integrating
Equation 13 across the plate thickness results in the two-dimensional plate virtual work principle

IJ { N Su + Nyav’y+ ny(éu’y+ av'x) + st(wllh)
Sm

2
+ M 88 + Myaex y + Mxy(ae + 86 y) + Mza(wzlh )

? ? x)x y’

+ Qx(éw' o 5ey) + Qy(&w’ y+ sex) } dxdy

- Jf {ql(éw + g Swp) + qqbu; } dxdy
5

m

- § { N du+N_dv+M 66 +M 86 +Q &w+Q 6éw, +0Q éwz} ds = 0
xn yn Xn 'y yn X zn 2z, Z,

o (15)
g

where the plate stress resultants are defined in Appendix A, Integrating Equation 15 by
parts rcsults in

JI { TN Neg,y! 89 NG Ny k] O
s
m

+ (- - + + [- -
{ Mx,x Mxy,y Qx] 68y [ My’y Mxy,x+ Qy] aex

- [Qx,x+ Qy,y+ q;) éw + [Nz/h - q;] 8w,

+ [Mz/h2 - l_;: q;]) Sw, } dxdy




+ § { (N -N Jsu+(N -N VYsv+M -M Yse+M -H ) 58
xn Xn yn yn xn Xxn y yn yn X

C
a
+ (an - Q. ) Sw o+ Qzléwl + széwz} ds
+ § { anéu + Nynsv + Mxn66y+ Mynaex + anéw } ds =20 (16)
C
u

where
an= anx + nyny, Nyn = ny"x + Nyny’ an= anx + Qyny,
M =Mn +M n, M =M n +Mn
Xn X X Xy ¥ yn Xy x vy (17)

and

{nx, ny} = {cos(x,n), cos(y,n)}

where the C, and C, are parts of the boundary C (CLUC, = C and Cy,NCy = ¢ ) surround-
ing the middle surface S, where the tractions and displacements arc prescribed; (nd n and s
denoting the outward normal and tangential coordinates.

Thus, the variational principle provides seven equations of equilibrium written as:

(6u): Nx,x+ ny’y =0 (18a)
5v): N + N =0 1
(8v) xy.xt Ny g (18b)
(s8.): M+ Mgy~ Q =0 (18¢)
56 ): M + M - =0 18
( x) Xy, X vy Qy (18d)
(&w): Qx,x + Qy,y + q, =0 (18e)
(8wy) Nz/h - q, =0 (18¢)
4

(8w,): Mz/h2 A H =0 (18g)

9




and the associate boundary conditions:

a) Poisson boundary conditions

an= an’ Nyn= Nyn’ Mxn= Mxn’ Myn= MYTI’ an= an on Co (19)

Q. =Q =0 on C (20)

u=su, v=v, 8 =06, 06=8, w=uw on C (21)

The plate constitutive cquations relating stress resultants to strains are summarized in Appen-
dix B. Upon their introduction into Equation 18 there result two sets of equilibrium equa-
tions in terms of displacement variables:

QaI'aZu = I'alq (22)

W= R.bLblu + qu (23)
where

T _ T _ T

q = {q;, q,}, v = {u, v, w, ex’ By} and w = {w,, w,} (24)

The Qq, Rp, and Sy are various stiffness cocfficient matrices. The La; and Ly, are first-order
lincar diffcrential operators, and the Lyp is a second-order lincar differential operator. The
explicit forms of these matrix operators arc rather cumbersome and, for this rcason, they are
not presented here.  Note that Equation 22 contains five seccond-order coupled partial diffcren-
tial cquations of cquilibrium in the five displacement functions u, v, w, 6 and 6y (i.c., a 10th-
order system), whercas Equation 23 has two zero-order equations in the wy and ws
displacements.

