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roundoff and quanization noise are allowed simultaneously in the main pro-
cessing system, and the parity calculation and comparison subassemblies. The
optimum parity estimator for a given code is determined as the conditional
mean predictor for the output parity values. The resulting minimum mean-square
error guides the simplificaticn of the parallel parity computational over-
head. The algebraic structure of the real code permits greatly reducing the
parity values' computational effort. For finite input segment processing, real
cyclic codes allow the output parity estimates to be calculated from input
parity values only. On the cther hand, real convolutional codes which are mod-
ified without losing error-detecting performance protect the processing of
continuous sample streams.
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ABSTRACT

High spee linear signal processing in digital systems is protected efficiently by
algorithmic faul tolerance employing real block or convolutional codes. The main
signal processing operation functions normally while parity samples derived from the
input data are compared against corresponding parity associated with the output
samples. The parity computations and comparisons providing error detection are
performed in parallel with the normal signal processing, guaranteeing no speed
degradation. Real block codes are used to protect processing finite length input and
output segments whereas real convolutional codes are natural for protecting a
continuous input and output stream of samples. Algorithmic fault-tolerance covers a
wide class of errors from various levels in the implementation by concentrating on the
numerical integrity between related data samples. The corresponding parity values
are compared considering difference thresholds to account for numerical roundoff and
quantization effects.

A mean-square error criterion is used in analyzing the parity comparison
process. Errors due to temporary and permanent hardware failures as well as
numerical roundoff and quantization noise are allowed simultaneously in the main
processing system, and the parity calculation and comparison subassemblies.vL&.1_.
optimum parity estimator for a given code is determined as the conditional mean
predictor for the output parity values. The resulting minimum mean-square error
guides the simplification of the parallel parity computational overhead. The algebraic
structure of the real code permits greatly reducing the parity values' computational
effort. For finite input segment processing, real cyclic codes allow the output parity
estimates to be calculated from input parity values only. On the other hand, real
convolutional codes which are modified without losing error-detecting performance
protect the processing of continuous sample streams.. .. ....... , , .,.

' . ... .-.!

Statemrnt "A" "telec! Dr.

La............... . ..............

VHG 2/4/91 ..L -.

I,



TABLE OF CONTENTS

Abstract ..............................................................

List of Figures ................................................................................ i

List ofTables ................................................................................. i

1. Introduction ............................................................................-

11. Parity Protection...................................................................... 2-1

1ll. Minimum Mean-Square Error Parity Estimation ............................... 3-1
Finite Length Processing.......................................................... 3-3
Infinite Input Data Stream......................................................... 3-12

IV. Efficient Use of Real Codes ........................................................ 4-1
Protection with Real Cyclic Codes ............................................... 4-1
Modifying Real Convolutional Codes .......................................... 4-1 1

V. References ............................................................................ 5-1



LIST OF FIGURES

Figure 1-1 Watchdog Parity Processor for Numerical Data Sample
P rotection ............................................................................................... 1-2

Figure 2-1 Protecting Linear Signal Processing With Real Parity
V alues .................................................................................................... 2-2

Figure 3-1 Totally Self-Checking Comparator ................................................... 3-2

Figure 4-1 A Real Cyclic Code Generator Polynomial ..................................... 4-4

Figure 4-2 Parity Calculations to Protect Transfer Function with
Convolutional Code ............................................................................. 4-13, 4-14

Figure 4-3 Simplified Protection Using Modified Convolutional Code ......... 4-17

LIST OF TABLES

Table 3-1 Error and Noise Events for Subassemblies .................................... 3-9

HIII



INTEGRATED DATA AND CONTROL LEVEL FAULT TOLERANCE

TECHNIQUES FOR SIGNAL PROCESSING COMPUTER DESIGN

G. Robert Redinbo

I. INTRODUCTION

High-speed signal processing is an important application of special purpose
numerical processor designs. These digital processing systems involve
interconnecting complex integrated circuits or a large self-contained VLSI design; both
implementations contain dense electronic structures susceptible to internal temporary
and permanent failures. Such systems are difficult to protect sufficiently by classical
fault-tolerant computer design methods [1] because they employ irregular electronic
configurations embedded in otherwise extremely regular structures. Nevertheless, the
principal function of signal processing is to manipulate numerical-based data, and the
only errors of concern, whether affecting control or data operations, are those
corrupting the output numerical data.

The work examined new methods for introducing efficient fault-tolerance design
methods in linear signal processing systems without degrading high-speed
performance. The main goal was to develop new practical approaches for realistic
high speed designs. The fundamental concept relies on a Watchdog Parity Processor
that observes both input and output numerical samples and computes a few parity
values efficiently (see Figure 1-1). This sparse number of parity values is enough to
judge if the main processor is functioning properly in the presence of internal
temporary or permanent errors, even in the watchdog unit itself. Only the detection of
errors is sufficient for protection since error correction techniques could easily require
as many resources as the original processing system. It is more efficient to recompute
a series of calculations than to try to correct them.

This approach to fault-tolerant signal processing is representative of a general

class of protection techniques called algorithmic fault-tolerance [2-7]. The class
derives its name from the fact that certain redundant properties attached to a numerical
processing algorithm are used to check the execution and output of the algorithm. The
redundancy may be introduced in the basic algorithm using numerical parity codes
[2,3,8,9] or may occur naturally in certain forms of an algorithm, e.g., matrix equation
solution methods [10].

Algorithmic fault-tolerance protects a potentially very wide class of internal
errors. The classical stuck-at type of faults and soft errors are easily covered if they
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manifest themselves at the numerical level. Numerous errors in a whole subassembly

of a design may influence only a few numerical samples wherA the numerical-based

redundancy will detect them. Furthermore, algorithmic fault-tolerance is robust since it

is less sensitive to many low-level architectural defects. This approach obtains its

requirements from the numerical input-output relationship imposed by the signal

processing function.
New protection techniques are now possible due to the relatively recent results

concerning real parity codes [7,8,9,11,12]. Both block and convolutional codes have

been examined. The block codes can be very powerful generalized cyclic codes

which have the best minimum distance structure achievable by a linear code [11,12].
The first class of convolutional codes discussed by Marshall [11] were based on binary

codes viewing the binary elements as having counterparts in the real field. However,

other classes are possible. It is easy to define a type based on real cyclic codes using

an old construction technique of Wyner [13, Section 13.3]. Mathys [14] has another

construction for rate- real cnnvolutional code based on dual cyclic codes (see Section
11.3 in [15] for theory). Regardless of the exact real code, performance and speed

constraints in practical signal processing implementations dictate that any protection

method cannot disrupt or alter the original function beina protected. This implies that

systematic encoding forms of the codes are required [13,15]. This in turn insures that
real convolutional codes are noncatastrophic [15].

The next section separates the type of signal processing into two classes

depending on the length of the input data segment processed. The linear signal

processing is related to a finite or infinite matrix according to the class. The generation

of real parity samples is discussed and the necessary notation is established. The

third section introduces the role of the mean-square error (MSE) between comparable

parity values. Internal hardware errors and roundoff and quantization noise are

permitted in the main processor hardware as well as in the subassemblies that
compute and compare the parity samples. The optimum parity estimators are
developed and the minimum mean-square error expressions, both for finite and infinite

processing lengths are given.
The following section presents techniques for simplifying the computational

demands in the Watchdog Parity Processor. The efficiencies are based on the
algebraic structures of the real parity codes employed. For real cyclic codes, the parity

samples attached to finite length convolution are easily calculated from the input
parities. On the other hand, when infinitely long input samples are being processed,
the real convolutional code's structure may be modified, without degrading the error

1-3



protection level, to reduce the parity computation rate. In this way the input data
samples are used less frequently in generating the required parity samples.
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II. PARITY PROTECTION

The linear signal pr3cessing system to be protected may be described by a
matrix F relating the input data in a vector IL to the output data in vector y.. The size of
the matrix and respective vectors may be finite or infinite depending on the data being
processed.

y = LF (2-1)

This view encompasses several siuations including standard digital filtering using
either finite impulse response (FIR) or infinite impulse response (IIR) weighting. Such
a model does not constrain the actual implementation details. However, the exact
impact of roundoff noise and soft errors on system reliability is directly related to this
computational configuration. Infinite arithmetic precision will be assumed, but the
effects of roundoff and quantization noise will be included through a probability density
function describing the statistical behavior of the model.

Error protection will derive from employing parity samples dictated by real
number codes. The existence of powerful real number codes (including maximum
distance separable ones) is one reason for choosing this approach. Furthermore, the
necessary parity values may be formed in parallel with the normal data processing
operations so that there is no speed degradation, a major requirement in fault-tolerant
signal processing systems.

