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STATEMENT OF PROBLEM STUDIED 

The problem studied was motivated by the technological need to efficiently predict 

unsteady transonic flow with vortex effects. Although much progress has been made in the 

last decade1 in the numerical simulation of transonic flow typical of that occurring over 

wings of commercial aircraft, these flows usually have negligible vortical effects. In 

contrast, missiles flying at transonic speeds experience important effects due to separation 

and, thus, vortical effects. Consequently, the purpose of the present research was to derive 

a reduced set of governing equations which properly account for vortical effects in unsteady 

transonic flow, and to explore various implementations of this theory using well-tested 

potential flow solvers as a basis. The result will be efficient and cost effective computations 

for maneuvering missiles and aeroelastic effects. 

SUMMARY OF MOST IMPORTANT RESULTS 

A theory was developed to treat flow separation and related vortex effects in unsteady- 

transonic flow around slender bodies.2'3 This theory involves the simultaneous solution of a 

potential equation (or modified Transonic Small Disturbance Equation), a kinematic vector 

potential equation, and a three-dimensional unsteady vorticity transport equation for the 

streamwise (dominant) component of vorticity. The theory constitutes a subset of the Euler 

equations, where flow separation is modeled by introducing vorticity in the flow field by 

means of normal vorticity jets placed along the separation line. In this model, the location 

and strength of the separating vorticity are determined from empirical criteria.4 It was 

shown that the theory can be regarded as a unifying theory for all speed ranges since it 

provides a framework for incorporating vorticity into the classic potential equation for 

incompressible as well as compressible flow. As a further refinement, it was also shown that 

a second order correction to thepressure, namely the inclusion of the rotational streamwise 

velocity component, was critical in order to properly account for the tilting of lee-side 

vortices away from the body axis. 
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An extension of the analysis5 that included two components of vorticity showed that in 

the presence of constant shed vorticity the vortex must expand in size as it progresses down 

the body. This extended analysis also explained the creation of entropy when vorticity is 

introduced at a nonrnormal angle to the body, thus resulting in a loss of total pressure 

within the rolled-up vortex. An important result is that, for slender bodies, the three 

components of vorticity are separable in magnitude. 

The numerical implementation of the steady version of the theory was performed 

using a considerably developed form of the TWING potential code.6 Results for bodies at 

high angles of attack and at subsonic and transonic Mach numbers were obtained and 

compared to experiment and, for subsonic flow, to a discrete vortex method. These 

demonstrated the need for the aforementioned second order correction on the pressure. It 

was also found that numerical errors can dissipate an isolated vortex by a considerable 

amount, suggesting the need for further refinement of the vorticity transport algorithm. 

Similar problems were observed with the approximate factorization algorithm used in 

the unsteady implementation of the theory.3 The unsteady code was based on the well- 

tested unsteady transonic potential flow solver CAP-TSD. This code is capable of predicting 

the unsteady transonic and supersonic flow over a complete aircraft configuration including 

fins, stores, and pylons.7 Improvements in the representation of the fuselage on the one 

hand, and the development of an appropriate transfer of boundary conditions between the 

true and computational surfaces on the other, were found to be key considerations in being 

able to resolve vorticity transport close to the body.8 Time-accurate calculations using Ms 

substantially enhanced version of the CAP-TSD code were performed for complete missile 

configurations in the subsonic, transonic, and supersonic flow regimes. The results 

demonstrated that the flow around realistic angle of attack configurations could be 

calculated for unsteady transonic flow with separation, thus showing considerable potential 

for aeroelastic computations and unsteady aerodynamics. 

Due to the unavailability of experimental data for unsteady separated transonic flow 

over three-dimensional slender bodies, comparisons of time-accurate solutions with 

experiment could only be performed for steady angle of attack. In the unsteady cases, a 
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quasi-steady implementation of the modified Stratford9 criterion was used to pt .diet the 

instantaneous separation line. The question as to whether additional time lags may 

originate from the separation process itself was addressed by means of two-dimensional 

unsteady Navier-Stokes calculations of flow around a circular cylinder. The results of this 

effort indicated that the time dependent behavior of integral quantities (such as vorticity 

flux and drag coefficient) and to a lesser extent of the separation angle could be predicted 

with great accuracy using indicia! theory.10 The location of the separation point was found 

to be satisfactorily predicted within the range of frequencies corresponding to missile 

flutter. In particular, it was shown that substantial phase delays and overshoots of 

fluctuations in the vorticity flux could be attained within the range of frequencies of interest. 

Although these results were obtained for low Reynolds number laminar flow, they establish 

for the first time that several key aspects characterizing the time-dependent behavior of 

two-dimensional boundary layer separation may be predicted using indicial theory. 

Whether such ideas.are applicable to high Reynolds number turbulent flow for the 

development of fully unsteady separation criteria remains to be established. 

The unsteady computer code that was developed under the present contract is 

currently being used for sea-skimming missile applications (NSWC Contract No. N60921- 

90-C-0134), in which missiles flying close to the sea surface experience periodic gusts due to 

the waves. These gusts can excite structural (aeroelastic) modes which result in a 

deterioration of the control systems' performance.11 The unsteady aeroelastic effects make 

the code ideally suited for this application. The code is currently being enhanced to 

calculate the transonic and supersonic flow over a swept-finned missile of arbitrary roll 

angle configuration. This additional enhancement will be supplemented with a more 

complete version of the Transonic Small Disturbance Equation which includes the necessary 

nonlinearities for swept horizontal as well as vertical shocks. 
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The Occurrence of Multiple Solutions 
for the "TSD-Euler" Equation 

by 

David Nixon 

Nielsen Engineering & Research, Inc. 
Mountain View, California 

94043-2287    USA 

Summary 

In a recent paper the TSD- Euler equation for transonic flow has been 
derived. This equation is similar in some respects to the TSD equation but has 
both entropy and vorticity terms retained. In this paper the existence of multiple 
solutions for the TSD-Euler equation is examined and it is found that such 
solutions excist for a small range of Mach numbers and airfoil thickness. It is 
found also that the addition of a vorticity flux on the airfoil surface can enhance 
the appearance of multiple solutions. 



'"•itroduction 

The existence of multiple or "phantom" solutions in potential simulations of 
transonic flow was first described by Steinhoff & Jameson [1]. These solutions give 
lift for a symmetric airfoil at zero degrees angle of attack and appeared for a small 
range of Mach number. These phantom solutions appear when some degree of 
asymmetry, either in the algorithm or in the initial conditions, is introduced into 
the solution process for a certain range of Mach numbers. The asymmetry may 
also be introduced by a physical angle of attack. It appears that there is a certain 
range of Mach number in which the phantom solution is preferred to the 
conventional solution. Most of the early work on the occurrence of phantom 
solutions concerned steady flow, although Williams et al [2] solved the unsteady 
TSD equation to give phantom solutions for unsteady flows. Williams et al [2] 
also modeled viscous effects by a boundary layer displacement thickness and found 
phantom solutions for a slightly different Mach number range than for inviscid flow 
models. Nixon [3] attempted to explain mathematically the occurrence of phantom 
solutions and concluded that the flow must be transonic. Phantom solutions have 
also been found for three-dimensional flows [4]. These phantom solutions have, 
until recently, not been observed in equation sets other than the potential equation; 
although, it has been speculated by Williams et al [2] and Nixon [5] that they 
would exist for the Euler equations. All of these studies are concerned with 
potential flow, although Salas et al [6] did try to find phantom solutions for the 
Euler equations with no success. This paper is concerned with the possible 
occurrence of phantom solutions in the Euler equations although the analysis uses a 
subset of the Euler equations, called the TSD-Euler equation derived by Nixon [5]. 
It is concluded that for very thin airfoils at a freestream Mach number close to 
unity phantom solutions to the TSD-Euler equation exist. It is found also that the 
addition of vorticity at the airfoil boundary enhances the probability of obtaining a 
phantom solution. 

Examples of Multiple Solutions 

An example of the pressure distribution around a symmetric Joukowski airfoil 
at zero degrees angle of attack and M» = 0.85 is shown in Figure 1. This 
solution was produced by solving the transonic small disturbance (TSD) equation 
using the conservative Murman-Cole algorithm. The asymmetry was introduced as 
an initial condition. The phenomena appears for conventional lifting airfoils. An 
example [6] of the variation of lift coefficient, C^, with angle of attack a, for a 
RAE2822 airfoil is shown in Figure 2. It may be observed that at « = 0.6 
degrees, CL can have a value of about 0.5 or about 1.4. It is interesting to note 
that if the phantom solution is realizable the value of C^ would be three times the 
"conventional"  value. 

TSD-Euler Equation 

One possible reason for the inability to find phantom solutions for the Euler 
equations is that the algorithms for solving the Euler equations do not satisfy these 
equations on the airfoil surface since the tangential velocity on the surface are found 
by extrapolation from the interior. It is noted by Nixon [3] that it is the behavior 
of the potential equation on the surface that gives rise to the eigensolution 
necessary to obtain phantom solutions. To examine this aspect further, Nixon [5] 
derived a  "small disturbance" version of the Euler equations, the  "TSD-Euler" 



equation, which includes the first order effects of entropy and vorticity. This 
equation reduces to the classic transonic small disturbance (TSD) equation (for 
which phantom solutions can be computed) in the absence of vorticity and has the 
advantage that the basic equation is satisfied everywhere, thus allowing the 
emergence of the necessary eigensolution. 

The TSD-Euler equation [5] is given by 

[ p\ - k £ 1  ♦ v = (|) 
1 2   Jx        y (1) 

where u and v are perturbation velocities in the x and y directions, respectively, 
nondimensionalized with respect to freestream values. S is the entropy change, R is 
the gas constant and 

ß2 = 1 - M2,;    k = (7 + 1) M2 

(2) 

where M» is the freestream Mach number.    If ^ is a perturbation velocity potential, 
and f is a vector potential, then 

u = K + t 

v = t    - f* 
(3) 

and 

''xx + *yy = "" (4) 

where the vorticity u is related to the entropy S by Crocco's theorem.     The 
entropy generated at a shock is given by 

S „       27 (M+2 - l)3 

R     (7 + I)2 
(5) 

where M    is the Mach number just ahead of the shock and is related to u. The 
entropy generated by the shock is constant with respect to x aft of the shock. The 
tangency boundary condition is represented by the thin airfoil approximation so that 
the equation and its boundary condition'; reduce to the classic TSD formulation in 
the absence of vorticity.    The tangency boundary condition is given by 

y     xr = *° (6) 
where y = ys(x) denotes the airfoil. 

-2- 



Equation  (1)  with its boundary condition, Equation  (6),  and the vorticity 
equation, can be written in similarity form to give 

1       2   Jx      y      (7 + 1) 

v(x,*o) =Kys'(x) (8) 

ü = ?x + />2 ?_ 5    T = ?_ - ? (9) 
y y 

p2 ?„ + yxx = -»= T
2
*- /J

3
 ^ [(i-ü+)3] 

yy (7+1)        9y (">) 

where   J = /.2 ^; j» = /«3 J»; W = /.3 u, y = ßy   and ü+ is the value of 

u just ahead of the shock. In the derivation of Equation (10) the first order 

approximation to Crocco's Equation has been used; thus 

---4 ^ (S/R) <"> w„   y 

K 7ye = ye where r is the thickness of the airfoil then a transonic similarity s   s 

parameter, K, can be defined as 

K = kr/^ (12) 

The transonic similarity parameter, K, is constant for combinations of Mach 
number and thickness; if the airfoil is very thin the Mach number approaches unity 
and the entropy production vanishes as r*o and /72+o. Thus for a given K it is 
possible to approach the TSD equation arbitrarily closely by varying the thickness 
and the Mach number. 

The set of equations, Equations (7-10), can be solved using the same algorithm 
and treatment of the boundary conditions used in the TSD example, thus ensuring 
that a phantom solution can be obtained as /J-K). 



Addition of Vorticity 

If any vorticity is introduced into the two dimensional flow the vorticity vector 
will be aligned with the spanwise direction and the magnitude of the vorticity will 
not change in this direction.    According to the equations of Klopfer and Nixon (7) 
this vorticity is convected like 

(wu)x + (wv)y = 0 (13) 

to a fkst approximation.     The velocity  induced by the vorticity is  given by 
Equation (4) or Equation (10).    In these models vorticity is defined as 

vx - uy = w (14) 

Using Equation    (14)  and Equation (13) gives an alternative representation of the 
vorticity transport, namely, 

Axx + Ayy = "2 + ux" ~ V <15> 

where 

Ax = « v; Ay = - « u (16) 

A suitable boundary condition for Equation (15) is that normal derivatives of A are 
specified on the boundaries, that is    Neumann boundary conditions are used. 

Equation (15) can be solved using a simple central differencing scheme with 
the vorticity terms on the right hand side set retarded by one iteration. Equation 
(15) can be solved iteratively with Equations (l), (3), (4), and (5). 

In one of the examples discussed in the next section a small amount of 
vorticity, comparable in magnitude to the shock generated vorticity, is introduced 
over a small part of the chord (usually over three grid points). The amount of 
vorticity, w, is symmetric on both surfaces of the airfoil; the symmetry or 
asymmetry of u depends on whether a phantom solution is present. 

Results from the TSD-Euler Equation 

It has been found that phantom solutions for the TSD-Euler equation, 
Equation (l), for the NACA00XX series airfoil, can only be obtained for a very 
thin airfoil at a freestream Mach number close to unity. This is in keeping with a 
suggestion of Williams et al [2]. An example for a 0.00076% thick airfoil at 
M» = 0.9945 is shown in Figure 3. The lowest Mach number for which a 
phantom solution could be obtained is 0.986 for an airfoil of thickness 0.003%, 
These results indicate that the occurrence of the phantom solutions in the Euler 
equations is not likely to be of practical interest. 
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As an experiment a vorticity source, equivalent to a heat sink, was placed 
upstream of the > shock waves on the airfoil surface. The entropy induced by this 
source is approximately the same magnitude of that produced by the shock but 
with the opposite sign; (S/R) is of the order of 10~4. Using this device it proved 
possible to generate a lifting solution for a Mach number of 0.945 for a 2 1/2% 
thick airfoil; the solution is shown in Figure 4. This is a much more interesting 
proposition than the previous cases. It can be inferred from this result that a 
small amount of vorticity can greatly increase the chance of getting the phantom 
solution. 

If the phantom solutions found for the TSD-Euler equations could be made 
physically realizable they are only practical if a vorticity source is inserted into the 
airfoil boundary, indicating that a control device is necessary to obtain these 
solutions. The fact that phantom solutions have been found for flows with shock- 
induced and distributed vorticity suggests that the solutions can be obtained for the 
Navier-Stokes equations. The calculations reported by Williams et al [2] for 
boundary layer flows reinforce this point. It is suggested that the phantom solution 
are realizable and that these could provide radically increased aerodynamic efficiency 
of conventional flows as may be observed. from the result shown in Figure 2. 

Concluding Remarks 

An equation with many similarities to the Euler equations has been examined 
for the occurrency of multiple or phantom solutions. It is concluded that although 
these solutions do exist it is for a much more restrictive range of Mach numbers 
than the potential equation. If a small amount of vorticity is introduced into the 
flow through the airfoil surface, upstream of the shock, then phantom solutions can 
be found for a much larger range of Mach number. Since this model has vorticity, 
entropy and shock waves represented it is speculated that phantom solutions could 
be found for the Navier-Stokes equations. The fact that such solutions of the 
potential equation coupled with a boundary layer model serves to reinforce this 
point. 

If the Navier-Stokes equations have phantom solutions similar to those found 
for the potential or TSD-Euler equations then it may be possible to exploit this 
"new" aerodynamic phenomena to radically improve aerodynamic efficiency. In fact 
there may be many instances of phantom solutions involving more than one location 
of concentrated vortices, shock waves, or shear surfaces that could be used to 
revolutionize aircraft flight if these phenomena can be made to occur and stabilized 
in a real flight. 
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Figure 1.- Lift-a curve obtained 
with FLO 36 for an 
RAE 2822 airfoil* 
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Figure 20- Pressure distribution 
around a 11•8% Joukowski 
airfoil; M = 0o85, a = 0.0°. 
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Figure 3.- Pressure distribution around 
a NACA00XX airfoil, M^ = 0o99A5, 
T = Oo00076% (TSD-Euler)o 
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Figure '4<>- Pressure distribution around 
a NACA00XX airfoil, M^ = 0o9A5, 
T = 0.025% (TSD-Euler°and 
vorticity source). 
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PREDICTION OF TRANSONIC FLOW WITH VORTEX EFFECTS 

D. Nixon,* S. C Caruso/* and G. H. Klopfer*** 
Nielsen Engineering & Research, Inc. 

510 Clyde Avenue 
Mountain View, CA 94043-2287 

Introduction 

In recent years it has been possible to predict the 
unsteady transonic flow around a wing, especially those 
typical of commercial aircraft, in a fairly efficient 
manner. Frequently, the computer codes that are used 
are based on potential theory and are considerably faster 
than a corresponding calculation using the Euler 
equations. However, these methods have been 
developed for aircraft and are not really applicable to 
missile flows where vorticity effects are important; the 
potential approximation cannot predict the effects of 
vorticity other than by representing a vortex wake by an 
infinitely thin sheet which is excluded from the 
computational domain. This model is complicated and 
may not be a viable option for routine calculations 
around real aircraft or missile configurations because the 
geometry of the vortex sheet can get quite complex. 

Missiles generally have low aspect ratio fins and 
slender bodies, neither of v/hich are features of 
commercial aircraft; this may cause problems in grid 
generation. The airflow over missiles is dominated by 
vortex effects; this is in contrast to the attached flow over 
a commercial aircraft. For steady missile flow a variety 
of prediction methods are available, ranging from panel 
methods, with the addition of nonlinear vortex 
dynamics, to the Euler equations or Navier-Stokes 
equations. The Navier-Stokes equations will model flow 
separation and track the resulting vorticity but are only 
as accurate as the turbulence model used in the 
calculation. This is critical in defining the separation 
line. The prediction methods based on the Euler 
equations need some empirical criteria to predict the 
location and strength of the separating vortex sheet; the 
Euler equations will then model the transport of this 
vorticity reasonably accurately. A detailed discussion of 
the methods used to predict steady flows over missiles is 
given in Reference (1). In order to predict unsteady flow 
over a missile to adequate accuracy, the method must be 
able therefore, to treat unsteady separated flow. 
Furthermore, if it is necessary to predict the steady flow 
at transonic, rather than supersonic, speeds the method 
rm it be computationally efficient since, unlike 
öupeibuiilv. fiuW which can ubu a niariluhg piuicduiu, 
transonic flow methods require numerous sweeps of the 
computational domain leading to large computational 
times. 