10




The solution to a typical plate boundary-value problem is obtained by solving Equation 22
for u subject to the boundary conditions of Equations 19 and 21, and then solving the “auxil-
iary” system of Equation 23 for w. The computation of stress resultants follows from the
plate constitutive equations (Appendix B), while the stresses are computed from the three-
dimensional Hooke's Law in Equation 5. In Secction 4, there is a brief discussion of an alter-
native procedure for recovering accurate transverse shear stresses.

2.1 Remark

The plate theory can be reduced to a shear-deformable one by enforcing infinite rigidity
in the transverse normal material direction (C33 = ®) and setting C;3 = C3 = 0. Further-
more, with the additional assumption of infinite rigidity in the transverse shear dircctions (Cyy
= Css = ), the theory yiclds results of the classical laminate plate theory (sce Section 5).

3. FINITE ELEMENT DEVELOPMENT

The particular form of the variational principle (sce Equation 15) lends itself well to the
development of simple and cfficient finite clements comparable in computational cfficiency to
the first-order shear-deformable clements.!>"18 Recognizing that Equanon 15 contains gradi-
ents of u, v, w, 6 and 6, that do not excced order one implics C° conllnuny of thesc vari-
ables. In addition, Equation 15 has no gradients of w; and wj; therefore, c’! continuous
approximations, which arc discontinuous at the clement boundaries, can be cmployed for these
variables.

An important simplification due to wy and wy being C! continuous is that their dof can
be conveniently eliminated at the element level via static condensation.  Alternatively, the
climination of w) and w; can be performed in the variational statement by realizing that in
Equation 15 the grouped terms associated with the arbitrary variations dw; and dw, must van-
ish independently. The result is Equation 18f and Equation 18g which, by using the
constitutive relations for N, and M, (Appendix B), can be rcadily solved for wy and wy; these
arc then replaced into Equation 15 prior to the finite element approximation. With this
approach, Equation 18f and Equation 18g are satisfied exactly whereas the static condensation
at the finite element level accomplishes the same purpose consistent with the finite clement
approximations.

3.1 Thin-Regime Considerations
By cxpressing Equation 15 in dimensionless form, it can further be shown that this varia-
tional principle is of a penalty-constraint type analogous to that of the Mindlin theory (c. g.,

rcfer to Reference 18).  In the thin regime as h - 0, it enforces the Kirchholl constraint of
the vanishing transverse shear angles, that is

Uyg,r Ty 0 = W F 8 vyt 80 (25)

X2, Y2,

and the inextensibility of the transverse normal

11




Wy, Wy > 0

(26)

Whereas Equation 26 imposes no restrictions upon element interpolations for wy and wp, the
Kirchhoff constraints (sce Equation 25) rcquire field consistency in the interpolations for w,

¢ and 6y which may be achieved through the use of anisoparametric shape functions.'>

In

addition, an element-level relaxation of the transverse shear penalty parameter may be neces-
sary when the field consistency is violated; for example, when excessive kinematic boundary

restraints exist.'®

In what follows, anisoparametric interpolations for a three-node element are summarized.
and a brief discussion on the implementation of shear relaxation is presented. To distinguish
element approximations from their analytic counterparts, the former are superscribed with an ¢

which, in the present notation, signifies a characteristic length scale of the discretization.

3.1.1 Three-Node Anisoparametric Interpolations

N 3 . . 3 " 1 | ¢° Linear
u(x,y) =t g;uys v (x,y) =71 C;vy Shape
i=1 i=1 Functions
3 3
2 2 £ 2
o, (x,y) =t ¢g.0. ., 8. (x,y) =t C.0 .
X =1 X1 y j=1 1 Y1 _J

where i are the area-parametric coordinates given as

g = (ci + bix + aiy)/ZA (A is the triangle area)

and aj, bi, and ci, are coefficients of nodal coordinates

a; = xk-xj, bi = yj-yk, c, = xjyk-xkyj
C® Quadratic
2 3 . . Shape
w (x,y) = iil[ciwi + exi(kai+3 - ijk+3)/8 Function
L
+ eyi(aij+3 akNi+3)/8]

where Nj are quadratic shape functions

Ny =202 - 1)y Ny 5= 80,8,

12
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(28)




and the subscripts assume the values:

i= 1,2,3; j= 2,3,1; k=3,1,2.

