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1 INTRODUCTION

The principle of lnterferometric Direction Finding is based on the difference in phase of a
signal frequency, measured at two physically separated antennas. This paper explores the
possibility of using a Discrete Fourier Transform (DFT) to obtain phase from a signal, and
hence the prospect of using the DFT in Direction Finding (DF) applications.

2 INTERFEROMETRIC DIRECTION FINDING

The bearing of a radio emitter may be determined by phase interferometry 111. This involves
the use of two or more spatially separated antennas in an array. The phase difference
between the signals received at each antenna can be used to determine the angle of arrival.

Consider, as an example, the two element interferometer shown in Figure 1.

wavcfront
X Interferometer element,

separated by distance D.
L path difference

D X

Figure 1 Two element interferometer

Due to the difference in path length, the phase difference of the signal on arrival at each
antenna is

S L L __

k 2n

The bearing of the ermitter, 0, may then be computed as

0 = arccos (L/D)

NOTE This is a simple arrangement and will result in an ambiguity in the direction of
arrival, about the antenna baseline. In practice, at least three elements placed in a triangle,
or four in a crossed-baseline arrangement are required to remove the ambiguity.

UNCLASSIFIED 1
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The phase difference between the signals received at each antenna must also be constant in

time. Thus, the frequency of the component received at each antenna must be exactly the

same. In practice, this means that when a receiver employs a frequency conversion stage prior

to sampling, the same local oscillator must be used for all antenna charnels.

3 THE DISCRETE FOURIER TRANSFORM

The Fourier Transform, X(f) of a continuous sigral, x(t) is defined as

X(f) = j x (t)e-121ft.dt

The analogous DFT of the .;ignal, sampled at N points, T seconds apart is given by

N-1
X(k) Y ~~-2/

N-I

= Y x(n) [cos(2rikn/N) -jsin(2rtkn/N)l
n-4

where k and n are the discrete equivalents to f and t, related by t = nT arid f = k/NT.

NOTE Both n and N are required to be integers, while k,t,T and f are real numbers.

X(k) is a sequence of complex numbers giving the discrete spectrum of x(n). The quantisation

steps in the spectrum will be referred to as frequency "bins". From these complex numbers, the
magnitude and phase of each point in the spectrum may be obtained using simple

trigonometry.

The Fast Fourier Transform (FFT) is simply a method of computing the DFT with much fewer

calculations than the direct method, and is thus much faster to compute. Most algorithms for

the FFT require that the number ot points, N, be restricted to a power of two.

3.1 Relative phase in the Fourier Transform
As phase is a relative quantity, it is important to know what the phase of the

transform X(f) is measured with respect to.

The phase of a particular frequency component of a waveform, as determined using the
Fourier Transform is measured relative to the first sampling point, with the equation

describing the waveform being a COSINE relationship, as shown in Figure 2.

2 UNCLASSIFIED
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1st sampling point t = 0

Figure 2 An example of the relativity of phase of a sinusoid

As an example, the following functions have "phases" resulting from the Fourier
Transform as follows:

SIN (Ft + 0) - DFT phase = -90' , at f = F
SIN (Ot + 90) DFrT phase = 0° ( DC signal}
SIN (Ft + 90) • DFT phase= 0' , at f = F

3.2 The need for windowing
The DFT operates on a finite length data stream, or sample period. If the frequency of a

particular component of a waveform is such that an integral number of periods of thiat
component is contained in the sample period, then that component has no associated
frequency error. This means that when the DFT of the waveform is taken, the frequency
of that component falls exactly into one frequency bin. If however, the period does not
have this property, then the component will not fall exactly into one bin, and that
component is said to have a frequency error.

The frequency error of a component is the amount by which the frequency of that
component deviates from the frequency of the closest bin. All real-world signals
exhibit frequency error.

The effects of the frequency error on the magnitude of the spectrum have been well
documented [2,31 and are generally known as Spectral Leakage and the Picket Fence
Effect. Spectral Lcakage occurs when the frequetiLy of a component does not fall exactly
into one bin, and refers to the spreading of the energy from one frequency bin to adjacent

bins.