'President 
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It would be ideal to use the Navier-Stokes 
equations to model unsteady transonic flow around 
missiles, but there are several difficulties with this 
approach. The most obvious difficulty is the computer 
time required, which is several orders of magnitude 
greater than that required for a potential calculation. 
Even if a dedicated supercomputer were available for 
such calculations, the computation of the necessary flow 
separation might be inaccurate because of the inherent 
inaccuracy of many present turbulence models. The next 
best approach is to use the time dependent Euler 
equations which require some empirical factor to initiate 
separation and compute the shed vorticity. This 
empiricism would be a development of the steady flow 
criteria described in Reference (1). If the separation line 
and shed vorticity can be predicted, then the Euler 
equations would be a viable model. However, since 
missiles are slender some further approximations can be 
made. This paper is concerned with developing a 
method of predicting the pressure distribution on 
missiles at transonic and supersonic speeds. The 
concepts developed in this work will be transferred to an 
unsteady analysis. The approach is to make as much use 
of the existing technology as possible. The final goal is to 
develop a computer code capable of predicting the 
unsteady transonic flow about missiles for use in 
aeroelastic calculations or during maneuver. The 
present paper is an account of the first phase of the work, 
namely the development of a steady flow variant of the 
method. 

The approaches based on experience gained in 
steady subsonic and supersonic flow predictions for 
.missiles, in particular, the fact that if a separation line 

. and the strength of the vorticity introduced at that line 
can be estimated empirically, the governing equations 
(such as the Euler equations) will repiesent the transport 
of this vorticity accurately. Because the computational 
time for the Euler equations for an unsteady calculation 
is considerably greater than that for a potential 
calculation, a simplified model is used. 

The basic equations ere those derived by Klopfer 
and Nixon2 and are a subset of the Euler equations. For 
slender bodies, the five Euler equations are reduced to 
an equation similar to the three-dimensional unsteady 
potential equation, a vorticity transport equation and a 
two-dimensional Poisson equation. Apart from the 
reduced set of equations, a second advantage is that one 
of the equations is almost identical to the potential 
equation for which there are well tested computer codes. 
This allows the development of a prediction method 
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based considerably on proved technology. A derivation 
of the equations is given in Reference 2. 

Basic Equations 

From Reference 2, the basic equations are as 
follows: 

Vorticity Transport 

uwnx+(vfl)y + (wft)z=0 (1) 

Rotational Crossflow 

Ayy +AK =-n (2) 

Mass Conservation 

(pu)x+(pu)y+(pw)z=0 (3) 

where 

and 

u = $x;v = $y +A2;w = *2 -Ay 

p - pji* 
(7-D M 

e»     ,.     2     2     2. 1   7-1 (1-u -v -w ) (5) 

4» is the velocity potential, A is the vector potential, p is 
the density, Mw is the freestream Mach number, 0 is the 
vorticity in the streamwise direction, and u, v, and w are 
velocities in the coordinate directions x, y, z respectively. 

Governing Equations in Transformed 
Curvilinear Coordinates 

In order to treat complex geometries, the 
governing equations are transformed to a curvilinear 
body conforming coordinate system which is orthogonal 
in the crossflow plane: 

y=y(*/T},$) 

z = Z(£,T}, S) 

(6) 

Note that in the transformed coordinates, t- is the 
streamwise direction, the t) and $ directions are a ba^ts 
for the crossflow plane, and VTJ • V$ = 0. The rj a.id $ 
directions are parallel and normal, respectively, to the 
body surface. 

Before presenting the transformed equations, an 
alternate formulation of the continuity equation will be 

derived. The total velocity, V, is defined as the sum of 
potential and rotational velocity components, V*p and 
VR, respectively: 

where 

and 

V^i'+VR 

v*=v« 

V*=VXÄ 

with 

X = (A,0,0)T 

In Cartesian coordinates: 

(4)      and 

Note that 

and 

tfR =(0,A2,-Ay)T 

vxVp =0 

7.V*=0 

(7) 

(8) 

(9) 

(10) 

(11a) 

(lib) 

(12a) 

(12b) 

In other words, the potential velocity field is irrotational 
and the rotational velocity field is divergence free. 

The continuity equation, (3), in vector form is 

V.(pV)=0 (13) 

Combining Equations (7) - (13) gives 

V.(pV^) = S (14) 
where 

S = -V*R -Vp (15) 

Equation (14) is the full potential equation with a source 
term. It can be transformed from Cartesian coordinates 
to strong conservation law (SCL) form. An existing code 
is used to solve Equation (14) in SCL form, and will be 
described below. 

The vorticity transport equation transforms to the 
following SCL form: 

A A 
^ + (Vtt)7? + (Wß)j = 0 (16) 

where 
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*      ß 
0 - j (17) 

and the contravariant velocities are defined 

V = vx + r\y v/Uö> + rj2 w/uw (18a) 

W=Jx + Jy w/u^+^w/u^ (18b) 

Formulas for the Jacobian, J, and1 the metric terms TJX , 
i}yf Sx, etc. can be found in Reference 3 for a 
generalized curvilinear transformation. The 
transformation, Equation (6), permits simplification of 
sonv». of these terms. 

The vector potential equation, (2), transforms *o: 

where 

aA™ + BA$$ + TN+6A$=-n 

«-i2+ii 

(19) 

p-sj + s! 

5 = Syy +5^ 

Since the transformation is orthogonal in the TJ- $ plane, 
the cross-derivative term, A  * does not appear. 

To summarize, the governing equations, 
continuity, vorticity transport, and the vector potential 
equations have been transformed to a curvilinear 
coordinate system and are given by Equations (14), (16), 
and (19), respectively. The following section discusses 
boundary conditions used for these equations. 

Boundary Conditions 

Boundary conditions for the velocity potential, <f>, 
the vorticity, ß, and the vector potential, A, are required 
on the body surface and at the far field boundary. All 
boundary conditions will be described next. 

Body Surface 

Away from the separation locations, flow tangency 
is applied on the body surface: 

where V^ *> is a normal velocity component. Equation 
(21a) indicates that either V£ or V^ can be arbitrarily 
specified. We choose 

V?=0 (21b) 

since this condition is built into the existing full potential 
code. With V J chosen, Equation (2la) requires that 

V*=0 (22) 

In a locally orthonormal coordinate system in the 
crossflow plane with n and t (the unit tangential to the 
surface) as the basis vectors, the normal component of 
the rotational velocity becomes 

V5-Ü- 
and the tangential component is: 

(23) 

(24) 

Equations (22) and (23) provide the body boundary 
condition for the vector potential: 

ft-° 
or 

A = A0 = const. 

(25) 

(26) 

along the body (away from the separation point). 

Vorticity is introduced into the flowfield only in 
the vicinity of the separation locations (see discussion 
below). Consequently, away from the separation points 

fit  - 0 
body 

(27) 

is applied. 

Far-Field 

In the farfield, freestream conditions prevail, 

or in component form: 

$    I    - u (29a) 

V  •  n      - 0 
'body 

(20) 

where ft is the outward unit normal to the surface. This 
requires that 

VP+VR =0 n        n (21a) 

9n       3t co        n,a> 

[24 + 2*1   -v 3t      3n co        t, co 

(29b) 

(29c) 
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Where $„-and ^-are local normal and tangential 
derivatives with respect to the freestream boundary 
surface. 

Note that either a Nevman condition on A, which 
specifies §&-, or a Dirichlet condition, which indirectly 
specifies |£- can be applied at the far field boundary, 
but not both. Having chosen either of these conditions, 
the velocity potential boundary condition must then be 
modified to ensure satisfaction of Equation (29). A third 
alternative is chosen. The far field boundary is placed 
far enough away from the body such that 

v?-fc«o 
Then by specifying a Dirichlet condition 

■» A   «■ constant 
CO 

which implies 

Vj-ft-O 

(30) 

(31) 

(32) 

The boundary condition for the velocity potential thus 
becomes 

V      = v* p,»        T 00 (33) 

and this is already implemented in the existing full 
potential code. Equations (31) - (33) indicate that the far 
field flow is irrotational, consequently: 

ß - 0 (34) 

is also specified at the far field boundary. 

Separation condition 

The vorticity flux passing through a plane normal 
to a two-dimensional boundary layer is given to the 
order of approximation of boundary layer theory by 

-    -      V |X dy - 2| (35) 

where Ve is the velocity at the edge of the boundary 
layer, 5. 

At the separation point, it is assumed that this 
vorticity is "injected" into the inviscid flow field. 
Consequently, a vorticity flux boundary condition is 
applied to the vorticity transport equation at the 
separation location. The flux (Vn ß) is applied at the 
body surface such that 

V ß dl - -£ X n 2 
(36) 

is satisfied, where the integration is taken along the 
sunace coordinate, 1, in the vicinity of the separation 
location, a < 1 < b. Note that an empirical factor, X, has 
been included to reduce the boundary layer vorticity 
flux. This "vortex reduction factor" is widely used in 
discrete vortex methods to provide better agreement 
between predicted and measured values. The 
recommended value4 lies in the range 0.6 £ X < 1.0. 

The separation line is determined4 by the Stratford 
criterion which for turbulent boundary layers states that 
separation occurs when 

dc 1/2 

M *t X  10 
-6 

-0.1 
- 0.35 sin«   (37) 

where C is the pressure coefficient, £ is the length of 
the boundary layer in the streamwise direction, and Re ^ 
is the Reynolds number based on this length. The 
separation criteria and the strength of the shed vorticity 
have been used successfully in many subsonic 
examples.4 As a first step the same criteria are used 
here. 

It is shown in Reference 2 that the present 
formulation is equivalent at subsonic speeds to the 
"vortex cloud" method used by Mendenhall and 
Perkins.4 The main difference is that the vorticity 
transport equation, Equation (1), is solved by 
representing the vorticity flux by discrete vortices which 
are transported with the flow. The velocity induced by 
the vortices is computed from the Biot-Savart law. The 
strength of the vortices introduced at the separation line 
is determined by the same criteria as the present work, 
that is Equation (36). However, the location of a vortex 
that has just been introduced must be determined, which 
is achieved by ensuring that the separation line is a 
crossflow stagnation point. Since the discrete vortex is 
the integral of the vorticity over an element, the location 
may be regarded as the centroid of the vorticity in the 
element. If the vorticity flux in a time interval is 
uniform, then the centroid is at the center of the element; 
there is no flexibility in changing the centroid other than 
by changing the rate of change of vorticity flux in each 
time interval which seems to be a nonphysical artifice. 
Another difference between the present method and 
vortex cloud is that discrete vortex methods do not 
automatically converge as the number of vortices is 
increased; this introduces an element of art into the 
procedure which cannot be duplicated in the present 
method. 
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A Second Order Correction 

In the work of Mendenhall and Perkins,4 it is 
necessary to introduce the rotational increment in u due 
to the rotation of the vortex away from the axial 
direction. This additional term is necessary to obtain any 
kind of adequate results and is presented as an empirical 
correction. It is necessary to include this correction in 
the present theory but it is instructive to examine the 
idea further. 

From the definition of the various vorticity 
components 

wR
y  -v

R
z »o, (38a) 

U\   -W\   =02 (38b) 

VR
X   -UR     =«3 (38c) 

where the superscript "R" denotes a rotational 
component, Slx is the vorticity component in the axial 
direction, J^ is the component in the y direction, and ft 3 

is the component in the z direction. In the computations, 
Jlj is computed. From Equation (38b) 

uR - j   (wR + ß2)dz + f (x,y> (39) 

where f(x,y) is a function due to i^e integration and on 
differentiation 

R       [7, ! u    -       (w 
y     J     ■ 

+ ttn )dz + f xy        2y y 

From Equation (38a) and (38c) 

R     n R 
w    - 0,  + v y       1 z 

2 

Uy " Vx - °3 *  j   (VL - Sz)d2 

(40) 

(41) 

(42) 

and on substitution of Equations (41) and (42) into 
Equation (40) 

ft 
f    »  I   |vR    - JL    - fr, y      j   I xz       3z       lx       xz 

Since 

- %h (43) 

0jx + 0^  + 1^ =0 

by definition it follows that 

uR - j   (wR + JUdz (44) 

From the analysis of Klopfer and Nixon2 it may be 
shown that 

wR "OUuJ 

O, -OUfy)-0(e3) 

Herce a first approximation is 

(45) 

u   -       w dz 
J      x 

(46) 

The point of this analysis is that the "empirical 
correction" of Mendenhall and Perkins4 is actually a 
consistent second order extension of the theory. This 
extra component of velocity is incorporated into the 
pressure relation 

CO 

where 

q2 = (up + uR)2 + (vp + vR)2 + (wp + wR)2      (48) 

Numerical Methods 

The governing equations, continuity, vorticity 
transport, vector potential Equations (14) - (19), and the 
Bernoulli equation are a coupled, non-linear system and 
are solved in an iterative manner. The numerical 
method used for each equation and the overall solution 
algorithm for the system are described in this section. 

Continuity Equation 

Equation (14) with S = 0 is the transonic full 
potential equation. An existing code, TWING3, which 
solves the full potential equation in SCL form for a wing 
was modified to treat a general body and to include the 
source term, S, and the terms A^ and Az in the Bernoulli 
equation. 

TWING uses an implicit, approximate factorization 
(AF) shock-capturing scheme. Central differencing is 
used at sub.sonic points and an equivalent upwind 
density biasing is applied at supersonic points. For a full 
description of the numerical method used in TWING, see 
Reference 3. 

The AF scheme for the full potential equation can 
be written 
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NCn +o)L<j>n = 0 (49) 

where L^ = 0 represents the full potential equation in 
operator form. The 6) is a relaxation parameter; Cn is the 
correction term (4>TX + l - *n), L^n is the residual, and N 
is an operator representing the AF splitting. The source 
term was incorporated into the AF scheme by replacing 
the residual L*n with (Un - Sn) giving 

NCn -co(L*n -Sn) = 0 (50) 

and Sn is evaluated according to Equation (15)- The 
velocity terms appearing in the Bernoulli Equation (5) 
were modified to include A and Az as indicated in 
Equation (4). No further modifications were required. 

Vorticity Transport Equation 

The vorticity transport equation is hyperbolic with 
$ as the time-like variable. Consequently, a marching- 
type procedure is used to solve this equation. Central 
differencing is used with a Beam and Warming-type s 

solution algorithm that is derived next. 

The vorticity transport equation (16) is first 
rewritten as 

SI -[(vav <"»>*] (51) 

Trapezoidal differencing is used in the {-direction, and 
second-order central differencing in the >j and $ 
directions, resulting in: 

- - 1/2 6   <VO>  + 6j(Wtt>] 
i+1 

(52) 

[^(Vfl)   + 6j(Wft>] 

where V is the grid index in the {-direction; "f and "k," 
the indices in the t} and $ directions, respectively are 
implied in Equation (52). The central difference 
operators are 

y >iJk - 
i/2 { « >i#i+i,k- 

(53a) 

(    ) i,j-l,k} 

V    >±jk-1/2{   (    >±,j, 

Equation (52) can be rearranged: 

k+1 

(53b) 

1 + T [yi+i+ Vi+i] 

1 - ^ [«,vi + 6jwi] 

► ft i+1 

(54) 

\ «, 

Equation (54) is then factorized giving, 

(I + H s,vi+i»(I + H sjwi+i> ai+i 
(55) 

-   (I - ^ tVJ (I  - M S^,   \ + D4 

Note that this equation is linear in 8, since provisional 
values of Vt + j and Vfi + 1 are known when Equation 
(55) is solved (see discussion below concerning the 
global iteration strategy). The right hand side of 
Equation (55) has also been factored to minimize the 
factorization error. 

D., in Equation (55), represents an added explicit 
fourth-order dissipation term which is necessary to 
stabilize the integration in $. The dissipation also 
provides a spatial smoothing of the vorticity which 
inhibits the odd-even decoupling phenomena, 
characteristic of central-differenced, convective-transport 
equations. 

The formula used for D. is taken from Reference 6: 

Di-ej;1«*,+ 6^(01), (56) 

where 5* and si are centered, fourth differences, e.g.: 

*1p**ri -4ftj-i +6V40j« +fti+2 (57) 

and «, the fourth order smoothing coefficient, is a 
constant. 

The fourth order difference terms, Equation (57), 
are modified near the boundaries and are discussed 
below in the results section. 

and 
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To advance Equation (55), the following two step 
procedure is executed. 

l:a + ^6„V!+1}nA;+1 «R, (58a) 

2:{I + ^W.+1}ftA.+1   =S;+1 (58b) 

where Rs = right-hand-side of Equation (55). Steps 1 and 
2 require the inversion of scalar tridiagonal matrices. 

Vector potential equation 

The vector potential is a Poisson equation that is 
solved separately in each crossflow plane. Second order 
central differencing is used for both first and second 
order derivatives in Equation (19). Successive over- 
relaxation is used as the iteration scheme. 

The second order metric derivatives appearing in 
Equation (19) are evaluated by using the chain rule, e.g.: 

^yy ^V^y +^V^y (59) 

(recall that £ + f(y)). Central differencing is used to 
approximate the terms like (*?„)„• 

Treatment at grid singularities 

Two different mesh topologies were used in the 
study, an H-grid and a polar grid. At the grid 
singularities, the dependent variables were taken as 
simple averages of neighboring values in the same 
crossflow plane. 

Global iteration strategy 

The solution of the coupled system of Equations 
(14), (16), and (19) is achieved by sequentially iterating 
each individual equation in turn. A single pass through 
all the equations is a global or outer iteration; inner 
iterations are performed on the velocity potential and 
vector potent.al equations. Because the inner iteration 
algorithms were designed to be stable and convergent, 
the global iteration process is expected to be similarly 
well behaved. 

One global iteration consists of the following steps: 

1. Iterate on the velocity potential equation (50). 
Initially S = A2 =A   =0. 

2. Determine the incipient separation plane % - l{ 

using the Stratford criterion in Equation (37). This is 
the first upstream plane where vorticity will be 
shed. 

3. March the vorticity transport and vector potential 
equations downstream from^-s to £m where 
*max   is end value of £. 

(b) Determine the separation location from the 
Stratford criterion and evaluate the vorticity 
flux to be "shed" to £. crossflow plane 
according to Equation (36). 

(c) Advance vorticity from plane £{ to £i + 1. 
Since vorticity transport and vector potential 
equations are coupled through V*R, this is an 
iterative procedure. n = l. 

(i)     Step vorticity transport Equation (51) 
from plane fy to $l+r 

(ii)    Iterate vector potential Equation (19) for 
*i+i   Plane. 

(iii)   Calculate total velocity for £• + j plane: 

(iv)   Check for convergence on total velocity in 
«id   Plane: if 
' M + 1 " M+i { ~ ° deration 
converged, otherwise continue iterating 
(n = n +1, go to (i) above). 

(d) If at last crossflow plane, ^ + x = £m a x 

continue, otherwise continue marching vorticity 
downstream (go to (c) above). 

