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SYMBOLS
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2 basis function weighting coeffir~ients (amplitudes)
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v constrained observation vector
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Y observation vector

a signal damping factor

€ white noise

8 signal pole parameters

Prediction Filter

b prediction filter coefficients

B prediction filter convolution matrix
c constraint filter coefficients

C constraint filter convolution matrix
u impulse response of system

U system convolution matrix
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1.0 INTRUDUCTION

In this report, we present methods for estimating the parameters in models
of the form

x(8,2) =F@) =2, (1-1)

which has been called a separable, reducible, or semilinear model [1],[2]. In
tbis type of model, the columns of the matrix F(8), called the basis function
matrix, are the basis vectors that span the space of the model. The vector §
contains the parameters that enter into the model nonlinearly (the nonlinear
parameters), and the vector a contains the parameters that enter into the
model linearly (the linear parameters). We assume that we have a vector, y,

containing observations of the model corrupted by white Gaussian noise.

In estimating § and a, we restrict our attention to maximum likelihood
estimation that (sinc~ we assume white Gaussian noise) reduces to least-

squares estimation. That is, we minimize the cost functional (or error norm)

x(8,2) = H ¥ - x(8,2) ||2 (1-2)

A well known simplification of the least-squares problem takes advantage
of the structure of the semilinear model and replaces Eq. (1-2) with a new

cost functional called the Variable Projection Functional (VPF)

¥ © = || P I (1-3)

Here PFl(Q) is the projector onto the orthogonal complement of the column
space of the matrix F(8). The term variable projection functiomal arises
because the projector is a function that varies with the nonlinear parameters,
unlike the fixed projector typically encountered in the linear least-squares
problem (Figure 1-1 demonstrates the operation of a fixed projector). For
those readers unfamiliar with t'ie VPF, we provide tutorial material relating

to the derivation of the VPF and to existing methods for minimizing the VPF.
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Fig. 1-1 The effect of projes:ting an arbicrary vector y ontu the coluan space
of ths matrix F, symbolized by the plane, and onto the orthogonal compleaent
of the column soace.

As noted by Osborre [3], yet another equivalent cost functional can be

obtained, if one hss available some rabrix B(8) such that
B(1) k() = 0. (1-4)

This second type of VPF contains a projector onto the row space of the matrix
B(8), and is written

2
4@ = || @ 1 || (1-5)

In addition to the tutorial material presented, we provide a detailed
discusion of Newton algorithms that use an exact Hessian matrix for each of
the VPF’s. All algorithms presented in this report are given in terms of
QR-based orthogonal factorizations of matrices and are implementable directly

from the material presented here.

The performance of these new ML algorithwms is exawined in a companicn
report [4], and is there compared to previously published estimators. The
focus here, however, is on providing the theoretical mathematical concepts on
which the algorithms are based, and on providing a detailed discussion of the

algorithm implementations.
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As a vehicle of discussion for introducing the concepts and algorithms, we
will refer to a specific model, which is a signal consisting of a sum of
complex sinusoids, also expressable as a sum of undamped or damped sinusoids.
In this model, the nonlinear parameters of the semilinear model correspond to
the signal poles, and the linear parameters are the amplitudes of each

sinusoid,

In ostimating the parameters of the exponential signal, the matrix B(8) is
a convolution matrix, which corresponds to the prediction filter that
annihilates the ideal signal. Since this matrix is a linear function of the
prediction coefficients, it allows for significant computational savings in
the algorithms. Because of the functional relationship of B to the prediction
coefficients, we will write B(b), where b is a vector containing the
prediction coefficients. The nonlinear parameters in § can then be obtained
as the roots of the polynomial whose coefficients are the prediction

coefficients.

To distinguish between the two VPF’s throughout this report, we will refer
to the VPF containing the column space projecvor as the signal basis VPF,
while we will refer to the VPF containing the row space projector as the
prediction filter VPF. In the main body of this report, we develop two
parallel paths. One describes theory and algorithms for obtaining estimates
of the signal poles directly via minimization of a signal basis VPF. The
other describes how to obtain pole estimates indirectly by first providing
estimates of the prediction filter coefficients via minimization of 2
prediction filter VPF and then transforming the prediction coefficients into
pole estimates. In both cases, the amplitudes are obtaiued by solving a
linear least-squares problem in which the basis function matrix is constructed

from the ML pole estimates.

1.1 New Material

While the application of variable projection techniques to estimating the

parameters for cxponential signals in noise is not new, severul aspects of the
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problem as considered here have not been encountered in the literature.
Foremost, w: here extend existing variable projection methods by deriving the
Hessian matrix for the general VPF and by providing implementations of

Newton’s method for each of the two parallel paths.

Furthermore, we constrain the exponential signal model to include known
poles. In each of the two parallel paths, these constraints are introduced
differently. In the direct pole estimation path, we use a technique which is -
similar to deflation in the eigenvector problem; i.e., we project the signal
model and the observation vector onto the orthogonal complement of the -
subspace spanned by the basis functions that correspend to the known poles.
The method of introducing the constraint for this VPF is general and not

limited to the case of an exponential signal.

In the prediction coefficient estimation path, we factor the prediction
filter convolubion matrix into two convolution matrices, one corresponding to
the known poles and one corresponding to the unknown poles. Since this
factorization is facilitated by the nature of the convolution matrix (and thus
the exponential signal), this constraint is not applicable to the general

model.

1.2 Report Organization

In Chapters 2 and 3, we introduce the notation that will be followed
thrcughout the report. Chapter 2 contains the signal model and a discussion
of the ML estimator for this signal in white noise. Chapter 3 provides a
numerical link between the ML error norm and the two different variable -
projection error norms, which are the Signal Basis Variable Projection

Functional and the Prediction Filter Variable Projection Functional.

In Chapter 4, we introduce the pole constraints discussed above. This is
followed, in Chapter 5, by derivations of the Jacobian matrix, gradient
vector, and Hessian matrix for each of the two variable projection error

norms. In Chapter 6, we discuss orthogonal factorization techniques that are
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key components i. the nonlinear optimization schemes. Finally, in Chapter 7,
we examine the implementations of the various optimization techniques, based
on the results of Chapters 5 and 6.

In addition to material listed above, we provide fairly extensive tutorial
material in a number of appendices. In the first of these, we examine key
aspects of Linear Least-Squares (LLS) theory (such as projection operators and
pseudoinverses) and describe how some of the popular orthogonal factorizations
are used in solving LLS problems. This material is incl .ded not only as
background for this report but also as a mathematical base for some of the
nonmaximum likelihood algorithms discussed in the companion report [4]. In
Appendix B, we go a layer deeper in the LLS discussion by examining the use of
Bouseholder reflectors zs a method of implementing the orthogonal
factorizations. Ip Appendix €, we discuss optimization techniques which are

useful in minimizing least-squares and variable projection functionals.

In Appendices D, E, and F, we focus on the variable projection materizal,
parallelling and, hopefully, enhancing the discussions of Golub and Pereyra
[1]1,]1[5]. Appendix D contains derivations for the derivatives of the
projection operators and pseudoinverse necessary to calculate the Jacobian,
gradiant, and Hessian. Appendix E discusses the simplified tensor notation
introduced by Golub and Pereyra, which centers around the Frechet derviative
of a mapping. The drawbacks of this notation in computing second derivatives
are discussed. We then expound upon a key proof from [1] that ties the
variable projection method to the straightforward nonlinear least-squares
method, and hence to the ML method.
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2.0 BACKGROND

In this chapter we introduce the signal model to be used as a vehicle for
discussing the variable projection concepts and algorithms. In particular,
the signal model will be the response of a system to a stepped sinusoid input,
whe-e the system can be characterized by a linear constant coefficient
ordinary differential equation. This will include steady-state terms (whose
frequency corresponds to the excitation) and several decaying terms (whose
damping and frequency correspond to the system poles). Following the
introduction of the signal model, we will then briefly discuss the maximum
likelihood estimator. Specifically, we will show that for signals in white
Gaussian noise, maximum likelihood estimation simplifies to least-squares

estimation.

2.1 Signal Nodel

We consider the stepped sine response of a linear system modeled as a sum

of real exponentials in additive white Gaussian noise,
p = xn(Q,Q) + En) (2-1)
where xn(ﬂ,g) = Co + Cl cos(2rf1nT) + S1 sin(2rf1nT)

+ 02 exp(a2nT) cos(21rf2nT)

+ S2 exp(aZnT) sin(21f2nT)

+ Cp exp(apnT) cos(2xfpnT)

+ 8 exp{a_nT) sin(2xi nT)
°p expl pn ) sin{ P )

Q:[a2,£2,...,ap,fp]T,
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Here T is csampling interval and € is a sequence of white Gaussian noise.
Here, fl is the known excitation frequency, and the term Co is included to

account for the DC biases introduced during the measurement process.

We can write the signal in vector form so that

Y = x(8,2) + &, (2-2)

T
where X = [ Xg 2 Xy s eee s Xy g ] ,

T
X = [ Yo ¢ yl 3 ey yN—l ] ’

and cov(e) = E{ € g? } = 062 IN ,

where 062 is the noise variance, and IN is an NXN identity matrix. The signal

basis functions for our signal model are

I
-

£, 1@ =
fn,2(g) = cos(2r£1nT)
) = sin(2tf1nT)
fn’4(Q) = exp(aznT) cos(2xf2nT)

fn,s(g) = exp(aznT) sin(2rf2nT)

fn,M-l(Q) exp(apnT) cos(2x£pnT)

fn,M(Q) exp(apnT) sin(2x£pnT) )
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where M = 2p+1 is the number of independent basis functions required to span
the ideal signal space. We can now define a set of spanning signal basis

vectors, given as

T
ij(g.) = [ fpj(g_) ’ fl,j(g‘) y ot fN—l,j(Q) ] yi=1,000 0

Finally, we define the signal basis function matrix

RO = [ £© , 5,0 , ..., £© ]

whose columns each correspond to one of the hasis functions and whose rows
each correspond to an instant of time in the observation window. We can now

write x(8,2) in the separable form (as the matrix-vector product)

x(0,2) =F(@) =2 . (2-3)

Our goal is to estimate the parameter vectors @ and a.

2.2 Maxixum Likelihood Estimation for Signals in White Noise

In maximum likelihood estimation, we wish to find the parameters that
maximize the probability density of the observed data given the unknown
parameters. Letting @ and a be the collection of unknown parameters, we wish
to find Q* and g* which maximize the conditional density function (the
likelihood function)

* ¥ .
8,2 =arg ain P(¥gs¥pr---0¥y_118:2) .

=~z

For independently and identically distributed Geussian noise, the likelikood
function is
1 1 N-1 2
p(YO’yl"“’yN—I‘Q‘"a‘) = -_—TN-/E expy T 5 Z [ Yo ~ xn(g.:é) ) . (2-4)
[2106 } 206 n=0
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Since the logarithm is a monotonic function, maximizing the logarithm of
the likelihood function yields the same result as maximizing the likelihood

function itself.

We may therefore optimize the log likelihood function as

L(.g.:.%) = ln { p()’o: y]_: ey YN_]_LG_:?.') }

N 1 2
b L CORE RUCA R e DS CAEENCIEN B D

n=0

~

Only the last of the terms in Eq. (2-5) contains 8 and a, and it appears in
the expression with a negative sign. Therefore, since the noise variance is
assumed to be known, the parameters that maximize the likelihood function are

those which minimize

N-1 2
> [y, -x @2 |,

which is just the least-squares functional

x(6,2)

| 2-xe ||

|x-r@s]] (2-6)

10
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3.0 VARIABLE PROJECTION ERROR NORMS

As we have just seen, the Maximum Likelihood (ML) estimator reduces to the
Least-Squares (LS) estimator when the ideal signal is corrupted with additive
white Gaussian noise. Here, we obtain further simplifications by noting the
structure of the ideal signal and introduce two modified error norms, or

variable projection functionals.

We begin by stating an observation by Golub and Pereyra [1] concerning
separable least-squares problems, for which one can first optimize a reduced
set of parameters and then find the remaining parameters as a function of the
first set. This leads to the basis function Variable Projection Functional
(VPF) which, in our case, allows us to find ML estimates of the signal poles

independently of the weighting coefficients (amplitudes).

From the signal basis VPF, we follow Kumaresan, Scharf, and Shaw [6], and
Bressler and Macovski [7], and introduce the deterministic functional
relationship between the signal poles and the prediction filter coefficients
for the filter that annihilates the ideal signal. We can then define a VPF
based on the prediction filter coefficients and show that this prediction
filter VPF is equivalent to the basis function VPF, allowing us to optimize

with respect to the prediction coefficients.

