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SYMBOLS

Signal Model

a basis function weighting coefficients (amplitudes)

a1 amplitudes for constant basis tunctions

A2 amplitudes for unknown basis functions

f signal frequency

F(2) signal basis function matrix

F1  matrix of known basis functions

F2(0) matrix of unknown basis functions

G(O) constrained basis funtion matrix

M number of signal poles

M1  number of constant signal poles

M 2  number of unknown signal poles
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T sampling interval

v constrained observation vector

x ideal signal

I observation vector

a signal damping factor

6 white noise

0signal pole parameters

Prediction Filter

bprediction filter coefficients

B prediction filter convolution matrix

C constraint filter coefficients

C constraint filter convolution matrix

A impulse response of system

U system convolution matrix
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SYMBOLS (CON'D)

Linear Algebra

AT the transpose of a matrix A

A the pseudoinverse of a matrix A

PA the projector onto the column space of matrix A

AP  the projector onto the row space of matrix A

I
P the projector onto the orthogonal complement of a subspace

Q orthogonal matrix (from QR factorization of A)

R trapezoidal matrix from matrix factorization

R N  real N-dimensional vector space

h 1 triangualr matrix (portion of trapezoidal matrix R)

S subspace of R
N

permutation% maL.ix

the orthogonal complement of the subspace S in RN

V orthogonal matrix (from RV factorization of A)

Optimization

-estimation error

g gradient vector

H Hessian matrix

J Jacobian matrix

least-squares functional

constrained least-squares functional

O() signal basis variable projection functional

constrained signal basis variable projection functional

#3(8) Kaufman's modified variable projection functional

0(h) prediction filter variable nrojection functional

02(U )  constrained prediction filter variable projection functional
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1.0 INTRODUCTION

In this report, we present methods for estimating the parameters in models

of the form

x(8,a) = FL ) ( 0)-1)

which has been called a separable, reducible, or semilinear model [1],[2]. In

this type of model, the columns of the matrix F(j), called the basis function

matrix, are the basis vectors that span the space of the model. The vector 0

contains the parameters that enter into the model nonlinearly (the nonlinear

parameters), and the vector a contains the parameters that enter into the

model linearly (the linear parameters). We assume that we have a vector, Z,

containing observations of the model corrupted by white Gaussian noise.

In estimating 0 and a, we restrict our attention to maximum likelihood

estimation that (sinc- we assume white Gaussian noise) reduces to least-

squares estimation. That is, we minimize the cost functional (or error norm)

X !.)= I .- 2i(,a 1.(1-2)

A well known simplification of the least-squares problem takes advantage

of the structure of the semilinear model and replaces Eq. (1-2) with a new

cost functional called the Variable Projection Functional (VPF)

= I 1F(0) Y (-3)

Here PF (j) is the projector onto the orthogonal complement of the column

space of the matrix F(g). The term variable projection functional arises

because the projector is a function that varies with the nonlinear parameters,

unlike the fixed projector typically encountered in the linear least-squares

problem (Figure 1-1 demonstrates the operation of a fixed projector). For

those readers unfamiliar with t'te VPF, we provide tutorial material relating

to the derivation of the VPF and to existing methods for minimizing the VPF.

1
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- YF

Fig. 1-1 The effect of projt.-ting an arbierary vector x ont, the column space
of th. matrix F, symbolized by the plane, and onto the orthogonal complement
of the column race.

As noted by Osborne [3], yet another equivalent cost functional can be

obtained, if one has available some natrix B(I) such that

1(16) F(2) - 0. (1-4)

This second type of VPF contains a projector onto the row space of the matrix

B(2), and is written

= BP'-) Y 11 (1-5)

In addition to the tutorial material presented, we provide a detailed

discusion of Newton algorithms that use an exact Hessian matrix for each of

the VPF's. All algorithms presented in this report are given in terms of

QR-based orthogonal factorizations of matriues and are implementable directly

from the material presented here.

The performance of these new I algorithms it ex..iied in a companion

report [4], and is there compared to previously published estimators. The

focus here, however, is on providing the theoretical mathematical concepts on

which the algorithms are based, and on providing a detailed discussion of the

algorithm implementations.

2
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As a vehicle of discussion for introducing the concepts and algorithms, we

will refer to a specific model, which is a signal consisting of a sum of

complex sindsoids, also expressable as a sum of undamped or damped sinusoids.

In this model, the nonlinear parameters of the semilinear model correspond to

the signal poles, and the linear parameters are the amplitudes of each

sinusoid.

In zstimating the parameters of the exponential signal, the matrix B(2) is

a con'volution mtrix, which corresponds to the prediction filter that

annihilates the ideal signal. Since this matrix is a linear function of the

prediction coefficients, it allows for significant computational savings in

the algorithms. Because of the functional relationship of B to the prediction

coefficients, we will write B(b), where b is a vector containing the

prediction coefficients. The nonlinear parameters in 0 can then be obtained

as the roots of the polynomial whose coefficients are the prediction

coefficients.

To distinguish between the two VPF's throughout this report, we will refer

to the VPF containing the column space projector as the signal basis VPF,

while we will refer to the VPF containing the row space projector as the

prediction filter VPF. In the main body of this report, we develop two

parallel paths. One describes theory and algorithms for obtaining estimates

of the signal poles directly via minimization of a signal basis VPF. The

other describes how to obtain pole estimates indirectly by first providing

estimates of the prediction filter coefficients via minimization of a

prediction filter 'PF and then transforming the prediction coefficients into

pole estimates. In both cases, the amplitudes are obtained by solving a

linear least-squares problem in which the basis function matrix is constructed

from the ML pole estimates.

1.1 New Material

While the application of variable projection techniques to estimating the

parameters for exponential signals in noise is not new, several aspects of the

3
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problem as considered here have not been encountered in the literature.

Foremost, %L here extend existing variable projection methods by deriving the

Hessian matrix for the general VPF and by providing implementations of

Newton's method for each of the two parallel paths.

Furthermore, we constrain the exponential signal model to include known

poles. In each of the two parallel paths, these constraints are introduced

differently. In the direct pole estimation path, we use a technique which is

similar to deflation in the eigenvector problem; i.e., we project the signal

model and the observation vector onto the orthogonal complement of the

subspace spanned by the basis functions that correspond to the known poles.

The method of introducing the constraint for this VPF is general and not

limited to the case of an exponential signal.

In the prediction coefficient estimation path, we factor the prediction

filter convolution matrix into two convolution matrices, one corresponding to

the known poles and one corresponding to the unknown poles. Since this

factorization is facilitated by the nature of the convolution matrix (and thus

the exponential signal), this constraint is not applicable to the general

model.

1.2 Report Organixation

In Chapters 2 and 3, we introduce the notation that will be followed

throughout the report. Chapter 2 contains the signal model and a discussion

of the ML estimator for this signal in white noise. Chapter 3 provides a

numerical link between the ML error norm and the two different variable

projection error norms, which are the Signal Basis Variable Projection

Functional and the Prediction Filter Variable Projection Functional.

In Chapter 4, we introduce the pole constraints discussed above. This is

followed, in Chapter 5, by derivations of the Jacobian matrix, gradient

vector, and Hessian matrix for each of the two variable projection error

norms. In Chapter 6, we discuss orthogonal factorization techniques that are

4
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key components i, the nonlinear optimization schemes. Finally, in Chapter 7,

we examine the implementations of the various optimization techniques, based

on the results of Chapters 5 and 6.

In addition to material listed above, we provide fairly extensive tutorial

material in a number of appendices. In the first of these, we examine key

aspects of Linear Least-Squares (LLS) theory (such as projection operators and

pseudoinverses) and describe how some of the popular orthogonal factorizations

are used in solving LLS problems. This material is inc) .ded not only as

background for this report but also as a mathematical base for some of the

nonmaximum likelihood algorithms discussed in the companion report [4]. In

Appendix B, we go a layer deeper in the LLS discussion by examining the use of

Householder reflectors as a method of implementing the orthogonal

factorizations. In Appendix C, we discuss optimization techniques which are

useful in minimizing least-squares and variable projection functionals.

In Appendices D, B, and F, we focus on the variable projection material,

parallelling and, hopefully, enhancing the discussions of Golub and Pereyra

[1],][5]. Appendix D contains derivations for the derivatives of the

projection operators and pseudoinverse necessary to calculate the Jacobian,

gradiant, and Hessian. Appendix B discusses the simplified tensor notation

introduced by Golub and Pereyra, which centers around the Frechet derviative

of a mapping. The drawbacks of this notation in computing second derivatives

are discussed. We then expound upon a key proof from [1] that ties the

variable projection method to the straightforward nonlinear least-squares

method, and hence to the ML method.

5
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2.0 BACKGROrIND

In this chapter we introduce the signal model to be used as a vehicle for

discussing the variable projection concepts and algorithms. In particular,

the signal model will be the response of a system to a stepped sinusoid input,

where the system can be characterized by a linear constant coefficient

ordinary differential equation. This will include steady-state terms (whose

frequency corresponds to the excitation) and several decaying terms (whose

damping and frequency correspond to the system poles). Following the

introduction of the signal model, we will then briefly discuss the maximum

likelihood estimator. Specifically, we will show that for signals in white

Gaussian noise, maximum likelihood estimation simplifies to least-squares

estimation.

2.1 Signal Model

We consider the stepped sine response of a linear system modeled as a sum

of real exponentials in additive white Gaussian noise,

Yn = x n(-'a) + en (2-1)

where x(,) =C O + C1 cos(2rf1nT) + S1 sin(27flnT)

+ C2 exp(a2nT) cos(2rf 2nT)

+ S2 exp(a 2 nT) sin(2rf 2nT)

0

+ Cp exp(a pnT) cos(2f nT)

p p

+ Sp exp(,,pnl) sin(2nT)

a=[ , f, 1 ... , pS T .

7
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Here T is sampling interval and e is a sequence of white Gaussian noise.

Here, f 1 is the known excitation frequency, and the term C0 is included to

account for the DC biases introduced during the measurement process.

We can write the signal in vector form so that

. = a) + _, (2-2)

T
where x= x XN-1 I I

T

r N'

YO =[oYl,"" YN-I '

where af2 is the noise variance, and I N is an NXN identity matrix. The signal
basis functions for our signal model are

fn,1(-) = 1

fn,2(a) = cos(2rf1nT)

fn,3(-) = sia(2rfinT)

fn,4(2) = exp(a 2 nT) cos(21f 2 nT)

f n,5 () = exp(a2nT) sin(2f 2nT)

fn, () = exp(a pnT) cos(2rf pnT)

fn,() = exp(a pnT) sin(2f nT)

8
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where M = 2p+1 is the number of independent basis functions required to span

the ideal signal space. We can now define a set of spanning signal basis

vectors, given as

T

ij )= [ f. (2) , f .T) , N-1)jT0)

Finally, we define the signal basis function matrix

whose columns each correspond to one of the basis functions and whose rows

each correspond to an instant of time in the observation window. We can now

write x(gA) in the separable form (as the matrix-vector product)

2(O,.) = FLO) a . (2-3)

Our goal is to estimate the parameter vectors 0 and a.

2.2 Maximum Likelihood Estimation for Signals in White Noise

In maximum likelihood estimation, we wish to find the parameters that

maximize the probability density of the observed data given the unknown

parameters. Letting 0 and a be the collection of unknown parameters, we wish

to find 0* and a* which maximize the conditional density function (the

likelihood function)

)a = arg min p(yoyl,...,YN_l11,A)
Ga

For independently and identically distributed Gaussian noise, thc likclihood

function is

expi N x C ) 2 }. (2-4)

9



AINSLEIGH & GEORGE

Since the logarithm is a monotonic function, maximizing the logarithm of

the likelihood function yields the same result as maximizing the likelihood

function itself.

We may therefore optimize the log likelihood function as

L(01a)= ln t P(Yo, Yl. ') YN-11'2 ') }
N-

N_ ln(2r) - N ln(or) -1-- 1 Y-x (, a) )2 (2-5)

Only the last of the terms in Eq. (2-5) contains 0 and a, and it appears in

the expression with a negative sign. Therefore, since the noise variance is

assumed to be known, the parameters that maximize the likelihood function are

those which minimize

N-1 2

Tn I Yn - Xn(2.,A)n--O

which is just the least-squares functional

2
X II x(2 0-0

y F() 2(2-6)

10
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3.0 VARIABLE PROJECTION ERROR NORMS

As we have 3ast seen, the Maximum Likelihood (ML) estimator reduces to the

Least-Squares (LS) estimator when the ideal signal is corrupted with additive

white Gaussian noise. Here, we obtain further simplifications by noting the

structure of the ideal signal and introduce two modified error norms, or

variable projection functionals.

