
I National Defense
Detence nationale

DT"C
S : JAN 301091 4

Lo4

IMPLEMENTATION OF FFT AND PULSE
COMPRESSION ROUTINES ON THE SPT

FREQUENCY DOMAIN ARRAY PROCESSOR
by

V. Behroozi and A. Damini

uzx UDnkaI'ad

'-'

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
REPORT NO.1041

September 1990
Ottawa91 1 29 044

National DefenseU Defence nalonale

IMPLEMENTATION OF FFT AND PULSE
COMPRESSION ROUTINES ON THE SPT

FREQUENCY DOMAIN ARRAY PROCESSOR
by

V. Behroozi and A. Dami
Airborne Rada~r Section

RadarDivisiOn

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
REPORT NO.1 041

PCN September 1990
021 LA Ottawa

ABSTRACT

The Frequency Domain Array Processor (FDAP) is a VME compatible circuit board
built by Signal Processing Technologies (SPT). The FDAP can process integer data arrays
containing up to 8192 (32 bit) complex words or 16384 (16 bit) real words. It is capable of
400 Million Operations Per Second (MOPS) with a maximum Input/Output (I/O) rate of
four billion bits per second. It also has a double buffered memory architecture permitting
I/O transfers to occur in parallel with data processing. The FDAP can be hosted by an
IBM PC/AT-compatible computer using a bus adaptor interface available from BIT3
Computer Corp.

The FDAP board is based upon SPT's DASP/PAC chip set. This chip set and the
various system architectures which can be built around it are reviewed. The FDAP board
and its associated development system are also reviewed. The ease of implementation of
typical radar signal processing functions on the FDAP board are then examined. Fast
Fourier Transform and pulse compression rouzines are implemented via a supplied user
interface as weil as a high level language (C). The results are examined and comments on
the FDAP and its associated system development tools are made.

RtSUME

Le Processeur Parallle dans le Domaine des Fr~quences, (PPDF) est une carte
6lectronique compatible avec VME fabriqu6e par Signal Processing Technologies (SPT).
Le PPDF peut traiter des vecteurs de donn6es entires contenant jusqu'A 8192 (32 bits)
codes complexes ou 16384 (16 bits) codes r6els. I] est capable de r6aliser 400 Millions
Operations Par Seconde (MOPS) avec un taux maximum d'Entr6e/Sortie (E/S) de quatre
milliards de bits par seconde. I1 poss~de aussi deux m~moires tampons permettant le
traitement et la transmission de donn6es simultan6ment. Le PPDF fonctionne sur un
ordinateur compatible avec un IBM PC/AT A I'aide d'une interface adaptive bus disponible
chcz la corporation BIT3 Computer.

La carte PPDF est bas6e sur la famille de puces DASP/PAC de SPT. Cette famille
et les syst~mes d'architecture vari6s qui peuvent y tre associ6s sont revis6s. La facilit6
d'implantation de fonctions typiques d'analyse de signaux radars sur la carte PPDF est
ensuite exainin6e. Les transformfes de Fourier Rapides et routines de compression
d'impulsions sont implant6s par l'usager via une interface et un haut niveau de langage (C).
Les r~suliats sont examin6s et la carte PPDF, ainsi que les outils de d~veloppement de
syst~me qui lui sont associ6s, sont comment6s.

iii/iv

EXECUTIVE SUMMARY

State of the art Synthetic Aperture Radars (SAR) transmit high bandwidth pulses and
subsequently require extremely high sampling rates. The processing rates required to
accommodate the resulting data rates are also very high. The advances in board level
products for high-speed standard busses has reached the point where it may be possible to
replace current processors with ones occupying much smaller volumes, which are more
suitable for an airborne environment. This report examines the use of one such card for
application to a subset of operations required in such processors.

The board-level processor examined in this study is the Frequency i)V'Ti, Arra',
P",'essor (FDAP), a V ME compatible circuit board built by Signal Processing Technologies
(SPT). The FDAP can process integer data arrays containing up to 8192 (32 bit) complex
words or 16384 (16 bit) real words. It is capable of 400 Million Operations Per Second
(MOPS) with a maximum I/O rate of four billion bits per second. The FDAP board is
based upon SPT's DASP/PAC chip set. This chip set and the various system architectures
which can be built around it are reviewed. The FDAP board and its associated
development system are also reviewed. The ease of implementation of typical radar signal
processing functions on the FDAP board are then examined. Fast Fourier Transform and
pulse compression routines are implemented via a supplied user interface as well as a high
level language (C). The results are examined and comments on the FDAP and its
associated system development tools are made.

v/vi

TABLE OF CONTENTS

Page

A BSTRA CT ... iii
R tSU M t. ... iii
EXECUTIVE SUMMARY v
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES ix

1.0 INTRODUCTION 1
1.1 The DASP/PAC Chip Set 2
1.1.1 The Digital Array Signal Processor (DASP) 2
1.1.2 The Programmable Array Controller (PAC) 3
2.0 SYSTEM ARCHITECTURES 6
2.1 Recursive Dual Memory System-Core 6
2.2 Recursive Dual Memory System-I/O Buffered 7
2.3 Recursive Single Memory System 8
2.4 Cascaded System 8
2.5 A Digital Filtering System 9
3.0 SYSTEM DEVELOPMENT TOOLS 11
3.1 Software Simulators 11
3.2 Hardware Evaluation Module (EVM) 12
3.3 VME Interface and Personal Computer 13
4.0 FREQUENCY DOMAIN ARRAY PROCESSOR (FDAP) 14
4.1 A rchitecture 14
4.2 System Components 14
5.0 PROGRAMMING THE FDAP 17
5.1 M em ory M ap 17
5.2 Control and Status Registers 18
5.2.1 M em ory M ap 18
5.3 PAC Registers 19
5.3.1 PAC Instructions 19
5.3.2 PAC Control Registers 20
5.4 Instruction Form at 22
5.4.1 Node Type Field 22
5.4.2 Function Set 25

vii

Page

6.0 FDAP PROGRAMMING USING A USER INTERFACE 26
6.1 Radix-4 FFT Program 26
6.2 Pulse Compression Program Using Radix-4 FFTs 33
6.2.1 Theory of Pulse Compression 33
6.2.2 Pulse Compression on the FDAP board 34
6.2.3 Pulse Compression Program 34
7.0 FDAP PROGRAMMING USING A HIGH LEVEL LANGUAGE .. 39
8.0 CONCLUSIONS .. 39
9.0 APPENDIX 1 - FDAP C-LANGUAGE PROGRAMS 40
9.1 1024-Point Radix-4 Complex FFT Program V)
9.2 1024-Point Radix-4 Pulse Compression Program 44
10.0 REFERENCES ... 49

viii

LIST OF FIGURES

Page

Figure 1.1: DASP Block Diagram and I/O Values 2
Figure 1.2: DASP System ... 3
Figure 1.3: PAC Block Diagram 4
Figure 1.4: Dual Memory Recursive System With I/O Buffers 5
Figure 1.5: Recursive System With I/O Buffers-Memory Reallocation 5
Figure 2.1: Core Dual Memory Recursive Stage 6
Figure 2.2: Core Stage-Reverse Direction 7
Figure 2.3: Single Memory Recursive System 8
Figure 2.4: Cascaded System ... 9
Figure 2.5: Digital Filtering in the Frequency Domain 9
Figure 2.6: Overlap/Discard Fast Convolution 10
Figure 2.7: Overlap/Discard Recursive System With I/O Buffers 10
Figure 3.1: DASP System Development Cycle 11
Figure 3.2: EVM Block Diagram 13
Figure 4.1: FDAP Block Diagram 16
Figure 5.1: M em ory M ap .. 18
Figure 5.2: Control and Status Register Memory Map 19
Figure 5.3: PAC Register Memory Map 20
Figure 5.4: PAC Instruction Format 22
Figure 5.5: a) Radix-4, 16-Point DIF FFT Flow Diagram 24

b) Radix-2, 16-Point DIF FFT Flow Diagram 24
Figure 6.1: Time Domain Data from Simulator (Memory B) 29
Figure 6.2: Twiddle Factors (Auxiliary Memory XI) 30
Figure 6.3: Harris-Blackman Window (Auxiliary Memory X2) 31
Figure 6.4: Frequency Domain Data (Memory C) 32
Figure 6.5: Pulse Compression Algorithm 33
Figure 6.6: Linear FM Pulse - Time Domain (Memory A) 36
Figure 6.7: Matched Filter Impulse Response - Frequency

Domain (Auxiliary Memory X2) 37
Figure 6.8: Power Spectrum of Compressed Pulse (Linear Data from Memory D) 38

LIST OF TABLES

Table 5.1: PAC Node Type ... 23
Table 5.2: DASP Function Set 25

ix/x

1.0 INTRODUCTION

Signal Processing Technologies (SPT) has recently introduced a new generation of
Digital Signal Processing (DSP) VLSI high performance integrated circuits. These devices,
part of the HDSP66 device family, incorporate innovative architectures and a high-
performance, 2 micron CMOS process. They are superior to currently available devices in
terms of speed, flexibility, power dissipation, levei of integration, and cost [1]. The
capability of the devices to carry out 400 Million Operation Per Second (MOPS) makes high
performance solutions for Fast Fourier Transform (FFT) intensive applications such as those
found in radar possible.

