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1. Introduction

TETRAD Il is a computer program designed to aid researchers reliably infer causal relations from
statistical data. In our contract with the Manpower, Personnel, and Training R&D Program, and the
Naval Personnel Research and Development Center, we proposed to perform the following

tasks:
1. Extend the domain of application and increase the reliabifity of TETRAD i,
2. Test the reliability of TETRAD Il

3. Apply TETRAD !l to data sets supplied by the Naval Personnel Research and
Development Center.

This report describes our work on the first two tasks; our application of TETRAD Il to analyzing the
causes of satistaction and success among Naval Recruiters is described in the paper Causes of
Success and Satisfaction Among Naval Recruiters; our analysis of the causes of
success among naval air traffic controller trainees is described in the paper TETRAD Studies
of Data for Naval Air Tratfic Controller Trainees.

1.1 The Problem

Data analysis that merely fits an empirical covariance matrix or that finds the best least squares
linear estimator of a variabie is not of itseif a reliable guide to judgements about policy, which
inevitably involve causal conclusions. The policy implications of empirical data can be completely
reversed by alternative hypotheses about the causal relations of variables, and the estimates of a
particular causal influence can be radically altered by changes in the assumptions made about
other dependencies. For these reasons, one of the common aims of empirical research in the
social sciences is to determine the causal relations among a set of variables, and to estimate the
relative importance of various causal factors. Even where that aim is not acknowledged it its often
tacit. A question of first importance about empirical social science is therefore: how are causal
relations among variables to be discovered?

The difficulty of this quesiicii is apparent when one considers the number of possible causal
models for a given set of variables. If the causal dependence of one varnabie on another is
represented by a directed edge from a vertex representing the causal variable to a vertex
representing the <!ffcct variatls, e lie wdiiwgr O ku».'uie cdusai structures on n variables is
the number of directed graphs with n vertices, or 4 2} it causal cycles are forbidden, then the
number of possibie causal structures on n variables is the number of acyclic directed graphs on n




variables. For 12 variables the number ot directed graphs is approximately 5.4 X 1039 and the
number of acyclic graphs is 521,939,651,343,829,405,020,504,063 (Harary 1973). Even when
iiwe time order of the variables is known, so that causal hypotheses in which later variables cause
earlier variables can be eliminated, the number of alterative remaining is generaily very large: ici 12
variables it is 7.4 X 1019.

The social scientist who addresses a problem area where causal questions are of concern is
therefore faced with & extremely difficult discovery probiem, for which there are only three
avenues of solution: (i) use experimental controls to eliminate most of the alternative causal
structures; (ii) introduce prior knowledge to restrict the space of alternatives; and (iii) use features
of the sample data to restrict the space ot alternatives.

Experimental procedures for addressing social questions are much to be desired, but they are
very expensive and often infeasible. Where quasi-experiments are used that control some
variables but not others, the number of alternative causal structures possible a priori may remain
very large. Generating the set of admissible causal structures from “"substantive theory" is
recommended routinely in methodology texts. In practice publications in the social science
literature usuaily restrict the number of alternatives considered to a very few, and the restrictions
are often justified by citing prior literature or by appealing to very broad theoretical framewarks. It is
anybody's guess, however, whether such appeals constitute a reliable discovery procedure. It
seems at least as likely that appeals io theory introduce bias and often exclude the true causal
relations among the variables of interest. TETRAD Il uses the third avenue.

1.2 TETRAD Il

Our work for the Manpower, Personnel, and Training R&D Program, and the Naval Personnel
Research and Development Center represents a significant step toward the goal of reliably
inferring causal relations form statistical data. TETRAD I, the computer program improved under
this contract, allows researchers who have already measured and screened data to conduct a
systematic search for aiternative causal models. The class of modeils searched is not yet
exhaustive, but it represents an enormous inciease over the space of models humans are
capable of searching unaided. We have tested TETRAD II's reliability on 720 data sets produced
by Monte Carlo techniques from known models. For datz sets of sample size 2000, given a model
fnr which elabc-ations were to be searched, TETRAD Il was able to output a small set of models
(usually between two and four) which includad the currect model in more thar 94% i e

samples. (See Spirtes forthcoming)




To illustrate the size of the problem, consider researchers who wished to consider
literally ail the alternative causal arrangements among those 25 variables, they would
have to look at 4300 different models. If they knew the time order of the variables, so
that for each pair they could rule out the causal arrangement in which the later one
caused the earlier one, the number would still be astronomical: 2390, Even if they were
highly confident of the causal relations between most of the pairs among these 25
variables, the number of alternative modeis that would satisfy their constraints is still
likely to be orders of magnitude greater than the number they could feasibly consider.
The natural solution to problems that strain the combinatoric capacity of human re-
searchers is make high speed computers artificially intelligent .

1.2 TETRAD Il

Our work for the Office of Naval Research and the Nava! Personnel Research and
Deveiopment Center represents a significant step toward that goal. TETRAD I, the com-
puter program improved under this contract, allows researchers who have already
measured and screened data to conduct a systematic search for alternative causal models.
The class of models searched is not yet exhaustive, but it represents an enormous
increase over the class searched by our original program, TETRAD, which itself
represents an enormous increase over the space of models humans are capable of
searching unaided. We have tested TETRAD II's reliability on 720 data sets produced by
Monte Carlo techniques from known models. For data sets of sample size 2000, given a
model for which elaborations were to be searched, TETRAD Il was able to output a small
set of models (usually between two and four) which included the correct model in more
that 94% of the samples.

In our previous contract with ONR, we built an automated causal inference system named
TETRAD II. Our goal was to build a program in which a user need only input the covariance data,
and whatever prior knowledge there is about the domain into TETRAD Il. The program then
automatically searches for the elaborations of this knowledge that best explain the data, and
estimate and tests the models that result. The user receives a description of the best
explanations of the data that are consistent with the knowledge provided to the program and
automatically produced input files for statistical analysis programs.




To illustrate the size of the problem, consider researchers who wished to consider
literally all the alternative causal arrangements among those 25 variables, they would
have to look at 4300 different models. If they knew the time order of the variables, so
that for each pair they could rule out the causal arrangement in which the later one
caused tive earlier one, the number would still be astronomical: 2300, Even if they were
highly confident of the causal relations between most of the pairs among these 25
likely to be orders of magnitude g.reater than the number they could feasibly consider.
The natural solution to problems that strain the combinatoric capacity of human re-
searchers is make high speed computers artificially intelligent .

1.2 TETRAD I

Our work for the Office of Naval Research and the Naval Personnel Research and
Development Center represents a significant step toward that goal. TETRAD I, the com-
puter program improved under this contract, allows researchers who have already
measured and screened data to conduct a systematic search for alternative causal models.
The class of models searched is not yet exhaustive, but it represents an enormous
increase over the class searched by our original prcgram, TETRAD, which itself
represents an enormous increase over the space of models humans are capable of
searching unaided. We have tested TETRAD II's reliability on 720 data sets produced by
Monte Carlo techniques from known models. For data sets of sample size 2000, given a
model for which elaborations were to be searched, TETRAD Il was able to output a smail
set of models (usually between two and four) which included the correct mode! in more
that 94% of the samples.

in our previous contract with ONR, we built an automated causal inference system named
TETRAD iI. Our goal was to build a program in which a user need only input the covariance data,
and whatever prior knowledge there is about the domain Into TETRAD-II. The program then
automatically searches for the elaborations of this knowledge that best explain the data, and
estimate and tests the models that result. The user receives a description of the best
explanations of the data that are consistent with the knowledge provided to the program and
automatically produced input files for slatistical analysis programs.
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The general approach that TETRAD #l usas 1s to search for those causal structures that as closely
as possible imply ail and only those probabilistic constraints that are judged to held in the
population. (See the Technical Appendix for details.)

