
REPORT DOCUMENTATION 98
Public reporting burden to( this collection of Information Is estimated to average I hlour per response. Ir 0 athering and
suggestionsfor reducing this burden. toWashngton Headquarters Services. Directorate for Information Op 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington. 2
1. AGENCY USE ONLY (Leave bank 2- REPORT DATE

I Jinuary 1991

4. TITLE AND SUBTITLE 5 FUNDING NUMBE7S

DYNAMIC GENERATION OF BINDS AND DEFINES IN OCI In-house

6. AUTHOR(S)

M. P. Moser

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANTATION
REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000 C
9. SPONSORING/MONIORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORINGCT r- AGENCY REPOR1 NUMBER

Naval Ocean Systems Center AGNC RPO UME

San Diego, CA 92152-5000

11. SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILTY STATEMENT 12'. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

. A 'C' structure and the ORACLE Call Interface (OCI) describe function, (ODSC), can be combined to provide a
method of dynamically building OCI bind and define statements for various SQL statements. The resulting program requires
no special knowledge about any tables or columns and is unaffected by database alterations. This paper describes the
construction of the 'C' structure, the usage of the OCI functions ODSC, ODFINE, and OBNDRV, and the procedure of
combining them into a finished program. AcoeioS For

.TIS iAI"' ;DTIC TAB

justileatio-

D stribut i on/

AvalabIlItY Cod

D1 SpecUat

Published in Proceedings of the 1990 International Oracle User Group, September 1990, pp. 347-356. /s

14 SUBJECT TERMS NUMB t OF PAGES

16 PRICE CODE

17. SECURITYCLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURIYCLASSIFICATION LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED IUNCLASSIFIED SAME AS REPORT

qSN 7540-01-28W5500 Standard form 298



Dynamic Generation of BINDs and DEFINEs in OCI
Mike Moser
Naval Ocean Systems Center

Abstract
A 'C' structure and the ORACLE Call Interface (OCI) describe
function, (ODSC), can be combined to provide a method of
dynamically building OCI bind and define statements for various
SQL statements. The resulting program requires no special
knowledge about any tables or columns and is unaffected by
database alterations. This paper describes the construction of
the 'C' structure, the usage of the OCI functions ODSC, ODFINE.
and OBNDRV, and the procedure of combining them into a finshed
program.

Introduction
Consider an application that is running in batch mode or that
does internal data queries in a non-interactive mode. Frequently
data must be retrieved fro-a numerous tables or different columns
of data from the same table. Both cases require new bind
statements to be executed before a new query can be processed.
Considerable coding can Le saved, if only one bind statement is
repeated within a loop while being updated with new values. This
technique provides greater flexibility while reducing main-
tenance. The method to be described dynamically prepares simple
select and insert SQL statements for processing. The coding
examples run under UNIX on SUN 3 or 4 computers using ORACLE
versions 5 and 6.

Structure
The key component of this procedure is a 'C' structure designed
to hold the information returned by the ODSC and other data that
is returned when a query is run. The structure is:

struct attributes
(char chardata[50];
char field nam2[30j;
int ctype flag;
short int field wid;
short int fldname len;
short int fld len;
short int field-null;

1

The "char data" variable is the location to which queried data is
returned from ORACLE or where input data is stored just prior to
insertion into ORACLE. Its address is the one bound or defined
to the cursor. The char data field is defined as character
string data, because ORACLE is very good at manipulating this
type of data. When data is extracted out of number or date
fields in ORACLE tables it is easily and automatically converted
by ORACLE to character string format to match the defined
variable. Likewise data passed from character string variables
to ORACLE fields defined as number or date is also automatically