3.1 Signal Basis Variable Projection Functional

As shown in the previous chapter, ML estimation of parameters @ and a can

be achieved by minimizing the nonlinear least-squares error norm; i.e., by

finding
6*,a" = arg min y(0,2)
6,2
2
= arg r;in H e(8,2) H ’ (3-1)
2

L=

where the error vector e(8,a) is defined as e(f,2) =+ y - F(8) a.
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One approach to find.ng the optimal 8 and = consists of z three-step

-

process:

1. Minimize with respect to 2 in order to obtain the optimal function

a(@) = arg min x(4,a). (3-2)
2. Minimize
¥(8) = x{8,2(8)} (3-3)

with respect to § to yield
g* = arg min ¢(8). (3-4)
8

3. Calculate the optimal numerical values for a as
2" =a@). (3-5)
It has been shown by Golub and Pereyra [1] that, for separable signal
models, this multi-step optimization process yields the same values of Q* and

g* as does simultanrous optimization of y(8,a) in both § and a. In Appendix

F, we summarize their proof.

We now obtain a(8) by differentiating the error functional y(§,z) with -

respect to a and equating the resulting expression to zero.

12




NRL, MEMORANDUM REPORT 6643

i

E1ea =5 || e H2

I

1l
Q’lO’

I®

{ (e ) e@a )

{ {22 ]T } e@.a)

1}
N
O’IO’

I®»

25 {(r-1@:)') (x-70 )

I

-2F(@ (1-FO 2] (3-6)

Equating this to zero yields

F (§) F&) a=F(@) x , (3-7)
which has the solution
-1
2@ = ([FOFO ] F@ x (3-8)
and a0 =F@® x, (3-9)

where F+(Q) is the pseudoinverse of F(§). Therefore, y(8) can be written as

2
+
v@ =] r-r@ 7@ 1 || (3-10)
Noting that this is an expression for the projection of y onte the orthogonal

e jecti
complement of the range (or column space) of F, it is an expression of the

variable projection functional

1 2
¥(8) = H Pp (8) x H . (3-11)

13
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3.2 Prediction Filter Variable Projection Functional
Given the s-plane poles for an exponential signal of order M; i.e.,
s; =@+ ijfi, i=1,2,...,N;
then the z-plane poles are calculated as
z; = exp{siT}, i=1,2,...,M.

The z-transform of the ideal signal will thus contain the following polynomial

in the denominator

B(z)

(z—zl)(z—zz)"°(z—zM)

N

z + ble—l

M-2 | eee s b

M-1% * bM .

+ byz (3-12)

The ideal signal therefore satisfies the homogeneous difference equation

Xt bl Xier b2 Xs Moo * Ot bM X, =0 (3-13)

alternatively written

b b

M-l XioMel * Ut b1 X; 1+ % =0 (3-14)

M XMt
We can view the first M terms in this difference equation as forming an
estimate (prediction) of the present signal sample based on the last M
samples. The coefficents bi are, for this reason, often called prediction

coefficients.
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Since the above difference equations represent a convolution betw:en the
prediction coefficient vector and the signal vector, we can now define the

(N-M)XN convolution matrix

bM L b2 b1 1
o o o 0
bM b2 b1 1
B = . . . [ .
0 ) ° * )
bM e o0 b2 bl 1

such that the rows of B annihilate the ideal signal x, and such that
Bx =0. (3-15)

Also, since each column of the basis function matrix F also satisfies the
same homogeneous difference equation, F is also annihilated by the rows of B,

and we have
BF=0. (3-16)

Since matrix B has full row rank, its rows span an (N-M)-dimensional
subspace in RN. Similarly, since matrix F has full column rank, its columns
span an M-dimensional subspace in RN. Because the rows of B must be
orthogonal to the coluuns of ¥ (as dictated by the equation BF = 0), and
because the dimeusions of the respective subspaces sum to the dimension of the
vector space RN, the row space of B and the column space of F must be

orthogonal complements of each other.

Since the row space of B is the same as tke orthogonal complement of the
column space of F, then the projector onto the row space of B is the same as

the projector onto the orthogonal complement of the column space of F; i.e.,

1
=P (3-17)

15
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and we can define an error norm whose only unknown parameters are the

prediction coefficients b. This error norm is defined as

sw = || 22|l (3-18)

Since this error norm follows deterministically from the ML error norm for the
signal poles, we may note the invariance principle for the ML estimator and
optimize this functional to obtain ML estimates of the prediction
coefficients. From here, we can then find the roots of the prediction
polynomial and transform these roots from the z-plane to the s-plane to get

our ML pcle estimates.

16
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4.0 SIGNAL POLE CONSTRAINTS

Since our signal model is to describe the stepped sine responst -f a
linear system, we consirain the model to contain an undamped pole . the known
excitation frequency. Also, because we expect ther.: to be some bias
introduced into the observed sign ( during the observation (measurement)

process, the model should include a DC pole to offset the bias.

In the case of the basis f» ction VPF, since each pole corresponds to a
distinct set of basis functions (2 single decaying exponential or a pair of
damped or undamped sinusoids), the pole constraints translate into constraints
on the individual basis functions. We can introduce these basis function
constraints into the optimization process by deflating the error space; i.e.,
by projecting the error vector onto the orthogonal complement of the subspace
spanned by the known basis functions. In the first section of this chapter,
we develop the theory behind this deflation process and present a modified
basis function VPF.

In the case of the prediction filter VPF, we deal only indirectly with the
pole parameters, opt .mizing instead over the prediction polynomial
coefficients. To introduce the pole constraints into the coefficient
optimization process, we factor the convolution matrix B into two separate

convolution matrices: one resulting from the known poles, and one resulting

from the unknown poles.

4.1 Deflation of the Least-Squares Error Space

Recall the least-squares error norm for our signal model and noise; i.e.,

2
16 =l r-ro ] .
Let us partition the basis function matrix as
RO = [ R R |, (4-1)

17
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where Fl contains only the known constant basis functions (and is therefore
not a function of §) and F2(Q) contains the basis functions corresponding to

the unknown poles.

If we let Ml be the number of constant basis functions and M2 be the

number of unknown basis functions, then we can partition the amplitude vector

a as

-l ahe

The Ml—vector a, contains the weighting coefficients for the known basis
functions, and the M2—vector ) contains the weighting coefficints for the
unknown basis functions. Our signal model can then be written as the sum of

two matrix vector products; i.e.,
x(8,2) = F(6) 2
=F a3, + F,(0) 2, . (4-3)
The estimation error vector is then
e(@,2;,3)) =31 - F 2y - F,(0) 2, , (4-4)

and the least-squares error norm is

2
x(8,2),25) = H e(8,2;,3y) H - (4-5)

To take advantage of this signal structure, we first note that--given two

orthogonal vectors g and go--We can decompose a least-squares error norm

consisting of {.e sum of N and &g 85
2 2 2
e vl =llell < el (4-6)

18
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Therefore, given an arbitrary N-vector e, we can decompose the squared norm of
e into the sum of two squared norms by projecting e onto orthogonal subspaces.
Let P1 be the projector onto the subspace spanned by the columns of the matrix
Fl‘ Then the projector onto the orthogonal complement of this subspace is
given by

P, =1-P . (4-7)

Noting that I = P1+ P1 , we can then write

2 1,2
Hell =ll2e s el
=HP18“2 * ||P119H2 (4-8)
Now, recalling the definition of the error vector g, we get
@) = || B (1-F 2 - RO 5] ||2
e (r-n @ 5 ) |
|l px-F 2 - RO s H2
1 1 2
AR RO s || (4-9)

vhere we have noted that P1 Fl = fl and Pll F1 = 0. Noting that the second
in th iz no 1

ocnger a function of &y, We decompose the norm as

X(.e_;_a.lréz) = xl(.e_;él)éz) + Xz(gy.a_'z): (4‘10)
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2
where XI(Q;él,éz) = || Pl Y- F1 g - Pl F2(Q) 2q " ?

1 1 2
and 12(2’32) = H Pl Y - P1 Fz(g.) 29 H .
Substituting P1 = F1 Fl+ into the expression for xl(Q,gl,gz), we get
. 2
X @z = || B x-Fypay - B RO 2 I

2

2x -R PERARNC 2 ) ||

e -xe ]l (1

where b = a; * Fl+ Fz(g) 29 - We can minimize xl(Q,gl,gz) to zero by solving

the consistent system of equations

Pt )

F,b=P ¥ (4-12)
to yield
+
b= Fl Pl Y
+ +
=F K Foy
=R 1 (4-13)
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Here we have noted that F1+ Fl F1+ = Fl+’ Clearly, then (given estimates for
8 and 32), xl(Q,gl,gz) can be minimized to zero by letting

S A B X (4-14)

Given that we can minimize X to zero for any estimates of § and 29) then

minimization of Y reduces to minimization of

1 1 2
L@z = || B x- B B® 5 || (4-15)

If we now define

v=P (4-16)
1
and G(8) = P1 Fb(Q) R (4-17)
then the least-squares error norm becomes
2
ty@a) = || x - €¢@ 2, || (4-18)

Following the same arguments as in the developmeuts of the previous chapter,
we can now optimize with respect to @ independently of 2y by defining a
(constrained) VPF as

2
4@ = || x- e ¢© v ||

[}
&
l.__
7~
)
N
14
T
FanY
118
1
[
(>}
Ne”
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4.2 Factorisation of the Prediction Filter Convolution Matrix
We introduce the contraints into the prediction filter VPF by factoring

the convolution matrix. Recall that the denominator of the z-transform of the

ideal signal contains the poliyweuwial

B(2)

(z—zl)(z—z2)°'°(z—zu)

zM + ble_l + bzzM—2 + oo 4 bM—lz + bM . (4-20)

Now assume that Ml of the signal poles is known a priori and the remaining

M2 =N - Ml poles are unknown. Then the polynomial B(z) can be factored as

B(z) = C(z) U(2),

where C(z) = (z—zl)(z-22)°"(z—zM )
1
N, M. -1 M -2
=1z "+ ¢z + Coz + see 4 cul_lz + cMi (4-21)
and U(z) = (z—zl)(z—zz)'"(z—zM )
2
M M, -1 N -2
=z 2, Uz 27, gz 27 e s uM2—1Z + uMé (4-22)
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If we now define the three coefficent vectors

- T
b= 1b by ety ],
T
c=1]1lcy c, *ee W
&= 1% "7 w1
- TT
and u=| 1 U uy oo uM2 |

then we note tha% b can be obtained as the vector convolution of ¢ and u;

i.e.,

b=uxg. (4-23)
The (N-M)XN convolution matrix B can therefore be factored as the product of
two convolution matrices: the (N-M)X(N—Ml) matrix U (whose rows contain the

elements of vector u) and the (N-MI)XN matrix C (whose rows contain the

elements of vector ¢); i.e.,
B=UC. (4-24)

Since the matrix C contains coefficients corresponding to constant poles,
C itself will be comstant, so that

aC
-_—=0 , i=1,...,M. (4-25)
ob.
i
Therefore, we have
0B ou
—_ = — ¢, (4-26)
ob. Ou,
i i
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where we now differentiate only with respect to the unknown parameters in u.

If we adopt the operator notation

O
D) = —, (4-27)
du.
i
Eq. (4-12) then becoues

It should be noted that premultiplication of an arbitrary vector w by
either matrix B, U, or C represents the full-overlap elements of the

convolution of w with the vector b

—_— -2

u, or ¢, respectively. For instance, if ¥
is an N-vector, then the convolution b#w is an (N+M)-vector with 2M edge
effect or transient elements and with N-M full-overlap elements corresponding
to the matrix-vector product Bw. The products BTE, UTE, and CTE also
represent convolutions, but with both the full-overlap and edge effect

elements present and with the elements of b, u, and ¢ reversed.
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5.0 DERIVATIVES OF THE VARIABLE PROJECTION FUNCTIONALS

In this chapter, we derive the partial derivatives; i.e., elements of the
Jacobian matrix, :gradient vector, and Hessian matrix for the two variable
projection functionals. We first parallel Golub and Pereyra [1] in deriving
the ‘typical .column .of the Jacobian matrix and element of the gradient vector

of the signal basis VPF. We ‘then .extend previous work by introducing the

‘Hessian for this VPF. Following this, we repeat the Jacobian, gradient, and

Hessian derivations for the prediction filter VPF.