Iin more detail the original version of TETRAD |l had the following elements:

KNOWLEDGE FILE: A file into which the user enters the ¢zta and whatever initial constraints
there are on the causal relations among the variables.

GENERATE PROGRAM: The GENERATE program uses a body of heuristics to produce a
coilection of simple initial models. The initial models may include latent variables.

EDIT INITIAL MODELS: The user can stop the program after the initial models have been
created and edit the initial models, either by eliminating initial models created by the program or by
adding initial models other than those created by the program.

AUTOMATIC TETRAD: The initial models are elaborated using an algorithm that fully
automates the procedures and heuristics now used by the TETRAD program.

COMPARE MODELS: The elaborated models are compared by TETRAD's heuristic fit criteria,
which combine considerations of simplicity and ability to explain patterns in the data. The best of
the elaborated models are retained.

STATISTICAL ASSESSMENT: The prog im automatically prepares input files for an existing
commercial statistics package, the EQS program, and submits each of the best elaborated models
to statistical estimation and testing. At the user's preference, the data used for estimation and
testing may be either the data used in the search for models, or may be a new and distinct sample
for the same variables.

OUTPUT: The output of the program includes a list of the best causal ~structures, in both human-
readabie torm, and in the form of input files for statistical packages. The statistical packages can

then be used to evaluate the models suggested by TETRAD II.

2. Resuits




We proposed to improve the existing TETRAD Ii by answering the following three fundamental

questions:

1. Are there rigorous, fast algorithms for searching the enormous space of possible
models compatible with given background knowledge, even when the number of

observable variables is large?

2. Can we introduce new classes of constraints and more flexible representations of
background knowledge that will allow the use to reduce the number of suggested models
to a more manageable size?

3. Under what circumstances is TETRAD il reliable?

The following is a brief summary of the progress that we have made towards answering these
questions. A more detailed description is given in the following sections, and theorems
concerning the reliability and scope of the algorithms that we devised are stated in the Technical
Appendix.

1. We have designed, implemented, tested, and employed an algorithm for building path
models from covariance matrices.

2. We have designed, implemented, and employed an algorithm for selecting subsets of

variables that form measurement models for a given latent variable.

3. We have speeded up the search TETRAD Il conducts to elaborate initial causal
models.

4. We have designed, implemented, and employed several tests for determining when
latent variables should be introduced into a model.

5. We have designed, implemented, and employed two new algorithms for constructing
multiple indicator models.



6. We have designed, implemented, and tested algorithms for reducing the number of
models suggested TETRAD |l without reducing the reliability of the program (by
introducing new classes of constraints on the covariancc matrix.)

7. We have designed, implemented, and employed an algorithm that turns the simple
model specifications employed by TETRAD 1i into the more complex input files requirea
by the EQS and LISREL statistical packages.

8. We have simplified and improved the user interface to TETRAD |l.

9. We have analyzed statistical data and suggested causal models conceming the causes
of recruiter success and satisfaction. We report our findings in an attached paper
(Causes of Success and Satisfaction Among Naval Recruiters).

In the following section we will repeat the details of the modifications we proposed to make to
TETRAD Il (in watlics!. followed by a description of what modifications we actually made, and what
evidence we have about the reliability of the algorithms.

2.1 Input to LISREL: Specification of a model in TETRAD Il is much simpler than specification
of a model in LISREL. We will implement a module that translates the simple TETRAD Il model
specification into the more complex LISREL model specification. We will also allow the user have
TETRAD Il output its suggested models in files that can be used as input to LISREL.

We have completely implemented this feature of TETRAD Il in the "Lisrelinput® command. In
addition, if a user creates a number of LISREL input files, he has the option of automaiically
creating a batch file (with the "Lisrelbatch” command) that will run all of the LISREL input files
created with one command. The user has the option of specifying starting values for the free
parameters of each model, or allowing TETRAD Il to choose starting values for the free
parameters. The user can choose how many of the mcdels suggested by the "Suggest”
command (which elaborates an initial model input by the user) will be automatically translated into
LISREL input files; also the "Suggest” command will automatically create a batch file so that ali of
the LISREL input files can be run with one command. In addition, TETRAD Il can automatically
create input files for the EQS program in an analogous way (using "Eqsinput™ and "Egsbatch™.)




2.2 Addition of SELECT module: We believe that a judicious selection of the observable
variables to include in a model can greatly simplify it construction. In many studies, such as in
psychometric tes..ng, hundreds of variables are measured. The vast majority of these variab'es
are intended to be indicators of some latent variable, and the real interest is in the relations among
the latent variables. By carefully selecting indicator variables, the task of creating plausible
submodels can be greatly simplified. Many of the techniques we currently use to generate
clusters of variables from covariance data can be modified to select only those observable
vanables that will make the construction of simple submodels easier and faster.

We have compietely implemented this feature of TETRAD Il in the "Scales” command. The
"Scales” command helps users construct measurement models of latent variables. We use the
term "measurement model” of a latent variable L to mean a mode! with the following properties:

1. each indicator is directly caused by and is a linear function of L;

2. no pair of indicators has a common cause other than L;

3. no indicator causes any other indicator;

4. the value of each indicator is primarily determined by L (rather than by its error variable).
The first three conditions are restrictions on the causai structure; the fourth condition is a

restriction on the free parameters of the model. A model satisfying the restrictions on the causal
structure is depicted in the graph in Fig. 1.

L
v w X y Z
ev ew € X ey eZ

Fig. 1: Measurement Model of L



Models that violate condition (1} are depicted in Fig. 2(i) and 2(ii); a model that violates condition
(2) 1s depicted in Fig. 2(lii); and models that violate condition (3) are depicted in Fig. 2(iv) and 2(v).

The input to the "Scales” command is a set of random variables which on substantive grounds are
thought to form a measurement model of some latent variable L. For example, a user might guess
on substantive grounds that the set {v, w, x, y, z} form a measurement model of L. If the actual
causal relations among these variables is that depicted in Fig. 2(iv) how s er, these variables do
not form a measurement modei of L. But there is a subset of the variables {w, x, y, z}. that does
form a measurement model of L. Hence, the "Scales” command woula output the set {w, x, y, z}.
Obviously, with just a few variables, the task is trivial; but the problem rapidly exceeds the ability of
unaided humans at even quite small numbers of variables.

We employ the following steps to eiiminate indicators that are not part of measurement models.
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1. First we eliminate indicators that have a zero correlation with some other indicator in the
original set. This eliminates models that have the type of causal strnecture that is depicted
in Fig. 2(ii).

2. Atetrad difference among among variables x, y, z, W, is pxypzw - pxzPyw- We eliminate
those sets of five indicators which have a high proportion of tetrad differences that we
judge not to vanish in the population.! This eliminates models with the type of causal
structures depicted in Fig. 2(iii) and 2(iv). (If we cannot find any sets of five indicators
having the properties we seek, then we search for sets of four indicators with these
properties.)

3. We then eliminate models for which there is a high proportion of foursomes of
indicators and subsets S of the indicators such that pxy s = pzw.S = Pxz.S = pPyw.S = 0.
This eliminates models with the type of causal structure depicted in Fig. 2(v).

4. TETRAD Il lists all of its suggestions for good measurement models, and allows the
user to select from among these suggestions a group of models for which TETRAD Il
automatically writes EQS input files. The user can then submit these input files to EQS,
and eliminate models that fail to satisty condition (4), or are non-linear.

Note that this procedure eliminates all alternatives to good measurement models except for
models with the causal structure depicted in Fig. 2(i). This type of causal structure cannot be
distinguished from the causal structure of Fig. 1 using only covariances among indicators for one
latent variable. However, it can be detected at a later stage, when the various measurement
models are assembied together.

