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Chapter 1

INTRODUCTION

Non-cooperative radar target identification has been a topic of interest for

some time 1j. This topic has been primarily motivated by the ability of a

radar system to detect objects at distances beyond the detection ralgc of

other sensors.

Statistical methods of pattern recognition have been successfully applied

to the target identification problem 12,3,4]. An underlying assumption of

statistical methods is that the pattern generation process can be modeled

as a vector valued random process [5]. Such methods produce "optimum"

decision rules in cases when the assumed probabilistic modeling applies

exactly [6;.

In contrast to the statistical approach to pattern recognition, there ex-

ists a set of alternative methods to pattern recognition which are collectively

referred to as structural methods of pattern recognition [7,8]. The defining

property for a structural method is that the modeling of the pattern gener-

ation process is accomplished with a symbolic procedure. That is, pattern

representations presented to a classifier consist of a number of discrete "en-
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tities" or "primitives" with accompanying information regarding the type

and inter-relationships among the constituent primitives. In the structural

approach, the symbolic pattern representations are designed to embody in-

formation pertaining to object "structure" or "form" as opposed to specif- 3
ically describing all of the details of the observed manifestation [7,9]; thus

the term "structural". I

This investigation is concerned with the formulation and application of

a specific structural method of pattern recognition to the identification of

airborne targets using a radar sensor. The purpose of this application is

twofold. Of primary concern is the demonstration of the benefits of a struc-

tural approach to target identification. In addition to the benefit.s which

accompany the use of a structural approach, the structural classifier will I
be shown to exhibit superior robustness compared to a statistical approach

with respect to unmodeled target responses. I
Generation of radar targets can be modeled fairly well with a probabilis-

tic model. A classifier can therefore be defined which provides statistically

optimal performance. A second goal of this study is to provide an example 3
of how a structural approach can be applied to a problem such as radar

target identification with little or no compromise in classifier performance,

thereby establishing the applicability of the structural approach to such

problems. 3

I
I

I



11.1 Structural Methods of Pattern Recogni-
tion for Sensor DataI

The use of structural methods for recognition of sensor data from unknown

Iobjects has been proposed previously [7,10,11,12]. Structural methods have

classically been applied in circumstances in which a probabilistic modeling

Iof the pattern generation process is impractical. In these cases, extraction

of symbolic pattern representations from sensor data (the segmentation op-

Ieration) has been heuristically motivated with the emphasis on simplicity,

data reduction, and comprehensibility of the resulting symbolic represen-

Itations. Such transformations often result in a loss of information and a

concomitant compromise in classifier performance.

On the other hand, structural approaches have significant advantages.

Frequently the segmentation operation is, by the ingenuity of the designer,

highly information preserving and simultaneously produces significant re-

duction in data dimensionality. Thus, while containing less than the full

information available in the original sensor measurements, symbolic rep-

resentations have proven to be sufficient for classification in a number of

important areas [8,13].

A further benefit of the structural approach is the direct applicability

of the theory of computing machinery [141 and relational structures [15] to

Ithe manipulation of the symbolic elements resulting from the segmentation

operation. In addition, a symbolic modeling can easily allow for the intro-

duction of other sources of knowledge into the decision process, particularly

heuristically obtained knowledge.

3
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Recall that a pattern representation presented to a structural classifier 3
is in a symbolic form. When classification is defined by determination of an

unknown objects "class" or "category", i.e. in a 1 of N sense, a structural

classifier provides not only a determination of the class but also a correspon-

dence or match between the constituent symbols of the unknown pattern I
representation and the constituent symbols of the chosen library element.

The resulting match and class determination together provide an interpre- i
tation of the unknown object in the context of the library. Thus, structural

techniques generalize the classification task and enhance the result.

Direct application of much of the theory of computing machinery and 3
relational structures provides matches between symbolic representations

which are constrained to be crisp [16,17]. That is, elements of two sym- -
bolic representations must be brought into exact correspondence with their

relations completely preserved for a successful match to be declared. How- U
ever, measurement errors in the sensor can cause changes in the observed

symbolic representations which, in turn, degrade classifier performance.

Several authors have proposed techniques to allow for "inexact" matches

[18,19,20]. These extensions include evaluation of some type of match qual- -
ity function, usually in the form of a probability density function (or the

related entropy function), thereby making use of the information contained I
in the symbolic representation. It has, however, been recognized that the

loss of information in the segmentation operation can be a significant detri- I
ment to classifier performance [11,12]. Thus, a significant compromise in

performance can result even when optimal use is made of the existing in-

formation. 3

4I I
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I 1.2 Information Loss and Semantic
Attributes

in order to minimize the loss of information, several authors have pro-

3 posed the addition of semantic "attributes" to the symbolic description

[8,21,22,231. These attributes are designed to convey some portion of the

parametric information contained in the original sensor data. This can

result in a significant reduction in the loss of information during the con-

version to a symbolic representation. Exploitation of the additional infor-

mation is usually accomplished through an extension of symbolic method-

ologies via probabilistic techniques [21].

Much of the theory pertaining to the combined semantic-structural ap-

proach assumes the existence of a probabilistic model of the pattern gener-

ation process [22,24]. Often, assumptions regarding the statistical indepen-

dence of the random variables making up the observation model are also

implied [22,24,25,26,27]. In [23] the authors extend the independence as-

sumption as to restrict the use of semantic information to the point that it

3 is used only to resolve the decision of a structural classifier into sub-classes.

Nonetheless, the results obtained using these approaches give an indication

3 of the gains realizable through incorporating semantic (attribute) informa-

tion [24,28].

3 This report presents a methodology in which symbolic representations

are coupled with metric attributes in a way that makes weaker assumptions

regarding statistical independence of the semantic and structural parame-

ters. Such a quantitative approach to the structural problem is viewed as a

I 5
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complete synthesis of statistical and structural methods of pattern recogni- I
tion. A major contribution of this report is the demonstration of a pattern

recognition system which fully exploits the relationship between structural I
and semantic information in the pattern representation.

1.3 Determination of Match Sense

In a structural pattern recognition system, the resulting match between

elements of the unknown symbolic pattern representation and the symbolic 3
pattern representation of a given library element can be viewed as a map-

ping from one set of symbols to the another. This mapping can be either I
injective or surjective or both. Furthermore, the image and pre-image of

the mapping may cover arbitrary subsets of the symbolic representations I
of the unknown or library. The characteristics of the resulting mapping are

collectively referred to as match sense.

The theory pertaining to matching of relational structures requires that

a definition of match sense be provided prior to classification [19]. By

considering all possible matches between the symbolic representations, the 3
need for providing prior definition of match sense is eliminated. Under

the classifier proposed here, prior restriction of match sense is possible but 3
not necessary. Prior restriction of match sense may be done to reduce

the amount of computation necessary to determine a match. Thus, by 3
considering matching in this more general sense determination of an optimal

match brings with it determination of the optimal match sense. U
I

I



Determination of match sense is accomplished by adopting a view of the

correipondence between two symbolic representations as being a partition

of the union of the two structural descriptions. This view brings a natural

sense of symmetry to the matching task which is not present under the

mapping view of matching [29].

L The Target Identification Application

The benefits of a structural approach to target identification, as well as the

applicability of the described pattern recognition methodology, are demon-

strated with an application to the target identification problem. Matching

of two symbolic representations which represent radar targets is accom-

plished by assuming that the statistical properties of the measurement pro-

cess carry over into the segmented representation of the radar object. By

this it is meant that the distance function, which is minimized to produce

3 a statistically optimal decision regarding target class, is also used for the

match quality function to produce decisions regarding the elements of the

* segmented radar measurement series.

This distance function, as applied to elements of the symbolic repre-

* sentation, does not produce a statistically optimum decision except under

a trivial special case. In this special case all information regarding the

segmentation of the measurement series (all structural information) is dis-

carded and the structural classifier is equivalent to the statistically optimal

classifier. However, since the structural information is discarded at this

point, no benefit can be derived from it.

7



Segmentation of the radar measurement vector is accomplished via a

parametric estimation procedure. The chosen procedure is a modification

of the Prony method for estimating the parameters of a function which

can be modeled as a sum of exponential functions. Given the values of

the function at discrete, equally spaced, intervals, the estimation proce-

dure produces estimates of the exponential parameters. This estimation

algorithm is applied to a series of frequency domain measurements of the

"transfer function" of a radar object.

The estimation procedure exhibits a segmenting property in the range

domain, thereby extracting the "scattering centers" of the radar object. A

symbolic representation therefore consists of set of scatterers. The struc-

tural portion of such a symbolic representation is given by the existence of a

given scatterer and the location of the given scatter, in range, with respect

to the other scatterers. The semantic portion of the symbolic representation

consists of the other parameters attached to each scatterer.

The Prony method, employed here, has been previously proposed for

use in radar target identification [30]. In this research, the authors use

a physically motivated exponential model for the time or range domain

"ramp response". The Prony algorithm is therefore applied to a ramp re-

sponse which is estimated using numerical methods applied to wire models

of aircraft, or from empirically derived frequency domain radar object mea-

surements. The objective in extracting the parameters of the exponential

model is to estimate a set of "complex natural resonances" (CNR) cor-

responding to the given target. This research demonstrates how a given

radar object can be accurately represented with a relatively small number

8
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of complex numbers. Furthermore, in (30] the authors demonstrated the

discriminating power of the resulting CNRs.

Application of the Prony method to the time domain, does not, however

produce a segmentation of the radar measurement in the time domain.

Therefore, there exists no geometric interpretation of the elements of the

representation and the segmenting property of the estimation routine is

unused. The discriminating power of the CNR representation is expressed

in terms of correlation between the resulting time domain ramp responses

of two different targets.

In the current application rejection of extraneous responses is accom-

plished by modifications to the match quality function in which the cost

associated with rejection of scatterers is reduced. Thus the use of a struc-

tural method of pattern recognition allows for increased robustness, with

respect to the presence of extraneous, unmodeled responses as is shown in

Chapter 4.

The well-defined statistical modeling of the radar measurement process

and the assumed extension of the statistical model to the symbolic repre-

sentation suggests many of the extensions to the theory of relational graph

matching made in this report. As mentioned previously, the match quality

function is a result of the statistical modeling of the radar measurement

process. The match quality function has a natural form which is "symmet-

ric" (i.e. if A and B are two symbolic representations then the minimum

distance correspondence from A to B is the same as from B to A). This,

in turn, suggests the "partition" concept of matching and the automatic

determination of match sense.

9
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1.5 Summary I
In order to motivate the methodology used here and fully describe the 3
problem, the material in Chapter 2 presents the assumed radar system

model and associated signal processing. The processing of the radar mea- 3
surements is, in the current case, analogous to the segmentation operation.

The parametric estimation algorithm is described and important properties I
are discussed.

In Chapter 3 a notational framework for a matching algorithm which I
possesses the required properties (determination of match sense and a re-

lationship to statistical methods) is provided. In this chapter, notation

for symbolic descriptions from previous authors [19] which is based on re- -
lational graph matching is adopted. In Chapter 3, qualifications placed

on the relational portion of a structural description, which are considered 3
necessary for complete fusion of structural and attribute information are

discussed. The resulting properties of the relations are illustrated with an 3
example using the notational framework.

In order to make full use of the semantic information contained in the 3
symbol attributes, the existence of a meaningful sense of distance between

elements of a symbolic representation is assumed. It is further assumed 3
that this distance is defined, not only between the elements of two sepa-

rate symbolic representations, but also between elements of a single sym- I
bolic representation. Chapter 3 continues with a precise definition of this

distance, relating the distance between two sets of nodes to the distance

between two symbolic representations. 3
10 3
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Implications of such a model for the pattern generation process are made

explicit by a comparison of this model with other models of structural

description matching. Chapter 3 concludes with some notes concerning

issues of searching for the optimal matches between structural descriptions

I and degenerate cases for distance functions.

In Chapter 4, application to the target identification problem is de-

scribed in detail. For this problem, the radar measurement is segmented

with the parametric estimation procedure described in Chapter 2. The

interpretation of the parametric representation as a structural description

required for classification is made explicit. This allows for the formal im-

plementation of the algorithms described in Chapter 3.

The properties of the parametric representation of the radar measure-

ment vector are used to define the required sense of distance between sym-

bolic representations. The chapter concludes with results from experimen-

tal computer simulations which give an indication of the performance and

3 benefits of a system which uses a structural method.

In the final chapter, the results of this research are summarized and the

expected impact is outlined. Directions for future research are given.

11
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Chapter 2 1

RADAR SYSTEM MODEL i
AND SIGNAL PROCESSING I

i
In this chapter, a model for the radar measurement process is described.

The model is based on a straight-forward approach to obtaining frequency

diverse, continuous wave (CW), coherent [31] measurements of the backscat-

ter from a radar target. The measurement process is described in some

detail to support the notion that the required measurements can be made 3
with an actual radar system.

For simulation and performance evaluation purposes, data obtained

from a compact range is used [32]. The measurements made with a com-

pact range are continuous wave, coherent measurements taken at a range

of frequencies. By demonstrating the feasibility of obtaining coherent CW

measurements by an actual radar system, this discussion justifies the use U
of measurements obtained from a compact radar range for simulation and

performance evaluation. I
In addition, a parametric estimation technique, which is to be applied to

the measurements is described. The resulting parameter estimates are to be

12
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I used in place of the CW measurements for target identificaion. Thus, tne

resulting parameter estimates are referred to as a parametric decomposition.

I Using this technique, the continuous wave measurements are implicitly con-

verted to an estimate of an "impulse response" or "range profile " of the

illuminated target. Other salient properties of parametric decompositions

* are discussed.

2.1 Radar System Model

The envisioned radar platform is a stepped frequency radar system oper-

I ating in approximately the HF band. This range of frequencies iF chosen

to correspond to the resonant region (wavelength approximately equal to

Iobject e-:tent) for a given library of aircraft. Measurements taken from this

library are used for simulation purposes in Chapter 4.

The radar is assumed to operate by transmitting a pulse which consists

of a series of sub-pulses. Each sub-pulse is at a different freque.:cy. A series

of radar measurements are made in which each measurement corresponds

to a different sub-pulse (Fgure 2.1). The duration of each sub-pulse is

determined such that elements of the radar measurement series {Yk}= 0 ,

i-present "steady-state" values. In other words, the measurement series

is equivalent to a sampling of the "transfer-function" corresponding to the

given radar target (Figure 2.2). It is assumed that measurements t-ken

with pulses of I cycles or more will accurately give such values.

I It is also assumed that the number of sub-pulses is N, each of length

N seconds. In order to simplify the measurement process, all sub-pulses

13
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are of equal length. Thus the minimum number of cycles per sub-pulse 3
constraint applies only to the lowest frequency sub-pulse. The duration of

the entire pulse must be sufficiently short such that coherency is preserved. I
For the experiments used this study, the number and duration of sub-pulses

is chosen such that this is true. Coherency preservation is demonstrated I
by showing that the maximal error in the phase estimate of the final mea-

surement with respect to the first measurement :s negligibly small.