We begin by stating an observation by Golub and Pereyra [1] concerning

separable least-squares problems, for which one can first optimize a reduced

set of parameters and then find the remaining parameters as a function of the

first set. This leads to the basis function Variable Projection Functional

(VPF) which, in our case, allows us to find ML estimates of the signal poles

independently of the weighting coefficients (amplitudes).

From the signal basis VPF, we follow Kumaresan, Scharf, and Shaw [6], and

Bressler and Macovski [7], and introduce the deterministic functional

relationship between the signal poles and the prediction filter coefficients

for the filter that annihilates the ideal signal. We can then define a VPF

based on the prediction filter coefficients and show that this prediction

filter VPF is equivalent to the basis function VPF, allowing us to optimize

with respect to the prediction coefficients.

3.1 Signal Basis Variable Projection Functional

As shown in the previous chapter, UL estimation of parameters 0 and a can

be achieved by minimizing the nonlinear least-squares error norm; i.e., by

finding

a*,* = arg min XCa)

6,a

=arg min I, Rl )112, (3-1)

where the error vector eLa) is defined as R(0,a) -; y - F(2) a.

11
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One approach to find ng the optimal 0 and L consists of a three-step

process:

1. Minimize with respect to a in order to obtain the optimal function

a(O) = arg min X(-,a). (3-2)
a

2. Minimize

S= x{g, ( )} (3-3)

with respect to 0 to yield

= arg min #(). (3-4)

3. Calculate the optimal numerical values for a as

A= a(*). (3-5)

It has been shown by Golub and Pereyra [1] that, for separable signal

models, this multi-step optimization process yields the same values of 0* and

a as does simultaneous optimization of X(,Qa) in both 0 and a. In Appendix

F, we summarize their proof.

We now obtain a(Q) by differentiating the error functional X(2,2) with

respect to a and equating the resulting expression to zero.

12



NL kEMORANDMS REPORT 6643

Ka (8 { ( a)

2 L {'a ) ]T

a

=- 2 FT ( ) F (3-)

Equating this to zero yields

FT (2) F() _ FT(0) , -(3-7)

which has the solution

=( i'(0 F(O) )- F'(0) y(3-8)

and aL) =l+()y., (3-9)

where F+(2) is the pseudoinverse of F(_). Therefore, 0(0) can be written as

1 - (3-10)

Noting that this is an expression for the projection of A ont^ th orthogonal

complement of the range (or column space) of F, it is an expression of the

variable projection functional

13
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3.2 Prediction Filter Variable Projection Functional

Given the s-plane poles for an exponential signal of order M; i.e.,

s. = a.i + j2rf.' i1,2,...,M;

then the z-plane poles are calculated as

zi = exp{s.T}, i=1,2,...,M.

The z-transform of the ideal signal will thus contain the following polynomial

in the denominator

B(z) = (Z-Zl)(z-z2)°°'(z-ZM)

= zM + b -l +bZM-2 + o + bMlz + bM. (3-12)

The ideal signal therefore satisfies the homogeneous difference equation

xi+M + bI xi+M_1 + b2 xi+M_2 + "00 + bM xi = 0 ; (3-13)

alternatively written

bM xi_,+ bM_ 1 xiM+ + "oo + b, xi_1 + xi = 0. (3-14)

We can view the first M terms in this difference equation as forming an

estimate (prediction) of the present signal sample based on the last M

samples. The coefficents bi are, for this reason, often called prediction

coefficients.

14
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Since the above difference equations represent a convolution betien the

prediction coefficient vector and the signal vector, we can now define the

(N-M)XN convolution matrix

bl M • b2 b1  1

bB * M b2  b I 1 0

0 0 0

bM ee b2  bI 1

such that the rows of B annihilate the ideal signal x, and such that

B x = 0. (3-15)

Also, since each column of the basis function matrix F also satisfies the

same homogeneous difference equation, F is also annihilated by the rows of B,

and we have

B F = 0. (3-16)

Since matrix B has full row rank, its rows span an (N-M)-dimensional

subspace in RN . Similarly, since matrix F has full column rank, its columns

span an M-dimensional subspace in RN. Because the rows of B must be

orthogonal to the columns of F (as dictated by the equation BF = 0), and

because the dimeusions of the respective subspaces sum to the dimension of the

vector space RN, the row space of B and the column space of F must be

orthogonal complements of each other.

Since the row space of B is the same as the orthogonal complement of the

column space of F, then the projector onto the row space of B is the same as

tbe projector onto the orthogonal complement of the column space of F; i.e.,

I
B P = P F (3-17)

15



AI SLEIGH & 61EORGE

and we can define an error norm whose only unknown parameters are the

prediction coefficients b. This error norm is defined as

'U2) Y II~ 2. (3-18)

Since this error norm follows deterministically from the ML error norm for the

signal poles, we may note the invariance principle for the ML estimator and

optimize this functional to obtain ML estimates of the prediction

coefficients. From here, we can then find the roots of the prediction

polynomial and transform these roots from the z-plane to the s-plane to get

our ML pole estimates.

16
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4.0 SIGNAL POLE CONSTRAINTS

Since our signal model is to describe the stepped sine response .f a

linear system, we consbrain the model to contain an undamped pole .. the known

excitation frequency. Also, because we expect thert: to be some bias

introduced into the observed sign I during the observation (measurement)

process, the model should include a DC pole to offset the bias.

In the case of the basis f,! cbion VPF, since each pole corresponds to a

distinct set of basis functions (a single decaying exponential or a pair of

damped or undamped sinusoids), the pole constraints translate into constraints

on the individual basis functions. We can introduce these basis function

constraints into the optimizatin process by deflating the error space; i.e.,

by projecting the error vector onto the orthogonal complement of the subspace

spanned by the known basis functions. In the first section of this chapter,

we develop the theory behind this deflation process and present a modified

basis function VPF.

In the case of the prediction filter VPF, we deal only indirectly with the

pole parameters, opt .mizing instead over the prediction polynomial

coefficients. To introduce the pole constraints into the coefficient

optimization process, we factor the convolution matrix B into two separate

convolubion matrices: one resulting from the known poles, and one resulting

from the unknown poles.

4.1 Deflation of the Least-Squares Brror Space

Recall the least-squares error norm for our signal model and noise; i.e.,

I! 2

-F(9) a

Let us partition the basis function matrix as

F() [ F1  C)] (4-1)

17
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where F1 contains only the known constant basis functions (and is therefore

not a function of 0) and F2 (0) contains the basis functions corresponding to

the unknown poles.

If we let M1 be the number of constant basis functions and M2 be the

number of unknown basis functions, then we can partition the amplitude vector

a as

a M' ]3 " (4-2)

The Mi-vector a 1 contains the weighting coefficients for the known basis

functions, and the M2-vector a2 contains the weighting coefficints for the

unknown basis functions. Our signal model can then be written as the sum of

two matrix vector products; i.e.,

x, = F () a

= F 1 A + F2 () a2 (4-3)

The estimation error vector is then

'(Q,a 1 ,A2 ) = Y - F1 al - F2(0) a ' (4-4)

and the least-squares error norm is

= 1 12 . (4)

To take advantage of this signal structure, we first note that--given two

orthogonal vectors e1 and e2--we can decompose a least-squares error norm
A. I

consisting o' t..e sum of 1 e 12 a

18



A'RL MEVORANDUM REPORT 6643

Therefore, given an arbitrary N-vector e, we can decompose the squared norm of

e into the sum of two squared norms by projecting e onto orthogonal subspaces.

Let P1 be the projector onto the subspace spanned by the columns of the matrix

F1. Then the projector onto the orthogonal complement of this subspace is

given by

1
P1  = - P (4-7)

1
Noting that I = P1+ P1 ,we can then write

21 2

P +. *) P i e ~. 1 1

= H1 + II 111 2 (4-8)

Now, recalling the definition of the error vector e, we get

-A -a-2) I I , - F1 a, - F2 (-) a2 11H

+ 11P y ( F 2( 2) 12

=1 1 -F 1 a _ -P1 F2(0) a2 112

+ 1 li -_p1I F2(Q) .~112(4)

where we have noted that P1 F1 = f1  and P1  F 1 = 0. Noting that the second

term in the error nor.-- ic no longer a function of 1a, we decompose the norm as

X(g__l,_) = X1(_eV-,2) + X2 (-,a 2 ), (4-10)

19



AINSLEIGH & GEORGE

where 
11Q'~2  P, y F, a, - P1 F 2( -a2 11

and ;( () I I - P11  2() a

Substituting P1 = F1 F1 
+ into the expression for Xl(8,alA2), we get

-lP y - F1 A - F F+ F 2

Pf y~ -F, + F 1 +F2(2) -A2) 2

where b = a1 + F1
+ F2 ( ) A2 • We can minimize XlLOAl,a2) to zero by solving

the consistent system of equations

F1 - = P1 x (4-12)

to yield

_ = F1
+ P1 x

FI+ Pi

F1 F1 F1 +

F1+ X. 
(4-13)

20
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Here we have noted that F1
+ F1 F1

+ = F1
+. Clearly, then (given estimates for

_ and a2), X1(-Q,)a 1 a2) can be minimized to zero by letting

=- F1 + [ y - F() ) • (4-14)

Given that we can minimize X, to zero for any estimates of 0 and a2) then

minimization of X reduces to minimization of

P, yI - P, F (0) a2 112.(-)

If we now define

I
P1 (4-16)

and a(_) - P1  F2 () , (4-17)

then the least-squares error norm becomes

= II - % (4-18)

Following the same arguments as in the developments of the previous chapter,

we can now optimize with respect to 0 independently of a2 by defining a

(constrained) VPF as
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4.2 Factorisation of the Prediction Filter Convolution Matrix

We introduce the contraints into the prediction filter VPF by factoring

the convolution matrix. Recall that the denominator of the z-transform of the

ideal signal contains the poiqoawial

B(z) = (z-z) (z-z2) ... (z-ZM)

M z M-1 + b2z + M-2 + b* + + b . (4-20)

Now assume that M of the signal poles is known a priori and the remaining

M2 = - M1 poles are unknown. Then the polynomial B(z) can be factored as

B(z) = C(z) U(z),

where C(z) = (Z-Zl) (z-z 2 ).. (z-z, )

an Uz = (zl) + cz- 2 °(zzM2 )+*ecl~ ,(-1

and U(z) = (z-Z 1) (z-z 2 )*ee(z-zM 2)

= z + U + u2zM2 2 + ""0 + uM_lz + uM "  (4-22)
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If we now define the three coefficent vectors

[lb b ].. ]T

_- [ c C. c c.. ,

and u= [ 1 u 2 ... uM2] ,

then we note tha't b can be obtained as the vector convolution of c and u;

i.e.,

b = u * . (4-23)

The (N-M)XN convolution matrix B can therefore be factored as the product of

two convolution matrices: the (N-L)X(N-M 1) matrix U (whose rows contain the

elements of vector u) and the (N-M1)XN matrix C (whose rows contain the

elements of vector c); i.e.,

B = u . (4-24)

Since the matrix C contains coefficients corresponding to constant poles,

C itself will be constant, so that

a8
- , i = 1,...,M. (4-25)

8b.

Therefore, we have

aB aU
- c , (4-26)

8b. 8u.
1 1
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where we now differentiate only with respect to the unknown parameters in u.

If we adopt the operator notation

6o

Di(') = Bu. (4-27)

1

Eq. (4-12) then becomes

Di (B) = Di (U) C. (4-28)

It should be noted that premultiplication of an arbitrary vector w by

either matrix B, U, or C represents the full-overlap elements of the

convolution of w with the vector b, 3, or c, respectively. For instance, if w

is an N-vector, then the convolution b*w is an (N+M)-vector with 2M edge

effect or transient elements and with N-M full-overlap elements corresponding

to the matrix-vector product Bw. The products BT ,ufT and cT w also

represent convolutions, but with both the full-overlap and edge effect

elements present and with the elements of b, 3, and c reversed.
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5.0 DERIVATIVES OF THE VARIABLE PROJECTION FUNCTIONALS

In this chapter, we derive the partial derivatives; i.e., elements of the

Jacobian matrix, ,gradient vector, and Hessian matrix for the two variable

projection functionals. -We first parallel Golub and Pereyra [1] in deriving

the typical columnof the Jacobian matrix and element of the gradient vector

of -the signal basis YPF. 'We -then extend .previous work by introducing the

'Hessian for this ,YPF. Following this, we repeat. the Jacobian, gradient, and

Hessian derivations for theprediction filter VPF.