We have applied this procedure to the latent variables in the Navy's Recruiter data. It has proved
very successtful in generating measurement models that perform well on statistical tests, as the
following table shows. (A P(x2) above 0.05 is generally considered a good score for a model,
especially at !arge sample sizes.)

TWe chose to look for sets of five indicators because they are sets that are large enough to make it
improbable that the statistical features that we are searching for occur by coincidence, but small
enough to make the search feasible.




Scale X2 P(X2)
Adv 1.342 0.5112
Eval 0.400 0.8188
Fam 0.296 0.8622
Goals 2.497 0.7769
Mat 0.220 0.8950
Nimag 0.110 0.9466
Oijt 3.300 0.6539
Pijt 0.832 0.6595
Sat 3.470 0.6280
Sel 4.898 0.0864
Stress 8.747 0.1196
Super 0.593 0.7434
Support 1.864 0.8677

Table 1: Construction of Measurement Models For Naval Recruiter Data

See our attached report Causes of Success and Satisfaction Among Naval
Recruiters for more details.

2.3 Addition of other types of models: Currently, all of the models that the GENERATE
module of TETRAD Il constructs automatically are latent variable models. It does not attempt to
determine whether introduction of latent variables is appropriate. We will develop an algonthm for
determining whether or not latent variable should be introduced into a model. We will also
develop an algorithm for constructing path models when the introduction of latent variables is not
appropriate. We have already found a class of constraints (vanishing and positive partial
correlation constraints) that are implied by path models, and we have developed an algorithm for
determining when these constraints are implied by a model. We will integrate this new class of
constraints into our AUTOMATIC TETRAD and GENERATE modules.

2.3.1 Construction of Path Models
We will restrict our discussion to those causal models among a given set of variables S that can be
represented by an acyclic directed graph. We will say that a directed graph G is a causal graph of S
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iff there is a directed arrow from A to B iff A causes B directly (i.e. without the mediation of any
other varable in S.)

X y z w

Fig. 1: Graph G

If every common cause of a pair of variables in S is also in S, then we say that S is causally
sufficient. In Fig. 1, the set of variables S = {T,x,y,z,w} is causally sufficient; however the set of
variables S' = {x,y,z,w} is not causally sufficient because the variabie T, which is a common cause
of x, y,z,and w, is notin S'. When we use a graph to represent the causal structure among a set
of variat ‘es S, we assume that the set of variables is causally sufficient.

We have developed an aigorithm for constructing a complete set of path models (models over
causally sufficient sets of variables) compatible with a given set of independence constraints. The
correctness of this algorithm follows from a theorem proved in Pearl[1990]. While the algorithm is
exponential in the number of random variables, it is feasible for present-day computers for up to
around 20 variables, which covers a large proportion of the variable sets studied in the social
science literature (We have actually implemented the algorithm for 17 normally distributed
variables on a DecStation 3100, and it runs in about 20 minutes. The problem with expanding the
algorithm to larger sets of variables is largely one of space, not of time.) Use of certain kinds of
background knowledge would allow the algorithm to be used on larger sets of variables.

The following Path Model Construction Algorithm that we devised constructs the set of all
causal models that impiy all and only a given set of independence relations over the set S of
random variables {if such a causal structure exists):

1.) Add an undirecied edge from Ato B iff A and B are dependent given every subset of
S not containing A and B.

i




2.) It there are undirected edges between A and B, and B and C, but not between A and
C, then there is an edge from A to B and from C to B iff A and C are dependent given
every subset of S containing B, but not Aor C.

3.) The set of edges whose orientations are not fixed by 2) are given every possibie
orientation that does not create a collision (A -> B <- C).

The algorithm is applicable to a wide variety of probability distributions. (See the Appendix for
more details.) However, we currently judge whether or not A and B are independent conditional
on S by performing a statistical test to determine whether pag.s vanishes; this test for
independence is correct only for normail models. In order to make the algorithm reliabie for other
distributions, tests of conditional independence for these distributions need to be developed.

On samples of medium size the procedure that applies the Path Model Construction Algorithm
has a tendency to underfit, that is it tends to omit undirected edges corresponding to causal
dependencies in the structure from which the data were obtained.

Data for a sample of 2000 population units were generated by Monte Carlo methods from a linear
model with the following causal structure (using normally distributed variates):

a—» b @«— ¢

Y4
v
e
f g —®h
Fig. 8

The data were then given to the TETRAD Il program, which produced the following undirected
graph:
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Under the restriction that no unmeasured variables are to be introduced, Theorem 2 permits only
two orientations of this graph from the sample data--exactly the orientation of the initial model
used to generate the data, and the orientation that is otherwise the same but reverses the
direction of the b - d connection.

An empirical example is provided by recent work of Rogers and Maranto (Rogers 1989). They
studied a number of theoretical accounts of the determinants of publishing productivity in
psychology, and compared these accounts with original survey data they obtained. After path
analyses of six alternative models taken from the social science literature, they formed a combined
model that includes all causal dependencies occurring in any of these models as well as two
further dependencies. Atter estimating and testing the combined model, they eliminated the
dependencies found not to be statistically significant. Their result is the foliowing causal model
(with coefficients estimated assuming linear dependencies)2:

2GPQ is a scale formed from indicators of the quality of graduate programs; QFJ is a measure of
the quality of the subject's first job; PREPRO is a measure of publications while in graduate study;
PUBS a measure of publications since leaving graduate school, and CITES indicates frequency of
citation of the subject’s scholarly works.

13
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Fig. 10

When the correlations from Rogers and Maranto's survey data are given to the TETRAD I
procedures (whose present implementation assumes normal variates), we automatically obtain the
following undirected graph without imposing any prior substantive restrictions:




Fig. 11

The application of step 1 of the Path Model Construction Algorithm to the sample data yields eight
of the eleven connections Rogers and Maranto postulate, and the three omitted edges are those
which, in the linear model, have the smallest coefficients.

The time order of ability, graduate school quality, quality of first job, and publication in graduate
school and other variables uniquely determine the directions that can be given to the edges in
this undirected graph. Step 1 of the Path Model Construction Algorithm, plus partial time order
information, yields a unique directed graph that contains all but the three smallest of the
dependencies Roger's and Maranto postulate.

In the Rogers and Maranto data the application of step 2 of the Path Model Construction Algorithm
to the undirected graph in figure 6 fails to determine the correct order of tive directed edges. It is
interesting to see why step 1 of the Path Model Construction Algorithm seems to succeed so well
in this case and step 2 of the Path Model Construction Algorithm fails to provide the goods. The
essential reason is that any errors in the undirected graph obtained with Path Model Construction

15



Algorithm that arise from sampling errors are localized. With step 2 of the Path Model Construction
Algorithm the consequences of a sampling error may not be localized at all; the same sorts of
dependencies that enable us to orient the graph from very little information, also enable us to
misorient it badly from a very few errors.

The Rogers and Maranto sample size is small, and some of the variables are certainly not even
approximately normally distributed. The result is that tests performed on the data result in more
vanishing partial correlations than we would expect to hold in the population were their model
correct and the variables normally distributed. So the Path Model Construction Aigorithm work
with incorrect conclusions about conditional independence. In applying step 1 of the Path Model
Construction Algorithm, we infer A - B if the partial correlation of A.B on X is non-zero for every set
X not contain A or B. In applying step 2 of the Path Model Construction Algorithm, we infer A -> B
<- C if the undirected graph is A - B - C and the partial correlation of A, B on X is non-zero for every
set X containing C but not A or B. Thus a sampling error which results in the conclusion that A and
B are conditionally independent on some set X containing C may cause the procedure to omit an
A - C connection that obtains in the true causal structure. This error will have no effect on the
reliability of inferences about other edges in the undirected graph. if the result of this mistaken
inference is the graph A - B - C, the same sampling error will lead by Theorem 2 to the erroneous
conclusion that the correct structure is not A -> B <- C. The information that the edges from A and
C are into B may, however, be essential for determining the direction of other edges in the graph.
So an error in estimation of conditional independence that results in localized errors in the
undirected graph may have global effects on the directed graph.

