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A Plane-Sweep Algorithm for Exact Simulation of a
Quasi-Static Planar Mechanical System of

Compliantly-Connected Rigid Bodies
(Extended Abstract)

Bruce Randall Donald* Dinesh K. Pait

Computer Science Department, Cornell University

Abstract

Automatic fastening (eg, sn p fosteners) is a central theme in , manufacturing and
design for\assembly. Snap fasten' rs are non-rigid bodies, and hence predicting the motion of
flexible obj cts during an assembl is of interest as an algorithmic problem. We consider a plnr ..
.system of rid bodies that are cnantly connected by torsional springs. A single root

dy undergpes pure translation, durig which k passively rotationally compliant members
calle- awls" can contact with immva le planar obstacles. As the motion proceeds, the pawls I/
deform (deflect) around the obstacles\in reponse to the kinematic constraints and the frictional
contact forces. The pawls can also snap off an obstacle edge towards their zero position; Lcc'
this motion is modeled using a pure rotation. The simulation problem is to determine the '"'y
motion of the pawls as parameterized by the translation distance of the root, and to compute

the termination configuration of the system if it is reachable. The solution trajectory (D of
the system is piecewise cubic in the configuration space, and the dynamics may be reduced to
erecting cubic "local" configuration space constraints. The simul tion never leaves a connected .1 For
component F of configuration space. We can compute the solutio Z by sweeping k planar slices.&I

norhn

of F (each slice is a planar arrangement of cubic curves). Each s ice has complexity O(Ar(n)),and can be constructed efficiently using a red-blue merge algorithm (r is a small constant). od 13
Reducing motion prediction to sweeping a planar arrangement o curves allows us to solve the tloi.
simulation problem exactly in O(kAr(n) log2 n) time.

Statement "A" per telecon Dr. Alan Meyro- D Vallablit Codes '
witz. Office of Naval Research/code I alland/o
1133. jl t spe l g

VHG_ 1/22/91

*Supported in part by the National Science Foundation under grants No. IRI-8802390, IRI-9000532 and by a
Presidential Young Investigator award No. IRI-8957316, and in part by the Mathematical Science Institute.

tSupported in part by ONR Grant N00014-88K-0591, ONR Grant N00014-89J-1946, and NSF Grant DMC-86-
17355.



1 Introduction

Previous work on algorithmic motion planning has largely concentrated on the movement problem
for rigid bodies [LoP,Don,Yap]. Recently, work in compliant motion planning under uncertainty
[LMT, Erd, CR, Don2, Don3, Can2, Bri, FHSJ has focused on the problem of moving rigid objects
(e.g. pegs) in contact (i.e., compliantly) with obstacles (such as holes) under force-control, subject
to bounded uncertainty and error. The only combinatorially precise results that have been obtained
for compliant motion have been for pure translations. Hence they are essentially inapplicable for
any real systems, which typically can rotate. Indeed, planning and simulation for systems with
rotational bodies and rotational compliance has resist d solution in the sense that only approximate.
heuristic, or numerical algorithms are known. We cou-sider a mechanical system of bodies that can
compliantly slide on obstacles while they translate aad rotate in the plane. We provide an exact,
efficient algorithm for predicting the motion of thess rather interesting devices, which, as we we
discuss below, are important in manufacturing, design, and f.,ao'y assembly. The key ideas we use
are: red-blue merge algorithms, a simple dynamical systemis model, and local dynamic constraints.
These tools permit us to reduce the simulation to a plane sweep of a " dynamically annotated"
slice of configuration space. We hope that the paradigm of "simulation as sweep" may be useful in
other domains.