Throughout this work, our notation is different from that of previous
investigators in that we retain the index of differentiation -and derive all of
the derivatives as partial derivatives. Golub and Pereyra [1], on the other
hand, introduced the Frechet derivative of the basis function matrix, which is
an array of partial derivative matrices (a simplified view of a valence three
tensor), allowing them to derive the gradient without having to resort to full
tensor notation. In Appendix E, we examine this simplified tensor notation.
When attempting to form the Hessian matrix in this simplified notation,
however, one is lead to attempt the multiplication of two three-dimensional
arrays, which is undefined in the simplified notation. The problem could be
overcome by introducing the full-blown tensor notation, but the alternative
developed here seemed simpler and clearer. By retaining the indexing and
partial derivatives, only the regular rules of linear algebra nced be
observed. Furthermore, with the indexing retained, the equations more nearly
reflect the computer code necessary for software implementation of the
algorithms.

5.1 Derivatives of the Signal Basis Variable Projection Functional

We now introduce the derivatives for the signal basis VPF. The first two
subsections are tutorial in that they expound upon the work performed by Golub
and Pereyra [1]. These draw upon the derivative of the column space projector
described in Appendix D. The third subsection, which introduces the Hessian

matrix, presents material that has not been encountered in the literature.
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JACOBIAN MATRIX

Recall the definition of the signal basis VPF

vo = |5 x|

The error vector in this case is

1
e() = PF Y . (5-1)

The typical column of the Jacobian matrix is therefore

£y 7 Di(.‘?.)
1
=0, (P 1)
= - Di(PF) Y .

Substituting Eq. (D-4) for the partial derivative of the projector, we get the

desired expression

1 . . 1
- { B, D, () ¥ + ()T D, (") By } y

1 N N 1
-B D®Fy - #H 0, @ p x . (5-2)

GRADIENT VECTOR

We derive an expression for the gradic
T T
g; =2¢e Di(e) =2¢ J

this becomes

3
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g =-2 pF‘L y ]T { PFl DB F y+ )70, () PFl r )

T

_2l T

1 L, 1
By D Fy -y By Y 0, By, (5-3)

where, in the first term, we have noted that the projector is symmetric and
idempotent. Now, since

B @0 = (@ By )

(¢ (1-07))

(¥ - F+FF+]T=0,

the second term in Eq. (5-3) vanishes, leaving the desired expression for the
i’th element of the gradient of the signal basis VPF, which is

T

g, =-2%

1 ;
; Py D,(F) F' y . (5-4)

HESSIAN MATRIX

The typical element of the Hessian matrix is obtained by differentiating
the 1i’th element of the gradient with respect to the j’th parameter; i.e.,

Hij = Dj(gi)' Substituting Eq. (5-4) for the gradient element, we obtain

= D.( -2 x?

1 .
By, =D, By D, () Fy ),

P Dj[ PFl D,®) F ) x.
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Applying the product rule of differentiation then yields

_ T 1 + T 1 2 +
Hoo=-2y DJ.[PF Jo,® ¥y -2 B 2@ Fy
T 1 " +

Here, ng(F) is the second partial derivative of the basis function matrix
with respect to parameters Gi and Gj. Substituting Eqs. (D-4) and (D-11) for

the derivatives of the projector and the pseudoinverse and noting that

Dj( PFl] = - D;(Fp)

we obtain

L 1
T + +, T T +
i =2y [ PF Dj(F) F + (F) Dj(F ) PF ] Di(F) F y

T

_21 T

1 . 1 1 T o
Py ij(F) Fy-2y B D.(F) [P Dj(FT) )T F

+ + +T T l
-F o ® P F @ 0 ) By )

l + + + 1 +
=2y B Dy(F) F' D (F) F' y + 2 o #HT Dj(FT) By D, (F) F' y
1 . 1 1 T e
~2y By ij () F' y -2y Py D, (F) ;P D, ) )T Fy (5-6)

L 1 1
+2y By D (F) F D.(F) F' x - 2 B D (R) B (FM)T D, #) Py v

A very interesting case is when the basis function matrix has full column
rank. In this case, since there are M independent columns, there must also be
M independent rows, so that the rows of F span the entire M-space in which

they lie. The null space of F therefore contains only the zero vector. In
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this case, the projector onto the row space is the identity matrix; i.e.,
FP = Iﬁ. The projector onto the orthogonal complement of the row space (the

projector onto the null space) is therefore the zero matrix; i.e.,

The. fourth term in Eq. (5-6), which contains the projector onto the null space
of F, therefore vanishes in the full rank case, leaving the following

expression:

H,. =2 {Ple]T [Dj(r) F* D, (F) - ngj(r) + D (F) ¥ D, () ) (¥ 1)

ij
~2 [ #T 0, ("D By 'Lx ]T [ &! D, ) PF'L x)

v 2 [PFl D) F' ]T [PFJ' D,F) F ] . (5-7)

In the stepped sine response signal modeling problem, the rank of the basis
function matrix is determined prior to the pole optimization. The basis
function matrix can therefore be assumed full rank during ine optimization
process, and Eq. (5-7) is the applicable equation for the Hessian. Chapter 7
contains an implementation of Eq. (5-7) based on the QR factorization of the

basis function matrix.

5.2 Derivatives of the Prediction Filter Variable Projection Functional

We now present the derivatives of the prediction filter VPF. While these
developments parallel those given in the previous ser*ion, they have not been
encountered in the literature in their present form. Here,; again, we first
derive the Jacobian matrix by noting the partial derivative of the row space
projector given in Appendix D. We then derive the gradieut vector, and by

differentiating the gradient, we derive the Hessian matrix.
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JACOBIAN MATRIX

The definition of the prediction filter VPF is

2
i = || x|
so that the error vector is
e®) =Py . (5-8)
The typical column of the Jacobian matrix is therefore li = Di)(g) = Di(BP)x.

Substituting Eq. (D-5) for the partial derivative of the projector, we get the

desired expression
1 14T
_ + +
L={po®mp -+ [o®mp ) )y

+ 1 il T + T
=B Di(B) BP Yy + BP Di(B ) B) y . (5-9)

GRADIENT VEGTOR

To derive an expression for the gradient, we again note Eq. (C-%); i.e,
g = 2 g? Di(g) = 2 g? li' Substituting Eqs. (5-8) and (5-9) from above, this

becomes

T

)y

1 1
B @ Py v2y pop @) @)y

=2 (px) (¥0,0 0+ (B om )

2 x?

The two projectors in the second term annihilate each other; i.e.,

1
gPgf =0.
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Also, the columns of the pseudoinverse of B span the same space as that
spanned by the rows of B, so that the pseudoinverse is unaffected by the

projector onto the row space. This becomes evident by writing

BPB":B*BB"

C

=B.

Noting the above remarks, we are left with the desired expression,

T

L
g =21 B D.(B) gF ¥ . (5-10)

HESSIAN MATRIX

Proceeding as before, we obtain an expressicn for the typical element of
the Hessian matrix by differentiating the i’th element of the gradient vector

Hij = Dj(gi)' Substituting Eq. (5-10) for the gradient, we obtain

_ T ot 1
Hij-Dj[Zx B* D, (B) P 1 |

=2y Dj[ B* D, (B) ;P ]lx .

Applying the product rule of differentiation then yields

1 1
By =2 o D,(B") D;(B) gF x +2 B D?J. ® §F x

. 1
+ 23" B D, (B) Dj[ P )xe (5-11)

Here, Dzj(B) is the second partial derivative of the prediction filter
convolution matrix with respect to parameters bi and b.,. Since the elements
of the convolution matrix are the prediction coefficients themselves, the

fivst derivatives will have ones as the only nonzero elements. The second
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derivative of the convolution matrix, and thus the second term in Eq. (5-11),
therefore vanishes. Substituting Eqs. (D-5) and (D-11) for the derivatives of

the projector and the pseudoinverse, and noting that

%[§}]='Dﬁf)'

we obtain

1 T
B =2 (g Dj(BT) ®")" 8" - B ,(®) B

. 4 L I}
+ 8 @Y7 DJ.(BT) P, ] D,(B) gF 1

2 x?

+ + 1 1 ' +T
B 0,8 (8 0,® gF + F 0.8H )T

O T i T , 1
?1§MMW””@§1J1§%M”@§X

+

et 1 1
zx?n(nﬂnﬂﬁ)% D,(B) gF ¥

+ + 1 + 1 +
2£BDN9B%QHQX—2JBDmnﬁlmf)mﬂx.

(5-12)

Due to the structure of the convolution matrix, its rows are necessarily
independent; i.e., B has full row rank. Since there are (N-M) independent
rows, there must be (N-M) independent columns, so that the columns of B span
the entire (N-M)-space in which they lie. The projector onto the column space
is thereiore tne identity matrix; i.e., PB = I. The projector ontc the
orthogonal complement of the column space is therefore the zero matrix; i.e.,
PB'L = 0. The third term in Eq. (5-12), which contains the projector onto the
orthogonal complement of the column space of B, therefore vanishes in this

case, leaving the following expression.
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By = - 2 (@' y ]T [nj (B) B D,(B) + D, (B) B' D, (B) ) { Bpl x)
v2 (B D, (®) Brl I]T (8 ,® Bpl r)

-2 Bpl b8 @y ]T ( Bpl D, @) @'y . (5-13)

Chapter 7 contains an implementation of Eq. (5-13) based on what we call an RV
factorization of the convolution matrix. This factorization, as well as the
QR factorization mentioned in Section 5.3, will be the subject of the next

chapter.
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6.0 ORTHOGONAL FACTORIZATIONS FOR NONLINEAR OPTIMIZATION

In this chapter, we consider two versions of the QR factorization, which
will be utilized in effecting the pseudoinverse and projection operators
necessary for the optimization strategies. The first version is one in which
we transform the basis function matrix from the left such that Q F =R ,
where Q is orthogonal and R is upper triangular. We will refer to this
factorization as the QR factorization, even though, strictly speaking, it is
the QFR factorization of matrix F.

In the second case, we transform the convolution matrix from the right
such that B V = R, where V is orthogonal and R is now lower triangular. We
will refer to this as the RV factorization. In achieving this factorization,
we will take advantage of the special banded structure of the convolution

matrix.

6.) QR Factorisation of the Basis Function Matrix

We facilitate the formation of the YPF and its derivatives by factoring

the full rank NXM basis function matrix F as

R

where Q is an orthogonal NXN matrix and

Mx¥
is square, upper triangular, and nonsingular. We may then write F as

T

F=Q R (6-2)
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The pseudoinverse of F can now be defined as

F' =1 g, (6-3)

where R = [ Rl—l l o ] . (6-4)

As is shown in Appendix A, the projector onto the column space of the basis

function matrix can be formed from this factorization as

I
| O ] q, (6-5)

where IM is the MXM identity matrix. The projector onto the orthogonal
complement of the column space of F is then

Py = I - Py
0]0
=QT[—-}———]Q. (6-6)
ol 1,

As described in Appendix F, this factorization is achieved by applying
successive Householder reflectors from the left of F so that @ = HM ooe H2 Hl’
where each Hi represents an elementary matrix containing a Householder
reflector. Here we do not explicitly form the matrix § or any of the Hi’
Instead, we retain the information necessary to reconstruct the Householder

reflectors when we need to apply the transformations.

6.2 RV Factorisation of the Convolution Matrix

Here we describe an efficient method for factoring the (N-M)XN prediction
filter convolution matrix B. Since B is already upper trapezoidal, we can
apply Householder reflectors from the right to transform B into a lower

triangular matrix. This is essentially the same factorization used in the
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complete orthogonal factorization for rank deficient matrices. The RV

factorization results in the following:

Bv=nz[n1|o], (6-7)

where Rl = E;){ij
7\l (N-M) x (N-M)

is square, lower triangular, and nonsingular. With this, we may write

B=RV , (6-8)
and define the pseudoinverse of B as
B" = VR, (6-9)
o
where R =] —|. (6-10)
0

Given the RY transformation described above, the projection operators onto
the row space of B and onto the orthogonal complement of the row space are
defined as

= VR'RY

’ (6'11)

(6-12)
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Representing each Householder reflector by the elementary transformation
matrix Hi, the orthogonal matrix V can be written as the product of the
individual elementary transformations; i.e., as ¥V = Hl H2 eee HN-M' This is
an important representation of V since, when applying the orthogonal
transformation represented by V, we in fact apply the sequence of elementary
transformations represented by the Hi' Furthermore, we do not form any of the
Hi explicitly but retain the minimal amount of information necessary to

reconstruct these transformations as needed.

The order of the Hi in the above expression is important because while we
form V as a sequence of transformations operating from the right of a matrix
(as a postmultiplication, operating on a row vector), we generally apply the
transformations to other vectors from the left (as a premultiplication,
operating on a column vector). As is shown explicitly by writing Vy =
Hl H2 oee HN—H Y, changing from postmultiplication to premultiplication

requires that the Householder transformations be applied in the reverse order.

