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Stream Editing for Animation

J. K. Kearney

S. Hansen

abstract 9-4
The first step in creating a computer animation is often the definition of a timeI-varying

geometric model. Realistic movement sequences can be obtained through physically-based

simulation and optimization programs. This paper presents a method for representing move-

ment sequences as streams and describes a system for editing motion streams. The approach
allows motion streams to be filtered, duplicated, transformed, and combined. Cameras with
prescribed motions can be introduced to visualize scenes. A general facility for composing
sequences of spatial transforms permits the specification of compiex trajectories and relative
motion. Motion stream editing facilitates the synthesis of intricate movement sequences that
can be rendered as dnimation or presented as the input circumstances for additional simulation. / _
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1. Introduction

Three-dimensional motion modeling is playing an increasingly important role in computer
animation. 8 Life-like animations can be created by rendering images of time-varying object

models. The objects in the scene may have complex shapes, articuiations, and may deform

over time. Powerful motion generation tools enable designers to create physically realistic and

biologically plausible object motions through dy.iamic simulation and constraint-based

optimization. 2"6 , 9, 1 1 Motion models can also be determined from measurements of physical

motions using techniques of cinematography, photogrammetry, and accelerometry. This paper

presents a system for combining and modifying motion sequences and for integrating viewing

models with object movements.

The state of an object undergoing change can be specified by a model of the object and a
sequence of time-varying model parameters. For a rigid body, the model must include a

description of object geometry. The motion of a rigid body can be characterized by the time-

variation of a coordinate system affixed to the object. Object geometry is most naturally

defined relative to the dynamic, object-based coordinate system. Points on the object can be

easily mapped into a different coordinatc system given the relationship between the object-

centered coordinate system and another coordinate system. Following the terminology of
robotics, we will call the object-based coordinate system a frame. The motion of a rigid body

is completely described by a geometric model and a sequence of frames.

Given geometric models and frames for a set of objects, we can construct a scene popu-

lated with instances of the modeled objects. The motions of these objects can be represented in

a sequence of scenes. Each scene is a snapshot of the time-varying environment. To visualize

a scene, a camera model must be defined. If the camera is to move relative to objects in the

scene, there must be a means of associating the camera model with changing object frames.

In this paper, we present a system for editing motion sequences based on the use of
streams to represent dynamic quantities. These streams can be transformed, merged, and

edited after creation to produce rich, dynamic environments. Camera motion is integrated with

the motion of volumetric objects. A general facility for constructing spatial transforms permits

the specification of complex trajectories and relative motion. The resulting mot;or. sequences

can be rendered as animation or presented as the input circumstances for simulation. Man-in-

the-loop simulation offers enormous potential for testing and training of ilumai, cp Crucrs in

hazardous situations such as flying, driving, teleoperation of tobots. The synthesis of realistic

situations is critical for 'he effi -ti, dvelnp,'-,t nf ,-- , ,uiatd training and testing

applications. Streams provide a conceptual framework for composing complex dynamic set-

tings and a computational model that is robust, reliable, and simple to implement.



-3-

2. An Example of Stream Editing

We begin with an illustration of stream martipulation. The example demonstrates how a

single stream acquired from a physically-based simulation of walking can be duplicated,

transformed, and assembled into a new stream that represents a precision drill team marching

in formation. Our starting point is a stream that models a walking figure. The stream was pro-

duced by the physical simulator newton.5 , 6 The algorithms controlling the walkcr are

described elsewhere. 10 To produce a second walking figure whose path is displaced from the
first, we create a transformed cop-. of the walking stream. The two streams are merged to

create a stream with a pair of fig, ;s, walking in step with one another. The pair of walking

figures can be transformed and merged to obtain a quartet of walkers. This process can be
repeated a number of times to produce a whole brigade. The brigade is represented as a single
stream that can be reproduced, reoriented, repositioned, and combined with the original march-

ers to create two divisions marching in different directions. With a judicious selection of the

transformation parameters, we can have the two formations cross paths, with members of each

brigade passing between members of the other.

A scene from the motion sequence with two groups of four walkers is pictured in Figure
1. The operations required to assemble the this model are schematically shown in Figure 2.

Edges indicate data streams and boxes indicate stream producing operations. One of our long
range goals is to build a graphic programming language similar to these schematic diagrams.

The marching example illustrates the simplicity and power of animation stream editing.

To support the operations used in this example, we've designed and implemented a scheme for
representing object motion sequences as streams and a set of operations for editing these
streams. In this system, the marching example can be constructed even more compactly than

presented above by using transform generators that allow sequences of transforms to be

defined.