This appears to be what happens in the Rogers and Maranto data where B = cities, A = pubs and C
= preprod. Without either the Ability -> cities connection (not found using Theorem 1) or the
preprod -> cities orientation, the QFJ - cities direction is indeterminate according to step 2 of the
Path Model Construction Algorithm . The result is that rather than giving the set of two orientations
that includes the correct one, the TETRAD Il program outputs a large number of orientaticns that
do not include the correct one. step 2 of the Path Model Construction Algorithm , while sound
with data that nearly perfectly represent the population, nonetheless suffers from a fundamental
instability in real inference problems. We are currently working on an aiternative algorithm to step
2 which will not be unstable.

2.3.2 Introduction of Latent Variables
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We have taken two approaches to the problem of when and how to introduce latent variables. In
the first approach we have devised tests for determining when latent variables are needed to
explain the statistical features of a population; in the second approach we have determined what
causal conclusions can be reliably drawn from the statistical features of a population whether the
set of measured variables is causally sufficient or not.

We have developed two tests for determining when latent variabies are required by a causal
model. The first test can be used in the situations described below:

Latent Variable Test 1: Whenever an unmeasured cause affects two
variables, X and Y, such that X is the direct effect of some unmeasured variable
and Y is the direct effect of the same unmeasured variable, the presence of the
unmeasured variable can be identified from statistical dependencies. If the Graph
Construction Algorithm orients a given edge in both directions, then a latent
variabies must be present.

To illustrate the point, the siatistical dependencies among the measured variables (where T is
unmeasured) enable us to distinguish each of the following causal structures from the others.

T
¥ N
A C &«

B D

RS
E

F
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We are currently implementing this test into TETRAD II.
The second test for latent variables is applicable to linear normal models:

Latent Variable Test 2: Suppose a muiltinormal probability distribution P
implies a vanishing tetrad difference pijpki - pilpjk = 0. Then introduce a latent
variable if either pjjand pk), or pik or pji # 0, or there does not exist a set S of
vertices of G such that the variables i and j are independent conditional on S, and
so are the pairs of variables k, land i, k and j, .

This test has been incorporated into TETRAD I, and warns users when latent variables should be
introduced. It is also used as one step in the "Scales” command where it has been quite useful in
constructing measurement models. See Table 1.

The second approach to the problem of latent variables that we have adopted is to find statistical
features of populations that imply the presence or absence of some kinds of cauéal relations
whether the measured variables form a causally sufficient set or not. If S' is not causally sufficient,
the distribution P' over S’ is the marginal of some distribution P over a causally sufficient set S,
where S' is properly included in S. if we could determine what features of the path models
constructed by the Path Model Construction Algorithm from P' are necessarily also features of the
causal structure that generated P, it wouldn't matter whether S' was causally sufficient or not.
Using a recent theorem of Verma and Pearl about the equivalence of marginal distributions, we
have proved the following resuits:

Theorem |: If there is no edge between A and B in any causal structure that implies just
the conditional independence relations true of P', then there is no edge between A and
B in any causal structure that implies just the conditional independence relations true of
P.

Theorem llI: If there is no directed path from A to B in any causal structure that implies
just the conditional independence relations true of P', then there is no directed path from

A to B in any causal structure that implies just the conditional independence relations true
of P.
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Theorem Il is crucial because it allows one to reliably infer that A is not a cause (even indirectly) of
B. We also have a sufficient condition for the conditions under which one can reliably conclude
that A is a cause of B, but it cannot be stated in this limited space.

2.4 Improvement of GENERATE module: Once subsets of variables have been
selected, they will be passed to an improved GENERATE module that will generate submodels
out of the various subsets of variables. Currently, the output of GENERATE is a number of
different clusterings of the observable variables into groups. Each variable in a group of
observables is an indicator of the same latent variable. It does not suggest how the latent
variables are connected together; this is done by the AUTOMATIC TETRAD module. We believe
that we can revise the GENERATE module to do more of the work of constructing initial models
without substantially increasing the amount of time that it takes to operate. This additional
information will greatly speed up the operation of the AUTOMATIC TETRAD module in generating
initial models. We have already succeeded to some extent in getting the GENERATE module to
generate more information than the simple clustering information it currently outputs. Some of
this additional information concerns direction connections between latent variables, and others
are simply constraints on how the latent variables may be connected.

We have abandoned our original algorithm in the GENERATE module (at least temporarily). It
suggested too many alternatives, and was much too sensitive to sampling error to be reliable. For
path models we have replaced it with the Graph Construction Algorithm described in the previous
section; for latent variabies modeis we have replaced it with the two algorithms described in the
following section.

2.5 Addition of COMBINE module: Once the GENERATE module has generated a set of
submodels, the submodels will be passed to the AUTOMATIC TETRAD, COMPARE, and
STATISTICAL ASSESSMENT modules to be elaborated and then assessed for fitness. Once
the best elaborated submodels have been selected, they will be sent to the COMBINE module,
which will have the task of combining the various submodels into a single model. A rudimentary
algorithm for combining small submodels into larger ones has already been implemented in the
GENERATE module, but it needs to be extended and speeded up in order to work on larger
submodels.

In a multiple indicator model, each measured variable has exactly one immediate causal ancestor,
and that ancestor is a latent variable. Fig. 3 depicts an example of a multiple indicator model. Note
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that it consists of a collection of causal structures of measurement models, with possible additional

causal connections among the latent variables.

a b ¢ d e f g  h

Fig. 3: Multiple Indicator Model

Fig. 4 depicts several different ways in which a collection of measurement modeis can fail to form a
multiple indicator model. In Fig. 4(i), there is a variable that is directly caused by two latent
variables and in Fig. 4(ii) there is a measured variable which is caused by another measured

variable.
L1 L2
a h C d e f g h
(i)
L1 L2
a b c d e f g h
‘\_/
(ii)

Fig. 4: Non Multiple Indicator Models




We have impiemented two algorithms for constructing multiple indicator models; each has
advantages and disadvantages. (A more complete description of the algorithms is presented in
the attached repont Causes of Success and Satisfaction Among Naval Recruiters.)
The first step in each algorithm is to use the "Scales” command to select sets of indicators that
form measurement models. Each of the algorithms then searches for additional causal
connections between the latent variables. (ldeally, these algorithms shouid eliminate any
indicators that have more than one parent, such as d in Fig. 4; however, the current versions fail
to check for this possibility.)

In the first algorithm that we use to construct multiple indicator models, we pass the measurement
models formed by the "Scales” command to the "Suggest” command, which performs a heuristic
search for causal connections among the latent variables. (See the Technical Appendix for a
detailed description of the search.) The advantage of this techinique is that ii i3 not restricted to
latent variables that are normalily distributed, or linear functions of each other. The disadvantage is
that as it is currently constructed it can work on only relatively small models (5 or 6 latent variables)
due to time limitations.

in the second algorithm that we use to construct multiple indicator models, we input the collection
of measurement models suggested by the "Scales” command into EQS, and ask EQS to estimate
the covariances between the latent variables. We then use the estimated covariance matrix
among the latents as input to our Path Model Construction Algorithm, and form a path model
among the latent variables. The advantage of this method is that it can work on models containing
up to 17 latent variables in a relatively short period of time (approximate: - 20 minutes.) The
disadvantages are that the estimation technique for the covariance matrix among the latents
assumes that the variables are linearly related, and that the need to estimate the covariance matrix
among the latent variables introduces an extra element of uncertainty.