Individual sub-pulses are ordered in frequency such that the initial fre-

quency is fo Hz and that subsequent sub-pulses are stepped in frequency

by Af Hz. Note that this ordering of the pulses is not required for the

current application; sub-pulses can be sent in an arbitrary order and then

re-ordered upon reception. The radar measurement corresponding to fre- 3
quency fk is denoted Yk for 0 < k < N - 1. The series of measurements

can be represented in vector form as 3

. I Y (2.1) -

YN-i

Since the measurements are discrete in frequency, transformation of

the series of measurements to the time (or range) uomain via the Fourier

transform implies periodicity in the range dimension The unambiguous

range, R, is determined by 3c

R- 2Cf (2.2)

14
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Figure 2.1: Stepped frequency radar system.
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Figure 2.2: Stepped frequency radar system.3
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In a surveillance radar system, the search space is divided in the range

dimension into a number of range cells. The range cell size, 6r, is related

to the time duration of the total pulse, r, by

Cl-

Nr = CT (2.3)2N'

If the unambiguous range is chosen to be the range cell size then the

initial frequency, fo and the frequency spacing are linked via the minimum

number of cycles per sub-pulse, I as

fo = lAf. (2.4)

Using the parametric estimation techniques discussed below, the num-

ber of radar measurements, N, determines an upper bound on the number

of scattering centers (Section 2.3.1) which can be extracted from the mea-

surements. Thus, once appropriate numbers for N, I and br are determ;ned

from the catalog of interest, the radar system parameters easily follow:

R= br (2.5)

Af -s2- (2.6)
2br
Ic

f - r (2.7)

- (2.8)
N c

17
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2.2 Prony-Based Parametric Estimation I

A parametric estimation procedure is applied to the radar meas,,rement I
series to provide reduction of data dimensionality ane to segment the energy

in a measurement vector into discrete el-anents which are approximately I
disjoint in the range domain. The parametric estimation procedure has

other desirable properiues as is discussed below and in [33]. The segmenting

propei ty of the estimation process is covered in Chapter 4.
The procedure used is an adaptation of the Prony method by R. Car-

riere. The Prony method is used for estimating parameters of exponential

functions. Details of the procedure are given in [33]. In this section, the

method is outlined and important properties of the technique are made I
explicit.

The technique used here is essentially a parametric spectral estimation

technique [34]. In spectral estimation, a sample of a time signal is input

to the algorithm and an estimate of the frequency spectrum results. Under

our model, a series of frequency domain measurements of the "transfer

function" of an object is input to the algorithm and an estimate of the I
resulting "impulse response" or "range profile" is produced.

2.2.1 The Frequency Domain Parametric Model

The model used for this estimation procedure is, in the frequency domain U
MdI

Yk= _diP 0<<k<N-. (2.9)
i=1 I
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where yi is the '.th ,rrnonent of the rmeastiremert serips (k is a subscript)

and elements of set {p, I 1 < I < M} are referred to as the poles of the mod-

els and elements of the set {di I 1 < i < M} are the corresponding residues

(residue-pole pairs are referred to as modes). Al is the order of the model.

A parametric decomposition, A consists of the entire set of modes which,

together, represent the measurement series, A {(di,pi) I I < i < M}. Ex-

amination of Equation (2.9) implies that the measurement series {Yk}kZ=O
can be rewritten as a sum of a set of M series, {{djpi}'Q-1 1 1 < i < M}.

Thus, in the same way that the measurement series has a vector form, each

mode of a parametric decomposition has a vector form. For example, a

vector form, iU, of a mode (d,p), is given by
-p 0

'U= d p (2.10)

p N-1

Equation (2.9) then becomes

M

T = (2.11)
i=1

2.2.2 The Range Profile

I The modes of a given parametric decomposition have a range (time) domain

interpretation in addition to the frequency domain interpretation given by

Equation (2.9). The profile of a target corresponding to a given measure-

ment series as a function of range, r, is

M di

Y(r) > _ - R/2 < r < R/2. (2.12)
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This equation can be derived by taking the inverse Fourier transform of I
Equation (2.9) under the assumption that the series for "stable" modes

(modes with pole modulus less than 1) continue in the positive frequency i
direction indefinitely and that the series for "unstable" modes continue in

the negative frequency direction indefinitely.

The energy from a given mode is centered in range about the range

location of a mode, given by

arg(pi) R. (2.13) 1
27r

This range location is with respect to the "phase center" of the range 3
cell. Since targets are not assumed to lie at any particular location within

a range cell, the location of this reference point is arbitrary. n

Operation of the estimation algorithm is now outlined, details are avail-

able in [33]. The algorithm begins by estimating a ._et of characteristic

polynomial coefficients for the frequency domain series {yk} using the

Yule-Walker Equations [34]. A "total-least-squares" algorithm with a singu- i
lar value decomposition [35,36] is used to solve the Yule-Walker Equations.

Only the M largest singular values of the augmented Hankel matrix are

retained. This step is taken for "noise cleaning" purposes. The roots of

the characteristic polynomial are derived via standard polynomial rooting

techniques to produce a set of candidate pi parameters. From the derived n

pi parameters and t.-.e modeling Equation (2.9) the corresponding di are

estimated using a least squares procedure. Since the Hankel matrix is of

reduced rank, only the Al largest energy modes are retained for classifica-

tion. Furthermore, only the poles (the p, parameters) are actually retained;

20
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the corresponding di parameters are re-estimated following rejection of the

low energy modes. In anticipation of the noise cleaning step, the initial es-3 timate of model order is made somewhat higher than the expected number

of scattering centers, M.

I 2.3 Properties of a Prony Parametric De-
* composition

A parametric decomposition, as derived by the estimation technique de-

scribed in Section 2.2, has a number of desirable features for target iden-

tification. By using a parametric decomposition instead of the full mea-

surement series the sensed objects are represented by significantly fewer3 numbers of parameters. Furthermore, it can be shown that the variance of

the location of a mode in the range domain is reduced (with respect to the

variance of elements of the measurement series). Experimental data shows

that there exists a strong relationship between elements of a parametric de-

composition (through the impulse response) and object geometry (37]. The

relationship to target geometry is demonstrated by comparison of down-

range profiles to silhouettes of targets, and in an analytic way by the range

domain energy-localization property of a parametric decomposition.

The parametric estimation procedure can yield significant reduction in

data dimensionality. Recall the model order Al determines the maximum

number of modes which are extracted from the measurements. Then 2M

I (twice the model order) is the total number of complex parameters needed

to represent the object with a parametric decomposition of Al modes. This

2
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number, (2M) is usually chosen to be significantly less than N, the number I
of complex measurements.

If 2M is chosen to be less than N then it is not possible to find a set of

di and Pi parameters such that Equation (2.9) holds for an arbitrary mea-

surement series, {Yk}k0. In this case the di parameters in Equation (2.9)

are determined by a least-squares estimate. The difference between the ob-

served measured series, {yk} k-0, and the series {_ dFpi}~fi is referred

to as modeling error.

In addition to a reduction in data dimensionality, a further benefit of

using this parametric estimation procedure is that the estimates of mode 3
range location (the center of the energy) can be highly noise insensitive.

In addition, separation of peaks in the range profile is not limited to a 3
DFT (Discrete Fourier Transform) bin-width. This property is analogous

to super-resolution of spectral components of a time signal using parametric I
spectral estimation techniques [33,34].

Due to the non-linear nature of the estimation process, the parametric I
decompositions also exhibit a number of undesirable characteristics under

noise perturbations. In particular, a small perturbation in a measurement

vector can iesult in an extreme change in the output parametric decompo-I

sition. Such wild variations in the parametric decomposition can frequently

be attributed to the fact that the correspondence between noise-perturbed 3
modes of a parametric decomposition and the "true" or "noiseless" modes

is not easily determined. 3
In Appendix A a remedy to the correspondence problem based on the

statistical characteristics of the measurement process is proposed. Using 3

I



this solution, an exarmnation of the statistical properties of the parameters

under noise perturbations can be made. The random nature of parametric

decompositions is discussed in subsection 2.3.2.

2.3.1 Target Geometry and Energy-Localization

A primary motivation for using the parametric model described here is

I that the down-range profile, as specified by Equation (2.12), can exhibit

a high correlation with target geometry. This feature is demonstrated by

Figure 2.3'. This figure contains range profiles estimated from simulated

radar measurements taken with a Concorde aircraft at two different aspect

angles with respect to the radar.

*The observed relationship between the geometric features of a target

and the down-range profile can be summarized as follows. First, it is as-

sumed that incident energy on the target is predominantly reflected from

geometrically relevant portions of the target (edges, corners, engine inlets

etc). The down-range profile represents energy from such "scattering cen-

ters", projected tangentially onto a line emanating radially from the radar

to the target (the radar-target axis or line-of-sight vector).

Figure 2.3 also includes drawings of the target from which the radar

measurements were made. These drawings are displayed at an angle with

respect to the range axis of the range profile to indicate the angle which the

I target makes with the radar-target axis. Also included are vertical lines

showing the assumed correspondence between elements of the target geom-

etry and peaks of the down-range profile. Peaks of the down-range profile

'Thanks t.o R. Carriere and R. L. Moses
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show a clear structural correspondence to the indicated scattering centers of

the target. For the case given in this figure, the "projection" model works

almost flawlessly. While such artwork cannot serve as an analytic tool for

examining the relationship between object geometry and electromagnetic

scattering, this discussion is offered as an intuitive justification for the use

of parametric representations for target identification.

Examination of the range-domain model in Equation (2.12) shows that

peaks in the down-range profile correspond to the modes of the frequency

measurement series. Thus the range location of the peaks of the range

domain response are easily derived from the parametric representation using

Equation (2.13). The energy contained in a mode as well as the range extent

of a mode are simple functions of the pi and di parameters of the mode.

The peaks in the down-range profile estimate are not necessarily required

to follow an exact projection law with respect to target geometry in order

to provide information sufficient for classification. All that is required is

that different targets produce statistically different down-range profiles.

As is discussed in Chapter 4, the most important property of the para-

metric estimation procedure for application to structural pattern recogni-

tion is the way in which the energy in the measurement series is segmented

in the range domain. Segmentation is seen here as being equivalent to

localizing mode energy in the range dimension. In order to characterize

the energy localizing property of the parametric estimation procedure, the

relationship between pole modulus and the modes energy density is given.

24



le

a

I Ir
1- kb)

Fiur 2.3 Cocrernersos 1siatswt orsodn ihu

ete ad oscl. (a) At0 ziuh b)A 0 )Aiuh

I2



I
I

In addition the relationship of pole modulus to the half-energy width of

the mode in the range dimension is made explicit. These relationships are

derived using algebraic manipulation and simple calculus.

For a pole, p of given modulus p and known range location, r, fix a

sub-interval of the unambiguous range interval centered about r. Denote

the proportion of the unambiguous range interval which is covered by this

interval as /3. Denote the proportion of the total energy contained in the

pole over the sub-interval as E. Then by solving some simple integrals,

a relation between the energy proportion, E, and the unambiguous range

proportion, /3 is established:

tan IfE tan ( /3) (2.14)

If the energy density of a mode is defined as then this function can

be shown to be a non-increasing function of /3. The energy density as a

function of range proportion is shown for several values of pole modulus

in Figure 2.4. Since it is non-increasing, this quantity achieves an upper-

bound as/3 - 0. This upper bound is determined by taking a limit:

lim E = 1 + p (2.15)

In addition, if by defining the half-power rangewidth, y , as the propor-

tion of the unambiguous range interval spanned by the interval between

points which are one half the peak energy of a given mode then:

sin-(j_ 1) 2 3+V5_

2 2 (2.16)
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I Values of p outside the given interval will produce half-power rangewidths

which are greater than the unambiguous range interval. The pole modulus

thus indicates the energy concentration of a mode in the range dimension.

For example, a pole with modulus .95 will ha,e a peak energy density of

39 and will achieve 90% of its energy in 10% of the unambiguous range

in'erval. Furthermore, the half-power rangewidth is 3.2% of the unambigu-

ous range interval. Peak energy density as a function of pole modulus is

depicted in Figure 2.5.

I
I
I
I
!
I
I
I
I
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Figure 2.4: Energy density, ~.vs range proportion, 0. for modes with
differing pole modulus.
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Figure 2.5: Peak energy density vs pole modulus.
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2.3.2 Statistical Properties of the Parametric Decom- I
positions

Noise perturbations induce variations in the parameters of the modes of a U
parametric decomposition. In addition the correspondence of noisy modes

to their noiseless counterparts is blurred by noise perturbations. Variation

in the pole location of a mode (the value of the p parameter) in the complex

plane is illustrated in Figure 2.6. In this figure, the location of noisy poles

in the complex plane is indicated by the numbers (1-5). Correspondence

of the noise realization modes to the modes extracted from the noiseless

measurements is accomplished by a method described in Section A.1 of

Appendix A.

The noiseless pole locations, in the complex plane, and mode energy for

the Concorde aircraft are given in Table 2.1. Comparison of the clusters

of poles in Figure 2.6 with the parameters in Table 2.1 suggests that the I
variance associated with the location of a mode in the complex plane is

mostly dependent upon the energy and pole modulus associated with the

noiseless mode. Modes which contain high energy or which are highly local-

ized appear to yield less variance in their location estimate. For example,

estimates of the location of mode #1 have the "tightest" cluster due to the

large energy of mode #1 coupled with the fact that the noiseless modulus

for mode #1 indicates a peak energy density of 22 and is therefore fairly 3
localized in range.

I
I

30 I

U



I5

0.5-

5I5

-0.5

4 313 1

Figure 2.6: Concorde pole locations under noise perturbations.

1

I



I
I
I

Table 2.1: Noiseless mode parameters from simulated radar measurements I
for the Concorde aircraft.

Noiseless Mode Mode energy Pole angle Pole modulus Peak Energy Density I
1 1932 -1.0911 0.9147 22.45
2 50 -0.0787 1.0240 84.33
3 36 -1.5674 1.0536 38.31
4 16 -2.3162 0.9320 28.41
5 6 2.6660 0.9278 26.70

Note that this is not always the case. Note that mode #3 has a higher

noiseless energy and a higher peak energy density than mode #4. However,

the pole locations indicated in Figure 2.6 for mode #3 are more di! _ersed

than the pole locations for mode #4 thus contradicting the rule of thumb

regarding parameter variance stated above. A likely reason for this paradox 3
is that the indicated values for noiseless parameters are in error due to short

data length constraints or unmodeled dynamics. 3
By using the categorization algorithm, the statistical properties of a

given parametric decomposition can be determined. Under this method, 3
a parametric decomposition of a noiseless measurement vector is formed.

A number of parametric decompositions are formed of noise corrupted ver- I
sions of the same vector. These parametric decompositions are then catego-

rized with respect to their noiseless counterparts. The resulting parameters U
are then averaged to estimate mean and variance of the random parameters.

The variance associated with the mode range location is illustrated in

Figure 2.7(a). In this figure, the variance of the range location for four 3
different modes extracted from radar measurements of a Concorde aircraft is

given as a function of the superimposed noise level. The noise environment
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for this estimation procedure is that of zero mean white additive Gaussian

noise. For each noise level, four hundred noise realizations are averaged to

produce the estimates. Note the general trend of increasing variance with

superimposed noise level. Variance estimates for the modes range loca'i;Un

also appear to have an upper bound. This is due to the cyclic nature of

the range location estimate. Also note that one of the modes occurs with

essentially zero variance; the curve associated with this mode is obscured by

the horizontal axis. This illustrates the variance reducing properties of the

parametric estimation procedure for the mode range location parameter.

The curves in Figure 2.7(b) indicate estimates of the mean location in

range of the four modes for the same case as described for Figure 2.7(a).