The Picket Fence Effect draws an analogy between the output of the DFT of a waveform,
and a bank of analogue bandpass filters, each filter being centred at one of the frequency
bins in the discrete spectrum. Ideally, each "filter" should have a square frequency

response, but in practice, the responses are rounded, and the result is that the spectrum
appears to be_ viewed through a picket fence.

UNCLASSIFIED 3
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The Spectral Leakage and Picket Fence effects are worst when the freqaency lies
midway between two frequency bins. ic. a frequency error of 0.5.

In order to reduce thesc cticts, "windows" are applied to the sampled data prior to
performing the OFT. Wiindowing is the multiplication of the waveform by a discrete
weighting function - the window.

3.3 The effect of windowing
Conider a signal x(t), windowed by the window function w(t), to produce the signal
y(t). The signal x(t) has a Fourier Transform X(f), and w(t) has the Fourier Transform
w(f),

y(t) = X(t) x w(t)

Then, Y(f) = X(f) * W(f) (* denoting convolution)

: X(X) f-).dx

I.et X(f) = IX(f)I CeO
W(f) = IW(f) MI 0

So Y(f) - IX•()I e-)iW(f-k)I ei-k.dwX

IVxW) W(f-. +)j .... (I)

In the discrete case, this integral becomes a summation.

N-1
Y(k) = E IXk)W k-.e[-)-}

As an example, consider a coslicusoidal signal, x(t), sampled at N points and having
some discrete time window w(n) applied to it.

x(t) = Acos(2rnfo + 0

It can be shown that the continuous Fourier Transform of x(t) is given by

SX(f) = A 3(f-fo) eio1  + A.(f+f.) e-is0
2 2

where 6(f) is the delta function.

4 UNCLASSIFIED
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It follows that the DFT of x(n) is then

X(k) = A6(k-ko) el* + A-.8(k+ko) e-*O
2 2

The DFT, W(k) of w(n) can be expressed in the form

W(k) = I W(k)l w
N-1

Y(k) = Y, X (k-k) W(?L)

N-i

0 2
N-1 -7, &++() ~--~ W(k) + Y, d(~<)A. 8(k-k+k.)IW (X~

0 2 o 2

But, 8(k-X-ko) = 0 at all k, except at k-.. k o =g, when 8 = 1, and 8(k-.+ko) = 0 at all X,
except at k-X+ko=o, wihsen 8 = 1.

..Y(k) = & lW~k-ko)l &*"t-w) , --A IW (k~ko)l 04-Ock-W) .... (2)
2 2

33.1 The boundary effect
Equation 2 consists of two terms which arise as a result of the window function

acting on the positive and negative frequency components of X(k)
respectively.

It is customary to simplify the equation by ignoring the effect of the second

term. However, blind use of this simplification may lead to incorrect results,
as the contribution of the second term to positive frequency points is non-zero
in the general case. The real part of the positive frequency spectrum appears

to be reflected about the zero frequency point, while the imagina,-y part of

the spectrum is reflected with sign inveision. For a finite length sample

sequence, this reflection also occurs about the point N/2. Hence, the points

close to N/2 are also similarly affected.

The extent of the contribution of negative frequencies will be largest for
signals with a frequency close to 0 or fs/2 (k=N/2), windowed by functions

with large sidelobes in the frequency domain.

Figure 3 shows the linearity of the magnitude from a 128 point FFT of a

discrete-frequency signal with a frequency error of 0.4. Each point corresponds

to the magnitude of the output of an FFT performed on a sinusoid at that

frequency. A rectangular time window, wh;ch has a sinc-like Fourier
Transform with large sidelobes was used throughout. It can be seen that the

lowest and uppermost 12 discrete frequencies suffer errors of more than I % in
magnitude. A similar sized phase error is also incurred.

UNCLASSIFIED 5
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Figure 4 shows the linearity improvement when using a Hanning time
window, This window has a much narrower Fourier Transform and as -such

only the first and last two points suffer errors above I%.

The effect may thus be reduced by applying suitable windows and/or
considering points far away from the spectral extremes, Using longer length
transforms allows a greater number of these points to be considered. The effect
maybe eliminated by applying the Hilbert Transform to the sampled data o
obtain the "analytic" signal. Such a signal contains only positive frequency
components.