A general protection scheme is shown in Figure 2-1. As every group of k input
and output samples is processed by the linear system, described by matrix F, two sets
of (n - k) parity values are produced respectively at the input and output.
Correspondingly related parity samples are checked in a comparator to detect any
system errors. In the case where the system processes blocks of data, the code is a
real number block (n,k) code [11,12]. On the other hand, if the input is processed as a
continuous infinite sequence, a real convolutional code [7,11] is employed. Generally,
in either case the number of parity values is kept small to make the protection
overhead manageable.

This error detection philosophy derives from experience with finite field based
error detection schemes. The parity values are determined by the real code applied to
the output samples while their respective estimators are formed in the Parity
Estimation subsystem shown in Figure 2-1 where the effects of F and the parity

equations are combined.
The distance properties of the real code are used to detect if errors within the

implementation have caused any significant differences between the desired and

2-1
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actual computation. It is assumed, as is the usual case in fault-tolerant computing
system design, that errors occur in only one subassembly of Figure 2-1 at a time: in
either the panty estimator, main processing unit, parity constructor, or the comparator.
The approach discussed here permits errors in any of there parts, but the heavy
concentration of computational effort in the main processing section suggests a higher
likelihood of errors there.

The parity estimation part necessarily appears to duplicate the effects of F.
However, later results, particularly in important practical cases, will demonstrate how
these estimations may be done quite efficiently without doubling the computational
effort. Nevertheless, the real number code parities are checked in the comparator.
Since roundoff and quantization noise may be present even in the error-free situation,
a small comparison threshold must be allowed in determining if two differently
calculated parities mismatch due to internal hardware errors.

An accepted method of analyzing roundoff and quantization errors in linear
processing systems employs first and second order statistical moments. This analysis
basically considers the mean-square average of the difference between ideal results
and corresponding values when roundoff and quantization effects are preser,. L 5-20].
The mean-square error is prevalent in digital filtering and communication systems [20-
22]. The original motivation for error detection uses the minimum probability of error
criterion [13,22], but usually roundoff and quantization errors are considered second-
order effects and do not influence the design of the error-detecting subsystem. It is
natural to view the detection of errors by comparing parity samples as a probability of
error motivation, while simultaneously minimizing the mean-square error (MSE)
between comparable samples. This dual concept will be explored in the next section
where real error-detecting codes with good separation properties will govern the parity
construction subassembly while the parity estimation part is designed to minimize the
mean-square error between respective parity samples.

The finiteness of the size of the linear processing matrix determines the type of

parity code that is employed. For finite length inputs, a systematic real linear block
code will be applied, whereas if the input data represent a continuous stream, a
systematic real linear convolutional code will be used. The finite processing case with
a block code will be examined first, and after some preliminary notation is established,
the infinite length case will be addressed. This notation and setting will be the basis
for the MSE estimation results developed in the next section.

The linear signal processing operation for finite length data inputs will be
represented by the (kxk) matrix F. The input data are denoted by the (1 xk) vector u.
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though its tail may actually contain padding zeros because the input is really shorter

than k. The output data in vector y. are obtained through a linear equation. All
indexing starts with 0 to be consistent with a concept of time relating to index position.

(vO, v,..., Vk) = = UF ; u = (uO, U, ... ,Uk.1)

(2-2)
to,o fo,1 ... fok-1

fj,0 f1,1 ... fl, k-I

F=

fk-1,o fk-l,1 ... fk-1,k-11

This more general case includes the special situation of convolving the input data in u.

length t, with a finite impulse response represented by w. length s, where s + t < k.

.u = NO, U1, .... Ut-l, 0, 0, ..., 0)

= (vO, VI, V2 , ..., Vk1)

W0 W, ... WS.1  0

0 W0  Ws_2 WS..

w =(Woo w1,I ..., 9ws.1, O, 0 , 0 , 0) => F =...
o 0 ... 0 .. . ..

0 0 .. 0 ...

t-1

Vr = ,WriUi r=0,1,...,k-1 (2-3)
i=0

The output data contained in y. will have parity associated with it. The (n-k) parity
values are determined by a block code whose generator matrix takes the special

systematic form.
G - (Ik I q ; Ik is a kxk identity matrix.

The parity-check submatrdx, (2-4)
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0 = ((qq)) ; iO1, ..., k-1
j-O, 1,... n-k-1.

The output's parity values are dictated by the parity-check part of this matrix according
to the equation

k-1
a/y) = qjv j=0,1,..., n-k-1 (2-5)

i=0

By design, the real code has good distance separating properties [11 ], and so any
errors appearing in the collection of positions of y combined with ao(y.), ao(y.), ... ,

an-k.1f(y.) can be detected. However, section 3 will examine how the parity choices at
the output y. affect the parity estimation subassembly, Figure 2-1.

On the other hand, when the signal processing involves an infinitely long input
data stream, the parity samples will be determined by a real systematic convolutional
code. One reasonable constraint must be imposed to avoid an infinite delay before
any output sample appears. The output vr in output stream y where r=O, 1, ... only
depends on input values uO, u1 , ... , ur in the input stream u. In other words, the linear
signal proces.;ing matrix F has zeros below entry r in column r. This causality
constraint can be relaxed somewhat by allowing a finite number of nonzero samples
beyond item r, but this introduces additional delay that is difficult to implement in
practice.

The encoding matrix for a systematic convolutional code, G, has a block type
format involving m fundamental finite sized matrices whose dimensions are related to
the rate and number of parity check positions in the code. The parameter m
determines the constraint length of the code.
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Go G 1 -- Gm 0 -

0 Go Gm-1 Gm -

0 0 - 1- G-1

G 00-- - - (2-6)
I I I Go - - I

I Go G1  -
I I I - 0 Go -

0 0 -
I I I I I I I

Each k x n submatrix Gi has a distinctive form.

Go (1Qo) ; I kx k Identity Matrix (2-7a)
PO k x (n - k) Parity-Check Matrix

G= (010j) ; 0 kx k Zero Matrix (2-7b)
Pj k x (n - k) Parity-Check Matrix

j= 1,2,..., m.

The entries in the parity check submatrices 0i may be either 0 or 1 even for the real
Marshal code case [11], or in the more general case, real numbers [7,141.

The parity positions are a function of possibly (m + 1)k input samples through
the action of the 0j parts of each Gt The stack of these parity weighting values will be
denoted by an {(m + 1 )k x (n - k)} matrix 0 with respective columns { qr }:
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Om

Qm-1

0 = I = (q. q q2 ,..., qn-k-1). (2-8a)

02
01
0

qc= ((qc(J))) ; J=0, 1,2,..., [(m+ 1)k- 1]. (2-8b)

qc (m + 1)k x 1 Column Vector

c=O, 1,2,...,(n-k-1).

The indexing in the parity columns of G is a traditional one which shows parity values

as the output of an (FIR) filter. The parity samples are obtained as (n - k) convolution
operations on the output data. Employing the notation of equation (2-8), the (n - k)
respective parity channels determine the 1th parity sample in stream c by the formula:

M-1

arc(V(r )) = Vr_iq c' = 0=,l,..., (n- k -1)

i=0
(2-9)

M = (m + 1)k
where

I) = (v0 , v1, ... , v,) ; output data stream up to item vr.
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Ill. MINIMUM MEAN-SQUARE ERROR PARITY ESTIMATION

The parity estimation subassembly associated with the real code parities

appearing at the processing output will be determined in this section. The case of
finite dimensional signal processing is examined first because of its slightly simpler
notation. The parity values cz0 (y.), o l (v ) , ... , n_k_ l ( .) are dictated by the real sym-

metric block code, e.g., equation (2-5). The inherent distance property of this code
guarantees that if any reasonably significant errors occur in a number of samples,

checking the parity values within error threshold limits will detect them. However, such

a detection approach is still true if the parity estimation subassembly presents values
whose calculations are directed by a mean-square error criterion. The code is
designed for good probability of detection whereas the parity estimation is selected to
minimize the mean-square error between related samples. One criterion has gross

errors in mind while the MSE focuses on roundoff and quantization effects.
Nevertheless, each criterion considers the effects of all errors; there is a different

emphasis depending on the type of error.
The general model in Figure 2-1 permits hardware errors as well as roundoff

and quantization errors in each of the three computational units: signal processing,
parity construction and parity estimation. The mean-square error criterion is applied to
the sum of the squared differences between the parity values and their estimated
counterparts. This overall criterion is denoted as E2.

n-k-i

2= _ E{Iai(-) - J3(u 2 } (3-1)

The expectation uses the distribution governing the elements in the input vector IL as
well as the stationary occurrence of hardware errors and roundoff and quantization

noise in the three computational subassemblies.
The role of the totally self-checking comparator is to detect significant

differences exceeding the threshold A between individual components, including
failures and errors within its parts. This is a generalization of the totally self-checking

equality checker used in fault-tolerant computing designs [1,23]. One conceptual
implementation appears in Figure 3-1a which displays the comparison process for a

genedc position. The output represents a I out of 2 code whenever the two inputs are

within a difference magnitude of A. Note that this slice is self-testing in that both types

the 1 out of 2 code words appear during normal operation [23]. The 1 out of 2 code

3-1
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outputs from each of the (n - k) comparator slices are concentrated to a final 1 out of 2
output as shown in Figure 3-2b. This concentrator is a binary logic device which is
code disjoint [1,23] and totally self-checking in the usual sense.