1



converted.
The "fieldname" variable holds the column name in the specified
table, which is obtained with the ODSC call. The "ctype fla"
variable holds the ORACLE code describing the column's data type.
A one indicates character data, two indicates number data, and
twelve indicates date data. It is obtained from the ODSC call.
The "field wid" variable is an integer obtained from the CDSC
call. For character columns it is the number specified in the
creation command. Number columns are always 22 and date columns
are 7. The fldname len variable is an integer obtained from the
ODSC call that gives the number of characters in the column name.
Both the "fld len" and "field null" variables only recieve values
when a select statement is executed. The "fld len" is an inteaer
indicating the actual length of the data returned and the
"field null" is set to one (or true) if the column contains no
data. The structure is envoked as an array of structures and as
a pointer to the array.

attributes att[HAXCOLS], *field no;

The array "att" has as many members as the maximum number c-
columns (MAXCOLS) expected in any table. Field no is set tc
point at the member of the array containing the column (or fielJ'
to be describe&.

C Program Design
The following code is designed as a set of subroutines that can
be inserted into a C program which is doing OCI calls. They each
involve the 'attribute' structure, so the suggestion is to place
it before the program main() in order to give it global scope.
For organizational purposes, storing the structure in a header
file and including it with a #include seems reasonable. In the
following program outline the starred (*) portions are the ones
related to this discussion. The basic program logic is:

Logon to ORACLE and open a cursor

Get the SQL statement

Parse the SQL statement to determine:
the type of statement
the columns involved
the table referenced

Use odsc to get data about each column and store it in an
array of structures

Pass the SQL statement to the cursor with OSQL3

Bind or define the variables as appropriate

* Execute the SQL statement and fetch or insert the data

Clean up and logoff

Logging on to ORACLE and opening a cursor is the first step. The

2



only issue here is having the cursor variable available as either
a global or passed parameter.

The second step is simply providing some method of passing the
text of the SQL statement to be processed to the subroutines. In
the developmental version the SQL statemcnt is stored in a flat
text file and the name of the file is passed as a command line
parameter. Then inside the program the file is opened aid read
into a character string variable.

The third step is crucial, if the method is to handle insert or
update SQL statements. The ODSC call only works on select
statements, so the insert and update statements must hP orseH.
The parsing is done to determine which columns in which tables
are going to be recieving data. This column and table
information is then used to build a select statement for the ODSC
call. It is this select statement that is passed to the next
step, not the original SQL statement. The appendix contains a
sample subroutine for doing this.

The next step is the basic subroutine that uses the ODSC call, it
is 'fld desc'. In the call to 'fld desc' a string variable is
passed that contains a select statement devired from the SQL
statement that will eventually be processed. If the SQL
statement to be processed is a select, then there is no proclem
and it should be used. However, if the SQL statement is an
insert or update, then the procedure described above is needed.
The following code segment gives the entire 'fld desc'
subroutine.
/ ****************

** FLD DESC() **
, **************

This function fills the 'att' structure with the data about
the fields referenced in a sql-statement as described by the
ORCACLE OCI function 'odsc'. */

fld_desc(sqlstmnt,qrystmnt)
char *sqlstmnt;
char *qrystmnt;
{

extern char *strim(;
ORACHAR (cname,30);
ORACHAR (coltype,6);
ORACHAR (tname,30);
short width, scale, ctype, cnamelen;
int goodfield, all fields, no-fields, fieldcount, cur siz=O;
int i,totalfields=O,got table;

/* Initialize variables and structures *1
initattdata(;

/* Try query to see if any values would be returned. */
if (stmt type == 1) ( /* run user's select statement */

if (OSQL3(curs,sqlstmnt))

3



oracerr(curs,10);
)
if (stmt type == 2) ( /* run select statment made from insert stit *.'

if (OSQL3(curs,qrystmnt))
oracerr(curs,10);

}
if (!(*curs)) OEXEC(curs);

if (!curs) OFETCH(curs); */ /*send dummy select*/
if (curs == 4) (
printf("\nThe table contains no data relating to your conditions!!\n

)
else */
if '!(*curs)) { /*got good table*/

field-count = 1;
got-table = TRUE;
field no = att;
cnamelen = 30;
if (odsc(curs,l,&width,(short *)-l,(short *)-l,&ctype