We are pursuing an algorithmic theory of design for assembly. To this end we are developing and
implementing algorithms that can analyze and generate designs for objects so that they will be easy
to assemble. In particular, we observe that real objects that robots might assemble are typically
not rigid. For example, a Sony Walkman is made of plastic parts that snap together. Significant
advances were made in the design of the IBM ProPrinter, by replacing traditional fasteners such as
screws with plastic parts that simply snap together. The reason these plastic parts snap together
is that they are flexible: more precisely, they are passively compliant. This means that when the
parts are brought together and an external force applied, the parts deform in a prescribed way.
More interestingly, the force required to mate two parts may be much less than the force required

. .... .. take them apart.
T Since we wish to be able to design and have our robots assemble such objects given task-level

0 aiscriptions, we must have a systematic program for reasoning about and predicting their motions

01 in contact. To this end, Pal and Donald [PD, DP], made precise a sufficiently powerful notion
0 &flexibility to model the objects above, which encompasses several important and complicated

~-*--~"- rnchap5iu4 mechanical design and automated assembly: snap-fasteners, latches, ratchet and
~~ pawl mechaw i is, and escapements (see fig. 1). We modeled the physics of interaction between

rts and the environment (including their mating parts). Using these tools, we call
v e tl combinatorially precise geometric algorithms for predicting the motion of a

neiM'jectiar and in contact with its mating part.
"W t ev simulation problem, even with rotational compliance and quasi-static mechanics, as

a problen that can be solved by careful reduction to a plane sweep. In particular, for each "pawl."
ive reduce to sleeping an planar arrangement of algebraic curves of low degree. The connected
componqnt of fiee space defined in this planar arrangement has complexity O(A,(n)), and can

.. e-cons~uctd-in time O(Ar(n)log2 n) using a red-blue merge algorithm [GSSJ. Here A,(n) is the
(almost linear) maximum length of (n, r) Davenport Schinzel sequences [GSS]. r is a small constant
related to the number of times two cubic1 configuration space constraint curves can intersect. Our

'By "cubic" we mean the total degree of the defining multinomial is 3. Our curver have additional structure, such



approach [PD, DP] to modeling rotational compliance and to incorporating frictional constraints
leads to the first formulation of the simulation prediction problem which permits a reduction of
motion prediction to plane sweep. Our solution differs from previous work on predicting, bouli11g.
and planning rotationally compliant motions with quasi-static mechanics in that it is (i) purely
algebraic, and hence exact, (ii) combinatorially precise, in that the computational complex.ty is
exactly known, and (iii) requires no integration. 2

1.1 Problem Statement

We consider the problem of moving a flexible, linked body M in the plane, in a polygonal envi-
ronment Y. The flexible body M is constructed as follows: polygons Mh, h = 1,...,k, called
"pawls", are attached to a root polygon M 0 , at hinge points Ph. Each hinge is coupled with a
spring of stiffness Kh. (See Figure 2).

The motion of the body M consists of rigid translation of the root polygon M 0. The pawls
Mh are free to move compliantly as dictated by interactions with the environment and the 6piing.

Time T will be represented by the nonnegative real numbers. A solution trajectory P for the
system (M W) is a family of maps (o, 01,... , 0k) where 0 : T -+ R2 specifies the configuration
of the root and each Oh : T --, S1 specifies the orientation of pawl polygon Mh, h = 1,...,k.
Hence the global configuration of pawl Mh at time t is given by (p(t), oh(t)), where p(t) differs by
a constant offset from 0(t) (see eq. (1) below). We see that the configuration space of the system

k SI 's

(,MK) is3 C = R2 x . 1 x ... x S1.

The Simulation Problem is to determine:

1. The solution trajectory ,§ : T -; C of the system.

2. The time of termination of the motion, the cause of termination (such as sticking due to fric-
tion, sticking due to kinematic constraints, etc.), and the configuration of A at termination.

3. The time history of contacts between M and K/.

Some extensions of the simulation problem are considered in [DP], including the determination
of the time history of forces during the motion, and the effect of uncertainty.