In order to understand the role of the mean-square error criterion on the exact
structure of the parity estimator subassembly, a simpler situation will be examined first.
All errors, whether hardware or roundoff and quantization errors, will be confined to
the signal processing part only. Most of the techniques and mathematical approaches
will be expanded later to the situation where hardware errors and roundoff and
quantization noise affect all computational parts simultaneously. Furthermore, in this
beginning step the linear signal processing subsystem will be taken as finite weighting
processing without loss of generality.

Finite Length Processing
The errors in the signal processing part will be described using a conditional

density function. (Degenerate forms of errors are incorporated in this model by
permitting generalized functions, e.g., Dirac delta functions, in the density function.)
This multidimensional conditional density function is denoted by ,u(Y/i). Since it is

ERROR AND NOISE EFFECTS
DESCRIBED BY CONDITIONAL DENSITY FUNCTION

_(ylU)

U LINEAR y

" SIGNAL PROCESSING
INPUT (MATRIX F) OUTPUT

common practice to assume noise in digital signal processing systems can be
modeled realistically by additive disturbances [16-19], this conditional density function
will be imbued with a generalized additive property. For every x in the input space,
there is another 1 x k vector t(,) such that the conditional density obeys the following
law for all input vectors u and output vectors v.

y.-/ fy/U(y. + ()/u + X) (3-2)
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The implications of this generalized additivity model can be developed. One
candidate for x is -j, and so the effects of errors are typified by passing the all zero
vector, denoted by Q!, through the signal processing subsystem.

f/U(Y/) = lu(Y. + .(-i)/.) (3-3)

The individual vectors .(x) as X is varied define a transformation from the input space
to the output space. It is natural to explore aggregate effects of this transformation.
Because property (3-2) holds for all inputs u and outputs Y., it is easy to show the
following additive properties of the transformation (x).

t(-'U) = -U(.h.) (3-4)

Ua + 12) = W) + . input vectors

Thus the generalized additive assumption leads to a vector transformation t that has
homomorphic properties [24]. Consequently, it is reasonable to infer that the
transformation is the signal processing operation.

.() = uF (3-5)

The code dictates the parity construction rules {a/ y)}, equation (2-5), while
minimizing the mean-square error expression (3-1) will govern the choice of the
corresponding parity estimation. It will come as no surprise that the optimum choices
for the parity estimator functions are the respective conditional means [20,25].

Pj(u) = Ev/u{ajv)/u} j=0,1,...,(n-k-1) (3-6)

The conditional expectations employ the conditional density function fj(ju.L)
described above. The minimum mean-square error corresponding to conditional
mean estimators is given by 12.

n-k-1

= ( })(3-7)
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A simple proof of these two results are included in a footnote for the sake of
completeness. 1

A vector of optimum parity estimators with respective components given by
equation (3-6) may be written employing matrix and vector notation, particularly the
parity-check part 0 of equation (2-4).

5(u) = Ev/u{vQ/u} ; 0 is the k x (n - k) parity-check part. (3-8)

The conditional expectation may be simplified by considering the generalized
additivity property of the underlying conditional density function, equations (3-4) and
(3-5). A vector integral notation will be used to express the conditional expectation.

5(g)= [fVfvuUV]Q

A straightforward change of variables, Z = y - juF, permits this to be rewritten.

1 A calculus of variations argument to the proof of the optimality of equations (3-6) and
(3-7) above avoids any delicacies that might arise employing a differential approach
to minimization. Suppose that there are (n - k) other functions y,{u.) with finite
moments, i.e., E{I yu) 121 < +o. The mean-square error resulting from using these
functions may be expressed by adding and subtracting the alleged optimum
functions {j(u)J. The conditional moments may be introduced in this expression.

E2 I n-- {Ev/u [I aj(y) - j3(y) + 5j(y) - y(y)j2/]}
j-of

I n-k-i {Ev/U[ j() - Oj() f/U]} L -- I Eu Ii 1(U) - (u) If}
j=-O j=O

The value i2, as identified on the right, is a minimum because of the following
inequality which becomes strict when P/u) and y7u) differ on any set of nonzero
probability.

J { ( ) - 1 
2  0.
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1(u) _ [Ifvu(Z/0)dz + uFfvu(z / 0)dz]O.

Thus, in terms of the conditional expectations, the optimum estimator contains a bias
term of condition moments of the processing noise.

5(u) = Ev/u{Z/ 0} + uFO. (3-9)

The minimum error i2, equation (3-7), may be written incorporating the
consequences of additivity properties. One part of this expression is the sum of the
conditional means.

n-k-1Eu { I Pj(u) 12} = Eu{uFQQh FhUh} + Ev/u{z / O}QQh FhEu{uhl
j=O

(3-10)
+ Eu{u}FQQhEvuzh 0} + vuZ/ o}oh v{u, 0

The superscript h denotes the conjugate transpose of the vector or matrix. Another
important part of Z2 involves the sum of the parity values written as a bilinear form.

nI I(v)l2= vQhvh (3-11)
j=O

The conditional expectation of this sum may be simplified by using the same change of
variables as above, yielding a result using a quadratic form of the vector of the parity
values, g(y.).

E;,u{[aV h(v)/u} : E;,u{ZQOh;h/O}+uFOOhE;,u{Zh/O} + Evu{ZO}FQQhu. (3-12)

Several cancellations occur when combining this equation with the results in
equation (3-10) and substituting into equation (3-7) for i2. In particular, it is interesting
to note that the minimum MSE does not involve any averaging over the input
distribution.
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Z2-= Ev/u{4Qozh/Q} - E V/U{ZjglQ}hEv/u{h/91.(3-13)

The complete description of the hardware errors and roundoff and quantization noise
is contained in the conditional density function fy/u(y./L). It may have a mixed type of
definition. One realistic example has the hardware errors following a Gaussian density
whereas the other noise can have a uniform distribution determined by the smallest
level in the numerical representation in the implementation [16,19]. In concrete terms,
an example of a modeling density function f./u(..) may be developed. The roundoff
and quantization noise may be lumped together and modeled as k independent
components in a vector b = (b0 , bl, ... , bk.l).

k-1

=A r Hi.-( bi + flg-L(j - b,).

The quantization width is given by 8 and g'-I(x) is the unit step function [17]. On the
other hand, the hardware errors obey a jointly Gaussian density function where the
covarance matrix A and mean value vector g. permit correlation between hardware
error events and bias offsets in each component respectively [20].

fa(a) = [(2x)k/2 1 A IV11exp{- 1l(g - p)A-l(a - p)T}

where
a = (ao, a,, ..., ak.1) A = (PO, P1, . Pk-1) =((Efa))

and
A = ((Ef(ai- p) (a1- p)))) Covariance Matrix.

The combined effects of the hardware errors and performance noise is included
as the sum of the random vectors a and b.

c = a+h.

Assuming that the vectors are mutually statistically independent, the density function of
! is the k-fold convolution of the two density functions [20,25], written symbolically as:

= - ) f&)dx.
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This density function is related to the modeling conditional density through the
following requirement:

f =

The bias term, E.}Q, in the conditional mean estimator 1(u), equation (3-9),
does not usually appear in the formulation of the parity estimator. It has generally
been ignored in the past. However, omitting it can have an impact on the minimum
mean-square error. When this offset term is not included in the parity estimations, it is
easy to show that the MSE increases by an amount D,

D =Eu{Eviu1Z / QQQh Ev/u zh/Q}} 0. (-14)

Hence the parity-check part, 0, of the generator matrix amplifies the effects of any
noise mean Eylu(z./.J.

The results discussed so far are too simple. Hardware errors and roundoff and
quantization noise can appear in the three major subassemblies. A more realistic
simulation will now be detailed. A common assumption in fault-tolerance practice
constrains only one subassembly to be affected by hardware failures at a given time.
However, roundoff and quantization noise occurs in all three parts simultaneously.
The more general model employed below will incorporate all of these features. The
goal is to determine the parity estimation functions in such an error environment. The
previous results for the simpler case provide important guidance in including the
effects of hardware error and performance noise in the estimation subassembly which
has not been fully determined yet; a classic chicken-and-egg problem. The key steps
in this regard are indicated by the estimator's equations (3-9) for this simple situation,
coupled with the basic interconnection of the parts shown in Figure 2-1.