,cname,&cnamelen,&scale))
oracerr(curs,9);

while (!(*curs)) ( /*load column descriptions & define data buf
strim(fieldno->fieldname,cname,cnamelen) ; /*pack name*/
goodfield = TRUE;
if (goodfield) {

no fields = FALSE;
if (scale > 240) scale = 0;
field no->fldname len = cnamelen;
field no->field wid = width;
field -no->ctype flag = ctype;
total fields++;
field-no++;

I
width = 0;
cnamelen = 30;
odsc(curs,++field_count,&width,(short *)-l, (short *)-i

,&ctype,cname,&cnamelen,&scale);
I
if ((curs[0] != 4) && (curs[0] != -303)) (

oracerr(curs,5);
got table = FALSE;

I

flds in tab = total-fields;
return;

The fifth step is to apply the OSQL3 call. One of its parameters
is the string containing the SQL statement to be processed.

The sixth step is to use the data collected in the structure to
do the actual bind or define calls. Some type of flag can be
used to indicate the type of SQL statement being processed so the
appropriate call can be made. The following code demostrates how
a "stmt_type" flag (defined in step 3) is used:

4



**DOBND -DFN()*

This fuaiction bi4nds or defines the variables in t-he SQL
statement based on the 'ctype' of the statement as determined
in the PARSE_ -SQLSTMT function. *

do bnd_dfn(arry)
char arry[] [MAXFLENJ;

7* GLOBAL variables: stint type, att, fieldn, flds~in~tab, flds-in-sql*/
int i, j;

field-no =att;
for (j=O; j<flds -in -tab; j++){

switch (stint type){
case 1:

dfin_-4_-slct(j);
break;

case 2:
bnd_-4_-nsrt(j);
br E~ak;

case 3:
7* bnd_4updt();*/

break;
4/* end switch *

}/* end forj *
return;

dfin_-4_slct(i)
mnt i;

if (odefin(curs,i+l,field -no->char_data,50,l,-l,
&field -no->field_null, (char *)-l,-l,-1,&field no->fld len,
(short *)-1))
oracerr(curs,7);

field no++;
return;

bnd_4_nsrt(j)
mnt j;

char orafld-name[20];

strcpy(orafld-name," )

strcpy (orafld name,"1:");
strcat(orafld name,field no->field_name);
if (OBNDRV(curs,orafld -name,field-no->char_data))

oracerr(curs,8);
field no++;
return;

5



The seventh step is where the inputs and outputs are tailored to
the specific application. Different cases will be needed for
each type of SQL statement. In the example given below the
retrieved columns from the select statement are written as
specially formatted records to a flat file. The data to be
inserted is read directly from an ASCII file into the fields of
the structure. This requires coordination between the order of
the data and the order of the fields in the insert statement.
The update data is handled in a fashion similar to the insert
data.

if (stmt_type ==1)
if (OEXEC(curs)) /* EXECUTE THE SQL STATEMENT */

oracerr(lda, 4);
field no = att;
while (!*curs && !end of table){

OFETCH(curs) ;
if (*curs == 4)

end of table = TRUE;
else if (*curs)

oracerr(lda,6);
else

for (i=O,fieldno = att; i<fldsintab; i++,fieldno++)
pad();
printf("%s ",fieldno->char_data) ;

/* end for */
printf ("\n");
field no = att;

/* end else */
/* end while */

/* end if */
else if (stmt_type ==2) (

if (!getdatafilename(argv[2]))
fprintf(stderr,"bad command line specification\n");

while (fgets(line,BUFLEN,file in)) {
if (feof(filein) 1I ferror(filein)) (
printf ("Processing complete--EOF");
break;

}
while (line[O] == '\n')

fgets(line,BUFLEN,filein);
lineptr = line;
for (i=O,fieldno=att; i<flds in tab; i++,fieldno4+)
fieldno->char data[O] = '\0';
start = nxtwrd(lineptr);
end = start;
while ((c = *(end++)) != ','&& c != '\n') ;
line ptr = end;
--end;
strncat(field no->char data,start,end-start);
fieldno->char data[end-start] = '\0';

} /* End for */
if (!OEXEC(curs)) /* EXECUTE THE SQL STATEMENT */
oracerr(lda, 11);

/* End while */

6



fclose(filein);

/* end else if */
oclose (curs);
ologof(lda);

The final step consists of the normal housekeeping chores of
closing open files, closing open cursors, and logging off of
ORACLE.