Throughout this work, our notation is different from that of previous

investigators in that we retain the index of differentiation-and derive all of

the derivatives as partial derivatives. Golub and Pereyra [1], on the other

hand, introduced the Frechet derivative of the basis function matrix, which is

an array of partial derivative matrices (a simplified view of a valence three

tensor), allowing them to derive the gradient without having to resort to full

tensor notation. In Appendix E, we examine this simplified tensor notation.

When attempting to form the Hessian matrix in this simplified notation,

however, one is lead to attempt the multiplication of two three-dimensional

arrays, which is undefined in the simplified notation. The problem could be

overcome by introducing the full-blown tensor notation, but the alternative

developed here seemed simpler and clearer. By retaining the indexing and

partial derivatives, only the regular rules of linear algebra need be

observed. Furthermore, with the indexing retained, the equations more nearly

reflect the computer code necessary for software implementation of the

algorithms.

5.1 Derivatives of the Signal Basis Variable Projection Functional

We now introduce the derivatives for the signal basis VPF. The first two

subsections are tutorial in that they expound upon the work performed by Golub

and Pereyra [1]. These draw upon the derivative of the column space projector

described in Appendix D. The third subsection, which introduces the Hessian

matrix, presents material that has not been encountered in the literature.
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JACOBIAN MATRIX

Recall the definition of the signal basis VPF

#()= Ij I~ I 1

The error vector in this case is

I
a-T)- (5-)

The typical column of the Jacobian matrix is therefore

Ji = Di ()

=Di PF" Y

= - Di(PF) x

Substituting Eq. (D-4) for the partial derivative of the projector, we get the

desired expression

-1 - L Di(F) F + (F+)T Di(FT) p }
= - PF D. (F) F y - (F+)T Di(FT) x (5-2)

GRADIENT VECTOR

We derive an expression for the gradient by noting Eq. (0-9) i.e,

gi = 2 eT DiLe) = 2 eT J.. Substituting Eqs. (5-1) and (5-2) from above,

this becomes
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2. 2 PF I )y PI Di (F) Fy +(F)Ti(T FIx

1i + (F+ +T(F)P,

2 7PF Di(F) k y - T P (e')T Di (FT) PF I (5-3)

where, in the first term, we have noted that the projector is symmetric and

idempotent. Now, since

PF (F+ )T= (F+)PFz

T

F+ F + F F+ 0

[-(,-+F+) =0,

-the second term in Eq. (5-3) vanishes, leaving the desired expression for the

i'th element of the gradient of the signal basis VPF, which is

gi - 2 yT PF Di (F) . • (5-4)

!FSSL4N MATRIX

The typical element of the Hessian matrix is obtained by differentiating

the i'th element of the gradient with respect to the j'th parameter; i.e.,

Hij = Dj(gi). Substituting Eq. (5-4) for the gradient element, we obtain

- 2 XT PF Di(F) F +

=- - 27j[ I )

2 TDj P LDi(F) F- )
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Applying the product rule of differentiation then yields

H - -= 2TD.(PF ) DijF) F y 2 T D2 (F) F+1•jY-P ii

- 2 1 i(F) D (1+ ) y (5-5)

Here, D2 (F) is the second partial derivative of the basis function matrixij
with respect to parameters 0. and 0.. Substituting Eqs. (D-4) and (D-11) for
the derivatives of the projector and the pseudoinverse and noting that

Dj. P 1= D.(P)

we obtain

H.- 2J F D (F) F+ + TD T 1 Di(F) F+ y

-2 T 12 (F F - 2 I PF Di(F) FI D (FT) (F+)T p+

- F+ D.(F) F+ + F+ (F+)T Dj(FT) PF ]-

-2 yPT D (F) F+ Di (F) Fy + 2 T (F) TD(F T) PF" D
i (F) F+ x

SPF 2 T+  1 T +-

-i D2 (F) e - 2 i PF Di(F) FP D (FT) (F+)T F (5-6)

+ 2 .T p'. D.(F) F + D.(F) F + y -'2 IT- D.(F) e (F+)T D.(FT) p
X L J I " "

A very interesting case is when the basis function matrix has full column

rank. In this case, since there are M independent columns, there must also be

M independent rows, so that the rows of F span the entire M-space in which

they lie. The null space of F therefore contains only the zero vector. In
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this case, the projector onto the row space is the identity matrix; i.e.,

FP = IM . The projector onto the orthogonal complement of the row space (the

projector onto the null space) is therefore the zero matrix; i.e.,

I
F = 0

The.lourth term in Eq. (5-6), which contains the projector onto the null space

of F,. therefore vanishes in the full rank case, leaving the following

expression:

H.. = 2 P y Dj (F F* Di () - ( (F D.(FT+D

-2 (F (p)T Di (FT) P, _LT T D () F ' .)

+ 2 P F D (FM F + 1 JTL F Di(F) e X) .(5-7)

In the stepped sine response signal modeling problem, the rank of the basis

function matrix is determined prior bo the pole optimization. The basis

function matrix can therefore be assumed full rank during Lhe optimization

process, and Eq. (5-7) is the applicable equation for the Hessian. Chapter 7

contains an implementation of Eq. (5-7) based on the QR factorization of the

basis function matrix.

5.2 Derivatives of the Prediction Filter Variable Projection Funntional

We now present the derivatives of the prediction filter VPF. While these

developments parallel those given in the previous se"-ion, they have not been

encountered in the literature in their present form. Here; again, we first

derive the Jacobian matrix by noting the partial derivative of the row space

projector given in Appendix D. We then derive the gradieiib vector, and by

differentiating the gradient, we derive the Hessian matrix.
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JACOBIAN MATRIX

The definition of the prediction filter VPF is

11 'P B 112,

so that the error vector is

e(b) = BP Y- (5-8)

The typical column of the Jacobian matrix is therefore " = D.)(e) = Di(BP)y.

Substituting Eq. (D-5) for the partial derivative of the projector, we get the

desired expression

I j T

B+ + )T

J. B= BD(B) ,P + ( B D.(B) BP ?

= Di (B) BP Y + BP  Di (BT) (B+)T (5-9)

GRADIENT VECTOR

To derive an expression for the gradient, we again note Eq. (0-9); i.e,

gi= 2 sT Di(e) = 2 eT J.. Substituting Eqs. (5-8) and (5-9) from above, this

becomes

g 1 =2 (BP Y)T{B Di BP' + [BDi (B)BP) Y

= 2 y 3P  B+ Di(B) BP x + 2 y BPB P  Di (BT) (B+)T

The two projectors in the second term annihilate each other; i.e.,

I
BPB P =0
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Also, the columns of the pseudoinverse of B span the same space as that

spanned by the rows of B, so that the pseudoinverse is unaffected by the

projector onto the row space. This becomes evident by writing

BP B B B

-B +.

Noting the above remarks, we are left with the desired expression,

g. = 2 y B D )  (-10)
1 ~T Di(B) BP 5-0

Proceeding as before, we obtain an expressien for the typical element of

the Hessian matrix by differentiating the i'th element of the gradient vector

Hij = Dj(g.). Substituting Eq. (5-10) for the gradient, we obtain

H. 2=TD. IB + D()P

= 2 TD[ iD(B) BP

Applying the product rule of differentiation then yields

H..= 2 T D.(B) Di (B) P 
" z +2 _B+ D2 (B) B e

13j ( B Y

+ 2 yT B+ Di (B) D(BP ) z (5-11)

Here, D? (B) is the second partial derivative of the prediction filter

convolution matrix with respect to parameters b. and b.. Since the elements
1 3

of the convolution matrix are the prediction coefficients themselves, the

fir-st derivatives will have ones as the only nonzero elements. The second
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derivative of the convolution matrix, and thus the second term in Eq. (5-11),

therefore vanishes. Substituting Eqs. (D-5) and (D-11) for the derivatives of

the projector and the pseudoinverse, and noting that

Dj( B~ P I D i(BP)

we obtain

H.. =2 yT [~ BPD( (B +) B' - B D. (B) B

B+ (B+)T D (BT) P Di() BP y

-2 X T e Di (B) D B i D(B) BP+BPID (B )(B+)TJ
T +

= T BP  D (BT ) (B+)T B D (B) BP I -2 yT B+ DB) B+ D.(B) pB I

T.Z + (B+)T D.(BT) L 1
+2 B B Di (B) BP

-2 X B+ Di(B) B D (B) SP I  
2 yT B+ D.(B) P D( (e) T
BPBB

(5-12)

Due to the structure of the convolution matrix, its rows are necessarily

independent; i.e., B has full row rank. Since there are (N-M) independent

rows, there must be (N-M) independent columns, so that the columns of B span

the entire (N-M)-space in which they lie. The projector onto the column space

is therefore tie identity maLrix; i.e., PB - I. The projector onto thc

orthogonal complement of the column space is therefore the zero matrix; i.e.,

P B = 0. The third term in Eq. (5-12), which contains the projector onto the
orthogonal complement of the column space of B, therefore vanishes in this

case, leaving the following expression.
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(B) =-9 D ( )IT + D (B) D (B) 1

+2 (B+ D (B)BP I T Be Di(B) BP" .

-2(BP~B D~T (j)I)B D(BT) (B)TX . (5-13)

Chapter 7 contains an implementation of Eq. (5-13) based on what we call an RV

factorization of the convolution matrix. This factorization, as well as the

qR factorization mentioned in Section 5.3, will be the subject of the next
chapter.
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6.0 ORTHOGONAL FACTORIZATIONS FOR NONLINER OPTIMIZATION

In this chapter, we consider two versions of the QR factorization, which

will be utilized in effecting the pseudoinverse and projection operators

necessary for the optimization strategies. The first version is one in which

we transform the basis function matrix from the left such that Q F = R

where Q is orthogonal and R is upper triangular. We will refer to this

factorization as the QR factorization, even though, strictly speaking, it is

the Q TR factorization of matrix F.

In the second case, we transform the convolution matrix from the right

such that B V = R, where V is orthogonal and R is now lower triangular. We

rill refer to this as the RV factorization. In achieving this factorization,

we will take advantage of the special banded structure of the convolution

matrix.

6.1 Q Factorization of the Basis Function Miftrix

We facilitate the formation of the MTF and its derivatives by factoring

the full rank NXM basis function matrix F as

0

where Q is an orthogonal NXN matrix and

O1 = //MX

is square, upper triangular, and nonsingular. We may then write F as

F = QT R. (6-2)

35



AINSLEIGH J GEORGE

The pseudoinverse of F can now be defined as

F+ =R + Q, (6-3)

where R [ R1 1' 0 ].(6-4)
As is shown in Appendix A, the projector onto the column space of the basis

function matrix can be formed from this factorization as

oF QT [0 ] F ' (6-5)

where IM is the MXM identity matrix. The projector onto the orthogonal

complement of the column space of F is then

I
P = IN -PF

= T q] . (6-6)
0 1 IN-M

As described in Appendix F, this factorization is achieved by applying

successive Householder reflectors from the left of F so that q = HM  11. H2 HI,

where each Hi represents an elementary matrix containing a Householder

reflector. Here we do not explicitly form the matrix q or any of the H..1

Instead, we retain the information necessary to reconstruct the Householder

reflectors when we need to apply the transformations.

6.2 RV Factorization of the Convolution Matrix

Here we describe an efficient method for factoring the (N-M)XN prediction

filter convolution matrix B. Since B is already upper trapezoidal, we can

apply Householder reflectors from the right to transform B into a lower

triangular matrix. This is essentially the same factorization used in the
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complete orthogonal factorization for rank deficient matrices. The RV

factorization results in the following:

B V =R E[IR 0] (6-7)

where R I = N//i (N-M) x (N-M)

is square, lower triangular, and nonsingular. With this, we may write

B=RyT , (6-8)

and define the pseudoinverse of B as

B+ =VR +, (6-9)

where e= [-1 (6-10)

Given the RV transformation described above, the projection operators onto

the row space of B and onto the orthogonal complement of the row space are

defined as

BP= B+ B

= VR+RVT

=V[ IV I0 VT (6-11)

and BP = IN  BP

= v - ]vT (6-12)
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Representing each Householder reflector by the elementary transformation

matrix Hi, the orthogonal matrix V can be written as the product of the

individual elementary transformations; i.e., as V = H, H .'. HN -M. This is

an important representation of V since, when applying the orthogonal

transformation represented by V, we in fact apply the sequence of elementary

transformations represented by the H1 . Furthermore, we do not form any of the

H. explicitly but retain the minimal amount of information necessary to

reconstruct these transformations as needed.