Four probability events will be employed in the error and noise model. They are
categorically listed in Table 3-1 along with the symbolic probabilities of their respective
occurrences. Events F, E and C represent both hardware errors and .undoff and
quantization noise effects, whereas event N accounts for the simultaneous roundoff
and quantization noise in the three subassemblies. However, the generalized additive
properties of the conditional probabilit y density functions describing all forms of error
suggest a realistic tractable modeling technique. The noise offects in the parity
estimation part can be reflected through the comparator and consideied an additional
contribution in the parity construction part. The linear nature of the simple parity
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estimators, equation (3-9), coupled with the adderisubtractor in the comparator slices,
Figure 3-1a, indicate that extra components of noise added to the parity construction
process accurately model the aggregate effects from the estimation subassembly. The
exact form of the optimum MSE parity estimation function vector, .(u.), will be
developed using the model. Note the mode' has roundoff and quantization effects

active at all times.
Table 3-1. Error and Noise Events for Subassemblies

Event Subassembly Nature of Errors Probabilities

F Linear Signal Processing Soft and Numerical PF

C Parity Construction Soft and Numerical PC
E Parity Estimation Soft and Numerical PE

N Processing, Construction and Numerical only PN
Estimation

1 = PF+PC+PE+PN

PN >> PF + PC + PE

The previous development of the mean-square error estimators in equations
(3-6) and (3-7) is the starting point in the case of the above expanded model. It is easy
to show as earlier that the optimum estimator functions in vector form may be written

using the events and probabilities defined in Table 3-1.

Ny) = PF E{_(v)IF,u} + PC E{((v)lC,u} + pF E{_()!E,u + pN EJa(y)INu}. (3-15)

Each conditional expectation will be determined individually. The optimum mean-
square error expression may be developed as before and can be compactly
eApressed using vector notation:

-=Eu{E[cvchv)]- (3-16)

A joint density function involving u, y. and g.(y.) will be useful. It may be
decomposed according to the four events detailed in Table 3-1 and contains
appropriate conditional density functions.
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f, Y, ) = fu(u)tpFf(v,qIF, u) + pcf(v,_1C, u) + pEf(v, 1E, u) + pNf(yv,XIN, u)] (3-17)

It must be remembered that the processing output data in y. and its associated parity
%(y) may have a statistical relationship in addition to their deterministic one defined
through parity equations (3-11). Hardware errors and roundoff and quantization noise
in the panty calculation subassembly introduce this extra dimension.

The first part of the estimator J(u) depending on event F, where the errors are
introduced in the signal processing part, can be developed as before, leading to a
result similar to equation (3-9).

E{_,vIF,u} = Ev/F,v{zIF,0} + uFQ. (3-18)

On the other hand, event C corresponds to hardware errors and performance noise
appearing in the parity construction part. In that case, the pertinent conditional density
function has a singular component allowing the following constraint:

f(y,_jC,u) = falc,u,v(_1C,uV)fvlc,u(YIC,u) (3-19)

= flC,u,v(_IC,uv=uF)

= Vajcv(aICy)v=uF

Furthermore, the last conditional density function has a generalized additive property.

f~c,,V(9IC, v) = flC,V(q- QIC,Q). (3-20)

The component of _(u) related to event C may be evaluated with the aid of a change of

variables, I , - Q 0.

E{a(v)IC,u} = EalC,v{ylC,O}+uFQ. (3-21)

The influence of errors in the parity estimation subassembly, event E, is handled
the same way except that the conditional density function modeling errors in the Iu)
calculation is transferred to the parity construction part. The resulting conditional
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expectation involves an a(y.) item, but the underlying density function f~a I E,y..)

represents the errors in the estimation part.

E{__(v)E,u} = EaE,v{xE,0}+ uFQ (3-22)

For the case of event N where roundoff and quantization effects occur in all
three subassemblies, the influence in the parity estimation part is modeled by adding
appropriate statistical contributions in the parity construction subassembly. Then the
conditional density function describing the filtering and parity construction parts may
be separated using Bayes' Rule [20].

f(yoIN,u) = fvlN,u(vIN,u)flN,u,v(qIN,,v). (3-23)

The first conditional density on the right represents noise in the processing part
whereas the second item represents the combined noises in the parity construction
subassembly. The nature of the signal flows shows that the last conditional density is
not dependent on the input data in ..

fglN,u,v(qIN,u,v) = faqlN,v(qIN,v). (3-24)

Furthermore, two generalized additivity properties come into play:

fvN, u(vN,u) = fvlN,u(V -uFIN,0) (3-25a)

flN,v(_IN,v) = falv(_ - vQIN,0) (3-25b)

The conditional expectation of interest involves a double integral and two changes of
variables, given by z - v - uLF and y. = - Q, produce three parts to the conditional
expectation,

E{_(.)IN,u} = EalN,v{YINQ} + Ev:N,u{zIN,0}Q + uFQ. (3-26)

The complete expression for _(u) combines items from equations (3-18), (3-21),
(3-22) and (3-26). The term uFQ appears without any event probability weighting
because PF + PC + PE + PN = 1. A complete bias term which does not depend on input
data LL Is given by a vector [".
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3(u) = uFQ + r, (3-27)

where

I:= pFEvlF,u{zIF,0}Q + pCEaIC,v{yiC,0} + PEEalF,_{AzE,0}
(3-28)

+ PNEqjN.v{yjN,0} + pNEvjN,u{zIN,0}Q

The 1 x (n - k) bias vector 1" accounts for any nonzero noise averages both due to
hardware errors and roundoff and quantization considerations. This vector will appear

in the minimum MSE Z2.
The other contributing factor to the MSE, EQ(y) .h(v) U, may be expanded in

a sum of conditional expectations according to the four events detailed in Table 3-1.
These individual conditional expectations may be developed similar to ones above,

except that the arguments involve an inner product type expression o (y .h(y).
However, the manipulations and simplifications applied earlier are still pertinent. This
development is straightforward but tedious. The final minimum MSE may be
assembled according to equation (3-16) and careful bookkeeping shows that all terms
containing u or uh cancel. Many of the remaining items contain correlations between
noise variables.

= PFEF,u{ZOOhz"IFu = 01 + pECv{;yhICv = + P _,I .v{XXIE,. = 0}

+ N E~.J, v{;_.,v =oQ} + PN E N,v{_ N.v = o}oh EvN,u{zhIN,_ (3-29)

+ PN Eviu{z INu = Q_}Q E iN,v{yhlN, = 0} + PN EviN u{_ QQzlgu = 0_} -_.

The results for the noise model used here indicate the form of u), equation
(3-27), would introduce the same type of noise as the parity construction subassembly.
This justifies the reflection of the noise contribution from the estimation part to the
construction subassembly.

Infinite Input Data Stream
The case where the linear signal processing handles an infinite input data

stream will be protected through parities from a real convolutional code. The general
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situation will be narrowed to a more practically important setting. Nevertheless, it will
be obvious from the development that more general results, similar to those for the
finite length processing case, can be determined in a straightforward manner. The first
of two constraints assumes the signal processor is an IIR filter with a rational Z
transform. The corresponding matrix F has the infinite impulse response {hr}+70 as
columns.

h0  h ... hr ...
0 ho ... hr-1...
0 0
0 0

F= h IR filter matrix
h0  ... (3-30)

S0 -..
: i0 -..-

Most practical weighting systems are based on such types of designs [16-19].
The other simplifying constraint concerns the real convolutional code that

determines the parity values. A high rate code with only one parity channel will be
employed. This means that the information positions are grouped by k = n - 1
samples, giving a code rate of [(n - 1)/n]. It is possible to relax this constraint providing
more code alternatives, but for the moment this approach is notationally convenient.
The corresponding systematic real convolutional code, described earlier in equations
(2-6) through (2-8), employs a parity channel weighting matrix 0 with a simplified
notation.

q(M-l)

q(M- 2 )

= ; M-(m+1)(n-1). (3-31)

q(l)

q(O)

The parity construction part of the system produces samples for this one parity channel

according to the following formula:
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M-1 )
a(v(r)) = , Vr-iq ; r >0. (3-32)

i=0

The tnncated output data stream denoted by vy') is given notationally as

y() = (vO, v1, .. , v) ; r> . (3-33)

Only the last M samples in this data vector affect the parity construction, but the
corresponding input data samples from u contributing to y(6 are represented by a
similar truncated vector.