For simplicity, the rmainder of the paper will assume negative frequency

components have negligible effect, unless otherwise stated. Under such
conditions, equation 2 simplifies to

YWk •- &-I W(k--k,,)i ej(¢04(k-ký) ......... (3)
2

From equation 3, it can be seen that for a single frequency waveform, the

magnitude of the spectrum will consist of an, amplitude scaled Fourier
Transform of the window function, centred at the frequency of the signal
component ko.

If the signal has no frequency error, then the spectrum of the window will be

centred exactly on a frequency bin. Thus the best window to use in this
circumstance is the rectangular time window, As this has a Fourier Transform
of a sinc-like function, there will be nulls at all bins other than at it's centre.
The transform then will consist only of one line, at the frequency of the signal.

By considering equation 3 again, it can be seen that the phase of the spectrum
will be the phase of the Fourier Transform of the window, centred at the

signal frequency, plus the phase of the signal component.

Again, for a signal with no frequency error, using a window with nulls at most
frequency bins other than it's centre will result in the phase from the DFT

being a good estimate of the true phase of the spectrum. This is because if the
leaked amplitude response is very small at a particular bin, then the

contribution to the overall phase at that bin will be small.

NOTE If the magnitude is zero (or very small) at a frequency bin, then phase
does not exisi for that point and can be arbitrarily set. In these

investigations, the phase in this case was set to zero.
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3.3.2 Multiple frequency components
Most typical signals used in DF are real signals, containing no imaginary
component, They may therefore be treated as a set of frequency components,
each having particular amplitude and phase.

For the case where the signal x(t) comprises more than one frequency
component, the resultant Fourier Transform will be a superposition of the
Fourier Transforms of the constituent components,

ic. Y(k) = 1W(k-k.,)lIexpj(oi + 9(k-ko)) .......... (4)
1 ,2

Although it would be tempting to think so, this does not mean that the
resultant phase and magnitudes are each themselves superpositions of the
constituent phases and magnitudes.

The real case, with no frequency error will have the Fourier Transform,
evaluated at some particular frequency kn, givea by

Y(kn) = A Z (4,t, + 0(o)) + AY W(k,-k1)J Z(,i + O(k,-k)) .......... (5)

2 2

If the window used is rectangular, then equation (5) simplifies to the expected

result Y(kn) = A- Z.'.
2

This indicates that with a rectangular window, and no frequency error, each

component has a distinct phase, and no component affects any other

component.

3.3.3 Experimental justification
The result for magnitude is expected, and is well known. The phase, on the

other hand, seems intuitively satisfying, but it must be shown that this result

agrees with results from actual FFT's. Fourier Transforms have been
performed on 128 point sampled sinewaves at frequency f0 =32, and using three

windows - Rectangular, Triangular, and Hanning, with frequency responses as

follows:

Rectangular

W(k)= e"2 IN2s -

8 UNCLASSIFIEO
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Triangular

W (k) - ~ N ~ ') sin ( k' 2 .1

N Lsin(;k/N) j
Hanning

w(n) = sinl(fA,)

W(k) = e'-1/N("•+ 0,5D(k) + 0,25 [D(k - I/N) + D(k + 1 /N)])

where D(k) = Ue*J./N sin(ick)
sin(xk/N)

The :nagnitude and phase resulting from performing an MT- on the sampled
waveform using each of the above windows, has been plotted and appears in
Figures 5 to 10. The theoretical phase, as calculated using equation (3) is

marked with an "X.

NOTE There is only one non-zero point in the spectra produced using Ilke

Pec•!angUlar window, and three points using the F-laanins winslow - h,? Le,,tre
.,a, and the Lwo adjac.'ni bins. This is because nuils roein the frequency
response of the windows fall in all other frequency bins.

0.0............ ...

0.. .................. ................................ ............ T ..............

0 .36 ............................. ........... ............. ............. ... ......... ............. ............. . ............ .........

LQJ

0 . .16......... I ..................... ......... ......... .............

S0.32 ............. j............. j............. ............. ............. ... ........... ............. .............. ............. ..............

0.02 ...... ...............
0.16 ............ ............. ............. ............. ........... ... ......... I.,............ .............. ... . .. . .. .. ..

0.16 ............. •.............. 7 ............. 7 ........................ .. 7. ...... .... ............. •............... ............ . . ..........