4. Calculate the source term, S, Equation (15), then 
continue iterating velocity potential equation (go 
tol). 

The number of inner iterations performed on the 
velocity and vector potential equations are arbitrary and 
are determined by experience. Note that this global 
iteration strategy has not been optimized in terms of 
convergence rate or operation count. Its primary 
purpose is to provide a method for determining the 
solution to the coupled system of equations. 

CONVECTION OF A SINGLE VORTEX 

The convection of a single vortex in the potential 
flowfield about an axisymmetric body was used as a test 
problem for debugging during the early development of 
the computer programs. An interesting numerical effect 
was discovered which raises some questions regarding 
the accuracy of numerical simulations of vortex flows. 

A conservation equation for the circulation will 
first be derived from the vorticity transport equation. 
Then, an equivalent numerical conservation equation 
will be derived from the difference equations used to 
approximate the vorticity transport equation. Finally, 
results of the test problem will be given to illustrate the 
degree to which circulation is conserved in a calculation. 
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If the vorticity transport equation, Equation (1), is 
integrated over a crossflow plane, one obtains 

I II A +    j * •   facfß)  <* - °       <«»> 

where 

dA - dydz 

vxf - ~ 3 + — * 

and V is a two-dimensional gradient operating in the y 
and z directions. Applying the divergence theorem and 
noting that A * f(x), Equation (60) becomes: 

fej—j vnOdl - (61) 

where in the second integral, vn 8 is the vorticity flux 
normal to 1, the boundary of the flowfield in the 
crossflow plane. Notice that the first integral is the 
definition of the circulation, r, so that Equation (61) can 
be expressed as: 

F = Vft and G = Wfl 

(The last term on the right hand side of Equation (63) is 
the approximate factorization error.) 

The numerical analog of the circulation 
conservation statement, Equation (62), is obtained by 
summing each term in Equation (63) over all interior 
grid points in the respective crossflow plane. If the 
result of such a summation involves only boundary 
terms, the numerical method is said to be conservative. 
This scheme, Equation (63), will be analyzed below to 
determine if it is conservative. The summation of each 
term in Equation (63) will be considered separately, 
beginning with the left hand side term. 

Using j as the grid point index for the 
circumferential direction, TJ, and k as the index for the 
normal direction, £, fy +: is summed over all interior 
points in the i+1 plane giving: 

jmax-1 kmax-1 

z    z   » 
j-1        k-2 

r±+l/j/lc 

jmax-1 kmax-1, n x 

,5   £ 1+1 
(64) 

i+l,j,k 

ax    x\ 
vR0dl - 0 (62) 

Equation (62) indicates that if there is no vorticity flux at 
the boundaries of the flowfield, then the circulation is 
conserved. The algorithm used to solve the vorticity 
transport equation is next analyzed to determine to what 
extent circulation is numerically conserved. 

The finite difference equations which determine 
the convection of vorticity over one step, A£, in the 
streamwise direction are represented by Equation (55). 
Expanding and rearranging Equation (55) gives: 

#1 #2 #3 

li4i + rKFi + y * 

Limits on the summation over j indicate that the grid is 
periodic in this direction. The inverse of the Jacobian, J"l 

represents the elemental area in the crossflow plane 
associated with a grid point, thus J"1 = AA so that 
Equation (64) can be rewritten: 

ZZW.C-ZZ <«AA..1+1(j/k(65) 

(The limits on the summation in Equation (65) and all 
following equations in this section are implied to be the 
same as in Equation (64), i.e. to include all interior grid 
points) The right hand side of Equation (65) is a 
numerical approximation to JfldA, which as noted 
above, is equal to the circulation, f. Consequently, 

#4 

Mai + Gi+i)} 
+ 

#5 

where 

#6 

(63) 

z z 
j      k 

ß - r *i+l,j,k     'i+1 (66) 

and therefore the summation of fy + x over all interior 
grid points'represents the circulation contained in the 
i+l-th crossflow plane. Similarly, f. is obtained by 

Iß V 6 G   - 5 V     S G      I summing 8. over all points in the i-th plane. 
{  rj i  $ i 77 i+1  J 1+1/ 

Next consider the summation of either component 
of term #3 in Equation (63). Making use of the difference 
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formula for 6„ in Equation (53) and periodicity in the j- 
direction, it can be shown that: 

y 7 «F. ,  - o (67) 

The difference term, 6„F is therefore conservative. 

For 6 >G. in term #4 of Equation (63), it can be 
shown that: 

? ? 'A.**" 

(68) £   1     (%j,l + Gl,J,2) 

(Gi, jjcmax-l * Gi,j,kmax* 

Notice.that the two terms on the right hand side 
represent approximations to boundary fluxes, located at 
(i,j,k+l/2) and (i,j,kmax-l/2), respectively. Thus in the 
standard nomenclature,the 6>G term is also 
conservative. 

It can also be shown that the summation of the 
approximate factorization error, term #6 in Equation 
(63), is identically zero. Using Eqns. (66) - (68), the result 
of summing Equation (63) over all interior grid points is 

r      -r   +^i   Y I 
(G + G,   ,   J 

-      i/j/l        irJ/2 

i,j,kmax-l        i,j,kmax) (69) 
i-i,i+l 

«   A A 
-4^ + 6or4njri + os j+2 (70a) 

and • 

•   A A 
55« = %2 -A-i +6Sk-%+i 

+ok+2   <70b> 

Note that for applying the ^-direction term, 6^ ß, 
at interior grid points immediately adjacent to a 
boundary, a formula different from the symmetric 
formula, Equation (70b), must be used. (Since the grid is 
periodic in the j-direction, the interior point formulation 
for 6* 5, Equation (70a), does not need to be modified.) 
Various boundary point formulas were tried including a 
second-order difference and also a non-symmetric 
fourth-order term. However with these formulations, 
summation of the dissipation term results in a non-zero 
linear combination of near-boundary 0 values which 
represents an approximation to a third derivative normal 
to the boundary. This boundary term can become quite 
large when there are significant gradients in the vortic- 
ity, causing the term SED.in the numerical 
conservation equation, EquatlonT69), to act as a source 
or sink of circulation, depending on the term's sign. 

To remedy this problem, the following boundary 
point formulas were derived: 

«3     A 

5sn lfc-2 " -°1 + 3a2 ~ 3«3 + ß< 
(71a) 

O    A A A 

5$ ß  lk-kmax-1 " nkmax-3 " 30kmax-2 + 

(71b) 

3®kmax-l " ®kmax 

Using Equations (71) with Equation (70), results in 

+   Z   Z D< 
j      k      L 

It is thus found that the numerical scheme, Equation (55), 
should conserve the circulation, provided that the 
dissipation term, Di7 is also conservative. This term 
will be considered next. 

z ZD 
ijfc 

(72) 

and makes the dissipation term conservative. By 
substituting Equation (72) into Equation (69), one 
obtains: 

The dissipation term initially used in the program 
is given by Equation (56), as recommended by Steger 
and Pulliam.6 However, this formulation is not 
conservative because the inverse Jacobian, J"1, appears 
outside of the difference operators, This situation is 
remedied by removing the inverse Jacobian and 
operating directly on U. In other words: 
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'i+i     *i     2~    4-    l 2 

(73) 

1,j,kmax-l        1,j,kmax 

±-i,i+l 

This final equation demonstrates that the numerical 
approximation, Equation (55) to the vorticity transport 
equation conserves circulation to within the error of the 
boundary flux approximations. 

The test problem used to demonstrate the 
conservation properties of the numerical method will be 
described next. An axisymmetric body used in the 
simulation consists of an 8-caliber cylinder having a 3- 
caliber tangent-ogive cylindrical nose. A base having the 
same shape as the nose was included to close the body. 
A grid was constructed about this body having 41 x 21 x 
41 points in the streamwise, circumferential, and body- 
normal directions, respectively. Views of the grid in the 
symmetry and a crossflow plane are give in Figures 1(a) 
and 1(b), respectively. 

Calculations were made at a free stream Mach 
number, Mw = 0.3, and angle of attack, « = 15*. The 
potential flowfield was first calculated by solving the full 
potential equation. A single vortex was then placed in 
this flowfield in a crossflow plane located near the 
beginning of the straight section by specifying a non- 
zero value of vorticity at a single grid point in the 
crossflow plane. Zero-normal vorticity flux was 
specified on all boundaries in all crossflow planes. The 
vortex was convected in the potential flowfield by 
solving the vorticity transport equation. The vortex was 
advanced twenty streamwise steps downstream to a 
crossflow plane located near the end of the straight 
section. Several calculations were made to investigate 
the effect of the dissipation on the conservation of 
circulation. 

In the first set of calculations, the vortex was 
placed at a location approximately one body diameter 
away from the body surface in the initial, upstream 
crossflow plane. This put the vortex twelve grid points, 
radially, away from the body, indicated by the symbol, 
ßj, in Figure lb. Two calculations were made; the first 
using the non-conservative dissipation term, Equation 
(56), the second using the fully conservative dissipation 
term, Equations (70) and (71). The calculated circulation 
in each crossflow plane was evaluated by summing U 
over all interior points in the plane, according to 
Equation (65). The ratio of the circulation in the final 
and initial crossflow planes was evaluated to measure 
the degree of conservation of circulation. Due to the 
specification of zero-normal vorticity flux at the 

boundaries, the initial circulation should ideally be 
preserved. The results are presented in Table 1. 

With the non-conservative dissipation term, Case 
No. 1, there is an incremental loss of circulation as the 
vortex is advanced at each crossflow plane, resulting in a 
significant net loss (14%) in circulation after the vortex 
has been advanced to the end of the straight section. 
Using the conservative dissipation term, the loss in 
circulation is significantly less, only 2% of the initial 
value. However, no loss in circulation is expected since 
the numerical method has been shown above to be 
"conservative." This apparent anomaly will be discussed 
below. 

Another series of calculations were made with the 
location of the initial vortex much closer to the body, in 
this case only four grid points radially away from the 
body surface, indicated by the symbol, X, in Figure lb. 
Both methods show a much larger loss in circulation in 
this instance, Case No. 2, with a 54% loss with the non- 
conservative, and a 22% loss with the conservative 
dissipation term. The latter loss in circulation is 
unexpectedly large for a numerical scheme which is 
supposed to conserve circulation. 

The source of the loss in circulation was found to 
be the boundary-normal vorticity flux term, G.. t /2     '• 

Ji,j,l/2 

G.    .   .   + G,    .   Ä l,j,l i,j,2 (74) 

which appears in Equation (73). Recall that zero-normal 
vorticity flux is specified on the crossflow plane 
boundaries, so that G{ , t = 0 at the body surface, 
defined by k = l. (Similarly G, jtymtLX = 0 is specified 
at the far field boundary, k = 'kmax.) However, since 
Gj . 2 is a calculated value, it can attain a non-zero 
value, particularly when the vorticity is convected close 
to the body, and serve as a boundary flux of vorticity out 
of the flowfield. This explains why the loss in vorticity is 
much less when the vortex is located away from the 
flowfield boundaries. 

Although the numerical method was shown to be 
conservative in the standard sense, the occurrence of a 
non-zero boundary flux with zero flux specified is an 
arMfact of the finite difference scheme. The error which 
is induced, the loss in circulation, can be minimized, 
although not totally eliminated, by reducing the mesh 
spacing in the ^-direction at the boundary surface. 
Alternatively, the problem can be completely avoided by 
using a finite volume formulation, where boundary 
fluxes can be exactly speeded. In any case, for flows 
which critically depend on the vorticity contained within 
the flowfield, it is of utmost importance that the 
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numerical method most nearly maintain conservation of 
circulation to ensure a high degree of accuracy. 

RESULTS 

This section presents computational results made 
with the computer program, TSBVRT, (transonic, 
slender-body, vortical flows) which uses the algorithm 
described above. Comparisons are made with 
experimental data. Results are first described for 
subsonic flow over a cylindrical body, followed by 
results for subsonic and a transonic flow over a body 
having an elliptical-shaped cross section. 

The body for the subsonic case, an ogive-cylinder 
with a 3-caliber nose and 8-caliber body is the same as 
described in the previous section. The flow conditions 
are also the same: free stream Mach number, Mtt = 0.3 
and angle of attack, a = 15 *. This particular model and 
flow conditions were selected to correspond to a set of 
available experimental data (Ref. 7). 

The grid used for this case is the 41 x 21 x 41 grid 
that also was described above and is illustrated in Figure 
1. Flow calculations were performed in the following 
manner. First, since TSBVRT did not have the Stratford 
separation criteria, Equation (37), programmed, the 
separation line was determined from a calculation made 
with the VTXCLD program (Ref. 8) for the same body 
and set of flow conditions. VTXCLD, a discrete vortex 
method, compares well with this experimental data and 
also has the Stratford separation criteria built-in. 

Using the VTXCLD-determined separation line 
location, the vortical flow field was calculated with 
TSBVRT. The vorticity flux at the separation location in 
each crossflow plane was specified at a single grid point 
according to Eqn. (36). The boundary layeredge 
velocity, Vc was taken to be the potential velocity on the 
body surface at the separation location in each respective 
crossflow plane. The vortex reduction factor, X = 0.45 
was found to give the best agreement with the 
experimental data. 

Calculated surface pressures and corresponding 
velocity fields at two crossflow stations are shown in 
Figures 2 and 3, respectively. On the abscissa for the 
pressure plots, ß = 0* corresponds to the windward 
meridian and ß = 180* to the leeward meridian. Also 
plotted in these figures are the corresponding pressures 
for both experimental and VTXCLD results. As the 
pressure curves indicate, the current results are found to 
agree fairly well with both experimental data and the 
VTXCLD calculation. Note in the velocity plots the 
vortical flowfields located on the leeward side of the 
cylinder. The close proximity of the calculated vortices 
to the body is responsible for the correct modification of 
the pressure distribution on the upper surface, ß « 
120*-180«. 

The agreement between the present results and 
vortex cloud is sometimes not as good as would be 
expected from two mathematically similar formulations 
as can be seen in Figure 2. A test of both methods 
indicated that the dominant cause of the discrepancy is 
the computation of the second order term uR which is 
due to the tilting of the vortex. A comparison of this 
term at x/D = 7.5 computed by both methods is shown 
in Table 2. It may be seen that at the location of the 
greatest error in surface pressures, $ -120*, the present 
correction is much less than that computed by the vortex 
cloud method. This error occurs below the vortex 
feeding sheet. The second order correction is found by 
an integral of the vortical velocity wR . If the vortex 
sheet is diffused by the calculation, the integral from the 
outer to inner boundary may be expected to be 
independent of the diffuse nature of the sheet if the total 
vorticity along the line of integration is conserved since 
it does not depend on the details of the flow, only the 
end points. Since the present method is conservative 
and integrates the vorticity to obtain the correction there 
should be no significant error due to numerical diffusion 
of the vortex. Consequently, the cause of the difference 
is not clear at this stage. 

The second body investigated in this study has a 
2:1 elliptical cross section with a parabolic planform. 
This body has been experimentally investigated (Ref. 9) 
at subsonic, transonic and supersonic free stream speeds. 
A grid was constructed about the body with 41 x 81 x 23 
points in the streamwise, circumferential, and body- 
normal directions, respectively. Views of the grid in the 
planform plane and also in a crossflow plane are given in 
Figures 4(a) and 4(b), respectively. Note in Figure 4(a) 
that the body is closed with a simple circular arc base. 
Note also that all dimensions have been normalized to 
2 A, the maximum major axis of the elliptical body. The 
total length of the body, not including the base, is 
L/2A = 4.3.   • 

The first calculation made is for a subsonic flow 
with free stream Mach number, Mw = 0.4 and angle of 
attack, a = 16.3 *. As was done with the circular body, 
VTXCLD was run first to obtain the location of the 
separation line. However for the elliptic body, it is 
relatively easy to infer the separation line from the 
experimental data. The incipient separation plane can be 
estimated by assessing where the measured surface 
pressures begin to vary from the pressures obtained 
from a potential flow computation. Downstream of this 
location, the flow separates on the shoulder of the body. 
The separation point was treated as above, except that in 
this case, the vortex reduction factor, X = 0.60 gave the 
best agreement with the experimental data. 

Surface pressures computed at several axial 
stations are plotted against the experimental data and 
also the VTXCLD results in Figure 5. On the abscissa in 
these curves, * = 0* corresponds to the leeward meridian 
and * = 180* to the windward meridian. Agreement 
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with the data for both TSBVRT and VTXCLD 
computations is not as good for this body; however, 
TSBVRT appears to capture the correct trend of the data. 
The cause of the discrepancy between predictions and 
data is not known at this time. Grid refinement, 
especially in the body-normal direction may improve the 
accuracy of the calculation. To illustrate the vortical flow 
field computed with TSBVRT, the velocity field is shown 
in Figure 6 for the crossflow plane at X/2A = 3.1. 

The second calculation made with the elliptic body 
is a transonic flow with free stream Mach number, Mw = 
0.95 and angle of attack, <* = 16.9'. The separation line 
was the same as in the previous calculation, except here, 
X = 0.90. The computed surface pressures at several axial 
stations are plotted along with experimental values in 
Figure 7. The predicted results have about the same 
degree of agreement with the data as in the previous 
case. 

For this flow, the free stream Mach number is not 
large enough to produce crossflow shocks; however, a 
shock does occur on the upper surface of the base. 
Figure 8 plots vorticity contours just upstream and 
downstream of this shock. This latter result 
demonstrates the ability of the current method to 
compute vortical flowfields with shock waves. 

Concluding Remarks 

The equations of Klopfer and Nixon2 have been 
coded. The computer code is a considerably developed 
version of a potential code, TWING. Results for bodies 
at high angle of attack and at subsonic and transonic 
Mach numbers have been obtained and compared to 
experiment, and, for subsonic flow, to a discrete vortex 
method. The equations of Klopfer and Nixon assume 
that only one component of vorticity is important but the 
present study shows that the vorticity component due to 
the vortex rotating away from the body must be 
included. This, in fact, is introduced as an empirical 
convection in the discrete vortex method. In the present 
work this is shown to be a second order correction to the 
basic theory. 

There is considerable discrepancy between the 
results of the present theory and both the discrete vortex 
method and experimental data. Since both prediction 
methods solve the same equations but with different 
algorithms, it suggests that the flow may be very 
sensitive to errors. 
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Table 1 
Convection of a Single Vortex 

Check on Conservation of Circulation 

(1~rfinal/initial) 
Non-conservative Conservative 

Case No. ft initial location dissipation dissipation 

1 1 diameter from body .14 .02 
surface 

2 close to body 
surface 

.54 

Table 2 

.22 

Second Order Correction Term at x/D = 75 

8 VTXCLD Present Results, Equation (46) 

90 -0.0018 0.0 
100 0.0031 0.0035 
110 0.0484 0.0211 
120 0.1095 0.0438 
130 0.1042 0.0798 
140 0.0931 0.1201 
150 0.0864 0.1205 
160 0.0677 0.1039 
170 
180 

0.0938 
0.0999 

0.0629 
0.0000 
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THE EFFECT OF VORTEX ROTATION ON THE FLOW 
AROUND A MISSILE AT VERY HIGH ANGLES OF ATTACK 

David Nixon* 
Nielsen Engineering & Research, Inc. 