U) = (Uo, U , ..., Ur) ; r;> . (3-34)

The outputs from the signal processing operations arise from the usual
convolution expression.

t t
vt = 2 hiut- i = I ht.juj ; t =, 1, ... (3-35)

i=o j=0

On the other hand, the parity estimation subassembly provides the parity stream

denoted by {10t(u))} . It minimizes the mean-square error between corresponding

parity values. The MSE is denoted by C2 where t = 0, 1,

2- E{l at((t)) - Pt(M(t))j}(36

It may be shown as before that the estimator minimizing this symbol-by-symbol
criterion is the conditional mean of the panty construction variable ay(O).

k(t)= Ejczt(y(t))/U(tO} (3-37)

The proof supporting this and the development of the related mean-square error, it
follows the techniques used earlier.
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E{I t(m(O) r} - E.({ ) (3-38)

When the only source of errors, both hardware and roundoff and quantization
effects, is the signal processing subassembly, the parity estimator can be developed
paralleling the previous analysis. The errors are described by a conditional density
function which is assumed to obey a familiar generalized additivity property. The
optimum estimator has the following form.

= F q(')Ev(, {z,-/u(t) =o} + 2: qY)1: hjut,,_. (3-39)
i=0 =0 j=O0

This estimator contains the parity of the filtered input as does an expected value
needed in t2

E{l at(M(t)) 2} = 1 M q(i)q(j)* v(t)1u(t){Zt-izt-i
i=0 i=-

+ Ev(t)/(t){zt-j/QI Xhr E{ut...j-.r}+E E'ztO' Eu~ (3-40)
r-O v~)uttiJr_ {Ui

t-ij Ht
+ I Xhrhs EIUt-uJ-}

r=O s=O

Not surprisingly, the minimum MSE is only dependent on the finite length of
data needed in the parity construction subassembly even though samples for the
entire length of U(O and v(t) appear in the two previous expressions.

M1 M-1IV)q(j)*

t I I q()q( [E vmp)Itzt- Iz I - E(t)Iu(t)zt~~i/QIE,(t)/u(t)fzt*t-IQJ (3-41)
=0 J=O . .. .
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The correlation between noise samples in the processing subassembly plays a

prominent role just as in the finite length processing case, e.g., equation (3-13).
The situation where hardware errors are permitted in any one of the three

subassemblies while roundoff and quantization disturbances are present in all parts

can be addressed employing the same error model described in detail earlier. The

nature and type of error events remain as given in Table 3-1. A set of familiar results
emerges. The parity estimation part contains a bias term in addition to the expected

parity affiliated with the processing part's output.

( = q() Yhj ut-i-j + At(3-42a)

i=0 j=0
where M=I .M=I 

E
At = PF I q(')E v(t)/F,u(t){zt-iF,O} + PN Y q(vt)NuO)zt-iNO}

i=0 i=0
(3-42b)

+ PNE a(t)/Nv( ){t/NQ} + PC Ea(t)/C,v(){yt/CO} + PE E(t)/E,v(t){Yt/EO}

and

2/= PN , ) EV(t)/N,u(t){zt. i ztj ,0
i=0 j=O

M=1 M=I1(

i=0 j=0

+ Pc (t)CP,ct{If1/C,Q} + p E (t),C,(t){It /12 o + N E (t)/,,,v{IY,,tJ,} -(3-43)

M-1
+ PN I q(I) EV(t)1,(t0jZt - 1N, Q E(t)rt (t){Y,/NR QI

i=O

M-1

+ P, I_ q(') Ev(t),Uct){z..i,-,Q} E a,v (t), /o - IAtj.
1=0
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It is easy to identify the sources of the noise effects in both the estimators t ( t ) and
the minimum MSE value i2. Those items containing conditional expectations with
subscripts of the form y.(t)/A,u(t) (where A is a generic letter) represent noises in the
signal processing part. On the other hands, those conditional expectations having

subscripts of the form c(t)/A,v(t) designate noise sources in either the parity calculation

part or parity estimation subassembly as reflected through to the construction part.
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IV. EFFICIENT USE OF REAL CODES

The optimum mean-square error parity estimator, whether for finite or infinite
length signal processing operations, contains a term representing the parity of the
processed output. For finite length data processing, the term LFQ contains the
processed output uF (equations (3-9) or (3-27)). On the other hand, when processing
a continuous infinite input data stream the double sum

q hj ut_i_ j

i=0 =

is the parity for M outputs of the processing subassembly (see equations (3-37) or
(3-42)). At first glance it appears that the parity estimator must duplicate the complete
processing effort of the signal processing subassembly, implying that the protection
overhead must exceed 100%. Thus the efficiency of the parity estimator subassembly
is an important factor in offering any practical advantages. Fortunately, for both finite
and infinite length processing systems, techniques exist for dramatically reducing the
computational requirements in the parity construction and estimation subassemblies.

An effective way to reduce parity computation complexities is to match the
processing calculation more closely to the structure of the real code. Two techniques
will be discussed. In the first approach, close similarity between finite convolution and
real cyclic codes reduces the parity estimation calculations to the order of the number
of parity values squared. On the other hand, the parity channels used to protect infinite
impulse response filtering can be modified so as to cancel the poles of the original
transfer function. This not only removes the need for feedback memory requirements
in the parity estimation part, but more importantly, permits the parity construction and
estimation subassemblies to operate at lower computational rate. This in turn offers
very efficient implementation options. The details of both approaches will be given
below, starting with protecting finite length convolutions.

Protection With Real Cyclic Codes
Finite length convolutions may be described compactly in terms of polynomials

[261. The filter weighting sequence may be viewed as a polynomial f(X) whose
coefficients are related to the signal processing matrix in the following way.
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f0 fl f2 .'S

0 fo f , • fs-
0 0 fo ..

0 0 - :

F = x. kxk Convolution Matrix, s < k (4-1a)
0 0 0 ... f, ...
!i ... fo ...

0 ...

4(X) = fs, + fs -1 ... + flX + fo ; Weighting Polynomial (4-1b)

When the input data are represented in polynomial form, u(X), the convolution
between the input data and the weighting sequence, A(X), is a polynomial product
f(X) u(X). If the integer k is chosen large enough (deg f(X) + deg u(X) < k), the
convolution weighting may be viewed in a residue polynomial ring modulo (Xk - 1)
[24,26] where the output convolution is contained in polynomial v(X),

v(X) = uX) 4() modulo (Xk - 1). (4-2)

Real cyclic codes are defined in a similar residue polynomial ring where the
modulo is performed (Xn - 1), n > k. The code has (n - k) parity positions and length n.
It is defined by a single polynomial, called the generator polynomial and designated
here as g(X). This polynomial has degree (n - k), may be selected with a unity leading
coefficient, and divides (Xn - 1). The code is all the polynomials in a principal ideal
[24] generated by g(X). This ideal is denoted by double parentheses around g(X), ((
g(X) )), and is formally defined as the set of polynomials in the residue polynomial ring
that are multiples of g(X):

(( g(X) )) -{(X) a q(X) g(X) modulo (X*-l): q(X) a polynomial) (4-3)

A common method for defining a systematic form of a cyclic code employs the

famous Euclidean algorithm [24,26] which will be stated here for completeness. Any
polynomial A(X) may be divided by g(X) and expressed uniquely in terms of a quotient
q(X) and a remainder 4X), with an important constraint on the remainder's degree:
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P) = q(X)gQ + () deg 4X) < deg g(X). (4-4)

Cyclic codes over the real or complex fields are defined by using consecutively
indexed powers of the dh complex root of unity, e.g., [exp(2ntn)p], where i = "-and p
is an integer. The fundamental construction techniques are given by Marshall [11,27],
and use the discrete Fourier transform domain in which contiguously indexed
transform coefficients determine the generator polynomial. By requiring conjugate
roots be included, real generator polynomials are constructed. Maximum distance
separable codes [11,13] (analogous to powerful Reed-Solomon codes) are easily
constructed. It was established in [27] that real number maximum distance separable
codes exist for all choices of parameters. Such codes can detect errors equal in
number to the degree of g(X), the maximum permitted by the Singleton bound [13].

Real cyclic codes, primarily applicable to floating point arithmetic formats, will
be examined in slightly more detail so as to better exemplify the parity operations to be
discussed later. They are constructed using consecutively indexed primitive roots of
unity [11] and were originally called Discrete Fourier Transform (DFT) codes
[11,12,27,28]. Powers of the nth complex root of unity, W, define the roots of the code
generator polynomial g(X).

g(X) = f"(X-_W4) "  W=ej 2 ,, (4-5)
4EE n

= INDEX SET OF CONSECUTIVE INTEGERS MOD n

= {0,1,2, ... , (n- 1))

The span (number of consecutive indices) determines the error-detecting capability of
the code and is the maximum allowable for a linear code. The code can detect up to

I S I symbol positions in error considering the roundoff tolerance of the comparison
operation.

If the index root set is symmetric about 0 ( and including 0) or about W/2 (and
including Wf2 if n is even), conjugate root pairs appear in g(X), giving it real
coefficients. This restriction narrows the range of parameters permitted in the code
slightly (see Property 3 of [11]), but does not reduce the error protection levels in any
way. In addition, the real coefficients of g(X) are also symmetric or anti-symmetric
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about the degree midpoint, halving the number of multiplicative operations needed in
parity calculation and re-calculation. This implementation detail will not be exploited
further in the paper to avoid unnecessarily complicating the equations.