The range location of the noiseless modes to which the noise realizations

were mapped is indicated by the "+" marks in this figure. Note that the

_ mode locations occur with little or no bias (the mean is approximately equal

to the noiseless value). Indeed the non-zero estimates of mode bias appear

Ito be due to an insufficient number of noise realizations for averaging.

Thus, the mode range location parameter (after categorization) can be

characterized as being an unbiased random variable with variance which

3 increases with the superimposed noise level. Similar comments hold for

other parameters derived from a parametric decomposition.

3 The statistical properties of categorized modes suggests a method for es-

timating the likelihood function of a noisy parametric decomposition (con-

ditioned on a given target class). Such an estimate can then be used to

determine target class in a maximum likelihood sense. This method consists

of two steps:

I33
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Figure 2.7: Estimated pole statistics versus noise variance. (a) Pole range

location variance (m 2 ). (b) Pole range location mean (m).
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1. For a given noisy parametric decomposition, categorize the modes of

the decomposition into the modes of the known object representation.

2. Given the assumed noise level, determine the probability associated

with the categorized parameters.

There are a number of difficulties associated with this method. To esti-

mate the probability associated with perturbations of the parameters, the

estimation of all moments of all parameters of the parametric decomposition

is necessary. In addition, the algorithm used to determine the category of

noisy modes determines a best overall match between two given parametric

decompositions. Frequently, this involves the lack of a noiseless counterpart

for certain modes of the noisy parametric decomposition (see Appendix A).

For example, a match for mode #5 of Figure 2.6 occurred only 44% of the

time. Therefore the estimation of the probability of a mode being present

becomes necessary.

The difficulties associated with likelihood function estimation can be

overcome by making a valid engineering approximation of the random pa-

3- rameters as being independent Gaussian random variables and by forming

estimates of the probability of matching a given mode and incorporating

these estimates into the likelihood estimate. Unfortunately, in addition to

difficulties associated with the estimation of the conditional probability,

* there are a number of other reasons not to use this method.

The result of this estimation process is a measure of the probability that

3 the given parametric decomposition is observed, under the assumed noise

level, by radar measurements of the assumed object. However, the algo-

35I
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rithm which categorizes the noiseless modes produces a distance which in-I

dicates the degree of similarity that exists between the obscrved parametric

decomposition and the assumed noiseless parametric decomposition. This

distance can serve the same purpose as a likelihood function estimate.

The categorization algorithm, as implemented, is limited in the types

of correspondences it is crpable of making. It is possible that noise pertur-

bations can cause one mode to be estimated in a noise realization where

there are two in the noiseless estimate. The likelihood of such an occur- -
rence depends upon the parameters of the noiseless modes. Likewise, it is

possible that more than one mode can be estimated where there is only one 3
in the noiseless parametric decomposition. These problems usually occur

at higher noise levels. However, for complete generality, the probability of 3
these events and the resulting parameter density must be estimated.

Categorization in this more general sense is capable of accounting for 3
perturbations other than noise. Thus the use of symbolic matching algo-

rithms is indicated for identifying targets which are represented by paramet- -
ric decompositions. The fact that a meaningful sense of distance between

arbitrary sets of poles can be defined (as will be discussed in Chapter 4) 1
allows optimal matching, in a general sense, to be successfully implemented.

I
I
I
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2.4 Radar System Parameters Example

As an example of how the key system parameters can be chosen for a given

library of objects, consider a library of targets in which the maximum

extent of the objects in the catalog is approximately 50 meters. The range

cell size, 6r should be chosen large enough such that the targets are likely

to fall entirely within a range cell, and small enough such that individual

scatterers can be separated. For our example the range cell size is chosen

to be 75 meters so that
c

br = 75 =* R = 75 - Af =- = 2MHz. (2.17)
2br

Thus, by choosing the minimum number of cycles per sub-pulse equal to

15 yields

1 = 15 => f0 = lAf = 30MHz. (2.18)

Suppose also that the number of peaks in the range profiles of the library

targets is limited to 5. This determines the final model order, Al, for the

estimation procedure. As described in the subsection 2.2, a number of

modes are rejected for noise-cleaning purposes. Supposing that 3 modes

will be rejected following the initial estimation step, this yields an initial

model order, before pole rejection, of 8. In order to estimate a model with

8 poles a minimum of 16 data points is necessary; N = 16. The overall

pulse width is then
2N&r

="- 8gtsec. (2.19)
C

An object traveling at 225 meters/sec (about 500 rni/hr) will move 1.8

mm during the time between the commencement of the first sub-pulse and
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the completion of the final sub-pulse. Thus, for this case, if the error in

the estimated target velocity is 500 mi/hr then the error in the differential

phase between the first and final measurements is .130. In addition, the

wavelengths corresponding to the transmitted frequencies vary from 10 to

5 meters. These wavelengths are within a factor of 10 of the extent of I
the targets in the library and, therefore, are within the resonant region for

the given catalog. These radar system "dimensions" are assumed for the I
experiments described in Chapter 4.

I
I
I
I
I
I
I
I
I
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Chapter 3

i STRUCTURAL PATTERN
* DESCRIPTIONS AND

ASSOCIATED DISTANCE
| MEASURES*
3 In this chapter, a mathematical framework for use in matching the ele-

ments of two parametric decompositions is established. In this framework,

I the parametric decompositions of Chapter 2 are represented by structural

descriptions [19]. The structural description formalism and the associated

relational graph [8] formalism are useful for representing patterns symbol-

ically and describing matching strategies. In Section 4.1 the relationship

I between parametric decompositions and the corresponding structural de-

scription is given. In this chapter the structural description notation is

introduced. Furthermore, qualifying assumptions and a matching strat-

egy useful for matching structural descriptions which represent parametric

decompositions are presented.

I
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The extension in [241 to the structural description formalism described I
in [19] is adopted here. The presentation of the matching formalism pre-

sented here is abstract in nature to stress the applicability of this theory

to other areas. A more concrete presentation of the matching algorithm 3
is given in Appendix A. Qualifying assumptions regarding the relational

portion of the symbolic representation and the required distance measure

illustrate the limitations of this theory. It is assumed that these qualifica-

tions are a necessary condition for the complete synthesis of symbolic and

relational information and that they are natural in a variety of practical

applications.

3.1 Structural Descriptions 3
A structural description, D, is a 2-tuple, D = (P, R) where P is a set of

primitives, or nodes, of the structural description and R is a set of named

N-ary relations over the set of nodes P. Each element of P is a set of at-

tribute/value pairs. In this way a node or primitive of a structural descrip-

tion can possess any number of properties. Thus, if T = {a, a 2,... aNA I is

a set of node attributes and V/, I < i < NA is a set of allowed values for

node attribute ai then for any arbitrary s c P

NA

S C U(ai,vi). (3.1)
i=1

where vi C I i.

Each element in the set R is represented by a 3-tuple,

rk = (NRk, Rk,fk), rk E R. (3.2)
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where NRk is the name of the relation and Rk is the set of N-tuples of

elements of P. This set lists grou ps of P which are related by the given

relation. Finally, f', is a function which assigns to each element of this set

an attribute.

3.2 Relational Attributes

The basic assumptions which are employed concerning the relational por-

tion of this framework are discussed below. These assumptions, listed as

qualifications, ;orrm the characteristics of the class of structural relations

3 considered here.

Qualification 1 Relations are tronsitivc. That is, there ezists an opera-I tion, E) which is applicable to relational ati,'butes such that:

f,, [(si, sk)] f, [(si, sj)]Ef,, [(sj, sk)] (3.3)

Qualification 2 All relations are binary and anti-symmetric.

Hence,

S(si sk) e Rk = (sk, s) E Rk (3.4)

and'

I fr, [(si,sk)] G f,, [(sk,si)] = 0. (3.5)

'0, as used here, refers to "null" o. "non-existent" and must be interpretable in tile
context of the attribute space Relational attributes which are attached to involuted

relations become pate of the node attrib',tes.

4
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For example, attributes associated with a given relation could possibly rep-

resent a "directed distance" between nodes of a structural description in

a particular dimension. Under such a scheme, the length from node si to 3
node Sk is the "negative" of the length from node sk to node s,. Tlus the

term anti-symmetric. 3
A consequence of qualifications 1 and 2 is that there exists a variety

of equivalent ways in which a given relation can be represented. Specifi- I
cally, from a set of nodes connected in an arbitrary way by some relation

in R, a single node can be chosen to serve as the reference node for that I
specific relation. All nodes connected by such a relation need only be

directly connected to the reference node. For example, in 2-dimensional

Euclidea, ,pce (the relational attribute function evaluates to a 2-tuple), 3
let D = (P,R), with P = {(nodename,I), (nodename,2), (nodename, 3),

(nodename, 4)}, R ={r,},

r, = (distance, R 1 ,f, ), and Ri {(1,2),(1,3),(3,4),(1,4)} 'for succinct-

ness, nodes are referred to by their attribute values). Thus, we see from Fig-

ure 3.1(a) that f,,[(1,2)] = (-1,2), f,,[(1,3)] = (1,-3), f,[(3,4)] = (2,5)1

and f,,[(1,4)] = (3,0).

Thus, by choosing node 2 as the reference nodc, the relation r, can be

expressed in terms of pairings with node 2 as R1 = {(2,1),(2,3),(2,4)}, 3
(see Figure 3.1(b)) since

f,, [(2,l)[ + f,, (i,2)] = (0,0) = ' f., i(2,1)J (1,-2) I
f,, [(2,3)] -f,, [(2,1)1 + f,, [(1,3)] f, [(2,3)] = (2, -5) (3.6)

f (2, 4)] 1 f ' (2, 1) + f,[1, 4)1 f,, [(2,4)1 = (4, -2).
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Figure 3.1: Structural Description with Transitive relations. (a) As origi-
nally specified. (b) Alternate specification with node 2 as a reference node.
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Clearly any node can act as the reference node (including a fabricated U
reference node, i.e., a node which is appended to the structural descrip-

tion to act only as the reference node for one particular relation). It is U
assumed that such a reference exists for all relations in the given structural

descriptions. In what follows, the reference node is denoted with an "R" in

graphical depictions of structural descriptions.

The qualifications given above have consequences for the matching of

structural descriptions. In particular, for a given match between the nodes

of two structural descriptions the distances may be evaluated as a function

of the registration (i.e., offsets, scalings, quadratic expansions etc.) between

the relational attributes of two structural descriptions. As a result, the

"optimum" set of registration parameters, i.e., those which best resolve

the discrepancies between the relational attributes of the two structural

descriptions, may be calculated using the distance function.

As an example, consider the trivial case in which each of the two struc-

tural descriptions, DA and DB consist of a single node. The only possible I
non-trivial correspondence between DA and DB is that which matches the

single node in the observed description to the single node in the candidate I
description. In this case, relations (and therefore relational attributes) only

exist from the singular nodes of the structural description to the fabricated

reference nodes. Discrepancies in relational attributes can be resolved with

only a single relational offset parameter in each dimension.

Consider now a second example in which DA contains three nodes,

as in Figure 3.2(a), and DB has two nodes as in Figure 3.2(b). Under

the correspondence between the two structural descriptions consisting of
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{A 1 - B1,A2 - B2,A3 - 0} all relational attributes can be brought

into exact agreement with a relational offset of -1 unit in the "x" direction

and +2 units in the "y" direction for the candidate structural description.

tnder a different correspondence, {A 1 4-+ B 1,A 3 -4 B 2,A 2 +-+ 0}, both

an offset (-1.9,-i) and a subsequent scaling (multiplying the relations by

(10,4)) of the relations of the candidate structural description are necessary

to bring the relational attributes into exact correspondence.

I

(143 (17 A3

* (a)

(12,5)

(2,2) B B2

* (b)

Figure 3.2: Matching of structural descriptions with transitive relational3 attributes. (a) Structural description DA. (b) Structural description DB.

Clearly, as the correspondence between the nodes of the structural de-

scriptions becomes more complex, greater numbers of registration param-

5 eters must be added to bring relational attributes into exact equivalence.
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By including sufficient numbers of registration parameters, full variability I
of relational attributes is allowed.

For many applications, problem domain knowledge may be used to lim-it I
the range of registration parameters. This is done by either explicitly stat-

ing a range of values for valid registration parameters or by simply ex-

cluding certain parameters and allowing no variability. In such cases, rela- -
tional attributes cannot necessarily be brought into exact equivalence and

a "best fit" solution must be adopted. This is accomplished by computing

registration parameters which minimize an "inter-structural-description"

distance function of the type discussed below. The formulation of the dis- I

tance function between structural descriptions given here stresses the inter-

dependencies between the relational and the symbolic (node attributes) 3
components of the structural description.

I
I
I
I
I
!
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3.3 Nodal Attributes and Inter-Structural-
Description Distance

For certain applications, especially those in which statistical variations may

not be significant, node attributes may be developed without regard for de-

scription comparison. Indeed, when node attributes have only an absolute

* interpretation, matching can only be precisely defined in a "crisp" sense.

However, the approach followed here is one in which the "quality" of the

match may be evaluated and used to advantage. Clearly, this measure of

quality must be defined in terms of the relations between matched nodes.

I Hence, differences in attributes attached to relations between nodes influ-

ence the quality of a candidate match through registration parameters. The

necessity of measuring the quality of a match leads to the final qualification

* on the structural descriptions:

Qualification 3 For any two structural descriptions, there exists a mean-

U ingful measure of distance between subsets of nodes extracted from these

descriptions. In addition, this distance i. a function of the registration

parameters.

To make the notion of the distance measure precise, let two structural

descriptions DA = (PA,RA) and DB = (PB,RB) be given by:

PA {SAISA ,.'. .,SANA} PB ={SB,5SB 2 , .'' B} I

RA {rA,,rA,,.. .,rAv,} RB {rB,,rB,,.... rBT } (3.7)

where N A and Nr denote the number of nodes and relations, respectively,

I making up description DA.
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The distance between a set of nodes from structural description DA I
(A C PA) and a set of nodes from structural description DB (B C_ PB),

is denoted as d,(A, B)(rpi,rp2 ,... ,rPnrp), where the registration parame- I
ters between node set A and node set B are denoted as rp t , or simply as

d,(A, B)(r-) (where F is understood to represent -. registration parameter

vector, [rp,rp2,...,rPNrp]T). The distance d,(A,B)(r-) must exhibit the

properties:

d>(A,B)(r) > 0. (3.8)

d.(A, B )( -- ) = d. (B, A)(r). (3.9)

Furthermore it is required that for any set of registration parameters, F

= d(, (3.10)

Thus the inter-node-set distance, do(A, B), must include the nil-map cost

d A, 0)(f-') as a special case. A nil-map may occur when a particular node

or set of nodes does not have a corresponding match in the other structural 3
description.

The above definition naturally leads to a formulation of distance be-

tween two structural descriptions. In particular, suppose there exists a

partition of the nodes of two structural descriptions DA and DB, i.e., A = I

{Aj 1 <i< NA}, n.A=0, U.A =PAand B={Bi1l<i<NB}, nB=

0, UB = PB (partitions of PA and PB are required to be mutually ex- i
clusive and collectively exhaustive). Furthermore, M : A - 83 is a binary

one-to-one mapping from the elements of A to the elements of B (all un-

mapped elements of the partitions are implicitly "nil-mapped"). Then the
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distance between the two partitions A and B is:

d,(AB) ={min rnn { E d.(Ai, M(Ai))(-J
[: I F lAi EMt-1 (5)

+ E d,(0, Bj)+ dZ d(Ai, 0)1I (3.11)
BjV (A) AiV -IB)

The distance between two structural descriptions, DA and DB is then

defined as the minimum over all partitions of PA and PB as :

I d(DA,DB) =r {d(A, 3)} (3.12)
{Part(PA) Part(PB)}

where the set of all partitions of an arbitrary set U is denoted as Part(U).