0.0X) . : ...

0(X) 6,40 12.8 19.2 25.6 32.0 38.4 44.8 51.2 57.6 t4O
FREQUENCY

Figure 5 Magnitude of FF1T of SIN, f = 32, using a rectangular window

The Rectangular and Hanning cases have shown exact correlation with the

theoretical values.
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Figure 10 Phase of FF1 of SIN, f =32,, using a triangular window

The Triangular case has shown very good correlation for frequencies near o
but accuracy falls of.f as frequency moves further from f. This is to be
expected, as the magnitude, at distant frequencies is very small, and thus a
ratio of two very small numbers is taken to obtain phase. Any error in either
the real or imaginary component will cause large phase error.

The Rectangular and Hanning windows do not suffer from the same errors as
the Triangular window because the centres of the frequency bins fall at the
nulls of the magnitude spectra of these windows.

3.3.4 The effect of windowing on the phase fromn the Discrete
Fourier Transform
Considering equation (5), it can be seen that, for the purely real case with no
frequency error, the phase at kn is dependant on the following factors:

I the phase of the component at frequency kn-
2 thie phase of all other frequency components ki.
3 the phase at fn of the window function, centred at each of all other

frequency components ki.
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NOTE The extent to which factors 2 and 3 above affect the phase at kn, is

proportional to the magnitude of the window function centred at ki, at kn. To
reduce the effects of factors 2 and 3, the window function should be chosen such
that W(k) is minimal at frequency kn. When there is no frequency error the
optimal window to use is the Rectangular window, because the Fourier

Transform of this window has nulls at all frequency bins ether than it's centre.

3.3.5 The effect of frequency error on the phase from the discrete
Fourier Transform
Most typical signals have components with frequency error. In thirs case,
equation (2) still holds, with kn and ki being the exact frequencies of the

components - not the frequency bins in which they fall.

This has a detrimental effect on the use of most window functions, For
example, consider the rectangular window. In the case of no frequency error a
rectangular window has spectral nulls at all bins but the centre. Howevcr,
with frequency error, the spectrum of the window will no longer be centred
exacily aý one bin. The r-sult is that the nulls no longer (.dll at bin centres
there will now be finite magnitude levels at the bins. Hence there will also
be a phase contribution at most bins.

As stated in paragraph 3.34, the effects of the contribution by window
functions to magnitude and phahe can be minimised by reducing the magnitude
of the Fourier Transform of the window function at the appropriate frequency
bins. This implies the use of windows with low sidelobe levels.

An example of the effect of frequency error on the phase of the spectrum
resulting from a DFT is shown in Figures 11 to 14. Using a sampling frequency

of 128 Hz, a 128 point transform has been performed on a sinusoid of frequency
fo = 32 Hz. The sinusoid has been windowed by using a triangular window.

Figure 11 shows the phase of the spectrum with no frequency error. At k=32,
the phase can be seen to be the correct -90' . Figure 12 shows the phase of the
spectrum with the sinusoid having a frequency error of 0.1 (ie. ko = 32.1). The
phase at k = 32 is seen to be approximately -72*.

Figures 13 and 14 show that the phase at k = 32 is reduced to -48* and 00 for

frequency errors of 0.2 and 0.5 respectively. Thus, it can be seen that the
phase at 32 becomes progressively less correct as the frequency error increases.
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4 DIRECTION FINDING AND THE DISCRETE FOURIER TRANSFORM

When using the DFT for DF applications the difference in phase between a frequency
component of a signal received at one antenna and that received at another antenna must be
obtained with high accuracy.

The DF calculation using physically separated antennas may be simulated by performing a
DFP on a waveform, altering the phase of the frequency components of that waveform (to
simulate wave propagation) and then performing another DFT on the new wave.

4.1 Single frequency component signals
Examination of equation (3) reveals that, tor a single component signal, a DF type
phase difference calculation should yield exact results, as the window dependant term
will cancel in subtraction.

