DTIC FILE COTY

OFFICE OF NAVAL RESEARCH CONTRACT NOOO 14-89-J-1849 R & T CODE 4134005

ê . .

. .

Technical Report No. 9 PREPARATION AND CHARACTERIZATION OF CHROMIUM(III) OXIDE FILMS BY A NOVEL SPRAY PYROLYSIS METHOD

> by Y-T. Qian, R. Kershaw, K. Dwight and A. Wold

> > Prepared for Publication in MATERIALS RESEARCH BULLETIN

91

7

22

<u>]</u> ? ?

December 21, 1990

Drown University Department of Chemistry Providence, Rhode Island 02912

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.

ę

SECURITY CLASSIFICATION OF THIS PAGE					محميها والمراجع والمراجع المراجع المراجع	
	REPORT DOCUM	IENTATION	PAGE			
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED	1b. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	3 DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED				
4. PERFORMING ORGANIZATION REPORT NUMBE	5. MONITORING (NOOG 14-8	5. MONITORING ORGANIZATION REPORT NUMBER(S) NOOO 14-89-J-1849				
6a. NAME OF PERFORMING ORGANIZATION6b OFFICE SYMBOL (If applicable)7a. NAME OF MONITORING ORGANIZATIONBROWN UNIVERSITY AARON WOLD(If applicable)0FFICE OF NAVAL RESEARCH CODE 427 1//3						
6c. ADDRESS (City, State, and ZIP Code) DEPARTMENT OF CHEMISTRY, BOX BROWN UNIVERSITY, PROVIDENCE	7b. ADDRESS (Cit DR. MARK 800 N. Qu Arlingtor	y, State, and ZIP M. ROSS sincy St. a, VA 22217	Code)			
Ba. NAME OF FUNDING/SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F	UNDING NUMBER	RS		
		PROGRAM ELEMENT NO.	PROJECT NO	TASK NO.	WORK UNIT NO	
11. TITLE (Include Security Classification) PREPARATION AND CHARACTERIZATI METHOD	ON OF CHROMIUM()	II) OXIDE FI	LLMS BY A NO	VEL SPRA	AY PYROLYSIS	
12. PERSONAL AUTHOR(S) Y-T. Qian, R. Kershaw, K. Dw	ight and A. Wold	1				
13a. TYPE OF REPORT 13b. TIME C	OVERED TO	14 DATE OF REPO	DRT (Year, Month,	Day) 15. P	PAGE COUNT	
16. SUPPLEMENTARY NOTATION Prepared for	Publication	, in mat	terines 1	les.B	wel,	
17. COSATI-CODES FIELD GROUP SUB-GROUP	18 SUBJECT TERMS (Continue on revers	e if necessary an	d identify by	r block number)	
19. ABSTRACTIContinue on reverse in necessary Chromit (1911) oxide films of novel spray pyroly is method acetylacetonate couplex, gav these films confirmed them t to be homogeneous and unifor characteristics of films pre	and identify by block is 2000A thickness Different spi e different rate o be 2-Cr203. T m with breakdown pared from diffe	number) s were deposit ray solutions es of film de The deposited n potentials erent spray s	ited on n-ty s, all conta eposition. d films of a in excess o solutions an	ype silic aining a IR spect alpha-Cry of 20 V. re compar	con wafers by a chromium troscopy of 203 were found The red and discusse	
2) * Thin films to					1	
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT		21 ABSTRACT SE	ECURITY CLASSIFI			
UNCLASSIFIED/UNLIMITED SAME AS 22a. NAME OF RESPONSIBLE INDIVIDUAL	RPT DTIC USERS	22b, TELEPHONE	(Include Area Cod	e) 22c. OFF	ICE SYMBOL	
L		<u></u>				
DD FORM 1473, 84 MAR 83 A	PR edition may be used u All other editions are o	ntil exhausted. Ibsolete.	SECURITY	CLASSIFICA	TION OF THIS PAGE	