The order in which this minimization is accomplished is not important.

The partitions and the inter-partition mapping resulting from the above

minimization do not necessarily constitute a relation between the nodes of

I the two structural descriptions which is constrained to be either one-to-

one or onto. Indeed, the resulting correspondences may be homomorphic,

I isomorphic, monomorphic, sub-graph isomorphic, etc.

The lack of a pre-defined matching sense allows the matcher to make

correspondences from groups of nodes to groups of nodes, thereby providing

the potential to account for differing segmentations of the same pattern.

Minimizing the inter-structural-description distance implicitly determines

I the sense of the correspondence between the nodes of the two structural

descriptions. Since the sense of the optimum mapping is determined by

the matcher itself, the only reason to restrict the match sense a priori is to

reduce computational complexity.

4
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3.4 Comparison with Other Models I
In other models of structural matching, observed nodal and relational at-

tributes are considered to be realizations of random variables which are

modeled as either mutually independent or (in the case of relational at- I
tributes) are modeled as being dependent only upon the existence of the

underlying graphs end nodes [22,27]. Such models are referred to as Inde- I
pendent Random Attribute (IRA) models.

By their definition, IRA models do not consider contextual information.

In other words, the contribution to the match quality function from a per-

turbation to a particular nodal or relational attribute does not depend upon

any other perturbations to any of the other nodal or relational attributes.

For cases in which this independence assumption is a valid approximation,

considering dependencies among the constituent random variables results

in a more accurate assessment of match quality. Furthermore, the use of

registration parameters to determine match quality implicitly introduces a

dep l.',,, .ro' g tee rav.jlv 'ariables.

As an illustration to this property, consider the two structural descrip- 3
tions depicted in Figure 3.3. In this example, an observed structural de-

scription (Figure 3.3(a)) is assumed to be congruent to the prototype (Fig- I
ure 3.3(b)) with the exception that the relational attribute between the

two nodes has been modified by a vector, Ar, of attribute perturbations. I
The assumed correspondence between the nodes from the two structural

descriptions is A, +-4 B 1 ,A 2 +4 B 2.

I
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l r +hlr

| (a)

I
II
I r~

I * (b)

Figure 3.3: Contextual aspects of matching with registration parameters
versus IRA models. (a) An observed structural description. (b) A prototypeI
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In an IRA model the change in the match quality function, due to the I

perturbation of the relational attribute, is a function of only the observed U
and prototypical relational attributes,

AdIRA(DA,DB) f(r,r + Ar) (3.13) I

Under a registration parameter model, a perturbation to any of the at-

tributes of the noiseless structural description causes, in general, a change to

the optimized values of the registration parameters. Therefore, the change I
in the inter-structural-description distance is a function of all nodal and

relational attributes from both structural descriptions as I

Ad(DA,DB) f(r,r + Ar, PA, PB) (3.14) 3
Hence, the use of registration parameters represents an inclusion of de-

pendence relations among the constituent random variables of an underly-

ing random graph model. Such a model is applicable for matching measured

realizations to library prototypes where variations of the measured realiza-

tions can be accurately described by variations in registration parameters. 3
The task of searching for a minimum map or match correspondence can

be extremely time consuming, even for structural descriptions with very 3
few nodes. In the following sections ways in which searching can proceed

in an efficient way are described. These methods use the properties of the 3
relational portion of the structural descriptions to reduce the number of

partitions and relations which are considered. I

I
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3.5 Searching for the Optimal Match Be-
tween Structural Descriptions

Searching for the minimum distance partition and inter-partition mapping

as suggested by Equation (3.11) and (3.12) appears to require a four step

iterative process:

1. Form candidate partition of PA, (A).

2. Form candidate partition of PB, (B).

3. Form candidate mapping M between elements of A and elements of

/B.

4. Compute the resulting distance function, minimize with respect to

relational offset parameters.

In what follows, it is shown how the first three steps can be combined into

* a single step.

Consider the result of a formation of arbitrary partitions of the PA

*node set along with arbitrary partitions of the PB node set and a one-to-one

mapping which links elements of the two partitions. Such a correspondence

between the two node sets has the property that it can map elements of the

node set to nil, or groups of elements of the node sets to nil, or elements of

I one node set to elements or groups of elements of the other node set and

vice-versa.

Next, consider an arbitrary partition P of the combined sets PA U PB

Elements of P may contain a single element of PA or a single element of PB
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or subset of only PA or PB or they may contain elements of both PA and

PB. Elements of P are interpreted in the following way. Those elements of

P which contain only elements of PA or only elements of PB are interpreted

as mapping those elements (or sets of elements) to "nil". Those elements

of 7P which contain elements of both PA and PB are interpreted as being a

mapping from the portion of the partition element from PA to the portion

of the partition element from PB. Thus an equivalence is formed between

partitions of PA U PB and the formulation of a correspondence. Steps 1

through 3 of the search process can now be collapsed into a single step:

Form a candidate partition P of PA U PB.

The distance function between two structural descriptions, discussed in

the previous section, is now described using a simplified notation. Recall

that an arbitrary partition of PA U PB is denoted by P. Let 7r denote an

arbitrary element of 7P, 7rA denote the component of 7r in PA and 7rB denote

the component of 7r in PB so that 7rA = 7r n PA and 7rB = 7r nPB. Then

the distance between structural descriptions DA and DB is

d(DA, DB) = Par t(PAUpB { {Z ds(7rA,rB)(r)}} (3.15)

Enumeration of candidate partitions (or correspondences) can be accom-

plished via a recursive procedure. Details of the algorithm employed for

simulation and performance evaluation are available in Appendix A.
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3.6 Incorporation of Relational Constraints

Significant reductions of the number of candidate partitions may be made

by considering only those partitions which are rela~ionally "consistent."

* Correspondences between the nodes of two structural descriptions may be

generated from other correspondences by recursively pairing elements of

a given correspondence. Using this technique, the given input partition

has associated with it a vector of optimizing values for the registration

parameters at each level of recursion. Similarly, each potential pairing oi

elements o^ the input partition has ssociated with it a vector of optimizing

values for the registration parameters.

The optimizing values of the regitration parameters for a potential

pairing of elements of the partition are defined by the corresponding inter-

node-set distance function. For a given pair of elements from the input

I partition 7r ,7r2 E P this distance function is d,(7r' L)7r ,7r' U4 2)(-). Opti-

mizing values for the registration parameter vectors for the input partition

and each potential pairing are assumed to be input witli the partition.

By comparing th- optimizing values of registrau,1 - parameters of a po-

tential pairing with those of the inp it partition, a decision can be made

regarding the "relational consistency" of the potential pairing. This concept

is illustrated by an example. Consider the structural descriptions depicted

3 in Figure 3.4. An "offset" registration parameter is defined as the amount

by which reference nodes of two structural descriptions are translated with

respect to each other. In Ciis example discrepancies in relational parame-

ters are resolved with only an "offset" registration parameter. Assume that

I
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the optimizing value of this registration parameter associated with an :nput I
correspondence (partition) of {(Al, BI), (A 2 ), (A 3), (A4), (E 2 ), (B 3 ), (B4)} is

0. Optinizing values for some of the potential pairings of elements from mthis partition are:m

Potential pairing Optimizing offset
(A 2 , B 2) 0

(A3, B3) 0.25 I
I

2.25 3.75

(a) 3
I

I 2 4

B 2  (b) I
Figure 3.4: Relational consistency in matching. (a) An observed struc-
tural description with one node out of place. (b) A prototype structural
description.
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Clearly, the pairing (A 2 , B 2) is relationally consistent with the input

correspondence. The pairing (A 3 , B 3 ) may or may not be relationally con-

sistent depending upon how the registration parameters are compared. In

the following section, an example of how relational consistency can be de-

fined by changes to the match distance function.
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3.7 Metric Inter-Node-Set Distances I

Recall that inter-structural-description distance is simply the inter-partition

distance minimized over all possible partitions of the joint node set of the

two structural descriptions. The inter-partition distance is a sum of inter- 3
node-set distances. Thus if the node set distance is a metric, i.e., if

d,(Ai U Ak, B, U Bk)(i) 5 do(Ai, B,)(r-i) + d.(Ak, Bk)(Fk) (3.16) I

with Ai, Ak 9 PA, Bi,Bk _ PB, and Ai nAk = 0= BinBk, and where
where F, and r, are optimizing values for the registration parameter

vectors then the distance associated with any non-trivial partition of the

node sets PA and PB is not increased by joining elements (forming the

union of their node sets) of the partition.

A global minimum is therefore obtained by the partition consisting of

only one element PA U PB. That is, the optimal match maps the union of

all elements of PA to the union of all elements of PB.

Therefore distance functions which satisfy the metric property allow I
(or force) the consideration of "entire-structure" matches as would be pro-

duced by a purely statistical pattern recognition algorithm. On the other

hand, metric distance functions also preclude the possibility of extracting

information regarding the correspondence between nodes of two structural

descriptions. This characteristic is especially unfortunate since extracting

the information contained in a correspondence between two structural de-

scriptions is one of the primary objectives of structural pattern recognition.

It is interesting to note that this relationship between distance functions

satisfying the triangle inequality and matching in a non-binary sense has
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been previously referred to in [25]. There, the authors conclude that the

distance function should not, in general, be a metric. Conversely, it is easy

to see that if the inter-node-set distance is "too far" from being a metric

function, there is no advantage of considering any correspondences other

than one-to-one matches between nodes. In [25], the authors discuss a

distance function for matching structural descriptions which allows for the

more generalized type of matching considered here.

Two modifications to the inter-structural-description distance are pro-

posed to induce non-trivial matches between the structural descriptions.

The first of these serves to reduce the distance associated with matches hav-

ing large numbers of correspondences between nodes. The second reduces

the distance associated with matches having large numbers of nil-mapped

nodes. Each of these modifications consists of a slight modification to the

inter-structural-description distance function. The extent of these modifi-

cations may be viewed as an expression of prior knowledge concerning the

type of matches which are to be made.

The modification designed to emphasize matches between nodes of two

structural descriptions is referred to as link normalization. A link is defined

as an element of the correspondence in which at least one node of the

observed structural description is mapped to at least one node from the

prototype structural description. Elements of the correspondence which

map a node or a group of nodes to nil are not links. Likewise, elements of the

correspondence which map more than one node of the observed structural

description to one or more than one node of the prototype structural

5



description are counted as a single link regardless of the number of nodes

involved.

In this modification, the distance associated with a given correspon-

dence (or partition of PA U PB) is normalized by a factor dependent upon

the number of links which are implied by the given correspondence. The

number of links for a particular correspondence, P is denoted L(P). The

modified distance function is the previously defined distance, divided by 1 I
plus the link-normalization-factor, a, times the number of links.

The second modification of the distance function considered involves

the weighting of terms corresponding to nil-maps. This modification is

intended to decrease the value of the distance function associated with

corre-spondences involving nil-maps and, hence, cause such correspondences

to be chosen with greater frequency. In this way problems associated with

missing or extraneous in the prototype structural description are lessened.

This factor is termed the nil-map propensity, 40.
By incorporating these two factors, the general form for the distance

between two structural descriptions may be written as

d(DA,DB) = min n x d.(7rA,rB)(r)

{ 1in{1L(P) K4Er

+i, d.(fO, rB) + E d.(7U, 0)) (3.17)

Notice, from Equation (3.17), that an increase in the link-normalization-

factor, a, will result in matches with greater correspondence between nodes

of the two structural descriptions. An increase in the nil-map-propensity,
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I will result in matches with greater numbers of nil maps. Thus, in the

sense that increasing the link-normalization factor forces greater complexity

in the resulting matches, the resulting inter-node-set distance function is

claimed to be "less metric".
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Chapter 4 I

APPLICATION TO RADAR
OBJECT IDENTIFICATION I

i
An example of how the framework for structural descriptions can be applied

to a problem involving the symbolic processing of waveform sources is now i
presented. The problem is that of identifying an airborne object from its

real aperture radar responses. The object is assumed to be detected and a I
measurement vector (as discussed in Chapter 2) is assumed to be available.

Such problems have been approached from a statistical point of view

previously [32]. The desired tangible effect of symbolic matching is that

of more robust classification with respect to extraneous responses due to

orientation and object configuration. We consider here generic extrane-

ous responses which could be due to unmodeled object features such as

additional stores on board the aircraft and extraneous responses due to

small errors in the aspect estimate. We show that these problems can be

alleviated by eliminating these extraneous responses with nil-mapping.

A less tangible result of the use of a symbolic classifier is the fact that

the resulting m'tch of an observed structural description with a candidate
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structural description from a library yields an interpretation of the obser-

vation. This, of course, supposes that the library of structural descriptions

have, themselves, meaningful interpretations.

The parametric estimation techniques described in Chapter 2 are used

to provide pattern segmentation. The model upon which the estimation

procedure is based suggests a distance measure for structural descriptions.I
4.1 Parametric Estimation as a Segmenta-

*tion Procedure

Energy localization implies that individual poles correspond to the objects

"scattering centers" or "scatterers". As such, the estimation procedure

provides a segmentation of the radar measurement. While there exosts the

possibility of significant overlap of the energy in an individual pole with

energy contained in other poles of the parametric decomposition in the

range dimension, the estimation procedure provides a way of partitioning

I the energy in the measurement vector into discrete entities which are ap-

proximately disjoint in the range dimension.

The following definitions are made for a structural description derived

from Prony-based parametric estimates of target signatures. Suppose that

the set Q = {(pi,di) 1 i < M} is a Mth order Prony-based decomposi-

tion for some radar measurement vector I. The corresponding structural

description (see Chapter 3) is DQ = (PQ,RQ). The basic idea of deriving

a structural description from the Prony-based parametric decomposition is

that each node of the structural description consists of a mode (a (di,p,)
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pair) minus the angle of the pi parameter and that this angle parameter

determines the relations between the nodes.

Specifically the set of node attributes (T) consists of pole modulus (ab-

solute value) and pole residue, the range of these attributes (the "value 3
sets", Vi, 1-2) follows from their definition of these pi and di parameters as

T = {pole modulus, pole residue} (4.1) I
V1 = R+(the positive reals) (4.2)

V2 = C(the complex numbers) (4.3)

then for any node si e PQ

s{ f(mode residue, d), (pole modulus, I pi (4.4)

In this case there is only one relation in the the set RQ. RQ {ri}

r, =(location,PQ x PQ,f,,). (4.5)

The attribute for relation r, is the relative location,

fr, [(si, sk)] arg(p,) + arg(pk)R (4.6)
27r

where R is the unambiguous range interval. Note that this definition of the

relation r, meets requirements l and 2 from Chapter 3.

I
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4.2 Distance Measures for Prony-Based Struc-
tural Descriptions

If the radar measurement series can be modeled as a series of random vari-

ables with known statistics then optimal' classification of radar objects

consists of choosing that member of a set of candidate measurement series

(the library) which minimizes the distance between itself and the observed

measurement series. The distance function which provides optimal classi-

3fication is well known for the assumed white Gaussian noise environment.

This distance function is extended to the segmented representation under

the assumption that the corrupting noise environment is preserved by the

transformation to the segmented representation. That is, noise pertur-

I bations to individual elements of the decomposition are probabilistically

identical to noise perturbations of the measurement series. This, however,

Iis not the case.