The product categories in the HDSP66 family include [5]:

i) Processor chip-,
ii) Memory chips and modules,
iii) Simulation and software development tools, and
iv) Processor boards.

These categories are designed to complement each other in any development environment.

This report summarizes work performed on the development of a digital Fourier
Transform processor for FFT and pulse compression applications. The report first reviews
the DASP/PAC chip set and the various system architectures which can be configured
around it. The system development tools supplied by SPT and the FDAP, a high-speed
signal processing board built by SPT and based on the DASP/PAC chip set, are then
examined. Finally, some practical implementations of FFT and pulse compression routines
are presented.

1.1 The DASP/PAC Chip Set

The HDSP66 device family is based upon the Digital Array Signal Processor (DASP)
and Programmable Array Controller (PAC) chip set. The DASP and the PAC allow FFT-
based DSP systems to be implemented which process at data rates up to 80 MHz in real
time. Discrete Fourier Transform, spectrum analysis, digital filters, correlations,
convolutions, and adapive filters based upon FFT techniques are possible [1]. DASP/PAC-
based systems can compute a complex FFT of up to 64K points. Furthermore, multiple
DASP/PAC chip sets can be combined to enhance performance to the desired level. For
example, one DASP/PAC chip set can compute a 1024 point complex FFT in 131
microseconds while five chip sets can execute the same FFT in 26.2 microseconds [5].

The DASP/PAC chip set allows several FFT-based system architectures to be
configured. These systems typically require only several PAC instructions to execute a DSP
function such as an FFT.

1.1.1 The Digital Array Signal Processor (DASP)

The DASP, illustrated in Figure 1.1 [1], is a very high-speed, block floating-point
array processor. It performs up to 400 MOPS such as multiplications and additions, when
performing FFT specific and general-purpose operations on arrays of data. It is capable of
a maximum I/O rate of four billion bits per second. The DASP performs functions
consisting of multiple arithmetic operations. The operations are carried out on two sets of
four 32-bit compiex values or two sets of eight !6-bit real vaiueb every machine cycle. The
lower limit on die machine cycle, which is the number of clock cycles needed to execute an
instruction, is 100 nanoseconds (four clock cycles at forty MHz).

AUXILIARY INPUT VALUES

SHIFTER ARRAY

DATA 00" a 20IOI O V DAsA
INU MLTIPLIER DATAoj~u

ARRAY IF VALUES

tls t ~s~

4CorYlas Vas # # 4 coiipz use or
(All 16 B26) C s) is Vaue

FUNCTION - CODE

FIGURE 1.1: DASP BLOCK DIAGRAM AND I/0 VALVUS

2

The values input to the DASP and output from it are 16-bit fixed point numbers,
represented in fractional two's complement arithmetic. To preserve an adequate signal-to-
noise ratio as intermediate operations are carried out, intermediate values can grow to 20
bits. These same values are rounded to 16 bits upon transfer to the output busses. In fixed-
point machines scaling is applied to prevent overflow. This must be taken into consideration
as there is often an accompanying loss in signal-to-noise ratio.

1.1.2 The Programmable Array Controller (PAC)

The Programmable Array Controller (PAC) is used in conjunction with the DASP
to configure FFT-based DSP systems. The DASP/PAC chip set can be combined with off-
the-shelf single-port memories, as shown in Figure 1.2 [2], t3 develop DSP systems. The
PAC acts as a local system manager. It contains a program memory which is initialized b%
a user-downloaded program. A PAC program, defined to implement either a FFT or a
FFT-based function, is typically ten to twenty instructions long. Conventional DSP
microprocessors, on the other hand, usually require on the order of ten to one hundred
times as many instructions to carry out similar functions.

FIGURE 1.2: DASP SYSTEM

=3

A block diagram of the PAC architecture is illustrated in Figure 1.3 [2]. The PAC
contains 5 independent address generators each of which produces a 16-bit address everx
25 nanoseconds. The generators, IAS, OAS, RAS, WAS and XAS, produce the address
sequences for the input and output memories and the three DASP data memories. This is
done in parallel, as shown in Figure 1.4 [1]. This allows the PAC to access data arrays up
to 64K-points in size. The address sequences generated range from sequential for
conventional array operations to FFT-specific for the various passes of the Decimation In
Frequency (DIF) FFT algorithms. The FFT-specific address sequences are applied to the
data and twiddle factor memories for radix-4, radix-2, and mixed radix-4/radix-2 FFT
functions.

(MEMORY ADDRESSES - Tmi4 CYCLE TIME)
ADRA ADRB ADRX ADRC ADAD

16 1 16 16 1 4 - ICU(

CLKIN BUS MULTIPLEXERS 4-OICLK
(FREQUENCY + + +--HOLK
4 m)

ADDRESS GENERATORS

- USER-PROGRAMMABLE CONTROL --.-- - , 4-PAC CHIP

INST ARRAY SIZE N

+ MEMORY *-- LATENCY
1 (32) C & OVERLAP

12 = , , CONTROL .___

A1REGISTERS-- --- T
EXTERNAL . -- --.--- -- ---
INSTRUCTION HOST

/PROGRAMMABLE I
OUTPUTS CONTROLS FOR INITIALIZATION t,

(TO CONTROL DASP ETC.)
PO (7)

FIGURE 1.3: PAC BLOCK DIAGRAM

During the execution of a typical DASP function it is often necessary to reallocate
the data memories. The PAC supports this requirement, as shown by Figures 1.4 and 1.5
[1], by integrating a bank of bus multiplexers. The various address sequences, produced b
the five address generators, can thus be programmed to appear on any of the address busses
ADRA, ADRB, ADRC, ADRD, and ADRX. Furthermore, each address generator has a
memory write enable control signal associated with it which appears at the appropriate
memory control output pins.

The PAC contains a 32 word, 20 bit user-loadable instruction RAM within which
DASP instructions can be loaded. These instructions affect the address sequcnce required

4

of the address generators, and the programming of the address generators to the desired
address buses. The PAC contains several user-loadable control registers which allow several
system configurations to be defined. These control registers contain system configuration
parameters which are discussed in Section 5.3.2. The PAC is typically initialized and hosted
by an additional microprocessor. Alternatively, the PAC can autobootlozd itself from an
external ROM.

DATA DATA
INPUT OUTPUT

A1 0

ADAC

jCOEFFM-
DENTS

ADAADSADFLX ADRC AR

7A ORA ,ORPAC

FIGURE 1.4: DUAL MEMORY RECURSIVE SYSTEM WITH I/O BUFFERS

DATA DATA
INPUT OUTPUT

DAA

AP C

BUFFERS-MEMORY REALLOCATION

I I I

2.0 SYSTEM ARCHITECTURES

The DASP/PAC chip set allows many FFT-based DSP problems to be solved using
a variety of DSP algorithms and system configurations. The three basic system architectures
supported by the chip set are recursive dual memory, recursive single memory, and cascaded
[1]. The possible architectures are not restricted to the configurations herein presented but
may be tailored to the application.

2.1 Recursive Dual Memory System-Core

The recursive architecture executes DSP algorithms on a single DASP/PAC stage by
carrying out multiple passes of the data array through the DASP. The architecture of a
core, recursive dual memory system is given in Figure 2.1 [1]. The PAC controls the system
and thus the addressing of the three memories, B, C and X. Each of these memories can
contain N words of complex data. N is the size of the array which is passed through the
DASP.

DATA IN DATA OUT

!.!,~ 0 D° °1.3
R RRI

COEF'W-

CIENTS

ADRB ADRX ADRC

PAC

FIGURE 2.1: CORE DUAL MEMORY RECURSIVE STAGE

The initiation of any system function involves the input address being programmed to
appear on the ADRB bus so that N data samples can be loaded in memory B. The DASP
processing then commences with the PAC sending an instruction code to the DASP to
implement the desired function. The first PAC instruction passes the data from memory B
to memory C by providing the read address sequence on the ADRB bus and the write
address sequence on the ADRC bus. An auxiliary address sequence is programmed on the
ADRX bus to allow the DASP to read from memory X. The current function programmed

6

on the DASP is applied to all N points being passed. Upon completion of the data transfer,
the PAC reverses the roles of memories B and C through its on-chip address multiplexer.
This allows data to flow in the opposite direction as illustrated in Figure 2.2 [2].

DATA IN DATA OUT

Il I

IOi, i

ADRB ADRX ADRO
PAC

R I I

FIGURE 2.2: CORE STAGE-REVERSE DIRECTION

The data passes back and forth between memories B and C through the DASP. Each pass
corresponds to one of the functions comprising the user's algorithm.