 10. J. Fournier, W. DeSisto, R. Brusasco, M. Sosnowski, R. Kershaw, J. Baglio, K. Dwight and A. Wold, <i>Hat. Res.</i> <i>Bull.</i>, <u>23</u>, 31 (1988). 11. D. E. Aspena and A. A. Stunda, <i>Phys. Rev. B</i>, <u>21</u> (2), 985, (1983). 12. G. Lucovsky, R. J. Sladek and J. V. Allen, <i>Phys. Rev. B</i>, <u>16</u>, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro <i>Chim. Acta</i>, <u>38A</u> No. 7, 797 (1982). 	 J. Fournier, V. DeSisto, R. Brusasco, M. Sosnowski, R. Kershaw, J. Baglio, K. Dwight and A. Wold, Hat. Res. Bull., 22, 31 (1988). D. F. Aspena and A. A. Stunda, Phys. Rev. B, 27 (2), 985, (1983). G. Lucovsky, R. J. Sladek and J. W. Allen, Phys. Rev. B, 16, 4716 (1977). C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, 38A No. 7, 797 (1982). 	 10. J. Fournier, W. DeŚisto, R. Brusasco, M. Sosnowski, R. Kershaw, J. Baglio, K. Dwight and A. Wold, Mat. Res. Bull., 22, 31 (1988). 11. D. E. Aspena and A. A. Stunda, Phys. Rev. B, 21 (2), 985, (1983). 12. G. Lucovsky, R. J. Sladek and J. W. Allen, Phys. Rev. B, 16, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, 38A No. 7, 797 (1982). 	 10. J. Fournier, W. pešisto, R. Brusasco, H. Sosnovski, R. Rershaw, J. Baglio, R. Dwight and A. Wold, Mat. Res. Bull., 22, 31 (1988). 11. D. E. Aspena and A. A. Stunda, Phys. Rev. B, 21 (2), 985, (1983). 12. G. Lucovsky, R. J. Sladek and J. W. Allen, Phys. Rev. B, 16, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chis. Acts, 38A No. 7, 797 (1982). 		1250	Y-T. QIAN, et al.	Vol. 25, No. 10
 11. D. E. Aspena and A. A. Stunda, Phys. Rev. B, <u>27</u> (2), 985, (1983). 12. G. Lucovsky, R. J. Sladek and J. W. Allen, Phys. Rev. B, <u>16</u>, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, <u>38A</u> No. 7, 797 (1982). Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Codes Avail and/or Special A-/	 11. D. E. Aspena and A. A. Stunda, Phys. Rev. B, <u>27</u> (2), 985, (1983). 12. G. Lucovsky, R. J. Sladek and J. W. Allen, Phys. Rev. B, <u>15</u>, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, <u>38A</u> No. 7, 797 (1982). Accession For NTIS GRAAI Distribution/ Availability Codes Avail and/or Dist Special Avail and/or Dist Special A-1	 11. D. E. Aspena and A. A. Stunda, Phys. Rev. B, 27 (2), 985, (1983). 12. G. Lucovsky, R. J. Sladek and J. V. Allen, Phys. Rev. B, 16, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, 38h No. 7, 797 (1982). 	 11. D. E. Aspena and A. A. Stunda, Phys. Rev. B, 27 (2), 985, (1983). 12. G. Lucovsky, R. J. Sladek and J. V. Allen, Phys. Rev. B, 15, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chiz. Acta, <u>388</u> No. 7, 797 (1982). 		10. J. Fournier R. Kershaw, <i>Bull.</i> , <u>23</u> ,	, W. DeSisto, R. Brusasco, M. Sosnowski, J. Baglio, K. Dwight and A. Wold, <i>Mat. Res</i> 31 (1988).	•
 12. G. Lucovsky, R. J. Sladek and J. W. Allen, Phys. Rev. B, <u>16</u>, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, <u>38A</u> No. 7, 797 (1982). Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Codes Avail and/or Dist Special Avail and/or Special A-/	12. G. Lucovsky, R. J. Sladek and J. W. Allen, Phys. Rev. B, 16, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chiz. Acta, <u>38A</u> No. 7, 797 (1982). Accession For NTIS GRAAI DYIC TAB Unannounced Justification By Distribution/ Availability Codes Availa and/or Dist Special	 12. G. Lucovsky, R. J. Sladek and J. V. Allen, Phys. Rev. B, 16, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Igleslas. J. Spectro Chis. Acta, <u>38A</u> No. 7, 797 (1982). Accession For NTIS GRA&I DIST: TAB Unannounced Justification By Distribution/ Availability Codes Dist Special Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes Availability Codes Dist Special A-/	 12. G. Lucovsky, R. J. Sladek and J. V. Allen, Phys. Rev. B, <u>16</u>, 4716 (1977). 13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, <u>38A</u> No. 7, 797 (1982). Accession For MITIS GRAAI DYIC TAB Unannounced Justification By Bistribution/ Availability Codes Availability Codes<		11. D. E. Aspen (1983).	a and A. A. Stunda, <i>Phys. Rev. B</i> , <u>27</u> (2), 9	35,
13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, <u>38A</u> No. 7, 797 (1982).	13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, <u>38A</u> No. 7, 797 (1982). Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Codes Availability Codes Availability Codes Availability Codes	13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, 38A No. 7, 797 (1982).	13. C. J. Serna, J. L. Rendon and J. E. Iglesias. J. Spectro Chim. Acta, <u>38A</u> No. 7, 797 (1982). Accession For NTIS GRAAI Unannounced Justification By Distribution/ Availability Codes Dist Special A-/		12. G. Lucovsky <u>16</u> , 4716 (1	, R. J. Sladek and J. W. Allen, Phys. Rev. 977).	Β,
Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Codes Avail and/or Dist Special A-/	Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Codes Availability Codes Availability Special A-/	Accession For NTIS GRA&I DTIC TAB Unannounced Justification By Distribution/ Availability Codes Availability Codes Availability Special A-/	Accession For NTIS GRAAI DATE TAB Unannounced Justification By- Distribution/ Availability Codes Availability Codes A		13. C. J. Serna Chim. Acta,	., J. L. Rendon and J. E. Iglesias. <i>J. Spec</i> <u>38A</u> No. 7, 797 (1982).	tro
						Accession For NTIS GRAAI DTIC TAB Unannounced Justification By Distribution/ Availability Codes Avail and/or Dist Special D	DITIO CHPY INSPECTED
				i inter inge	ļ		