We make the following assumptions about the physics of object interactions and the motion of
ML:

Object interactions are restricted to those between MAh and Y. In other words, pawls do
not collide with each other, but may collide with the environment Y. The effect of this
assumption is to make the motion of each pawl independent of the motion of other pawls.
Henceforth we shall consider the motion of a single pawl .hAh.

as low-degree parameterizations, as well.
2Note that [Don2,Can2,Bri,FHS] address geometric reachability issues for translationally compliant objects. but

these objects cannot rotate.
'This is the configuration space with no springs, but only kinematic constraints. Introduction of springs means

that it is not possible to identify a rotation of 27r with 0, since at 27r the pawl is "cocked". Hence the introduction of
dynamics forces us to pass to the covering space Rk+2. Our analysis goes through n.ataLs mutandis for the co emi g
space.



* Since the root Mlo is undergoing a rigid translation, so does the hinge point Ph. We slhall
assume that this translation is a straight line motion given by

p(t) = p+pt (1)

where t is the time, P. is the initial position (at t = 0) of Ph,, and P is its velocity.

e Stable contact: Suppose the pawl is in contact with a feature (edge or vertex) of the envi-
ronment (for example, during sliding). We assume that if we perform a small displacement
of the pawl away from the environment, the torque on the pawl due to the spring is such
that the contact will be restored. This assumption is no. very restrictive at all - in fact. in
the face of even the smallest uncertainty, stable contacts are the only ones one can hope to
observe in practice.

* Quasi-static motion: The motion is assumed to be slow enough that inertial effects are not
significant. This corresponds to assuming that there is no acceleration of the pawl, and hence
the forces on the pawl are balanced. The quasi-static assumption is reasonable at small speeds
and is widely used (see, for example, [Whi,Ma,Erd,Don2]).

e If the pawl slides off A( into free space, it may have a residual torque due to the spring being
cocked. We shall assume that the pawl rotates back towards its rest orientation at such great
speed that p does not change significantly during the rotation and can be taken to be constant.
This, incidentally, is the "snap" in the snap-fasteners that we wish to model. This assumption
may appear to contradict the assumption of quasi-static motion, but is in fact practically '.
consequence. Quasi-static motion implies that the root is moving "slowly-enough" for the
forces to be balanced. Hence, when a pawl is in free space and has a residual torque, its
motion can be fast compared to that of the root, resulting in a "snap". This assumption can
be relaxed by assuming a linear relationship between the translation p and the rotation (e.g..
see [Can]), but we do not deal with it here.

* The forces of friction arising from contact obey Coulomb's Law. We further assume that
there is a single coefficient of friction. This assumption is also widely used.

These assumptions define a simple but adequate dynamical system. We will exploit the geometry
of this system extensively to obtain our results.

Two types of contact are possible between the pawl Mh and a polygon in A. Following the
convention of Lozano-P~rez [LoP] and Donald (Don], we say that Type-A contact occurs when a
vertex of A touches an edge of the pawl; Type-B contact occurs when a vertex of the pawl touches
an edge of A.

We can now write the contact constraint equations for the two types of contact, as in [Can].
We shall index features (vertices and edges) of the moving pawl by the subscript i and features of
the polygonal environment by the subscript j. Let an edge of .,,-4 be represented by its outward

normal, ni, and its distance to the hinge point along the normal, di. Let pj be a vector to the
contact vertex of Y!. Let R0 be the linear transformation which rotates a vector by an angle 0.
Then the type-A constraint can be written as

(p 1 - p).Roni - di = 0. (2)

3



Similarly, the type-B constraint can be written as

(Ropi + p).n - dj = 0. (3)

Where p, is the vector from the hinge point Ph to the contact vertex of Mh. The derivation of eqs.
(2) and (3) has been discussed extensively in the literature, eg., [LOP, Don, Can].

2 Statement of Results

2.1 Exact solutions for mechanical simulations

The approach in [DP] deviated significantly from earlier simulation methods. A major impediment
to developing simulation systems has been the apparent necessity to integrate out the differential
mechanics in order to determine the long-term behavior of the system. This problem is exacerbated
by the fact that in many models of rotational compliance such as the generalized damper (eg., [LMT.
Erd, Don2, Don3, Can2]), the resulting trajectories are not known to be algebraic; neither do • z
have ways of computing algebraic bounding approximations (or forward projections). Hence the
traditional numerical approach to simulating such systems has been the following:

Typical Simulation Algorithm

1. Given a state x of the system, numerically integrate the differential equation governing motion
of the system. Step forward in time to obtain (approximately) new state x'.