As such, this distance measure between two structural descriptions is

sub-optimal except for the special case when it is the optimal distance func-

3 tion between the underlying measurement vectors (that case being under

the assumption of the trivial correspondence, all poles of one structural

3 description mapped to all poles of the other structural description and no

modeling error). It will be demonstrated in Section 4.5, however, how a

3 classifier based on the inter-structural-description distance measure does

realize benefits in terms of more robust classification with respect to the

m optimal classifier.

'in a maximum likelihood sense

I
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Since elements of the measurement vector represent frequency domain

values, a shift in the range domain of r meters applied to the target corre-

sponds to a phase shift of -27rjfk(-) radian being placed on the kth ele-

ment (we adopt the convention that a positive shift in range corresponds to

a shift of the target away from the radar system). Thus, for a given target

the measurement vector is a function of the range shift from the point at

which the measurements were nominally taken, viz. 1
yoe2 "t(,) -

T - YNe- 3JI() (4.7) I
YN-le-xf -( ) I

Suppose C ={W, 1 < h < N,} is a set of complex valued measurement

vectors (the library in vector form instead of series form) taken by the

given radar system. Each element in this list is from some known object at

some nominal range. Suppose that 0 is a measurement vector from some

unknown object. We assume that the unknown measurement vector is a 3
noise corrupted version of one of the elements of the library, C, which has

been shifted in range by some arbitrary amount, i 3
d6= 'Wh(i)+ d 0< < R. (4.8) 1

where G is a normally distributed random vector with mean 0 and covari-

ance o 2 I. The classification problem is then to determine from which of the

library elements the observed unknown measurement vector 0 is derived.

Since the noise environment is assumed to be additive Gaussian noise the

maximum likelihood solution to this problem is [6]
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h= h ,Or< r < R, I <h< N . (4.9)

That is, the solution is the measurement vector which minimizes the square

distance between it and the observed vector, over all possible range shifts.

Let Q be a parametric decomposition derived from the observed mea-

surement vector, 0. Let 6 be the vector form of a mode from the decom-

position 9. ThenI 7 (4.10)

6E n

Similarly, suppose that each element of the catalog IWh has an associated

parametric decomposition, A. The vector form of an element of Ah is defined

aS w1h

The effect of a shift in range on a measurement vector is reflected in

the vector form of the elements of the resulting parametric decomposition.

Thus supposing that wh is corresponds to mode (d,p) e Ah then the vector

form of this mode, under the assumption of a range shift r from the nominal

location, is
(p e 2,wjlf ( ' )) o

U=Wh(r) =de (PC (4.11)

(pe2~f(L))N-1

As is the case when considering full measurement vectors, the distance

between a set A C 9 and a set B C A is defined to be the square distance

between sums of the vector form of elements of A and B. Furthermore,

this distance reduces to a scalar form using the finite sum formula:
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6c A

6k Ak>i tP11 wCl)kEB,k>i IP2V (r) cB

I d' 1 + 1 Id12
(d',p')CA - Ip 2  (dp)B - p12

s d$_dk 1 p (P, p)N,(d',, Ia i d 1 -PiPk

(d:,p:)CA P"A
L(d,',p,)c A,k>i

+ y dd 1 _ (p-Pk)N 3
(d,,p ,)cB - Pi-Pk

( dk,pk. )E 1,k > 1

d'd( - 2irjf,,() - (Pp2jf( IL))U (4.12)
(d',p')CA 1 - p~pc27riA( ) J
(d,p)G 3

This distance measure, between a subset of the parametric decompo- 3
sition for the observed measurement vector and a subset of a parametric

decomposition for a candidate measurement vector is the distance measure

which is used for comparing subsets of nodes from the structural description

forms of the parametric decompositions. Recalling from Equation (4.4), el- 3
ements of Pn- (the node set of a structural description derived from the

parametric decomposition Q) are simply the (d'.p') pairs of Q minus the 3
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I phase of the p' parameter. Similarly, elements of PA can be derived from

the elements of A.

Supposing now that A represents a set of nodes from structural descrip-

tion Dn and that B represents a set of nodes from DA, the distance between

these sets is made explicit ;n terms of nodal and relational attributes from

the two structural descriptions. In the following formula, a node s' e PO-

is assumed to contain the attributes (Ip'l,d') and the relational attribute

between nodes s and s' E P11 is denoted f, J( sk)] so that

d,(A,B)(r) =

IdI 1 vp2 N
id 1+ !2 - p

- Ip'1 2  +  I P12

,+ ,~ 1 - (Ip'ilp'ke " " ( 5u"s,)J
+2W d'- dk  i k

sE A --Ip~[p'e f '[(s'a,)]I
L8'EA,k>i

+ Z1 ddk 1-- (Ip, lpke , [,, )

a,cB 1 PIIpkple I' f ¢  k

skc-B,k>i

- d'de- 
2 7 rjf, ) x

s'CA

1 plp 2=I(}&f ("i 'l) (flf [ o.')] )N (4.1 3

Similar comments hold for the nodal and relational attributes of DA. The

nodes s4,fr Po and SRdf C PA are reference nodes as were discussed

in Chapter 3. The registration parameter r designates the offset in range

between the two structural descriptions with respect to these two reference

I
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nodes. In Equation (4.13) the reference netes are implicitly taken as the

"phase center" for both observed and cataloged decompositions. I
4.3 Estimation of the Optimal Registration

Parameter m

In this section, issues involving the computation of th~e registration pa- 3
rameter r which minimizes the inter-structural-description distance are ad-

dressed. The computation of this parameter implicitly calculates the opti-

mal range alignment of the two targets which are represented by the two

structural descriptions. 3
A physical justification for computati,,n of the ontimal range offset is

that a radar target could be observed at any iocation within an unambigu-

ous ra.ige interval. Therefore, the measurements must be aligned in the

range domain with each element from the library of targets to account for m

such possible offsels. A compi;,ating feature of the structural classifier is

that the value of the range alignment is a function of the assumed match

between the nodes of the two structural descriptions.

In order to ninimize the inter-structural-description distance, a modi-

.qcation ol the Nwtoi-Raphson method [381 is implemented which is de- 3
signed to search for minima of the given function. The basic iteration for

sei.rching for a minimizing value of a function, f(r) is 3
f'

r'1 1 - T " (4.14)
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where f' indicates a first derivative with respect to the independent vari-

able r and f" indicates the second derivative. This iteration is applied

to the inter-structural-description distance function until adequate conver-

gence is achieved. For our purposes, this is defined as the estimate of the

optimizing value of the range offset changing less than a centimeter, out of

an unambiguous range interval of 75 meters, between iterations.

P rill 4hat the distance between two structural descriptions is a "

sum of inter-node-set distances (Equation (3.17)). Thus for a fixed corre-

spondence, 1', the required derivatives for the inter-structural-description

distance are weighted sums of the first and second derivatives of the inter-

node-set distances implied by the correspondence. Closed form expressions

for these derivatives are readily calculated from Equation (4.13).

The inter-structural-description distance function can have several min-

ima for the given number of radar measurements. Thus, convergence of the

Newton method to a local minimum is a problem. To avoid this problem,

the location of each of the local minima must be determined and the least

of these used for the optimizing value of the range offset. Since the struc-

tural descriptions have associated with them parametric models with range

domain interpretations, the approximate location of all local minima of the

inter-structural-description distance function is known.

If A and B are singleton nodes of the structural descriptions Pn and PA

respectively then the energy in A E Pn and then energy in B E PA is cen-

tered around their respective range locations f,, [(s'ef, A)] and f,1 [(SR,r, B)]

where sRr is the reference node in PA and s,ef is the reference node in

Pn.
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Thus a minimum of the inter-node-set distance function, d,(A, B)(r), occurs

when the range location of B is co-located with the range location of A;

r f" [(s ,,s')] - f, j(sRof, s)I. I

Therefore, the set of approximate locations for the local minima for

d, (A, B) is the set of diffcrences in the range locations of A with respect i
to thc range locations of B, {r,,b Ir,,b = f'(sjf, s') - f, ((sRrf s)Y . s' C

PS : PA }. An arbitrary inter-structural-description distance funttion is a

sum of inter-node-set distance functions. Therefore, the set of approximate I
local minima used for initialization of the Newton optimization performed

on the inter-structural-description distance function is the union of the sets

of approximate locations for the local minima of the constituent inter-node-

set distance functions.

Note that the band-limited nature of measurement response effectively

induces a modulation on the inter-node-set distance functions and thus on 3
the inter-st ruct ural-(l(scription distance functions. Under a narrow-band

assumption this modulation can be effectively removed by using the com- 3
plex envelope of the distance function. Thus the inter-structural-description

distance function wiich is optimized separates out the range-dependent

terms and takes twice their absolute value instead of twice the real part as

is iI dicated in Equatin (-1.1 ). I

I
I
I

72!

I



Im 4.4 Distance Function Based Relational Con-

straints

The criterion for determining if a particular pairing of two elements in

the candidate partition is relationally consistent with the input partition

is defined in terms of "half-distance" intervals surrounding the optimizing

values of the registration parameter (range offset) for both the candidate

pairing and the input partition.

The half-distance interval is the interval surrounding the optimizing

values of the registration parameter in which the distance does not change

by more than a factor of two from the optimized value. This definition

serves for the distance function associated with both a candidate pairing

and the input partition. In the case of a candidate pairing, the distance

function used for determining the half-distance interval is the inter-node-

set distance between the two elements of the candidate pairing. In the case

of an input partition, the distance function used for determining the half-

distance interval is the implied inter-structural-description distance. Since

the only registration parameter which is currently used is an offset in range,

these intervals will be referred to as the half-distance rangewidths.

The definition of relational consistency which has been adopted for the

current experiments is the following: If the optimizing value for a candidate

pairing lies within the half-distance rangewidth of the input partition and

the optirizing value for the input partition lies within the half-distance

rangewidth of the candidate pairing then the pairing is said to be relation-

ally consistent with the partition.
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Recall from the previous section that optimization of a candidate match

over the registration parameter is accomplished numerically. A by-product

of this minimization is the first and second derivatives of the distance func-

tion with respect to r. By approximating the distance function with a 3
quadratic function at the optimized value of r, the half-distance interval

can be accurately approximated with the values of the derivatives of the 3
distance functions.

In practice, this criterion produces a significant reduction in the number 3
of partitions for which optimization of the registration parameters is nec-

essary. For the experiments described in this study the maximum number i
of nodes in any given partition element fixed at three. Under this restric-

tion, the number of possible partitions as a function of the total number of i
nodes, is given in Table 4.1. Also included are typical values for the num-

ber of partitions which are actually evaluated for optimum range offset in

a simulation which uses the relational consistency criterion. This criterion

appears to produce a reduction of 75% to 95% in the number of partitions

actually evaluated.

Table 4.1: Number of possible partitions and typical numbers evaluated.

Total nodes, Distinct Typical number of
cadidate and prototype partitions partitions

6 166 40 I
8 2780 30(
10 61136 3200

I
7.1



4.5 Experimental Results

The results of simulation studies of the matching algorithm are reported

in this section. Given here are estimates of the percent misclassification of

3 the matcher for comparison to the standard statistical classifier as well as

descriptions of the resulting correspondences.

I Descriptions of the matches resulting from minimization of an inter-

structural-description distance are provided to outline the benefit derived

from a structural approach to object recognition. We will demonstrate

how such a match can provide a description of an object and how increased

* robustness comes about from a structural approach.

The experiments described here use data obtained from the compact

radar range at The Ohio State University. The range and measurement

process is fully described in [32]. Scale models of five commercial aircraft

I are used. The resulting measurements are scaled accordingly. The range

of frequencies which were used in these experiments correspond to 30 to 60

1 MHz in scaled frequency.

Figure 4.1 depicts the down-range signature envelope of an object as

defined by Equation (2.12) Also indicated on this figure are correspon-

3 dences between a set of measured scattering centers and a set of scattering

centers from a particular library element, as determined by minimization of

the inter-struct ural-description distance. In this figure, scatterers defined

by the parametric segmentation procedure are indicated symbolically on

3 the envelope impulse response for both library and unknown. Scatterers

which are from the unknown or measured object are labeled AB, C....

7
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while those from the library object are labeled 1,2, 3,. Correspondences I
between measured and library scatterers are indicated ! v the shaded re-

gions. For example, in Figure 4.1 scatterer "A" from the library object is

matched to scatterer "1" from the observed object.

The correspondences depicted in Figure 4.1 are determined by minimiz-

ing an inter-structural-description distance function with a link cardinality 3
factor, a, of 1. The indicated range offset parameter corresponds to a

1.8540 meter shift of the library object to the "right".

The resulting correspondences illustrate a number of properties of the

matching algorithm. For example, the algorithm tends to match similar

scatterers, as in the match between scatterers "A" and "1". In addition

the algorithm indicates the absence of a corresponding scatterer when none 3
is present as in the indicated lack of a match for the combination of scatter-

ers "D" and "E". Furthermore, the resulting correspondence between the

scatterers yields an "interpretation" of the unknown object with respect t.

the prototype.

In the current example, the resulting match can be interpreted as indi-

cating that the observed object resembles the prototype object (with the

resulting value for the inter-structural-description distance indicating the

relative likeness) with an extra scatterer on one end and an extra scatterer

in the middle. The actual envelope impulse responses given in Figure 4.1

correspond to the same physical object at different aspects angles (400 and

450 "yaw" with respect to the radar Eystem). Conceivably. such an interpre-

tation could serve as a hypothesis to be combined with other information

and tested by a higher level reasoning process.
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The energy, range and pole magnitude (modulus) of the scatterers de-

picted in Figure 4.1 are given in Table 4.2. In addition, the correspondences

between the poles which minimize the inter-structural-description distance

are indicated by the individual rows of this table. The numbers in the

"Range" column indicates where the center of the energy for the particular

scatterer lies with respect to an arbitrary reference point. The numbers

in the "Energy" column represent the total energy contained in the scat-

tering center, integrated over the entire unambiguous range interval. The

"Modulus" parameter is the magnitude of the p parameter of a scatterer.

As discussed in s:bsection 2.3.1, this parameter gives an indication of the

energy concentration of the mode in the range dimension. Values of mod-

ulus close to 1 indicate "impulsive" scatterers, those away from 1 ( greater 3
than 1.1 or less than .8 ) indicate a more "distributed" scatterer.

Table 4.2: Pole parameters for correspondence example.

Library, prototypical scatterers Observed, unknown scatterers
Scatterer Range Energy Modulus Scatterer Range Energy Modulus

1 25.1033 989 1.0867 A 26.6696 15554 1.0059
2 29.7519 845 1.0960 B 32.8855 2039 0.9016
5 69.1534 30 1.9469 1
3 50.6451 58 1.5259 C 54.9817 275 0.9451
4 56.0781 44 1.0317
Nil D 42.1804 163 1.0649

I I E 16.2270 86 0.9764

Comparison of the parameters between matched sets of scatterers il-

lustrates a number of properties of the minimum distance matcher. In
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particular, this table verifies the previous assertion that similar scatterers

are matched together. Scatterer "A" is the highest energy scatterer from

the prototype object and scatterer "1" is the highest energy scatterer from

the observed object. In addition, the two scatterers have similar values for

their modulus.