Mountain View, CA 94043-2287 

Introduction 

The problem of predicting vortical flow around a missile can be solved by using1 the 

Navier-Stokes equations, which are very expensive to use, or by simpler methods, such as 

that by Mendenhall and Perkins2 for subsonic flow. In the latter method, vorticity is 

introduced into the flow at specified locations on the body. Both the location and the 

amount of vorticity are determined empirically. A transonic version of the theory of 

Reference 2 is given by Klopfer and Nixon3 with a more complete theory given by Nixon et. 

al.4 Klopfer and Nixon3 used slender body theory to simplify the Euler equations to 

approximate the flow around missiles from five three-dimensional partial differential 

equations to two three-dimensional equations and one two-dimensional equation. The 

dominant feature of this formulation is that only one component of vorticity, the streamwise 

component, is important. In Reference 2 and in Reference 4, it is shown that the inclusion of 

a second vorticity component in the analysis is critical to the success of the simplified 

method. This second component reflects the tilting of the separated vortex in the vertical 

direction. In view of the importance of this second component of vorticity, the theory of 

Klopfer and Nixon3 is extended in this .tote to include the appropriate higher order terms 

in order to gain further insight into the vortical flow around missiles. 

One of the conclusions of the extended analysis is that vorticity in the vortex sheet is 

not aligned with the local streamlines, consequently producing entropy. In contrast, the 

rolled up vortex is aligned with the local flow since it can produce no load. At higher Mach 
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numbers, if the vorticity is introduced at a non-normal angle to the body surface, this 

entropy effect can lead to a significant total pressure loss in the rolled-up vortex. 

Analysis 

The Euler equations for steady compressible flow are 

(pU)x+(pV)y+(pW)z=0 (1) 

(pU2 + p)x + (pUV)y + (pUW)2 = 0 (2) 

(pUV)x + (pV2 + p)y + (pVW)2 = 0 (3) 

(pUW)x + (pVW)y + (pW2 + p)2 = 0 (4) 

[(e + p)U]x + [(e + p)V}y + [(e + p)W]2 = 0 (5) 

and 

p = (V -1) le - p(U2 + V2 + W2)/2} (6) 

where p is the density, U, V, and W are velocity components in the cartesian coordinate 

system (x, y, z), e is the internal energy, and p is the pressure. 

Manipulation of the Euler equations and the use of Gibbs relation leads to Crocco's 

equation 

qxO = TVS (7) 

where S is entropy, T is temperature, q is the velocity vector given by 

q=TU+7V + kW (8) 

and 

The vorticity vector O defined by 

n = Vxq (10) 

Equation (7) can be differentiated to give 

Vx(qxO) = VTxVS (11) 

or, using Equation (7) 
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Vx(qxO) = VTx(qxn)/T (12) 

In component form Equation (12) can be written as 

(13) 

(Ur^x +VQ2y -KWO^ =n1vx +0^ + 

[Tx(ua, -vnp-T^vOj -wa,))/T 
(14) 

(15) 
(u^x + wyy +wn3Z «ryw, +n2wy + 

[TX(U03 -W^-TyCWftj  -vnpi/T 

where Q^TQJ VJfl^ +1^ 

At high angles of attack the flow separates and a vortex sheet feeds two concentrated 

vortices as shown in Figure 1. In the previous work by Klopfer and Nixon3 the body was 

considered slender with a typical cross section/length scale of e. At very high angles of 

attack the flow is similar to that around an equivalent body represented by the body itself 

and the recirculating region bounded by the feeding sheets. Clearly, there are two scales in 

the problem, namely the body width/length ratio, given by e and the characteristic 

height/length ratio of the recirculating region, given by 6. The length scales e and 6 are 

shown in Figure 1. The dominant geometrical effect of the separation is represented by the 

length scales e and 8. 

Now construct inner coordinates by letting 

x = x/y = y/6,z = z/e (16) 

The velocity will consist of the freestream components UQ and V0 with perturbations the 

order of the scales; thus 

U = U0 + 6PUl  + ePu2, V = V0   + 6v, W = ew (17) 

where if Q0 is the resultant freestream velocity and a is the angle of attack 
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U0=Q0cosa,V0=Q0sina (18) 

The index p is such that 

p>l 

For a constant energy flow 

h + £.(U2 + V2 + W2) = constant (19) 

where h is specific enthalpy. This suggests that since 

h = CpT (20) 

where C is the specific heat at constant pressure, the temperature T may be expanded as a 

series like 

T = T0 + 6^ + £2T2 + 0(62) (21) 

where the form of the velocity expansions of Equation (17) has been used. It is assumed in 

this analysis that 

6>>e>>62 (22) 

which reflects the experimental observation1 that the vortex tilts upwards more than it 

spreads outwards. It is shown later that in order to obtain the dominant effects of vortex 

rotation, terms of the order of 82 must be retained. Expansion of Equations (13-15) to this 

order gives. 

5u a.    + [V   + 6v)n ]    + 6(wO,)    + o l- o 1 - l - x y z 

*h2 53           ) 
£_ T   v + — vT„     a, £       2- o £         2-1 z z' 

(23) 

S£P-W + £ U T, 0, + 6Vüon3 + 6VUoa3 3  z      £      o 2- 2 z y z 
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*°A-+   <V„ +  S^n9Z +  *^>--   ««S^o + *2wT2-)n2 V2-'   *'o      v"'**2y   '   ~x    2'-     "v    2x o x z 2 

(24) 

2 2 3 
~ v- o>+ 62a.v- - 62v O,T0 - ^- T0 nQv   - |- VT0 a. - 6

2
VT.   a, £      z    3 1 x o!2e2-3oe 2-3 1-3 x z z z 

6U n.    +  [(V +Sv)OJ    + $wß0    -   (6 T0 U    + 
O   3- O O   - o— ZX   O 

x y y 

x- o 2-3 x    1 2  - 
y y y 

By examining the dominant terms in Equations (24) and (25) it can be implied that 

(25) 

n2 - O  (6 n±) 

n3 - O  (SeCl^ 
(26) 

Retaining terms of 0(62) and using Equation (26), Equations (23) - (25) can be written as 

UcAx   +(Vai>y +0/^ +TzVn! =0 (27) 

V0"2y   + CTXU0 ^w)^ = V,ft (28) 

03 = 0 (29) 

Note that from Equation (26) 

lOjl » Ifljl » ID3I (30) 

which indicates that the vortical components are separable. 

The terms involving the temperature, T, are due to entropy production. If there was no 

entropy then these terms would vanish. In the earlier work of Klopfer and Nixon3, entropy 

effects do not appear. This is because the dominant vorticity component and the dominant 
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velocity vector are aligned. In the present case, the second order equations do not have this 

property. Because entropy is produced in the vortex feeding sheet there will be a total 

pressure loss in the vortex. If the only vorticity component at separation is Q^ , then entropy 

production there is zero only if the separation line is a crossflow stagnation point. The 

initial entropy production is determined by the relative angle between the separation line 

and the local velocity vector. In the present model it is assumed that the vortex sheet is 

tangential to the body surface, as sketched in Figure 1; This implies that the windward side 

of the separation is not a crossflow stagnation point, an assumption which is compatible 

with the physical description of a separating boundary layer. If the separation line is a 

crossflow stagnation point, then the crossflow velocity term V cannot be split into the form 

given in Equation (17) because VQ and 6v could become comparable in magnitude but of 

opposite sign. In such an event, the present perturbation analysis is not valid. Because of 

the closer approximation of the present flow representation to the physical problem, it is 

suggested that entropy production should be included in the separation model and 

consequently the conclusions noted above are valid. The most important of these is that 

given in Equation (30) which indicates that the vorticity components have separable scales 

of magnitude. It should be noted that the temperature effects, which represent entropy, are 

proportional to M^, and hence become more important at higher speeds. This in turn, 

implies that the effect of the flow on the relative angle of flow separation may become more 

important at higher Mach numbers because of the entropy contribution. 

Consider now the case of incompressible flow in which the entropy effects are not 

present; the equations approximately governing the vorticity transport can then be found 

from Equations (27)-(29) to be , 

U<Ax   +<Vni>y  +Wfl1)z =0 (31) 

V<Ay   =VA (32) 
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Oj « 0 (33) 

The logical choice of the index p in Equation (19) is two since from Equation (33) 

O3=Vx-Uy~0 (34) 

or, in inner varables to a first approximation 

Sv    - 6Pü^ - - 0 (35) 
x 1 y 

which requires that 

p = 2 (36) 

Consequently, Equation (35) becomes 

vx=U7 (37) 

If Equation (32) is written in inner variables then it becomes 

V0"Ty = «Vl (38) 

From Equation (31) it may be seen that if the retained terms are of the same order of 

magnitude and if VQ is 0(1) then, to a first approximation 

<Vy »Qtfnp (39) 

which implies that fy is independent of y to a first approximation. Hence, with the help of 

Equation (37), Equation (38) can be integrated with respect to y to give to a first 

approximation 

V^ =6%^   ■fF(v/z) + 0(63) (40) 

where F(x,z) is a function of integration. 

At fhe separation line, y = ys c   , u1, O^ and 0.x are specified; hence Equation (40) 

becomes 
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o(0    +52u)       rn<0    + 62u H 

c o L o J sep 

where the subscript "sep" denotes a value at separation. Reverting to the usual physical 

coordinates, Equation (41) becomes 

ni° 
"2 2sep      V I V    J 

n.u 
11 (42) 
o 'sep 

Equation (42) is an algebraic relation between Oj and ^ rather than a partial differential 

equation and the induced velocity could be computed fairly easily. Although the velocity 

due to ^2 can be derived from Equation (42) a simpler means that uses Equation (30) is 

derived in Reference 4. However, the present formulation leads to more insight. It's 

possible that an extended analysis would produce a similarly simple relationship for Cly 

The extra component of vorticity, O^, is derived by a stretching of fy as implied by the 

differential equation, Equation (14). Because of the relation given in Equation (40) the total 

magnitude of the vorticity, Cl is given by 

1/2 
mi - [n^+n^+n*]     - IOJJ +o(62)in1i  (43) 

However, the vortex is inclined at an angle 0V given by 

0    * arctan — (44) 

which, from Equation (42), is given by 
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(45) 
o    'sep 

T7      f uni   1 y 3 
0v - arctan  [ f -    -± /^ + O        /nj  + 0(6  ) 

Since the local flow vector, 0£, is given by 

0f= arctan (V/U) (46) 

it may be seen that in general the vorticity in the vortex sheet is not aligned with the flow 

vector, Although the above analysis is for incompressible flow, this result is consistent with 

the argument regarding entropy production given earlier. 

At the end of the vortex sheet the rolled up vortex cannot support a load and therefore 

must be aligned with the flow vector, that is 

0V = ef (47) 

and hence to 0(5) 

' o       l    o'sep 1 C 

where the subscript "C" denotes a value at the rolled up vortex. If the angle of the rolled up 

vortex is denoted by 0C then it follows from Equation (48) that 

tanfl    - -Z  <taxi9r)     R (49) c      V <- 
o 

where 

R .      ^sep + 1 / (50) 
0, I  V    Jsep/     lc lc l    o  '     r 
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From Equation (30) f^ s e is much less than fy, and .since U and VQ are of the same order 

of magnitude, R is positive. 

Equation (49) can be solved to give 

tanöc = £.{-R ± [R2 + 4VC/VQ]1/2} (51) 

which gives a relation for the angle of the rolled up vortex. Since Gc mus. zero if no 

vorticity is shed, as is the case when a = 0, it follows that the positive sign in Equation (51) 

must be taken. Thus 

tan9c = J-{-R + [R2 + 4VC/V011/2} (52) 

For a long body the strength of the rolled up vortex will increase as more body shed 

vorticity reaches it. From experimental2 evidence the angle of the rolled up vortex becomes 

constant and hence 

V       V   V       V 2 

tanO    - — «= — ~- = 77- tana + 0(6  )   - constant (53) C       U V    U V c        o    c        o 

since Uc = U0 + 0(62) from Equations (17) and (36). Thus Vc /V0 is approximately 

constant and hence, from Equation (52) R must be constant. If the shedding rate is constant, 

that is (Ü2 V0 )s and (Ufy )s are constant, it follows that fy c is constant. Because the 

vorticity in the rolled up vortex accumulates along the vortex because of the steady 

shedding rate, it then follows that the vortex must 'expand in size as the distance 

downstream increases in order to keep flic constant. This is in accordance with 

experimental data. 

Concluding Remarks 

An analysis for vortical flows that includes two components of vorticity has been 

derived. The analysis indicates that vorticity in the vortex sheet does not align with stream 
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lines if it is introduced at a non-normal angle to the body. Because of this fact, entropy is 

produced which will cause a loss of total pressure in the rolled up vortex. The analysis also 

indicates that the rolled up vortex will widen as it progresses down the body, provided the 

shed vorticity is constant, a fact known from other sources, but a corroborating factor in the 

present theory. A critical result is that the three vorticity components are separable in 

magnitude for a slender body leading to a less restrictive theory than in Reference 3. Thus it 

is possible that for the flow around slender missiles at very high angles of attack a much 

simpler set of equations than the Euler equations may model the flow. This simpler set of 

equations would consist of two three-dimensional partial differential equations, one two- 

dimensional partial differential equation and two algebraic equations. 
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and 
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1.      Introduction 

In recent years it has been possible to predict.the 
unsteady transonic flow around a wing, especially those 
typical of commercial aircraft, in a fairly efficient 
manner. Frequently, the computer codes that are used 
are based on potential theory and arc onsiderably faster 
than a corresponding calculation tsing the Euler 
equations. These methods have been developed for 
aircraft and are not really applicable to missile flows 
where the effects of vorticity due to flow separation are 
important; the potential approximation cannot predict 
the effects of vorticity other than by representing a 
vortex wake by an infinitely thin sheet which is excluded 
from the computational domain. This model is 
complicated and may not be a viable option for routine 
calculations around real aircraft or missile configurations 
because thegeometry of the vortex sheet can get quite 
complex. 

Missiles generally have low aspect ratio fins and 
slender bodies, neither of which are features of 
commercial aircraft, and the airflow is dominated by 
vortex effects; this is in contrast to the flow over a 
commercial aircraft which is attached. For steady missile 
flow a variety of prediction methods are available, 
ranging from panel methods with the addition of 
nonlinear vortex dynamics to the Euler equations or 
Navier-Stokes equations. The Navier Stokes equations 
will model flow separation and track the resulting 
vorticity but are only as accurate as the turbulence 
model used in the calculation. This is critical in defining 
the separation line. The prediction methods based on 
the Euler equations need some empirical criteria to 
predict the location and strength of the separating vortex 
sheet; the Euler equations will then model the transport 
of this vorticity reasonably accurately. 

A detailed discussion of the methods used to 
predict steady flows over missiles is given in Reference 
1. In order to predict unsteady flow over a missile to 
adequate accuracy, the method must be able, therefore, 
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to treat unsteady separated flow. Furthermore, if it is 
necessary to predict the steady flow at transonic, rather 
.than supersonic, speeds the method must be 
computationally efficient since unlike supersonic flow 
problems which can use a marching procedure, transonic 
How methods require numerous sweeps of the 
computational domain, leading to large computational 
times. 

It would be ideal to use the Navier-Stokes 
equations to model unsteady transonic flow around 
missiles, but there are several difficulties with this 
approach. The most obvious difficulty is the computer 
time required, which is several orders of magnitude 
greater than that required for a potential calculation. 
Even if a dedicated supercomputer is available for such 
calculations, the computation of the necessary flow 
separation may be inaccurate because of the inherent 
inaccuracy in many present turbulence models. The next 
best approach is to use the time dependent Euler 
equations which require some empirical factor to initiate 
separation and computethe shed vorticity. This 
empiricism would be a development of the steady flow 
criteria described in Reference 1. If the separation line 
and shed vorticity can be predicted, then the Euler 
equations would be a viable model. However, since 
missiles are slender some further approximations can be 
made. This paper is concerned with developing a 
method of predicting the unsteady pressure distribution 
on missiles at transonic and supersonic speeds. The 
concepts developed in this work are extensions of an 
earlier analysis2 for steady flow. The approach is to 
make as much use of the existing technology as possible. 
The final goal is to develop a computer code capable of 
predicting the unsteady transonic flow about missiles for 
use in aeroelastic calculations or during maneuver. The 
present paper is an account of the second phase of the 
work, namely the preliminary development of an 
unsteady flow variant of the method. 

The.approach is based on experience gained in 
steady subsonic and supersonic flow predictions for 
missiles, in particular, the fact that if a separation line 
and the strength of the vorticity introduced at that line 
can be estimated empirically, the governing equations 
(such as the Euler equations) will represent the transport 



of this vorticity accurately. Because the computational 
time for the Euler equations for an unsteady calculation 
is considerably greater than that for a potential 
calculation, a simplified model is used. 

The basic equations are an extension of those 
derived by Klopfer and Nixon3 for steady flow and are a 
subset of the Euler equations. For slender bodies, the 
five Euler equations are reduced to an equation similar 
to the three-dimensional unsteady potential equation, a 
three-dimensional vorticity transport equation, and a 
two-dimensional Poisson equation. Apart from the 
reduced set of equations, a second advantage is that one 
of the equations is almost identical to the potential 
equation for which there are well tested computer codes. 
This allows the development of a prediction method 
based considerably on proved technology. A derivation 
of the equations is given in the Appendix. 

2.      Basic Equations 

From the Appendix, the basic equations are as 
follows: 

Vorticity Transport 

fit + n* + (vO)y + (wn)2 = 0 

Rotational Crossflow 

Mass Conservation 

pt + (pu)x + (pv)y + (pw)z = 0 

where 

u = 1 + 0X; v = 0y + A2; w = $z - Ay 

(1) 

(2) 

(3) 

(4) 

and 

f     "'-1>M» 2      2 
o' p»1+——(1" ZK~ ° - v -w2,}'-1 

ffo    +!fl    +!f2        «3 
3t dx dy dz 

- 0 (6) 

where 

(7) 

(5) 

f    - -MV   - 2M20 

f„ -  (1-M2)0    - i (y+1) M20* 1               »/rx      2 '           « X 

+ i   (y-3)   M2 (0    + A )2 

2      '               oo xry            z 

h " *y + \ "   ('"1}   M<A  <*y + \] 

3      rz        y 

The boundary conditions on the body are zero 
flow through the body. There is zero flux of vorticity 
through the body except at the specified separation line. 

3.      Computer Code and Numerical Methods 

Equation (6) is identical in form to that solved by 
Batina et al4 in the CAP-TSD code. This code is capable 
of predicting the unsteady transonic and supersonic flow 
over an aircraft with stores. Consequently, CAP-TSD is 
used as a basis for the present method. In thi. initial 
phase, only a body or fuselage is considered; in the near 
future, fins will be added to the model. 