٠ŧ

i

ł

!

Vol. 25, No. 10

1

-

THIN FILMS

Conclusions

Solutions of chromium acetylacetonate in acetic acid, in 30% ethanol/water, and in pure ethanol have been evaluated as source materials 1.5r the preparation of α -Cr₂O₃ films on silicon substrates. These solutions were nebulized, sprayed onto the substrate, and thermally decomposed. The optimum preparative conditions were determined. High quality, uniform films free of pinholes, comprised of small particles, and with high dc breakdown voltages were obtained from all three solutions. Thus, the relatively inexpensive technique of spray pyrolysis is shown to be an effective alternative to evaporation (1), sputtering (1-3), and MOCVD (4) for the preparation of α -Cr₂O₃ films. However, there were appreciable differences in deposition rate, in crystallinity, in surface morphology, and in density for films prepared from different solutions.

Acknowledgments

This work was partially supported by the Office of Naval Research, by NSF Contrac No. DMR 880 3184, by Eastman Kodak Company and by the GTE Labs, Inc.

.... × . ¥. . References 7 "1977 Annual Report, R. D. Évans/'C. H. Cooke, 1. Conference on Electrical Insulating and Dielectric _____Phenomena", Committee on Dielectrics Assembly of Engineering **** National Research Council, National Academy of Sciences, . .. Washington, D G. (1979) p. 142. 2. R. C. Ku. W. L. Winterbottom, Thin Solid Films, 127, 241 (1985) 100 . 1 14 4:2 3. R. E. Kirby; E. L. Garwin, F. K. King and A. R. Nyaiesh, J. Appl. Phys., <u>62</u>, 1400 (1987). 4. M. Seo, K. Takemasa and N. Sato, Appl. Surface Sci., 33/34, 120 (1988). 5. D. Albin and S. H. Risbud. Adv. Ceram. Hat. 2 (3A) 243 (1987). 6. W. DeSisto, M. Sosnowski, F. Smith, J. DeLuca, R. Kershaw, K. Dwight and A. Wold, Mat. Res. Bull., 24, 753 (1989). 7. P. Wu, Y-M. Gao, J. Baglio, K. Dwight and A. Wold, Nat. Res. Bull., 24, 905 (1989). 8. W. DeSisto, Y-T. Qian, C. Hannigan, J. O. Edwards, R. Kershaw, K. Dwight and A. Wold, To be published in Materials Research Bulletin. ſ 9. W. C. Fernelius and J. E. Blanch, in "Inorganic Synthesis", 1 Vol 5, T. Moeller, ed., McGraw Hill, New York, 1957, p. 130.