w% (x,y) = W% C"! Uniform
Functions
'3 L
W2 (x’Y) = wz (29)

Introducing Equations 27 through 29 into Equation 15, and performing the necessary varia-
tions with respect to the displacement dof and integrating over the element domain, the ele-
ment stiffness equilibrium equations are derived. The WY and W% dof are then climinated
using static condensation yiclding a three-node element with five engineering dof at cach
node; i.e., {uj, vi, wj, Oy, 9yi} (i =12, 3) (see Figure 2).

Static
Condensalion

: 9,8 dof
KEY- ou VY y Dll,lzdof

Figure 2. A three-node stretching-bending plate element with
transverse shear and transverse normal deformation.

3.1.2 Shear Relaxation

The shear relaxation parameter, ¢25. is a multiplicr introduced in the transverse shear con-
stitutive cquations for the clement

L
Q" =926 vt (30)

The parameter is determined from the diagonal transverse shear, k&, and bending, ky?, stiff-
ness cocficients corresponding to rotational dof of the "unrclaxed" clement stiffness matrix: '

13




8?2 = L
s 14+ 2 (s ¥z D (31)
s b

where the summations are carried over all six diagonal terms. The usc of shear relaxation
avoids locking in the thin regime.

The computer implementation of this three-node plate element, ecnabling its use with the
general purpose finite element code ABAQUS, is discussed in Reference 31.

4. TRANSVERSE STRESS CALCULATIONS

Due to their heterogeneous nature, laminated composite plates generally exhibit ply-
interface discontinuities in the inplane stresses, as well as in the transverse strains. Also, the
inplane strains .are continuous across the laminate thickness and the transverse stresses arc
also continuous, although their through-thickness gradients may be discontinuous at the ply
interfaces.

Since the present theory relies upon continuous strain distributions across the cntirc lami-
nate (as do all single-layer displacement theories), accurate inplane stresses can be recovered
from the ply constitutive law (see Equation 5); however, the direct recovery of transverse
stresses in this manner are often erroneous producing nonphysical discontinuities at the ply
interfaces.

To obtain accurate, through-thickness continuous transversc shear stresses, one nceds to
integrate the three-dimensional equilibrium equations using the inplane stresses obtained [rom
the constitutive relations (see Equation 5 and refer to Reference 8), that is

o - [+ <® o

XX, X xy,y

€
=- j {{611’ 612’ E313: Elegk) g—x e;:
zz
[ Yxy]
1 7
+ {Ci6s Cass Cae> Esssk) % E:: }dz. (31a)
zZ .
[Yxy]
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yz Xy,X Yy,Yy
.Exx-
- ~ ~ ~ (k) 9
== J {{CIS, Ca6s Cag» Csss 3% eyy
£
z2z
Yy
e ]
~ -~ ~ ~ k XX
+ {Cy;, Cy3, Ca3s 0255 )g—y Eyy } dz (31b)
€
zz
| Yxy]

where the strains are defined in Equation 7a and E(}uation 12. Having obtained the trans-
verse shear stresses, the transverse normal stress, o, k), can be found ecither by integrating
Equation 10 or applying Hooke’s Law (scc Equation 5). As will be shown in Scction 5, in
this plate thcory both approaches yield accurate predictions for 072(K); however, the Hooke’s
Law stress recovery yields slightly discontinuous transversc normal stresses at the ply interfaces.

While in the context of this plate thcory, as well as others,® the equilibrium stress-recov-
ery approach has been effective; its application to the finitc element mecthod is not straightfor-
ward. For instance, in the case of the present finite element, all strain gradients in Equation
31 vanish identically (the strains are constant within the element domain); therefore, the
direct utilization of these finite element strain gradients will always result in zero transverse
shear stresses.