2.2 Recursive Dual Memory System-I/O Buffered

In the recursive dual memory system-core architecture, processing resources are idle
while I/O is being performed. This makes the system undesirable for real-time applications.
An architecture for a real-time DSP system would ideally take advantage of all five PAC
address busses. The double-buffered configuration shown in Figure 1.4 makes use of such
an architecture. Two additional memories are used for input and output while three other
memories are used for the DASP data processing functions. In Figure 1.4 it can be seen
that while the (t+ 1)th frame of data is being input in memory A, the (t-1)th processed data
frame is being output from memory D. Memories B and C act as both read and write
memories for recursive execution of the various functions comprising the DSP algorithm
being executed on data frame t.

7

2.3 Recursive Single Memory System

To reduce the system cost, size, and power associated with the DASP/PAC-based
systems we are considering, a system architecture configured around a single data memory
can be utilized. Such a system is shown in Figure 2.3 [1].

INPUT/OUTPUT

A

ADRA PCADRX

FIGURE 2.3: SINGLE MEMORY RECURSIVE SYSTEM

A single memory recursive system interleaves both the read and write operations,
corresponding to the execution of the various passes of the in-place DIF FFT algorithm, on
one data memory. The configuration makes use of only one of the DASP I/O ports and two
of the PAC address busses. The DASP performance is instantaneously halved due to the
I/O bottleneck on the DASP data port being used. The implementation of a function on
this system can be explained by way of Figure 2.3. A data array is input in memory A by
programming the input address sequence to the ADRA bus. Multiple DASP functions are
then carried out by passing the data array through the DASP. The read and write addresses
are interleaved on the ADRA bus during each of these passes. After the final pass the
processed data is transferred out of memory A by programming the output address sequence
on the ADRA bus.

2.4 Cascaded System

The effective throughput of a DASP/PAC-based system can be increased by
cascading DASP/PAC stages. Such a 3ystem can process complex data at a 40 MHz rate

8

and real data at an 80 MHz rate. A cascaded system with multiple core recursive stages
acting as the inner nodes and two I/O-buffered recursive stages acting as the end nodes is
given in Figure 2.4 [1].

INO OUTPUT

la014 all

I, Ileal ld 0111O&p

FIGURE 2.4: CASCADED SYSTEM

The algorithm is partitioned over these nodes. For example, the P passes of an FFT may
be distributed over P processing nodes. Each node in a cascaded system executes the same
function on successive data arrays. Each PAC contains two control registers which are used
to initialize the type of nodes which are neighbour to it. This allows the PAC to generate
the proper read and write address sequences for its left and right neighbouring nodes.

2.5 A Digital Filtering System

Digital filtering is a signal processing application which lends itself towards
implementation on an I/O-buffered recursive system. Digital filtering involves the linear
convolution of a long sequence with a filter of finite length. The linear convolution may be
implemented by partitioning the long sequence into data arrays of length N. This partitioned
sequence is then processed using the fast convolution algorithm shown in Figures 2.5 and
2.6 [1]. In the fast convolution algorithm the next data array must be overlapped with the
previous data array by an amount at least equal to the filter length, K. Two overlap
memories, OVA and OVB, are added to the system to hold the overlapped points as
indicated in Figure 2.7 [1].

INPUT OWTPUT

DATA INPUT NULTIPL P" MULTIPt of" OWPVT DATA
FRIAME I11AW1l

OVIWLIAP NIDSPAO

FIGURE 2.5: DIGITAL FILTERING IN THE FREQUENCY DOMAIN

9

As each set of N data points is output, the first K values in the data array must be
discarded. This fast convolution technique is referred to as the overlap/discard method.

(A) INPUT (B) OUTPUT
OV a Overlap DS a Discard

'[~~~~ ~ 111 -. .1111! " J liP1 Tl ' . _.,, !111 1

S I'

SN-1

FIGURE 2.6: OVERLAP/DISCARD FAST CONVOLUTION

The PAC can be programmed for fast convolution through overlap/discard special
addressing sequences, control signals, and a special control register referred to as K which
is used to set the overlap size K. A recursive architecture configured as a digital filter
system is shown in Figure 2.7.

DATA DATA

PAC

FIGURE 2.7: OVERLAP/DISCARD RECURSIVE SYSTEMI WITH I/O BUFFERS

10

II II II-N

3.0 SYSTEM DEVELOPMENT TOOLS

The development of a DASP/PAC-based system is simplified by the use of system
development tools provided by SPT. These tools include software simulators, user guides
and a hardware evaluation module. The development cycle involved in designing and
implementing a DASP/PAC-based system is illustrated in Figure 3.1 [1].

an~ DASFIPA

SPIPAC EVM

FIGURE 3.1: DASP SYSTEM DEVELOPMENT CYCLE

3.1 Software Simulators

SPT provides software simulators for the DASP/PAC chip set Configured in a

recursive dual memory-I/O buffered system. These simulators run on IBM PC and
VAX/VMS systems. The key features of these simulators are listed below. The IBM PC-
based simulator SIM.EXE, has a user interface compatible with that of the Hardware
Evaluation Module (EVM) board, which is discussed in Section 3.2.

11

The VAX/VMS-based simulator is a stand-alone simulation tool. It can also be
integrated into a larger simulation by being called as a subroutine. The VAX/VMS-based
simulator was not used in this study.

The key features of the IBM PC based simulator include [2]:

i) A menu-driven user interface,
ii) A capability to generate data arrays consisting of two sinusoids,
iii) The DSP algorithm being defined through graphical models of the PAC

instruction memory and control registers,
iv) Algorithm execution being carried out on a model of the DASP,
v) Graphical displays for data arrays, and
vi) I/O file capability for data arrays and programs.

The key features of the VAX/VMS based simulator include [2]:

i) Coding in "C" language to allow linking with user defined system simulations,
ii) Algorithm execution being carried out on an integrated model of the

DASP/PAC chip set, and
iii) Corresponding floating point computations being available for examination of

errors due to scaling and round-off.

3.2 Hardware Evaluation Module (EVM)

The EVM board is a DASP/1PAC-based digital signal processing system implemented
on a Eurocard SU-9 standard size board for VME bus systems. FFT-based signal processing
algorithms can be implemented on the EVM to process data at rates currently available in
VME bus products. The EVM allows the designer to prototype and evaluate a proposed
DSP system. A block diagram of the EVM is given in Figure 3.2 [1]. A more detailed
description of the EVM is found in Section 4.0.

12

PAM ~~~ ~ A A V=nPMC PM

FIGURE 3.2: E,, BLOCK DIAGRAM

The EVM board may be controlled in one of two ways:

i) Using a supplied user interface, EVM.EXE, which is identical to that of the
IBM PC based simulator, and

ii) Using a High Level Language.

3.3 VME Interface and Personal Computer

The VME interface allows parallel communication between the EVM and the IBM
AT compatible personal computer. It consists of two cards and an interconnecting cable.
One card resides with the evaluation system on the VME bus and the other is located in the
AT computer. Address mapping permits the PC-AT to directly address VME memory on
the BIT3 card in the VME chassis as though it were local memory. Communications
between the two systems is via random access memory reads and writes. The PC-AT can
execute code residing in memory on the VME bus. The jumpers on the PC-AT adaptor
card establish various viewports or windows within the PC-AT memory and I/O space that
map directly to the VME memory, adaptor dual port memory, and adaptor I/O.

Software on the AT allows control of the EVM from the computer %!-,tcard. D.!a
memories on the EVM may be observed and modified. Files stored on the computer may
be transferred to the EVM and results may be stored in new files.

13

4.0 FREQUENCY DOMAIN ARRAY PROCESSOR (FDAP)

The Frequency Domain Array Processor (FDAP) is a DASP/PAC-based VME-
compatible circuit board used for prototyping high speed DSP systems. The board contains
8 banks of 8K by 32 bit high speed static memory and control logic interconnected to enable
FFT-based signal processors to be implemented.

The FDAP can process integer data arrays containing up to 8192 (32 bit) complex
words or 16384 (16 bit) real words. The J1/P1 and J2/P2 connectors on the FDAP circuit
board, which conform to the Eurocard SU-9 standard size, are standard VME interfaces.
The J3/P3 connector is a custom-defined, high speed I/O interface through which multiple
FDAPs may also be cascaded.

4.1 Architecture

The FDAP architecture is based upon the dual memory recursive or "ping-pong"
architecture outlined in Sections 2.1 and 2.2. The FDAP also includes overlap/save
memories, dual coefficient memories and additional data memories so that a double-
buffered architecture can be enabled.

A block diagram of the FDAP is given in Figure 4.1 [5]. The main components
comprising the architecture of the board are [5]:

i) The bus interface,
ii) Ping-Pong memories (A and D, B and C),
iii) Overlap memories (OVA and OVB),
iv) Coefficient memories (RAM X1 and RAM X2),
v) I/O interface, and
vi) DASP/PAC chip set.