The order of the H. in the above expression is important because while we

form V as a sequence of transformations operating from the right of a matrix

(as a postmultiplication, operating on a row vector), we generally apply the

transformations to other vectors from the left (as a premultiplication,

operating on a column vector). As is shown explicitly by writing V y =

H, H2 0* HN-M Y, changing from postmultiplication to premultiplication

requires that the Householder transformations be applied in the reverse order.

The banded nature of the convolution matrix allows for computational

savings during the orthogonal factorization process. Since each row starts

out with exactly M nonzero elements to the right of the diagonal, and since

these rows retain the zeros throughout the transformation process, each

Householder reflector is constructed from an (M+I)-vector as opposed to an

N-vector. Since N is usually much greater than M, this can amount to

conbiderable savings.

Furthermore, each Householder reflector effects only the M rows

immediately following the row from which it was constructed. For example,

consider the i'th reflector. If we were to continue applying the reflector

beyond the (i+M-1)'th row, its effects would be squandered on the zero

elements contained below the diagonal; i.e., upon reaching these later rows,

it would be transforming an (M+1)-dimensional vector of zeros. The net effect

is to reduce the number of rows that must be transformed by each reflector

from (N-M-i) to M.
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7.0 CONSTRAI MAMM LIKEIHOOD ALGORITHMS

In this chapter, we describe how to implement the kernel elements of the

constrained maximum likelihood algorithms, which utilize the methods of Gauss,

Newton, and steepest descent. In particular, we show how to construct the

Jacobian matrix, gradient vector, and Hessian matrix for each of the

constrained VPF's.

First we present these derivatives for the constrained signal basis VPF,

given in Eq. (4-18) as

#2(2 = 1P (-) X 112

Prior to presenting these derivatives, however, we will discuss an economical

way of introducing the pole ccnstraints; i.e., of deflating the least-squares

error space. This method will take advantage of the structure of the

projection operator when written in terms of the orthogonal matrix from the QR

factorization.

We then will implement the derivatives of the constrained prediction

filter VPF,

Here, the vector u contains the prediction coefficients corresponding to the

unknown poles. These coefficients are the elements of the matrix U, which

results from the factorization of the convolution matrix given in Eq. (4-23)

as B = U C.

7.1 Optimization of Exponential Poles

We now develop algorithms for minimizing the constrained signal basis VPF.

Jftcr describing the implementation of the pole conftraints, we describe the

formation of the Jacobian matrix and note a simplified Gauss-Newton algorithm
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introduced by Kaufman [8]. We then discuss the the gradient vector and the

Hessian matrix, which are necessary for implementing the Newton algorithm.

IPLEVENTATION OF TIZE POLE CONSTRAINTS

In this subsection, we describe a modified version of the constrained

basis function matrix G = P1 F2 (), and the constrained observation vector

X = P1
1 y. Here, P11 is the projector onto the orthogonal complement of the

column space of the matrix F1 (which contains the basis functions correspond-

ing to the known poles) and F2 is the matrix of estimated basis functions.

Now recall the constrained least-squares functional, given in Eq. (4-6) as

If we perform the factorization

wI F1 = R, (7-1)

where W is an orthogonal matrix and R is an NXM I upper triangular matrix,

then we can form the projector

I T
pI =W 1TI W., (7-2)

where [ 0 I O
0 1 N-MI

The constrained least-squares functional then becomes

,12 (21 k) 1x-F() 2J II
If we now note the isometric properties of W1 , this becomes

I II W1 [ _F
2 -0) 

112.
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And, finally, if we partition W1 as

112 N-m1

then our least-squares functional can be written as

[22'2 0] 2:: [- ) -a2)0 T 1W12

2

W1 2 ( - - F2 ) 2) 112

j _i G - ) a2 1,2

Substituting the linear least-squares estimator ior a2, we get

where G = V12 F2 (7-3)

and v = W1 2 Y- (7-4)

To effect these, we apply the orthogonal matrix V1 to the columns of F2 and to

X, then discard the first M1 rows of W1F2 and the first M elements of W1x,

leaving the (N-M1)M 2 matrix G and the (N-M1)-vector v.

41



AINSLEIGH & GEORGE

PSEUDOINVERSE AND PROJECTOR DEFINITIONS

Throughout the remainder of this section, we use results from the QR

factorization of the constrained basis funtion matrix, given by

QG-R, R = ] (7-5)

In particular, we will use the following definitions for the pseudoinverse and

projection operators:

a'=e Q, 1+ [ -1 1 0] (7-6)

Pa = Q T I, I 2 (7-7)
O0 0 N-H

PGi =QT1 [0 0) M2  (7-8)
PG = Q 12 4 , 1 - o )N-M

JACOBIAN MATRIX GALCULATION

The Jacobian matrix is defined as the derivative of the error vector with

respect to the parameter vector. If we take the partial derivative with

respect to a single parameter, then we get a column of the Jacobian matrix.

An expression for this, given in Eq. (5-2), is

-i -PG Di(G) - (G)T D(T) PG
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Substituting the definitions for the pseudoinverse and projector, we get

J =- T i2 qDi(G) R+ Q Q T (R+)T Di(GT) QT i2 Q (7-9)

and/or Ji =- qT 2I2 Q D G) R Q + (R) T D GT ) QT I 2Qv_.J (7-10)

If we now define the N-vectors

ail = Q Di (G) R Q (7-11)

and z-i2 = (R+)T Di(T) QT 12 Q (7-12)

then the typical column of the Jacobian matrix becomes

Ji=- Q T I2 -il + i2 ) . (7-13)

At this point, it is convenient to define the (N-M1)-vector

_= Q~ _(7-14)

so that Eq. (7-4) then becomes

= Q{D~() { ~!}} .(7-15)

Here we have included braces to denote the order in which we perform the

operations. First, we perform back substitution of the M2XM2 matrix R1 with

the first M 2 elements of w to yield the M2-vector x = w . Since Di(G) is

an (N-MI)XM2 partial derivative matrix with only one or two nonzero columns,

the next step will involve some indexing to selectively multiply the nonzero

elements of each row by the coresponding elements of x to yield the (N-MI)-

vector Di(G) R w . Next, we apply the orthogon"'_ matrix Q to yield zil.
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In evaluating 'i2' we substitute Eq. (7-15) into Eq. (7-13) to yield

Ai2 =(kf ) T{ D(_T { Q112

Here, we've again used braces to indicate the order of operations. We first

replace the first M2 elements of vector w with zeros and apply to w the

transpose of the orthogonal matrix q. We then form the inner product between

the nonzero columns of Di(G); i.e., those which correspond to the i'th

parameter and the N--vector QT 12 w. These inner products are the nonzero

elements of the l-vector Di(GT) T 2 . We then perform forward

substitution of the lower triangular matrix RIT with the first M elements of

the vector Di(GT) QT 12 w to yield the M2 nonzero elements of zi2"

To complete the i'th column of the Jacobian matrix, we would define an

(N-M1)-vector z , whose first M2 elements are the elements of zi2 and whose

last N-M elements are the last N-M elements of zill and then apply to this

vector the transpose of the orthogonal matrix Q. Since, however, we normally
use the Jacobian matrix for approximating the Hessian matrix as

H t 2 JT J , (7-16)

this leading matrix T will cancel itself in the product, so that the final

step of applying matrix QT can be skipped. Using this approximation to the

Hessian, the approximate Newton direction (the Gauss-Newton direction) can be

obtained (see Appendix C) by solving the linear least-squares problem

J d = -e. Here, we note that the leading matrix QT appears in the definitions

of both the Jacobian matrix and the error vector e = 4T 12 Q Y, so that it

should be neglected when the Gauss-Newton direction is the desired end result.

A much simpler Gauss-Newton algorithm, however, has been devised by

Kaufman [8] that allows us to avoid computing i2' hich is the

computationally more costly of the two z. terms. In a manner similar to the

introduction of the pole constraints, Kaufman's algorithm takes advantage of

the structure of the projection operator when constructed from the QR

factorization of the basis function matrix. This is the topic of the next

subsection.
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MODIFIED GAUSS-NEWTON ALCORITTH

Noting that the matrix Q is isometric (i.e., length-preserving), we know

that

2 12

11 i X 11(7-17)

We can therefore define the modified variable projection functional

= Q2  , (7-18)

where we have partitioned Q as

1  "2 N-M2 (7-19)

While the partial derivative of Q2 is dependent upon the orthogonalization

process in which the matrix Q is determined (and therefore is not unique),

Kaufman [8] derives the following general formula whose results (though

nonunique) are similar within an orthogonal transformation:

Di(Q 2 ) =-Q 2 Di (G) R Q r Q , (7-2n)

where rT + r = O. (7-21)

Since the matrix r is not unique, neither is Di(Q2). We can, however, choose

0 L 0, which certainly satisfies Eq. (7-21), leaving
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J. = D.(4) V = - Q D.(G) R+ Qv , (7-22)

which is just the last N-M elements of the N-vector zil from the previous

subsection.

For this modified signal basis YPF, the error vector is

e=Q2 v.

Defining the matrix J, whose columns are the T the equation for the

modified Gauss-Newton direction becomes

GRADIENT ECTOR GALGULATION

The typical element of the gradient vector is given in Eq. (5-4) as

= - 2 _T G Di (G) v

Substituting for the pseudoinverse and projector, we get

gi- 2 vT QT 12 Q D(G) R+ v

2 w T 2 l l - ,(7-23)

where w and zi! are formed as described in the previous subsection.

HESSIAN MATRIX CALCULATION

We begin by recalling the expression from Chapter 5 for the typical element of
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the Hessian matrix, which is given by

LGX 2(P J ()G Di (G) D. (G) + Di (G) G+D() C

- vG
-2 [ (G+)TDG +) 1z T ((G+D(T _ 1

PC Di G) T ( PG Di(G) G ] "

If we substitute the definitions for the pseudoinverse and projector in terms
of the orthogonal factorization, we get

2-QT 2 X )T ( D(G) Q i ( ) + Di(G) kQ D (G) ) R+ Q

-2{(R+ Q]Di(GT) QT J2 Q T kR+Q])T D(GT) 4T12 Q

+ 2 (QT 12 Q D j(G) R+ Q X )T QT 2 Q Di (G) R+ Q X

-2 2 ( 1(G) QD(G) - iQ D (G) + q Di ( G) R Q D )(G) R+ w

-2 (+)T D 1() Q T Q4, T QDQ (R+) GT) 12 E )

+ 2112 Q D. G TQ4 2QDi (G)k+w , (7-24)

where w is defined the same way as during the Jacobian calculation. Note that
the product QQT will become identity in the last two terms. Let us also
recall our previous definitions of x, il, and zi2 ; i.e.,
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_ +
X= R 3,

Ail = Q Di(G) R + w

and Ai2 = (R) T Di(G) QT 12 w

We now can write the typical element of the Hessian as

Hi =2 i 2 Ai1 + i2 1 - 4i2 j 2 -'jl 2 Ail

-2 ] 2 QD0.(G) xj (7-25)

Here we will need to perform some special indexing to achieve the

multiplication by the second partial derivative matrices. Otherwise, this

last term is calculated straightforwardly. Having obtained the Hessian

matrix, the Newton direction is the solution to the equation H d = - g, which

is a square symmetric system that can be solved efficiently using the LU

decomposition.

In the neighborhood of the minimum (where we are most likely to use

Newton's method), the functional is approximately quadratic so that a line

search to determine step size is not necessary; i.e., we set the step size

equal to one.

7.2 Optimization of Prediction Filter Coefficients

We will now discuss the algorithms for minimizing the prediction filter

VPF. This path yields much more efficient algorithms because the convolution

matrix is a linear function of the coefficients. The formation of the

convolution matrix and its derivatives is therefore purely a matter of

indexing. Furthermore, the second partial derivatives of the convolution

matrix vanish, thus simplifying the Hessian calculation. There does not,

however, appear to be a Gauss-Newton algorithm which is equivalent to the

Kaufman algorithm.
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Because forming the Hessian matrix is only slightly more costly than

forming the Jacobian matrix for this error norm, and because Newton's method

generally does not need a line search to determine the step size, Newton's

method is computationally more efficient than the Gauss-Newton method when it

can be used; i.e., when the Hessian is positive definite.