This paper demostrates how a few short subroutines can replace
hard coded bind and define statements. In cases where many tables
are involved, the amount of code will be greatly reduced. Also
more flexibility will be gained in situations where many
different queries need to be run. Hopefully, the code examples
will make it easy to impliment into new developments as well
as into existing applications.

Appendix

1) Header Files, Macros, and Global Variables:

4#include <stdio.h>
#include <ctype.h>
#include "otabatt.h"
#include "oracle.h"
#include "genmacros.h"

#define MAXFIELDS 50
#define MAX ROWS 20
#define MAXFLEN 80
#define NUMLEN 10
#define DATELEN 9
#define BUFLEN 200
#define DEBUG 1

struct attributes att[MAXFIELDS], *fieldno;

short int lda[32], curs[32];
static char uidpw[10] = "tabi/net";
char *otable;
FILE *file-in;

char table name[20];
int flds-insql, fldsintab, stmt_type;

7



2) Sample Main Program:

main(argc, argv)
int argc;
char **arg-v;

static char sqlstmnt[lOOO];
static char qrystmnt[lOOO] ="select "

char ifld_arry[MAXFIELDS'rMAXFLEN];
char line[BUFLEN], *lineptr, *end, *start;
char c, *nxtwrdo;
int i,end-of-table=FALSE, wrdlen;

if (!getsqlstmt(argv[l] ,sql_stmnt))
fprintf(stderr,"bad command line specification\n");

cvtupper (sqlstmnt);

parse sql stint(sql stmnt ,qrystmnt);

if (OLON(lda,uidpw)) ( /* LOGON TO ORACLE *
oracerr(lda, 1);

if (OOPEN(curs,lda)) ( /* OPEN A CURSOR *
oracerr(lda, 2);

ifld-desc(sql_stmnt,qrystmnt) ; /* CREATE THE TABLECOLUMNS ATTR7BUTE F7L

if (OSQL3(curs,sqlstmnt)) (/* DEFINE THE SQL STATEMENT*/
oracerr(lda, 3);

'i'- df" ~/* nDYNAMTC BIND & DEFINE ROUTINE *

/* Main processing code taken from here and put on page 6 *

)/* end of main *

3) Related Subroutines:

**PAD() *

This subroutine is an example of how some of the other fields in
the "att" structure can be use. It produces a screen output similar
to sqlplus.*/

pad()

char tempstr(30], padstr[30], *padptr;
char *blank fill();
mnt nul_val, ctype, i, max_wid, act-wid;

nul -val = field-no->field-null;
ctype = field no->ctype flag;
max wid = field no->field wid;
act-wid = field-no->fld-len;

8



tempstr[O] = \;
if (nul -val > -1) strcat(tempstr,field-no->char-data);
switch (ctype)(

case 1: for (i=O, padptr = padstr; i<max wid-act wid; i-.-,padptr--
*padptr =

padstr[i] = \;
if (nul_val > -1) strcat(0'idstr,tempstr);
strcpy(field-no->char-data,padstr);
break;

case 2: for (i=O, padptr = padstr; i<NIJMLEN-act wid;i-,ppr--)
*padptr =

padstr~i] = \;
if (nul_val > -1) strcat_--padstr,tempstr);
strcpy(field-no->char-data,padstr);
break;

case 12: for (i=O, padptr = padstr; i<DATELEIN-act wid; i-,ait-
*padpt.r =

padstr[i] = \;
if (nul_val > -1) strcat(padstr,tenpstr);
strcpy(field no->char-data,padstr) ;ept<AEE
break;

return;