4.2 System Components

The VME bus interface consists of the J1/J2 connectors. These connectors allow the
FDAP to communicate with an external VME master. These communications include
loading of the PAC control and instruction registers, and the reading and writing of data to
and from the memory banks. The bus interface also allows the seven VME bus interrupts
to be used to signal external interrupt handlers when the PAC reaches a predetermined
point in the execution of a program.

14

The FDAP's ping-pong memory consists of four banks of 8Kx32 bit memory, A, B,
C and D. It is referred to as ping-pong memory because data is passed recursively back and
forth between pairs of memory banks. The PAC's ADRA, ADRB, ADRC, and ADRD
address busses are used to address the four banks as shown in Figure 4.1. Banks A and B
may be programmed to be either input memories or DASP read/write memories. If they
are read/write memories their data busses are subsequently gated onto the DASP DI and
D2 data busses. Similarly, banks C and D may be programmed to be either output
memories or DASP read/write memories.

When a fast convolution filtering algorithm using the overlap/discard technique is
to be implemented, two banks of 8Kx32_ bit memory are used to hold the overlapped
portions of the input data. These two memory banks, OVA and OVB, support overlaps of
up to 2K-points.

Coefficient memories X1 and X2, also referred to as auxiliary memories, are each
8Kx32 bit high-speed static memory banks. The DASP's auxiliary data bus may be routed
to either auxiliary memory and the remaining memory may be concurrently written to from
the DASP's D3/D4 bus. The two most significant bits of the PAC programmable output,
which are discussed in Section 5.4, control the routing to the coefficient memories. Bit 6
determines the routing of the DASP auxiliary data bus while bit 7 enables the memory
routed to the DASP D3/D4 bus to be written to.

The high-speed I/O interface is implemented through a 96 pin J3 connector on the
FDAP. The interface consists of a 32 bit input bus, 32 bit output bus and control and status
signals. Both busses are 32 bit complex. The input bus may be -ated directly into either
memory A or B or one of the overlap memories. The output bus may originate from either
memory C or D.

15

cq

C4
cl)

'Mao

cl
C404
Xcl)

...........
cr. c*

C-4
x C.)

cc

co

co

co .,k :

uj

P. C-4

co

10
C'i r

Cc

FIGURE 4.1: FDAP BLOCK DIAGRAM

16

5.0 PROGRAMMING THE FDAP

The FDAP memory banks and control and status registers are memory mapped to
occupy 64K of VME memory space. The processing memories occupy the upper 32K bytes
of FDAP address space. At any given moment, one of the eight 32K byte processing
memories can be bank selected to occupy this space.

5.1 Memory Map

The VME memory map for the FDAP is illustrated in Figure 5.1 [5]. The control
and status registers may be jumpered on the BIT3 card (which is located in the VME
chassis) to occupy any one of the 16 different locations indicated. In our example
Control/Status Location# I is made use of and is expanded on in Figure 5.2 [5]. The FDAP
base address must be set to a 64K byte boundary corresponding to an unused block in the
PC-AT. The remote bus RAM jumper setting permits the PC-AT to read and write to the
BIT3 memory card in the PC and thus the BIT3 VME adaptor card and processor card
residing in the VME chassis. The HI and LO RAM jumpers (on the BIT3 card in the VME
chassis) select the address range that the PC-AT will reference in its address space when
it wants to read or write to memory in the VME bus. The remote RAM LO jumper sets
the starting PC-AT address and the remote RAM HI selects the ending address. For this
board the start address is DOOOO hex and the end address is DEEEF hex. Data is
transferred in 16 bit blocks to the FDAP as each FDAP memory location contains 16 bits.

17

base + FFFE II Pnes eea I
I I
I B Swmha i

base + 8000 I I

base + 7FFE I II I
Reserv I

base + 4000 I

base + 3FFE I CorfVStas Loction #16 I
base+3C00 I I

base + 3BFE I CoatoYStatus Location#15 I
base + 3800 I I

base + 37FE I II I
I I

base + oCo I

base + OBFE I CaLocdon#3 I
base +o8o I I

base + 07FE CortsuLoction2 I
base + 0400

base + 03FE I CoY StjsLocai #1 I
base +0000 I

FIGURE 5.1: MEMORY MAP

5.2 Control and Status Registers

5.2.1 Memory Map

The memory map for the FDAP's control and 'tatus registers. Location# I is
illustrated in Figure 5.2. Most of the registers can be both read from and written to. The
Chase address for the Control/Status location is sct via jumpers on the BIT3 card in the
VME chassis. The PAC control registers are expanded on in Section 5.3 and Figure 5.3 [5].
The control and status registers occupy five words starting at memory location Cbase + 200
Hex. These registers allow the user to set up interrupts, PAC execution modes, map in or
out of various processing memory banks, and set up methods for handling scale factors for
block floating point. For our board Chase is set to DOOGO hex.

18

Cbase+ 03FE I I
I Reserved II I

Cbase + 020B I I

Cbase+ 020A I GRegister vt orM I
I I

Cbase +0208 I Status Register 1 (read oly) I
I I

Cbase + 0206 I Status Regier 0 (read only) I
1 I

Cbase + 0204 I Scaie Rsaer II I

Cbase +0202 I Cortrol Register1 I
I I

I Cont:o Register0 I
Cbase + 0200 I I

Cbase + 01FE I I
I Pac Cortml Regisers I

Cbase+0100 I I

Cbase + OOFE I I
I Pac InsMcion Rgiters I
I I

Cbase + 0000 I I

FIGURE 5.2: CONTROL AND STATUS REGISTER MEMORY MAP

5.3 PAC Registers

5.3.1 PAC Instructions

The PAC instruction memory, which may be both read to and written from, can
contain 32 instructions. Each PAC instruction contains 20 bits and occupies two 16 bit
words. PAC instruction bits 0 through 15 are located at addresses Cbase+ 0, 8, 10, 18, etc..
(Hex). PAC instruction bits 16 through 19 are located at addresses Cbase + 4, C, 14, IC,
etc.

19

5.3.2 PAC Control Registers

The location of the PAC control registers relative to Cbase is illustrated in Figure
5.3.

Cbase + 0130 I TCNT (whenread) I
I STAD (when wrtten) I

Cbase + 012C I RTND I
I I

Cbase + 0128 I LFND I
I I

Cbase +0124 j K
I I

Cbase + 0120 I N4 II I

Cbase + 011C I NI I

Cbase + 0118 I M I
I I

Cbase + 0114 I STAD (when read) I
I TCNT (when written) I

Cbase + 0110 I MLAT I
I I

Cbase + 010C I PRGSZ I
I I

Cbase + 0108 I PSLEN I
I I

Cbase + 0104 I LAT I
I I

Cbase + 0100 I MFIG I
I I

FIGURE 5.3: PAC REGISTER MEMORY MAP

These control registers allow the user to customize the PAC within the architecture in which
it is configured to the user's DSP application. The control registers are defined as follows
[2].

20

RCONFIG:
This iegister informs the PAC about the system configuration and the type of algorithm to
be executed. This in turn defines the mode of operation for the PAC. The modes of
operation include radix-2, radix-4, and mixed-mode radix FFTs, recursive, auto-start, digit-
reversed write address and filter.

PLAT:
This register defines the processor latency in machine clock cycles introduced by the pipeline
between the DASP input and output. PLAT must be set to four for proper operation of the
DASP as configured in the FDAP architecture.

PSLEN:
This register contains the user-specified pause length, in machine clock cycles, required at
the completion of a pass. This register is used when the PAC is operating in the auto-
restart mode. The Auto-Restart bit is in the RCONFIG register. This bit configures the
PAC to enter the pause mode at the completion of a pass before executing the next
instruction.

PRGSZ:
This register defines the size of the program which has been loaded into PAC internal
instruction memory. The upper limit on PRGSZ is 32.

MLAT:
This register defines the memory latency which is present in the data and address paths of
the read, write, and auxiliary data memories.

STAD:
This register defines the starting address, or page offset required when addressing N points
within a frame of data.

TCNT:
This register is for test purposes.

M:
This register contains the exponent of the radix used in the FFT which satisfies the
definition for data array size N=(radix)**M.

N:
This register defines the size of the data array and is defined as N=(radix)**M.

M4:
This register is used to generate the appropriate address sequencing for the mixed-radix FFT
mode. It determines the half array size and is defined as (M-1)/2.

21

K:
This register defines the overlap size required for the fast convolution overlap/discard
digital filtering algorithm.

LFND and RTND:
These registers are used for defining the left and right neighbouring nodes if multiple
FDAPs are used in a cascaded system.

5.4 Instruction Format

Each PAC instruction consists of 20 bits partitioned into five fields as shown in
Figure 5.4 [2]. The fields are node type, mixed-radix mode, auxiliary address shift factor,
bus switch code, and programmable output. The node type field is discussed in Section
5.4.1. The mixed-radix mode bit is used when a mixed-mode (combination radix-2, radix-4)
FFT is to be implemented. The array size for a mixed-mode FFT is an odd power of 2.
The mixed-radix mode bit allows the same sine/cosine memories to be used for the various
passes in the mixed-mode FFT. The auxiliary shift factor defines the number of bit
positions the auxiliary address is to be shifted to the left for one mode with respect to the
other. The bus switch code defines how the input, output, read and write address generators
are routed to address ports ADRA, ADRB, ADRC and ADRD. The programmable output
is discussed in Section 5.4.2.