To overcome this difficulty, a global smoothing pr()ccdurcz-l’28 yiclding continuous solu-
tions for the strains and thcir normal gradicnts across the entire plate domain was cmployed.
The strain gradicnts were then used in Equation 31 to compute accurate through-thickness dis-
tributions of the transverse shear stresses.  For complete details on the global smoothing pro-
cedure the reader is referred to Reference 28.

5. RESULTS AND DISCUSSION

Numcrical studics arc carricd out for the problem of cylindrical bending of a
carbon/cpoxy symmctric angle-ply ([30/-30]s) laminate subjected to a siq(usoidal Lransverse pres-
surc 4 = qesin(rx/L) for which an cxact elasticity solution is available®’ (sce Figure 3a).

This problem is rather challenging, cxhibiting significant inplanc shear coupling in cach ply of
the laminate. The ply material propertics arc taken as




EL = 25 x 10° psi. ET = 108 psi
Gt = 0.5 x 10° psi, Grp = 0.2 x 10° psi (32)
vpt = vt = 0.25

where L and T denote the longitudinal and transverse ply material directions, respectively.

The results from the study were obtained analytically from the present Higher-Order
Theory, shown as HOT- ANALYTIC (for the analytic solution approach refer to Reference
24), an exact elasticity approach desngnated as EXACT, the classical laminate plate theory
(CPT), and the present finite element analysis, designated as HOT-FEM. Also, results corre-
sponding to the shear-deformable version of the present theory (see Remarks 2.1) are pre-
sented and labeled in the figures as SHEAR-DEFORMABLE.

Figure 3b depicts a twenty-clement finite element discretization of a narrow strip spanning
one quarter of the loading wavelength (i.e., L/2). Appropriate symmetric boundary conditions
and multiple-point kinematic constraint equations are enforced to simulate the cylindrical bend-
ing of the plate. In Figure 4, the percent error of the maximum midplanc transversc dis-
placement is plotted versus the half wavelength of loading-to-thickness ratio (L/2h). As L/2h
decreases, the obscrved deflection becomes dominated by transverse shear and transversc nor-
mal deformations. The thick regime improvement in accuracy afforded by the inclusion of
both of these effects in the present tneory is clearly cvident.

The remainder of the discussion concerns the strain and stress predictions for the
moderately thick (L/2h = 10) and thick (L/2h = 4) deformation regimes. Figures 5 and 6
depict through-thickness distributions of the maximum inplane (e and yy) and transverse yy,
and ¢;;) strains, respectively. The observed departures from the exact elasticity solutions,
particularly at the outer fibers for L/2h = 4, can be attributed to the linear distributions for
ux and uy in the present theory. Note that their thickness variations according to the clastic-
ity solution become increasingly nonlinear in the thick regime.

Figure 7 shows the distributions of the maximum transverse shear 7y, and transverse nor-
mal o, stresses. These stresses were computed following the conventional Hooke’s Law
stress recovery (see Equation 5), designated as HOT-HOOKE, and by integrating thc
three-dimensional equilibrium equations of elasticity (sec Equation 31), designated as
HOT-EQUIL. It is of interest to note that while the equilibrium-based transversce shear
stress (7xz) recovery yielded superior results over those obtained from Hooke's Law, the trans-
versec normal stress (o0zz) recovery is highly accurate by both methods.
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Figure 3. (a) Carbon/epoxy [30/-30]s laminate subject to sinusoidal pressure
in cylindrical bending; (b) finite element discretization.
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Figure 4. Percent error of maximum midplane deflection versus L/2h ratio.
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Figure 7. Distributions of transverse stresses across thickness for L/2h = 10 and 4.