PSEUDOINIRSE AND PROJZCTOR DEFINITIONS

Throughout the remainder of this section, we will use results from the RV

factorization of the convolution matrix, given by

B V= R, R = [1110]

In particular, we will use the following definitions for the pseudoinverse and

projection operators:

B+ =VR +  + , l l_

B = V R',"0

0

BT =1VVT 10 [- -

0 0 M

0 1 M

JACOBIAN MATRIX CALCULATION

We begin by recalling the expression from Chapter 5 for typical column of

the Jacobian matrix, given by

J. = B + D. B PYPD(B) TP'  ) R+±B B- B D X + BP D(BT) +)T
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If we recall th-.t t.he Dartial derivative of the convolution matrix can be

factored as Di(B) = Di(U) C, then we get

-4 =VR + Di (U) 0 V 2 VT Y + V ( VT OT Di 7U
T) (R+7T y (7-26)

Let us now define

- R D T  (7-27)
i(U) C Vk12 Y,

and -2- VT CT Di(uT) (R+)T vT . (7-28)

The typical column of the Jacobian can then be written as

. =V( l + % ) (7-29)

As before, we note that the primary purpose for forming the Jacobian matrix is

to calculate the Gauss-Newton direction d by solving the linear least-squares

problem J d n - e. We also note that the orthogonal matrix V appears as the

leading term on both sides of the equation (i.e., in the definition of both J

and e), so it can be ignored.

In discussing the formation of the z., an example case will be helpful to

illustrate the manipulations of the convolution matrices. We will consider

the case with N = 12, MI = 3, and M 2 = 2 (thus M = 5). Thus, for our example
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b5 b4 b3 b2 b1 1 0 0 0 0 0 0

0 b5 b4 b3 b2 b 1 0 0 0 0 0

0 0 b5 b4 b3 b2 b1  1 0 0 0 0

B 0 0 0 b5 b4 b 3 b2 b1 1 0 0 0

0 0 0 0 b5 b4 b3 b2 b1  1 0 0

0 0 0 0 0 b5 b4 b3 b2 b1 1 0

0 0 0 0 0 0 b5 b4 b3 b2 b1  1

u2 uI 1 0 0 0 0 0 0

0 u2 u1 1 0 0 0 0 0

0 0 u2 u1 1 0 0 0 0

0 0 0 u2 u 1 0 0 0
U2 1

0 0 0 0 u2 u1 1 0 0

0 0 0 0 0 u2 u1  1 0

0 0 0 0 0 0 u2 uI 1

C3 C2 e1 1 0 0 0 0 0 0 0 0

0 c3 C2 cI 1 0 0 0 0 0 0 0

00 c 3 c2 eI 1 0 0 0 0 0 0

0 0 0 c3 c2 C1  1 0 0 0 0 0

0 0 0 0 c3 c2 c1  1 0 0 0 0

0 0 0 00 c 3 c2 c 1 1 0 0 0

0 0 0 0 0 0 C. C C. 1 0 n

0 0 0 0 0 00 c 3 c2 c 1 1 0

0 0 0 0 0 0 0 0 c3 e2 e1  1
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Before evaluating the zi, it is convenient to define

W= I ; (7-30)

so that the expression for zil becomes

.i.= R +  Di(U) { V I }

As before, the braces indicate the order of operations in forming the vector.

We begin by setting to zero the first N-M elements of the vector w and by

applying the orthogonal transformation represented by matrix V. We then

effect the premultiplication by matrix C as a vector convolution, without edge

effects, between V 12 M and the vector

[ 1 c I c 2 *00 CM

If 'Ye now examine the structure of the partial derivative of matrix U with

respect to one of the coefficients, we see that 6hese derivative matrices are

merely (N-M)x(N-M) identity matrices with zero columns added to make an

(N-M)X(N-Ml) matrix. Shown below is the partial derivative of matrix U with

respect to u2 for our example.

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

2,  0 0 0 1 0 0 0 0 0

2(U) = - =
0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

If we premultiply an arbitrary (N-M1)-vector x with this partial derivative,

we see that the result is simply to select an (N-M)-element segment of the

vector x. For our above example and the vector

= [ X, x2 "'" x9  ,
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the resulting product is

rT
D 2 (U)x [x 1  x 2  . . 6  x 7 J1

The partial derivative of our example matrix U with repect to u1 would contain

zeros in the first and last column, and an identity matrix in columns two

through nine. This would appear as

DI (U) x 2 x x3 . . 7  x 8 ]T

Extending this to the general case, we would obtain

rT
D,2(U) x = [ x x.. XNM -1

T

D M2_i(u x 2 , xN-+

DIM x -- M2  x 2,i •1 xN-Mi-1 1]T

The matrix product can therefore be effected simply by selecting the

appropriate elements from the (N-M1)-vector C V 12 w to form the (N-M)-vector

Di(U) C V 12 A. Having obtained this result, we now effect the

premultiplication of the matrix R+ by performing back substitution of the

(N-M)X(N-M) matrix R with the first (N-M) elements of the product

Di(U) C V 12 ! to yield the nonzero elements of zil.

The expression for zi2 is

. = T {T {D {F T w}
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We begin forming zi2 by performing forward elimination of the (N-M)X(N-M)

lower triangular matrix R1T with the first (N-M) elements of w to yield

x = (R) T w. We then again note the special structure of the partial

derivative matrices and recognize that the transpose of each of these matrices

is simply an (N-M)X(N-M) identity matrix with zero rows added to make an

(N-M1)X(N-M) matrix. Thus when we premultiply the above (N-M)-vector x with

one of the derivative matrices, the effect is simply to pad the vector with

zero elements to make an (N-M,)-vector; i.e., the vector

X= X 2 .•.. x 7 1) ,

when premultiplied by D2 (UT) from our example becomes

D2 (UT) =[ 1  2 ••6 7 o o].

For the derivative with respect to u,, this product becomes

DFrtT) g =e[eo s wt an ""6 x 7  oc a.

For the general case, with an (N-M)-vector , the resulting products are the

following (N-Ml)-vectors:

DM(U)x =[ x x2 . . XNM  0 ... 0  ] ,

D2I(T =[ x x2 . . .x NM ... O]

0

0

D1(UT) = [o..o x1 x2. .xoNM0

where the total number of zeros in each vector is equal to IA2 "
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The next step, after having effected the multiplication of the partial

derivatives, is to premultiply by the transpose of the convolution matrix C.

This is equivalent to convolving, with edge effects, Di(UT) 2 with the vector

cmI CMl+1 1l

We then apply the transpose of matrix V to yield the result zi2.

GRADIENT YEGTOR CALCULATION

Recall from Chapter 5 that the typical element of the gradient vector is

gi : 2 yT B Di(B)BP .

Substituting the definitions for the pseudoinverse and projection operator in

terms of the RV factorization and recalling that Di(B) = Di(U) C, this becomes

9 =  R Dy C e D T (7-31)

If we now substitute w for V T, we get

gi = 2 3! T + Di (U) CVw2 . (7-32)

But we can also recognize that this is the same as

gi = 2 w (7TA(-33)

where sil is formed as described in the previous subsection.

ffSIN MATRIX CALCULATION

Recall from Chapter 5 that the typical element of the Hessian matrix for
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the prediction filter VPF is given by

2T  Bp  D B(B +)T  +  B i (B) B D(B) P

BDi(B) IBD .(B) BP + B P D.i(B ) (B+)

'2 BI (T)DB)BP - 21 T t+ D (B) B D(B) BP

2 + B+ I T+I T±
-2 B Di(B)e Dj(B) BP I - 2 1 B + Di(B) BP D.(BT) (B-) T Y.

Substituting the definitions for the pseudoinverse and projection operator

in terms of the RV factorization, and recalling that Di(B) = Di(U) C, this

becomes

H 2 V 1 2 V T CT D (UT) (R+)T VT V R+ D(U)CV VT

i 2jTR+D(U)VR+)(UCC1 V 1 V
-2 JT Y e D i(U) C V e Di(U) Cv v 1 T

- 2y V Di(U) CV R+ D (U) CV VT

-2 y~ T Ve (U) C V 12 VT CT D (UT) (R+)T VT

Hij =2 AT 12 VT CT D (UT) (R+)T e Di(U) C V I w

-2 2 ,T e D.(U) C Y e D i(U) C :12 'w

- 2 )T R Di(U) C V R Dj(U) C V I E

- 2 !TR+ Di(U) C V VT 6T D (UT) (R+)T w. (7-34)

We can further simplify this as
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H 2 D R i D(U) C a I R] [aDi (U) C V 2 ]

- 2 [T JP T D.( (R+)TW T)!~ Di(U) C V 12 1

-2 [T vCT Di(T (k+)T T T D i(U) 0 V 2 2!

-2 [ 2 vT CT Di(UT) (R+) ])T [ 2 VT CT D (UT) w) ] (735)

and Hi.- = 2 T + -T T (7-36)i - -Zil -kz2 &j- +'j -Ril - -i2 2-j2 '

where the zi, zj were calculated for the Jacobian matrix. As before, the

Newton direction is calculated from the equation H d = - g, and the step is

taken with step size equal to one.
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APPENDIX A - REVIEW OF LINEAR LEAST-SQUARES THEORY

In this appendix, we review some of the elements of linear least-squares

theory essential to nonlinear least-squares optimization. The purpose here is

two-fold: to elucidate in some detail the nature of the projection operator,

the generalized inverse, and the pseudoinverse; and to describe the

application of the QR factoriiation (and its relatives) to solving linear

least-squares problems.

We will begin by examining the orthogonal projection operator. Here,

fcllowing the the work of Halmos [9] and Wilkinson [10], the properties of the

projection operator will be discussed. The eigenstructur of this operator is

also examined. We then examine the properties of the generalized inverse for

finding general solutions and minimum norm solutions to consistent equations

and linear least-squares problems. This will culminate in a discussion of the

Moore-Penrose generalized inverse, or pseudoinverse, which leads to the

minimum norm least-squares solution.

Following this, we examine several scenarios in which QR factorization

techniques are applied to the linear least-squares problem. While only the

full rank case is of interest in the nonlinear algorithms presented in this

paper, we examine the rank deficient and near rank deficient cases for

application to other aspects of the signal modeling problem, namely the use of

the complete orthogonal factorization for effecting rank reduction of the data

matrix in the algorithm for obtaining the initial estimates (see Ref. [4] for

details).

In the full rank case, the QR factorization is seen to lead directly to

the Moore-Penrose generalized inverse. In the rank deficient case, we examine

the truncated QR factorization and the complete orthogonal factorization as

o tlined by Hanson and Lawson [11], Golub and Pereyra [5], and Golub and Van

LLan [12]. It is seen that while the g-inverse formed using the truncated QR

factorization does not lead to the pseudoinverse, the complete orthogonal

factorization does achieve the minimum norm solutin and thus provides an

alternative to the sinqular value decomposition for forming reduced rank
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approximations. Finally, the application of the complete orthogonal

factorization to nearly rank deficient matrices is discussed.

A.1 The Orthogonal Projection Operator

Every projection operator is defined on a particular linear manifold

(subspace) in a finite dimensional vector space. One of the key relationships

between the projector and the corresponding subspace is that the subspace is

invariant under the transformation represented by the projection operator;

i.e., the transformation operating on any vector from the subspace will return

another vector in the same subspace. Also, the projector represents the

identity transformation over this invariant subspace. One special class of

projectors is called the orthogonal projector, which must satisfy somewhat

stricter requirements regarding the associated subspace. These properties we

will now develop.

Consider the N-dimension vector space RN and a subspace S in R . There

exists a subspace 9, called the orthogonal complement of S, such that RN is

the direct sum of S and S. Drawing from the work of Halmos [9], the following

definitions and Eqs. (A-i) through (A-7) characterize the orthogonal

projection operators associated with S.

Definition 1 There exists an operator P that maps every vector in R Nonto the

subspace S by projecting along the orthogonal complement S. This

operator is called the orthogonal projection operator onto the

subspace S in RN.

Definition 2 There exists an operator, P , which maps every vector in R onto

the complement subspace S by projecting along the subspace S.

This operator is called the orthogonal projection operator onto

the orthogonal complement of S in RN .

Furthermore, these projectors satisfy the relationship
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1
P = 1- P. (A-1)

For convenience, we will subsequently use the term projector to mean

orthogonal projection operator; i.e., we will consider only those projectors

for which a projector onto the orthogonal complement subspace exists and is

defined by Eq. (A-1).

Now consider an arbitrary vector z e RN . We can decompose z as

z =z+ z2 , where z1 e S and z2 C S. The projectors defined above satisfy

the following six relationships:

P z 1 = z: (A-2)

I
P z1 = 0 (A-3)

P !2 = 0 (A-4)

I
P A2 = A2 (A-5)

P Z = (A-6)

I
P z = " (A-7)

From Eqs. (A-6) and (A-2), we see that

p2 z = P (P Z) = P z = P Z,

so that P2 = P; (A-8)

i.e., the projector is idempotent. We see from Eqs. (A-4) and (A-7) that

I
P (P z) = P =0

1
so that P P = 0. (A-9)
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Similarly, from Eqs. (A-3) and (A-6), we see that

I I
P (Pa) =P z =0

so that P P = . (A.-IO)

Finally, from Eqs. (A-6) and (A-7) and from the definition of orthogonality

(P )T(P z= T 0 -

Substituting Eq. (A-l) and transposing within the parentheses yields

T pT (I P) = 0.