A power of the primitive complex root, Wm, where m is relatively prime to n can
be used in place of W in the definition of g(X). A different code results with the same
error-detecting capability but with roots located at more widely dispersed points on the
unit circle. This eases the accuracy requirement in calculating and using the
coefficients in g(X). A simple example for a code with length n = 1024 and information
capacity k = 1003 using an index scaling factor m = 47, has the capability of detecting
up to 21 positions in error or any burst up to length 21. Figure 4-1 displays the
generator polynomial. An equally good code may have roots centered about
-1 = K612, but they have different coefficient signs since (X+1) is the only linear factor.

g(X) = -1.000000e+00 +7.882733e-01X1 -7.063940e-01 X

+6.591348e-01 X3 -6.277460e-01X 4 +6.055386e-01X 5

-5.894287e-01X 6 +5.777794e-01X 7 -5.696514e-01X)S

+5.644898e-01 X9 -5.619806e-01X 10 +5.619806e-01X 1 1

-5.644898e-01 X12 +5.696514e-01X 13 -5.777794e-01X 14

+5.894287e-0 1X 5 -6.055386e-01X 16 +6.277460e-01)X1 7

-6.591348e-01X 18 +7.063940e-01X 19 -7.882733e-01X 20

+1.000000e+00X21

Generator Polynomial Using Root K4 7

n=1024 ; k=1003

A REAL CYCLIC CODE GENERATOR POLYNOMIAL
FIGURE 4-1

A common systematic encoding scheme will be used to describe the efficient
calculation of parity values associated with the output convolution. The input data
represented by u(X) is encoded in the following format. The data in u(X) are placed in
higher coefficient positions by multiplying it by Xn- k, effectively shifting this data to
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inclusively indexed positions from (n - k) up to (n - 1). The uniquely related parity

symbols are represented by the polynomial ru(X), derived from the Euclidean

algorithm (4-4) with g(X) as the divisor.

X-ku(X) = qu(X) g(X) + ru(X) ; deg ru(X) < deg g(X) (4-6)

ENCODE u(X) xn-ku(X) - ru(X)

PARITY PART =-ru(X)

The parity estimation subassembly may use the parity ru(X), which is carried

along with the input data u(X), in forming the parity -rX) corresponding to the output
v(X), equation (4-2). The formula relating the input parity -ru(X) to the output parity
rv(X) involves a weighting polynomial N,(X) which may be computed and stored.

Because W(X) is the remainder modulo g(X), it has degree strictly less than (n - k).

rv(X) a ru(X) V/(X) modulo g(X) (4-7a)

where

NI(X) a fX) modulo g(X). (4-7b)
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The proof2 that this is indeed the proper output parity is contained in a footnote which
makes use of the properties from the Euclidean algorithm. The computation of the
parity estimator uses equation (4-7a) which is much simpler than a straightforward
computation. Its complexity is on the order of (n - k)2. Furthermore, if the parity values
may be computed and compared in a suitable transform domain, this complexity drops
to the order of (n - k) [29].

The systematic generator matrix for a cyclic code may be described by mixing
vector and polynomial notation. The ,th row of G relates to the cyclic codeword for
{Xn'- } where r= 0, 1, ... , k- 1. In particular, when this code polynomial denoted by
{Xn-l-r - p(X)) is written as a vector, the Xn- l-r terms correspond to the identity part Ik
while the parity parity, remainder - p,(X), is confined to the rightmost (n - k - 1) matrix
columns.

Xn-l-r = q,(X) g(X) + p,(X) ; deg pX) < n - k (4-8)

2 PROOF OF SIMPLIFIED PARITY CALCULATION, EQUATION (4-7).

The parity associated with the output v(X) = u(X) f(X) modulo (Xk - 1) will be
denoted by 4(X). The Euclidean algoithm shows there is a quotient q(X) and a

remainder NV(X) obeying
4X) = qXX) g(X) + V(X).

This gives equivalence (4-7b). On the other hand, the product ru(X) W(X) when
reduced modulo g(X) has remainder denoted by r(X).

ru(X) W(X) = qp(X) g(X) + r(X).

The validity of equation (4-7a) may be seen by expanding the difference between
the shifted output data, Xn-L u(X) 4X)], and the parity rv(X).

X*-ku(X) iX)J - rv(X) = {qu(X)g(X) + ru(X)} {qX(X)g(X) + W(X)} - qp(X)g(X), ru(X)(X )

= qu(XqXX~g2(X) + ru(X)q(x)g(x) + q(X)g(X) q(X)g(X).

Since rv(X) has degree less than (n - k) and is unique by its very construction, it
must be the corresponding parity because the difference above is a multiple of the

code generator polynomial g(X).
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In order to be somewhat consistent with the earlier block code notation associated with
equation (2-4), the coefficients have a reversed order.

n-k-1

Pr(X)= XPr,, Xn-l-r ; ((Pij))=P, r=0,1,...,(k-1). (4-9)
i=0

Then the systematic generator matrix G in the cyclic code has the following form
involving matrix P defined by remainder polynomials p(X).

G = (/kIP) = ((xn-I--PAX)) ; r=0,1, ..., (k-1). (4-10)

The parity construction subassembly implements the following function where
the reverse indexilig and minus sign appear because of the notational definition of the
real cyclic code.

k-1
cr(V) =- Pk--j ; r=0, 1, .... (k-1).j=0 (4-11)

i=O

This definition gives parity values as generated by the Euclidean algorithm encoding
format, equation (4-6). The encoding of output v(X) has a parity polynomial part rv(X)
that may be expressed using the a(y) values.

xn-kv(,X) = q(X)q(X) + ra(X) (4-12a)

n-k-1

rv(X) = -[ I s] i(v) X . (4-12b)
1=O

Typical terms in the optimum MSE value i2 contain bilinear forms of the parity
matdx 0 and other statistical quantities, e.g., equations (3-13) or (3-29). Some
simplifying assumptions will be made in order to study the impact on MSE
performance by choices for the parity coefficients in parity part matrix P, equation (4-9).
These parity coefficients depend on the generator polynomial which in turn is defined
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by its indexing subject S, equation (4-5). This will be explored further by concentrating

on one bilinear form, say item E.

EEvu (.h h/Q. Pk-l-i,r Pk-,-j,rEvlu[ZiZ;/O] (4-13)
r=0 i=0 j=0

This bilinear form contains correlation statistics concerned with errors

appearing in a subassembly's error model. As a beginning point, the noise will be

taken as uncorrelated so that individual component noise powers, a4 , are the only

nonzero statistics.

Ei[z z;/Q] = j (4-14)

The bilinear form reduces to a sum of squares.

n-k-1 k-1 2
E = _ X_,?Pk-.1-i,r (4-15)

r=0 i=0

Note that the noise powers og are not necessarily from a wide-sense stationary

process [20]. It is easy to show that such a situation arises in a direct realization of

finite convolution when scalers and summers are affected by uncorrelated noise. Also

the al have a linear relationship for indices in the beginning and end of the indexing

range.
Real cyclic codes are defined using nth linear complex roots of unity, and it is

natural to introduce a transform in E. It appears that a Parseval's type relationship

might apply to the squared items in equation (4-15). Therefore, some notational

conventions will be introduced for a discrete Fourier transform [16-19,26-28]. The data

sequence will be denoted by (a,}, r= 0, 1, ..., (n - 1), and its transform is designated by

the transform sequence {Aq}, q = 0,1,..., (n-I).

n-1
Aq = Jar w rq ; q=0,1,...,(n-1). (4-16a)

r=O

The usual inverse transform applies:

4-8



n-1 ._ " w - rq
ar = n r = 0,1 ... , (n - 1)(4-16b)

nq=0

The transform pair will be used on individual rows of the generator matrix G,
equation (4-10). The ith row, n samples long produces a transform sequence lPiq}.

Wq~-i-) _n-k-1 qnk-r

0i, q = Iq(n-l-i)- n Pi,r q(n-k-1-r)
r=0

(4-17)
q = 0,1,.. (n - l1) ; i= 0, 1,..., (k - 1) .

The first item is from the monomial Xn- 1- i representing the identity part of G while the
remaining sum arises from the parity polynomial-p,X) for this i th row.

The cyclic code's definition designates which powers of W are roots of the rows
of G, viewed as polynomials. From equation (4-5), if index 4 e E, the index subset, W4,
is a root of each [Xn- l - i - pX)]. This gives an evaluation of p,(X) at all (n - k) indices
in E.

PiWk) = wt(n-l-i) ; = 0, 1 ... , (k -1).4-8

On the other hand, the Lagrange interpolation formula [16,26] shows how each p,/X),
degree (n - k -1) or less, is completely specified by knowing the (n - k) values given
by equation (4-18).