The algorithm used in CAP-TSD is approximate 
factorization with time stepping as an option; this 
algorithm is retained in solving Equation (7). A 
modified version of this algorithm is used to solve the 
vector potential equation, Equation (2). The vorticity 
transport equation is solved by using another modified 
variant of the approximate factorization algorithm. 

0 is the velocity potential, A is the vector potential, p is 
the density, M„ is the freestream Mach number, n is the 
vorticity in the streamv/ise direction, and u, v, and w are 
velocities in the coordinate directions x, y, z respectively. 

Using Equations (3), (4), and (5) and making the 
usual transonic small disturbance (TSD) approximation 
leads to the following modified, TSD equation. 

3.1 Continuity Equation: 

Because CAP-TSD uses a shearing transformation 
described by: f - f (x, y); q = y; £ = z; T «t, Equation (6) 
is reformulated as: 

§75o + lf 5i+ln52 + lf 23-° (8) 
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where: 

-M 
f    - --Ü- 0    - 2M V 

« *y CJ £ 'X 

- |(V + DM„2(^2 + *y
2]* 

" 2M-2W.i + l(v " 3>M»2*n2 

+ l(1,-3,M~Vr]< 
+ |(y - 3>M>C

2 

- <v - «"^V* + ^ 

-   (V - 1>«„V/ 

(9) 

f -!£ 
3       t 

The time-marching procedure is performed using a 
second order accurate implicit scheme, thus 

M 
2 

(10) 

Linearizing about 0n+1 = tf* + A# and recasting the 
problem in approximate factorization form yields: 

l*U2L 

[H§*xHvl^]Mvdi 

r(At>2£ [I -b^HM^ 2M 

(At>2£ 

(11) 

with 

1 - M    £    + -ri - 2M £ A, -|Sx      ^x ~*y C 

<y + i>(4 + $V2M«W 

*x 

(12) 

and 

. -At2£ 
R(* ) £ 

2M 2 

L *x     [ (A 

n   .   . .n-1       ,n-2 

(At)' 

*j. *       u n  ,    ,  n-1 

_M2[  ^    ~4'j    + *j 
At 

+ ati* + a f* + a 
$1 112 Ä] 

(13) 

3.2 Vector Potential Equation: 

Equation (2) does not have explicit time- 
dependence. It is solved at each time step and in each 
individual streamwise plane by using successive over- 
relaxation. For the continuity and vorticity transport 
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equations, if the Newton iteration option is used, then A0 
and AO approach zero at each time step, and the solution 
is time-* le. For the vector potential equation, the 
solution ii aiso time-accurate, since at each iteration, AA 
can be made arbitrarily close to zero. 

3.3 Vorticity Transport Equation; 

The time-dependent vorticity transport Equation 
(1) can be rewritten as 

*, 

* [ a. * ia ■ -« 
(14) 

The corresponding finite difference equation is 
formulated similarly to Equation (10) and yields: 

_n+l      4_n   ,   lrtn-l 

*¥<J[P*H 
n+1 

* 

n+l C - '™r\ 
(15) 

Using Newton's method (n"+1 = n* + An), and expressing 
the problem in approximate factorization form leads to 
the equation: 

[i + /*a/J[i + />a/2][i + />acF3]An 
(16) 

-ßRto ) 

where: 

3 * (17) 
2At^ * 

'v  *  *      ^v      * + — 6      + —— A 

*2 " y *St   + V + V 
-If* * * 

and 

2£ At 

♦ Kn\ + (f3n* 

fin1t 

(18) 

(19) 

4.      Boundary Conditions 

The solution to Equations (1), (2), and (3) requires 
that properly formulated boundary conditions be 
specified for 0, A, and n. For the farfield, these 
boundary conditions are based on the fact that the 
disturbance velocities must vanish away from the solid 
boundary. At the body, the flow is tangential to the 
surface, and a normal vorticity jet is introduced in the 
inviscid flowfield at the point of flow separation. 

With CAP-TSD's cartesian grid, the farfield 
boundary conditions can be formulated as: 

A = A„ 

n = o 
(20) 

About the symmetry plane, V and n are antisymmetric in 
y; therefore at y = 0: 

0y + Az = O 

n=0 
(21) 

The main problem with the boundary conditions is 
the representation of the fuselage. In CAP-TSD the 
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fuselage cross-section is assumed to be elliptic, and the 
zero flux boundary condition on the body surface is 
transferred to a bounding cartesian grid (the 
"computational fuselage") by using ideas from slender 
body theory. For angles of attack typical of missile 
flight, however, the existing treatment of the fuselage is 
inadequate and an alternative scheme was developed. 

In this modified scheme, the assumption of slender 
body flow is still used, in particular, the consequence 
that only the crossflow is important. The boundary 
conditions on the cartesian computational boundary are 
found from the "change in thickness" effect, which is 
relatively accurate, and by using the analytic solution for 
the crossflow around an ellipse to give the value of the 
normal velocity on the computational boundary. The 
magnitude of the crossflow is U.. sincr, where U„ is the 
freestream velocity and a is the instantaneous angle of 
attack. 

The fact that, in the absence of vorticity, the 
"standard" form of the TSD Equation (i.e., when the 
product 0x0y is negligible in Equation (7) (no swept 
shocks)) reduces to Laplace's equation in the crossflow 
plane suggests the use of an analytic solution. For an 
elliptical body with semi-axes a and b in the y and z 
directions respectively, this analytical solution is 
obtained by using conformal mapping of an ellipse onto 
a flat plate. Such a transformation is given by: 

- 2 +  (Z2 - a2 + b2)1/2 

a + b 
(22) 

a + b 

Z +   (Z2 - a2 + b2)1/2 
-    X(Z) 

with: Z = -z + iy. 
In tr-space, the elliptical boundary and the 

symmetry plane (y « 0) are mapped into the real axis. 
This mapping is used to transfer boundary conditions 
from the true body surface to the computational 
fuselage. At each streamwise cross-section, the model 
which is used to represent the flow between these two 
surfaces is that associated with a point vortex in a 
crossflow. In <7-space, the irrotational crossflow is 
represented by a uniform stream of complex velocity: 

dFP 

-    - ain(a) 
(a + b) (23) 

In addition, a point vortex is used to model the 
rotational component of the flowfield. Its strength r is 
calculated numerically by integrating the vorticity in the 
computational domain, and its location in Z-space is 
determined as the vorticity centroid (Z0). The 
corresponding induced velocity at point <r is then given 
by: 

dtT 
i£ 
2TT Vr-frA 

1 
a-an 

(24) 

where <70 = *(Z0), and <r0 represents its complex 
conjugate. 

In Equations (23) and (24), FP and FR designate the 
complex potentials representing the effects of potential 
and rotational components of the flow respectively. 

For any point Z along the top or bottom of the 
computational fuselage, the normal velocity is then 
prescribed according to: 

WP    -    R6{~^^}     -    *, + ain(o)    (25) 

and 

Along the vertical sides of the cartesian computational 
box, the spanwise component of velocity is similarly 
given by: 

dFo dx 

and 

(27) 

(28) 

Equations (25) and (27) are used directly to supply CAP- 
TSD with the required Neumann boundary conditions 
on 0. On the other hand, Equations (26) and (27) specify 
the tangential derivative of A along the computational 
boundary. Therefore, A must first be integrated along 
the boundary to provide the proper Dirichlet condition 
for Equation (2). 

The addition of sin(a) to <f>z in (25) simply reflects 
the fact that in CAP-TSD the grid is aligned with the 
freestream. Consequently, the slender body is in effect 
considered to be inclined at an angle (-a) within the 
computational fuselage, and W represents the 
downwash effect, as seen from a referential aligned with 
Ü„. This configuration, however, leads to considerable 
inaccuracies in resolving the vortex close to the body. 
More importantly, in the physical case where vorticity is 
introduced at the top or upper right-hand side of the 
cartesian boundary, O can only be transported outside 
the computational flowfield, towards the body, and 
cannot be resolved explicitly. 

This problem is circumvented by placing the body 
parallel to the grid and considering the freestream flow 
to be inclined at an angle of attack a. As a first 
approximation, the disturbance potential 0 can be solved 
using Equation (11), as long as a remains small, although 
one of the goals of the present study is to push the 
theory well beyond its limits, i.e., for finite a. In the 
vorticity transport equation, Equation (20), # is therefore 
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replaced by (0 + sin(a) z) in order to effectively allow the 
transport of vorticity away from the computational 
fuselage. 

The transfer of boundary conditions from the body 
surface to the cartesian computational boundary using 
potential flow around an ellipse can be justified on the 
basis of the following arguments. First, the use of an 
incompressible boundary condition is warranted because 
the crossflow Mach number Mc = M„sina is order a, and, 
therefore, compressibility effects in the crossflow plane 
are of order cr and can be neglected, since the angle of 
attack can be initially assumed to be itself of order e (Ref. 
6). Second, the strictly two-dimensional analysis must be 
valid for L » D, i.e., to the order of slender body theory. 
Finally, if T is a characteristic time scale for the transfer 
of boundary conditions from the true body surface to the 
computational fuselage (length scale D), then an upper 
bound for T is given by T = D/(C(1-M^). In an unsteady 
flow of reduced frequency k = «JL/U^ the characteristic 
unsteady time scale is: T = 2«L/(UJc), and the ratio of 
these time scales is given by: 

Is [i][r?Tr]s"0(8k>      (29) 

thus justifying the use of an effectively quasi-steady 
boundary condition, valid for reduced frequencies up to 
order unity. 

A flow separation condition is simulated by the 
injection of vorticity into the inviscid flowfield at the 
point of separation. For steady flow, a modified version 
of the Stratford criterion7 is used to determine the 
separation line: 

,, dC 
C    a—i 
Pi ds 

1/2 K * io~6 0.1 
- 0.35 since     (30) 

where Cp' is the modified pressure coefficient, and s is 
the virtual length of the turbulent boundary layer, as 
seen in the crossflow plane8. 

The strength of the vorticity jet is derived from the 
observation that for a flat plate boundary layer of 
thickness 6, the streamwise vorticity flux per unit span is 
given by: 

« „2 

ündy 
2 

(31) 

where Uc is the velocity at the edge of the boundary 
layer. At the point of separation, it is assumed that a net 
fraction X of this vorticity flux is injected into the 
frcestream. This method has been formally shown2 to be 
equivalent at subsonic speeds to the "vortex cloud" 
method used by Mendenhall and Perkins? In its 

numerical implementation, the incremental normal 
vorticity flux released between x and x + Ax is derived 
from: 

x+Ax a2 

V fids - iw    2Mx (32) 
n 2 sp 

where the subscript "sp" denotes a value at separation, 
and S| and s2 are values of the curvilinear coordinate 
along the body in the crossflow plane, placed on either 
side of the separation point. The empirical "vortex 
reduction factor" A determines the amount of vorticity 
shed at that point and is set to be equal to 0.6. 

The transfer of the vorticity jet boundary condition 
to the computational box requires further analysis. For 
consistency with the model used to transfer velocity 
boundary conditions, the Stratford criterion can be 
implemented by using a transformation which inverts 
Equation (22), to obtain Cp at the body surface (see Sec. 
6). Knowing the resulting separation point, Z*, one can 
obtain the value of the stream function y* = Im(F((T*)}, at 
a = x(Z*). The location of the vorticity jet at the 
computational boundary could then be determined as 
that which satisfies f = y*. At the present time, the 
computer code is set up to prescribe any distribution of 
normal vorticity fluxes along the computational fuselage 
boundary. The results presented in this paper, however, 
consider only the model case of a concentrated vorticity 
flux placed at the top surface and designed to 
approximate the above scenario. 

5.      Second Order Correction 

Nixon et al2 have shown that a second order 
extension of the theory is required in order to account 
for the vortex tilting phenomenon. The tilting away 
from the axial direction is obtained by retaining the 
rotational component of streamwise velocity, UK. This is 
achieved by integrating the spanwise vorticity in the 
normal direction, which yields to leading order: 

°R-| HKH*      
(33> 

The inclusion of this higher order term was shown 
to give more accurate results and laid a theoretical 
foundation for the "empirical correction" used by 
Mendenhall and Perkins4. 

6.      Pressure Coefficient Calculation 

The pressure coefficient at the surface of the body 
is calculated using the isentropic relation 

-6- 



iL-!^|4 
(34) 

where q2 is the squared modulus of the total velocity 
V\> + VR, including the second order correction UR. 

Since q2 and 30/dt are not readily available at the 
body surface, owing to the use of the cartesian 
computational boundary, it is necessary to use an inverse 
transformation relating a0/at and q2 at the 
computational fuselage to 3^/3tls and qs2 at the body 
surface. 

This can be achieved by using the inverse 
conformal mapping transformation: 

z   -   (a + b>  <* + <*2- 4>1/2> 

a - b -1 .  . 
+  = r-nr    -     X     (<*) 

(35) 

cr + «r2-4)1/2 

For any first grid point away from the 
computational boundary, Z is projected orthogonally 
onto a point Zg which belongs to the true body surface. 
From Equations (23) and (24), the crossflow surface 
velocity at Zs can then be related to the velocity 
calculated at Z by observing that in <7-space: 

dFI 
der 

dFI 
dö-J a    o (36) 

where K is a complex transfer function given by: 

it   -   i£ K 2n *s-*o <T-(Tft 

(37) 

tf-fr« 

Instead of dF/dd a, the actual velocity calculated at Z is 
mapped in <r-space, so that: 

dF I dy"*1" I 

+   *:(tr,(rs,<r0,r) 

(38) 

Finally, the complex velocity at the surface can be 
evaluated in Z-space, using the original transformation 
expressed in Equation (22): 

-ws-ivs (-w-iv)A 

(39) 

+ K(<r,<Ts,c0,r) 

The squared modulus is then calculated by assuming 
that the dominant (streamwise) component of velocity is 
equal to that calculated at Z, hence: 

Similarly, the complex potentials at cs and a can 
easily be related using the following relation: 

[2n    [ (<rs-(T0) (<r-&0) 
(41) 

2 - sin(a)^5=(cr8-ff) 

Hence 30/3tlsis not equal to a^/3t, and must be 
modified in order to account, in particular, for the 
temporal variations of r and CQ, which can be the source 
of additional phase lags. 

7. Results 

A time-accurate calculation was performed for a 
missile-shaped body of 11:1 aspect ratio and 2:1 elliptical 
cross-section. A planform section of the body in the 
symmetry plane is shown in Figure 1. The body was 
configured at a mean angle of attack a = 15°, and the 
freestream Mach number was set to M„ = 0.3. 

The mesh size was 45 x 25 x 54, and its full extent 
in the crossflow plane is represented in Figure 2. The 
location of the computational fuselage is indicated by the 
inner boundary of the grid, within which the elliptical 
cross-section of the body has been outlined. A vorticity 
flux was introduced along the central portion of the 
body (0.26 s X/D s 0.78) in the form of a vertical 
vorticity jet (the arrow in Figure 3). Figure 3 also 
indicates the convention used for the definition of the 
roll angle $. To avoid any possible confusion, a note 
should be made that throughout the remainder of this 
manuscript, the symbol D is used as a reference length 
scale and refers to the half-axis of the elliptical cross- 
section in the spanwise direction. Similarly, X, Y, and Z 
are used to refer to the streamwise, spanwise, and 
vertical coordinates respectively. 

In order to verify the accuracy of the analytic 
"transfer of boundary conditions" derived in Section 4 
(Equations (25) through (28)), pressure distributions 
were computed for a purely irrotational calculation. 
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Figure 4 shows Cp distributions as a function of the roll 
angle 0, taken at the mid-chord of the body. The 
pressure distribution for the 2:1 ellipse corresponds to 
the body previously described, whereas the case labeled 
'1:1' corresponds to an equivalent body with a circular 
cross-section. In the latter case, the Cp distribution 
reveals the expected cosine-shaped profile, with a 
minimum of Cpmin s -0.29, which is the value expected 
from potential flow, since the cross-flow at 0 = n/2 is 
oj = (2tana)2 = 0.287. 

Converged time-accurate solutions were also 
computed with flow separation (i.e., with the vorticity jet 
turned on). Vorticity contours in the crossflow plane are 
shown at successive locations along the body 
(Figures 5(a) through 5(d)), for a steady calculation at 
a = 15°. These indicate the occurrence of vortex roll-up 
and intensification of the vortex strength with 
downstream distance. Further examination of the cross- 
sectional vorticity contours and of similar contours in the 
x-z plane indicates that the lowest vorticity levels tend to 
propagate in space at an angle of approximately 15° 
from the body (i.e., similarly to passive advection). The 
larger vorticity levels, on the other hand, remain close to 
the body surface, as expected from the induction due to 
the image vorticity. This behavior is consistent with 
experimental observation. 

The decomposition of the flowfield into rotational 
and irrotational velocity fields is illustrated in Figure 6. 
Figure 6(a) shows the potential velocity component (i.e., 
V0 + sin(a)k, where k is a unit vector in the positive z- 
direction) at X/D = 0.67. The rotational component VxA 
is represented in Figure 6(b) and illustrates the presence 
of a formed vortex. The total velocity field (Figure 6(c)) 
is obtained by the superposition of rotational and 
irrotational flow components. The corresponding spatial 
evolution of the flowfield along the body is documented 
in Figure 7, illustrating vortex formation, strengthening, 
and lift-up away from the body surface. 

A comparison of pressure coefficient distributions 
with and without the introduction of vorticity into the 
flowfield is provided in Figure 8 for various downstream 
locations. Upstream of the location where separation 
first occurs, irrotational and vortical C_ distributions are 
virtually indistinguishable from one another, as shown 
in Figure 8(a) for X/D = 0 23. This location incidently 
corresponds to the end of the nose section of the body 
(see Figure 1). Therefore, the asymmetric pressure 
distribution is a consequence of the forebody 
configuration. At X/D = 0.34 (Figure 8(b)), the weak 
rotational component of the flow produces a net 
reduction of surface velocities in the vicinity of the 
separation point and tnerefore an increase in pressure on 
the lee-ward side. This results in a local reduction in 
cross-sectional lift. The effect becomes more pronounced 
as the strength of the vortex increases (Figure 8(c)). 
However, at sufficiently large downstream distances 
(Figures 8(d) and 8(e)), the strength of the vortex 
becomes such that high-speed reverse flow occurs at the 
top surface, resulting in low pressures and increased lift. 

The full distributions of cross-sectional lifts and pitching 
moments are compared to a purely irrotational 
calculation in Figures 9(a) and 9(b) respectively. 
Although incipient separation takes place at X/D = 0.26, 
the enhanced lift due to flow separation is only apparent 
for X/D ^ 0.4, in accordance with the above mentioned 
threshold in vortex strength. The total lift coefficient for 
this case was found to be: CL = 1.20. For reference, the 
equivalent lift calculation using potential theory without 
the inclusion of vorticity effects yields CL = 0.54. 
Similarly, the total pitching moment taken about 
Xrcf/D = 0.45 is CM = -0.07 (versus -0.25 for a purely 
potential calculation). 