Since this is true for all z in RN , we must have

(I - P) = 0

so that pT =pT p.

Since the right-hand side is symmetric, we must have

p= (A-f1)

Note that it is this symmetry separating the orthogonal projection operator

from the general projector which need only be idempotent. In summary, the

projectors P and Pi are idempotent, symmetric, and mutually annihilating.

Further insight can be gained by examining the eigenstructure of the

projector. Since the subspace S is invariant under the transformation P, and

since P represents the identity transformation over S, S is spanned by a set

of the eigenvectors of P, each of which corresponds to a unity eigenvalue [9].

The remaining eigenvectors span the complement of S in N and correspond to

eigenvalues of zero. The set of all eigenvectors of P forms a basis for R
N .

To show that the eigenvalues of P are constrained to the values zero and
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one, we note that any symmetric matrix A can be transformed [10] such that

UT A U = D, (A-12)

where U is an orthogonal matrix and D = diag(Xl, ... , XN) is a diagonal matrix

containing the eigenvalues of A. The i'th column of U is the eigenvector

corresponding to the i'th diagonal element of D, the i'th eigenvalue of A.

This is shown clearly by writing Eq. (A-12) as A U = U D. With this

similarity transformation, we may rewrite A as

A = U D UT. (A-13)

Now let A be idempotent as well as symmetric, then A A = U D UT U D UT

= U D2 UT. But since this must also equal A as expressed in Eq. (A-13), we

must have

2
D = D. (A-14)

Since the eigenvalues of a symmetric matrix must be real, the diagonal matrix

D must contain only zeros and ones for Eq. (A-14) to hold.

To see that this eigenstructure exemplifies the operation of the

projector, consider the arbitrary N-vector z in the space R N, which has a set

of basis vectors ui, i=l,...,N. We may choose this set of basis vectors to be

the eigenvectors of the NXN matrix P, which is the projector onto the (say, M-

dimensional) subspace S. We may now write

P u. = X.u.. (A-15)

and z = a 1 + a 2 2 +"' +aN 'N" (A-16)

Thus P z = X a u1 + X2 a2 u2 +*"' + XNaNUN" (A-17)
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M of the N eigenvalues, those corresponding to the eigenvectors that span

the subspace S, will have value unity while the remaining eigenvalues will

have a value of zero. We therefore have the result

MP z = . a. u. ,2 (A-18)

i=1 a i i

where the ji denote those eigenvectors which span S. Thus, components of z in

S are unchanged while components in S are annihilated.

A.2 The Generalized Inverse

In general, an NXM matrix A is a linear transformation that maps an

arbitrary vector x from an M-dimensional space to an N-dimensional space,

which is the range (column space) of the mapping (matrix). We desire an

inverse transformation that will map an N-vector y lying in the range of A

back into an M-dimensional space. If the vector y does not lie in the range of

A, then the inverse mapping must first approximate y with a suitable vector in

the range of the mapping. Let us first consider the case where y lies in the

column space of A (consistent equations).

For the NXM matrix A, the MXN matrix A+ is a generalized inverse

(g-inverse) of A if x = A+ y is a solution to the equation A x = y, for any y

that makes the system consistent [13]. Substituting the first equation into

the second, we get A A+ y = y. Now suppose that given an arbitrary M-vector

w, we let y = A w. Since this y is generated from the columns of A, it

clearly lies in the column space of A. Substituting this into the previous

equation yields A A+ A w = A w. In general, this requires that the

generalized inverse satisfy

A A+ A = A. (A-19)

In the most unrestricted sense, this is all that is required of a

g-inverse. If we wish, however, to consider the case of inconsistent
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equations, then we must impose further restrictions that determine how we wish

to approximate y before transforming.

A.3 g-inverse for Linear Least-Squares Solution

Geometrically, the best approximant to y that makes the system consistent

is the projection of y onto the column space of A, resulting in the least-

squares solution to the system of equations. Thus, for the arbitrary N-vector

z, the inconsistent equation A x n z can be made consistent by premultiplying

both sides by the projection operator for the column space of A, yielding

PAA = PA z. But the projection of the columns of A onto themselves leaves

them unaffected, so this reduces to

A X = PA z ' (A-20)

The g-inverse solution for x is then x = A+ PA z. Substituting this for x and

noting that the projection operator is idempotent, Eq. (A-20) becomes

A (A+ PA Z) = (PA P A A+ z = PA z. From this, we see that the

generalized inverse for solving linear least-squares problems must be such

that A A+ = PA is the projector onto the column space of A. This then

requires that the product A A+ be idempotent and symmetric. That this product

is idempotent is equivalent to the requirement of Eq. (A-19). We do have the

further restriction, though, that A+ must satisfy

AA+ ]T= A A (A-21)

A.4 g-inverse for Minimum Norm Solution of Consistent Equations

We know from Section A.2 that the g-inverse that provides the solution for

the consistent system of equations

A x = y (A-22)

must satisfy A A+ A = A. From this, it follows that A - A A+ A = 0. Thus
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A ( I - A A 0 (A-23)

We can therefore state that for any z,

I - A+ A] )z

is a solution to the homogeneous system of equations A x = 0. As is the case

for a linear differential equation, the general solution for the set of

simultaneous linear equations in Eq. (A-22) is the sum of the homogeneous

solution and a particular solution, and can thus be written x = xp + x h
A-p

Y+ I-A+A z

If we denote the g-inverse leading to the minimum norm solution 
as A+,

m
then we desire to have

IIA+x 112 A+ + -A 2 (A-24)

for all y and z. The right-hand side of Eq. (A-24) can be written

=I A+ + -I-A A T Y + A ) ,

so that, since all terms are real, Eq. (A-24) becomes

I A+x 112 11 Ai 112 + 2 T (A+)T I- A] 

+ 11 ( I- A+ A 11

This is a minimum when the middle term is zero, which occurs when the

particular solution is orthogonal to the homogeneous solution. In general,

this requires that
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(A+) T ( I - AC A )= 0,

so that (A+)T = (A+)T A+ A. For this to be true, it is necessary and

sufficient [13] that

A+ AA + =A +  (A-25)

and A AJT e A. (A-26)

We will now show that the product A+ A is, in fact, the projector onto the

row space of A.

T
A+ A=[A A)

= AT (A*)•

(A),

J (AT),

which is the projection operator onto the columns of AT , or the rows of A.

In summary, the g-inverso for obtaining a minimum norm solution to A x = Y

must be such that

AP = AT = A+ A. (A-27)

Let us re-examine the general solution, now written

K= A y + [I - AP 1
where fe substituted Eq. (A-27) into the homogeneous solution. Recall

from Sectiu., A.1 that (I - P) is the projector onto the orthogonal complement

of the subspace for which P is the projector. Thus we see that the

homogeneous solution is confined to the null space; i.e., the orthogonal
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complement of the row space of A. Since the minimum norm solution must be

orthogonal to this homogeneous solution, what we really are striving for in

the minimum norm solution is that solution lying in the row space of the

matrix A.

A.5 g-inverse for Minimum Norm Least-Squares Solution

Combining the results of the last two sections, we see that the

g-inverse for obtaining the minimum norm least-squares solution [i.e., the

Moore-Penrose generalized inverse (pseudoinverse)] must be such that

P A A'

and A = A A

are, respectively, the orthogonal projectors onto the column space and the row

space of A. This is equivalent to the following requirements:

A A+ A = A A' A A'= A

(AA+ )T = AA+ (A+ A] T= AT A.

It is interesting to note that in forming the minimum norm linear least-

squares solution, we are actually performing a three-stage process. Starting

with the least-squares problem

A x -! y (A-28)

(where A is not necessarily full rank), we obtain the minimum norm solution

"+ - (A-29)

Stage I: Projection of y onto the column space of A to obtain a consistent

set of equations. We form j A A+ y P A.. = X= A.
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Stage II: Solution to the consistent set of equations A = to yield the

general solution i = A+ 1 + [I - A+ A] A, where z is an arbitrary vector in

RN

StAge III: Projection of onto the row space of A to obtain the minimum norm

solution (eliminate the homogeneous part of the solution). We form
2E=A A = AP i= APA PA .

We now conclude this portion of our discussion of linear least-squares

theory. The remainder of the chapter will examine the QR factorization family

as it is used for forming projection operators and solving linear least-

squares problems.

A.6 QR Factorisation of Full Rank Matrices

Consider the NXM matrix A of rank r = MN. There exists an NXN orthogonal

matrix Q, such that

QA=RE [-1 , (A-30)

N here R1 = No/JMXM

is square, upper triangular, and nonsingular. With this, we may write

A =Q R, and define a g-inverse of A as
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Recalling that PA = A A+ , the projection operator becomes

4T [ R.7 0

= [ :] , (A-32)

where IM is the MXM identity matrix. We see by inspection that this is

symmetric, and by squaring we see that it is idempotent

PA2 =0 0 QT 0 [I0 1]4

0 0 Q = PA'=o 4 [ I o]

where we have noted the orthogonality of matrix q. Thus we see that the

g-inverse defined in Eq. (A--31) is adequate for forming the projection

operator onto the column space of A.

Now recall the projection operator onto the row space of A,

AP= AA .

Substituting Eq. (A-31) into this equation yields

Ap [ R1 1 1 0 ] Q 4T [ '
=IM •.

Thus this factorization satisfies .Ie requirements for the Moore-Penrose

g-inverse. The least-squares functional for the linear least-squares problem

A x - y then becomes
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OW A2E- I 11 2

= I Q A x- 112

='1 I 1 1')(A-33)

where we have partitioned Q as

Q2 J N-M

The solution for x in this case is determined uniquely as

XLS = R1-1 Q1 (A-34)

leaving a residual sum of squared error

0(2-,s = %2 x 112 (A-35)

A.7 QR Factorization of Rank Deficient Matrices

In the case of rank deficient matrices, the QR factorization does not lead

to a g-inverse that satisfies the Moore-Penrose conditions. In this section,

it is shown that a truncated version of the QR factorization with column

pivoting can, bowever, be used to construct a g-inverse suitable for forming
the projector onto the coln space of A. In the neX sectio, r1e comp1e e

orthogonal factorization will be presented, which sIves the problem of rank

degeneracy and leads to the Moore-Penrose pseudoinverse.
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Consider the NXM matrix A of rank r<M<N. There exists an NXN orthogonal

matrix Q and an MXM permutation matrix S, such that

QAS=R- [R 11  R12 ] (A-36)

where Rl =L / rK r
11 [L\J rXr

By truncating R (i.e., replacing R12 by a zero matrix), a g-inverse of A is

A+ = S Q. (A-37)

For this factorization, the projector onto the range of A becomes

A [T11, R12 ] ST
0 [ 0 L 0 0

I , (A-38)

which (as in the full rank case) conforms to the requirements of a projection

operator. The g-inverse formed from the truncated QR factorization is

therefo:,.! suitable for forming the projector onto the column space of the

basis function matrix.

Let us now form the product

A* A=S 11 O ' [ II 1 "1 1 ST

jS [ r T (A-39)
00
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This is clearly ncnsymmetric and therefore does not constitute an orthogonal

projector. Thus, the g-inverse formed from the truncated QR factorization

does not conform to the requirements for the pseudoinverse.

A.8 Complete Orthogonal Factorization of Rank Deficient Matrices

To obtain a minimum norm least-squares solution in the rank deficient

casc, we use an extension of the QR factorization, the complete orthogonal

factorization. This factorization is a suitable alternative to the singular

value decomposition for performing the rank reduction necessary to obtain the

minimum norm linear least-squares solution.

Again consider the NXM matrix A with rank r<M N and the orthogonal

factorization

Q AS R~ [R 1 1  R12 ]
0 0

where R = N rXr

There exists an MXM orthogonal znatrix V such that

R V QAS V R [ (A-40)

where R = r

From hI0 Uy _ A - T JT aT and defin th z- ea

S 0 :1 (A-41)
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Now forming the projection operator PA' we obtain

P= A A+

4T [ RI1  'O vTsTsv O 11- 0

0 00 0

Q ,(A-42)

which, once again, is seen to be symmetric and idempotent. Ii we now attempt

to form the projector onto the row space of A, we get

AP= A A

R - 11 0Io
S V 0 0 0 0

S H ]v TST  (A-43)

which is also symm.-ric and idempotent. Thus the complete orthogonal

factorization leads to a g-inverse, which is suitable for forming both

projection operators. This g-inverse therefore satisfies all of the

requirements for the Moore-Penrose generalized inverse.