The banded nature of the convolution matrix allows for computational
savings during the orthogonal factorization process. Since each row starts
out with exactly M nonzero elements to the right of the diagonal, and since
these rows retain the zeros throughout the transformation process, each
Householder reflector is constructed from an (M+l)-vector as opposed to an
N-vector. Since N is usually much greater than M, this can amount to

considerable savings.

Furthermore, each Householder reflector effects only the M rows
immediately following the row from which it was constructed. For example,
consider the i’th reflector. If we were to continue applying he reflector
beyond the (i+M-1)’th row, its effects would be squandered on the zero
elements contained below the diagonal; i.e., upon reaching these later rows,
it would be transforming an (M+1)-dimensional vector of zeros. The net effect
is to reduce the number of rows that must be transformed by each reflector
from (N-M-i) to M.
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7.0 CONSTRAINED MAXIMUM LIKELIHOOD ALGORITHMS

In this chapter, we describe how to implement the kernel elements of the
constrained maximum likelihood algorithms, which utilize the methods of Gauss,
Newton, and steepest descent. In particular, we show how to construct the
Jacobian matrix, gradient vector, and Hessian matrix for each of the

constrained VPF’s.

First we present these derivatives for the constrained signal basis VPF,

given in Eq. (4-18) as .

1 2
L@ = || 2@ x|

Prior to presenting these derivatives, however, we will discuss an economical
way of introducing the pole ccnstraints; i.e., of deflating the least-squares
error space. This method will take advantage of the structure of the
projection operator when written in terms of the orthogonal matrix from the QR
factorization.

We then will implement the derivatives of the constrained prediction
filter VPF,

%@=H§@1H?

Here, the vector u contains the prediction coefficients corresponding to the

unknown poles. These coefficients are the elements of the matrix U, which

results from the factorization of the convolution matrix given in Eq. (4-23)
as B=U C.

7.1 Optimixation of Exponential Poles
¥e now develop algorithms for minimizing the cunstrained signal basis VPF.
{f+er describing the implementation of the pole constraints, we describe the

formation of the Jacobian matrix and note a simplified Gauss-Newton algorithm

39




AINSLEIGH £ GEORGE

introduced by Kaufman [8]. We then discuss the the gradient vector and the

Hessian matrix, which are necessary for implementing the Newton algorithm.

IMPLEMENTATION OF THE POLE CONSTRAINIS

In this subsection, we describe a modified version of the constrained
basis function matrix G = Pll FQ(Q), and the constrained observation vector
v = l’l"L y. Here, Pil is the projector onto the orthogonal complement of the
column space of the matrix Fl (which contains the basis functions correspond-
ing to the known poles) and F2 is the matrix of estimated basis functions.

Now recall the constrained least-squares functional, given in Eq. (4-6) as

1@ - || (x-mo 5] ||
If we perform the factorization

v

B =k, (7-1)

1

where '1 is an orthogonal matrix and R is an NXM1 upper triangular matrix,

then we can form the projector

..L T ~
PU=WIN, (7-2)
where i - 0]o0 ]) M1
ol 1)) N,

The constrained least—sguares functional then becomes

Xo(829) = H niw [I‘Fz@) éz] H :

If we now note the isometric properties of W., this becomes

Xg(8,25) = ” iw [1 - F, @ 52] ”2
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And, finally, if we partition '1 as
RIS
'1 = - ] )
g 4 N

then our least-squares functional can be written as

2
st [[[ 212 [2] (x-mo )
0 2

) L PR O

oy (2-m@ ) |

|- @ 5 |l
Substituting the linear least-squares estimator for a,, we get

5@=H#zm,

where G=W,F, (7-3)
and v=W,y¥ (7-4)

To effect these, we apply the orthogonal matrix ’Wl to the columns of F2 and to
y, then discard the first Ml rows of W1F2 and the first Ml elements of Wlx,

leaving the (N—-Ml)xﬂz matrix G and the (N-—Ml)—vec’cor Y.
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PSEUDOINVERSE AND PRNJECTOR DEFINITIONS

Throughout the remainder of this section, we use results from the QR

factorization of the constrained basis funtion matrix, given by

_ [h] _
Qe=1R, R = : (7-5)

N

In particular, we will use the following definitions for the pseudoinverse and

projection operators:

=1 q, B ={rt|o], (7-6)
EENE
T 2
P.=Q I, Q I = | —— , (7-7)
G 1= 1 1olol) nu
L [ 0] 0] K
Po=Q I I = | —— (7-8)
¢ =V LY, 2 lolxl) nu

JACOBIAN MATRIX CALCULATION

The Jacobian matrix is defined as the derivative of the error vector with
respect to the parameter vector. If we take the partial derivative with
respect to a single parameter, then we get a column of the Jacobian matrix.

An expression for this, given in Eq. (5-2), is

1 n ot T T 1
J. =-PB D.(@ & v - (6" D,(6) Py x .

-1

42




NRL MEMORANDUK REPORT 6643

Substituting the definitions for the pseudoinverse and projector, we get

5L =-¢Lad@r qy -¢ @Yo Ly, (7-9)
andfor I, =- @ (T QD @B qQy @) oh 1,001, (710

If we now define the N-vectors

2, =4D,(0 B Quy (7-11)
+\ T I, T
and 2= @) (@) ¢ L Qx, (7-12)
then the typical column of the Jacobian matrix becomes

_ T
J.i—"q

(L2 v2,) - (7-13)

At this point, it is convenient to define the (N-Ml)—vector

so that Eq. (7-4) then becomes

- (0o ()} -9

Here we have included braces to denote the order in which we perform the
operations. First, we perform back substitution of the M2XM2 matrix Rl with
the first M2 elements of w to yield the M2—vector x=R"w . Since Di(G) is
an (N—Ml)XM2 partial derivative matrix with only one or two nonzero columns,
the next step will involve some indexing to selectively multiply the nonzero
elements of each row by the coresponding elements of x to yield the (N—Ml)-

vector Di(G) R w . Next, we apply the orthogonsl matrix § to yield Z5q-
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In evaluating Z3) Ve substitute Eq. (7-15) intoc Eq. (7-13) to yield

ap = {0, {2} )

Here, we’ve again used braces to indicate the order of operations. We first
replace the first H2 elements ol vector w with zeros and apply to w the
transpose of the orthogonal matrix §. We then form the inner product between
the nonzero columns of Di(G); i.e., those which correspond to the i’th

parameter and the N--vector Q? I2 w. These inner products are the nonzero

elements of the M~vector D, (GT) QT I, ¥ . Ve then perform forward
substitution of the lower tr*angular mabrix R X with the first M elements of

the vector D. (G ) Q I, v to yield the MZ nonzero elements of Zi0

To complete the i’th column of the Jacobian matrix, we would define an
(N—Hl)—vector Zs» whose first H2 elements are the elements of Z:o and whose
last N-M elements are the last N-M elements of Z:19 and then apply to this
vector the transpose of the orthogonal matrix §. Since, however, we normally
use the Jacobian matrix for approximating the Hessian matrix as

H':ZJT

J, (7-16)
this leading matrix QT will cancel itself in the product, so that the final
step of applying matrix QT can be skipped. Using this approximation to the
Hessian, the approximate Newton direction (the Gauss-Newton direction) can be
obtained (see Appendix C) by solving the linear least-squares problem
Jd=-g. Here, we note that the leading matrix Q? appears in the definitions
of both the Jacobian matrix and the error vector e = QT I2 Q v, so that it

should be neglected when the Gauss-Newton direction is the desired end result.

A much simpler Gauss-Newton algorithm, however, has been devised by
Kaufman [8] that allows us to avoid computing z. 59 which is the
computationally more costly of the two zy terms. In a manner similar to the
introduction of the pole constraints, Kaufman’s algorithm takes advantage of
the structure of the projection operator when constructed from the QR
factorization of the basis function matrix. This is the topic of the next

subsection.
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MODIFIED GAUSS-NEWTON ALGORITHM

Noting that the matrix { is isometric (i.e., length-preserving), we know
that

[t
IELEN! xll2
2
= Iqur_H. (7-17)

We can therefore define the modified variable projection functional

2
4@ =] g x|, (7-18)

where we have partitioned Q as

M
- | )% (7-19)

§, |} v,

While the partial derivative of Q2 is dependent upon the orthogonalization
process in which the matrix Q is determined (and therefore is not unique),
Kaufman [8] derives the following general formula whose results (though

nonunique) are similar within an orthogonal transformation:

D,(Q) =-Q, D, (6) R" Q+T g, (7-20)
where T

+ =0. (7-21)

Since the matrix I is not unique, neither is Di(qg). We can, however, choose

T == 0, which certainly satisfies Eq. (7-21), leaving
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~n

I =D.(Q) vy=-QD.(6) R Qu , (7-22)

which is just the last N-M elements of the N-vector Ziq from the previous

subsection.

For this modified signal basis VPF, the error vector is

e=Qx.

Defining the matrix 3, whose columns are the Ei’ the equation for the

modified Gauss-Newton direction becomes

GRADIENT VECTOR CALCULATION

The typical element of the gradient vector is given in Eq. (5-4) as

Substituting for the pseudoinverse and projector, we get
g, ~-2y Q L, QD (&) R ¥
T

=-2v Iz, (7-23)

where ¥ and z.

;1 are formed as described in the previous subsection.

HESSIAN MATRIX CALCULATION

We begin by recalling the expression from Chapter 5 for the typical element of
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the Hessian matrix, which is given by

1

By =2 &, X]T [DJ.(G) 6" D, (@) - ij(c) + D (®) 6" D, () ) (¢ 1)

2 (@ o, @® pg k) [ @t (@ B )

+2 PGl D,(€) ¢ ¥ ]T [ PGl D,(®) € x ] .

If we substitute the definitions for the pseudoinverse and projector in terms

of the orthogonal factorization, we get

T
=2 (502 ) [0 ¥ 0,0 - %@ 0@ F 40, ) ¥ gy

2 { (¥ q) o, qTrzu}T[n"q]TDj(cT) L qy

+

T
2 (1,90, 8 qx) 190,00 r gy

T

20 L (00,0 5 40,0 - 004 + 40, 2 4@ ) ¥

2 (@) 0,h ' 1, ]T ed" (@) o,h ¢ 1, )

+

2 (Lav,@ K x) od 1,00, Ru), (7-24)

where w is deflned the same way as during the Jacobian calculation. Note that
the product QQ will become identity in the last two terms. Let us also
recall our previous definitions of Xy Z:1» and z. 59 i.e.
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x =Ry,
Z.il:qu(G) R+E ’
_ T T, T
and 2:9=(RB)" D (6) QU L w .

We now can write the typical element of the Hessian as

- T T - T ) T }
Y =2 { Zig B3y * Zjp Zyy) T Zyg Zip t Zyy Lo zgy

-2u L, QD5;(0) x . (7-25)

Here we will need to perform some special indexing to achieve the
multiplication by the second partial derivative matrices. Otherwise, this
last term is calculated straightforwardly. Having obtained the Hessian
matrix, the Newton direction is the solution to the equation H d = - g, which
is a square symmetric system that can be solved efficiently using the LU

decomposition.

In the neighborhood of the minimum (where we are most likely to use
Newton’s method), the functional is approximately quadratic so that a line
search to determine step size is not necessary; i.e., we set the step size

equal to one.

7.2 Optimimation of Prediction Filter Coefficients

¥We will now discuss the algorithms for minimizing the prediction filter
VPF. This path yields much more efficient algorithms because the convolution
matrix is a linear function of the coefficients. The formation of the
convolution matrix and its derivatives is therefore purely a matter of
indexing. Furthermore, the second partial derivatives of the convolution
matrix vanish, thus simplifying the Hessian calculation. There does not,
however, appear to be a (auss-Newton algorithm which is equivalent to the
Kaufman algorithm.
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Because forming the Hessizn matrix is only slightly more costly than
forming the Jacobian matrix for this error norm, and because Newton’s method
generally does not need a line search to determine the step size, Newton’s
method is computationally more efficient than the Gauss-Newton method when it

can be used; i.e., when the Hessian is positive definite.

PSEUDOINVERSE AND PRCJECTOR DEFINITIONS

Throughout the remainder of this section, we will use results from the RV

factorization of the convolution matrix, given by

BY =R, R =8 |0].