2. Perform collision detection either at x' or along the path from z to x'.

3. If the constraints have changed, reformulate the differential equation.

4. Repeat.

Numerical simulation of mechanical systems is fraught with error, special cases, and numerical
problems. They are rarely combinatorially precise, and almost never come with guarantees of
accuracy (see [CDRX] for exceptions). We show how in the case of our system, numerical simalation
can be avoided, and exact solutions can be obtained. We cannot claim that this can be done in
general. However, our method yields, in this case, computationally efficient, exact solutions, and
may possibly be useful in other domains.

2.2 Computational complexity

The focus of our initial work [DPI was on modeling and robotics issues, and not on the computational
geometric aspects. Our first algorithm, while polynomial, was naive. In this paper we give a
considerably faster algorithm by mounting a computational geometric attack. In addition, the new
algorithm sheds light on several interesting combinatorial and structural issues. Furthermore. it
leads to a systematic classification of special cases, and has connections to the qualitative analysis
of dynamical systems.

More sp( .ifically: In [DPI, we showed how our model of compliance permits us to obtain
algebraic, closed-form solutions to simulation problems for a rotationally compliant object, and
how this leads to exact algorithms for analyzing designs for assembly. In particular, the linear
map p(t) is given by eq. (1), and once we "rationalize" rotations via the standard substitution
u = tan 9, each map O, is piecewise-cubic. The nalve algorithm can be summarized as follows.

4



Naive Exact Algorithm [P]

1. Given a state x of the system, possibly subject to a configuration space constraint f (f has
form eq. (2) or (3)), calculate a local solution trajectory 'ID respecting f. (D will be a linear
or cubic curve in the configuration space.

2. The configuration space constraints are algebraic surfaces of bounded degree. Intersect bI
with the surfaces to perform exact collision detection.

3. A collision results either in termination of the motion or in a change of constraint. U~pdate f
if necessary.

4. Repeat.

Suppose the obstacles have m vertices and the moving object (root and one pawl) has I vertices.
Let n = ml be the measure of the geometric complexity. In [DP] we were able to show that this
nalve algodth-a runs in time 0(n2 log n). For k wls, the complexity of the naive algorithm was
O(kn2 log n).

In this paper, we give a new simulation algorithm that is also exact, and runs in time O(kAr(fl) log2

Our method reduces the simulation problem to a plane sweep of an arrangement of algebraic curves
in configuration space. To obtain this result we prove the following points. For simplicity, assume
below that k= 1, and hence configuration space C = X S1.

1. The simulation never leaves a connected component F0 of free configuration space.

2. The solution trajectory -1, of the system is piecewise cubic in the configuration space, and the
dynamics may be reduced to erecting cubic "local" configuration space constraints.

3. Translational motion of the root polygon (eq. (1)) restricts the reachable configurations to a
2D cylinder Y C C.

4. Y embeds in C as follows:

4. Repat X S

(4)

where t moves along the axis of the cylinder. Hence we view Y as R x S1. The time evolution
t E T of the system corresponds to the factor. Hence the solution "sweeps" along the
cylinder Y in the direction of the axis.

5. The configuration space constraints are manifest as cubic curves on e.

6. As we sweep the cylnder Y, a simple dynamical system models the motion of the configuration
point on the configuration space constraints. The orbits of this system are piecewise algebraic
of bounded degree.

7. Parameterize Y to the plane (this only takes 2 charts). Then F Y n Fn is defined by a
planar arrangement of cubic curves.

5



8. F has size O(Ar(n)) and can be constructed in time O(Ar(n) log2 n) using a red-blue merge
algorithm, as described in [GSSI.