Using the g-inverse constructed from the complete orthogonal

factorization, the least-squares functional becomes
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OW A x- y11

Q A( QAS yX- ~

-lQ A S yvST y 11 2

Q- TST - Q H 2

If we let w = ST x partition Q as

Q2 N-r

and partition V as

V = I V2]
where V1 is MXr and V2 is MX(M-r), then we obtain for the least-squares

functional

11 Q2

-[j - V[ - f12

11 L 0 i I.QV
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From this, we obtain the solution

V " (A-44)

We obtain a final minimum norm solution as

-Ls = s-1 i  i I Q (A-45)

which, as in the full rank case, leaves a residual sum of squares

O(KLS) = 11 Q' -Y (A-46)

A.9 Near Rank Deficient Matrices

Consider the NXM matrix A with numerical rank p = MN, but whose expected

(ideal rank) is r M. There exists an NXN orthogonal matrix Q and an MXM

permutation matrix S, such that

Q A S = R 01 , (A-47)

where R1 = L MxM

Column pivoting at each stage of the factorization will result in a matrix

that can be further partitioned as

[ 11 R12 1
0 I LR22

L i

where R rXr
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and 2
[\N (M-.r) X (M-r)

If A were truly rank deficient, R22 would consist of zeros. But because

of perturbations in A, R22 will have non-zero elements. If the perturbations

are small, however, then the elements of R2 should also be small so that the

rank deficiency can be uncovered when j R22 1 1 becomes much smaller than AIlI.

Then rank reduction can be achieved by setting R22 to zero and solving the

remainder of the problem as a truly rank deficient case.

Golub and Van Loan [12] point out that there are cases in which at no step

during the orthogonalization process is the norm of R22 very small, even

though the original matrix is rank deficient. But they also go on to say that

this method of rank determination "works well in practice." The reader is

referred to Section 6.4 of Golub and Van Loan [12], and to Golub, Klema, and

Stewart [14].
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APPENDIX B - ORTHOGONAL FACTORIZATION BY SUCCESSIVE HOUSEHOLDER TRANSFORMATION

In this appendix, we describe a method of triangularizing matrices which

uses the highly stable Householder transformation, also called an elementary

reflector (see Ref. 15). This transformation introduces zeros into a column

or row of a matrix, depending on whether it is applied from the left

(premultiplication) or from the right (postmultiplication). In the former

case, we premultiply by a sequence of elementary reflectors to transform an

NXM matrix (N>M) into an upper triangular matrix (or upper trapezoidal matrix

if N<M). This leads to the QR factorization defined as QA = R. In the

latter case, we transform an NXM matrix (N<M) into a lower triangular matrix

(or lower trapezoidal if N>M). This can lead to the RY factorization defined

as A V = R, or to the complete orthogonal factorization as discussed in

Appendix A.

B.1 Householder Transformation from the Left

Given a full rank NXM matrix A, where N>M, we premultiply A with asequence

of M elementary matrices; i.e., we form H . H2 H1 A = R, to yield the NXM

upper triangular matrix R. The Hi are defined as

0 U.

where I(i-1) is an (i-1)X(i-1) identity matrix and Ui is an (N-i+l)X(N-i+l)

Householder reflector matrix constructed to introduce zeros below the i'th

diagonal element of A(i- ) = Hi_1 00" H1 A. For example, at the beginning of

the fourth stage of the triangulari !on process, we have the matrix
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a(1) a(1) (i) a(1) a(1) a()a11 12 a 138 14 15 ** m

0 (2) a (2) a (2)
22 23 24 25 2M

0 0 a.3..( ) 3)a(3)
33 34 35 3M

(3)  (3) (3)

o 0 0 a a a44 45 4M

) 0 0 0 a(. a (3) .. 3)
54 55 5M

-00 ( a(3) .. a(3)
364 6 5  " 6M

0 0 0 a(3) a (3) ... a(3)
74 a75  7M

0 0 0 a 3 ).

Here the superscripts on the elements designate the number of previous

Householder reflectors that have transformed the particular element; e.g., the

elements in the first row are affected only by the first Householder reflector

so that these elements have the superscript (1), the elements in the second

row are affected by the first two Householder reflectors so that these

elements have the superscript (2), and the nonzero elements below the second

row have been transformed by all three of the previous reflectors so that

these elements have the superscript (3).

We wish to introduce zeros below the first element of the vector

des-gn--.-A within the box If we denote this (N-i+l)-vector as x, then we we

wish to find the Householder reflector, U, such that

Ux = - a el, (B-i)
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where a is a scalar, and

1= [ 0 0 0.' O] T

is the first vector in the standard basis for the space R
N-i+l

The Householder reflector that achieves this is defined as

U I- P-I u1uT (B-2)

where u = sgn(x i ) II2i , (B-3)

uI =x 1 + or (B-4)

u. x. , i=2,...,n , (B-5)

and fi = u 1 . (B-6)

Since only the vector and the scalar fli are necessary for forming H.i at

each stage, all information concerning the construction of the H. can be saved

by storing the last N-i elements of u below the i'th diagonal element of A

and storing the pre-transformation value of the diagonal element in an

auxi.ary xectcr (note that the post-transformation value of the diagonal

element is ai, so that Pi is indirectly available).

When applying tLi Householder transformation to an arbitrary vector y we

use the equation

U Y I [ _ p1' T]

Y - -1 IR T M -(B-7)

Since this is constructed directly from the vector u and the scalar /3, we need

never explicitly form the elementary matrices H..
I
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After Householder reflectors have been constructed for all M columns, the

orthogonal matrix Q is defined as

Q = % ... % H1 . (B-8)

Since the Hi are elementary matrices, they are symmetric, so that the

transpose of Q is just

QT = I H . HM (B-9)

We can therefore multiply by the transpose of Q simply by reversing the order

in which each of the elementary transformations are applied. Thus one need

never explicitly form the matrix Q.

The stability of the Householder method can be ensured by using column

pivoting at each stage of the factorization to bring the column of largest

norm to the pivot position. At each stage, the pivoting causes an elementary

matrix to be factored to the right; i.e., each column swap is recorded by

postmultiplying by an identity matrix with the same two columns interchanged.

At the i'th step, we would form A(i) = Hi A(i
- ) Si, where Si is an elementary

matrix representing the i'th column pivot. At completion, the factorization

appears as Q A S = HM ... % H1 A S1 S2 * s% = R.

B.2 Householder Transformation from the Right

Given an NXM matrix A with full row rank, we postmultiply A with asequence

of elementary matrices to yield A H1 H 2 *' HM = R. Here, the Hi are formed

in exactly the same way as when transforming from the left, except that U. is

constructed to introduce zeros to the right of the i'th diagonal element;

i.e.. into the i'th row.

To parallel our previous example, at the i'th stage of the

triangularization process, we have the matrix
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af) 0 o 0 o o 0 ... o

(1) 0 0 0 0 0 0 0*( 0

o~)a 2 0 0 0 0 0 0 0

= 31 32. 33 34 35 36 37 • • 3M(

(1) (2) (3) (3) (3) (3) (3) (3)ail a42 4 4 45 N6 a47 a " 48

a Ni a N2 a N3 aN4 aN5 aNS aN7 aM

Here, we construct the Householder reflector to introduce zeros to the right

of the first element in the vector designated within the box. Denoting this

(M-i+1)-vector as K , we wish to find the Householder reflector U, such that

2T T ae (B-10)

where a and e1are the same as in Section B.1. The construction of U is also

the same as in Eq. (B. 1) .

In applying the Householder reflector to an arbitrary row vector Y- , we

use the equation

I I T - P- uT

..,T ,~1 (XT] T (-i

Row pivoting could be used to ensure stability, just as column pivoting

was used in the previous section. Usually, howevei, transformations from the

right are applied to matrices that already exhibit special structure and are

expected to be reasonably conditioned, so that row pivoting would serve only

to disturb the existing structure.
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After Householder reflectors have been constructed for all N rows, the

orthogonal matrix V is defined as

V = H 1 H2 ... HM (B-12)

Again, since the Hi are symmetric, the transpose of V is

vT = 1M ... 2 H (B-13)

Essentially, applying orthogonal transformations from the right of a

matrix is the same as applying transformations from the left of the transpose

of the same matrix, and then transposing the entire equation. First, Q AT =

RU, where Ru denotes an upper triangular matrix. Then, transposing yields

A qT= RuT. Now, letting V = QT and RI  RuT (a lower triangular matrix), we

get our desired factorization.
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APPENDIX C - REVIEW OF LEAST-SqUARES OPTIMIZATION TEBUNIqUES

In nonlinear optimization (also see Refs. 16 and 17) we begin with an

initial set of parameters and, through a succession of iterations, update the

parameters in a way such that the sequence of updated parameters hopefully

converges to the ideal set. We go about this by assigning a measure of

closeness between a model of the physical phenomenon, which is a function of

the parameter set, and the experimentally observed values. In the case of

least-squares, we use as that measure the sum of the squares of the errors

between our parameterized model and the observations; i.e., we assign the cost

functional (or error norm)

a 112 11112

where 8 is the set of parameters, y is the vector of observations, and x(B) is

the parameterized model. We then go about minimizing this cost functional by

appropriately adjusting the parameter vector, 8.

In this appendix, we introduce three optimization techniques that can be

used to minimize the least-squares functional. They are the method of

steepest descent, Neston's method, and the Gauss-Newton method. We first will

introduce a general class of strategies called gradient methods, within which

the three methods mentioned fit. The steepest descent method follows directly

from the acceptability criteria for the gradient methods. We then introduce

Newton's method as a second-order Taylor approximation to the error

functional, and finally we introduce the Gauss-Neyiton method as a

simplification of Newton's method.

C.1 Gradieat Methods of Optimization

At each iteration the adjustment, or update, ,onsists of a direction and a

step size; i.e., the update is

A = p d, (0-2)
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where p is the step size and d is the step direction. To assure that this

update can lead to a decrease in the cost functional, we must first require

that the step direction d form greater than a 90* angle with the gradient (be

downhill on the contour of *) at the current iterate of parameters 8(6) .

To ascertain this, we first note that given a direction A, the updated

parameter vector is solely a function of the step size; i.e., (p) =

8(  + p d . The cost functional along this direction is then

0 A p d ).

Differentiating this with repect to p and evaluating at p = 0 yields the

directional derivative of the cost functional at the current iterate; i.e.,

d8p = 0

Noting the chain rule, this becomes

[§ AS (P T [ 19p
88_p) 6 I 1 - 0

-(T d

where g(6) is the gradient of 4(B) at 0(4) . The step direction d is then

downhill if the directional derivative is negative; i.e.,

td = gT d < 0 , (C-3)

whereA wehA rpo the it-ration index an the gradient -to.One way to
assure this is to let the step direction be

d = - X , (C-4)
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which is precisely the case in the method of steepest descent--so called

because initially, this is the direction in which the cost functional descends

most rapidly. Steepest descent is well known, however, for its slow

convergence due to a zig-zag pattern along troughs in the cost functional

contour. Therefore, an alternative is desirable.

Another way to assure that the directional derivative is negative is to

find a positive definite matrix, R, and let

g= - R . (C-5)

An optimization technique in which the direction is so chosen, regardless of

whether the matrix R is positive definite, is called a gradient method. If

the matrix R is strictly positive definite, then d is called an acceptable

gradient direction. For all gradient directions, the directional derivative

is given by the quadratic form

§d a T R a (0-6)

0.2 Newton's Method

In Newton's method, we choose for the matrix R the inverse of the Hessian

matrix of the error functional at the current iterate. The typical element of

the Hessian matrix is

() =

This choice for the matrix R arises by approximating the error functional with

a A seodrCr Thylor polynomial

and by optimizing this approximate cost functional over the parameters; i.e.,
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differentiating with respect to 8 and equating the result to zero to yield the

optimum parameter set

Ropt = a -- s invers is gals . (C-7)

If the Hessian matrix is positive definite, then its inverse is also

positive definite and Newton's method yields an acceptable direction.

Furthermore, if the objective functional is quadratic, the Taylor

approximation is exact and Newton's method will converge in a single

iteration. Even if the error surface is not quadratic but is nearly so (as is

often the case in the neighborhood of the ideal parameters), then Newton's

method offers quadratic convergence without the need for a line search to

determine step size.