**INIT_-ATT_DATA()*

Function to zero out the structure "att" pointed to by field-n..

int init-att-data()

for (field -no = att, i = 0; i++ < MAXFIELDS; field_no++)
*field no->char data = NUL;
*field no->field name = NUL;
field no->ctype flag = 0;
field no->field wid = 0;
field no->fldname len = 0;
field no->fld len = 0;
field-no->field-null = 0;

return(0);

9



**GETSQL_-STMT()*

This routine takes the first command line argument as the name or-
a file containing a sql1 statement. It tries to ope-n it for reading-
and if successful, puts the contents into the variable sql-stnn-t)*,

int get sql_stmt(fnam7e,sql)
char *f-name, *sql;

int buf size =1024;
/* Open Input File *
if ( fname=--=NULL)

f printf (stderr, "No input file has been specif ied',,n"
return ( );

else
file-in= fopen(f-name,11rb1");
if (f ile-in==N1ULL)

fprintf (stclerr, "\nERROR Can't Open Input File= %s
exit (0);

f printf (stderr,'"Opened Input File ='Os \n", f name)
fgets(sql,buf1'size,file in);

fclose(file in);

**GET -DATAFILE NAME()*

This routine takes the second com-mand line argument as the na7.e cf
a file containing the input data. It tries to open it forrain.

mnt get datafile--nare(f name)
char *f-name;

mnt buf size = 1024;
/* Open Input File *
if ( fnam==NT!LL)(

fprintf (stderr, "No input file has been specif ied\n" )
return( 0);

else
file-in= fopen(f_.name,"1rb");

fprintf (stderr, "\nERROR Can't Open Input File= Is \n",f ae
exit (0)

fprintf (stderr, "Opened Input File =%s \n", f_name);

return(l);

10



*+PARSESQL STMT()*

This routine takes the sql statement and parses the fir-;t
into the variable "1stmnt type". Then, depending on t-- type c'§
oracle statement, puts all the field names into "arry" and, tll
table name into "1table name". *

parse_sqlst1-mt(s,c)
char s[], q[];

mnt fid cnt, 1, j, wrdlen;
ohar *end, lstwrdL20J, *cur, *start, *wrdendo )*n:xtwrd!('
char stmnt type'lO];

cur = start s,5

7*Put the first word in the variable "lstmnrt tve" *

end = wrdend(cur)
strncpy(st-nt type,cur,end - start)*
cur -end;

if (strcmr- stmntt ype,"IS ELECT")= C)
stint type = 1;
pars slct(cur,a);

clcx, if (st-rorp(stmnt t~pe,"INSERT"I) =0)

stmttype = 2;
c ur =n e;.rd (c ur,ls twrd, & drdlIe n)
setnul(lstwrd);
cur = newwrd(cur,lstwrd,&wrdlen);
strncpy(table name,lstwrd,wrdlen);
setnul(lstwrd);
cur = newwdrd(cur,lstwrd,&wrdlen);
if (strcmp(lstwrd,"VALUES") == 0)

strcat(q,"1 * from "1);
strcat(q,table-name);

else if (strcmp(lstwrd,"SELECT") ==0)

pars slct(cur,q);
strcat(q,table-name);

else
if (lstwrd[0] =

pars -lst(cur,lstwrd,q);
strcat(q,"1 from "1);
strcat(q,table_name);

else
printt("Improper sql statement\n");

return;