PA(X ) = .W t (n- l- i)  X . | .X

I Hw-w"] (4-19)
La*

This Interpolation result, when combined with equation (4-18), yields a closed form
expression for the transform of the rows of G.
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qwnq(n---i)) / (4-,,0)

4e. :,I - q"("2/)
L a*4 .

The role of the root indexing subset . is obvious now.
The inverse transform may be invoked to establish the following Parseval's type

relationship expressing certain squared terms in E, equation (4-15).

Ipk_'~,2 1 n-1 n-1

P _i2= T I I W __,k-1-,t Pk-l-i,q. (4-21)
t=O q=O

Then, performing the summation in equation (4-15) over index r leads to a result
where further simplifications are possible because of the nonoverlappirg nature of
some summation indices.

n-k-1 k-1IE ' =, 2 . .,wi( - o)(j, )co*(j, ) (4-22a)

j=0 i=0 ke Z e

where

4n-1= -1 (k (w -wX)
1w b, WjtWt~(4-22b)

L 0*4 J X, _

The noise power terms a2 are fixed by the noise statistics and are not affected
by the code Indexing subset S. The summation index i in (4-22a) on some terms
resembles a transform of the length k sequence lot, i -O0, 1, ..., (k- 1).. The
following is a legitimate transform sequence.

k-1
S(r) = oW r ; r- 0,1, ..., (n - 1). (4-23)

i=0
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Thus, the bilinear form E can be rewritten compactly.

E = I S - ) Q- A ) (4-24a)

with the identification,

n-k-1
(,;) = o(jC ) o(j, ). (4-24b)

j=0

The function . 4) has (n - k)2 values and there are n starting positions for the
indexing subset S. Thus it is possible to find the best indexing subset by

straightforward calculations on the order of n(n - k)2.

Modifying Real Convolutional Codes
Infinite sequence processing described by a finite difference equation (or

equivalently, by a rational Z transform transfer function) will be protected by a
systematic real convolutional code. The key to simplification lies in adjusting the parity
calculation equations so as to cancel the poles of the transfer function, permitting
computation in the parity estimation subassembly at a slower rate. The details of this
novel approach follow.

The finite difference equation relating input to output samples is defined by two

sets of coefficients.

V 8
Vr = Fauir- - bjvrj. (4-25)

i=0 j=1

The corresponding transfer function H(Z) can also be viewed as the ratio of the
respective Z transforms of the input and output sequences. It is completely defined by
the coefficients governing the difference equation.

INPUT {ui} +-> U(2)

OUTPUT {vj) * K2) (4-26)
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H(Z) = V(Z) + ajz - 1 + a2Z - 2 +... avZ - v ; b==(Z ) b +bZ 1 +2Z 2 +... bSZ - 6

The inverse Z transform of H(2) yields the impulse response {hj+.O that appears in
matrix F, equation (3-30). For future reference, the numerator and denominator of this
function will be identified notationally as

H(Z) = N(Z) (4-27)
D(Z)

The composite filter described by the transfer function H(Z) may be protected, in

an inefficient way, by defining the parity generation and regeneration subassemblies

shown in the respective parts of Figure 4-2. For the parity generation process, each

parity channel in Figure 4-2a represents the combined effects of the transfer function

H(Z) and the respective parity weighting { c )}, equation (2-9), defining the ah

parity position for the code. The Ztransform of the cth parity channel will be denoted by
Oc().

Qc(Z) = Z- i ; c= 0,1, ..., (n- k- 1). (4-28)
i=0

The decimator at the output of each channel is denoted by 4k indicating that only one
sample is used for each k input samples [301.

As was shown earlier, fault-tolerance is achieved by recomputing
corresponding parity values from the filter system outputs. Any discrepancies, within
the roundoff tolerance of the system and the error-detecting power of the code,
indicates a protected malfunction somewhere in the system, including even the
subsystems generating or regenerating the parity values. The parity estimation
subassembly, outlined in Figure 4-2b, employs the usual FIR filter channels defined by
the optimum estimator, equation (3-42), assuming all bias terms are zero.

Of course, this system configuration is grossly inefficient since It replicates
(n - k) actions of the original filter, one in each parity channel. Even the decimated
sampling at reduced rate 1 does not mitigate the increased complexity. However,
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other steps can drastically reduce this complexity bringing the implementation in the
realm of practical applicability. k

A framework for modifying rate n convolutional codes while still preserving the
code's original distance properties will be explored here. Algorithms for computing the
distance of a convolutional code [15,31,32] examine the distance contribution resulting
from each group of k input digits as mapped by a typical n columns of the generator
matrix G, equation (2-6). The respective columns and rows affecting a generic n code
digits are given by matrix G(O).

O m

0 OM-1
0 1

G(m) = I I (m + 1)k x n Code Segment Matrix. (4-29)
I I

0 01
Ik 0

The right (n - k) cilumns form the 0 matrix, equation (2-8), which contains the
quantities that are to be modified.

The minimum distance profile of a convolutional code relies on the interaction of
k input digit groups with the row space of G(m). Hence, if a new matrix G"(m) containing
a different 0' still has a combinatorially equivalent row space of the original G(M),
equation (4-29) above, the minimum distance properties remain the same [15,31,32].
The rightmost columns 0' of the code segment defining the modified code G"(m)
corresponds to (n - k) new FIR parity channel filters designated 0'0 (Z), 0'1(),.
Q'-n..h1 (Z). (See similar equations (2-8))

(0"

G(m) ( 0] (4-30)
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However, if each of the new parity channel's transfer function contains D(Z), the
denominator of H(Z), equation (4-27), the poles are effectively removed from the parity
generation filters, and

O(Z) = D(Z) Rc(Z)

Implies
(4-31)

H(Z)O (Z) = Rc(Z) N(Z) = Sc(Z)

c=0, 1,2, ... , (n-k-1).

The parity channel only needs to implement the FIR filter described by the
transfer function Sc(Z). In addition, the decimation operation .k, commutes with such
filter structures [30]. Figure 4-3 shows the theoretical impact of this simplification for
typical channel c = 0, 1, ..., (n - k - 1) . The theory achieving these simplifications will
be developed next.

The columns of G(m) may be viewed as vectors from a complex vector space, V
with dimension [(m + 1)k]. Associated with every vector space is its dual space [24,
Chapt. III, Section 6], a space of linear functionals from V into the complex numbers.
The dual space of V is written as V* and its members are also written as column
vectors. The column space of G(m) is a subspace of V which is also uniquely specified
by elements in the dual space. The subspace of V* which annihilates the column
space generated by G(M) is called the annihilator of this space, Ann[G(mj.

Ann[G(mj c V*

e Ann(G(M -- T G(m) = 0
(4-32)

11is[(m+ 1)k] kx I Vector

aT Denotes Transpose

The matdx whose linearly independent columns span Ann[G(m) is denoted by H(M).
In order to find the annihilator space generated by H(m), matrix G(m) is reduced

by a series of column operations and row permutations to a canonical form for which
the annihilator has an obviously simple configuration. The row permutations are
represented by a nonsingular matrix D which in effect permutes the basis for V.
Because of the limited type of operations represented by D, it has the property:

U-1 = DT

4-17



The column operations are represented by the nonsingular n x n matrix C. The
resultant canonical form for G(m) is given below where the In-k matrix is a
consequence of the fact that G(m) is a mapping ONTO the n-tuples representing each
codeword symbol.

0 i C nx n Nonsingular
DGAc = 0 nk D, (m + 1)k x (m + 1)k Permutation,1k0

(4-33)
Sis ((m + 1)k- n) x (n- k).

The matrix representing the annihilator of this canonical form is easily written:

(l(;+l)k-n I -SI 0) where submatrix 0 is [(m + 1 )k - n] x k.

However, in the original basis the annihilating matrix for G(m) is given by matrix, H(m)T

H(m)T = (l(m+l)k-n I -S 10) D. (4-34)

Then the usual dual space identity applies to any equivalent code segment generating
matrix j(m).

H(M) T j(m) = 0 0 is [(m + 1)k- n] x k Zero Matrix. (4-35)

The columns of H(m) generate the column space of Ann[G(m)] because the matrix DT is
nonsingular due to its permutation origins.

Ann[G(m)j = Column Space H(m)

(4-36)
01(m+')k-n4-

HAm = DT~ _ST 0 is kx [(m + 1)k - n].

A generator matrix with a different set of (n - k) parity columns, 0' similar to
those in equation (2-8) must satisfy the equality
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H(m)T Q j = 0. (4-37)

This guarantees that the columns of 0' generate a code segment. These equations
can be separated into two parts with 0' appearing in only one equation.