XSH1F ,IMOD

PO BSC ND

!111111 lIII IIII
som don sf 1114 Sm

FIGURE 5.4: PAC INSTRUCTION FORMAT

5.4.1 Node Type Field

The 5-bit node type field in the PAC instruction specifies the type of address
sequence, sequential or FFT specific, required of the read, write and auxiliary address
generators. Table 5.1 [2] lists all of the node types supported, their mnemonics and their
corresponding Hex codes for the 5 bit field.

22

HEX CODE MNEMONICS DESCRIPTION

00 FFTO FFT Column 0
01 FFT1 FFT Column 1
02 FFT2 FFT Column 2
03 FFT3 FFT Column 3
04 FFTF4 FFT Column 4
05 FFT5 FFT Column 5
06 FFT6 FFT Column 6
07 FF17 FFT Column 7
08 FFT8 FFT Column 8
09 FFT9 FFT Column 9
OA FFT1O FFT Column 10
OB FFT11 FFT Column 11
OC FFT12 FFT Column 12
OD FFT13 FFT Column 13
OE FFT14 FFT Column 14
OF FFT15 FFT Column 15
10 SEQ Sequential
11 SSEQ Symmetric Sequential
12 FFT2N Double Length Real FFT
13 FFTNN Dual Real FFT
14 FTRS Filter Sequence
15-E RESERVED
1F EOPM End of Process Marker

TABLE 5.1: PAC NODE TYPE

Function codes 00 through OF correspond to the different columns, or passes in the DIF
FFT [4] data flow diagram. The number of passes required of an FFT program depends
on the radix and the size of the data array. Figures 5.5(a) and (b) [2] show the data flow
diagrams of radix-4 and radix-2 FFTs, respectively. Function FFTO executes the left most
column, or first pass of the FFT. FFT(M-1) executes the right most column, or last pass of
the FFT. M is the exponent that defines the array size.

Each address generator produces four distinct addresses every machine cycle. When
a radix-4 FFT is implemented these addresses are used for the 4-point butterfly
computation. When a radix-2 FFT is implemented, the first 2 addresses are used for the
first 2-point butterfly computation, and the next two are used for the second 2-point butterfly
computation each time the loop is processed.

23

0 0

2 12

a0

1 12

122

14 14

1s Is

FIGURE 5.5(a): RADIX-4, 16 POINT DIF FF1' FLOW DIAGRAM

4I

14

13

FIGURE 5.5(b): RADIX-2, 16 POINT DIF FF1' FLOW DIAGRAM

24

5.4.2 Function Set

The programmable output field is used to specify the function code for the DASP.
The remaining bits may be used to manage other parts of the system. For example, one bit
may be used to select between the two auxiliary memories for the auxiliary data source.
The operational 4-bit code, a mnemonic and a description of each function which is
supported on the DASP are given in Table 5.2 [1].

Function Opcode Description

Mnemonic

Complex Arithmetic Class

BLFY4 0000 RADIX-4 DIF Butterfly
BFLY2 0001 Two RADIX-2 DIF Butterflies
FFT2N 0010 Recombine N Complex-Point to 2N Real-Point FFT
FFTNN 0011 Recombine N Complex-Point FFT to two N Real Point

FFTs
BMUL 0101 Block Multiply two Sets of Complex number

General Arithmetic Class

AFLOW 0100 Arithmetic Flow Through
BSQSM 0110 Block Square and Sum a Set of Complex Values
BADD 0111 Block Add Two Sets of Real or Complex Values
BSUB 1000 Block Subtract Two Sets of Real or Complex Values
BMULR 1001 Block Multiply Two Sets of Real Numbers
BMULRA 1011 Block Multiply Two Sets of Real Numbers and Partially

Add

General Logic Class

BCONS 1010 Generate a Block of Constants (0 or 1)
LFLOW 1100 Logical Flow-Through (Pass Data)
BAND 1101 Block AND Two Sets of Integer Values
BOR 1110 Block OR Two Sets of Integer Values
BXOR 1111 Block EXCLUSIVE-OR Two Sets of Integer Values

TABLE 5.2: DASP FUNCTION SET

25

6.0 FDAP PROGRAMMING USING A USER INTERFACE

The following sections outline the implementations of two DSP routines on the I/O
buffered recursive system of the FDAP. PAC programs implementing FFTs and pulse
compression routines follow. The examples can be implemented through either the IBM
PC-AT simulator or the user interface for the EVM.

The DASP function codes are as defined in the previous sections. These programs
are coded to allow the PAC to loop through the algorithm continuously until it reaches the
end of the program.

6.1 Radix-4 FFT Program

In this example, memories A and/or B can be loaded with 1024 complex words of
data generated by the simulator program. We have chosen to load memory B. The PAC
control registers and PAC program memory are set up to do a 5 pass (1024 point), radix-4,
complex point FFT on each data set. The program control registers are initialized to handle
the scale factors appropriately. The PAC program is executed, and the results in memories
D and/or C, C in our case, are plotted.

The simulator generates data according to the simple time domain function
formulated below [51:

0A F' AliF1i A2 2F2i 1
X-22 0 e +10 Me ' N J(6.1)

where:

N = the number of samples,
i = 0..N- 1,

Al = the amplitude of the first tone (dB),
F1 = the frequency bin of the first tone,
A2 = the amplitude of the second tone (dB),
F2 = the frequency bin of the second tone, and
Q = the number of bits (of a tone of amplitude of 0 dB).

26

The following parameters are used in our example for memory B:

N = 1024
Al = 0dB
Fl = 100
A2 = -6 dB
F2 = 800
Q = 12.

A Harris-Blackman window is loaded into Auxiliary Memory X2 via the user interface.
Likewise, the twiddle factors for the FFT are loaded into Auxiliary Memory X1. The PAC
control registers need to be initialized as follows to perform a 1024 complex point,
windowed radix-4 FFT:

RCONFIG = 5800H
PLAT = 4H
PSLEN = 0
PRGSZ = 10H
MLAT = OOOAH
STAD = 0
M =5
N =400H
M4 = 0 (don't care)
K = 0 (don't care) .

The following instruction codes are loaded into the PAC internal instruction memory.

INSTRUCTION # INSTRUCTION DESCRIPTION
0 45010 BMUL; Coefficient Mem.; BSC=0; SEQ
1 00100 BFLY4; Twiddle Mem.; BSC= 1; FFTO
2 00001 BFLY4; Twiddle Mem.; BSC=0; FFT1
3 00102 BFLV4; Twiddle Mem.; BSC= 1; FFT2
4 00003 BFLY4; Twiddle Mem.; BSC=0; FFT3
5 00104 BFLY4; Twiddle Mem.; BSC= 1; FFI4
6 04010 AFLOW; BSC=0; SEQ
7 0401F BSC=0; EOPM
8 45310 BMUL; Coefficient Mem.; BSC=3; SEQ
9 00400 BFLY4; Twiddle Mem.; BSC=4; FFTO
A 00301 BFLY4; Twiddle Mem.; BSC=3; FFT1
B 00402 BFLY4; Twiddle Mem.; BSC=4; FFT2
C 00403 BFLY4; Twiddle Mem.; BSC=3; FFT3
D 00404 BFLY4; Twiddle Mem.; BSC=4; FFT4
E 04310 AFLOW; BSC=4; SEQ
F 0431F BSC=4; EOPM

27

A window operation is first performed on the data array contained in memory B by way of
instruction 0 (programmable output bit 6 is set to select the coefficient memory).
Instructions 1 through 5 subsequently execute the 5 passes of the DIF FFT. Upon the
completion of instruction 5 the processed data array is stored in memory B. This is
specified by the BSC field of the instruction. The FDAP system is designed to output data
through either memory C or memory D. Instruction 6 thus executes a flow through pass to
transfer the data array in memory B to memory C. Instruction 7 then executes an End of
Process Marker. This instruction executes what is referred to as a pseudo-pass and
synchronizes the input and output operations on memories A and D with the end of the
FFT algorithm. The EOPM instruction causes the processor to initialize an interrupt signal
for one machine cycle. The DASP then performs its housecleaning before a new process
is started. Instructions 8 through F execute another FFT. This time data memories A and
D are made use of for the FFT.

The time domain data from the simulator which is loaded into Memory B is
illustrated in Figure 6.1. The twiddle factors for the FFT, which are loaded into Auxiliary
Memory X1, are given in Figure 6.2. The Harris-Blackman window, which is loaded into
Auxiliary Memory X2, is shown in Figure 6.3. Finally, the FFT of the input data, which is
obtained from Memory C, is given in Figure 6.4.