This algorithm has succeeded on Monte Carlo simulation tests that we have performed. Fig. S
depicts a model that we used to generate data.




N
AN N

Fig. 5: Model that Generated Data

We assumed that the clusters of variables were given. When we estimated the covariances
among T1, T2, T3, and T4 using EQS, and used this covariance matrix as input to the Fath Model
Generating Algorithm, TETRAD Il successfully suggested a set of model that included the cofrec’

one.

Unfortunately, when we attempted tc use this procedure on 15 latent variables in the Naval
Recruiter data, the algorithm did not produce reasonable results; it suggested that there were no
causal connections among the latent variables. On smaller subsets of the latent variabies, the
procedure produced more reasonable suggestions, but whether or not TETRAD Il suggested a
causal link between a given pair of variables varied to a certain extent depending upon which
other variabies were examined. We believe that the major problem in applying this technique to
the Naval Recruiter data set was that the variables were highly non-normal, invalidating the

statistica' tests for indeperidence that we performed.

2.6 Extension and Integration of KNOWLEDGE FILE: The KNOWLEDGE FILE will be
used by the GENERATE module as well as the AUTOMATIC TETRAD module, in order to make
use of the users knowledge as early as possible in the generation process. The pilot version of
the KNOWLEDGE FILE allows users to require or forbid specific edges, paths. or treks in the
graphs that represent the models suggested by TETRAD. More work needs to be Jone in

allowing users to enter other types of knowledge that they may have.
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We have not yet changed the format of the Knowledge File. We are in the process of
incorporating the constraints in the Knowledge File into the Graph Construction Algorithm, and
allowing the user to specify the time order of variables.

2.7 Addition of new constraints: TETRAD I/l works by comparing various constraints on the
covariance matrix that are implied by a model with the actual data. We have recently discovered a
new class of constraints that is capable of distinguishing between models that have the same T-
scores. Use of these constraints requires knowledge of some of the signs of the causal
connections between variables. This knowledge is not always available, but it is available in many
cases of psychometric testing, where observable variables are often deliberately chosen to be
positive indicators of some latent variable. We still need to prove that our algorithm for calculating
these constraints is correct, to incorporate it into our current modules, and to find out how much of
a reduction in the number of suggested models including these constraints will make. Preliminary
tests have shov.n promising results.

We have incorporated these constraints into the "Suggest” command of TETRAD Ii, which
elaborates models input by the user. In Monte Carlo simulations, the reduction of the number of
models suggested by TETRAD Il varied greatly according to the causal structure. We ran an
extensive Monte Carlo simulation of the reliability of the "Suggested” command. (For details see
"Simulation Studies of the Reliability of Computer Aided Model Specification Using the TETRAD
I, EQS and LISREL VI Programs”, Sociological Methodology and Research,
forthcoming.) We generated data sets from 9 different causal models. In each case we gave as
input to TETRAD Il part of the causal structure that generated the data, and asked TETRAD If to
recover the part of the causal structure that we had omitted. TETRAD Il was able to suggest a set
of models that included the correct model 95% of the time. Table 2 shows how many models
were suggested by TETRAD 1l when the signs of the edges input to the "Suggested” command
were known, and how many were suggested when the signs of the edges were not known.3

3For convenience, we have calculated the number of models suggested by TETRAD Il only in
those samples where TETRAD Il was correct. Since TETRAD Il was correct in 95% of the cases,
this is a good approximation to the average number suggested in all the samples.
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Signs 2 3 1 1 3 19 16
Known

Signs 2 3 1 3 4 29 20
Unknown

Table 2: Number of Models Suggested by TETRAD Il

3. Work In Progress

We are in the process of making the following modifications to TETRAD !, which will extend the

domain of applicability of TETRAD I and make it easier to use:

1. We are implementing statistical tests for vanishing tetrad differences and vanishing

partial correlation that are asymptotically distribution free.

2. We are making changes to the Path Construction Algorithm to make it less sensitive to

sampling error, and clarifying the output of the Algorithm.

3. We are adding a feature that allows TETRAD Il to output all of the models equivalent to

a given model.

4. We are designing a menu-driven interface, similar to that used by programs on the
Macintosh.

5. We wili allow the user to specify what subset of variables in the covariance matrix

should be employed in the elaboration and model building procedures.

6. We are improving the estimates that TETRAD Ii gives of how long the elaboration

procedure is likely to take.
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TECHNICAL APPENDIX

A.1 The "Suggested” Command
A.1.1  Structural Equation Models and Graphs
The "Suggested” command of TETRAD Il is intended to correct mis-specifications in the
class of structural equation models. A structural equation model, or linear causal
model consists of four parts:

A set of random variables with a joint distribution.

A set of linear equations among the random variables.

Distributional assumptions about the random variables.

A set of causal relations among the random variables.

The following is an exampie of a structural equation model.

The set of random variables is {v,w,x,y,T,e1,e2,e3,e4}. In this case, the variables
v,w, X, y, and z are measured variables, T is a latent variable, and e1,22,e3,e4 are
"error” or "disturbance” terms.

The set of linear equations is:

v=aT+eq
w=DbT+eo
x=CT +e3
y=dT +e4

The collection of all variables is muiti-normally distributed. T and the e; are un-
correlated and have unit variance and zero mean.

The set of causal relation is: {<T,v>,<T,w><T x>,<T,y>,<e1,v>,<€2,W>,<€3,X>,
<eg4,y>}, where <r,s> is in the set of causal relations if and only if r is an immedi-

ate cause of s.
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The set of causal relations can also be represented in a directed graph, in which there
is an edge from r to s if and only if r is an immediate cause of s. The directed graph for
this example is depicted in Model | of Fig. A.1.

By cunventioi, tive linear equations are expressed in a canonical form in which r ap-
pears in the equation for s iff s is a direct cause of r. Thus v is expressed as a function
of ey, while e1 is not expressed as a function of v. This convention allows important
parts of the statistical model to be recovered from the graph alone. The graph encodes
the form of the linear equations, and it encodes assumptions of statistical independence
that are implicit in the statistical model. The graph does not encode the particular nu-
merical values of the linear coefficients, the variances of the independent variables, or
the joint distribution family (e.g., multinormal).

A.1.2 Input and Output of Suggested

The "Suggested” command is designed to aid researchers in correcting mis-
specifications of causal models. The "Suggested” command accepts as input:

a sample size,
a correlation or covariance matrix, and

domain knowledge in the form of required edges, forbidden edges, whether the
graph can be cyclic, and whether or not the graph can contain direct cycles (i.e. an
edge from A to B and B to A).

The required or forbidden edges are given to the program simply by specifying a list of
paired causes and effects.

"Suggested” assigns to each model a score that we will call its Tetrad-score. lts output
is a list of models, ranked according to their Tetrad-scores. TETRAD Il does not
perform parameter estimation or compute a ¥2 statistic. Typically, we take the models
suggested by the "Suggested” command and submit them as input to parameter
estimation programs such as LISREL Vi or EQS. The algorithm that the "Suggested”



command uses can be divided into two parts, a scoring algorithm and a search
algorithm.

A.1.3 Overidentifying Constraints

The graph is not only a vivid representation of the claims made by a structural equa-
tion model; it also cetermines certain kinds of statistical constraints, or overidenti-
fying constraints that a structural equation model may imply. Several such classes of
constraints concern tetrad differences. A tetrad difference is just the determinant of a
2 X 2 submatrix of the covariance matrix: ikl - YikYjl, where v is the covariance

between i and j.