**PARS -LST() *

This subroutine parses the field names out of a list surroundeu
by "1( ) ". The f ield names are stored in 'ARRY' and the count of
fields is stored in flds-insql. *

pars_lst(cur,lstwrd,qry)
char *cur,*lstwrd,*qry;

mnt fld-cnt, 1, j, wrdlen;

f or (i=l, j=strlen (qry) ; i<strlen (lstwrd); i++, j --+)
qry[j] = lstwrdri];

qry[j] =\1

fld-cnt 1;
while (lstwrd~strlen(lstwrd)-l] =''

setnul (lstwrd);
cur = newwrd(cur,lstwrd,&wrdlen);
strcat(qry,", 1);
if (lstwrd[strlen(lstwrd)-l] =')

strcat(qry,lstwrd);
fid-cnt±±;

for (i=O,j=strlen(qry) ; i<strl-3n(lstwrd)-l; i++,j++)
qry[j) = lstwrdi;

qry[j] = \;
flds-in-sql = fid-cnt;
return;

**PARS_-SLCT() *

This subroutine parses the field names and the table name fror,
a SQL select statement. *

pars slct(s,q)
char s[], q[];

int fid_cnt=O,wrdlen;
char *end, curwrd[20], *cur, *start, *wrdend(),*nxtwrd(),*newwrdO)

cur = start = s

while (strncmp(curwrd ,"FROM",4) !=O)(
setnul (curwrd) ;
cur = newwrd(cur,curwrd,&wrdlen);
if (curwrcl[O] == 1*')

strcat (q,"1 * f rom 1) ;
cur = newwrd(cur,curwrd,&wrdlen);
goto tbl;

/*End if (curwrd) *
strcat (q, curwrd)
strcat(q," 11);

12



fild cnt++;
}/*Ena~ while (strncmp) *

fids-in_sql = --fld-cnt;

7* Get the table name and store it in tab *
tbl :cur = newwrd(cur,curwrd,&wrdlen);

strncpy (table_name, curwrd,wrdlen),

**NEWWRD() *

This subroutine returns a pointer to the character after the
current word in the statement buffer. It also returns the current
word and the length of the word via a passed mnt pointer. *

char *newwrd (buffptr, newwrd,wrdlen)
clar *buffptr, *newwrd;
mnt *wrdlen;

char *end, *start, *wrdend() *nxtwrd();

start = nxtwrd(buffptr); /*This gets the next word ,

end = wrdend(start);
*wrdlen = end - start;
strncpy(newwrd, start, *wrdlen);
return ( end)

**NXTWRD() *

This subroutine returns a pointer to the next non blank space
character in the buffer 'str'. The macros LF, CR, and TAB are
found in the header file /

char *nxtwrd(str)
char *str;

char c;
while ((c= *(str++))z 1 , c==LF c==CR C==TAB c==',');
str--;
if (c==NUL)

str = NULL;
return(str);

**ISACOMMA()*

This subroutine searches character by character through white
space in a string buffer for a comma. *

13



isacomma (str)
char *str;
{

char c;
while ((c= *(str++))==' 'j c==TAB

if (C == '')
return(l);

return(0);

/ ***************

** WRDEND() **
***** .* *** * ***

This subroutine searches character by character tirough a
string buffer looking for a non-alphanumeric character to
indicate the end of a word string. It returns a pointer to the
first non-alphanumeric character it encounters. */

char *wrdend(w)
char *w;
{

while ( *w !=' ' && *w !=LF && *w !=CR && *w !=TAB && *w!=',')
if (*w==NUL)

return (NULL);
W++ ;

I
return (w);

/ ****************

** ORACERR() **
*** *** * **** * ****

This ORACLE error analysis routine. Prints ORACLE's explanation
of the error and abandons execution of the program if the calling
short int is non-zero.*/

#define ORACLE 1

it oracerr(cur,n)
int n;
short cur[];
{
extern short lda[];
char msg[80];
if (!*cur) return(0); /*bail out of accidental call*/
printf("\nORACLE Error %d at program location %d",cur[0],n);
printf("\nFunction type %d, function code %d, error offset %d"

,cur[1],cur[5],cur[4]);
oermsg(cur[0] ,msg) ;
printf("\n%s\n\007\n",msg);
orol(lda);
ologof(lda);
exit(0);

/* end of file */

14