9. We can compute the solution (D by a plane-sweep of the slice F, i.e., by sweeping a planar
arrangement of cubic curves. This allows us to solve the motion prediction problem exactly
in O(Ar(n) log2 n) overall time.

Hence we prove

Theorem 2.1 The Simulation Problem defined above can be solved in time O(Ar(n)log2 n) and
space O(Ar(n)), where r is a small constant.

3 Details, Analysis, and Description of our Approach

3.1 Computing the Connected Component of Free Space

We can only sketch the idea of our proofs here. Consider the motion of a single pawl Mi,, whose
translation is governed by eq. (1). As is well known, if we "rationalize" rotations using the standard
substitution u = tan 1, the n constraints given by eqs. (2) and (3) are manifest as algebraic ruled
surfaces { fl,...,f, } in a 3D configuration space with coordinates (x, y, u). These constraints are
simultaneously linear in the position parameters x and y and quadratic in the rotational parameter
u. Each surface is only "applicable" for some range of orientations [10, ui], by which we effectively
mean that the surface only "exists" for u in this range (see [Don]). See fig. 3, from [Bro]. 4

T et il be a vector along the u-axis (think of i! as (0, 0,1)). Now, the constraint of pure translation
(6q. (1)) of the hinge point P, of the pawl Mh restricts any possible evolution of the system to lie
in a "plane" (2D subspace) of (x, y, u)-space. We call this "'plane" P1,; it has "normal" fi x (j , 0),
and it corresponds to a chart for the cylinder Y discussed in sec. 2.2. We note that furthermore.
at time t, the state of the system is constrained to lie on a line L(t) parallel to i in the plane Py.
This is the line of points (p(t), u), for u E R. The line L(t) sweeps across the plane in direction
(j, 0) as t increases, and thus we call L(t) the sweep line.

Hence, a natural coordinate system for the plane Py, is given by (t, u). As time t increases.
the vertical line L(t) sweeps across Py. This line contains the state of the system. It is our
task to calculate the u coordinate as t evolves (i.e., increases). Now, Py has degree 1 and hence
when intersected with a constraint f, we obtain a cubic s curve segment 71 in the (t, u) plane. So
all the configuration space constraints are manifest as an arrangement of cubic curve segments
{71,.... y} in this plane, where 1i = fi n Py (i = 1,...,n). In our algorithm, the sweep line
sweeps across this planar arrangement of curves, and as we sweep, we compute the trajectory of
the system. "Events" caused by crossing the curves -y will modify the trajectory, as we discuss
below.

A priori, the arrangement of curves can have complexity O(n 2), and in fact, the set of free
configurations in Py can also have size fn(n 2) in the worst case (see [KS,GSS]). However, we can
directly apply the results of [GSS] as follows. We note that the system begins at some configuration
Zo E Py. zo lies in one connected component F C Py of free space and the resulting path can
never leave F since it corresponds to a physical simulation. [GSS] show that:

'We thank R. Brost for providing us with these figures, from [Bro].
'In fact, each curve -t is simultaneously quadratic in u and linear in t.
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Lemma 3.1 [GSS] The combinatorial complexity of F is O(A,+ 2(n)), and we may precompute
it (i.e., compute it before our plane sweep) in time O(A,+ 2(n) log2 n). Here s is a small constant
bounding the number of times that two configuration space constraint curves -, and -1, can intersect.

Recall Ar(n) is the (almost linear) maximum length of (n,r) Davenport Schinzel sequences
[GSS], [HS,ASS]. It is very likely that for a wide variety of situations encountered in practice (see.
eg., [Bro]) that s < 1. However, it is certain that a worst case bound is s < d2 for curves of degree
d. Note that s < 1 would tighten our bound to space O(na(n)) % nd time O(na(n) log2 n) [HS].

3.2 Sweeping the Connected Component of Free Space

3.2.1 Kinematics

We postpone our discussion of friction until sec. 3.3. Here we treat the frictionless case first, defining
six types of local geometric events, called "sweep events" that will be detected and handled during
the plane sweep. These events are purely kinematic, i.e., they do not depend on frictio.