6. CONCLUDING REMARKS

A computationally viable {1, 2} highcr-order plate theory for stress analysis of composite
laminates was prescnted. The theory incorporates both transverse shear and transverse nor-
mal deformations and is based on linear through-thickness expansions for the inplanc displace-
ments and a special parabolic distribution for the transverse displacement. 1In addition,
independcnt expansions were used for the transverse strains, satislying exact transverse stress
cquilibrium at the top and bottom plate surfaces and having cquivalent mean values to those
obtained directly from the assumed displacements.  From the three-dimensional virtual work
principle, the two-dimensional plate variational principle is derived, giving risc to a coupled
10th-ordcr stretching-bending theory subject to exclusively Poisson boundary conditions and
two “auxiliary” Oth-order transverse stretching equations.

To demonstrate the thcory’s computational aspects, an efficicnt three-node stretching-
bending plate element was developed. It was shown that the higher-order transverse displace-
ments can be climinated cither directly from the variational statement or via static
corndensation at the clement level. With the use of the latter approach, a 5-dof-per-node cle-
ment was produced, having the same computational cfficiency as a comparable first-order shear-
deformable clement.  In addition, an ceffective approach for the recovery of reliable transverse
stresses was discussed.
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In closing, the practical benefits of the proposed laminate plate analysis are: (1) there
are no requirements for “shear correction™ factors; (2) reliable three-dimensional distributions
of displacements, strains and stresses are attainable; (3) the range of applicability includes
both thin- and thick-section compositc laminates; and (4) the finite clement formulation repre-
sents a viable enhancement over the widely used first-order shear-deformable models.

ACKNOWLEDGMENT

The authors wish to thank Colin Freese [or utilizing the glcbal smoothing tcchniquc28 in
the computations of transverse stresses.

20




APPENDIX A. PLATE STRESS RESULTANTS AND STRAINS

N
N = (N, N, N, = (%)
{ N, N } 2 f {oxx’ oyy’ 9,0 cxy} dz

N
e (k) (

T . - k) (k) (k)
M {M_, My’ Mz, Mxy} —Z f {(zcrxx + ¢1ozz ), (zcyy + ¢2°zz ),
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‘ h
B By = [ 1T, 1) e (4-0)
-h
h
IR j (T, B}z (A.9)
“h
h
{an. Qzl. sz} = J TZ {1, ¢, €2 - 1/5} dz (A.10)
-h

Note:  From (A.10), one can readily verify that the vanishing conditions on Q,i
(i = 1, 2) in Equation 20 imply that T, must vary parabolically as (1 - {:2) across the plate
thickness.




APPENDIX B. PLATE CONSTITUTIVE RELATIONS

Invoking Hooke's Law (see Equation 5) into the plate stress resultants (Appendix A)
yiclds the plate constitutive relations which can be cxpressed in matrix form as

N A B 0 1[e
M| = |8 »p ol « (B.1)
Q 0 0 G ||y '

where the vectors of plate stress resultants and strains are defined in Appendix A; the
constitutive matrices of elastic cocfficients are:

*mbra lasti tiffnes

A= [Aij] (i,j =1,2,3,6) (8.2)

where

.] (19_] = 1)2’3’6)9 (B-3)

=
L]

-
s -]

{ ng)z + c§§)¢q } dz (i =1,2,3,65 q=1,2,6)
1
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Bending Elastic Stff

D = [Dij] (i,j = 1,2,3,6), (B.4)

N
2 J { (k)z2 + 2 C(§)¢ z + Cg§)¢; } dz for q = 1,216

k=l h
and
N
- (k)
D33 Z [ 33°¢3 d
k=1 h_,
e
J { (k)zz + (c(§)¢ + C(§)¢ )z + c§§)¢ 9. }
=1
k-1 (q,r = 1,2,6)
N
= 2 j { C(k)¢3z + C§§)¢ ¢ } dz (q =1, 2, 6)
k=1l B,
[ransverse Shear Elastic Stiffness
G = [Gij] (i,j = 5,4), (B.5)
where

v hk(k) 5 2
G.=2 J [4 - £2) 1%z
k=1 hk_l
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