The match made between scatterers "2" and "5" of the prototype ob-

ject and scatterer "B" of the unknown object points out another interesting

aspect of the matcher. The match between scatterers "2" and "B" is in-

tuitively obvious. However, inclusion of scatterer "5" in the match seems

counter intuitive due to its location, seemingly far from the involve(; scat-

terers. Note that scatterer "5" is of relatively high modulus, this implies

that the energy in this scatterer is distributed almost uniformly over the

entire unambiguous range interval. As such, the indicated location for scat-

terer "5" is almost meaningless. Coupling scatterer "5" with scatterer "2"

only serves to better match the energy in scatterer "2" to that of scatterer

"B". Similar comments hold for the matching of combination of scatterers

"3" and "4" to scatterer "C".

Monte-Carlo simulation is used to produce performance estimates for

several forms of the structural based classifier as well as for a maximum like-

lihood classifier which operates directly on the measurement vector for com-

parison purposes. In addition performance estimates of a classifier which

makes the trivial correspondence (all poles of one structural description

mapped to all poles of the other structural description) are made to esti-

i mate the effect of modeling error.

I
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The results of this simulation are given in Figure 4.2 and Figure 4.4.

In both figures, the estimated probability of misclassification as a function

of the added noise power (in decibels above 1 square meter or dbsm) is

given for each of the classifiers. The solid curve, marked "Range Aligned

M.L." is the performance estimate for the statistically motivated maximum

likelihood classifier. The curve marked "Post-proc N.N." (post processing

nearest neighbor) corresponds to the "trivial correspondence" classifier de-

scribed above. The other curve corresponds to the structural classifier

with the value of the link cardinality factor, a, equal to I and the nil-map

propensity, (k, equal to 0.5. Thus, this particular classifier encourages both

"linking" and "nil-mapping".

The results depicted in Figure 4.2 are from simulations in which the

elements of the library of radar measurement vectors corresponds to a set

of 5 commercial aircraft, all at "nose-on" aspect with respect to the radar

system. The unknown measurement vectors presented to the simulated

classifier are exactly those from the library with white Gaussian noise su- 3
perimposed on the measurements. The average "signal levels" of the indi-

vidual library elements vary from 12 to 23 dbsm with a library average of

approximately 19.5 dbsm.

Since all 5 library objects are presented to the classifier with equal

probability (assumption of equal priors) a classifier which chooses one of

the librarv classes without any informaion would achieve a misclassification

p,obability of .8. Thus any overal' misclassification probability beyond .8

represents a misuse of the information presented to the classifier. None of
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the classifiers have produced performance estimates beyond .8 for the cases

tested.

Comparison of the misclassification results for the structural based clas-

sifier to that of the maximum likelihood decision rule indicates that the

structural classifier is able to classify nearly as well as the statistically op-

timal decision; the performance of this classifier lagging the optimal clas-

sifiers by approximately 6 dbsm at the 10% misclassification level. Similar

results are obtained for structural classifiers with different values of the link

cardinality factor and nil-map propensity.

The reason for the performance compromise associated with the struc-

tural classifier can be at least partially explained by the modeling error

due to reduced data dimensionality of the parametric representation. The

,' meas-urement vectors for the current case consist of 16 complex

scalars (N = 16). The model order used for the parametric estimation

step is 3. Thus, this step represents almost a 3:1 reduction in data dimen-

sionality. In addition, the detrimental effects of the parametric estimation

step is indicated by the performance estimate of the "Post-processing near-

est neighbor" classifier. Recall that this classifier corresponds to a "trivial

correspondence" structural classifier and as such is a statistically optimal

decision rule when there is no modeling error. The post-processing nearest

neighbor classifier however yields performance almost identical to that of

tne structural classifier, and for lower signal to noise ratios, the indicated

performance is inferior.
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A case in which the structural classifier exhibits s,perior robustness

with respect to the "iiia.imum likelihood" classifier is now deEcribed. In

I this case the unknown objects presented to the classifier have an "extra-

neous" scatterer appended and a "true" scatterer deleted from each object

I (in addition to the the unknown measurements being corrupted by white

Gaussian noise). Such an addition and deletion is illustrated in Figure 4.3

(without any noise corruption). In this figure, the envelope impulse re-

sponse of a library element is depicted with its scatterers labeled (1,2,3,4)

as in Figure 4.1. The corresponding unknown pattern which is derived

from this library element (for presentation to the simulated classifier) is

also given here with its scatterers labeled (A,B,C,D). Note that the un-

3 known envelope response resembles the library response from which it was

derived with two important exceptions. These being the large scatterer on

the "front" of the object and the deletion of the small scatterer from the

"middle" of the object. For the Monte-Carlo simulation, similar distor-

I tions were made to each of the library objects to generate a set of unknown

representations to present to the classifier.

Figure 4.4 gives the performance estimates for the three classifiers de-

scribed above with "extraneous scatterer" unknowns. Note that for suf-

ficiently low noise power, the structural-based classifier exhibits superior

performance to the maximum likelihood classifier. This is because the max-

imum likelihood classifier misclassifies the object depicted in Figure 4.3 in a

I noiseless environment while the structural classifier does not. Furthermore.

the structural classifier makes the correspondences indicated in Figure 4.3.

correctly "nilling" the extraneous scatterer in the unknown and indicating
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the deleted scatterer in the library object and correctly linking the remain-

ing scatterers. The parameters for the constituent scatterers of Figure 4.3

are given in Table 4.3.

Table 4.3: Pole parameters extraneous scatterer example.

Library, prototypical scatterers Observed, unknown scatterers
Scatterer Range Energy Modulus Scatterer Range Energy Modulus

Nil A 20.0000 2000 1.0500
1 48.1140 157 1.0916 B 48.1140 157 1.0916
2 63.7117 71 1.0464 C 63.7117 71 1.0464
3 32.1584 42 0.9682 D 32.1584 42 0.9682

4 51.8176 29 0.8200 Nil

I

I

I
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Chapter 5

CONCLUSIONS

5.1 Summary

In this report, a framework for a pattern recognition methodology has been

presented which includes a number of extensions to the theory regarding

matching of symbolic representations. These extensions have been made to

accommodate the statistical nature of Prony-based parametric decomposi-

tions of radar measurement vectors. The result is a pattern recognition sys-

tem which classifies unknown patterns in a way which is intimately related

to a statistically optimal classifier and which also provides a description of

the unknown target in the context of the given library of possible targets.

Prony-based parametric estimation, as applied to a low frequency radar

measurement series, has been chosen to provide a segmentation of the radar

measurement series since it exhibits many desirable properties (including

increased resolution, data reduction etc.) for representation the features of

the radar target. However, under noise perturbations, the random nature

of a p:.:iretric decompu6iticn is yet fully characterized. Thus, a method by
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which statistically optimal categorization of an unknown radar target from I
an observed parametric decomposition cannot be immediately determined

from the specification of the extraction algorithm and measurement process. I
The discrete nature of a parametric decomposition suggested the use of

a symbolic matching procedure. However, the theory for matching of sym-

bolic representations is inadequate for the matching of elements of para-

metric decompositions for a number of reasons.

Noise perturbations, in the radar measurement series cause not only I
variations in the constituent parameters of a parametric decomposition but

also affect the number of resultant modes and the relationship betwecn 3
noisy modes and noiseless modes. For example, there exist circumstances

in which noise perturbations can cause modes to "split", "merge" or "dis-

appear". This can occur even when the number of estimated modes is fixed

for both the noiseless and noisy modes.

In addition, prior theories pertaining to matching of structural descrip-

tions do not consider the importance of matching in a symmetric sense. I
Non-symmetric matching is applicable to circumstances in which the recog-

nition of a sub-patterns within a given pattern is desirable. In these cases I
there is no penalty associated with "nil-mapping" elements of one of the

structural descriptions involved in the match. The use of non-symmetric

matching for the radar problem has implications which are undesirable.

For example, with non-symmetric matching it is possible for the matcher

to find a very low energy target within an extremely high energy target,

thus declaring the high energy target the optimal decision.

8
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Furthermore, probabilistic models of structural descriptions have in-

cluded no provision for accounting for statistical dependencies among the

constituent elements of the symbolic representation. The nature of the

Prony estimation process indicates that statistical dependencies are an in-

I t(-rral part of a valid statistical modeling of the estimation process.

The major contribution of this report is the development of a pattern

recognition system which addresses all of the above mentioned problems

with application of structural description matching to radar target identifi-

cation. This has been accomplished with two modifications to the symbolic

3 matching formalism. The first of these is a reformulation of the matching

task in terms of "partitions" of the elements of the two symbolic repre-

* sentations instead of a mapping of the elements of one of the symbolic

representations to the elements of the other symbolic representation. The

second modification is the inclusion of "registration parameters" to describe

the relational aspects of the symbolic representations.

It has been demonstrated how the use of the partition formalism brings

a natural sense of symmetry to the resultant matches as well as allowing

for a completely general match, i.e., matches between elements of the two

symbolic representations are not restricted to be 1-1 or 1-0, etc. This allows

for modeling of "merging" and "splitting" of elements of the parametric

decompositions as described above. Thus the resulting pattern recognition

technique realizes the capability of autonomously determining the sense of

the match between elements of the symbolic representations which, in turn,

allows for more accurate object interpretation.
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We have also demonstrated how the use of registra±tion parameters in 3
the matchin, 0 f structural descriptions allows for an implicit modeling of

statistical dependencies among elements of the parametric decompositions. I
In addition it has been shown how these parameters allow for deformation of

relational attributes to the same degree a.; conventional relational models, U
while more fully making use of the available contextual information. Under

the registration parameter formalism, the relational portion of the symbolic

representation may still be used to reduce the search space as is done in

"relational consistency" checks for structural lescription matching.

In order to help identify those circumstances in which the given fram-

work for matching is applicable, we have made explicit a number of qualify-

ing assumptions regarding the relational portion of symbolic representations

and the inter-symbolic-representation distance function. We see the spe-

cialized structure imposed upon the symbolic representation as natural and

unrestrictive in light of current applications. The qualification have been

shown to be sufficient for the synthesis of a pattern recognition scheme in

which a complete, synergetic use of semantic and structural information is

realized.

The "partition" formalism, developed here, has allowed for the explicit

proof that the metric property is not desirable for inter-node-set distance i
function. This is due to the fact that the metric property eliminates the

possibility of all but a trivial correspondence between symbolic representa-

tions. Conversely, if a statistical model of the problem at hand indicates a

metric inter-node-set distance then matching of discrete entities should not

be considered. U
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Finally, we have demonstrated how the formulated matching theory pro-

duces a classifier with performance rivalling a statistically optimal classifier

under standard assumptions of known signal parameters and noise environ-

ment. We have also demonstrated that the developed classifier produces

performance which surpasses the optimal statistical classifier in less benign

circumstances. Furthermore, since the matching process is symmetric in

nature, the resulting correspondences between parametric decompositions

allow an interpretation of the observed pattern representation ip which

statements can be made regarding both what is missing in addition to

what is extraneous, in a consistent fashion.

5.2 Concluding Remarks

The "naturalist" viewpoint adopted here has lead to a number of conclu-

sions. We offer the following comments as insight gained into the structural

forms of pattern rccognition applied to symbolic representations derived

from sensor data as well as the target identification problem.

Whenever possible, the distance measure between elements of the sym-

bolic representations should be directly induced by the statistical descrip-

tion of the pattern generation process. Indeed, the entire symbolic matching

strategy presented here is driven by the statistical and physical description

of the pattern generation process. In situations where the distance func-

tion cannot be deduced from knowledge of the pattern generation process.

approximate or heuristic formulations may be employed.
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In a traditional model for matching of symbolic representations, the 3
segmentation process implicitly discards information regarding the relation

of input patterns to "the world". Only relational information regarding the

elements of the symbolic representation is retained. Such "absolute" infor-

mation should be regarded as necessary but arbitrary; when it is unavailable I
it is manufactured in the form of a synthesized relations to an artificial ref-

erence node. Removal of such information unnecessarily complicates the I
classification task. Thus, for classification and description of sensor-based

symbolic pattern representations, the primary descriptive power of struc-

tural descriptions comes from the discrete nature of the representation.

By considering matching in the more general sense, the matching al-

gorithm is able to account for certain types of errors in the segmentation 3
process. Even in cases in which the more generalized sense of matching is

not indicated by a modeling of the pattern generation process, the use of a I

simpler, possibly error-prone segmentation scheme may allow for a proba-

bilistic modeling of the symbolic representations. In such a case, errors in 3
the segmentation scheme would be allowed for in the matching process.

The use of a limited number of measurements implies that the result of

the segmentation process contains a limited number of scattering centers.

In this way, the number of radar measurements dictates the resulting "range I
resolution". The time required for the matching of two symbolic represen-

tations grows rapidly with the total number of unknown and catalogued I
scattering centers. Thus, by using only a limited number of measurements,

matching of symbolic representations, as described here, becomes practical.

This indicates that the algorithm is most applicable to matching of pattern

92 I
I



I
I
i

representations which have limited resolution, at least until execution of

the algorithm can be accomplished in a significantly shorter period of time.I
5.3 Additional Notes

i An apparent solution to the problem of matching of structural descrip-

* tions with large numbers of discrete symbols is to use a hierarchic symbolic

representation and matching scheme [39]. By hierarchic we mean that the

representation exists on multiple levels of resolution simultaneously. In this

sense, each element of a symbolic representation on a fixed level of resolu-

tion can be "broken up" into several, more finely resolved elements on a

"lower level" of resolution (note that by lower level of resolution we mean

finer resolution). Under this scheme, a given symbolic element represents,

constitunt, lower level elements in a gross, macroscovic way. The lowest

level rcprc:entation contains the largest number of symbolic elements and

each higher level contains fewer total elements than the previous. Thus,

i each level of resolution represents the same pattern on a different resolution

scale, the difference between the levels being the relative coarseness with

i which the pattern is represented.

A hierarchic symbolic representation may be devised such that the num-

ber of symbolic elements at the highest level of resolution is small enough

to allow matching in a relatively short period of time. Matching of sym-

bolic representations with a hierarchic structure begins by first matching

unknown and catalogued symbolic representations on the coarsest resolu-

tion (the "highest" level of the hierarchy). The resulting correspondence is

I
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then used to commence a number of matching procedures on the ne':t lower U
level of resolution. This process is repeated until correspondences between

elements of the two symbolic representations at the lowest level of resolu-

tion is obtained. If, for any given element of a symbolic representation. the

number of lower level symbols is restricted to be a sufficiently small number

then each matching procedure can run in a relatively short period of time. 3
The time required for the overall matching procedure between the lowest

level elements is therefore also limited.

If elements of a given hierarchic symbolic representation on all resolution

levels are of the same form then use of the generalized sense of matching

presented 1-ere can be used to directly determine correspondences between

symbolic representations of differing resolution levels. For the target identi- i
fication task, such a feature has immediate use for determining the class of

a target in which its representation was derived from fewer than the normal i
number of measurements. This feature could also be used for investigating

the properties of differing segmentation (parametric estimation) schemes as

well as the effect of data length on the resulting symbolic representation.

In addition this theory can be directly extended to similar problems

in which extraction and categorization of modal elements of a signal is

important. Furthermore, there exists the possibility of applying this theory

to other areas such as matching the states of two time-reversible Markov 3
chains or other problems in which a symbolic model is natural.