Consider the three graphs of structural equation models depicted in Fig. 1. (We have
labelled each edge in the graph by the corresponding coefficient in the set of linear
equations.)

In Model | the tetrad difference wxy - xYwy = abcd o1 - abed o4t = 0. Note that
in this case, the tetrad difference vanishes regardless of the values of the linear coef-
ficients and the distributions of the independent variables. When a structural equation
model robustly specifies a vanishing tetrad difference, as with Model 1 above, we say
the model strongly implies the vanishing tetrad difference (or that the vanishing
tetrad difference is implied by the causal structurc;. (For details on how tetrad
differences can be calculated for a model, and how the graph determines whether a
vanishing tetrad difference is implied see the following sections.

In Model II, the tetrad difference yywYxy - TvxYwy = cdfo2102g1. In this case, the
tetrad difference is positive regardless of the distributions of the independent vari-
ables, as long as the product of coefficients cdf is positive. In this case we say that
given the sign of cdf, the tetrad difference is strongly implied to be positive.

In Model Ill, the tetrad difference Yyw¥xy - Tiwy = cdfo27062g1 + acgo2102e4. This
tetrad difference may be zero for particular values of the coefficients and variances,
suchasa=d=1f=g =02 =024 = 1. But this constraint is not robust in Model Ill,
because the tetrad difference does not vanish if the non-zero coefficients are varied in
that model. And even if the signs of the coefficients were given, Model Il does not imply
that the tetrad difference is positive or negative.




TETRAD Il is based upon the following fundamental methodological principles.

Falsification Principle: Other things being equal, prefer models that do not
strongly imply constraints that are judged not to hold in the population.

Explanatory Principle: Other things being equal, prefer models that strongly
imply constraints that are judged to hold in the population.

Simplicity Principle: Other things being equal, prefer simpler models (i.e. mod-
els with higher degrees of freedom).

As we have already seen, a model may fail o strongly imply a vanishing tetrad con-
straint, but still imply that constraint for particular values of its coefficients and
variances. The intuition behind the Explanatory Principle is that an explanation of a
constraint based on the causal structure of a model is superior to an explanation that
depends upon the free parameters of a model coincidentally taking on values that hap-
pen to imply the constraint. This intuition has been widely shared in the natural sci-
ences; it was used to argue for the Copernican theory of the solar system, the General
Theory of Relativity, and the atomic hypothesis. One justification for the Explanatory
Principle is provided in the following theorem. It states that under very plausible
assumptions the probability of a vanishing tetrad difference being implied by a model,
but not strongly implied by its causal structure, is zero.

Theorem 3: Let M be a linear model with n free linear coefficients at,..., ap. and k
variances vi,..., vk. Let M(U) be the class of models obtained by specifying values U =
<uti,...,up> for the parameters ay,..., an. Let P be the set of probability measures P on the
space R of values of the parameters of model M such that for every subset S of RN+K
having Lebesque measure zero, P(S) = 0. Let Q be the set of vectors of coefficient
values such that for all U in Q every multinormal probability distribution consistent with
M(U) has at least one vanishing tetrad constraint pijpy - piipjk = 0 that is not implied by the
causal structure of M. Then P(Q) = 0.

Analogous theorems hold for vanishing partial correlations.



Unfortunately, the principles can conflict with each other. Suppose, for example, that
model M’ is a modification of model M, formed by adding an extra edge to M. Suppose
further that M’ implies fewer constraints that are judged to hold in the population, but
also implies fewer constraints that are judged not to hold in the population. Then M’ is
superior to M with respect to the Falsification Principle, but inferior to M with
respect o e Simplicity and Explanatory Principles. TETRAD Il introduces a scoring
function that balances out the relative merits and demerits of models. The scoring
functions is explained below in the section entitled Scoring.

We will now describe the two main sections of the "Suggested" command, the scoring
function and the search.

A.1.4 Constraints Judged to Hold In the Population

There are five types of constraints that TETRAD Il uses. For each one, we will explain
how TETRAD Il judges whether or not it holds in the population.

A.1.4.1 Tetrad Constraints

HTO (Hold Tetrad at 0) is the set of tetrad differences judged to vanish in the popula-
tion, HT+ is the set of tetrad differences judged to be positive in the population, and
HT- is the set of tetrad differences judged to be negative in the population. We sort the
tetrad differences into these classes in the following way.

First, we calculate the associated probability p(t) of a vanishing tetrad difference t.
The associated probability p(t) of a tetrad difference t is the probability of obtaining a
tetrad difference as large or larger than the one actually observed in the sample, under
the assumption that the tetrad difference is zero in the population, and that the
sampling distribution of tetrad differences is normal.* Wishart showed that the
variance of the sampling distribution of the vanishing tetrad difference pijpki - pilpjk

is equal to

D12D34(N+1)
(N - 1)}(N -2)-D

4The assumption that the sampling distribution of tetrad differences of normal
covariates are normally distributed is approximately true in large samples.



where D is the determinant of the population correlation matrix of the four variables
i, j, k, and |, D12 is the determinant of the two-dimensional upper left-corner sub-
matrix, and D34 is the determinant of the lower right-corner submatrix, and i, j, k,
and | have a joint normal distribution. In calculating p(t) we substitute the sample
covariances for the corresponding population covariances in the formula. Given the
variance of the tetrad difference, and the assumption that the sampling distribution of
the tetrad differences are distributed normally, p(t) is determined by look up in a
chart for the standard normal distribution.

Note that among any four distinct variables i, j, k, and |, we compute three tetrad dif-
ferences:

PijPkl - PikPjl
PikPjl - PilPjk
PilPjk - PijPkI

If any two of these vanish in the population, the third is implied to vanish aiso. If
p(t) is larger than the given significance level, we place t into HTO. f p(1) is
smaller than the significance level, but the other two tetrad differences have associated
probabiliies higher than the significance level we have conflicting evidence about
whether t vanishes or not; in that case we do not put t into any class. [f p(t) is smaller
than the significance level, and at least one of the other two tetrad differences has an
associated probability smaller than the significance level, we place t into HT+ or HT-,
depending on the sign of the measured tetrad difference.

(Kenneth Bollen has recently discovered an asymptotically distribution-free sampling
distribution for tetrad differences. We plan to replace the test we currently use and
which assumes a multi-variate normal distribution with his new test.)

A.1.4.2 Partial Correlation Constraints

We divide partial correlations into three classes. HPO (Hold Partial Correlation at 0)
is the set of partial correlations judged to vanish in the population, HP+ is the set of
partial correlations judged to be positive in the population, and HP- is the set of par-
tial correlations judged to be negative in the population.
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Suppose K is a set of variables, and |K| is the cardinality of K. Again, we calculate the
associated probability of a partial correlation pjj.k on the assumption that it vanishes

in the population.

Fisher has shown that for a given partial correlation Pij.K,

=1_v$-4 |n(1+i'7"d
2

1 - |pix

has a standard normal distribution (where s is the sample size minus the cardinality
of K). We use this transformation to calculate the associated probability of a given
partial correlation x vanishing in the population. If the associated probability p(x) is
greater than the significance level then x is placed in HPO; otherwise it is placed in
HP- or HP+ depending upon the sign of the measured partial correlation. A vanishing
correlation constraint is a special case of a vanishing partial correlation, with |K| = 0.

(We plan to replace the test we currently use and which assumes a multi-variate
normal distribution with an asymptotically distribution-free test.)

A.1.5 Calculating the Implied Constraints
In order 0 explain how the various kinds of constraint implications are calculated, we
will introduce the following terminology.

Definition
Given an ordered n-tuple N = <c1, ... ,ch>, an object o is in N iff 0 = ¢; for some i
between 1 and n inclusive. We shall also write that 0 € N.