H(m)TQ " = 0. (4-38)

The new columns in 0' must also eliminate the poles in D(Z) to simplify each parity
filter channel. This constraint may be expressed in terms of two unknown quantities R
and 0' where R is the aggregate of the FIR filters described by transfer functions Rc(2),
C =0, 1, ... , (n - k - 1). On the other hand, a matrix A contains the effects of D(Z).

A R= 0' (4-39a)

1 0 0 0 0
b1 1 0- -b2 0 R00 RI'0 - R0'(n-k-1)

2 bR,0 - Rl,(n-k-1)
b3 b2 R, 0
--- 00 R2 0  - - -

--- 11 -0 X -. I -

b8 b8l-1 b2 b,
b8  b 2 I - II0 b8 b2

- R(M_8_1),o R(M-8-1),1 R(M8-1),(n-k-1)

o 0 0 0 b

(4-39b)
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Q0,0 RO - 0 6,(n-k-1)

Oo - - 01,(n-k-1)
Q.,O - - P2,(n-k-1)

- I I-
,M =(m+1)k.

I I
I - - I

OQi-l,0 0t-11 - OM-1,(n-k-1)

The annihilator H(m)T reduces this to a homogen6ous system when the additional
constraints in equation (4-38) are imposed.

H~m)TA R = 0. (4-40)

This system will provide dependencies among the components of R.
The combined effects of the annihilator restriction and the poles of H(Z) appear

in the matrix product, giving the r(m + 1 )k- n] x [(m + 1 )k -8] matrix ,.

A = m)TA. (4-41)

A series of row operations, represented by nonsingular matrix E brings A to echelon
form where the row rank is denoted by p.

0 Bispx[(m+l)k-8-p] (4-42a)

p < MIN {[(m+ 1)k-n], [(m+ 1)k-8]}. (4-42b)

Since E is nonsingular, the Iomogeneous equation (4-40) is equivalent to:

(Asq I B) R- 0. (4-43)
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Constraints among components in the unknown matrix R follow from this equation.
The components in R may be separated into independent and dependent parts
following the partition of the matrix in equation (4-42a).

px(n-k)

(RD) Dependent Part

Independent Part

The upper triangular matrix Asq is easily inverted, leading to the dependency between
parts.

RD = A B R. (4-45)

Various choices for R1 provide potential solutions for the pole-canceling parity
channels represented by 0'.

A s BR ," ; 0' is (m+ 1)kx (n- k). (4-46)
R•

The new choices for a code generating segment are contained in the matrix,

°'°'R- (L. 4-47)
'k I

There is no guarantee that any given code can be modified to cancel all the poles in a
selected filter even if the respective dimensions are selected large enough. The row
rank p of A, an [(in + 1)k - n] x [(m + 1)k - 81 matrix determines the number of
independent choices in R which in turn directly impacts the new filter weights in 0', a
(m + 1)k x (n - k) matrix which totally defines the code segment G"(m) because of its
systematic form.

4-21



A simple example employing one parity channel is given. The transfer function

for a 7th order elliptic filter is

H(Z)= lo(O.322928-0382389Z-
1+0.6698O1- 2 -0.061Z-3-o.62693Z-4+0.66983Z-

5 -0.381679Z-6+0.322O16Z-
7)

1-5.116546Z-1+1 2.19141 8Z- 2-17.263171Z-3+15.595655Z4-8.963986Z-5+3.035586Z-6-O.468757Z
- 7

This filter will be protected with a rate 4/5 binary-based convolutional code taken from
a table [33]. Its parity channel filter has Ztransform 0,(Z).

Q'(Z) = 1 + Z- 1 + Z- 2 + Z- 3 + Z- 4 + Z- 5 + Z- 8 + Z - 1 0 + Z-11 + Z-1 2 + Z-15

This is a systematic rate 4/5 code and has a minimum column distance function of 3.
Thus, it can detect any three errors in a data block, where a block consists of four data
words and one parity word.

After altering 0(Z) to cancel the poles of H(Z), the following Q(Z) is chosen:

Q (Z) = 0.5631+ 0.3926Z -1 - 1.2983Z - 2 - 0.7239Z - 3 + 0.9201Z - 4 + t5274Z - 5

- 0.8176Z - 8 + 0.3971Z - 10 - 1.4297Z -11 - 0.1094Z - 12 + 0.5869Z - 15

The product of H(Z) and 0(Z) results in

Sc(Z) = 0.3491 + 0.5481Z-1 - 1.2378Z-2 + 0.9832Z-3 + 0.1847Z- 4 - 0.2687Z "5

+ 0.8345Z- 6 + 0.2387Z - 7 - 0.7845Z -8 + 0.9276Z -9 - 0.4218Z-10 - 0.1793Z-11

+ 0.2947Z-12 - 1.3923Z-13 - 0.5782Z - 14 + 0.8383Z -15 .

The impact of the code's parity filter responses on the MSE is quite complex.
However, as equation (4-46) shows, there is a direct relationship between the choices
of the independent part of the modified parity filter and the actual parity weighting

2-
values in 0'. This may be incorporated into the et2 expression for the optimum MSE,

equation (3-43). A typical term in eit containing a bilinear form in {q,('} reduces to a
sum of squares when the noise components are assumed uncorrelated. This is
analogous to the earlier case for cyclic codes, equations (4-13) through (4-15). A
similar result for the case of a single parity channel has a typical term:
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M-1 2 12. (-8
Et = X., I2_ (4-48)

i=0

The inuividual noise powers are denoted by the Y? terms.
The influence of the code modification choices as expressed in equation (4-46)

may be incorporated in this last equation. However, unlike the situation for cyclic
codes, a discrete Fourier transform does not seem naturally applicable. In general,
convolutional codes are not based directly on roots associated with the parity channel
weighting. This is an important unsolved problem. Nevertheless, some form of
transform may help decompose the problem further. There is an annihilator subspace
affiliated with finding the modified parity channel weightings.

There are several other construction techniques for real convolutional codes
besides the direct translation of binary codes to the real field. The rate 1/2 code
constructed by Mathys [14] is one example. Another larger class of codes, to be
described briefly below, is based on a technique due to Wyner [13, Sect. 13.3] and
employs cyclic codes as a basis. The codes will be developed in their nonsystematic
form for ease of exposition; it is a straightforward matter to transform them to a
systematic format.

The Wyner real code has a free distance of six or more with redundancy of 3
positions (n -- k = 3) and constraint parameter m = 1. The code length n is a design
variable so that the rate is (1 - 3/n). The subblocks of the generator matrix G, equation
(2-6) containing a constraint length of the code, will be denoted by G(). It in turn fully
defines the two subblocks Go and G1.

G(O) =(GGo q ; 2k x 2n Constraint Length Subblock. (4-49)

The construction centers on the form of the parity-check matrix H(1) associated with
G(1). This parity-check matrix contains two appropriately sized subblocks H0 and H1

that will be detailed fully in a moment.
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(1 0

H( ) = 0 1 2(n- k) x Hi Submatrix

,H1 Ho (4-50a)

1 Denotes 1 x n vector of all Ones
0 Denotes 1 x n vector of all Zeros.

GM H()h = 0, (4-50b)

where h Denotes the conjugate transpose.

The submatrices H0 and H1 are defined by a real cyclic code employing nth

complex roots of unity.

1 1 1-..-. 1 1 1

W(fl1) W(fl2) W2  WI 1
F( )  Ho W -(n-l1) W -(n-2) W -2 W -1 1  W=exp(J

Hi - I - W- W *  I
W - 2(n-1) W - 2(n - 2) . . W -4 W -2 1

(4-51)

F() =H {5 x n Matrix Defines Real BCH Code with dmin = 6.}

where
(4o) {3 x n Matrix Defines Code Containing {F(')} with dmin = 4.}

The proof that this does have at least a minimum free distance of six may be found in
Peterson and Weldon [13, Sect. 13.3]. The systematic form can be derived by
applying row manipulations to H(1) resulting in corresponding part with a
characteristic separation of parity part submatrices P0 and P1.

Ho0 T o ; P k x (n- k) Matrix
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G'k PO 0-3..9 (0 0 IkPO) kn

An example of the 0 submatnix part of a systematic version of G can be generated by a
simple computer program.

+0. 000000e + 00 -1739739e -01 +8.271 757e -01"
+0.000000e + 00 -2. 459447e + 00 -2. 956523e + 00
+0.000000e + 00 -6. 28336 le + 00 -5.1 43227e + 00
+0. 000000e + 00 -6.18681 3e + 00 -3. 497567s + 00
+8.410501e-02 -1. 273087e +00 +1.889822e +00
+1.889822e - 00 -3.860601e +00 +2.67161 9e +00

+2Z 356570e - 00 -5.814091le +00 +4. 578434e + 00
+t 889822e - 00 -5. 662539e + 00 +4. 473557e + 00J

n=7 k=4 m=1
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