To verify this observation., a simulation was performed which involved constructing a
4096 point discrete sinewave at frequency ko, zero phase, and then performing an FFT on

it. The phase of the sinewave was then altered by 900, and the Flr v:as repeated. The
phase difference from each FFT at th'. frequcncy ko was obtained, and the percentage

error calculated. The simulation was performed for all values of ko between 0 and 2048,

and the pcrccntage error plotted against frequency as shown in Figure 15.
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0.00 6.40 12.8 19.2 25.6 32.0 38.4 44.8 51.2 57.6 64.0
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Figure 15 Linearity over frequency of phase difference error
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A rectangular time window was used with each frequency ko having a frequency error of
0.4, as this gave the most conservative results. Figure 15, shows that the error is
constant and near zero at all points except those close to the ends of the spectrum. The
deviation at these points is due to the Boundary Effect, and may be minimised as

explained in paragraph 3.3.1.

The nonlinearity towards the edges of the bpectrum means that the bandwidth over

which accurate relative phase estimation may be obtained is slightly less than the

expected bandwidth of 0 to fs/2. If multiple bands are to be used to analyse a wide
bandwidth, then some overlapping of these bands may be necessary to obtain the

desired linearity.

A second simulation was performed to verify the linearity over actual phase difference
of the calculated phase difference. Some 128 poi;it, 32 Hz sinewaves were generated at
integral phase differences from 0 to 3601. FFTs were performed on the sinewaves, and
the calculated phase differences were plotted against actual phase differences, refer
Figure 16. Again, a rectangular time window was used, and the sinewaves had a
frequency error of 0.4, to allow the most conservative results to be obtained. The 'lot
shows almost perfect linearity.
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S252
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,,z

• 180

36 .. . ... ...4. . .. . ... ... . .... ... . ...... . ... .... .. .. . ... ... .. .... .. .. .. ... . ... .... .. .. . .
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C 8..................... ............. . .36.0 ........
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0.00 6.40 12.8 19.2 25.6 32,0 38.4 44.8 51.2 57.6 64.0
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Figure 16 Linearity over actual phase difference of calculated phase difference
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4.2 Multi-component signals
Referring back to equation (4), one could draw a similar conclusion to that of

paragraph 4.1, that the window dependant term will cancel on subtraction in a DF type
phase calculation of a multi-component signal. However, this assumption is incorrect.
The window dependant term of equation (4) is also dependant on Oi, the phase of the

ith frequency component of the signal. The parameter Oi will not be the same when

measured at spatially separated antennas, due to propagation of the signal. Thus, the
window dependant term does not cancel, and so, the resulting phase difference
calculation is not exact.

The use of windows with low sidelobes reduces the error due to the phase contribution
by other "distant" frequency components, ki. However, most common windows such as

the Hanning window, have a main lobe in the frequency domain that is wider than one
frequency bin, and thus any adjacent or nearby frequency components will still contribute
to the phase at the frequency of interest, kn. This is tolerable, provided the

amplitudes of these components are small. However, if the amplitude of adjacent or
nearby components is of the same otdcr as the amplitude of kn, the phase corruption is

too great to allow any reasonable accuracy to b'Ž obtained with a DF type phase
calculation

ThuIs, simple direction finding using the DRT is possible only for narrowband signals.
The tolerable bandwidth is dependant on qualities of the window function such as main
lobe width and sidelobe amplitude levels.

5 RESULTS

The following experimental observations have been made on the phase obtained using the
DFT to process purely real signals. These observations are qualified by equations (2) and (4).
It is expected that these observations should apply also to the case of complex signals (ie.
those possessing both real and imaginary parts).

A DF type relative phase measurement of a single frequency component signal, with
or without frequency error will achieve correct results, provided that allowance be
made for the Boundary Effect - the contribution of negative frequency components to
the positive part of the spectrum.

2 A DF type relative phase measurement of a multiple frequency component signal,
with frequency errors, will not achieve exact phase estimation. Phase corruption by
other frequency components, as well as that due to the negative part of the spectrtim
occurs. However, the use of windows with low magnitude sidelobes, and narrow main
lobes will ensure a reasonably accurate estimation.
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6 CONCLUSION

The Discrete Fourier Transformt is capable of providing an accurate estimate of relative
phase, as required for its use in diection finding. Windowing sampled data prior to
performing the DFT reduces both the Boundary Effect and the effects of frequency error on
relative phase measurements, and thus greatly enhances accuracy. Results of the
investigation have indicated that the use of the Discrete Fourier Transform for direction
finding is feasible.
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