This notation is somewhat ambiguous since ¢ is also used to mean set membership, but
the context will always make it clear which use of € is intended.

Definition

A digraph is an ordered pair <R,E>, where R is a set of vertices and E is a set of
edges. Each edge is an ordered pair of elements of R. The first element in an edge is
called the tail, and the second element is called the head. An edge with a tail vi and a
head vj is an edge from v; to vj; it is also said that the edge is out of vj and into vj. v;
is adjacent to v; iff there is an edge from v; to vj. Adj(i) is the set of all variables
adjacent to i. The indegree of a vertex v is equal to the number of distinct edges into
v; the outdegree of a vertex v is equal to the number of distinct edges out of v.




Definition

A path of length n in a digraph <R,E> is an ordered n+1-tuple of vertices <vy, ... v
n+1)> where for 1 <i<n, <vj,vj,1> is an edge in E. The path is said to contain edge
<Vj,Vi+1>. The first vertex in the path is called the source of the path; the last vertex
in the path is called the sink of the path. The path is said to connect the source to the
sink. Two paths intersect iff they have a a vertex in common; any such intersection
(of paths) common vertex is a point of intersection. A cycle is a path of at least
length 1 in which the source equals the sink. A path contains a cycle iff it has a
subpath which is a cycle. An open path is a path with no cyclic subpaths. A digraph
is acyclic if and only if every path in the graph is open. A path with one vertex is an
empty path. If path pis equal to <vq, ..., vp> and path q is equal to <vp, . . . ,Vasm>,
then the concatentation of p and q is equal to <vy, ... vpn, ..., Vnsm> and is de-
noted by p&q. Note that empty paths are the only paths that contains no edges. Also
the concatenation of p with an empty path is p, and the concatenation of an empty path
with p is p. The single vertex in an empty path is both its source and its sink.

Definition

A trek t between two distinct vertices v; and v; is a pair of open paths from some ver-
tex u to vj and v; respectively that intersect only at u. The source of the paths in the
trek is called the source of the trek. vj and vj are called the termini of the trek.
Given a trek tjj between i and j, i(tjj) will denote the path in t from the source of t to
i and j(tij) will denote the path in t from the source of t to j. Pjj is the set of all
paths from i to j. Tij is the set of all treks between i and .

One of the paths in a trek may be an empty path. However, since the termini of a trek
are distinct, only one path in a trek can be empty.

Definition

Suppose there are two treks tij and tk| such that i(tj)) » k(tk)) = 0, and j(tjj) N
I(tk1) = 0, and either i(tjj) n (ki) = O, or j(tij) N k(tkl) = 0. I i(tij) N I{tki) =
0, let Overlap(tjj,tki) equal the product of the label of edges in either i(tjj) or
I(tk]) between the first and last points of intersection of i(tjj) and tk]), and Non-
overlap(tij,tkl) equal the product of the labels of all the other edges in tjj or tx). If
i(tjj) intersects I(tk|) in only one point, or both i(tjj} n I(tk;) = 0 and j(tij)
k(tkl) = 0, then Overlap(tijj,tk() = 1, and Non-overlap(tij,tki) = L(tij)L{tki). If
i(tij) ~ k(tk)) # 0, then Overlap and Non-overlap can be defined in an analogous way.

The implications of a model are calculated in the following way.

A.1.5.1 Vanishing Tetrad Constraints
The calculation of vanishing tetrad constraints implied by a model S is based on the
following theorem.




Theorem.
An acyclic model S strongly implies that yijykl - Yilvjk vanishes ift for every tjje
Tij and i € Tk| either
i(tij) » k(tkl) # {}, or
k)~ jdtij) = {}
and for every tjl e Tj| and tjk € Tjk either

i(ti) ~ k(tjk) = {}, or

I(tin ~ j(tjk) = {}

We conjecture that the theorem is also true for cyclic models.

A1.5.2 Vanishing Correlation Constraints
The calculation of vanishing correlation constraints implied by a model S is based on
the following theorem.

Theorem.
S strongly implies that pjj vanishes iff there is no trek between i and j.

A.1.5.3 Positive Tetrad Constraints
The calculation of vanishing correlation constraints implied by a model S is based on
the following conjecture.

Conjecture

Given an assignment of signs to a model S, S does not strongly imply that yijyk| - Yi-
jvik > O relative to that sign assignment iff there exists a tjje Tij and tk) € Tk| such
that

i(tij) » k(tkl) = {}, and

i(tij) » (k1) = {}, and

either i(tij) » Itk)) = {}, or j(tij) » k(tk)) = {}, and

either Non-Overlap(tjj,tk|) is negative, or there exists a pair of paths ps and p2

from some independent variable ! to the source of one of the treks tj or tx; (call it
t1) such that ps intersects exactly one branch of the other trek (call it t2) at a




point y, p2 does not intersect that branch of t2, and sign(p1xz) <> sign(p2xz)
(where x ‘s the last point of intersection of p1 and p2 before y, and z is the first
point of intersection of p1 and p2 after y),

or there exists a tjt ~ Tjf and tk € Tjk such that
i(ti) » k(tjk) = {}, and

i)~ It

{}, and

either i(tj)) » j(tjk) = {}, or Kti) n Kk(tjk) = {}, and

either Non-Overlap(ti,tik) is positive, or there exists a pair of paths p1 and p2
from some independent variable | to the source of one of the treks tjj or tik (call it
t1) such that pq1 intersects exactly one branch of ti.» other trek (call it tp) at a
point y, p2 does not intersect that branch of to, and sign(p1xz) <> sign(paxz)
(where x is the last point of intersection of py and po before y, and z is the first
point of intersection of py and po after y).

A.1.6 The Tetrad-Score

Using the above theorems we classify each tetrad difference as ITO (/mplied Tetrad 0),
IT+, IT- (or none of these), and each correlation as ICO (/mplied Correiation 0), IC+,
IC- (or none of these). (The partial correlation constraints are not incorporated into
the TETRAD-score. They are used, however, by the "Parual” command, which
implements the Path Model Construction Algorithm. See the szction entitle "Partial".)
However, the user can ask for a list of all of the partial correlations which indicates
whether they hold at 0, +, or -, and whether or not they are implied to be 0, +, or -).

Then we define
Tetrad-score =

S opey+ Y p(h -

c¢ 0 ~HCD te [TO A HTO

weight*{ 3 ploy+ S ph+ S p+ 3 pb)

cr 00 - HOO telTO- H7O telTe A HT- telT-~HT»

The first two terms implement the Explanatory Principle since they gives credit for
explaining vanishing residuals that are judged to hold in the nopulation. The rest of the
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terms implement the Falsification Principie since they penalizes a model for making
predictions about residuals that are judged not to hoig in the population. The
Simplicity Principlz is implemented by preferring, among models with identical
Tetrad-scores, those that have more degrees of freedom.

The weight determines how conflicts between the Explanatory and Falsification Prin-
ciples are resolved by determining the relative importance of exolanation versus
residual reduction. The higher the weight, the less important explanation is relaiive
to residual reduction.

A.1.7 Search

The "Suggested” command empioys a relatively fast search algorithm that examines
many more plausible models than the searches employed by either LISREL VI or EQS.
The search is fast for three main reasons.

First, there are well known, fast algorithms for analyzing directed grapns, algo-
rithms that we have modified to determine the set of all vanishing tetrad differences
implied by a model.

Second, most of the computational work required to evaluate a model M can be stored
and re-used to evaluate elaborations of M.

Finally, the scoring function is such that if a model M can be conclusively eliminated
from ccsideration because of a poor score, so can any elaboration of M.