Having computed the connected component F C Py containing the initial configuration, iwe
now sweep F with the line L(t) in the (t, u)-plane. By an abuse of notation we will now let y,
-'j etc. denote the curves bounding F that we precomputed (along with their intersections) in
sec 3.1. We now define the following sweep events: (i) translational collision, (ii) sliding collision,
(iii) jamming due to incompatible kinematics. The sweep algorithm will detect sweep events. Each
event will be handled, by which we mean that the solution trajecto.y we compute may be modified.
In between events, the trajectory is piecewise algebraic.

First suppose there are no obstacles. Then the trajectory of the system will stay at u1 = 0
in-the (t,u)-plane (i.e., the orientation of the pawl will not change). Call the point z(t) on L(t)
representing the state of the system the sweep point. So z(t) is the solution trajectory we compute.

Now, in the presence of obstacles, sweep events occur as the the sweep line crosses the curves
{ "' }. These events are enumerated in figs. 4-6. We can explain the trajectory computation
algorithm like this: the dynamical system described in sec. 1.1 has the following geometric inter-
pretation in slice Py. As the sweep line L(t) crosses the (t, u), plane, the the u-coordinate u(t) of
the sweep point z(t) E L(t) moves. In the plane Py, the line u = 0 is an attractor, and we imagine
a vector field on Py parallel to the u-axis and pointing towards the t-axis. Hence the attracting
vectors are parallel to -i. for u > 0 and parallel to +i! for u < 0. The curves -, act as (holonomic)
constraints. The sweep point cannot cross these curves, but it can follow them as L(t) moves. They
can prevent motion of the sweep point from attaining u = 0.

For example, see fig. 4. If the trajectory is at the u = 0 position and the sweep point z(t)
encounters a constraint 1,, then the sweep point complies to the constraint and is forced to move
away from the zero line (u becomes positive here). This corresponds to a pure translational collision,
followed by a continued motion of the root which "cocks" the pawl against an obstacle. During
this motion, the sweep point follows 3'i. If a new constraint -y is reached, then the sweep point
slides along the curve -1 in turn. This corresponds to a sliding collision: while sliding on constraint
",i, the pawl hits constraint -y,. The motion continues, following -, compliantly. Hence the sliding
collision can result in a constraint change. Finally, if the sweep point is following a curve y, which
crosses u = 0, the trajectory breaks contact there and continues along the t-axis. This event is a
"dual" subcase of type (i).

7



As can be seen from fig. 4, some constraint changes result in jamming due to incompatible
kinematics. This occurs as follows. Define the outward normal 71, of a urve y, to point into free
space F. Let 1 be a unit vector in the positive t-direction. Jamming occurs at -Y, n 7, when both
the inner products

rqi' and 77j.1i (5)

are negative. At this point the simulation is terminated, because further motion is impossible.
Pure translational collision events can occur where a curve 'Y, intersects the line u = 0. Sliding

collis'ons can occur when two boundary curves of F intersect, i.e., at ^,, n -y,. Jamming events can
occur when both normals at -, n y, point in the (-t)-direction. A non-jamming sliding colisior
causes a change of constraint (i.e., the sweep point now follows y, instead of -y,). It is clear that
sweep events of type (i), (ii), and (iii) are local geometric conditions and can be detected and
handled while sweeping the line L(t) over F. Similarly, it is clear that modifying the trajectoi%
z(t) at a sweep event can be done in 0(1) time.

3.2.2 Snapping Free or Jamming on A Single Constraint

We now define the sweep events (iv) snapping free from and (v) jamming on a single constratnt.
Suppose the sweep point is following a constraint curve 1. A singularity occurs at ' ertical tangencies
of -. See fig. 5. Assume wlog that I lies in the halfplane u > 0. There are two possibilities. If
the F is concave at the singularity, then the sweep point has been following the "upper" branch
of the curve. After the singularity, the sweep point follows the vector field attracting it towards
u = 0. That is, the sweep point moves parallel to the u-axis toward the t-ax.is. It stops at the
first new constraint curve it hits while moving away from the singularity towards the line u = 0. If
no constraints are encountered, it stops at u = 0. This motion corresponds to the pawl "snapping
free" from a single constraint edge. It executes an instantaneous pure rotation towards the zero
position. If another constraint is in the way, then it stops there.