In addition there are a number of areas in which the theory presented

here could be expanded or improved. For example, the incorporation of

additional registration parameters such as rotation and scaling. The incor-
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poration of these additional registration parameters could possibly induce

complications in the implementation; optimization of a function over a sin-

I gle variable is a relatively straight-forward procedure while optimization

over many variables is not.

Furthermore, there are a number of areas which have not been fully in-

vestigated with respect to reduction in the amount of computations neces-
sary for making a match. The current implementation takes a considerable

anlourtf of time to execute. Proposed methods for computation reduction

include limiting the number of matches which may be considered at a given

level of recursion, both in a sub-optimal manner and, when combined with

a limit on the number of elements allowed in a particular partition element.

in an optimal fashion.

Up until this point, the term non-symmetric matching has meant that

nil-mapping of elements of either the candidate or a prototype structural

description can occur without contribution to the match quality function.

In addition, the inter-structural-description distance function has been re-

quired to be a symmetric function. However, it has been suggested that

Ithe use of a non-symmetric distance function (which would imply a non-

symmetric matching) could have use for noise-cleaning or could possibly

find use in incorporation of information regarding presence or absence of

certain of a given targets' scattering centers. Thus, the definition of non-

symmetric matching is altered and methods of exploiting the non-symmetry

should be investigated.
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Appendix A

DETERMINATION OF I
CORRESPONDENCES
BETWEEN ELEMENTS OF
TWO PARAMETRIC
DECOMPOSITIONS I

The purpose of this appendix is to provide a formulation of the implemen-1

tation of the matching algorithms which determine the correspondences

between two parametric decompositions. The first section covers a simpli-

fied version of the full matching algorithm described in Chapter 3. This

algorithm is limited in terms of the type of correspondences it is capable of

making between parametric decompositions. It does, however, contain the 3
potential to produce extremely fast correspondences which minimize the

given distance function. 3
The second algorithm described is an implementation of the matching

algorithm described in Chapter 3. This algorithm considers matching in an I
extremely general sense. In its most general form, this algorithm considers

96



matches between the two parametric decompositions which are not only

1-1 but those which are 1-0, 2-1, 2-0, 3-1, 3-2 and so on. In addition, this

algorithm as implemented optimizes the value of the "range alignment" (the

maximizing value of the "range" correlation value) between the targets

for each correspondence considered. This algorithm thus minimizes the

distance over the set of all correspondences and range offsets.

Both matching algorithms are described as a recursion on a matrix. The

basic recursive step for each of these algorithms is to generate a number

of reduced order (reduced by 1) matrices from the input matrix and pass

each of the reduced order matrices to a lower level of recursion. We refer

to such matrices which are generated and passed on as being operational.

In both of these algorithms, matrix reduction is implicitly equivalent to

the incremental formation of a correspondence be ,, n the elements of the

parametric decompositions. The differences between the algorithms lie in

the type of matrix upon which they operate and the way in which a lower

level matrix is generated from an upper level matrix.

The elements of the operational matrices consist of terms, or sums of

terms, from a formula for the magnitude square distance between the mea-

surement vectors from which the parametric decompositions are derived.

Suppose that two measurement vectors,TA and ^?B have parametric de-

compositions, AA and AB respectively. Then, assuming no modeling error,

the mean square distance between the two measurement vectors can be

expressed in terms of elements of the parametric decompositions in vector

form, viz.
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TA YtB I V Z- 6b (A.1)
VEAA VbEAB

Z I.l2 + + lbI 

I

iOEAA 4EAB

+ Z -3 

E 1Zb (A.2)
i.EAA, VbEAD I I

In Equation (A.2) i32 and 6b represent the vector form of the elements

(modes) of the parametric decompositions AA and AB respectively, as in 3
Equation (2.10). Equation (A.2) gives the amount of residual energy associ-

ated with matching the measurement vector TA with measurement vector 3
TB. In non-parametric methods of classification, the residual energy is

minimized over the set of all catalogued measurement vectors to determine

the overall best match for a given observed measurement vector.

We show in this appendix how algorithms which operate on matrices I
with elements consisting of the terms of Equation (A.2) determine "min-

imum distance" correspondences between elements of the parametric de-

compositions, AA and AB. The distance associated with a particular corre- -
spondence is equal to the sum of the residual energies associated with each

grouping of elements implied by the correspondence. Thus determination 3
of optimal correspondences is defined by minimization of the total residual

energy. 3
98
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For the first algorithm, elements of an operational matrix represent the

distance between the discrete elements of two parametric decompositions.

Thus, the first algorithm described is termed the d-matriz algorithm. For

the second algorithm elements of the matrices represent terms of a distal -

function which describes the distance between two measurement vectors.

Elements of this matrix are used to minimize a distance between sets of ele-

ments from the two parametric decompositions. This algorithm is therefore

referred to as the generalized d-matriz algorithm.

A.1 The d-matrix Algorithm.

The d-matrix algorithm is applicable to the determination of correspon-

dences between elements of two sets in which the pairwise distances between

elements of the sets are available. This algorithm is currently implemented

in a "static" sense, i.e., there exists no facility for adjusting the "range"

location of the elements of one parametric decomposition with respect to

the other. It is therefore applicable to the estimation of the parameter

statistics for a given parametric decomposition.

The objective of the d-matrix algorithm is to select, from the set of

modes of one of the parametric decompositions, a match for each element

of the other parametric decomposition in such a way as to minimize the

total residual energy. Another way of viewing this task is in terms of a

search for a 1-1 mapping M : AA AB in which each element (mode)

of AA is "canceled" by its corresponding element in AB (or possibly the

"nil" mode, i.e. the mode with no energy) to a maximal extent. Thus, the

quantity which is minimized is
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Ig -_ M (;)12. (A.3)
1jEAA

over the set of all 1-1 mappings. Note that under this scheme all of the 3
energy in the parametric decomposition AA is included in the calculation of

match quality. Only those elements of AB which are paired with elements 3
of AA have their energy included in the match quality function. Thus the

resulting matcher is non-symmetric. This brings about several questions

when the target recognition task is considered. Is such a match desirable?

Should the mapping be from the observed parametric description to the 3
library parametric description or vice versa? It is due to these complica-

tions that non-symmetric matching is not fully investigated for the target 3
recognition application.

Supposing the modeling equation (Equation (2.9)) holds exactly for

both parametric decompositions and the two measurement vectors are equiv-

alent, then the two resulting parametric decompositions are equivalent to I
within a "labeling" of the modes. Minimization of the quantity given

in (A.3) results in the renaming of the modes of one of the parametric I
decompositions with the "names" of the modes which they are most "like"

in the other parametric decomposition in an overall sense.

A.1.1 Operation of the d-matrix Algorithm I
The d-matrix algorithm begins by calculating a matrix of pairwise distances 3
or residual energies between elements of two parametric decompositions.

Supposing that elements of the parametric descriptions, AA and AB, have 3
100 I
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an arbitrary ordering imposed on them and that IAAI = Al. and JABI = Mb,

then
th nA A = 1f . 1 U . <I _ i '5 A 1 .} (A .4 )

AB {b, 1 1 5 i. 5 Mb} (A.5)

The elements of the input value of the d-matrix are the residual energies

resulting in matches between the elements of AA and AB. Columns of this

initial value for the d-matrix correspond to the elements of AA and the rows

correspond to elements of AB or "nils". Sufficient numbers of "nil-mode"

rows are appended to allow for nil-mapping of the entire set of modes from

AA. Elements of the input d-matrix, denoted dij, are therefore

I1"I'+[v, I -b 2- 2 (ft.jsH ) I < I< Alb

dij Iyj 2 b (A.6)
Alb + I < i < 2Mhb

Elements of the d-matrix also have a simple form in terms of the (p, d) form

of the modes of the parametric decompositions.

The minimization algorithm is now described. Input to the algorithm

(that is, the subroutine is initially called with these values) are the ini-

tial value of the d-matrix, DMAT, a parameter for the globally applicable

minimum distance achieved, GLOBDMIN and a parameter which in-

dicates the accumulated distance for the correspondence which has been

accumulated so far, DSOFAR. Since, at initialization, there has been no

correspondence made the global minimum distance parameter is set to 0c

and the accumulated distance is set to 0.

The output is the 1-1 mapping from AA into AB which minimizes the

distance between the two structural descriptions and the distance (residual
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energy) associated with this mapping. The mapping, named PERM, is I
a row vector, one element for each column of the d-matrix, which assigns

to each column a row. Recall that the columns of the d-matrix have an

exact 1-1 correspondence to the elements of AA and the rows of the d-

matrix have an exact 1-1 correspondence to elements of AB (or "nils").

As such, choosing an element from the d-matrix is equivalent to forming a

match between the elements of AA and AB (or possibly nil). The distance

associated with this mapping, DMIN, is the sum of the elements in the

d-matrix implied by the given mapping.

The algorithm is given in the form of a recursive subroutine. Therefore,

all variables are local except the globally applicable minimum distance.

This variable, GLOBDMIN, must be declared global since it is the value

of the minimum distance which has been achieved so far, over all levels of

recursion. U
Algorithm: DMATMINPERM

Purpose: Determine a mapping from the columns to the rows of the input matrix which 3
minimizes the distance function represented by the input matrix

hiput: GLOBDMIN The global minimum value of the distance; only mappings with

distance less than this value will be returned.
DSOFAR The total accumulated distance by the algorithm from mappings gener-

ated from previous levels of recursion 3
DMAT A matrix of pairwise distances relating rows and columns

Output: PERM A 1-1 mapping from the columns into the rows of DMAT

DMIN The value of the distance associated with returned mapping

Initialization: GLOBDMIN - oo.

DSOFAR - 0.I

DMAT ,- d.

I
102I

I



I
I
I

Subroutine: [PERM,DMIN] ,- DMATMINPERM (DMAT,DSOFAR)
if only one column in DMAT,

I PERM - row corresponding to minimum value in DMAT;
DMIN - minimum value in DMAT;
f DMIN+ DSOFAR < (GLOBDMIN)

then (GLOBDMIN) *-- DMIN+ DSOFAR;
exit

end
elsen

MINEL +- value of the minimum of the first column of DMAT;
CANDROW -- row corresponding to the minimum value of the first col-

umn of DMAT;
if MINEL + DSOFAR < GLOBDMIN,

begin
[CANDPERM, CANDDMIN ] +- DMATMINPERM

DMAT minus first column and row # CAN-
DROW, DSOFAR + MINEL);

PERM <-- CANDROW concatenated onto CANDPERM;
DMIN , CANDDMIN + MINEL;
while there are rows left to consider in the first column of

DMAT and MINEL + DSOFAR < GLOBDMIN,

I [CANDPERM, CANDDMIN] 4- DMATMIN-
PERM ( DMAT minus first col-
umn and row # CANDROW,
DSOFAR + MINEL);

if DMIN > CANDDMIN + MINEL,

I PERM -- CANDROW concatenated
onto CANDPERM;

en •DMIN - CANDDMIN + MINEL;I end

Eliminate row CANDROW from consideration;
MINEL - value of the minimum from the remaining

rows in the first column of DMAT;

I
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CANDROW -- row corresponding to the minimum 3
value of the remaining rows in the

first column of DMAT;

end
end

Notice that the basic recursive step consists of choosing the most promis- I

ing candidate from AB for matching to the element of AA which corresponds

to the first column and passing a reduced d-matrix to a lower level of re- 3
cursion. The choice of the candidate from AB is based on its distance to

the element of AA corresponding to the first column. The reduced matrix I
consists of the input matrix with the row and column which correspond to 3
the chosen incremental match stripped away. In this way matrix reduction

is equivalent to incremental formation of a candidate match. 3
At each step in the recursion, the algorithm effectively orders the ele-

ments of AB by considering them in increasing magnitude of the distance to I
the element of AA corresponding to the first column. By comparing the sum

of the distance associated with the incremental candidate match and the I
total accumulated distance (MINEL + DSOFAR) to the global minimum I

distance (GLOBDMIN) it can be determined if there exists the possibility

of achieving a lower overall distance. By rejecting all matches derived from 3
such a hopeless candidate match, a significant reduction in the number of

matches which are considered can be made. Furthermore, by ord.: :; 'I.c 3
elements of AP at each level of recursion, this pruning ability is enhanced.
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Note that elements of the first Mb rows of the d-matrix consist of one

term from the first sum, one term from the second sum, and one term from

I the fifth sum of Equation (A.2). Furthermore, elements from the remaining

rows of the d-matrix are strictly from the first sum. Therefore, by choosing

different candidate incremental matches, one is implicitly choosing a dif-

ferent set of terms from the first, second and fifth sum in Equation (A.2).

Furthermore, by considering only 1-1 matches (or possibly 1-0), no terms

* from the third or fourth sum can be included in the overall match distance.

A.2 The Generalized d-matrix Algorithm

The matches formed by the generalized d-matrix algorithm are potentially

complex. The generalized d-matrix algorithm can form matches between

two parametric decompositions in which any number of modes from one of

the parametric decompositions can be matched to any number of modes

I in the other parametric decomposition. The only restriction regarding the

formation of a match is that a mode may appear in only one match between

subsets of modes of the two parametric descriptions.

3 In order to form such general matches in an optimal way, not only

must there exist information regarding the pairwise distance between the

3 modes of the two parametric decompositions but also information regard-

ing the distance between an arbitrary subset of modes of one parametric

I decomposition and an arbitrary subset of modes of the other parametric

decomposition. This information is available in the form of inner products
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between the various modes. These inner products are related to the "cross-

terms" in Equation (A.2). In addition the generalized d-matrix algorithm

calculates the optimal value of the relative range shift between the two I

parametric decompositions. Therefore, this algorithm is not only applica-

ble to estimation of the statistics of a parametric decomposition modes but I

also to the recognition of radar targets. 3
A matching function, M, as is used to describe the non-symmetric

matches generated by the d-matrix algorithm is, in the current case, not

a 1-1 relationship between the elements of the two parametric decomposi-

tions. The type of matches which are generated by the generalized d-matrix I
algorithm are better described in terms of a partition (see Chapter 3) of the

union of the parametric decomposition AA with the parametric decomposi- I
tion (-AB) (i.e. the modes of AB have been replaced with their negatives.) I

Let P be a partition of AA U (-AB) (? = {7r I r C AA U (-AB),7r :#

0} U P = AA U (-AB)). Each element of a partition implies a "match" be- 3
tween elements of the AA and AB. For example, supposing t5 2 , iT E AA and

-v 2 E -AB and a particular element of a partition is ir {6a2 , 3 , -v b} I

then this element implies a match between the combination of elements i- 2

and 6a in AA to ib in AB. The residual energy associated with this match

is then 1t502 + , - vyb212. The quantity which is to be minimized is therefore

2

a + J3 Vb . (A.7)
wE IrEr 1rnAA -10 bEwr'(A)3

I
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over all partitions of AA U (-AB). Elements of AB are replaced with their

negatives so that the distinction between elements of AA and AB can be

I ignored. Minimization of the distance is now in terms of "combining"

elements of the composite parametric decomposition.

Note that the algorithm is still based on the concept of minimization of

3 residual energy. The difference lies in the more general way in which modes

of one parametric decomposition may be used in "groups" to cancel the

I energy in "groups" of modes from the other parametric decomposition and

in the fact that cancellation of energy in the modes of AB is as important

I as cancellation of energy in the modes of AA.

The use of the more general sense of matching allows the matcher to

Iaccount for circumstances in which two noiseless modes are estimated as

one mode in a noise realization. The reverse case (when one mode splits into

two modes due to noise perturbation) may also be accounted for with this

3 matching algorithm. In addition, since the distance function accounts for

nil-mapping of elements of both parametric decompositions, complications

I due to non-symmetric matching are avoided.