28

4000-

Q) 0

-4000
0 200 400 600 800 1000

Sample No. (1024 total)

4000

0f. I

0 200 400 600 800 1000

Sample Na. (1024 total)
FIGURE 6.1: TIME DOMAIN DATA FROM SIMULATOR (MEMORY B)

29

40000-

0-

-40000-

0 200 400 600 800 1000

Twiddle Factors (1024 total)

40000-

0

0 0
E

-40000-
0 200 400 600 800 1000

Twiddle Factors (1024 total)
FIGURE 6.2: TWIDDLE FACTORS (AUXILIARY MEMORY X1)

30

40000-

0m

20000n,"

01-

0 200 400 600 800 1000

Sample No. (1024 total)

40000-

L_
0-

o 20000
E

0 200 400 600 800 1000

Sample No. (1024 total)
FIGURE 6.3: HARRIS-BLACKIAN WINDOW (AUXILIARY MEMORY X2)

31

4000-

2000-

00

0 200 400 600 800 1000

Frequency Bin (1024 total)

4000

2000-

0--

-2000--
0 200 400 600 800 1000

Frequency Bin (1024 total)
FIGURE 6.4: FREQUENCY DOMAIN DATA (MEMORY C)

32

6.2 Pulse Compression Program Using Radix-4 FFTs

6.2.1 Theory of Pulse Compression

A radar system requiring both long detection range and fine range resolution must
transmit extremely narrow pulses of exceptionally high peak power. The practical limits on
the level of peak power that can be used, however, limit how narrow a pulse can be. To
obtain long detection ranges at PRFs low enough for pulse delay ranging, fairly wide pulses
must be transmitted. One solution to this dilemma is pulse compression [3]. Pulse
compression entails the transmission of an internally modulated pulse of sufficient width to
provide the necessary average power at a reasonable level of peak power followed by the
compression of the received echoes through the decoding of their modulation.

One of the most common modulated pulses used is the linear Frequency Modulated
(FM) or chirp pulse. The radio frequency of a transmitted chirp pulse increases at a
constant rate throughout its duration. Every echo, naturally, has the same linear increase
in frequency. The received echoes are passed through a filter which introduces a time lag
that decreases linearly with frequency at exactly the same rate as the frequency of the
echoes increases. Being of progressively higher frequency, the trailing portion of an echo
takes less time to pass through than the leading portion. Successive portions thus tend to
bunch up. Consequently, when the pulse emerges from the filter its amplitude is much
greater and its width much less than when it entered. The pulse has been compressed. In
a digital computer pulse compression is achieved by fast convolution [4]. The Fourier
Transform of the received pulse is multiplied by the frequency response of the matched
filter and the result is then Inverse Fourier Transformed. This process is illustrated in
Figure 6.5.

FM - --- FFT -- s Multiply IFFT) Output
Signal j . .

Coefficient Stored 'Coefficient
Memory Frequency Memory

Response of -

Filter

FIGURE 6.5 PULSE COMPRESSION ALGORITHM

33

6.2.2 Pulse Compression On The FDAP Board

All methods of pulse compression are essentially matched filtering schemes in which
the transmitted pulse is coded and the received pulse is passed through a filter whose
impulse response is proportional to the conjugate of the time reversed signal.

Since the FDAP software is limited in terms of signal generation, a linear frequency
modulated signal has been generated externally and imported into the FDAP software. The
formulation for the linear FM signal and the matched filter impulse response are as follows:

Linear FM Signal

j2n (fot + kt2/2)
s(t) = e (6.2)

Matched Filter Impulse Response

j2t(fo(-t) + k(-t)2/2)
s(-t) = e

-j2n (fot - kt 2/2)
=e (6.3)

where f. is the initial frequency of the pulse and k is rate of change of the carrier frequency.
fo = 0 Hz, k = 400 Hz/second, and t = 0, 1,/N, 2/N, ..., (N-l)/N where N = 1024 for our
example.

6.2.3 Pailse Compression Program

The PAC cortrol registers need to be initialized as follows to compress a 1024-
complex point linear FM pulse. The FFTs used are implemented with a radix-4 algorithm.

RCONFIG = 5800H
PRGSZ = BH
STAD = 0
M =5
N = 400H
M4 =0
K =0

34

The following program is loaded into the PAC internal instruction memory.

INSTRUCTION # INSTRUCTION DESCRIPTION
0 00300 BFLY4; Twiddle Mem.; BSC=3; FFTO
1 00401 BFLY4; Twiddle Mem.; BSC=4; FFT1
2 00302 BFLY4; Twiddle Mem.; BSC=3; FFT2
3 00403 BFLY4; Twiddle Mem.; BSC=4; FFT3
4 00304 BFLY4; Twiddle Mem.; BSC=3; FFT4
5 45410 BMUL; Coefficient Mem.; BSC=4; SEQ
6 10300 Complement; BFLY4; BSC=3; FFTO
7 00401 BFLY4; Twiddle Mem.; BSC=4; FFT1
8 00302 BFLY4; Twiddle Mem.; BSC=3; FFT2
9 00403 BFLY4; Twiddle Mem.; BSC=4; FFT3
A 00304 BFLY4; Twiddle Mem.; BSC=3; FFT4

Instructions 0 through 4 execute the 5 columns of the DIF FFT on the FM signal.
Instruction 5 multiplies the last FFT with the coefficient memory X2 which contains the FFT
of the matched filter. Instruction 6 complements the result of the multiplication so that the
inverse Fourier transform may be found using a forward FFT, and at the same time
calculates FFT0. Instruction A performs the last FF1 column and stores the result, the
compressed pulse, in data memory D.

The following plots show the linear FM signal and the subsequent compressed pulse.
The linear FM pulse, which is loaded into Memory A, is illustrated in Figure 6.6. The
original pulse consists of 512 points and is zero-padded to 1024 points as required for the
fast convolution. The frequency response of the matched filter, which is loaded into
Auxiliary Memory X2, is given in Figure 6.7. This frequency response is computed from a
512 point impulse r-sponse which also has been zero-padded to 1024 points. Finally, the
power spectrum of the compressed pulse, which is derived from the complex linear data
output from Memory D, is shown in Figure 6.8. The twiddle factors are identical to those
in Figure 6.2 and are stored in Auxiliary Memory X1.

35

5000

0

0 200 400 600 800 1000

Sample No. (1024 total)

5000_

0-E

-5000-
0 200 400 600 800 1000

Sample No. (1024 total)
FIGURE 6.6: LINEAR FM PULSE - TIME DOMAIN (MEMORY A)

36

10000-

5000-

0

-5000

-10000

0 200 400 600 800 1000

Frequency Bin (1024 total)

10000-

0 0
0-

E

- 10000

0 200 400 600 800 1000

Frequency Bin (1024 total)
FIGURE 6.7: MATCHED FILTER IMPULSE RESPONSE - FREQUENCY DOMAIN

(AUXILIARY MEMORY X2)

37

' 'I I INI W

0

a, -40

0-

0

l-l

-80- .i

0 200 400 600 800 1000

Sample No. (1024 total)

FIGURE 6.8: POWER SPECTRUM OF COMPRESSED PULSE
(LINEAR DATA FROM MEMORY D)

38

7.0 FDAP PROGRAMMING USING A HIGH LEVEL LANGUAGE

The FDAP board has the capability to allow a user to program it externally. To
allow direct access/control of the FDAP board, the control and status registers as well as
memory banks have to be initialized. For a detailed explanation of the control and status
bits, refer to the FDAP manual [1]. Appendix 1 contains two programs written in a high
level language (C) to address the FDAP board. The first program implements a 1024-point
radix-4 complex FFT on the FDAP board. The second program implements a 1024-point
pulse compression routine using radix-4 FFTs. The data used in both of these programs was
the same data used in Section 6.0 where the FDAP was programmed using the user-
interface. Results identical to those presented in Section 6.0 were obtained.

8.0 CONCLUSIONS

The HDSP66 product family from SPT is a new generation of digital signal
processing products optimized for frequency domain array processing applications. The
family offers very high performance, system-based solutions for FFT applications.

The FDAP simulation package and user interface software were used to evaluate the
DASP/PAC chip set. The C language was then used to implement FFT and pulse
compression routines to further examine the ease of implementation of typical radar signal
processing routines which could be integrated into a more sophisticated system.

It was found that the DASP/PAC chip set is a powerful signal processing tool but is
not yet a totally mature product. There are no readily available signal processing routines
for the FDAP (such as a subroutine library) so that the board must be accessed using the
low-level calls presented in the documentation. The documentation itself is difficult to use
and thus the development time is extensive. The C-language programs implemented carried
out their functions to the satisfaction of the users. Follow-up work would entail developing
a PC-based SAR processor using the FDAP board as the main computational engine.