0.3 The Gradient of the Least-Squares Error Norm

At this point, it will be useful to obtain an expression for the gradient

of the least-squares error functional. The arbitrary least-squares functional

can be written as

W =( () )T t (-8)

A typical term in the gradient is

gi= Di( tT e

Thus

V ke ) ft + e ,e),

Tgi= 2 Di (e ) a (0-10)
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and gi =2 2 aT Di (e) , (C-1l)

where D. is the operator that performs partial differentiation with respect to1

8. and where we have dropped the iteration index, as well as the explicit1

dependence of e on 8. The equality of the last three expressions followg from

the fact that both terms in Eq. (C-9) represent the same scalar product (since

the error vector is real). In further derivations, we will use either

Eq. (C-10) or Eq. (C-11), depending on which is more convenient for the given

purpose.

0.4 The Gauss-Newton Method

If we differentiate (C-Il) with respect to the j'th parameter, we get the

ij'th component of the Hessian matrix as

H :j = 2 Di(e T) Dj i() + 2 eT D e.(-2T)D()+ iD.j ) , (0-12)

where D0. (f) is the second partial derivative of the error vector with respect
to the parameters 8. and 8j, or the second-order sensitivity derivative.

(Similarly, Di(e) is the first-order sensitivity derivative. The names

reflect the fact that these quantities measure the sensitivity of the

parameterized model to changes in the parameters.) If we assume that the

error vector is small in the neighborhood in which we are optimizing, then we

can neglect the term involving the second-order sensitivity derivative and

approximate the Hessian matrix as

Nij = 2 Di (&T) D () . (C-13)

The equation for the approximate Newton direction; i.e., d = -N-g, can be

rewritten as the system of equations

N d = - g. (0-14)
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If we now define the Jacobian matrix of the error vector, given by

J DI(ft D,~(e) : 0** 1 K~
then we can rewrite the gradient, from Eq. (C-10), as

=2 T , (0-15)

and we can write the Gauss approximat. on to the Hessian matrix as

N = 2 JT j (0-16)

Note that the matrix N is always at least positive semidefinite, so that

the concerns of the Hessian being negative definite or indefinite are

alleviated with this approximation. Substituting Eqs. (C-15) and (C-16) into

Eq. (C-14), the system of equations for the Gauss-Newton direction is then

JT J d = - JT e. (C-17)

But this is just the set of normal equations for the linear least-squares

problem in which the error vector is projected onto the columns of the

Jacobian matrix; i.e.,

J d t' . (C-18)

The solution for this problem is

J e (0-19)

where J+ is the pseudoinverse of the Jacobian matrix. Thus the Gauss-Newton

method can be viewed as a sequence of linear approximations to the cost

functional. Note that, unlike Newton's method, this method does require a

line search to find an optimum step size p.
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While there are several other popular optimization techniques for least-

squares, including a number of variations on Newton's method that use other

methods to ensure the positive definiteness of the Hessian matrix (e.g., the

Marquardt method, the Greenstadt method, etc.), we will confine our attention

to the three methods mentioned.
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APPENDIX D - DERIVATIVES OF PROJECTORS AND PSEUDOINVERSE

In this appendix, we parallel Golub and Pereyra [1] in deriving the

derivative of the projection operators (both onto the column space of a matrix

and onto the row space of a matrix) and the derivative of the pseudoinverse.

As noted in Chapter 5 of the text, we retain the index of differentiation in

all derivations so that the final results are expressions for partial

derivatives.

D.1 The Derivative of the Projection Operator

To calculate the derivatives of the variable projection functionals, we

need a method for calculating the derivative of the projection operators

Di(PA) and DiCAP). We proceed first in evaluating Di(PA) by noting fhat PA is

idempotent, so that

Di(PA) = Di(PA PA)

= Di(PA) PA + PA Di(PA) ( (D-i)

Thus the problem becomes one of evaluating the two terms on the right-hand

side of Eq. (D-i). We start with the first term by noting that A = PA A so

that

Di (A) = Di(PAA)

= Di(PA) A + PA Di(A) . (D-2)

Rearranging yields

Di(PA) A = Di(A) - PA Di(A)

I
= PA Di(A). (D-3)
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Postmultiplying both sides of this equation by Ae and noting, on the far left

hand side, that A A = we obtain the first of the desired expressions,

I
Di(PA) PA = PA D(A) A+  (D-4)

We proceed with the second term by noting that the projection operator, and

hence its partial derivative, is symmetric, so that

(Di(PA) PA P ~A D i(PA)

Substituting Eq. (D-4) into the above equation yields the desired result,

PA Pi(PA) = ( PA Di(A) A

= (A+)T Di(AT) PA (D-5)

Substituting Eqs. (D-4) and (D-5) back into Eq. (D-1) yields the partial

derivative of the projection operator, given by

I

Di(PA) = PA Di(A) A+ + (A+)T DiCA( ) PA. (D-6)

Since the row space of a matrix is the same as the column space of the

transpose of the matrix, to obtain an expression for the derivative of the row

space projector, we merely replace A by its transpose everywhere in Eq. (D-6),

which yields

Di(AP) = Ap Di(AT) (A+)T + ( Ap Di(AT) (A )T )T

D A (A) A' + ( A" Di(A) A 3 (D-7)
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D.2 The Derivative of the Pseudoinverse

We now provide an expression for the partial derivative of the

pseudoinverse of a matrix, which is necessary for deriving the Hessian matrix

of the VPF. We begin by noting that

I
I = PA + PA ,

so that Di (A) = Di(A) PA + D.(A +) PA (D-8)

We now wish to find expressions for both terms on the right-hand side of

Eq. (D-8). Looking at the first of these two terms, we begin by recalling

that A+ =A A so that Di (A) =Di( ) PA + A+ Di(A) A+ + AP Di (A+).

Rearranging yields

D + PA =  AP Di ( A  Di (A) A+. (D-9)

We now need a manageable expression for the first term on the right-hand side

of this expression. To obtain this, we again start with

A+ =A+ AA+

= A1 A .

Then Di (A+) = Di(AP) A + AP Di (A+) (D-1O)

Rearranging yields

AP  Di (A) = Di(AP) A
+ . (D-11)
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Substituting Eq. (D-7) into Eq. (D-1O), we obtain

1 + 1+

AP Di (A) = A Di(A) AP A +A Di(A) AP jA

But AP  = II- A+A]A

=A+-A + AA + = 0 ,

j j T +(-2

se we get AP D (i AD i (A) AF (D1A

Transposing on the right and substituting this back into 
Eq. (D-9) yields

+i T + T + A!B-3

Di(A) PA = AP  Di (A) (A ) A -A D(A A "-

We now turn our attention to the second term in Eq. (D-8). 
We proceed by

writing

A+ =A+ AA +

= A PA

so that Di(A!) = Di(A+) PA + A Di(PA) " (D-14)

Rearranging and substituting Eq. (D-6) in the rightmost term, 
we obtain

D ( A  PI = A P A Di(A) A + A +  i D iCA) A (

i (e~) PA A 
(D
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But A PA A (I-A A)

=A+-A + AA+ =0,

so we get Di(A+) pA = A+ (A+)T Di(A) PA (D-16)

Finally, we obtain the partial derivative of the p. .adoinverse by

substituting Eqs. (D-13) and (D-16) back into Eq. (D-8), -,hich yields

Di(A+) = AP  Di(A T) (A+)T A+ - A Di(A) A + A (A)T D (AT) PA ' (D-17)
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APPENIDX R - FRECHET DERIVATIVAS AND A SIMPLIFIED TENSOR NOTATION

Here we examine the simplified tensor notation of Golub and Pereyra [1]

and show the difficulty in carrying this notation on to higher order

derivatives. First, we define the Frechet derivative of the basis function

matrix, which is a three-dimensional array consisting of the partial

derivatives of the basis function matrix with respect to each of the signal

pole parameters. Consider the example case of a model with two conjugate pole

pairs. There are then four signal pole parameters, and the Frechet derivative

of the basis function matrix [denoted by D(F)] will appear as

D(F) 4-- D =4(F) 8O4

-_ = D 3(F)

4-- _ = D 2(F)

- -=D1 (F)•

Multiplication of this tensor with a matrix is achieved by multiplying each

partial derivative matrix with the multiplicand matrix, yielding another

three-dimensional array as illustrated below.

F F____4
JA 4  

_-A3B

AlA2 B A B
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Multiplication of the tensor with a vector results in what we will call a

"degenerate tensor of valence two." There are two cases in which this occurs.

When the valence three tensor premultiplies a column vector, the result

appears as follows.

When a row vector premultiplies the valence three tensor, the result appears

as follows.

AXTx

F x 4=

A A2 A A2A1

If we pre- and post-multiply the valence three tensor with a row vector and a

column vector, respectively, then we obtain what we will call a "degenerate
tensor of valence one." This result appears as follows.

XTA

TT

1 0 24-

I 1P



NRL MIEMORANDUM REPORT 6643

That the results in the last three cases are not vectors and matrices as

we normally think of them should be clear from the illustrations. In the last

case in particular, this valence one tensor is neither a row vector nor a

column vector in the usual sense; i.e., in the plane of the paper. This last

case precisely describes the g.'adient vector.

The real problem occurs, however, when one wishes to form the Hessian

matrix by again differentiating the gradient vector with respect to the

parameter vector. When we performed the differentiation above, the partial

derivatives were lined up in a third dimension that was not along a column or

a row. Now we wish to differentiate a valence one tensor whose elements

already lie along this third dimension, so that we must now line up the second

partial derivatives along some fourth dimension. Additional notation will, at

this point, be necessary in order to distinguish which dimension we are

dealing with. This problem becomes critical when attempting to multiply two

of these valence three tensors (one in the third dimension and one tn the

fourth dimension), as occurs when forming the Hessian. One could introduce

notation to keep track of these different dimensions, or one could abandon

this now not-so-simplified notation and adopt the full tensor notation. Or

one could simply treat each of the derivatives as a group of partial

derivatives, retaining the indexing, and ignore the specifics of the higher

order vector calculus, as we have chosen to do.
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APPENDIX F - PROOF THAT OPTIMIZATION OF THE VARIABLE PROJECTION FUNCTIONS
LEADS TO THE SAME MINIMA AS OPTIMIZATION OF THE LEAST-SQUARBS FUNCTIONAL

In this appendix, we expound upon the proof by Golub and Pereyra [1] that

sequential optimization of the signal poles and amplitudes via the variable

projection functional leads to the same optimum values as does the

simultaneous optimization of the parameters via the least-squares functional.

For simplicity in the proof, we will follow the notation of Golub and Pereyra

and introduce the Frechet derivative D(F), which is an array of partial

derivative matrices. This derivative is described further in Appendix E.

Recall the least-squares cost functional and error vector, given by

0 ( , _a ) = I I t o

and e &,a) = y - F(q) a

Let us now define the Jacobian matrix of the least-squares error vector,

=il V'09  ~a] (F-1)

where B -D F (F-2)

Be

and Ja = a - F(2) (F-3)
S aT

The giadient vector of the least-squares functional can then be defined as

VV(n) 2 OT
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If we now let

F +  (F-5)

then the gradient of the least-squares functional becomes

VX( .a*) = 2 y -F a* 3T [ D(F) ,F]

2 T -FF +  T [DFy F

- PF[D( D)FXF]

2 yPF D (F) ] [T F (]}-

But, since PF F = 0

the gradient of the least-squares functional becomes

Now recall the signal basis VPF,

The gradient of this functional is

V#(2) = 2 yT PF D(F)
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If we assume that 0* is a critical point of #LO), then

V#(.*) = 2 TF D(F) F = o

Therefore, for 0* and a* as defined above, the gradient of the least-squares

functional becomes

VX(.*,1*) = [ 0],

which proves that a critical point of #(I) is a critical point of X(2,a) when

a is defined as above. We will now prove that a global minimizer of #(2) is

also a global minimizer of X(j,.)"

For any given 0, the solution of the least-squares problem becomes a
* F+

linear problem, which is straightforwardly minimized by letting a = F y..

Therefore, for any given 0, #ff) X(0,). Now, if we assume that 0* is a

globl-.l minimizer of #(2) and a is defined as in Eq. (F-5), then certainly

X(2*,a*) = #O*). Now assume that there exist 0 and i such that XO,:_) <

X(- ,- ). Since # (P) X(R,:a), this requires that (8 5 X(T,_) x( *, *) =

#(0*). But since 0 * is the global minimizer of #_), we must have equality on

all counts. Therefore, a global minimizer of #(2) is also a global minimizer

of X(j,,) over 0. The converse [i.e., that a global minimizer of X(Q,A) over

0 is also a global minimizer of # ()] is also proven by Golub and Pereyra [1],

following a similar argument as above.
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