I A.2.1 Operation of the Generalized d-matrix Algo-
rithm

I Carrying out the minimization of (A.7) is the objective of the generalized

d-matrix algorithm. This is accomplished by searching over all partitions of

the set AA U(-AB). Partitions of AAU(-AB) determine and are determined

3 by the current value of the operational matrix.
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Define the partition Po as {(15.. ), (ia2), . (iai^,9, (-v-'s), (v&s ), • 3
(- b b )}. This partition is referred to as the "total-nil-map" partition since

the matches implied by this partition are all "nil-maps", i.e. each individual i
element of AA and AB are mapped to "nil" (or 0). 1

The algorithm begins by calculating the generalized d-matrix associated

with the total-nil-map partition. For an arbitrary partition of AA U (-AB). 1
7 = {7r,7r2 ,..., 7rAf}, the associated generalized d-matrix can be corn-

puted by first forming the matrix P . This matrix consists of a number 3
of composite modes, one for each element of the partition P. Recall that

an element of ? is a set of vectors, each vector corresponding to a mode in I
AA or AB. For an arbitrary element, -7r C P the corresponding composite 3
mode, i(, is defined as the vector sum of the modes contained in r

7rZ5 (A.8) I
Therefore if we define i as the composite mode corresponding to the par- -
tition element 7r, C 7, then the matrix P is defined as U

1P = [il,, i2,... ,'FM]. (A .9)

The generalized d-matrix corresponding to the partition 79, denoted b5,

is defined as

p = (-.p1)

I
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3 The generalized d-matrix is Herrnitian since P - (VpHp)H = pH,

hp. Furthermore, since there are Al columns in T the matrix o is of di-

mensiop -l1x .11. The element of the generalized d-matrix in row i column

j is therefore the inner product of the composite mode rii and if., or

3 each in a separate partition element. Elements of the generalized d-matrix

associated with this partition, 6 ,(ij) are given as

br,("j) V , Vb-( Ao i < Al, j> Ala

71 7 Ma. < Al

- - 4. > Ala

where ,(ii) is the energy contained in the modes of AA U Ab. If ' < Ma

3 then the mode corresponding to this row and column is from AA and 6(i,i)

is a term from the first sum of Equation (A.2). Likewise if i > Ala then

6(i,i) is the energy from mode number i -- Al from AB and is therefore

5 equivalent to a term from the second sum of Equation (A.2), vi

bv,(i,i) 1 , i . Ala (.A.13)
- I'(. - ^

Similarly, the off-diagonal terms, when summed with their symmetric

counterparts, are terms from the third fourth or fifth sum of Equation (A.2).

3 Therefore, assuming i < j
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6 ,,,(i,j) + 6,,j,i) =6r(i,j) + t,(i,j) (A.14) 5
- 2 ?{6p(,(i,j)} (A.15)

{ ,M,%_bo,} R > i > M (A.16)

2R?{i 7i'b(]_Mo,)} I I < ' 1 " j > 1la

The off-diagonal elements for the last case in Equation (A.16) (corre- I

sponding to the fifth sum in Equation (A.2)) are inner products between

elements of the two parametric decompositions. As such they are referred

to as being inter-object. Thus, these elements are therefore a function of 3
the assumed range offset between the two objects. The other cases all rep-

resent intra-object inner products and as such are not a function of the

assumed range offset. Elements of d-matrices generated under other parti-

tions of AA U (-AB) may not have the range dependent elements so nicely I
localized.

The generalized d-matrix algorthm is described under the assumption

that the range offset between the tw, parametric decompositions is fixed. 3
Thus, we initially assume that no elements of the generalized d-matrix are a

function of the range offset. Issues relating to determination of the optimal 3
range offset by the algorithm are addressed in Section A.2.2.

The initial value for the generalized d-matrix is to be input to the gen- I
eralized d-matrix algorithm for formation of the correspondence between I
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the elements of the two parametric decompositions. This is done since a

generalized d-matrix for an arbitrary partition can be generated from the

initial value using a simple reduction procedure on the matrix 6?,,. Before

the generalized d-matrix algorithm is described, some properties of the gen-

eralized d-matrix are discussed. In particular, it is shown how the match

quality function for the given partition is computed from the associated

d-matrix. In addition a single step of the reduction procedure is described.

The value of the match quality function (A.7) can be easily computed

from the generalized d-matrix. An arbitrary element of a given partition,

7r, is a subset of AA U (-AB) therefore

E V,, 4 E - (A.17)
6 C- rflA A -171,E 7fl(- AD) 1E7

= if (A.18)

and the match quality function is given by

i57 4 gb !Ij2 (A.19)I wEP CEirnA. - U, E: rn( - AD) WE'

E i~(A.20)
W EP
M

= 6P(i,i) (A21)

= tr[6P]. (A.22)

An arbitrary partition of AA U (-AB) can be formed from the initial

partition, P0 , by recursively replacing pairs of elements of the input parti-

tion with their union (in a selective fashion). It is for this reason, together
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with the simplicity of the resulting procedure, that the operation matrix

reduction step is defined by the union operation on the input partition.

Suppose that a given generalized d-matrix, bp has associated with it the U
partition, P = f r,, 7r2 ,.. . , 7rM}. Then the matrix of composite modes asso-

ciated with the partition, p kh = {7r,,7r 2  . . . ,irk U rl,.. . ,1r I, 7rt 1  ,... . rM},

in terms of the elements of P: is (note: the partition P',' has one fewer 3
element than P, i.e.IpkjI A=l - 1)

,pk.,l = [' F2,. k ,...-,7ri_,,7+i,..,lM]. (A.23) I

Thus, replacing the partition element 7rk with the union of 7rk and 7r, in the U
partition P is equivalent to replacing the composite mode fh by the sum of

the composite modes iFk and RF in the matrix ?'. If we define the Al x A! - 1

matrix q4 k " as the Al x M ide-.cy matrix which has been column reduced 3
as described above then

1 I= j, il-1
pk'iJ) 1 z ,i = + I + < < (A.24)

0 elseI

Furthermore, post-multiplication by this matrix carries out. column reduc-

tion on the matrix 7P as described above so that 3
,ph = p tkl. (A.25) 3

I
I
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Likewise, pre-multiplying a matrix by ( kI)T replaces the kth row by

the sum of the kth and /th rows. The generalized d-matrix corresponding

to P', ' is therefore

.1 = (p kl )H(-p k,. ) (A .26)

=(,p 4Itkj)H(,P 4I'k't )  (A.27)

=(.t'J)T(,p )H(,' ) tk" (A.28)

= (4,k')rThvc,k,". (A.29)I,

The generalized d-matrix, 6bk, can therefore be derived from 6 p with the

following procedure:

1. Replace the kth row of 6p by the sum of the kth row and the /th row.

2. Replace the kth column of this resulting matrix lv tLc sum of the

kth column and the /th column.

This matrix reduction procedure forms the basis for the recursive step

in the generalized d-matrix algorithm. In terms of the implied partition,

a single step of generalized d-matrix reduction is equivalent to forming

the union of two elements of the implied input partition. Formation of a

partition is placed in terms of sequential "unioning" since replacing two

partition elements with their union is an operation which preserves the

partition property. Furthermore, any match (partition) can be derived from

recursively unioning elements of the initial partition, (P 0 ). Therefore, a list

of the unions (or "pairings") which are formed at each level of recursion
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can serve as a representation of the implied partition. In this way, matrix

reduction is equivalent to incremental match formation.

A further reason for using this method is that the increment in the match

quality function associated with the reduced matrix is easily computed. The

match quality function associated with the reduced matrix, 6'P", is

tr [61,] = j 1+ Iif2 1+ .. + I +hk + + + -12 + f, 12

[i1+al12  + I iFAI 1 (A .30)

141 1
= 23?f fk I + I- lF, 12  (A.31)

t=1

2I{ki} + trbr] (A.32)

2R{6y(k,1)} + tr[b,]. (A.33)

Therefore, twice the real part of the off-diagonal elements of the gener-

alized d-matrix represents the incremental change in the match quality

function which occurs if the partition elements which correspond to this

element are chosen for union formation. While deciding on the element

of the operational matrix which optimizes the incremental change in the

match quality function is a strategy which is "1-step" optimal, a sequence

of k such decisions are not necessarily k-step optimal (i.e. they do not nec-

essarily optimize the match quality function after k recursions). Thus the

generalized d-matrix algorithm must, in general, be recursive.

As was the d-matrix algorithm, the generalized d-matrix algorithm is

also described in terms of a recursive subroutine. Input to the algorithm is

the initial value of the generalized d-matrix, 6 p,, for the variable GDMAT.
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The output is the optimizing match, LOP, this variable is in the form of a

list of unions of the elements of the recursively formed partitions and the

associated value of the match quality function.

Algorithm: GDMATMINPART

Purpose: Determine a partition of the elements of the input set which minimizes the dis-

tance function represented by the input matrix

Input: GDMAT A matrix of inner products among the elements which correspond to the

rows and columns
INLOP A list of pairings which have been applied to the initial generalized d-

matrix, so far
Output: LOP A list of pairings of the elements of the recursively formed partitions. Used

to represent the optimal partition.
DMIN The value of the distance associated with returned partition implied by

LOP
Initialization: GLOBDMIN -- oc.

GDMAT p,,.

Subroutine: [LOP,DMIN] ,- GDMATMINPART ( GDMAT, INLOP)
if only one element in GDMAT,

LOP ,- INLOP;
DMIN ,- GDMAT;

end
else

DMIN -- tr[ GDMAT];
NPARTELS -- Number of rows or columns in GDMAT (equivalent to

number of implied partition elements);
if INLOP is empty,

k= 2;
end
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(i,k)=- last pairing in INLOP;
if k > NPARTELSI

bein i+1
k *- i+ 1;
kend + ;

end

while i < NPARTELS-1,

w~hil k < NPARTELS,

REDGDMAT (4ti~k)T GDMAT ,k

OUTLOP *- the pair (i, k) appended to INLOP;
[POSSLOP, POSSDMINI ,- GDMATMIN-

PART ( REDGDMAT, OUT-
LOP );

if POSSDMIN < DMIN
bin

LOP +- POSSLOP;3
DMIN ,- POSSDMIN;

end

e k ~- k-4- 1;3

i- i+ 1;

end i 1
eend
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A.2.2 Properties of the Generalized d-matrix algo-
rithm

The algorithm considers all possible pairings of elements of the implied

partition in such a way that partitions are uniquely enumerated. At a given

level of recursion, the algorithm considers elements of the upper triangular

portion of the input generalized d-matrix (and thus, implicitly, pairings of

elements of the implied partition) in "row-major" [40] order. Elimination

of duplication of partitions is accomplished by commencing the search over

pairings of the input partition (i.e. elements of the d-matrix) at the pairing

which was made in the previous level of recursion. This is the purpose of

the statements regarding the index variables i and k.

The topic of "range alignment", that is, determination of the value of

the physical offset between the two targets has been delayed until this point

to allow for clarity of presentation. The assumption that has been made to

this point is that the relative position of the two targets is fixed at some

value. This, of course, is not a valid assumption for the target identification

problem since during operation of an actual radar system, a given target

can occur at any location within the unambiguous range cell.

If we assume that the relative location of the target represented by para-

metric decomposition AA is unknown with respect to the target represented

by parametric decomposition AB then several modifications must be made

to the generalized d-matrix algorithm. In particular, elements of the initial

value of the generalized d-matrix which correspond to inter-target pairings
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become dependent upon the assumed range offset. The adaptation made to

the generalized d-matrix algorithm to account for this is to evaluate each

of these inter-target elements of the operational matrix at the optimizing

value of range offset (i.e. that range offset at which twice the real part of

these elements are minimum). Thus the off-diagonal elements of the gen-

eralized d-matrix represent an upper bound on the amount by which the

match quality function decreases if the union of partition elements to which

they correspond is chosen.

Furthermore, as operational matrices are formed from the initial gen-
erali7Ied d-matrix. the inner prorn'rs betwe-n two range offset dependent

elements are summed with other range offset dependent elements. As this

occurs, the values of these "summed" inner products must be optimized

with respect to range offset. In this way, the value of the off-diagonal ele-

ments of the operational matrices always represent optimizing values with

respect to match quality function reduction. Therefore, schemes by which

the total number of considered partitions is reduced through examination

of off-diagonal elements (pruning of the search space) remain valid.

Recall that the match quality function is the sum of the on-diagonal

terms of the operational matrix. Since this function represents the residual

energy associated with a match between elements of the two parametric

decompositions, the range offset between the two targets must apply to all

terms of the distance function associated with the given matches between

the elements of the two parametric decompositions. Therefore, when range
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* offset dependent elements have propagated into on-diagonal elements of the

operational matrix, then match quality function optimization (with respect

I to the range offset) must be accomplished "simultaneously" with other on-

diagonal range offset dependent elements under a single optimizing value

for range offset.

The inclusion of range offset dependencies implies that matrix reduction

cannot be described by a simple sums of columns and rows of the opera-

tional matrix. Instead an optimization step must occur whenever two range

offset dependent elements are joined. This additional computation brought

I by this complication can be partially offset, however, by comparison of the

optimizing values of the range offset to reduice the number of partitions

which are evaluated. This is what is referred to as relational consistency in

* the text of this document.

Recall that the range offset dependent elements of operational matri-

3 ces are evaluated at an optimizing value for the range offset. In addition,

the on-diagonal elements of an operational matrix are evaluated at a com-

U mon value of the range offset parameter which optimizes the match quality

function. The value for the range offset parameter represents the physical

offset between the two targets. For the on-diagonal elements this value is

optimized under the match between the elements of the two parametric de-

compositions implied by the input partition. For the off-diagonal elements

3 of the operational matrices the values of the range offsets for the represent

the physical range offset between the two targets if the match implied by the
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given off-diagonal were to contain all the range dependent terms. Thus, a I
comparison of the value of the range offset associated with the on-diagonal

terms with the range offset associated with a given off-diagonal element

can determine if the increment in the match implied by the off-diagonal el-

ement of the operational matrix is consistent with the match implied by the

on-diagonal elements of the input operational matrix. This comparison of

range offsets is defined in terms of the width of the sum of the on-diagonal

elements as a function of the range offset as described in Chapter 4. I
While the algorithms have been given in terms of the vector form of the

modes of the parametric decompositions, there exist closed form expressions

for the elements of all the matrices in terms of the complex scalars which 3
make up the parametric decompositions. The vector forms of the modes

were used for clarity of presentation. 5
A.3 Summary 3
The d-matrix algorithm minimizes the pairwise distance between elements 3
of the two parametric decompositions. This algorithm implicitly accounts

for all energy in AA while there is no "penalty" for not using elements of 5
AB. This algorithm could be implemented with range alignment, as is done

with the generalized d-matrix algorithm. The basic recursive step in the I
d-matrix algorithm works is an elimination of a column of the operational

matrix.

I
120 3

I



I
I
I

The generalized d-matrix, on the other hand works by "incorporating"

a row and column of the operational matrix into a reduced order matrix.

3 The match quality function associated with this algorithm accounts for

all energy in both parametric decompositions, i.e. it "penalizes" for not

making assignments to elements of either decomposition. In this way, the

I generalized d-matrix accomplishes a symmetric match.

1
I
U
I
I
I
I
I
I
I
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