The search procedure is a recursive procedure that is difficult to describe in non-
technical English. The following rough outline of the procedure gives the basic
structure of the search. At each point of the search, Top_score represents the best
TETRAD-score of any model examined up to that time; Local_Top_sccre represents the
best TETRAD-score of any elaboration of Initial Model; percentage represents a user-
settable parameter that controls the width of the search; Good represents the list of
models that are among the best found so far; and L represents the list of all
elaborations of Initial Model. The procedure is first called on the initial model
supplied by the user.
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Procedure Elaborate_Model(Initial_Model);
begin
Generate all one edge elaborations of Initial Model;
Place all one edge elaborations of Initial Model in list L in
order of decreasing TETRAD-score;
Set Local_top_score to highest TETRAD-score in L;
for each model M in L do
begin
if (TETRAD-score(M) > Percentage * Local_top_score)) and
(TETRAD-sccre(M)> Percentage * TETRAD-score(Initial Model)) then
Elaborate_Model (M);
if TETRAD-score(M) > Percentage * Top_score then place M in list Good;
if TETRAD-score(M) > Top_score then
set Top_Score to TETRAD-score(M);
end,

This procedure is much faster than previous search algorithms that we have employed,
but it is also theoretically less reliable than those algorithms. In a series of Monte
Carlo simulations, however, it has proved to be equally reliable in practice.

The user can further constrain the search by use of the knowledge file. if an edge is
required in the knowledge file, TETRAD Il will add it to every initial model, before it
begins its search. If an edge is forbidden in the knowledge file, TETRAD Il will never
add it to any model in the search. If the user specified that the graph must be acyclic,
TETRAD 1l will never add any edges to the initial mode! that create cycles that are not
in the initial model. If the user specifies that no direct cycles (edges from A to B and B
to A) can occur in the model, then TETRAD Il will never add any edges that create direct
cycles that were not in the initial model. The user can also specify a maximum depth
for the search, and a maximum number of times TETRAD Il will add edges that fail to
improve the score.

Up to this point, the scores for all mode!s have been calculated on the assumption that
the signs of the additional edges suggested by TETRAD |l are not known. Models that are
indistinguishable on the basis of the vanishing tetrad differences that they strongly
imply are sometimes distinguishable on the basis of the positive or negative tetrad




differences that they strongly imply. If the sicns of the edges in the initial model are
not known, we simply suggest among all of the models that are tied for the highest
Tetrad-score, those that have the fewest edges. But, if the signs of the edges in the
initial mode! are known, after we have generated a list of suggested models with our
search, we calculate scores for every possible combination of sign assignments for the
suggested edges. This may reduce the scores of some models, since they could imply
positive or negative tetrad differences that are judged not to hold in the population.
The models that no longer are tied for the highest score are eliminated from the list,
and those remaining are suggested by TETRAD ii.

A.2 The "Partial Command"”

The Path Mode! Construction Algorithm is implemented in the "Partiai" command (so-cailed
because we judge conditional independence by performing a statistical test upon vanishing
partial correlations.) in order to justify the algorithm, we need to introduce the following

definitions.
Definition: An undirected path in a directed graph is a is an ordered n+1-tuple of
vertices <v1, . ..,V p,1> where for 1 <i<n, either <vj,1,vj> Or <vj,vi.1>is an edge in the

graph.

If an undirected path p contains edges from vi.1 10 vk and vi,1 t0 v, then v is a p-

collider.

If there is an undirected path p such that vy is a p-collider, then v is a collider.

There is an edge between i and j iff there is an edge from i to j or an edge fromjto i.

A directed path of length n in a directed graph <R.E> is an ordered n+1-tuple of
vertices <v1, . . .,V n1> Where for 1 <i<n, <v,vi,1> is an edge in the graph.

A directed graph G is acyclic (or a DAG) iff on every directed path in G, no vertex occurs

more than once.
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in a DAG G, it an undirected path Y between i and j is such that every head-on vertex in Y
has a descendant in a set of vertices s, and no non-head-on vertex inVisins, thenYis a
denendency-making path tatween | and j reiative to s.

In a DAG G, Kx,S,y) iff x and y are d-separated by the set of vertices S. In a probability
distribution P, I(x,S,y)p iff in P x and y are independent conditional on S.

A vertex y is a descendant of a vertex x if and only if there is a directed path from x toy.
(Since the empty path from j consists simpiy of j, every vertex is a descendant of itself.)

Following Pearl, we say that variables x, y are d-separated by set S it and only if there
exists no undirected path U between x and y, such that {i) every collider on U has a
descendent in S and (ii) no other vertex on U is in S. We say that x, y are d-connected
with respect to S if and only if they are not d-separated with respect to S. We say that two
sets X, Y of variables are d-separated by S if and only if every pair <x,y> in the cartesian
product of X and Y is separated by S.

With these definitions we can state Pearl’s idea, which can be given as a definition:
Pearl's Representation Definition: Let G be a directed acyclic graph and let P be a
joint probability distribution on the vertices of G. G perfectly represents P if and only if

I(X,2,Y)p if and only it D(X,Z.Y)G.

An investigation of the properties of this notion of representation may be found in Pearl(1988).
For every directed acyclic graph there exists a probability distribution that it perfectly represents.

An illustration of d-connectedness is given in the following graph:
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X—»>U<€¢—V—>W @Y

\ \

S1 S$2

X and Y are d-connected with respect to the set {S1, S2}

} X and Y are not d-connected with respect to the empty set
‘ X and Y are not d-connected with respect to the set {S1, S2, V}
\

X and Y are independent
X and Y are not independent conditional on {S1, S2}
X and Y are independent conditional on {S1, S2, V}

Think of a mechanical device or electrical circuit arranged so that the variables in the graph have
the causal relations illustrated. If you know the value of X and nothing else, it provides you with no
information about the value of Y. If you know values of Sy and Sp, then information about the
value of X will give you additional information about the value of Y. if you know the value of Sq, S»
and V--or even just the value of V, then information as to the value of X tells you nothing further
about the value of V.

Theorem 4 states that for linear normal theories, under a wide variety of plausibie probability
distributions over the free parameters of the theory, the probability that two variables are
conditionally independent, but not implied to be conditionally independent by their causai
structure, is zero.

Theorem 4: Let M be a linear model with n free linear coefficients a1,..., an. and k
variances v1,..., vk. Let M(U) be the model obtained by specifying values U = <uq,...,up,

Unst,.-Unek> fOr a1,..., an and v1,...vk. Let P be the set of probability measures P on the
space RN+K of values of the parameters of model M such that for every subset S of RN+K
having Lebesque measure zero, P(S) = 0. Let Q be the set of vectors of coefficient and
variance values such that for all U in Q every multinormal probability distribution consistent
with M(U) has at least one statistical independence relation not represented in the
directed acyclic graph of M according to d-separability. Then P(Q) = 0.

Tne following two theorems prove that the Path Model Construction Algorithm constructs a
perfect representation of the data, if there is one.
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Theorem 5: |If probability distribution P over a set of variables V is perfectly
representable, then G perfectly represents P if and only if:

1. there is an edge between vertices A and Bin G if and only if ~I(A,S,B)p forall S& V
containing neither A nor B;

2. in G there is an edge between vertices A and B, and an edge between vertices B and
C, but no edge between vertices A and C, there is an edge from A to B and from C to B if
and only if ~I(A,S,C)p for all S & V containing B, but containing neither A nor C.

The justification of our second test for the existence of latent variables is provided by the following
Theorem.

Theorem 6: The causal structure G of a linear model M implies a vanishing tetrad
difference pijpii - pilpjk = 0 only if the causal structure of G implies either pj; or p = 0 , and
pil or pjk = 0, or that there is a non-empty set q of random variables in G such that pjj q =

Pkl.q = Pil.q = Pjk.q = 0
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