Ţ

Films prepared from the 30% ethanol/water, solutions produced an unusually intense CO6 peak in their x-ray patterns. There do not appear to be any obvious correlations between the (OO1) plane of α -Cr₂O₃ and the (100) plane of silicon to give rise to preferential growth. However, the typical photomicrograph of similar films (Fig. 2b) shows them to consist of acicular particles. It does not seem unreasonable in this case to attribute the modification of normal α -Cr₂O₃ x-ray peak intensities to the shape of the particles. Finally, films prepared from pure ethanol solution produce such broad x-ray peaks that the 104 peak at 33.6° and the 110 peak at 36.2° overlap. This confirms the poor crystallinity inferred above from the particle morphology observed by electron microscopy.

Films of approximately 2000A thickness prepared from all three solutions gave the same IR spectra, shown in Fig. 3. This consists of five distinct absorption peaks which are characteristic of α -Cr₂O₃ (12,13).

DC current-voltage measurements were made on films of approximately 2000A thickness prepared from all three solutions. No voltage breakdown was observed for potentials up to 20V applied to any of the evaporated gold electrodes. However, films prepared from the 30% ethanol/water solution showed an appreciably greater leakage current (lower resistance) than films prepared from the other solutions. This characteristic may be related to the lower density of these films observed (Fig.2b) by electron microscopy.

α (

C3 (I

!

used. The spectra of the films were obtained by subtracting the spectra of the uncoated substrates measured prior to film deposition from the corresponding spectra of the coate, substrates measured after deposition.

Electrodes for measuring the electrical transport properties of the films were prepared as follows: gold was evaporated through a mask to obtain an array of circular electrodes of area 1.1 mm² each on the surface of the chromium(III) oxide film; an indium alloy (Indalloy #9, Indium Corporation of America) was ultrasonically bonded to the back of the silicon substrate. Contact to a gold electrode was made by touching a gold-tipped micromanipulator to the desired spot. The dc current-voltage behavior was measured with the gold positively biased with respect to the substrate and with the reversed polarity.

<u>Results and Discussion</u>

Films of chromium(III) oxide of approximately 2000Å thickness have been deposited on silicon by the spray pyrolysis of solutions of chromium acetylacetonate using the conditions given in Table I. However, the time required for the deposition of this standard thickness varies greatly among the three solutions; Bhr for the 0.005M solution in acetic acid, 4hr for the 0.007M solution in 30% ethanol/water, and 2hr for the 0.01M solution in ethanol. For a given solvent, the deposition time would decrease with increasing concentration of Cr(acac)₃. The dramatic observed decrease suggests that the solvent may affect the composition of the complex, and hence its volatility.

The uniformity of the deposited chromium(III) oxide film depends most critically upon the nozzle-to-substrate distance. As shown in Table I, optimum uniformity requires slightly different distances for the three different solutions. The thickness of several films from each solution was measured at different positions with an ellipsometer. For the conditions given in Table I, the thickness of each film was found to be uniform to within 1% except near its very edge. Chromium(III) oxide films of approximately 2000Å thickness are yellow-green in color - the brightness and uniformity of this color confirmed the uniformity of film thickness.

Photomicrographs of 2000A films prepared from the three solutions are shown in Fig. 2. All three films appear to be homogeneous and free of pinholes, but there are some differences. The film prepared from the acetic acid solution is comprised of densely packed small particles (Fig. 2a) of about 400A diameter. Their distinct shape indicates appreciable crystallinity. The film prepared from the 30% ethanol/water solution consists of less densely packed, acicular particles (Fig. 2b) of approximately 1000x200A. These also show appreciable crystallinity. The films prepared from the pure ethanol solution again consist of densely packed small particles (Fig. 2c) of about 400A diameter, but their less distinct shape indicates a less crystalline character.