In particular, we will use the following definitions for the pseudoinverse and

projection operators:

-
B = VR, = | L |,

0
P=VI YV I, = | ——
B 10 L lololu
_l_ T -0 0 )N_M
P =VIV I = | ——
B LV 2 lolz)x

JACOBIAN MATRIX CALCULATION

¥e begin by recalling the expression from Chapter 5 for typical column of

the Jacobian matrix, given by

1 1
I, =B DB pF y+gf 0@ 9Ty .
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If we recall that the partial derivative of the convolution matrix can be
factored as Di(B) = Di(UD C, then we get

VR DM v Vy « v, Vo h @t vy, (720

Let us now define

R D,(0) CVI V y, (7-27)

vT

and Z; ¢ o, @) V' y. (7-28)

The typical column of the Jacobian can then be written as

3 =Y { 230 * I 259 } ' (7-29)

As before, we note that the primary purpose for forming the Jacobian matrix is
to calculate the Gauss-Newton direction d by solving the linear least-squares
problem J d ® ~ e. We also note that the orthogonal matrix V appears as the

leading term on both sides of the equation (i.e., in the definition of both J

and g), so it can be ignored.

In discussing the formation of the z Z;, an example case will be helpful to
illustrate the manipulations of the convolution matrices. We will consider

the case with N = 12, M, = 3, and M2 = 2 (thus ¥ = 5). Thus, for our example

1
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Before evaluating the Z. it is convenient to define

¥=V y, (7-30)

so that the expression for Z5 becomes

+
g =¥ {p@{c{vyu}}}.
As before, the braces indicate the order of operations in forming the vector.

¥We begin by setting to zero the first N-M elements of the vector w and by
applying the orthogonal transformation represented by matrix V. We then
effect the premultiplication by matrix C as a vector convolution, without edge

effects, between V 12 w and the vector

[1 ¢ o5 e , |-

If we now examine the structure of the partial derivative of matrix U with
respect to one of the coefficients, we see that Lhese derivative matrices are
merely (N-M)X(N-M) identity matrices with zero columns added to make an
(N—M)X(N-Ml) matrix. Shown below 1s the partial derivative of matrix U with

respect to u, for cur example.

1 0 0 0 0 0 0 0 O

01 0 0 0 0 0 0 0

0o 0 1 0 0 0 0 O O

D % 15 0 01 0 0 0 0 o0

o(U) = =

Bu, 0 0 0 0 1 0 0 0 0O

0 0 0 0 0 1 0 0 O

¢ 0 0 0 0 0 1 0 0O

If we premultiply an arbitrary (N—Ml)—vector x with this partial derivative,
we see that the result is simply to select an (N-M)-element segment of the
vector x. For our above example and the vector

1 T
X = [ X1 %2 "t X9 ]
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the resulting product is

T
D2(U) x = [ X| X5 - -« Xg Xg ] .

The partial derivative of our example matrix U with repect to uy would contain
zeros in the first and last column, and an identity matrix in columns two

through nine. This would appear as

T
Dy, x = [ X % Xy |
T
Py, 10 = = [ Xy X3+ Xyl |
T
D0 x =[xy mgomey g -

2 2 1

The matrix product can therefore be effected simply by selecting the
appropriate elements from the (N-Ml)—vector cyVv 12 w to form the (N-M)-vector
Di(U) cy 12 ¥w. Having obtained this result, we now effect the
premultiplication of the matrix R by performing back substitution of the
(N-M)X (N-M) matrix Rl with the first (N-M) elements of the product
Di(U) cVv 12 ¥ to yield the nonzero elements of Ziqe

The expression for Zi9 is

o= ¥ {6 (2,00 @7 2}) ).
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We begin forming Zio b% performing forward elimination of the (N-M)X(N-M)
lower triangular matrix Rl with the first (N-M) elements of w to yield
X = (R+)T ¥. We then again note the special structure of the partial
derivative matrices and recognize that the transpose of each of these matrices
is simply an (N-M)X(N-M) identity matrix with zero rows added to make an
(N—Hl)X(N-M) matrix. Thus when we premultiply the above (N-M)-vector x with
one of the derivative matrices, the effect is simply to pad the vector with

zero elements to make an (N—Ml)—vector; i.e., the vector

S T,

when premultiplied by D2(UT) from our example becomes

T -
D2(U ) x = [ X Xg + + . Xg Xg

Dl(UT) X = [ 0 x

For the general case, with an (N-M)-vector x, the resulting products are the

following (N-Ml)—vectors:

T T
DM2(U ) x = [ x| X c Xy O 0 ] ,
T
T -
DM2—1(U ) x = [ 0 X X cxyy O 0 ] ,
T
T -
DI(U ) x = [ 0 0 Xy X XM 0 ] s

where the total number of zeros in each vector is equal to M2'

54




NRL MEMORANDUM REPORT 6643

The next step, after having effected the multiplication of the partial
derivatives, is to premultiply by the transpose of the convolution matrix C.

This is equivalent to convolving, with edge effects, Di(UT) x with the vector

]T
A O | .
cll cM1+1 1

We then apply the transpose of matrix YV to yield the result Zi0-

GRADIENT VECTOR CALCULATION

Recall from Chapter 5 that the typical element of the gradient vector is

T 1
g =2 ¥ B D,(B) gF x

Substituting the definitions for the pseudoinverse and projection operator in
terms of the RV factorization and recalling that Di(B) = Di(U) C, this becomes

T

g=2y VE D (W OV V' y. (7-31)

If we now substitute w for VTx, we get

g:= 2 !;T

+
: R* D, (U) CV oy, (7-32)

But we can also recognize that this is the same as

T
8= 2 ¥ iy, (7-33)

where %41 is formed as described in the previous subsection.

HiSSTAN MATRIX CALCULATION

Recall from Chapter 5 that the typical element of the Hessian matrix for
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the prediction filter VPF is given by

1 + + + 1
B, =2yt { [ g Dj(BT) @HT . B D, (B) B ] o,®

. + 1 -‘-T + T
- B Di(B) [B Dj(B) g+ gP Dj(B) B) ] }X

’ 1 + + 1 + + 1
2y P DJ.(BT) )T B D, B Py - 2 y! B D,(B) B" D, (B P ¥

1 1
~2y B D, (B) B D, (B) Py - 21 B D,(B) gP p.(8) @)y .
i iU B
Substituting the definitions for the pseudoinverse and projection operator
in terms of the RV factorization, and recalling that Di(B) = Di(U) C, this

becomes

.7 T T Ty ot T T § o T
Bo=2y VLV ¢ D (V) @)V VED®@®CVIL V y

1]

T + + T
2y VR Dj(U) CVe Di(U) cvVv 12 vV y

T + + T
2y VR Di(U) GVYR Dj(U) CVIZV X

2 IT

VR D.(U) CV I v ¢! D, wh @Ht vy

T+ o7 T q T I
B, =21 LV C DJ.(U)(R+) R" D, (V) SV I, u

T + + vy
2w R DJ.(U) CVR Di(U)C,IZ)g

T
2% R D, (V) CVR+Dj(U)CVIZﬁ

29 B D, (U) CVI V' ¢ D, ) @97« . (7--34)
We can further simplify this as
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+ T +
Hij=2[R DJ.(U)cvng] ERACKAE S
T T T ot T (T [ ok
-2_vcnj(U)(n)!] [ 2" D, (1) CV I u]

~2 [V, @ T [ D.(W CVI, v |

e[Vl @) |t v b, @) @7 » ], (35

. T o T o7 i
and  H;, =2 { -2y 2y - 2y Z3p * Z31 5y T Zjp Lo 5 v (7-36)

were calculated for the Jacobian matrix. As before, the

where the 2y Zs
Newton direction is calculated from the equation Hd = - g, and the step is

taken with step size equal to one.
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APPENDIX A - REVIEW OF LINEAR LEAST-SQUARES THEORY

In this appendix, we review some of the elements of linear least-squares
theory essential to nonlinear least-squares optimization. The purpose here is
two-fold: to elucidate in some detail the nature of the projection operator,
the generalized inverse, and the pseudoinverse; and to describe the
application of the QR factorization (and its relatives) to solving linear

least-squares problems.

We will begin by examining the orthogonal projection operator. Here,
fcllowing the the work of Halmos [9] and Wilkinson [10], the properties of the
projection operator will be discussed. The eigenstructur of this operator is
also examined. We then examine the properties of the generalized inverse for
finding general solutions and minimum norm solutions to consistent equations
and linear least-squares problems. This will culminate in a discussion of the
Moore-Penrose generalized inverse, or pseudoinverse, which leads to the

minimum norm least-squares solution.

Following this, we examine several scenarios in which QR factorization
techniques are applied to the linear least-squares problem. While only the
full rank case is of interest in the nonlinear algorithms presented in this
paper, we examine the rank deficient and near rank deficient cases for
application to other aspects of the signal modeling problem, namely the use of
the complete orthogonal factorization for effecting rank reduction of the data
matrix in the algorithm for obtaining the initial estimates {see Ref. [4] for
details).

In the full rank case, the QR factorization is seen to lead directly to
the Moore-Penrose generalized inverse. In the rank deficient case, we examine
the truncated QR factorization and the complete orthogonal factorization as
o tlined by Hanson and Lawscn [11], Golub and Pereyra [5], and Golub and Van
Lean [12]. It is seen that while the g-inverse formed using the truncated QR
factorization does not lead to the pseudoinverse, the complete orthogonal
factorization does achieve the minimum norm solutirn and thus provides an

alternative to the singular value decomposition for forming reduced rank
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approximations. Finally, the application of the complete orthogonal

factorization to nearly rank deficient matrices is discussed.

A.1 The Orthogonal Projection Operator

Every projection operator is defined on a particular linear manifold
(subspace) in a finite dimensional vector space. One of the key relationships
between the projector and the corresponding subspace is that the subspace is
invariant under the transformation represented by the projection operator;
i.e., the transformation operating on any vector from the subspace will return
another vector in the same subspace. Also, the projector represents the
identity transformation over this invariant subspace. 0One special class of
projectors is called the orthogonal projector, which must satisfy somewhat
stricter requirements regarding the associated subspace. These properties we

will now develop.

Consider the N-dimension vector space RN and a subspace S in BN. There

exists a subspace §, called the orthogonal complement of S, such that BN

is
the direct sum of S and 8. Drawing from the work of Halmos [9], the following
definitions and Egs. (A-1) through (A-7) characterize the orthogonal

projection operators associated with S.

efinition 1 There exists an operator P that maps every vector in RN onto the
subspace S by projecting along the orthogonal complement §. This
operator is called the orthogonal projection operator onto the

subspace S in RN.

Definition 2 There exists an operator, P , which maps every vector in BN onto
the complement subspace S by projecting along the subspace S.
This operator is called the orthogonal projection operator onto

the orthogonal complement of S in BN.

Furthermore, these projectors satisfy the relationship
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P =I-P. (A-1)

For convenience, we will subsequently use the term projector to mean
orthogonal projection operator; i.e., we will consider only those projectors

for which a projector onto the orthogonal complement subspace exists and is
defined by Eq. (A-1).
€ RN.

Now consider an arbitrary vector z
Z =32+ Zy where z € S and Zgy € S. The projectors defined above satisfy

We can decompose z as

the following six relationships:

P .z.l =3 (A-2)
1

P z = 0 (A-3)
P Zy = 0 (A-4)
1

P oz, =2, (A-5)
Pz= % (A-6)
1

P z-= Zg- (A-7)

From Eqs. (A-6) and (A-2), we see that

2

P"z=P Pz) =Pz, =2, =P z,

&2 1 =1 = .

so that P” = P; (A-8)

i.e., the projector is idempotent. We see from Eqs. (A-4) and (A-7) that
1
P® 2)=P 2y =0

1
PP =0. (A-9)
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Similarly, from Eqs. (A-3) and (A-6), we see that
1 1
P Pz) =P z2,=0

so that P P=0. (A-10)

Finally, from Eqs. (A-6) and (A-7) and from the definition of orthogonality

1
@' @ 2 =z32=0.

%y

Substituting Eq. (A-1) and transposing within the parentheses yields

g? PT I-P)z=0.

Since this is true for all z in RN, we must have
P I-P) =0
so that P =P

Since the right-hand side is symmebtric, we must have

P=0pl,

(A-11)
Note that it is this symmetry separating the orthogonal projection operator
from the general projector which need only be idempotent. In summary, the

projectors P and P‘L are idempotent, symmetric, and mutually annihilating.

Further insight can be gained by examining the eigenstructure of the
projector. Since the subspace 8 is invariant under the transiormation P, and
since P represents the identity transformation over S, S is spanned by a set
of the eigenvectors of P, each of which corresponds to a unity eigenvalue [9].
The remaining eigenvectors span the complement of 8 in BN and correspond to
eigenvalues of zero. The set of all eigenvectors of P forms a basis for BN.