3. Streams

A stream is simply a sequence of data elements. 1 The components of the sequence may be
arbitrarily complicated and the sequence may be infinitely long. For our purposes, streams will

always be homogeneous. That is, the elements in a stream will all be of the same type. The

components may be numbers, vectors, functions, or representations of physical entities.

Streams are typically conceptualized as a time history of an entity.

To acconlitludtic thc possibility of infinitely long sequences, streams incorporate lazy

evaluation. A non-empty stream is defined by the its first member, the head of the stream, and

a promise that when needed, the rest of the stream, called the tail, will be made available.
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Three basic stream operations were sufficient to achieve nearly all of the capability

required for our system. The first operation is to filter all components satisfying some predicate

from a stream. The value returned by a filtering operation is a copy of the stream with filtered

elements omitted. For example, given a stream of the natural numbers, N = 1,2,3.and a

predicate, (even? x), that is true whenever a number x is divisible by 2, we can derive a stream

of odd, positive integers by (filter #'even? N).'

The second basic operation :s to map a function over a set of streams. The Lisp form

(stream-map fuinc stream-1 stream-2 ... stream-n)

defines a stream that is the result of applying the function func of n arguments to successive

members of the streams stream-i, stream-2, ..., stream-n. The resulting stream terminates as

soon as any one of the stream arguments terminates.

The third stream operation frequently used in the system is to merge two streams together.

The result is the stream formed by concatenating one stream after the other. There is the risk

that the second stream may be preceded by a infinitely long stream. This creates no technical

diffulty. However, if the user's intention is to eventually process both input streams,

undesired results may occur.

Stream operations focus attention on the flow of data through computational processes.

Successive members of the stream funnel through filters or functions that are mapped over the

stream. As a consequence, graph representations such as the one shown in Figure 2 are well

suited for visualizing networks of stream operations. This figure schematically shows the

stream operations used to create the marching example pictured in Figure 1.

Streams may be assigned names and may be shared by many functions. For example,

another way to construct the stream of all even integers is to map addition over two instances

of the stream of natural numbers:

(setq even (stream-map + N N)).

'Stream operations wiii o, presented in the syntax of Common Lisp.7 The prefix operator
#' identifies the following name as a reference to a function.
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where N is defined as above. This form will create a stream, called even, of all even, positive

integers by computing (1+1, 2+2, 3+3, ...). In the example above, we can think of there being

two copies of the stream N. However, in fact the mapping function traverses a single copy in

parallel. To guarantee that the integrity of a stream is preserved, it is strictly forbidden to

change any member of a stream or restructure a stream. Just as we expect a function fO to
always return the the same value atftx), we expect the ith member of a stream to be consistent.

New elements can be created from old ones and at times it is naturai to think of the new

sequence as a transformed copy of an old sequence. For example, given an object trajectory

represented by a stream of positions, P-stream, we may want to transform each position such
that its motion is relative to another moving object. If the time-varying origin of the reference

coordinate system is represented in the stream R-stream, then the transformed stream can be

expressed as

(stream-map # pos-trans R-stream P-stream)

where pos-trans is a function of two positions that returns the second argument transformed

with reference to the first. If positions are represented as vectors, then the function pos-trans is

simply vector addition. It is critical that the transform function return a new position and leave

its arguments unchanged.

Data elements may be shared within streams and across streams. For example, the stream

produced by filtering all positions above the X-Y plane will contain pre;cisely the same ele-

ments, excluding those above the X-Y plane, that are in the original stream. Because of the res-
triction on modifying the contents of a stream, elements or parts of elements can be freely

shared with no threat of conflict or inconsistency. Frequent sharing of elements can lead to

significant gains in efficiency.

4. Object Representation

The representation of a physical object in the system is a Lisp structure that includes a
ndme, a frame, and a model. Two types of object models are currently represented in the sys-

tem. A solid object represents the volume occupied by a 3-dimensional body with a geometric

model. A camera represents a mathematical model of a camera. The camera model includes a
projection function (orthogonal or perspective) and projection parameters such as focal length.

scaling, and radial distortion. This information is suffcient to map the scene onto a continuous,

two dimensional image plane.
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The attachment o. .i name to an otject permits reference critical for filtering and selection
operations. Names also provide a means to encode structural information through common
naming patterns. For example, a set of objects representing the parts of a body may be labeled

"body.arm", "body.torsd', etc.