None of the above 2000Å films showed any peaks in their x-ray diffraction patterns. Hence films of 4000Å thickness were similarly prepared. The x-ray diffraction patterns of these thicker films showed only the characteristic peaks of σ -Cr₂O₃, which is consistent with the IR results discussed below. However, films prepared from the acetic acid solution produced an unusually strong 110 peak in their x-ray patterns, which indicates that there has been a (110) preferential growth of α -Cr₂O₃ on the (100)

ΞΟ(E

Vol. 25, No. 10

THIN FILMS

reactor by a carrier gas. The nebulized solutions were delivered to the substrate in 5 sec pulses with 15 sec intervals between pulses. The substrates consisted of 1 cm squares of n-type (100) silicon with 8 Ω -cm resistivity. They were cleaned and etched immediately prior to the deposition according to the procedure described by Fournier et al.(10) The reactor was heated by a two-zone mirror furnace (Trans-Temp, Chelsea, MA). Typical sets of reaction parameters for obtaining films of 2000° A thickness from the three solutions are given in Table I. Since the carrier gas for the solution of Cr(acac)₃ in pure ethanol was argon (for safety reasons), an additional heating for half an hour at 450° in oxygen was necessary.

Characterization of films

X-ray diffraction patterns of the films were obtained using a Philips Diffractometer with monochromated high intensity CuKa₁ radiation (λ =1.5404 Å). Diffraction patterns were taken with a scan rate of 1° 20/min over the range 20° < 20 <70°.

The thickness of the films was determined by ellipsometry using a Rudolph Research Auto EL-II Ellipsometer. The wavelength of the laser beam was 632.8 nm. The calculation of thickness from the observed data employed the values Ns=3.877 and Ks=0.019, respectively, for the real and imaginary parts of the index of refraction of the silicon substrates (11).

The surface morphology of the films was examined by means of a JEOL-840F Scanning Electron Microscope (SEM) operating at 4.5 kV.

The IR spectra were obtained using a Bruker IR 98 FTIR Spectrometer with a deuterated triglycine sulphate detector equipped with a polyethylene window. The light source was a Hg arc; 12, 6, and 3.5 μ m mylar beamsplitters were

Spray Solution:	0.005M in 0.66M Acetic Acid	0.007M in 30% Ethanol/water	0.01M in Ethanol
Substrate Temperature	450°C	450°C	450°C
Carrier Gas	Oxygen	Oxygen	Argon
Flow Rate	3.5L/min	3.5L/min	3.5L/min
Nozzle-Substrate Distance	7.3 cm	7.5 cm	8.5 cm
Cycle Time	20 sec	20 sec	20 sec
Nebulization Time	5 sec ·	5 sec	5 sec
Number of Cycles	1400	600	300

Table I: Reaction Parameters

1244

Y-T. QIAN, et al.

Vol. 25, No. 10

It was the purpose of this work to investigate the preparation and properties of thin α -Cr₂O₃ films deposited on silicon substrates by this spray pyrolysis method. Various solutions of chromium acetylacetonate were ultrasonically nebulized, sprayed onto silicon substrates, and thermally decomposed at a low temperature. The resulting chromium(III) oxide films were characterized by x-ray diffraction, ellipsometry, scanning electron microscopy, IR spectroscopy, and their electrical transport behavior.

Experimental

Preparation of solutions

Chromium acetylacetonate $Cr(acac)_3$ was prepared as described in the literature (9). Three different chromium acetylacetonate solutions were used for spray pyrclysis in this investigation: (a) Solutions of 0.005M Cr(acac)₃ in 0.66M acetic acid were prepared by slowly dissolving 0.438g of Cr(acac)₃ in 10 ml of acetic acid in a 250ml volumetric flask which was then filled to volume with distilled water; (b) solutions of 0.007M Cr(acac)₃ in a 30% ethanol/water mixture were prepared by slowly dissolving 0.613g of Cr(acac)₃ in 75ml of ethanol in a 250ml volumetric flask which was then filled to volume with distilled water; (c) solutions of 0.01M $Cr(acac)_3$ in pure ethanol were prepared by putting 0.875g of Cr(acac), in a 250ml volumetric flask which was then filled to volume with ethanol.

Preparation of films

The above solutions of chromium acetylacetonate were ultrasonically nebulized, sprayed onto silicon substrates, and thermally decomposed at 450° in the reactor shown in Fig. 1. The solutions were nebulized by a commercial ultrasonic humidifier (Holmes Air) and the resulting mist was swept into the

8 Ultrasonic Humidifier