To show that the eigenvalues of P are constrained to the values zero and
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one, we note that any symmetric matrix A can be transformed [10] such that

W AU=D, (A-12)
where U is an orthogonal matrix and D = diag(kl, ceey XN) is a diagonal matrix

containing the eigenvalues of A. The i’th column of U is the eigenvector
corresponding to the i’th diagonal element of D, the i’th eigenvalue of A.
This is shown clearly by writing Eq. (A-12) as A U= U D. With this

similarity transformation, we may rewrite A as

A=UDU. (A-13)
Now let A be idempotent as well as symmetric, then AA=UD UT UD UT

=0 D2 UT. But since this must also equal A as expressed in Eq. (A-13), we

must have
D® = D. (A-14)

Since the eigenvalues of a symmetric matrix must be real, the diagonal matrix

D must contain only zeros and ones for Eq. (A-14) to hold.

To see that this eigenstructure exemplifies the operation of the
projector, consider the arbitrary N-vector z in the space RN, which bas a set
of basis vectors u:, i=1l,...,N. We may choose this set of basis vectors to be
the eigenvectors of the NXN matrix P, which is the projector onto the (say, M-

dimensional) subspace S. We may now write

and Z =3 Uy *+ay Uy + 000+ oay Uy (A-16)
Thus Pz-= kl a; u + Xz 3y Uy + 0t + XN ay ly- (A-17)
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M of the N eigenvalues, those corresponding to the eigenvectors that span
the subspace S, will have value unity while the remaining eigenvalues will

have a value of zero. We therefore have the result

M

Pz=2 a u |, (A-18)
i=1 47N

where the ji denote those eigenvectors which span S. Thus, components of 2z in

S are unchanged while components in S are annihilated.

A.2 The Generzlized Inverse

In general, an NXM matrix A is a linear transformation that maps an
arbitrary vector x from an M-dimensional space to an N-dimensional space,
which is the range (column space) of the mapping (matrix). We desire an
inverse transformation that will map an N-vector y lying in the range of A
back into an M-dimensional space. If the vector y does not lie in the range of
A, then the inverse mapping must first approximate y with a suitable vector in
the range of the mapping. Let us first consider the case where y lies in the

column space of A (consistent equations).

For the NXM matrix A, the MXN matrix A" is a generalized inverse
(g-inverse) of A if x = A" y is a solution to the equation A x =y, for any y
that makes the system consistent [13]. Substituting the first equation into
the second, we get A A" Y = Y. Now suppose that given an arbitrary M-vector
w, we let y = A w. Since this y is generated from the columns of A, it
clearly lies in the column space of A. Substituting this into the previous
equation yields A AT A w = A w. In general, this requires that the

generalized inverse satisfy
AAT A=A (A-19)

In the most unrestricted sense, this is all that is required of a

g-inverse. If we wish, however, to consider the case of inconsistent
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equations, then we must impose further restrictions that determine how we wish

to approximate y before transforming.

A.3 g-inverse for Linear Least-Squares Solution

Geometrically, the best approximant to y that makes the system consistent
is the projection of y onto the column space of A, resulting in the least-
squares solution to the system of equations. Thus, for the arbitrary N-vector
2z, the inconsistent equation A x % 2z can bg made consistent by premultiplying
both sides by the projection operator for the column space of A, yielding
PA Ax= PA z. But the projection of the columns of A onto themselves leaves

them unaffected, so this reduces to

Ax= PA

3]

(A-20)

The g-inverse solution for x is then x = A" PA z. Substituting this for x and
noting that the projection operator is idempotent, Eq. (A-20) becomes

A Q@ P,z) = (B, P)z, A A z; = P, z;. From this, we see that the
generalized inverse for solving linear least-squares problems must be such
that A A" = PA is the projector onto the column space of A. This then
requires that the product A A" be idempotent and symmetric. That this product
is idempotent is equivalent to the requirement of Eq. (A-19). We do have the
further restriction, though, that A" must satisfy

(Ax) =anr. (A-21)

A.4 g-inverse for Minimum Noram Solution of Consistent Equations

fie know irom Section A.2 that the g-inverse that provides the solution for

the consistent system of equations
Ax=y (A-22)

must satisfy A A" A = A. From this, it follows that A - A A* A = 0. Thus
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A(T-a"a)=0. (A-23)

We can therefore state that for any z,

(1-4"4)2

is a solution to the homogeneous system of equations A x = 0. As is the case
for a linear differential equation, the general solution for the set of
simultaneous linear equations in Eq. (A-22) is the sum of the homogeneous

solution and a particular solution, and can thus be written x = ;p t X =

My+[T-84)z.

If we denote the g-inverse leading to the minimum norm solution as A;,

then we desire to have

Ilgxnzs Hf1+[1-fA]g 2

(A-24)
for all y and z. The right-hand side of Eq. (A-24) can be written
||f1+[1-fA]gH2
+ + T + +
{ Ny (1-80)z) (W {T-84])2),
so that, since all terms are real, Eq. (A-24) becomes

+ 2
[l < |

AfxlF e T {1-1"a).
+ ll { I-A"A ] z Il2 .

This is a minimum when the middle term is zero, which occurs when the
particular solution is orthogonal to the homogeneous solution. In gemeral,

this requires that
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aH (1-aa]) =0,

so that (A+)T = (Af)T A" A. For this to be true, it is necessary and
sufficient [13] that

AV AN = (A-25)
+ T +
and (Aa) =a"nr. (A-26)

We will now show that the product A" A is, in fact, the projector onto the

row space of A.

A*A=[A+A]T

A? (Af)T
= AT (AT) +:
which is the projection operator onto the columns of A?, or the rows of A.

In summary, the g-inversc for obtaining a minimum norm solution to A x = ¥
must be such that

A. (A-27)

Let us re-examine the general solution, now written

-

r+(1-2)2,

x = A"

where we ~ substituted Eq. (A-27) into the homogeneous solution. Recall
from Sectiva A.1 that (I - P) is the projector onto the orthogonal complement
of the subspace for which P is the projector. Thus we see that the

homogeneous solution is confined to the null space; i.e., the orthogonal
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complement of the row space of A. Since the minimum norm solution must be
orthogonal to this homogeneous solution, what we really are striving for in
the minimum norm solution is that solution lying in the row space of the

matrix A.

A.5 g-inverse for Minimum Norm Least-Squares Solution

Combining the results of the last two sections, we see that the
g-inverse for obtaining the minimum norm least-squares solution [i.e., the

Moore-Penrose generalized inverse (pseudoinverse)] must be such that

+

PA = AA

+
and AP =A A

are, respectively, the orthogonal projectors onto the column space and the row

space of A. This is equivalent to the following requirements:
AA"A=4A ATAN =4
[AA+]T=AA+ fA*A]T=A"A.
It is interesting to note that in forming the minimum norm linear least-

squares solution, we are actually performing a three-stage process. Starting

with the least-squares problem
Ax=2y (A-28)
(where A is not uecessarily full rank), we obtain the minimum norm solution
X=A Y. (A-29)

Stage I: Projection of y onto the column space of A to obtain a consistent

set of equations. We form§ = A A" y = P, y.
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Stage II: Solution to the consistent set of equations A ¥ = ¥ to yield the

~

general solution x = A" § + [I - A" A] z, where z is an arbitrary vector in
N
R

St ITI: Projection of X onto the row space of A to obtain the minimum norm
solution (eliminate the homogeneous part of the solution). We form
+ A a +
x=A AXx= AP X = AP A PA Y.
We now conclude this portion of our discussion of linear least-squares
theory. The remainder of the chapter will examine the QR factorization family
as it is used for forming projection operators and solving linear least-

squares problens.

A.6 QR Factorisation of Full Rank Matrices

Consider the NXM matrix A of rank r = MSN. There exists an NXN orthogonal
matrix §, such that

R1
QA=R:= | ]|, (A-30)
0
/
vhere R, = /
1 0 MXM

is square, upper triangular, and nonsingular. With this, we may write

A= QT R, and define a g-inverse of A as

A=yt | o]uq. (A-31)
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Recalling that PA = A Af, the projection operator becomes
[ R,

PA=QT[—O"1J [nl'lio]q

I 0
q* [ oljl—(; ] q, (A-32)

where IM is the MXM identity matrix. We see by inspection that this is

symmetric, and by squaring we see that it is idempotent

[ I 0] I 0
- @[] e [T e

L O 0.
e
T M
=0 | — e =R,
L O 0.

where we have noted the orthogonality of matrix §. Thus we see that the
g-inverse defined in Eq. (A-31) is adequate for forming the projection
operator onto the column space of A.
Now recall the projection operator onto the row space of A,
+
AP =A A.

Substituting Eq. (A-31) into this equation yields

ﬁ]
0

g=ln?|o]ad
= I, .

Thus this factorization satisfies .1e requiremenvs for the Moore-Penrose

g-inverse. The least-squares functional for the linear least-squares problem

A x @ y then becomes
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2
p(x) = Azs-x“
=] PAx-Qx lz
R [ Q 2
- ——1};— __1_}1 , (A-33)
0 i Q2
where we have partitioned { as
q, |}
a=|—t :
g, |} Nx
The solution for x in this case is determined uniquely as
o = R T Q (A-34)
s =% Y 1o
leaving a residual sum of squared error
2
40 = ] L ])? (A-35)

A.7 QR Factorisation of Rank Deficient Matrices

In the case of rank deficient matrices, the QR factorization does not lead
to a g-inverse that satisfies the Moore-Penrose conditions. In this section,
it is shown that a truncated version of the QR factorization with column
pivoting can, bowever, be used to construct a g-inverse suitable for forming

3 - - . 1 N
jector onto the column ¢ A. In the next section, the complele

Rt = S0V el L3 3H344

the pro

orthogonal factorization will be presented, vhich s.lves the problem of rank

degeneracy and leads to the Moore-Penrose pseudoinverse.
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Consider the NXM matrix A of rank r<MSN. There exists an NXN orthogonal

matrix @ and an MXM permutation matrix S, such that

R R
QAS=R= [JLL—E], (A-36)
o |l o
/
where Rll =10 /
rXr

By truncating R (i.e., replacing R12 by a zero matrix), a g-inverse of A is

-1
R 0
A =8 [ By |9 ] Q. (A-37)

0 | 0.

For this factorization, the projector onto the range of A becomes

-1
P =" { Bia | By ] o g [ i VA L
ol o L o | o
I, | 0
= ¢ [ . S ] qQ (A-38)
o | o

which (25 in the full rank case) conforms to the requirements of a projection
operator. The g-inverse formed from the truncated QR factorization is
therefor: suitable for forming the proje.tor onto the column space of the

basis functien matrix.

Let us now form the product

S
A Aes Rig i 0 } g ¢ { R 1 By ] o

L ¢ o ol o

1

I |r. &
_s | L g 11 ® 19 ] oI (A-39)
o 0
4
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This is clearly ncnsymmetric and therefore does not constitute an orthogonal
projector. Thus, the g-inverse formed from the truncated QR factorization

does not conform to the requirements for the pseudoinverse.

A.8 Complete Orthogonal Factorisation of Rank Deficient Matrices

To obtain a minimum norm ieast-squares solution in the rank deficient
cast, we use an extension of the QR factorization, the complete orthogonal
factorization. This factorization is a suitable alternative to the singular
value decomposition for performing the rank reduction necessary to obtain the

minimum norm linear least-squares solution.

Again consider the NXM matrix A with rank r<M<N and the orthogcnal

factorization
B R
chsens [fl o],
0 | 0
/
where R11= 0 /
rXr

There exists an MXM orthogonal satrix V such that

~

- Bll I 0
BV=-QASV=R = || | (A-40)
0 0
- /
where B’ll 0 /
rXr
Tonm £h2n  cmn rmoer wwedda A o ol nul ol 3 g 2. av. - e e
A A WL \Ju.&a, e L i A WVw In - ‘ &% v » Gl UT A LT vauce 5 dd 2¢ ao
o -1
R 0
At = gy | AL q . (A-41)
o |o
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Now forming the projection operator PA’ we obtain

+
P, =AA
T l~111 Ol o i111 0
gt | A— | Vst sv |- Q
o lo o | o
(L] O
- ¢ | a, (A-12)

which, once again, is seen to be symmetric and idempotent. II we now attempt

to form the projector onto the row space of A, we get

JP=At A
(2.1 o R, | O
Ly |2l o et VI oT
o |o o lo
(1|0
-8V | r| ]VTST, (A-43)
o |o

which is also symm.tric and idempotent. Thus the complete orthogonal
factorization leads to a g-inverse, which is suitable for forming both
projection operators. This g-inverse therefore satisfies all of the

requirements for the Moore-Penrose generalized inverse.