A set of trarsformation operations return new objects derived from transformations on
input objects. A geometric transform rotates and translates a target object. The amount of
rotation and translation is determined by the frame of a reference object. The target object's
frame is interpreted as being specified in the coordinate system of the reference object. The
frame of the new object is the mapping of the target frame into the global coordinate system.
This causes the target frame to be rotated and translated exactly as the reference frame is
rotated and translated with respect to the global frame. The names and models of new objects
are retained from the target objects. Using a geometric transform, an object can be defined to

be in a specified relation to another object. This is especially useful for attaching cameras to

objects.

Another useful transform is object renaming. When a renaming operation is performed a
new object is returned with a model and frame identical to the input object and with a
transformed name. The name change may be optionally formed by attaching a prefix or suffix
to the name of the input object or -y substituting a wholly different name. By prepending the
same name to a collection of obje ts, multiple instances of a compound structure can be dis-
tinguished. For example. a set of logically related body parts could be renamed "Bl.body.arm",

"Bl.body.torso', etc.

5. Simple streams

Sequences of objects are represented as object streams. Streams of objects are used for
two conceptually different purposes. To distinguish these different roles, we will call a stream
of objects representing the time history of a single logical object an object stream and a
stream of objects representing a configuration of objects co-existing at a point in time a scene
stream or simply a scene. The motion of a camera or a solid object may be described with an

object stream.

The three basic stream operations described above have important applications with
object and scene streams. Two scenes can be combined using the merge operation to form a

composite scene consisting of all objects from both input scenes. Two object motion sequences

can be spliced together using the same merge operation. The results is a composite stream con-

sisting of the first motion followed by the second motion.
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Filtering is useful for deleting objects from a scene. Predicates exist to identify objects

with names that match specified sub-strings. Coupled with the name assignment operations

described above, this provides a powerful tool for removing object sets. For example, the fol-

lowing form removes all objects with names that contain the string "body" from a scene stream:

(filter (name-pred "body") scene-stream).

The function name-pred constructs a predicate that takes an object as its single argument and

returns true if the object's name contains the string passed to name-pred. The filter function
will apply the predicate to successive memb,.'r5 'f the scene-stream and return a stream con-

taining only those members that did not satisfy the predicate.

A second version of the filter fuui,.tion, (nfilter pred stream), retains only those members

of the stream that satisfy its predicate argument. A stream is split into disjoint sets by the com-

bination of filter and nfiLer.

Closely related to filtering, are a collection of functions that extract elements from a

stream. The most simple of these is the (head stream) function that returns the first member of

a stream. Unlike filtering, the result is an element, not a stream. There are functions for selec-

tion by index in the stream anC to choose the first component satisfying a predicate.

The entire set of objects in a simple stream may be transformed by mapping an object

transform operation over the stream. In this way, an object's motion may be tied to another

object's motion. Given two object streams, the form

(stream-map #'geo-trans object-stream] object-stream2)

will return a stream of objects derived from object-stream2 by geometric transforms based on

successive members of object-stream].

It frequently occurs that all objects in stream must be transformed by the same reference

object. For example, to shift and rotate all objects in a scene as a unit, the same geometric

transform must be applied to each member of the stream. The mapping function, however,

requires that a stream of reference objects be provided to pass to the transformation operation.

Streams provide a simple solution to this problem in the form of an infinite stream of the same

object. The function
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(stream-of x)

returns an infinitely repeating sequencc of x's. The infinite stream of objects wastes no space,

as only a single copy of the object is explicitly represented. We can think the infir.i, stream as

a non-exhaustive source of the repeated element. The problem of applying a single transform

to a scene is solved by

(stream-map #'geo-trans (stream-of ref-object) scene-stream).

Every object in the target stream will be transformed by the same reference object.

6. Motion Streams: Nested Streams

A dynamic environment is represented as a stream of scenes. We call this nested stream

structure a motion stream. Conceptually, a motion stre-,.m represents the time history of a col-

lection of objects. Each scen.2 within a motion stream represents the instantaneous state of a

set of objects.

As with object streams, motion streams can be spliced by merging two streams. Although

it possible to filter scenes from a .notion stream, the more common application of filtering is to

remove objects from the motion sequence. This can be accomplished by mapping a filter over

the motion stream. The filter will be applied to each scene stream, deleting the identified

objects. To remoe all objects containing "bob" as part of their name we use

(stream-map #'filter (stream-of (name-pred "bob")) motion-stream).

This form applies a filter to each scene of the motion-stream. The predicate is supplied by an
infinite stream of the "bob" predicate function.