Hence, the inclusion of the rotational flow is seen 
to be responsible for drastic differences in the flow- 
induced loads on the body. 

The results described in Figures 3 through 9 
correspond to a steady configuration at a = 15°. The 
following results examine the case of flutter about a 
mean angle of attack. The body motion in 
approximated to leading order by imposing an 
oscillating freestream in the crossflow plane equal to 
U„sin(a), for which a describes a simple harmonic 
motion: a(t) = a0 + atsin(kt)# where a0 = 15° is the mean 
angle of attack, ax = 3° represents the motion amplitude, 
k = 2niL/\5m is the reduced angular freqrency based on 
body length, and t is non-dimensional time. For most of 
the unsteady results presented in this manuscript, k is 
equal to 2n, corresponding to a flutter period of unity. 
For M„ = 0.3 and, say, L = 10 m, the dimensional 
frequency is: f a 10 Hz, which is within the range of 
interest for aeroelastic computations and/or active 
control. 

The vector plots of Figure 10 illustrate the motion 
experienced by the vortex, as an entire cycle of the 
oscillation is completed. At phase kt a n/2 (Figure 
10(a)), the angle of attack is maximum. In a quasi-steady 
sense, the strength of the vortex would also be 
maximum. This is not the case, however, and the vortex 
continues to grow in strength during the 'pitch-down' 
part of the motion (Figure 10(b)). This is because the 
excess vorticity accumulated upstream takes a finite time 
to convect to the current location of X/D = 0.67. As the 
motion proceeds (Figures 10(c) and (d)), the vortex 
strength diminishes. A strong correlation can also be 
noticed between the strength of the vortex and its 
spanwise location, as expected from the induced velocity 
due to its image. 

The corresponding pressure coefficient 
distributions on the body surface are shown in Figure 11. 
These indicate the sensitivity of the vortex strength and 
position, as .well as the associated dynamic loads to the 
unsteady motion. In particular, the largest negative 
pressures on the lee-ward side of the body (0 i. 120°) 
actually occur around kt = n, i.e., at the half-point of the 
downstroke. The global effects of unsteadiness on cross- 
sectional lift distributions can be assessed from Figure 
12. At X/D a 0.67, the lift is maximum at kt = n, in 
accordance with the results of Figure 10. The crossing of 
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the lines also indicates that the value of kt associated 
with, e.g., maximum lift may vary with downstream 
position. Finally, it is interesting to notice that for kt = 0 
and kt = it, the lift distributions are almost identical 
upstream of flow separation (i.e., X/D < 0.26), whereas 
they differ greatly when vortical effects are present. 

The total oscillating lift and pitching moment were 
calculated by integrating Cj and c^. Figure 13 represents 
the instantaneous angle of attack and lift, as a function of 
non-dimensional time, for k » 2n. Substantial phase lags 
(approximately n/2 for the lift) with respect to the 
motion are observed. Similarly, the pitching moment 
was calculated to lag the motion by approximately 5r/6. 
Figure 14 presents the lift coefficient time history for 1.6 
periods of the oscillation, at the same reduced frequency, 
for the transonic case: M„ = 0.9. The solution was started 
from rest. It illustrates, as in the results of Figure 13, the 
finite physical time required for the vorticity to build up 
and produce the enhanced lift 

8. Concluding Remarks 

A theory was developed to treat flow separation 
and related vortex effects in unsteady transonic flow 
around slender bodies. This theory involves the 
simultaneous solution of a modified TSD equation, a 
vector potential equation, and a three-dimensional 
unsteady vorticity transport equation. 

The implementation of the theory was performed 
using a modified version of the CAP-TSD5 computer 
code. This modified versaon yields convergent and 
time-accurate solutions. It is shown for the first time that 
realistic high angle of attack configurations may be 
calculated using CAP-TSD, thus showing considerable 
potential for aeroelastic computations and unsteady 
aerodynamics. 

Appendix 

Derivation of Equations 

Analysis; 

q2 = U2 + V2+W2 (6) 

are 
The Euler equations for a steady compressible flow 

pt + (pU)x + (pV)y + (pW\ = 0 (1) 

(pu)t + (pU2 + p)x + (pUV)y + (pUW)z = 0 (2) 

(pv)t • (pUV)x + (pV2 + p)y + (pVW)2 = 0 (3) 

(px)t + (pUW)x + (pV W)y + (p W2 + p)z = 0 (4) 

[p(h+l/2q2)-p]t+ [pU(h+l/2q2)]x + 

[pV(h+l/2q2)]y + [pW(h+l/2q2)]z = 0 (5) 

where p is the density, U, V, and W are velocity 
components in the cartesian coordinate system (x,y,z), h 
is the specific enthalpy, and p is the pressure. 

Manipulation of the Euler equations and the use of Gibbs 
relation leads to Crocco's equation 

Vh0 + -j-- + q 4?+qxn-TV (7) 

where S is entropy, T is temperature, q is the velocity 
vector given by 

and 

q = iU + jV + kW (8) 

V-I^-+j^-+k^- O) a 3c        3 y        3 z 

h0 is the stagnation enthalpy. The vorticity vector n is 
defined by 

n = Vxq 

Equation (7) can be differentiated to give 

V |~ + V x   (q x O)   - VT x VS ot 

or, using Equation (7) 

4r fi + V(q x n) = VT(q x n)/T 

(10) 

(11) 

(12) 

It may be shown that to a first approximation, Equation 
(12) can be written in component form as 

nu+unlx + (Vrtyy+(WQ{)Z=r^Uy + ci$uz (13) 

Ok+(uq^ + Vfl2y+(wn^=ftjVx+flgVj, (14) 

%+(Uityx + (Vri^y+wojz=n{Wx+ryVy    (15) 

where 

Assume that the vorticity is produced on a slender 
body where the thickness to length ratio is characterized 
by the small parameter c. Thus, the dimensions of the 
body in the y and z directions are of order £. In order to 
make the dimensions of the body equal, the following 
transformation's used. 

and 
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X  -   X 

y - y/e 

Z   -   Z/C 

(16) 

In addition it is assumed that the velocity 
components U, V, W can be expanded in the usual 
slender body expansion to give 

U - U    (1 + e u) 

V - e ü v 
CO 

W-cOw 

(17) 

The temperature, T, is also expanded as a series; thus 

T = Tjl + emT1) (18) 

where mtl. Using Equations (16), (17), and (18) it can 
be shown that a first approximation to Equations (13), 
(14), and (15) is 

nlt+ülx + (vn1)5? + (wn1)2=o a 9) 

°2t + °2x + V^y" + (ytfyh =* cnlvx + ^3V2 W 

% + fy x + ^ y + (w^) z = £fll wx + ^2wy        @1) 

If at some boundary the vorticity that is initiated 
has a vector in the x direction, then Equations (19), (20), 
and (21) show that to a first approximation 02 and % are 
negligible in comparison with fy which is then given by 

flu + flix + (v«i)y + (yfoih - ° (22) 

Thus, in the slender body approximation one 
component, the crossflow vorticity, is dominant to a first 
approximation, and this vorticity is transported 
throughout the fluid without interchanging with the 
other components. The neglected terms are of the order 
£0!. In order to solve Equation (22) it is necessary to 
specify the boundary conditions. These boundary 
conditions are the location of the separation line and the 
magnitude of the shed vorticity. These must be found 
from empirical relations such as those used by 
Mendenhall and Perkins (Ref. 1). 

Assume that the velocity field is composed of an 
irrotational part, denoted by the subscript i, and a 
rotational part, denoted by the subscript r. Assume also 
that only the fy component of vorticity is significant; 
that is, terms of order eflj are negligible. The vorticity 

equations then become (dropping the superscript tilde in 
the following for convenience) 

Viz-Wiy = 0;   Vr2-Wty = n1 (23a) 

Uiy-Vix = 0;   Ury-V^O^O (23b) 

Ui2-Wlx = 0;   l^-W^n^O (23c) 

Ir^ Equations (23b) and (23c) the equations for the 
rotational components simply duplicate the irrotational 
component, which suggests that a velocity potential, 0, 
exists such that 

Ui = l + *x 

Wt:=*z 

(24) 

and that 

Ur = 0;Vrx = 0;VVrx = 0 

A vector potential, A is defined as 

q^VxA 

where 

^=Tur+Tvr+kWr 

and 

Ä=TA1+jA2 + kA3 

(25) 

(26) 

(27) 

(28) 

Substituting Equations (27) and (28) into Equation (23) 
gives 

A2-0 

*3-° 

(29) 

and 

Since 

Vr = Al2;   Wr = -A ■1y (30) 

A2 = A3 = 0 

the subscript "1" will be omitted in the following 
discussion. 

The equations governing the transport of vorticity 
are Equation (22) and the following equations 
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Auv + Azz = -n1 

D - 1 + 

V - £    + A 
y      z 

w - $   - A 
*z       y 

(31) 

(32) 

where 0 is the velocity potential. 

From Equations (25) and (32) it follows that 

A2X = Ayx = 0 

The standard transonic potential wing theory can 
be deduced from Equations (1) and (2) with the 
irrotational assumption and the isentropic relation 

p/py = p-/pl (33) 

Equation (2) can be written, using Equation (1) 

Ut + UUX + VUy + WUZ = -lPx (34) 

Using Equations (32) and (34), Equation (35) becomes 

0 _+  (1+0 )$      + U    + K )  6 

(35) 

+ <♦, - V ♦« " TFIO 
y-1 

«' x 

Since, from Equation (33), A is not a function of x, 
Equation (36) can be integrated to give 

(36) 

x y 
r - 2A 0    + 2A  . rz zTy y'z 31'"1 
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Equation (37) is an equation for p in terms of 0, A. The 
set of equations, Equation (1), the irrotational equations, 
and Equation (37) with 

A2 = Ay = 0 (37) 

are the equations solved by the traditional potential 
method. In order to solve for a flow with vorticity, two 
additional equations, namely Equations (22) and (31), 
must be solved. Equation (22) gives the vorticity 
transport and Equation (31) the rotational velocity 
induced by the vorticity. 
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1. Introduction 

During flutter or unsteady maneuver of slender bodies, such as missiles at angle of 
attack, important phase delays can be observed between the unsteady loads acting on the 
body and the body motion itself. These phase delays result from dynamic effects, and in 
particular the fact that the position and strength of vortices can lag the motion of the body 
significantly. One of the principal causes for this effect is that the position and strength of a 
vortex at any streamwise location along the body are the integral consequence of vorticity 
transport dynamics on the one hand, and the unsteady rate at which vorticity is fed into the 
vortex sheet on the other. Therefore, the "history effect" may be thought of as a delay due to 
convection and to the separation process itself. It is to the latter that this manuscript is 
devoted. 

The problem can be stated as follows: given a small change in instantaneous "outer 
flow conditions" at a given downstream location (these conditions already include the 
various convective phase delays), what are the additional delays, if any, that are associated 
with the separation of the boundary layer? 

If Ref 1, the essence of boundary layer separation at high Reynolds numbers is 
characterized by a normal vorticity jet. With this representation in mind, the goal of this 
paper is to establish whether the unsteady characteristics of boundary layer separation, i.e., 
the motion of the separation point and the unsteady vorticity flux shed at that point, can be 
predicted. 

The approach is to analyze the motion of the separation point as well as the vorticity 
flux in a given cross-flow plane, i.e. on a circular body, using two-dimensional Navier- 
Stokes calculations. The final goal is to incorporate the finding of this study into a modified 
version of the Stratford criterion,2 relating the separation roll angle to the pressure gradient 
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history at the surface. An innovative avenue of research has been undertaken, in which an 
attempt is made to predict the characteristics of unsteady separation based on the 
knowledge of the impulse response of the separated flowfield. 

2. Indicial Theory 

Assume that a quantifiable entity /i(t) characterizing some aspect of flow separation can 
be defined (in our case // might typically represent the separation roll angle 9$ or the normal 
vorticity flux associated with boundary layer separation, but is not restricted to these 
quantities). Consider a hypothetical change in //(t) due to an infinitesimal change in some 
parameter C(T) at some time T. The parameter c represents a change in outer flow 
conditions which affects separation, e.g. e may represent a small change in angle of attack, 
or a small change in crossflow velocity. Following the derivations of Reference 3, if \i varies 
continuously with e, then the change in /i(t) may be expanded according to 

6n(t)  « /<£(t,r)  ^-Ü 6T + 0(6T)2 (1) 

where t is time, 5/j(t) is the change in \i resulting from a change in the forcing parameter c at 
some time T, and //^(t,T) designates the rate of change with respect to c of /i(t) at time T. 

Neglecting the higher order terms in Equation (1), the total integrated effect of such 
steps in e from t = 0 until time t can be expressed as: 

A/i(t)   - //£<t,T)£«>)   +   I     /ic(t,T)   äf^lL dr (2) 

If, in addition it can be assumed that the behavior of n with e is linear, then He(t,r) can be 
represented by its value at T = 0 provided that t is taken relative to T. Thus 

/ie(t/T) = /i£(t-T,0)a/ic(t-T) (3) 

where the functional form of /i£ has been contracted for notational convenience. 

Substituting Equation (3) in Equation (2) yields, after a simple change of variable 

AMt)   - pfi(t)c(0) //£(T)  -d£(^T)- IT (4) 

Equation (4) states that, under the linearity assumptions afore mentioned, one can 
analytically predict the change A//(t) due to an arbitrary change in the forcing parameter c, 
provided that the indicial responsesc, is known. Equation (4) illustrates the power of the 
indicial method, since the response A/i may be calculated from the knowledge of the 
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excitation parameter £, and that of the indicial response /i£/ which requires only a single 
experimental or numerical determination. 

Although indicial theory has traditionally been used in unsteady aerodynamics (see 
e.g. Tobak,4 1954, Jenkins,5 1988) the work presented in this manuscript is, to the authors' 
knowledge, the first attempt at applying this concept to the problem of flow separation. 

The approach is to impose a step change in Mach number (the case of Reynolds 
number changes is deferred to the Appendix) to the separated flowfield about a circular 
cylinder, and record the indicial responses of separation roll angle, shed vorticity flux, and 
drag. Once these indicial responses are recorded, the validity of the indicial method is 
tested by evaluating the accuracy of the prediction given by Equation (4) against the actual 
(numerically computed) change A/j(t) due to some arbitrary change in £. Details of this 
procedure are given in the Results section. 

3. Computer Code and Boundary Conditions 

The two-dimensional Navier-Stokes calculations were implemented on a 245 x 79 C- 
mesh grid. The grid was a four-fold spatial refinement of that used by Rodman,6 with a 
symmetry boundary condition on the centerline. This symmetry condition ('inviscid splitter 
plate' condition) at y = 0 was imposed upstream and downstream of the circular cylinder so 
as to prevent vortex shedding beyond the critical Reynolds number. This was a necessary 
precaution since this regime is not observed in the three-dimensional flow (i.e. slender body 
at moderate angle of attack) of which the two-dimensional cylinder constitutes a simplified 
crossflow representation. The C-grid had a total streamwise extent of 25 diameters, and 
extended 5 diameters in the normal direction, away from the centerline. 

A detail of the grid is shown in Fig. 1. In this Figure, the flow direction is from left to 
right, and the sign convention for the roll angle, 0, is taken to be in the clockwise direction, 
for consistency with references 1 and 7. (i.e. 6 = 0° at the windward stagnation point). The 
computer code that was used for all of the calculations presented in this paper was 
ARC2D.8 This code uses an approximate factorization finite difference scheme. The time 
integration was performed with a 3-point second order accurate implicit method. At the 
outer boundaries, a characteristic-like boundary condition procedure using locally one- 
dimensional Riemann invariants (see Pulliam, 1984) is implemented. At the cylinder 
surface, the no-slip boundary condition is applied. 

In order to simulate instantaneous changes in angle of attack of the three-dimensional 
slender body, the two-dimensional cylinder is accelerated through the flow by moving the 
computational grid. The ARC2D code possesses time-metric terms which allowed the 
computational grid to be translated with relative ease. Using a minor amount of post- 
processing it is then possible to examine the solution flowfield in a frame of reference 
attached to the body, therefore simulating a change in freestream velocity. 

For a viscous compressible flow, conservation of momentum may be expressed as: 
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I du du du 
* + _!+,!  5..       *]   (5) 

dx.       dx.     rv in  dx J 
oo 

where the velocity components u. are non-dimensionalized by the freestream velocity UTO. 
The coordinates Xj are non-dimensionalized by the cylinder diameter D, and p, p, and // are 
non-dimensionalized by their respective freestream values. In Equation (5), use is made of 
the perfect gas assumption 

-h = —r (6) 
VM p  0 

OO oo   oo 

and the Reynolds number Re is based on the freestream velocity: Re = pJÜJD/fi^. Hence, 
with this formulation, a change AU^ in freestream velocity results in the simultaneous 
change of both Mach number (AM^ = AU^/a^) and Reynolds numbers 
(ARe = p0OAUooD//<0O). 

It is possible to vary only one parameter if, instead, the velocity components are non- 
dimensionalized by the freestream speed of sound aw. Substituting u.' = M^Uj and 
t' = t/M^ in Equation (5) and using continuity yields (dropping the prime superscript for 
notational convenience). 

du. . .    . .    r   fdu.        du,. du.-i 
p* + u. *        , . i |E_ +   i   J-U-± + -2   + M. • TA       <7> rdt 3   dx.   i y   dx.        Re     dx.rldx.        dx. I        rv  13   dx, J       3 f       1 a      3L  l     3 1J JkJ 

where ■ 1 

Re      ^00 00 
Re    = — - —-— (8) a      M u 

CO ' 00 

is the Reynolds number based on freestream sound speed. 

Equation (7) is precisely the form of the momentum equations being solved by ARC2D. 
Therefore, for a fixed cylinder diameter D and given fluid properties, the Reynolds number 
Rea remains constant. Hence any change of the freestream velocity is obtained either by 
changing the Mach number (which then affects the solution through the farfield boundary 
conditions), or by translating the computational grid and imposing that the velocity at the 
cylinder surface equals that of the grid. 

Since the non-reflective characteristic outer boundary conditions use locally one- 
dimensional approximations, it was determined that the most accurate way of 
implementing a change in freestream velocity is to set the computational grid in motion. 
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An example of this procedure is shown in Figure 2. A steady state solution with 
crossflöw Mach number Mc = 0.25 is first computed. At t = 0, the cylinder is impulsively 
translated either with or against the flow (top and bottom graphs respectively), at ä speed 
equal to some percentage of the freestream velocity. Figure 2 illustrates typical velocity 
profiles in a reference frame attached to the cylinder, at a time tUc/D = 1.0 after the 
initiation of the grid motion. The top graph corresponds to an effective Mach number 
change AMc = -0.025, while the bottom graph (cylinder moving against the flow) 
corresponds to AMC = +0.025. 