If F is convex at the singularity, then no further motion is possible, and the motion jams theri
on a single constraint. At this point the simulation is te-minated.

Clearly, singularity (vertical tangency) is a local geometric condition that can be detected durir.g
the plane sweep of F, since each curve is algebraic.

There is one more kinematic sweep event tiLat is "dual" to type (iii) jamming due to incompatible
kinematics. It is type (vi) snapping free from a vertex. It occurs at a constraint change -1, n -y, (i.e..
the sweep point is following a curve -1,, and it hits another curve 7). However, in this case, both
the outward normals 7h and 7,7 point in the positive t-direction. That is, the dot products in eq.
(5) are both positive. In this case, the sweep point "snaps free" from 7, n -j and moves vertically
towards the attractor u = 0. The snapping free happens just as in event (iv) above. Snapping free
from a vertex corresponds to the situation where suddenly there are no holonomic constraints on
the pawl, so it can move towards its rest position u = 0. Conceptually, there is little difference
from event (iv) (snapping free from one constraint).

It is clear that sweep events of type (iv), (v), and (vi) are local geometric conditions and can be
detected and handled while sweeping the line L(t) over F. It is clear that modifying the trajectory
z(t) at a sweep event can be done in 0(1) time. To see that six event types suffice, simply
enumerate the ways 7, can (a) intersect -t., (b) intersect u = 0, or (c) become vertical. Hence we
have,

8



Lemma 3.2 There are six types of kinematic sweep events, as described above. There are O(A,+ 2(n))
such events overall. Each event is a local geometric condition that can be detected and handled in
0(1) time. The output trajectory is piecewise algebraic with at most O(A +2(n)) pieces and degree
at most 3.

Corollary 3.3 A plane sweep of F that handles all kinematic sweep events can be performed in
time 0(A,+ 2(n) log A+ 2(n'). This sweep solves the frictionless simulation problem (given F) for a
single pawl.

3.3 Friction

We now briefly describe how friction is handled. From the analysis in [DP], the following is clear: for
each configuration space surface f, we can define two constraints g, and h, which are also algebraic
surfaces of the same degree as fi. gj and hi depend on the direction of assembly p in (1).

The surfaces g, and h, break up f, into sliding and sticking regions. We call these qualitative
dynamical regions (QDR's), by analogy with [BD]. In a sliding region, motion is possible as t
increases. In a sticking region, equilibrium results, and no further motion is possible (compare
work on translational compliant motion, eg, [Don2, Bri]). The analysis to obtain this result is
based on an interesting mechanical analysis which we cannot include for reasons of space; however,
see [DP]. Now, when we intersect fA with the plane Py to obtain a curve yi (see fig. 6) we obtain
a 1D slice of these qualitative dynamic regions (sliding and sticking). Now, the Bezout bor A
gives an a priori 0(1) bound on the number of QDR's per surface. However, in fact, the special
structure of our constraints ensures that there will be at most 3 QDR's per connected curve -j,
on the boundary of F. Type-B constraints have (at most) one sliding region surrounded by two
sticking regions. Type-A constraints have (at most) one sticking region surrounded by two sliding
regions.

Now, we define a seve:, :h type of sweep event, (vii) a sticking event as follows. Suppose the
sweep point is following a curve y1. If it enters a sticking region on the curve, then equilibrium is
reached and the simulation is terminated. Entry into the sticking region corresponds to crossing
another algebraic curve h, or g,, and hence is a local geometric event that can be detected and
handled during the bweep. Note that g, and h, apply only to f, and do not affect any other surface
fj, and hence we call them local dynamic constraints.