Using the g-inverse constructed from the complete orthogonal

factorization, the least-squares functional becomes
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If we let w = ST X partition § as

and partition V as

v=lv v,

where Vl is MXr and Vé is MX(M-r), then we obtain for the least-squares

functional
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From this, we obtain the solution

w=Y iii UR (A-44)

Ye obtain a final minimum norm solution as

x g =SV, R, Q1 (A-45)

which, as in the full rank case, leaves a residual sum of squares

#(xg) = || Gy ||2 - (A-486)

A.9 Near Rank Deficient Matrices
Consider the NXM matrix A with numerical rank p = MSN, but whose expected

(ideal rank) is r<M. There exists an NXN orthogonal matrix Q and an MXM
permutation matrix S, such that

2
QAS=RR= | — |, (A-47)

M
where R, = / .
L ONUuxu

Column pivoting at each stage of the factorization will result in a mabrix

that can be further partitioned as

y - |l

o |,

l\)

where Rll =1 o /
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/
and R,, = /

22 | ONJ (U)X (1)

If A were truly rank deficient, 822 would consist of zeros. But because
of perturbations in A, B22 will have non-zero elements. If the perturbations
are small, however, then the elements of R22 should also be small so that the
rank deficiency can be uncovered when ||R22|| becomes much smaller than ||A]].
Then rank reduction can be achieved by setting R22 to zero and solving the

remainder of the problem as a truly rank deficient case.

Golub and Van Loan [12] point out that there are cases in which at no step
during the orthogonalization process is the norm of R22 very small, even
though the original matrix is rank deficient. But they also go on to say that
this method of rank determination "works well in practice." The reader is
referred to Section 6.4 of Golub and Van Loan [12], and to Golub, Klema, and
Stewart [14].
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APPENDIX B - ORTHOGONAL FACTORIZATION BY SUCCESSIVE HOUSEHOLDER TRANSFORMATION

In this appendix, we describe a method of triangularizing matrices which
uses the highly stable Householder transformation, also called an elementary
reflector (see Ref. 15). This transformation introduces zeros into a column
or rox of a matrix, depending on whether it is applied from the left
(premultiplication) or from the right (postmultiplication). In the former
case, we premultiply by a sequence of elementary reflectors to transform an
NXM matrix (N>M) into an upper triangular matrix (or upper trapezoidal matrix
if N<M). This leads to the QR factorization defined as Q A = R. In the
latter case, we transform an NXM matrix (N<M) into a lower triangular matrix
(or lower trapezoidal if NDM). This can lead to the RY factorization defined
as AV =R, or to the complete orthogonal factorization as discussed in

Appendix A.

B.1 Householder Transformation from the Left

Given a full rank NXM matrix A, where N)>M, we premultiply A with asequence
of M elementary matrices; i.e., we form HH ooe H2 Hl A =R, to yield the NXM

upper triangular matrix R. The Hi are defined as

where I(i-l) is an (i-1)X(i-1) identity matrix and Ui is an (N-i+1)X(N-i+1)
Householder reflector matrix comstructed to introduce zeros below the i’th
diagonal element of A(lul) = Hi—l soe Hl A. For example, at the beginning of

the fourth stage of the triangulari- ‘on process, we have the matrix
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H 1) @) 1) @ 1
2D oy oy & ap e Al |
2)  (2) (2 (2
0 aéz) 353) a§4) 3%5) oee aéﬁ)

3) (3 _(3 3
0 0 agd afY af) eer o)

3 3 3

o 0 o |afP]af e oY
3 3 3 3
A( ) - 0 0 0 a§4) aés) ees 33
3 3 3

0 0 0 [y e @

o o 0 [a{D]a® e B

a7
3 3 3
i 0 O 0 3154) 8'1\35) [ X X a'rSM)

Here the superscripts on the elements designate the number of previous
Householder reflectors that have transformed the particular element; e.g., the
elements in the first row are affected only by the first Householder reflector
so that these elements have the superscript (1), the elements in the second
row are affected by the first two Householder reflectors so that these
elements have the superscript (2), and the nonzero elements below the second
row have been transformed by all three of the previous reflectors so that

these elements have the superscript (3).
We wish to introduce zeros below the first eiement of the vector
ated within the box. If we denote this (N-i+l)-vector as x, then we we

aauwl 194 X,
to find the Householder reflector, U, such that

(B-1)
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where ¢ is a scalar, and
T
g_1=[1 0 0 o-no]

is the first vector in the standard basis for the space RN—1+1.

The Householder reflector that achieves this is defined as

U=I-f"uu , (B-2)
where o= sgn(xl) xS, (B-3)
Uy =Xy 0, (B-4)
u =X, i=2,...,n , (B-5)
and f=c Uy (B-6)

Since only the vector u. and the scalar ﬂi are necessary for forming Hi at
each stage, a2ll informatior concerning the construction of the Bi can be saved
by storing the last N-1 elzments of u. below the 1’th diagonal element of A
and storing the pre-transformation value of the diagcnal element in an
auxilary vectcr (note that the post-transformation value of the diagonal
element is Gy SO that pi is indirectly available).

When applying tu.c Householder transformation to an arbitrary vector y we

use the equation

U1=[I-P'123T)x
=1~P~1{9.Tx]g. (B-7)

Since this is constructed directly from the vector u and the scalar f, we need

never explicitly form the elementary matrices Hi.
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After Householder reflectors have been comstructed for all M columns, the

orthogonal matrix Q is defined as

Q=F e L B . (B-8)

Since the Hi are elementary mat:ices, they are symmetric, so that the

transpose of § is just

Q¢ = H K, e B, . (B-9)

We can therefore multiply by the transpose of Q simply by reversing the order
in which each of the elementary transformations are applied. Thus one need

never explicitly form the matrix .

The stability of the Householder method can be ensured by using column
pivoting at each stage of the factorization to bring the column of largest
norm to the pivot position. At each stage, the pivoting causes an elementary
matrix to be factored to the right; i.e., each column swap is recorded by
postmultiplying by an identity matrix with the same two columns interchanged.
At the i’th step, we would form A(i) = Hi A(i—l) Si’ where S.1 is an elementary
matrix representing the i’th column pivot. At completion, the factorization
appears as QA S = Hﬁ ece H2 Hl A Sl 82 soe SM = R,

B.2 Householder Transformaticn from the Right

Given an NXM matrix A with full row rank, we postmultiply A with asequence
of elementary matrices to yield A Hl H 9 °°* HM = R. Here, the Hi are formed
in exactly the same way as when transforming from the left, except that Ui is
constructed to introduce zeros to the right of the i’th diagonal element;

i.e., into the i’th row.

To parallel our previous example, at the i’th stage of the

triangularization process, we have the matrix
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(1) [ XX J
a3’ 0 0 0 0 0 o0 0

(1) (2) o0 e
a1’ 345 O 0 0 0 0 0

N I EEEEE
LD @ @) 3 ) @) () .. O

41 242" 243 244’ 245 45" 247 48

1 2 3 3 3 3 3 3

a§1) aéz) a§3) a§4) aés) aés) a§7) e aéu)

Here, we construct the Householder reflector to introduce zeros to the right
of the first element in the vector designated within the box. Denoting this

(M-i+1)-vector as ;?, we wish to find the Householder reflector U, such that
(B-10)

where ¢ and g, are the same as in Section B.1. The construction of U is also

the same as in Eq. (B.1).

In applying the Householder reflector to an arbitrary row vector x?, we

use the equation

y U=yt [ 1-ptuyt ]

(B-11)

)

il
I
I
~Ql
fasy
—
<
|

Row pivoting could be used to ensure stability, just as column pivoting
vwas used in the previous section. Usually, however, tramsformations from the
right are applied to matrices that already exhibit special structure and are
expected to be reasonably conditioned, so that row pivoting would serve only

to disturb the existing structure.
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After Householder reflectors have been constructed for all N rows, the

orthogonal matrix V is defined as
V= Hl H2 see HM . (B-12)
Again, since the Hi are symmebric, the transpose of V is
Vi = H, see B, H (B-13)
y *°t B By :

Essentially, applying orthogonal transformations from the right of a
matrix is the same as applying transformations from the left of the transpose
of the same matrix, and then transposing the entire equation. First, { Ai =

Ru’ where Bu denotes an upper triangular matrix. Then, transposing yields

agt=pr".
get our desired factorization.

Now, letting V = QT and Rl = RuT (a lower triangular matrix), we
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APPENDIX C - REVIEW OF LEAST-SQUARES GPTIMIZATION TECHNIQUES

In nonlinear optimization (also see Refs. 16 and 17) we begin with an
initial set of parameters and, through a succession of iterations, update the
parameters in a way such that the sequence of updated parameters hopefully
converges to the ideal set. We go about this by assigning a measure of
closeness between a model of the physical phenomenon, which is a function of
the parameter set, and the experimentally observed values. In the case of
least-squares, we use as that measure the sum of the squares of the errors
between our parameterized model and the observations; i.e., we assign the cost

functional (or error norm)

v® - || e® || = || x-x@ ||, (-1)

where B is the set of parameters, y is the vector of observations, and x(8) is

the parameterized model. We then go about minimizing this cost functional by

appropriately adjusting the parameter vector, B.

In this appendix, we introduce three optimization techniques that can be
used to minimize the least-squares functional. They are the method of
steepest descent, Neston’s method, and the Gauss-Newton method. We first will
introduce a general class of strategies called gradient methods, within which
the three methods mentioned fit. The steepest descent method follows directly
from the acceptability criteria for the gradient methods. W¥e then introduce
Newton’s method as a second-order Taylor approximation to the error
functional, and firally we introduce the Gauss-Newton method as a

simplification of Newton’s method.

C.1 Gradieat Kethods of Optimization

At each iteration the adjustment, or update, consists of a direction and a

step size; i.e., the update is

A=pd, (C-2)
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where p is the step size and d is the step direction. To assure that this

update can lead to a decrease in the cost functional, we must first require
that the step direction d form greater than a 90° angle with the gradient (be
downhill on the contour of ¢) at the current iterate of parameters g(b).

To ascertain this, we first note that given a direction d, the updated

paraneter vector is solely a function of the step size; i.e., B8(p) =

g(b) + pd . The cost functional along this direction is then T

2,8} = ¢{ 8 v pd} .

Differentiating this with repect to p and evaluating at p = O yields the

directional derivative of the cost functional at the current iterate; i.e.,

8¢, {8(p)} |
4 dp p=0

Noting the chain rule, this becomes

[ 80 ,{8(p)} ]T [ 88 (p) ] l
88.(p) op Jlp=e

T
= E(b) d,

where g(L) is the gradient of $(B8) at Q(L). The step direction d is then
downhill if the directional derivative is negative; i.e.,

T
‘bd,=g d<o, (C-3)
whare we have dropped the iteration index on the gradient vector., Ope way to
aszure this is to let the step direction be
d=~g, (C-4)

88




NRL MEMORANDUM REPORT 6643

which is precisely the case in the method of steepest descent--so called
because initially, this is the direction in which the cost functional descends
most rapidly. Steepest descent is well known, however, for its slow
convergence due to a zig-zag pattern along troughs in the cost functional

contour. Therefore, an alternative is desirable.

Another way to assure that the directional derivative is negative is to

find a positive definite matrix, R, and let
d=-Rg. (C-5)

An optimization technique in which the direction is so chosen, regardless of
whether the matrix R is positive definite, is called a gradient method. If
the matrix R is strictly positive definite, then d is called an acceptable
gradient direction. For all gradient directions, the directional derivative

is given by the quadratic form

T
¢ =-& Bg. (C-6)

C.2 Newton’s Method

In Newton’s method, we choose for the matrix R the inverse of the Hessian
matrix of the error functional at the current iterate. The typical element of

the Hessian matrix is

2
0 . 2@ ‘ .
ij 28.08. g =g8(¥)

J 1

This choice for the matrix R arises by approximating the error functional with

p,® =¢(8¢) ) + 5@ [g-8@ ) 1(8-8®)n® [g-5® ),

and by optimizing this approximate cost functional over the parameters; i.e.,
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differentiating with respect to B and equating the result to zero to yield the

optimum parameter set

-1
gopt = g(") - [ H(") ] g(b) . (C-7)

If the Hessian matrix is positive definite, then its inverse is also
positive definite and Newton’s method yields an acceptable direction.
Furthermorc, if the objective functional is quadratic, the Taylor
approximation is exact and Newton’s method will converge in a single
iteration. Even if the error surface is not quadratic but is nearly so (as is
often the case in the neighborhood of the ideal parameters), then Newton’s
method offers quadratic convecgence without the need for a line search to

determine step size.