39

9.0 APPENDIX 1 - FDAP C-LANGUAGE PROGRAM

9.1 1024-Point Radix-4 Complex FF1' Program

#include <stdio.h> /*The following program performs 1024 complex-point FFT5*/
main()

unsigned mnt a, b;
int i, values, size, ch;
int huge *mempointer, *auxpointer, *con_regO, *conregl;
mnt huge *scl_reg, *pac -inst], *pac-instm, *pac-instml;
int huge *pac -instm-2;
mnt huge *rec reg, *mlt reg, *plt_reg, *progsz, *m, *n, *m4;
mnt huge *k, 5stad, *fft -node_0, * pac -insi m3, *pacinstm4;
int huge *sts regO, *sts regi, *go_reg;
mnt huge *pslen, *tcnt, 5 lIfnd, *rtnd;

char *infilename ='c:twd.dat";/ *Step to load the twiddle factor data file to auxiliary
memory*/

char *intype =";
FILE *fpl;
fp I = fopen(infilename,intype);

con_reg0=OxdO200000; /*Pointer to control register*/
*conreg0=Ox53dd; /*Pointer to select auxiliary memory X1 5 /
auxpointer =Oxd8000000;

fscanf (fpl, "%X", &values);
fscanf (fpl, "%X7', &a);

for (i =1; (i = 1024)&&(!feof(fpl));i + =1)
{
fscanf (fpl, "%X %x", &a, &b);
*auxypointer = a;
auxypointer + +;
* auxpoi nter = b
auxpointer+ +;

fclose(fpl);
{ /*Steps to download data file to data memory*/
char *infilename ="c:fmhex.dat';

char *outfilename = "c:fftfm.dat";

40

char *intype =r;
char *outtype="-"
FILE *fpl;
F11 F *fn2.
fp 1 = fopen(infilename,intype);
fp2 = fopen(outfilename,outtype);
con regO= OxdO200000; /*Pointer to control register*/
*con regO=453dl; /*Pointer to select data memory bank*/
mempointer = Oxd8000000;
fscanf (fpl, "%X", &values);
fscanf (fpl, "%X", &a);

for (i =1; (i < = 1024)&&(!feof(fpl1));i + = 1)

fscanf (fpl, "%X %X", &a, &b);

* mempointer =a;

memypointer+ +;
* mempointer = b;

mem_pointer+ +;

fclose(fpl);
memjpointer = Oxd8000000;

for (i =1; (i < = 1024);i + = 1)

memypointer+ =2;
fprintf (fp2, "%d %d\n", *(mempointer-2), *(memJpointer-1));

fclose(fp2);

/*Pointer to different control register*/
con-regO = OxdO200000;
con -regi = 0xd0200002;
sci-reg = 0xd0200004;
pac-instl =OxdOOOOOOO;

pac-instm =OxdOOOOOO4;

pac-instml =OxdOOOOO0c;

pac-instm2= OxdOOOO0l4;
pac-instm3= OxdOOOOOlc;
pac-instm4 = Oxd0000024;
rec-reg =OxdOlOOOOO;

pit_reg =Oxd0lOOOO4;

mlt-reg =Oxd0llOOOO;

progsz =Oxd0lOOO0c;

41

m =OxdOllOOO8;

n = OxdllOOc;
m4 =OxdO120000;

k =OxdiOlO0004;

stad =Oxd0l30000;

sts-regO = 0xd0200006;
sts-regl = 0xd0200008;
goreg = OxdO20000a;
pslen =OxdOlOOOO8;

tcnt =Oxd0llOOO4;

lfnd O xd0100028;
rtnd =OxdOl2000c;

/*steps to initialize control registers*/
*c_regO = 0x23d0;
* con_regi = 0x140;
*scl_reg =OxffOO;
*pac instl =OxO;

*pac instm =00300;

*pac instml = 0x401;
*pac instm2 = 00302;
*pac instm3 = 0x403;
*pac instm4 = 00304;
*rec_reg = x4800;
*pltreg 0xA;
*mlt-reg =Ox2a;

*pslen OXO;
*tcnt = X0;
*lfnd 0x0;
*rtnd OxO;
* progsz = x5;
*M =x5;

* n = x400;
*m4 =OxO;

*stad =OxO;

* goreg =Oxffff;

printf ("con rego= %Jp contents = %X\n', con_regO, *con_regO);
printf ('con regi = %Ip contents= %X\n", con_regi, *conregl);
printf ("sd reg=%Ip contents= %X\n", sci_reg, *scl_reg);
printf ("pac -instm =%lp contents = %X\n", pac -instm, *pac_instm);

printf ("pac instm 1 = %lp content,,= %X\n", pac instml ,*pac-instm I);
printf ("pac instm2 = %Ip contents = %X\n", pac instm2, *pac-instm?);

42

printf ("pac instm3 =%Ip contents =%X\n", pac instrn3, *pac -instm3);
printf ("pac -instm4 = %lp contents = %X\n", pac-instm4,*pac-instm4);
printf ("rec reg = %p contents =%X\n", rec-reg, * rec-reg);
VApi / %I~ ("p;c6gSz -%iP -oii = % ai" pi Ogsz, ,Px Ogsz),
printf ("in = %lp contents = %X\n", in, *Sm);
pr~ntf ("n = %Ip contents = %X\n", n, *n);
printf ("go_reg = %Ip contents = %X\n", go reg, *go_reg);
printf ("sts regO = %lp contents = %X\n", sts_regO, *sts_regO);
printf ("sts_regi = %Ip contents =%X\n", sts_regi, *sts_regi);

con_regO =OxdO200000;
*con regO = x7;
mein_pointer = Oxd8000000;

for (i=O; i< =32768; i+ +)
I
printf ('lMvemioAy Address = %Ilp Contents c/%X\n", mempointer, *mempointer):
mempointer+ +;

43

9.2 1024-Point Radix-4 Pulse Compression Program

/* This program is set to initializes the FDAP control

reeiqters, data memory, and instruction registers to perform pulse compression.*/

#include <stdio.h>
main()

unsigned mnt a, b;
mnt i, values, size, ch;
mnt huge *mempointer, *auxpointer, *con-regO;
mnt huge scon_regi;
mnt huge * sclreg;
mnt huge spac -instO, *pac_insti, *pac inst2, *pac_inst3;
int huge *pac-instmO, *pacinstml, *pacinstm2;
int huge *pac -instm5;
mnt huge *pac-instm6, *pacinstm7, *pac_instm8;
mnt huge *pac -instm9;
int huge *pac _ instmlO;
m .t hug.e *rec-reg, *,alt_reg, *plt rcg, *progsz, *m, *n;
mnt huge * m4;
mnt huge *k, *stad, *fft -nodeO, *pac-instm3:
mnt huge *pac -instm4;
int huge *sts-regO, *sts_regi, *goreg;
mnt huge *pslen, *tcnt, *lfnd, *rtnd;

char *infilename = c:firoutdat";/ *Steps to set the auxiliary memory X2*/
char * outfilename = "c:mfout.dat';
char * intype =r"

char Souttype =";

FILE *fpl;
FILE *fp2;
fplI =fopen(infilename,intype);
fp2 = fopen(outfilename,outtype);

con_regO = OxdO200000;
* con regO =Ox53df;
mem pointer = Oxd8000000;

fscanf (fpl, "%X", &values);
fscanf (fpl, "%XV, &a);

for (i=I1; (i = 1024)&&(!feof(fpl));i + 1)
f
fscanf (fpl, "%X %X", &a, &b);

44

*memjpointer a;
memypointer+ +;
* nem-pointer =b;
Tnem-roifte-+ +;

fclose(fp 1);
memypointer = 0xd8000000;
for (i =1; (i < =1024);i + =1)

memypointer + = 2;
fprintf (fp2, "%x %x\n", *(mempointer-2),*(mem~yointer-));

fclose(fp2);

char *infilename...c:tvddat"; /*Steps to set XI*/
char *intype ='r';

FILE *fpl;
fplI = fopen(infilename,intype);

con_regO =Oxd 0200000;
* con_reg0 =Ox53dd;
auxpointer = Oxd8000000;

fscanf (fpl, "%X", &values);
fscanf (fpl, "%X", &a);

for (i=1; (i< = 1024)&&(!feof(fpl));i± =1)

fsc,-nf (fpl, "%X %x", &a, &b);
* auxjpoiniter =a

auxpointer+ +;
* auxJpointer =b;

aux~pointer+ +;

fclose(fpl);

char *infilename="c:fmhexdat"!; /*step to load data memory*/
char *outfilename = "c:fftfm.dat";
char *intype ="r";
char *outtype =";
FILE *fpl;
FILE *fp2;
fpl =fopen(infilename,intype);

45

fp2 = fopen(outfilename,outtype):,

con_regO = OxdO200000;
sconrego = x53d 1;
mempointer = Oxd8000000;

fscanf (fpl, "%X", &values);
fscanf (fpl, "%X", &a);

for (i=1; (i< =1024)&&(!feof(fpI));i+ =1)

f

fscanf (fpl, "'%X %7,X", &a, &b);