Corresponding scenes of two motion streams may be combined to proauce an aggregate

stream. The scene-level merger of motion streams is called a confluence. For example, givea

a motion stream modeling a walking figure, we can create pair of figures walking side-by-side

by transforming the first stream and then merging the corresponding scenes of the two streams.

To merge two motion-streams, we need only map the stream merge function over the pair of
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motion streams.

Whole motion streams can be transformed by applying an object transform function to

each object in every scene. To accomplish a transformation of all objects, two levels (,f map-

ping must bc performed. A useful application of nested mapping is to rename all objects in a

motion stream. For example, to prepend the name "Zambini" to all objects in the motiop

stream trout-stream we execute

(stream-map

# 'stream-map

(stream-of name-prefix)

(stream-of (stream-of "Zambini"))

trout-stream).

The outer mapping function passes successive members of three streams to the inner mapping

function. The first of these streams is a stream of functions that are to be mapped over the

members of tme second and third stream arguments. In this example, the same function is sup-

plied until one of the other stream arguments terminates. The second and third stream argt'-

ments supply streams of streams to the outer map. The inner mapping function causes the

function name-prefix to be mapped over each successive scene of the trout-stream.

The nested mapping of transforms over motion streams is sufficiently common that a set of

these routines have been encapsulated as functions. The renaming f, -. tion above is simply

executed as

(mstream-name-prefix "Zambini" trout-stream).

Another stream transform allows a motion stream to be repositioned and reoriented. The func-

tion

(mstream-geo- trans object-stream motion-stream)

applies a geometric transform to each scene of motion-stream using objeci's from object-

stream as referents. The scene transform is accomplished by transforming the component
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objects all in the same way.

Frequently, the desired referent object exists as a constituent of a motion stream. In this

case, the referent must be selected from each scene of the motion stream to generate a refer-

ence object stream. This is accomplished by mapping a selection function over the moion

stre'im.

". Sp-: gs: Stream Sources

A set of base streams from which other streams can be derived is needed. One source of

stream data is physically-based simulation and motion optimization programs. Tools are also

provided for object and motioi, stream construction. Creating an object or motion stream can

be very tedious, and it is not the intention that the system should used for composition of origi-

nal moticn models. However, there are cases in which simple streams are icquired that can

easily be created. To reposition or reorient a motion stream, for example, a stream of referent

objects must be created. For this purpose, the model of the referent object is unimportant. The

frame of the referent object is the only attribute of the object that need be defined. A function

to create a modelless object with a specified position and orientation can be used to construct

the referent object. To anply a constant transform to all scenes in a motion stream, a recursive,

one eiement stream of the referent object can be created with the function stream-of. Func-

tions to define cameras and solid objects with simple geometry are also available.

Object generators are provided for creating furctionally defined trajectories. Given a

function (flpnc i) that returns frames along a parametrically defined space cu-ve, the function

(gen-stream func) will return a stream of of objects with frames at (finc 1), (fuw:c 2), .... For

example, let the function (simple-path i) return a irame located at (i,0,O) oriented as the global

coerdinate system. Then,

(gen-stream #'simple-path)

defines an infinite sequence of objects located at (1,0,0), (2,0,0), ... The objects in this stream

have no model associated with them.

Object generators can be used a referents to transform motion or object streams that con-

tain substantive objects. These functionally defined motions can be subsequei.tly transformed

by other object streams to prescribe a motion relative to the path of some object. For example.

this could be used to define objects moving in orbits around other moving objects. In section 9,

we present an example that uses this facility to create a camera that moves in circle around a



moving reference object.

8. Ports: Stream Visualization

It is critical that visual access to streams be provided. A stream of cameras is needed in

order to view a motion stream. The intention is that successive scenes are to be projected onto

successive members of the camera stream. The camera's model determines the projection

function. This information is sufficient to map the scene onto a continuous, two dimensional

image plane. The image plane must be then mapped onto a discrete display surface called a

screen. Associated with the screen are state variables that determine the mapping from image

space into screen space.

An object drawing function causes objects to be drawn on a screen with a projection func-
tion specified by a camera. To display a scene, the object drawing function must be mapped

over all objects in the scene. However, the usual mapping function is inadequate for the pur-
pose of drawing a scene on a screen. Because stream-map function uses delayed evaluation,

only the first object will be immediately displayed. We must use a mapping function that

forces evaluation of the entire stream to see the whole scene. The function forced-t " causes

immediate application of a function to all members of a stream in succession. To animate a

motion stream, a nesting of forced-maps is required to draw all objects in all scenes.