Fina'ly we must slightly modify our kinematic plane sweep. After a pure translational or pure
rotational collision with a curve -yi, we first check to see whether we are in a sticking or sliding
region on that curve. If it's a sticking region, we terminate the simulation in equiliDrium, otherwise
we proceed as above (sec. 3.2). To summarize,

Proposition 3.4 There are 0(1) sticking events per constraint curve y,. Each occurs at the in-
tersection of -yi with a local dynamic constraint (another algebraic curve) in Py.

This completes our proof of the main theorem 2.1.

3.4 Summary

Red-blue merge algorithms allow us to construct a connected component of frue space F containing
the initial configuration in time O(A 8+2(n)log2 n). We desire to simulate a simple dynamical
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system within F. We compute the simulation trajectory using i plane sweep of F. To do this, we
augment F with a vector field (defiring an attractor at u = 0) and we "annotate" each curve 7,
on the boundary of F with certain "markings" at which the dynamical behavior of a sweep point
traversing -y, can change. The markings break the curve into a finite number of subsegments. The
markings are: (a) sticking/sliding transition, (b) vertical tangency, and (c) intersection with the
line u = 0. Each marking is determined by the intersection of -Y, with a line (such as u = 0) or
a curve (g, or h,), or by vertical tangency. Hence each marking is algebraic and there are 0(1)
markings per curve. Finally, at an endpoint of y, we have an intersection with the next cubic curve
-I on the boundary of F.

4 Conclusion

We considered the problem of simulating the motion of compliantly connected rigid bodies in
frictional contact with obstacles during an assembly motion. While compliant motion has been
considered in a computational geometric setting for pure translations [Don2, lDri, FHS], the problem
for rotational compliance has proved resistant to solution. We showed that unlike many simulation
problems for rotational bodies, we can obtain exact solutions without integration. We improve on
our earlier, naive O(n 2 log n) algorithm [DP] by the introduction of several techniques. The key
ideas we use are: red.blue merge algorithms, a simple dynamical systems model, and local dynamic
constraints. These tools permit us to reduce the simulation to a plane sweep of a '" dynamically
annotated" slice of configuration space. More specifically: First, we precompute the connet-ted
component of the simulation. This component of free space has low combinatorial complexity (by
Davenport-Schinzel arguments) and can be computed efficiently using a red.blue merge algorithm
[GSS]. Next, we reduce the simulation problem to a plane sweep of F. To do this, we first introduce
additional local constraints (0(1) per curve bounding F), an attractor at the rest orientation u = 0.
and a corresponding attractive vector field on F. These constructions allow us to view the plane
sweep as a simple dynamical system. This in turn permits us to bound the number of sweep events
by O(A.+ 2 (n)), which yields our main result. This is one of the first combinatorially efficient, exact
solutions to any simulation problem for a rotational mechanical system, or for rotational compliant
motion.

There are many problems left open for the future. First, we would like to extend our work to
"trees" of compliantly connected bodies. Second, we believe our work can be extended to incorpo-
rate uncertainty in the initial conditions and in the control. This result would be of considerable
interest, since it would permit imulation of a differentia, inclusion. Exact simulation does not take
into account the uncertainty (eg., the impossibility of a comprehensive description of the dynamics
of a system), nor error in actuation. We view the introduction of a more realistic mechanical model
(rotationally compliant bodies) as a step in this direction. We feel that the key property that al-
lowed us to reduce the local dynamics to a plane sweep is a kind of "monotonicity" that is inherent
in our system. It is our hope that other "monotonic" systems (and even differential inclusions)
may be simulated using the concept of "simulation as sweep." See [BDI for work in this direction.
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APPENDIX: FIGURES

Figure 1: Examples of compliantly connected rigid bodies.

M
p1 MO r- P2

Mi. M2

Figure 2: Linked body M moving among A(.

Figure 3: Configuration space constraints for a moving pawl. (Reprinted courtesy of Randy
Brost [Bro]). The sweep plane L(t) intersects the cspace obstacles in a planar arrangement
of cubic curves.
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