*memjpointer =a

memypointer+ ±;
* mempointer =b;

mempointer+ +;

fclose(fp 1);

mempointer = Oxd 8000000:
for (i =1; (i < =1024);i + = 1)

memypointer+ =2;

fprintf (fp2, "%ld %d\n", *(mernjpointer.2). *(mem_pointer-i)),

fclose(fp2); /*Pointer to control registers*/

con-regO = 0xd0200000;
con regi = 0xd0200002:
sclireg =0xd0200004;
pac_inst0= OxdOOOOOOO;
pac_instm =OxdOOOOO4;
pac-instm I = OxdOOOOOOc;
pac_instm2 = OxdOOOOOl14;
pac_instm3 = OxdOOOOO 1 c;
pac_instm4 = 0xd0000024;
pac_instlI= 0xd0000028;
pac_instm5 = OxdOOOOO2c;
pac_inst2 = 0xd0000032;
pac_instm6 = 0xd0000034;
pac inst3 = 0xd0000038;

46

pac instm7 = OxdOOOOO3c;
pac_instm8 = 0xd0000044;
pac_instm9 = OxdOOOOO4c;
pac_instmlO0 = 0xd0000054;
recreg =OxdOlOOOOO;

pit reg =OxdOlOOOO4;

mit_reg =OxdOllOOOO;

progsz =OxdOlOOOOc;

m =OxdOllOOO8;

n =OxdOllOO0c;

m4 =OxdOl20000;

k = 0xd0120004;
stad = (-1'130000;
stsregO =0xd0200006;
stsregi =0xd0200008;
goreg = xd20000,a;
psien =OxdOlOOOOS;

tcn-t =Oxd0llOOO4;

Ifnd = xd0100028;
rind =OxdO12OO0c;

/*Steps to initialize control registers*/
* con_regO = 0x53d0;
* con_regi = 0x140;
*scl_reg = OxffOO;
*pac instO = OxO;
*pac instmO =00300;
*pac instmlI =0x401I;
*pac instm2 = 00302;
*pac instm3 = 0x403;
* pac instm4 = 00304;
*pac instl1 =0xA;
*pac instm5 =0Ox54 10;
*pac-inst2- = Ox 1;
*pac instm6 = 00300;
*pac inst3 = OxO;
*pac ins tm7 =1. 41ON.

*pac instr-l 8 = 00302;
*pac instm9 = Qx4O3;
*pac-instmlO = x304;
*rec reg = 0x4800;
*pltreg =0x4;
*mlt_reg =Ox2a;
*pslen = OxO;
*tcnt =OXO;

47

* Ifnd = OxO;
* rtnd =OxO;
*progsz =Oxb;

" rn 0x5;
" n = x400;
Sm4 OxO;

*k= OxO;
*stad = OxO;
* go reg = Oxffff;

printf ('con regO =%lp contents = %X\n", con regO, *con_regO);
printf ("con regi = %lp contents= %X\n", con regi, *cocn_regi);
printf ("sci reg =%Ip contents = %X\n", sci_reg, *scl_reg);
printf ("pac instO= %lp contents = %X\n", pac instO, *pac_instO);
printf ("-'ac instm= %lp contents = %X\n", pac instmO, *pac -instmO);
printf ("pac_instml = %lp contents= %X\n", pac instml, *pac -instml);
printf ("pac_instm2=%lp contents= %X\n", pac_instm2, *pac -instm2);
printf ("pac_instm3=%lp contents= %X\n", pac instm3, *pac -instm3);
printf ("pac_instm4 =%lp contents = %X\n', pac instm4, *pac -instm4);
printf ("pac insti =%lp contents= %X\n", pac insti, *pac_insti);
printf ("pac_instm5 =%lp contents = %X\n", pac_instm5, *pacilnstm5);
printf ("pac inst2= %lp contents= %X\n", pac inst2, *pac_inst2);
p.-intf ("pac-instm6=%Ip contents= %X\n", pac instm6, *pacinstm6);
prinir. ("pac_instm7=%lp contents= %X\n". pac_instm7, *pac -instm7);
printf ("pac_instm8=%Ip contents= %X\n", pac_instm8, *pac -in-tmg);
printf ("pac_instm9=%Icp contents= %X\n", pac_instm9, *pac -instm9);
printf ("pac_instmlO=%Ip con tents= %X\n", pac instmlO, *paic-instmlO);
printf ("rec_reg=%lp contents= %X\n", rec_reg, *rec_reg);
printf ("progsz=%lp contents= %X\n", progsz, *progsz);
printf ("m=%Ip contents= %X\n", m, *m);
printf ("n=%!p contents=%r/X\n", n, *n);
printf ("go reg=%!p contents= %X\n", go reg, *go reg);
printf ("sts regO=%lp contents= %X\n", sts_regO, *sts_regO);
printf ("sts regi =c/%p contents= r%X\n", sts regi, *sts_regi);

con_regO = OxdO200000;
*conreg) = 0x7;
mempointer = Oxd18000000;

for (i=O; [<32768; i+ +)
f
pri ntf ("Memory A ddress = %lip Contents =%X\n", mnem_pointer, *mempointer);
memypointer+ +;

48

10.0 REFERENCES

[1) SPT, "Digital Array Signal Processor" User's Guide, Revision 3.0, November 1,1989.

[2] SPT, "Programmable Array Controller" User's Guide, Revision 3.0, November 1,
1989.

[3] George W. Stimson, "Introduction to Airborne Radar", Hughes Aircraft Company,
El Segundo, California 1983.

[4] Alan V. Oppenheim, "Digital Signal Processing", Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1975.

[5] SPT, "Frequency Domain Array Processor", User's Guide, Revision 01/90.

49

UNCLASSIFIED -51-
SECUHITY CLASSIFICATION OF FORM

lhighest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classfied,

1. ORIGINATOR (the name and address of the organization preparing the document. 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Establishment sponsoring (overall security classification of the document.
a contractor's report, or tasking agency, are entered in section 8.) including special warning terms if applicable)
Defence Research Establishment Ottawa
Department of National Defence UNCLASSIFIED

Ottawa, Ontario KIA 0Z4

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate

abbreviation (S.C or U) in parentheses after the title.)

Implementation of FFT and Pulse Compression Routines on the SPT Frequency Domain Array

Processor (U) -

4. AUTHORS (Last name, first name, middle initial)

Behroozi, V. Damini, A.

5. DATE OF PUBLICATION (month and year of publication of 6a NO. OF PAGES (total 6b NO. OF REFS (tota' cited in
document) containing information. Include document)

September 1990 Annexes. Appendices, etc.)

58 5
7. DESCRIPTIVE NOTES ithe ctegory of the document. e.g. technical report, technical note or memorandum. If appropriate, enter the tvpe of

report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Report

8. SPONSORING ACTIVITY (the name of the department prolect office or laboratory sponsoring the research and development. Include the
address.)

Defence Research Establishment Ottawa

Department of National Defence Ottawa, KIA 0Z4

9a PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT NO. iif appropriate, the applicable number under
and development orolect or grant number under which the document which the document was wrinen
was written Please specify whether project or grant)

021LA

10a ORIGINATOR'S DOCUMENT NUMBER ithe official document 10b. OTHER DOCUMENT NOS IAny othe, numbers whict may
number by which the document is identified by the originating be assigned this document either by the originator or by the
activity. This number must be unique to this document. sponsor)

DREO Report 1041

1 1 DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by securit classiflcation

(x) Unlimited distribution

I I Distribution limited to defence departments and defence contractors; further distribution only as approved

I Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
I Distribution limited to government departments and agencies; further distribution only as approved

I I Distribution limited to defence departments; further distribution only as approved

Other (please specify)

12 DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document This will normally correspond to
the Document Avallabilty (11) however. where further distribution (beyond the audience specified in 11) is possible, a wide,
announcement audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

DCDO 2/06/8"

-52- UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both offical languages unless the text is bilingual).

The Frequency Domain Array Processor (FDAP) is a VME compatible circuit board
built by Signal Processing Technologies (SPT). The FDAP can process integer data arrays
containing up to 8192 (32 bit) complex words or 16384 (16 bit) real words. It is capable of
400 Million Operations Per Second (MOPS) with a maximum Input/Output (I/O) rate of
four billion bits per second. It also has a double buffered memory architecture permitting
I/O transfers to occur in parallel with data processing. The FDAP can be hosted by an
IBM PC/AT-compatible computer using a bus adaptor interface available from BIT3
Computer Corp.

The FDAP board is based upon SPT's DASP/PAC chip set. This chip set and the
various system architectures which can be built around it are reviewed. The FDAP board
and its associated development system are also reviewed. The ease of implementation of
typical radar signal processing functions on the FDAP board are then examined. Fast
Fourier Transform and pulse compression routines are implemented via a supplied user
interface as well as a high level language (C). The results are examined and comments on
the FDAP and its associated system development tools are made.

14. KEYWORDS. DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and Could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. if possible keywords Should be selected
from a published the:aurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and tha' !hesaurus-identified. If it is not Possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Synthetic Aperture Radar

V',i Bus
FFT
Pulse Compression

UNCLASSIFIED

SECURITY CLASSIFICATION Or FORM