4. Results 

In order to simulate the steady symmetric leeward vortex system present in slender 
body flow at moderate angle of attack, the asymmetric vortex shedding phenomenon was 
inhibited by imposing a symmetry boundary condition at y = 0. At the high Reynolds 
numbers typical of missile flow, the separating boundary layer takes the form of a thin 
vortex sheet. The separation process can therefore be simulated7 using a concentrated 
normal vorticity jet placed at the body surface. In a two-dimensional simulation of the 
crossflow, however, the Reynolds number based on diameter must remain low (i.e. of the 
order of 100 or less) in order to best approximate the topology of the flowfield. This 
constraint originates, from the fact that in two dimensions vortex shedding occurs beyond a 
critical Reynolds number Re = 40. If shedding is suppressed by means of a splitter plate, the 
flow exhibits elongated regions of separated flow which do not adequately represent the 
leeside vortices of an inclined cylinder. For this reason, the two-dimensional Navier-Stokes 
calculations presented here are restricted to the Reynolds number range 20 < Re < 90. 

At these relatively low Reynolds numbers, the separating boundary layer does not take 
the form of a vortex sheet, but rather that of a thick vorticity layer separating from the 
surface, as seen from the vorticity contours of Figure 3. A close examination of these typical 
vorticity contours reveals that the vorticity jet representation may not be adequate at the . 
low Reynolds numbers which are needed to match the range of observed separation angles 
in the three-dimensional configuration. 

These observations suggest that a criterion which should emulate the asymptotic (high 
Reynolds number) vorticity jet representation must be based on the tracking of the line of 
vorticity maximum. Such a criterion should also prove to be superior, in principal, to the 
detection of flow reversal at the surface since the latter is known to be inadequate in 
unsteady flow as an indicator of flow separation location. 

A typical plot of the radial location of vorticity maximum as a function of roll angle is 
shown in Figure 4. It can be established from this plot and an analysis of the corresponding 
steady flowfield that as long as the flow remains attached, the maximum of vorticity lies 
along the surface (i.e. r/D = 0.5 in Figure 4). At a critical roll angle 6 (separation roll angle), 
the vorticity maximum departs from the surface. In the asymptotic high Reynolds number 
case, the locus of vorticity maxima presumably coincides with the location of the separating 
vortex sheet. Based on these remarks, the separation roll angle was defined as follows: 
according to the previously described detection criterion, the maximum of vorticity is found 
at the surface when the boundary layer is attached. Hence in that region, the normal 
gradient dO/dn (where n designates the outward normal coordinate) is negative. On the 
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other hand, when the flow is separated, the vorticity maximum occurs away from the 
surface (r/D > 0.5) and the normal vorticity gradient 80/dn becomes positive. 

Therefore, the zero-crossing of the normal vorticity gradient can be found by linear 
interpolation of dfl/3n with respect to 0, and subsequently used as a continuous indicator 
of the separation roll angle. The linear interpolation scheme also allows to partially 
overcome an inherent lack of spatial resolution, since changes in the separation location 0S 

are often quite small and typically of the order of the grid resolution itself (see Appendix A). 
As mentioned in Section 2, 6S thus defined represents one of the quantifiable entities /*(t) 
characterizing flow separation. The second quantity of interest is the vorticity flux at the 
point of separation. The Stratford criterion^ assumes that a fraction A of the tangential 
vorticity flux across the attached boundary layer gets injected into the freestream at the 
point of separation. It is justified, therefore, to consider the time-dependent behavior of the 
tangential vorticity flux across a fixed contour which cuts the boundary layer independent 
of the instantaneous location of the separation point. For convenience, such a contour was 
chosen to coincide with the normal grid line such that the roll angle of its intersection with 
the cylinder surface was 90°. This line is the baseline of the centered velocity profiles in 
both graphs of Figure 2. 

The tangential vorticity flux across this line was numerically integrated at each time 
step between r = D/2 and the outward boundary of the computational domain. By 
convention, it will be denoted Jflu0dr and refeiTed to as the "vorticity flux" throughout the 
remainder of this manuscript. 

Typical indicial responses are shown in Figure 5 for the separation point and the 
vorticity flux, in the case of a 1% velocity increase at Mc = 0.25. In both graphs, t = 0 is the 
time at which the cylinder was set in motion. The two graphs are plotted on the same time 
scale, so that the time responses A0S and AJOu^dr can be easily compared. It is evident that 
the separation roll angle reacts to the instantaneous change in velocity with a relatively 
short time constant: after undergoing a sharp positive spike (instantaneous reattachment), 
the separation point relaxes back to a position slightly upstream of the initial separation 
angle. The time constant associated with the relaxation process is seen to be quite small, 
since 0S approaches its asymptotic value within a fraction of a unit convection time. 

The vorticity flux, on the other hand, experiences a significantly longer transient 
behavior, and exhibits a broad overshoot after the initial step. As can be anticipated from 
Equation (4), 0S and Jftu^dr will therefore display significantly different responses to 
arbitrary stimuli. 

In order to establish the validity bounds of the indicial theory described in Section 2, 
the test disturbance e = AMC is taken to be of the form e^'1, where i2 = -1 and k' is the 
reduced angular frequency based on diameter and crossflow velocity. The advantages of 
using a sinusoidal disturbance include: i) ease to quantify the accuracy of the prediction 
through a decomposition into phase and amplitude responses, and ii) establishing frequency 
bounds for the application range of Equation (4). One of the objectives of the present study 
is to determine whether indicial theory can be used to predict the unsteady motion of the 
separation angle and the unsteady vorticity flux. Such predictions ought to be possible if 
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these processes are time-linearizable.3 The extent to which this condition is satisfied in 
unknown a priori, but is likely to be a function of amplitude. 

- öik't Substituting e = e,k l  into Equation (4) yields 

A//(t)  - /i£(t)   + ik'e 
ik't .  .   -ik'T. 

/i£(T)e dT (9) 

Let P€(T) be arbitrary but such that 

H   (T)  = 0        for T < 0 

£ £,°° 

(10) 

Substituting in Equation (9) and keeping only time periodic terms (i.e. considering the 
transient-free response as t-»+») yields: 

AH(t)   t^e 
ik't 

H   (T)   sin(k'T)dT + p cos(k'T)     + 

(11) 

U   (T)cos(k'T)dT  - U       sin(k'T) 
£ £,co 

Hence the phase difference between the excitation and the response is given by 

A0 = atan 
k'   j /i   (Dcos(k'T)dT - n    ^sinfk'T)   ] 

k'   j*  fi   (T)sin(k'T)dT + /i       cos(k'T)   j 
(12) 

while the amplitude A(k') of the response is given by the modulus of Equation (11). If A(k') 
is normalized by its value at k' = 0 (i.e. the quasi-steady amplitude of the response), one 
obtains the attenuation factor: 

A(k') 
A(0) 

,2      ,    fT/»£(T) i     T/*    <T)                                                       ,2      ,      Tü    (T) ^ 
k'f— sin(k'T)dT  + cos(k'T)     +    k'f— cos(k'T)dT  -  sin(k'T) 

(13) 
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Equations (12) and (13) are the indicial method prediction of phase delays and attenuation 
factors, as a function of the angular reduced frequency k'. 

The accuracy of this prediction was tested against the solution of actual integrations of 
the Navier-Stokes equations at specific frequencies. These frequencies were typically chosen 
to be at critical points (i.e. extrema, inflection points, etc..) of the analytically predicted 
response curves, or based on the range of reduced frequencies of practical interest. The 
most severe unsteady effects (highest frequencies) occur in situations of missile flutter, 
rather than maneuver. In this worst case scenario the range of amplified frequencies9 is 
5Hz < f < 30Hz. Let k = 2/rfL/U^ be the reduced angular frequency based on body length 
and freestream velocity, then at an angle of attack a, the reduced frequency seen in the 
crossflow plane (i.e. based on crossflow velocity and diameter) is: 
k' = 27TfD/Uc = 2nDa^} (sincr)"1 f/Mro. The reduced frequency k' is therefore maximized 
with maximum frequency, f, maximum diameter D, minimum freestream Mach number, 
and minimum angle of attack. Since for typical missile aspect ratios, steady separation does 
not occur until a > 10°, one may deduce that a value k' - 10 represents the "flutter 
boundary". For this reason, direct numerical verification of frequency effects were 
constrained to the range k' < 20. 

A comparison of analytically predicted and numerically computed phase delays and 
attenuation factors is presented in Figure 6, for the vorticity flux. The solid line represents 
the prediction based on the convolution (Equation (4)) with the indicial response of the 
vorticity flux (Figure 5), corresponding to a 1% step in Mach number. The equivalent 
prediction corresponding to a 10% change in velocity (computed to evaluate linearity 
bounds) is also displayed for comparison (dashed line). In both cases, the predictions are 
based on an "averaged" indicial response (i.e. the average of the response to a positive step 
on the one hand and the negative of the response to a negative step on the other). In the 
present case, the "positive" and "negative" responses were fairly symmetric, so that the 
averaging process is not fundamental to the results, but rather was performed for 
consistency of the data processing with cases of more pronounced asymmetry. 

As may be seen from Figure 6 the results of the numerical integrations (symbols) 
follow closely the analytical curves, with an overall better agreement with the 10% 
amplitude case. This may be due to the higher resolution of the large amplitude case. In 
any event, a significant (50%) overshoot of the vorticity flux amplitude is predicted and 
observed at a frequency k' = 2, which is well within the range of observed flutter 
frequencies. A phase lag of approximately 30° is reached around k' = 5. Both of these 
dynamic effects may have profound consequences for flow prediction using quasi-steady 
implementations of separation criteria. 

Unlike the vorticity flux, the indicial responses (positive and negative) of the 
separation angle 0S become asymmetric at large amplitudes, as illustrated in Figure 7. As 
will be shown shortly, this asymmetry (which reflects nonlinear» ty) is associated with a 
severe deterioration of the prediction accuracy of the indicial method. The positive step 
case (cylinder moving against the flow at 10% of the freestream velocity) is characterized by 
the instantaneous creation of vorticity at the body surface, which translates intc a negative 
vorticity gradient at the wall. 



Hence the flow reattaches instantly (according to the detection criterion presented 
above) at time t = 0. This spike in A0S is followed by a long transient (of the order of one 
unit convective time), corresponding to a period of upstream-moving separation. When the 
cylinder is impulsively translated with the flow (dashed line), the boundary layer instantly 
detaches (negative spike), and slowly recovers to a separation angle located downstream of 
the original location, a comparison with the small amplitude step response of Figure 5 
indicates that the transient time increases with amplitude. At small amplitudes (1 % or less), 
the indicial responses in 0S were observed to be symmetric within a few percent. At larger 
amplitudes, the asymmetry seems to stem from the fact that the speed at which the 
separation point travels along the surface depends on whether the separation is "upstream- 
moving" or "downstream-moving". 

The predictive accuracy of the indicial method for the separation point location was 
evaluated against selected numerical experiments, similarly to the vorticity flux. The results 
of these comparisons is shown in Figure 8. As expected from the above discussion, the 
computations at the low (one percent) amplitude are in good agreement with the solid- 
curve prediction. At the low amplitude the shape of the indicial response was observed to 
be independent of the direction of the step, which is consistent with the idea of local 
linearity which underlies the applicability of indicial theory as outline in Section 2. 

For the large amplitude oscillations (i.e. peak cylinder velocity equal to 10% of 
freestream), a significant amount of harmonic distortion of the separation angle was 
observed, as shown in the inset of Figure 8. The harmonic distortion is indicative of the 
nonlinearities which are also reflected in the asymmetry illustrated in Figure 7. Because the 
numerically computed time-series 0s(t) covered too few cycles of the fundamental (forcing) 
oscillation, adequate narrow-band frequency filtering was not attempted. Instead, the 
amplitude of the oscillation was simply defined as the half of the peak to peak amplitude, 
while the phase was calculated from the average of temporal offsets of minima and maxima 
between forcing and response signals. Due to the severe asymmetry of the waveforms, the 
uncertainty on the phase delays thus measured was considerable, as indicated by the 
uncertainty bars in Figure 8. Despite the uncertainty, it may be seen that the estimated 
phase delay remains close to the predicted curve for k' < 10. At the highest frequency, the 
numerical solution appears to follow more closely the small amplitude prediction. For the 
attenuation factor, A(k')/A(0), the prediction remained within 25% of measurement at all 
frequencies. 

In spite of these inaccuracies, several important features may be extracted from the 
results of Figure 8. First, there is a very rapid phase adjustment from 0° to -90° occurring 
before k'sl. As will be demonstrated in Appendix B, this adjustment can be theoretically 
predicted based on a simple model for.the indicial response involving the superposition of a 
Heaviside step function with an exponential relaxation curve. It may be shown in 
particular, that the width of this frequency window is inversely proportional to the time 
constant of the relaxation phase and to the square root of the amplitude of the initial pulse. 
The narrowing of the adjustment window with increasing amplitude is visible in Figure 8 
Secondly, the attenuation factor is seen to be larger than unity at all frequencies, indicating 
an amplification of fluctuations of the separation angle. As shown in Figure 8, a tenfold 
amplification factor can be obtained at relatively low reduced frequencies, underlining once 
again the importance of unsteady effects on the dynamics of flow separation. 
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As a final test of the applicability of indicial theory to boundary layer separation, an 
investigation was also made into the prediction of oscillatory drag for viscous flow around 
a two-dimensional cylinder. The goal of this investigation was to establish whether 
concepts of indicial theory would also be applied to predict oscillatory lift on a missile-like 
body undergoing flutter. 

Typical indicial responses are shown in Figure 9 for viscous and pressure drag 
components, as well as for the total drag. It may be seen that although it is the viscous drag 
which is responsible for the ultimate decrease in total drag coefficient with increasing 
velocity, the overall character of the transient response is imposed by the behavior of the 
pressure drag. While the viscous drag indicial response is characterized by an extremely 
narrow initial pulse, both pressure and total drags qualitatively exhibit the same features as 
the indicial response of the separation angle. The existence of an initial adjustment window 
for the phase response should therefore be expected, as well as the rapid amplification of 
fluctuations with reduced frequency (a feature also predicted by the model discussed in 
Appendix B). 

This is numerically verified in Figure 10. In the top graph the quasi-steady phase of the 
pressure drag is -180°, reflecting a sign inversion that was applied so that the final (quasi- 
steady) value of all drag component indicial response have the same sign, in order to 
facilitate the comparison. At all tested amplitudes and frequencies, the agreement is seen to 
be excellent. 

5. Concluding Remarks 

It has been shown for viscous flow about a two-dimensional cylinder, that several key 
aspects characterizing the time-dependent behavior of boundary layer separation can be 
predicted within a reasonable degree of accuracy over a large range of frequencies. The 
analytical prediction involved only a convolution integral based on the knowledge of the 
step response of the flowfield to a small perturbation. The perturbations under 
consideration were changes in Mach number and Reynolds number. The test functions that 
were used to evaluate the range of applicability of indicial theory to the separation process 
were: the separation angle, the vorticity flux across the separating boundary layer, and the 
drag coefficient. 

Although the overall agreement between the indicial method prediction and the results 
of direct numerical simulations was clearly superior in the case of integral quantities such as 
drag and vorticity flux, the location of the separation point was found to be satisfactorily 
predicted within the range of frequencies corresponding to missile flutter. The breakdown 
of the method appears to coincide with the advent of nonlinearity, which is first conveyed 
by an asymmetric response to positive and negative step inputs. 

Although the present results are limited to low Reynolds number, laminar flow, they 
establish for the first time that the unsteady characteristics of two-dimensional flow 
separation may be predicted using indicial theory. Whether such ideas are applicable to 
high Reynolds number turbulent flow remains to be established. 
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APPENDIX A 

PERTURBATIONS IN REYNOLDS NUMBER 

It was shown in Section 3 that the process of impulsively translating the entire 
computational grid is that closest to a crossflow plane simulation of a change in angle of 
attack. In this section, the concept of perturbing a separated flow solution of the Navier- 
Stokes equations is pursued further by considering the effect of Reynolds number change. 
As explained earlier, the Reynolds number in the ARC2D code is that based on cylinder 
diameter and speed of scmJ. Hence, any change in Re = MOTRea at a fixed Mach number 
should be interpreted as either a change in cylinder diameter or (more appropriately in the 
present case) as a change in kinematic viscosity. The present section addresses the problem 
of evaluating the limits of applicability of indicial theory when a solution is perturbed in 
Reynolds number. 

Figure 11 documents the change in separation angle 0S as a function of Reynolds 
number, for steady-solutions of the Navier-Stokes equations. Thus, the Reynolds number 
can be chosen to control the initial angle at which the boundary layer separates. 

A methodology similar to that described in Section 4 was employed here. The impulse 
response of the separation angle 8$ is first recorded. The responses associated with positive 
and negative steps in Re are suitably averaged and used with a hypothetical Reynolds 
number oscillation in the convolution integral, Equation (4). From Equation (11), phase and 
attenuation frequency responses are obtained (Equations (12) and (13)). These prediction 
curves are then compared to the results of direct numerical simulations where Re is 
oscillated sinusoidally about a mean. 

Figure 12 presents such results for the phase delay prediction at various Reynolds 
numbers. Since Reynolds number and separation angle are quasi-statically anticorrelated 
(see Figure 11), the phase difference A0 actually involves the negative of the Reynolds 
number variation, so a to have A0 = 0° at k' = 0. The phase prediction is seen to be highly 
accurate at Re = 40 and Re = 60. In these two graphs the dashed line indicates a simplified 
prediction replacing Equation (11). This prediction substitutes an exponential least square 
fit to the actual indicial response, i.e. it is assumed that the indicial response is of the type 
fls(t) s 0s(O) + (0SM-0s(O))(l - e'bt). It is then easily shown3 that in response to a purely 
periodic perturbation £(t) of angular reduced frequency k', the asymptotic response 0s(t), as 
t -> co, will exhibit a phase lag equation 

A0 =-atan(kVb) (14) 

and an amplitude attenuation factor 

A(k')/A(0)   -  i  (15) 

. \i 
[k'l 

2 
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It is clear that the simplified prediction of Equation (14) becomes at the higher frequencies, 
therefore stressing the importance of the details of the indicial response. 

At Re = 90 (bottom graph, Figure 12), the prediction is quite poor. A possible 
explanation resides in the reduced resolution in the determination of 0$. As may be seen 
from Figure 11, the decreased sensitivity d0s/dRe at Re = 90 implies total angular variations 
A0S of only a few degrees, which is of the order of the grid resolution itself. The lack of 
spatial resolution is illustrated in Figure 13. The dashed line represents the average of the 
two roll angles delimiting the computational cell in which the normal vorticity gradient 
80/ dn crosses zero at any point in time. The solid lines represent the actual (positive and 
negative) indicial res^ ^nses, obtained by linear interpolation of 30/ an. Finally, the dotted 
lines represent crude exponential fits to the indicial responses. Figure 13 shows that a 
significant amount of asymmetry is already present at Re = 40 but does not seem to 
significantly impair the accuracy of the prediction (top graph, Figure 12). At Re = 90, a 
deterioration of both the angular resolution and the degree of symmetry of the step 
responses was observed. It is believed that these factors account for the poor agreement 
observed in Figure 12 (bottom graph). The influence of the asymmetry between positive 
and negative indicial responses is also shown in this Figure. 