C.3 The Gradient of the Least-Squares Error Norm

At this point, it will be useful to obtain an expression for the gradient
of the least-squares error functional. The arbitrary least-squares functional

can be written as

0@ = [2® ) =® . (c-8)

A typical term in the gradient is

_ T
A
Thus
g =D e+ e D, (c-9)
T
g = 2 Di(g ) &, (C-10)
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and g =2e D(e) , (c-11)
where Di is the operator that performs partial differentiation with respect to
Bi and where we have dropped the iteration index, as well as the explicit
dependence of ¢ on 8. The equality of the last three expressions follows from
the fact that both terms in Eq. (C-9) represent the same scalar product (since
the error vector is real). Iun further derivations, we will use either

Eq. (C-10) or Eq. (C-11), depending on which is more convenient for the given

purpose.

C.4 The Gauss-Newton Method

If we diiferentiate (C-11) with respect to the j’th parameter, we get the

ij’th component of the Hessian matrix as

By = 2D;(eh) Dy(e) + 2 & D (e) (6-12)
where ng(g) is the second partial derivative of the error vector with respect
to the parameters Bi and Bj, or the second-order sensitivity derivative.
(Similarly, Di(g) is the first-order sensitivity derivative. The names
reflect the fact that these quantities measure the sensitivity of the
parameterized model to changes in the parameters.) If we assume that the
error vector is small in the neighborhood in which we are optimizing, then we
can neglect the term involving the second-order semsitivity derivative and

approximate the Hessian matrix as

T
Ny; =2 D;(e) Dy(e) - (6-13)

The equation for the approximate Newton direction; i.e., d = -N-lg, can be

rewritten as the system of equations

Nd=-g. (C-14)
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If we now define the Jacobian matrix of the error vector, given by

| | |
J = [ Di(_e.) | Dz(ﬁ) | i | DK(E) ] )
then we can rewrite the gradient, from Eq. (C-10), as
E=2J ¢, (C-15)

and we can write the Gauss approximation to the Hessian matrix as

N=23"7J. (C-16)

Note that the matrix K is always at least positive semidefinite, so that
the concerns of the Hessian being negative definite or indefinite are
alleviated with this approximation. Substituting Eqs. (C-15) and (C-16) into
Eq. (C-14), the system of equations for the Gauss-Newton direction is then

T

J T

Jd=-J¢. (C-17)

But this is just the set of normal equations for the linear least-squares
problem in which the error vector is projected onto the columns of the

Jacobian matrix; i.e.,
Jdre. (C-18)
The solution for this problem is

d="-J e, (C-19)

where J* is the pseudoinverse of the Jacobian matrix. Thus the Gauss-Newton
method can be viewed as a sequence of linear approximations to the cost
functional. Note that, unlike Newton’s method, this method does require a

line search to find an optimum step size p.

92




NRL MEMORANDUM REPORT 6643

¥hile there are several other popular optimization techniques for least-
squares, including a number of variations on Newton’s method that use other
methods to ensure the positive definiteness of the Hessian matrix (e.g., the
Marquardt method, the Greenstadt method, etc.), we will confine our attention

to the three methods mentioned.
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APPENDIX D - DERIVATIVES OF PROJECTORS AND PSEUDOINVERSES

In this appendix, we parallel Golub and Pereyra [1] in deriving the
derivative of the projection operators (both onto the column space of a matrix
and onto the row space of a matrix) and the derivative of the pseudoinverse.
As noted in Chapter 5 of the text, we retain the index of differentiation in
all derivations so that the final results are expressions for partial
derivatives.
D.1 The Derivative of the Projection Operator

To calculate the derivatives of the variable projection functionals, we
need a metnod for calculating the derivative of the projection operators

Di(PA) and Di(AP)‘ We proceed first in evaluating Di(PA) by noting that PA is
idempotent, so that

D, (B,) =D, (P, P,)
=D,(P,) B, + B, D.(B,) . (D-1)

Thus the problem becomes one of evaluating the two terms on the right-hand
side of Eq. (D-1). We start with the first term by noting that A = PA A so
that

Di A) = Di (PAA)
= Di(PA) A+ PA Di(A) . (D-2)
Rearranging yields

D.(P,) A=D,(A) - B, D,(A)

= P, D,(A). (D-3)
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Postmultiplying both sides of this equation by A" and noting, on the far left
hand side, that A At = PA’ we obtain the first of the desired expressions,

1 +
D;(P,) P, = P, D(A) A". (D-4)

¥We proceed with the second term by noting that the projection operator, and

hence its partial derivative, is symmetric, so that

[Di(PA) Py ]T = P D, (B .

Substituting Eq. (D-4) into the above equation yields the desired result,

i T
P, D, () = B, D (A) A"

. 1
@hHT p, h P, . (D-5)

Substituting Eqs. (D-4) and (D-5) back into Eq. (D-1) yields the partial

derivative of the projection operator, given by

L + + T T i
Di(PA) = P, Di(AJ A"+ (A) Di(A ) P, . (D-6)

Since the row space of a matrix is the same as the column space of the
transpose of the matrix, to obtain an expression for the derivative of the row
space projector, we merely replace A by its transpose everywhere in Eq. (D-6),
which yields

T

1 . 1 .
B, P = F oD " + [ F ol anhT)

N 1 . 14T
A D (A) B+ [A D) . (0-7)
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D.2 The Derivative of the Pseudoinverse
We now provide an expression for the partial derivative of the

pseudoinverse of a matrix, which is necessary for deriving the Hessian matrix
of the VPF. We begin by noting that

I= PA + PA R
+ + + 1
so that Di(A ) = Di(A ) PA + Di(A ) PA . (D-8)

¥We now wish to find expressions for both terms on the right-hand side of
Eq. (D-8). Looking at the first of these two terms, we begin by recalling
tMtf=AfAfsownDﬁf)=%Q3PA+fDﬁDA++EDﬁfL
Rearranging yields

D,(A") B, = Apl D,(A") - A" D, () A" (D-9)

¥We now need a manageable expression for the first term on the right-hand side

of this expression. To obtain this, we again stars with

A=A
=gf.
Then D,(A") =D, (,P) A" + AP DA . (D-10)
Rearranging yields
#Df-ﬁ P) A D-11
A i()_i(A) . (")
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Substituting Eq. (D-7) into Eg. (D-10), we obtain

1 + + 1 + + 14T +
RDN)=AMM§A+“%®F}A.

But \F x*=[I-A*A]A*
=A-aAtad = 0,
L [
se we get R NCORE (& p,m 2 ] x (D-12)

Transposing on the right and substituting this back into Eq. (D-9) yields

L
D, (") B, = ,P p, (W) (T & - XD AT (D-13)

We now turn our attention to the second term in Bq. (D-8). We proceed by

writing
AT =At AN
=A" P, ,
so that D, (A") = Di(A?) P, + A D (R . (D-14)

Rearranging and substituting Eq. (D-6) in the rightmost term, we obtain

+ 1 + 1 + + 1 , + ]T
D,(A) By = ATB D(A) A"+ A EACESE (D-15)
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But Np =
+ -l-
so we get Di(A ) PA =

Finally, we obtain the partial derivative of the p. .adoinverse by
substituting Egs. (D-13) and (D-18) back into Eq. (D-8), which yields

+ 1 w1 ,+ + + + ot 1
D, =, F b, D) aHT A - x p . A+ xt anT o by

& (T-4"a]
A - art =0,

+ ot 1
NETOE Di(A?) P, .
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AFPENDIX E - FRECHET DERIVATIVSS AND A SIMPLIFIED TENSOR NOTATION

Here we examine the simplified tensor notation of Golub and Pereyra [1]
and show the difficulty in carrying this notation on to higher order
derivatives. First, we define the Frechet derivative of the basis function
matrix, which is a three-dimensional array consisting of the partial
derivatives of the basis function matrix with respect to each of the signal
pole parameters. Consider the example case of a model with two conjugate pole
pairs. There are then four signal pole parameters, and the Frechet derivative

of the basis function matrix [denoted by D(F)] will appear as

oF
D) = -— =D,
604
oF
== D3(F)
303
oF
602
oF
—— =D (F) .
601

Multiplication of this tensor with a matrix is achieved by multiplying each
partial derivative matrix with the multiplicand matrix, yielding another

three-dimensional array as illustrated below.

=) ). e

A3B

A B
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Multiplication of the tensor with a vector results in what we will call a

"degenerate tensor of valence two.? There are two cases in which this occurs.
g

When the valence three tensor premultiplies a column vector, the result
appears as follows.

When a row vector premultiplies the valence three tensor, the result appears
as follows.

If we pre- and post-multiply the valence three tensor with a row vector and a
column vector, respectively, then we obtain what we will call a "degenerate

tensor of valence one." This result appears as follows.
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That the results in the last three cases are not vectors and matrices as
ve normally think of them should be clear from the illustrations. In the last
case in particular, this valence one tensor is neither a row vector nor a
column vector in the usual sense; i.e., in the plane of the paper. This last

case precisely describes the gr-adient vector.

The real problem occurs, however, when one wishes to form the Hessian
matrix by again differentiating the gradient vector with respect to the
parameter vector. When we performed the differentiation above, the partial
derivatives were lined up in a third dimension that was not along a column or
a row. Now we wish to differentiate a valence one tensor whose elements
already lie along this third dimension, so that we must now line up the second
partial derivatives along some fourth dimension. Additional notation will, at
this point, be necessary in order to distinguish which dimension we are
dealing with. This problem becomes critical when attempting to multiply two
of these valence three tensors (one in the third dimensiocm and one in the
fourth dimension), as occurs when forming the Hessian. 0One could introduce
notation to keep track of these different dimensions, or one could abandon
this now not-so-simplified notation and adopt the full tensor notation. Or
one could simply treat each of the derivatives as a group of partial
derivatives, retaining the indexing, and ignore the specifics of the higher

order vector calculus, as we have chosen to do.
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APPENDIX F - PROOF THAT OPTIMIZATION OF THE VARTABLE PROJECTION FUNCTIONS
LEADS TO THE SAME MINTMA AS OPTIMIZATION OF THE LEAST-SQUARES FUNCTIONAL

In this appendix, we expound upon the proof by Golub and Pereyra [1] that
sequential optimization of the signal poles and amplitudes viza the variable
projection functional leads to the same optimum values as does the
simultaneous optimization of the parameters via the least-squares functional.
For siuplicity in the proof, we will follow the notation of Golub and Pereyra
and introduce the Frechet derivative D(F), which is an array of partial

derivative matrices. This derivative is described further in Appendix E.

Recall the least-squares cost functional and error vector, given by

1l

$(0,2) H (@,2) H2

and e(@,2) =y -F@) a .

Let us now define the Jacobian matrix of the least-squares error vector,

Yo = L9a0 %] -1
Oe
where = =0 (r@ ) 2, (F-2)
Oe
and J, = A T = - F(6) . (F-3)
- &

The gradient vector of the least-squares functional can then be defined as

=-2{1—Fgf[D@)g,F]. (P-4)
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If we now let

then the gradient of the least-squares functional becomes

the gradient of the least-squares functional becomes

weo =-2{ [F 0@ 1], o).

Now recall the signal basis VPF,

o = || 2 e ||

The gradient of this functional is

T L +
WO = 2y By DO F 3.

W@ s =-2(z-%s') [p® s, p]
T
=-2(y-FFy) [0®Fy,F]
=-2y PFJ'[D(F)F+1,F]
=_2{[ITPF1D(F)F*1] . [xTPFlF]}.
. 1
But, since Pp F =0,

(F-5)

(F-6)

(F-7)
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If we assume that Q* is a critical point of y(8), then

* T 1 +
W) =2y Py DO Fy=0.

£ 3 * ne . . .
Therefore, for § and a as defined above, the gradient of the least-squares

functional becomes

e =[c, 0],

which proves that a critical point of §(8) is a critical point of y(8,a) when
a is defined as above. We will now prove that a global minimizer of y(8) is

also a global minimizer of y(@,a).

For any given §, the solution of the least-squares problem becomes a
linear problem, which is straightforwardly minimized by letting at =F" Y.
Therefore, for any given £, $(8) S y(8,a). Now, if we assume that Q* is a
globcl minimizer of ¢(8) and g* is defined as in Eq. (F-5), then certainly
x(Q*,g*) = f(Q*). Now assume that there exist é and 3 such that x(é,é) <
x(8*,2%). Since 9(8) $ y(8,5), this requires that y(8) < y(8,3) ¢ y(8*,2") =
f(Q*). But since Q* is the global minimizer of ¥(), we must have equality on
all counts. Therefore, a global minimizer of §(8) is also a global minimizer
of x(8,a) over §. The converse [i.e., that a global minimizer of y(g,a) over
6 is also a global minimizer of ¢(8)] is also proven by Golub and Pereyra [1],

following a similar argument as above.
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