9. Examples of Stream Editing

To illustrate the use of streams, we present two examples. The first example demonstrates
the composition of several basic stream operations to form a useful higher order stream opera-

tion. Suppose a subset of the objects in a motion stream is to be selectively transformed

without disruption of the other objects in the stream. The mapping function for motion streams,

mstream-geo-trans, allows only transformation of entire streams. It would be useful to con-

struct a new method of mapping transforms over a motion stream that would apply the

transform only to those objects that satisfy a given predicate. We define a function

(selective-geo-trans object-stream motion-stream pred)

that will selectively transform only objects satisfying the predicate pred. This is accomplished

in three steps. In the first step the motion stream is decomposed into two disjoint streams using

filter and nfilter. One streams consists of objects satisfying pred that are to be transformed.

The stream contains the remaining components of the input stream that are to remain unaltered.
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The second step is to geometrically transform the former motion stream. The last step is to

conjoin the transformed stream and the stream containing the remaining members of the origi-

nal stream. The lisp definition of this function is:

(defin selective -geo-trans object-stream motion-stream pred)

(stream-map #'merge

(mstream-geo-trans object-stream (nfilter pred motion-stream))

(filter pred object-stream)
)

A schematic depiction of the function is shown in Figure 3.

The second example demonstrates the application of a functionally defined trajectory to

create an object stream in which a camera moves in a circle orbiting another moving object.

The camera's view vector is adjusted to be directed toward the object's center. We first use the

camera object generator to create a single camera with a frame that matches that of the world

coorainate system:

(setq cam (create-cam *base-frame*)).

The global variable *base-frame* is the frame of the world coordinate system. Rather than

limit ourselves to a particular circular path, we will allow the flexibility to specify the radius of

the circles and the rate at which the camera moves along the curve. Let the function (circular-

path rad rate) return a parametric function that defines frames along a circular path in the X-Y

plane of radius rad. The argument rate determines the period of the cyclic motion. We first

create a stream of reference objects that move along the circle:

(setq circ-stream (gen-stream (circular-path rate rad))).

To derive a stream of cameras moving along a circular path, we use the circular stream of
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objects as referents to transform a stream of cameras:

(setq circ-cam-stream

(stream-map #'geo-trans-object circular-stream (stream-of cam)).

Now, we must transform the circular stream of cameras to move with reference to the object
we wish to view. This is accomplished with another geometric transtorm using the circular

camera stream as the target:

(setq trans-cam-stream

(stream-map #geo-trans-object ref-stream circ-cam-stream).

Finally, the camera must be oriented such that the view vector is always directed towards

center of the reference object. An object transform function exists for this purpose. The func-

tion (view-object ref target-cam) returns a new camera object located at the position of the

target camera with a view vector directed towards the object ref. This transform is mapped

over the reference and camera streams to complete our task:

(setq final-cam-stream

(stream-map #'view-object ref-stream trans-cam-stream).

A sequence of images from a camera circling a model of a walking robot are shown in Figure

4.

10. Summary

Motion stream editing allows a user to interactively choreograph intricate movement

sequences. By treating the camera the same as any other moving object, viewing can be tied to

the dynamics of the situation. Multiple views and scripted camera motion provide powerful

tools for rendering animations of motion models.
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The system is extensible and easy to use for a user with modest training in Lisp. The

focus of the presentation has been on the use of streams for editing the motion of bodies with

rigid members and cameras. However, the approach could easily be adapted to include other
types of objects that undergo parametric variation over time. Moving light sources with chang-

ing brightness or chroma could be added. Deformable objects which bend or grow could also

be included. The techniques could be applied to models defined in an arbitrary space of any

dimension.

Computer motion modeling frees animation from the notion of a sequence of two-

dimensional movie frames. The animator can poke the camera in among the moving objects

and direct the three-dimensional motion of the object actors with little effort and minimal cost.

These techniques are valuable to present optimal visualization of dynamic phenomena. Mov-
ing, stereo cameras can be created as easily as single cameras to improve the perception of
three-dimensionality. Motion stream editing provides the ability to design dynamic artificial

environments that can define the circumstances for further simulation and testing.
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Figure 1. Selected scenes from a motion sequence with eight walking figure
moving in groups of four. The scenes arc ordered clockwise
beginning with the upper, left panel. Thc sequence was created using
the stream editing program diagrammed in figure 2.
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Figure 2. A schematic representation of the stream editing program to
create 8 marchers.
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Figure 3. A schematic representation of a higher-order stream operation.
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Figure 4. Scenes from a sequence viewed from a moving camera. The
camera circles the walker with its view vector always directed
towards the walker as the walker passes through a stationary
arch.
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