Figure 14 depicts similar comparisons for the attenuation factor of the oscillatory 
separation angle at Re = 40, Re = 60,.and Re = 90. The validity of the simplified predictions 
based on an exponential fit of the indicial response applies to a smaller frequency range than 
for the case of phase lag prediction. The numerically computed results are in qualitative 
agreement with the full analytical prediction. The apparently large errors (-20%) may be 
attributable to the lack of spatial resolution for all cases involving Reynolds number 
perturbations. 

Figures 15 and 16 depict the phase and attenuation results at a fixed initial Reynolds 
number, for crossflow Mach numbers of M„ = 0.1, K4 = 0.25, and ML = 0.4. At the lowest 
Mach numbers, the phase lag prediction are in excellent agreement with the results of the 
direct numerical simulations. However, in the case Mc = 0.4, both predicted phase lags and 
attenuation factors strongly deviate from the numerical results. As in the higher Reynolds 
number case, the importance of the asymmetry between positive and negative step response 
is indicated by the corresponding individual predictions in Figures 15 and 16 (bottom). In 
this case, the origin of the asymmetrical responses is not known, although is may be 
conjectured that compressibility effects may have come into play, since shocks are known to 
appear at freestream Mach numbers as low as =0.55. In any event, the lack of spatial 
resolution may also have played an important role, since the total variation in static 
separation angle 0S between Mc = 0.1 and Mc = 0.4 at Re = 60 was less than 0.7°, in 
comparison with a total spread of approximately 9° between Re = 40 and Re = 90 at 
Mc = 0.1. 

Finally it is worthwhile noting that the phase response of the separation angle shows 
only a weak dependence on Reynolds number, but a relatively strong dependence on the 
Mach number. This can be seen by comparing the evolution of phase lag distributions 
between Figures 12 and 15. Furthermore, the time constants of the exponential fits were 
found to be numerically close in the case of the Reynolds number variation, but exhibited a 
definitive trend with Mach number, as shown in Figure 17. 
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To test the ability of the indicial method to predict the dynamic characteristics of the 
vorticity flux with oscillatory Reynolds number, a sample calculation was performed in the 
vicinity of the frequency which indicated theoretically (i.e. according to Equation (11)) a 
150% amplification in fluctuating amplitude. As shown in Figure 18, the predicted behavior 
faithfully reproduced the results of the numerical simulation. The presence of an overshoot 
at the same frequency of k' = 2.5 was previously noticed in Section 4 under the same 
nominal conditions of Mach and Reynolds number, but for totally different types of 
perturbations. 
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APPENDIX B 

ANALYSIS OF A MODEL INDlCIAL RESPONSE 

Let £(t) designate the indicial response of a function //(t) in response to a perturbation 
e, then, under the conditions outlined in Section 2, Equation (4) must hold: 

ji(t)   = £(t)£(0)   - £ (T)— e(t  -  T)dT (16) 

Let H designate the Heaviside step function. If the following form is assumed for the 
indicial response: 

-bT\ 
f (T)   =   [(1 - e"DT)   + £jH(T) (17) 

then Equation (17) is seen to represent a step function of magnitude £Q to which is 
superimposed an exponential relaxation function of unit amplitude, the ratio (£o/0+f 0)) 
therefore, measures the ratio of the initial value (or "spike", if £Q < 0) to the final value (i.e. 
after all transients have decayed). 

Substituting Equation (17) into Equation (16) and assuming the perturbation e to be of 
purely oscillatory form (e(t) = eiwt, i2 = -1) yields for large times: 

iwt „(t)   =eiwt   [1 +  {0 - lw(* ~ %}] 

Hence the phase response $ is given by: 

0 = -atan 

where 

w    + b 

w 
b + c 

(18) 

(19) 

c = 
'     2 K2 w    + b 

"  b 

while the attenuation factor can be expressed as 

where 

A(w)   _|, 
A(0)     >T 1 + 

2-  1 

(20) 

(21) 
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y - i - i + t. 
(22) 

At finite frequency, Equation (21) becomes singular at £Q = -1. This situation arises when 
the final value of \i equals its amplitude immediately before the initiation of the step. This 
does not typically occur in practice. However, it is useful to examine the behavior of the 
amplitude (attenuation) response in the case where the indicial response is characterized by 
a large initial spike followed by a relaxation phase back to a value which is very close to the 
initial value. This type of indicial response was observed for the separation angle 0S and the 
drag coefficient (Figures 7 and 9), and may be examined in detail by considering first order 
expansions of Equations (19) and (21) about £Q = -1. 

Let £   = -1 + 6, where I 6 I «1. It may be shown that 

A(w) 
A(0)     6->0 

1 
b 1 - 

♦5 
(23) 

Hence, the shape of the amplitude response curve is given by the square root in (23), while 
at any given frequency, the response A(w)/A(0) gets amplified by a factor 6'1, i.e. the 
magnitude of the spike of the indicial response, relative to the final value. This behavior is 
exemplified by the amplitude response curves associated with pressure and total drag 
(Figure 9). 

A similar analysis of the phase response (Equation (19)) reveals that the phase 
asymptotes to -180° for large frequencies (a fact corroborated by the present results, Figure 
10, top graph), and that the initial rate of change of the phase lag <p with respect to w is 

dw 
w=0 

6->u~ "" bS 
(24) 

It can be shown that for 6 fixed and w -» 0, then <p -> 0. However, in the limit where 
0 < w « 1 is fixed and 6 -> 0, the phase asymptotes instead to a value of -7r/2. Since 5 is 
never zero in practice, it is the zero limit which is observed. Nevertheless, 0(w) may be 
viewed as the composite of two solutions which match at a frequency w* such that <p(vf) = - 
nil. Therefore w represents the frequency window of rapid adjustment of the phase 
between 0 = 0 and # = -nil. The frequency w* at which tan# becomes singular is given by 
the estimate 

w 
6->0' bU (25) 

Hence for a fixed relaxation constant b"1, the width w* of the region of rapid phase 
adjustment decreases like the square root of the spike amplitude. 
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A wealth of additional information can be extracted from such simple models as that 
expressed in Equation (17). In particular, the analysis can be easily extended to the case 
£   > 0, corresponding to the initial transient of the vorticity flux indicial response (Figure 5). 

The analysis of the model indicial response (17) with £0 > 0 did not yield the observed 
overshoot in the attenuation curve of the vorticity flux. Since such a model is unable to 
represent the local maximum exhibited by the indicial response itself, it is likely that this 
maximum is the cause of the overshoot. In any event, the sensitivity of the results to the 
magnitude f 0 was found to be small for £Q > 0, but very significant for £Q < 0 (i.e. in the 
presence of an initial spike). 

Since the magnitude of the initial spike appears to condition strongly the phase and 
amplitude responses for 9S and CD, an attempt at determining its scaling properties with 
respect to the step amplitude was performed. Using the perturbation technique described 
in Section 3, the Mach number was stepped up from an initial value Mc = 0.25 with various 
amplitudes covering five orders of magnitude, from AM/Mj = 0.001% to AM/M. = 100%. 
The results are presented on a logarithmic scale in Figure 19. In both graphs, the subscript i 
designates the initial value (i.e. immediately before the cylinder was set in motion). The 
round symbols represent the peak value of the indicial responses (at t = 0+) while the square 
symbols correspond to the post-transient value (t -> +«>). The solid curves are lines of unit 
slope which were added as an aid in determining the range of linearity of the data. 

Both base and peak values for the indicial response of the total drag coefficient behave 
very linearly with forcing amplitude. Therefore, the ratio (f0/(l + £0)) is a constant. 
Consequently, if the relaxation constant, b, is a constant, the phase and amplitude 
characteristics of CD should be independent of Mach number change over the investigated 
range. This result is essentially in agreement with the data of Figure 10. In the case of the 
separation angle 0S, an approximate linearity range exists below AM/Mi = 1%, followed by. 
a saturation of the response. Therefore, it is expected that the phase and attenuation 
characteristics should exhibit a larger dependence on the initial perturbation magnitude, a 
fact also corroborated by the numerical experiments reported in this manuscript. 
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Fig. 3.      Illustration of Vorticity Shedding in the Model Two-Dimensional Problem at 
Re = 40,Mc =0.1. 
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Fig. 5. Typical Indicial Responses for the Separation Point 0S (Top) and the Vorticity 
Flux (Bottom), for Flow Around a Circular Cylinder Subjected to a 1 % Change 
in Velocity (Mc = 0.25, Re = 60). 
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PREDICTION OF UNSTEADY SEPARATED TRANSONIC FLOW 
AROUND MISSILE CONFIGURATIONS 

P.Rciscnthel and D.Nixon 
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Abstract 

The Transonic Small Disturbance equation was 
supplemented with a transport equation for the 
streamwise vorticity and a vector potential equation to 
predict vortex effects over missile configurations. The 
flow separation phenomenon was modeled using normal 
vorticity jets placed along the separation line. The 
strength and location of the separating vorticity was 
determined from empirical criteria. Time-accurate 
calculations performed using a modified version of the 
CAP-TSD code in subsonic, transonic, and supersonic 
flow suggest that it is possible to compute realistic angle 
of attack configurations using CAP-TSD, thus showing 
considerable potential for aeroelastic applications and 
unsteady aerodynamics. 

Nomenclature 

Symbols: 
A Rotational vector potential 
CN Normal force coefficient (based on body cross- 

sectional area) 
Cp Pressure coefficient 
D Body diameter 
f Frequency 
Im(} Imaginary part 
k Angular reduced frequency based on length and 

freestream velocity (InfL/XJ^ 
k' Angular reduced frequency based on diameter 

and crossflow velocity (^fD/Uy 
L Body length 
M Mach number 
p Pressure 
q Total velocity (u^+v^w2)1 /2 

s Curvilinear coordinate along body radius 
Re(} Real part 
t Time 
u Streamwise velocity 
v Spanwise velocity 
w Normal velocity 
x Streamwise coordinate 
y Spanwise coordinate 
z Normal coordinate 
a Angle of Attack 
T Circulation 
0 Roll angle 
0 Irrotational potential 
p Fluid density 
ft Streamwise vorticity 

Subscripts: 
c Crossflow 
le Leading edge 
n Normal 
te Trailing edge 
« Freestream 

[Research Scientist, Member AIAA 
"President 

1. Introduction 

In recent years ic has been possible to predict the 
unsteady transonic flow around a wing, especially those 
typical of commercial aircraft, in a fairly efficient 
manner. Frequently, the computer codes that are used 
are based on potential theory and are considerably faster 
than a corresponding calculation using the Euler 
equations. Because these methods have been developed 
for aircraft, they are not really applicable to missile flows 
where the effects of vorticity due to flow separation are 
important; the potential approximation cannot predict 
the effects of vorticity other than by representing a 
vortex wake by an infinitely thin sheet which is excluded 
from the computational domain. This model is 
complicated and may not be a viable option for routine 
calculations around real aircraft or missile configurations 
because the geometry of the vortex sheet can get quite 
complex. 

For steady missile flow a variety of prediction 
methods are available,1 ranging from panel methods 
with the addition of nonlinear vortex dynamics to the ' 
Euler equations or Navier-Stokes equations. It would be 
ideal to use the Navier-Stokes equations to model 
unsteady transonic flow around missiles, but there are 
several difficulties with this approach. The most obvious 
difficulty is the computer time required, which is several 
orders of magnitude greater than that required for a 
potential calculation. Even if a dedicated supercomputer 
were available for such calculations, the computation of 
the necessary flow separation might be inaccurate 
because of the inherent inaccuracy in many present 
turbulence models. The next best approach would be to 
use the time dependent Euler equations which require 
some empiricism to initiate separation and compute the 
shed vorticity. If the separation line and shed vorticity 
could be predicted, then the Euler equations would be a 
viable model since they will model the transport of this 
vorticity reasonably accurately. However, since missiles 
are slender some further approximations can be made. 

This paper is concerned with developing a method 
of predicting the unsteady pressure distribution on 
missile-like bodies at transonic and supersonic speeds. 
The concepts developed in this work are extensions of 
earlier analyses2,3 for steady and unsteady flow. The 
approach is to make as much use of the existing 
technology as possible. The final goal is a computer code 
capable of predicting the effects of three-dimensional 
unsteady separation in transonic flow about missiles for 
use in aeroelastic calculations or during maneuver. One 
important aspect of this work involves the application cf 
indicial theory to predict the time-dependent behavior of 
boundary layer separation. The present paper is an 
account of the final phase of the work, namely the 
refinement and exploitation of the unsteady flow variant 
of this method for prediction of three-dimensional 
unsteady separated flow. 

Copyright © 1991 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



2. Basic Equations 3. Computer Code and Numerical Methods 

The present approach is based on experience 
gained in steady subsonic and supersonic flow 
predictions for missiles, in particular, the fact that if a 
separation line and the strength of the vorticity 
introduced at that line can be estimated empirically, the 
governing equations (such as the Eulor equations) will 
represent the transport of this vorticity accurately. 
Because the computational time for the Euler equations 
for an unsteady calculation is considerably greater than 
that for a potential calculation, a simplified model is 
used. 

The basic equations are an extension of those 
derived by Klopfer and Nixon4 for steady flow and 
constitute a subset of the Euler equations. For slender 
bodies, the five Euler equations are reduced to an 
equation similar to the three-dimensional unsteady 
potential equation, a three-dimensional vorticity 
transport equation, and a two-dimensional Poisson 
equation. In addition to having to solve a reduced set of 
equations, a significant advantage is that one of the 
equations is almost identical to the potential equation for 
which there are well tested computer codes. This allows 
the development of a prediction method based 
considerably on proved technology. The reader is 
referred to Ref. 3 for the derivation of these equations, as 
well as a description of their numerical implementation. 

The basic equations are summarized as follows: 

Vorticity Transport 

flt + fi^ + CvfÖy+Cwn^^O 

Rotational Crossflow 

Ayy+A2z="n 

Mass Conservation 

pt + (pu)x + (pv)y + (pw)2 = 0 

(1) 

(2) 

(3) 

where p is the fluid density, u, v, and w designate the 
streamwise, spanwise, and normal velocity components 
(i.e:, in the coordinate directions x, y and z, respectively), 
and A is the vector potential for the rotational velocity. 
The Helmholz decomposition of the flowfield into 
potential and rotational components is given by: 

u = 1 + $x ; v =r 0V + A. ; w = tfr - Av (4) 

where 0 is the irrotational scalar potential. Finally, the 
density is related to the velocity components through the 
isentropic ideal gas relation: 

f     (y~1)M~2 2      2      2  ly=T 
P - Poop 2 {1  - 2V U      V      w > SV 

J (5) 

where M^ designates the freestream Mach number, and 
y is the specific heat ratio. 

The boundary conditions on the body are zero 
flow through the body, and zero vorticity flux, except at 
the specified separation line. 

By making the small disturbance approximation, p 
can be expanded in terms of disturbance velocities, and 
substituted into the conservation of mass equation to 
give the following three-dimensional unsteady potential 
equation: 

3f c 
at dx ay dz - 0 (6) 

(7) 

with 

f0=-M^r2M^x 

fj = CI-M£)*X -}<y+i>M£*5+^y-3)M^y+Az)2 

f2 = *y + A2-(y-l)M2*x(tfy+A2) 

'3 = *.-Ay 

In Ref. 3, Nixon et al. showed that because of the 
resemblance between En. 6 and the usual Transonic 
Small Disturbance (TSD) equation, this theory could be 
implemented using established and well-tested potential 
flow solvers, such as the Computational Aeroelasticity 
Program CAP-TSD, aue to Batina et al.5 The CAP-TSD 
code is capable of.predicting the unsteady transonic and 
supersonic flow over a complete aircraft configuration 
including fins, stores, and pylons. Consequently, this 
code was used as a basis for the implementation of the 
above-mentioned unsteady flow theory (an 
implementation of the steady version of this theory may 
be found in Ref. 4). 

The present paper reports sample calculations for a 
model three-dimensional slender body with horizontal 
and vertical fins. The results illustrate the predictive 
capability of a computational tool initially based on 
CAP-TSD, but which has extended the range of 
applications of this code to separated vortical flows, 
including crucial refinements in the representation of the 
computational fuselage. 

The algorithm used in CAP-TSD is approximate 
factorization with time stepping as an option; this 
algorithm is retained in solving Equation (6) and the 
vorticity transport equation, Equation (1). Since 
Equation (2) does not have explicit time-dependence, it 
can-be solved at each time step and in each individual 
streamwise plane by using the successive over-relaxation 
method. The time-marching procedure is performed 
using a second order accurate implicit scheme. For the 
continuity and vorticity transport equations, if the 
Newton iteration option is used, then the L^-norm over 
space of the incremental change in the solution (A0 or 
Afi) approaches zero at each time step, and the solution is 
timeraccurate. For the vector potential equation, the 
solution is also time-accurate, since at each iteration, M 
can be made, arbitrarily close to zero. A more complete 
description of the algorithm and the difference equations 
which have been used to modify the CAP-TSD code can 
be found in Ref. 3., 
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4. Boundary Conditions 

a) Body. At the body, the /low is required to be 
tangential to the surface, and a normal vorticity jet is 
prescribed at the point of flow separation. 

In CAP-TSD, the fuselage cross-section is assumed 
to be elliptic, and the boundary conditions on the body 
surface are transferred to a bounding cartesian grid (the 
computational fuselage) by using ideas from slender 
body theory. For angles of attack typical of missile 
flight, however, the original treatment was inadequate 
and an alternative scheme was developed.3 In this 
modified scheme, the assumption of slender body flow is 
still used, in particular, the consequence that only.the 
crossflow is important. The boundary conditions on the 
cartesian computational boundary are found from the 
'thickness effect/ which is relatively accurate, and by 
using an analytic solution for the crossflow to specify 
normal velocities v or w on the computational boundary. 
For a body at angle of attack a these conditions, in a 
reference frame-aligned with the freestream,,are 
expressed as: 

<t>y + Az=v ; *Z-Ay =iy-sin(a) (8) 

Since the standard form3 of the TSD Equation (i.e., 
in the absence of swept shocks) reduces to Laplace's 
equation in the crossflow plane, it is justified to use 
analytic solutions v and w obtained from conformal 
mapping transformations. Such an approach has been 
previously shown3 to be valid for reduced frequencies, 
IniL/U,,, up to order unity, within the context of 
slender body approximation and negligible 
compressibility effects (of order a2) in the crossflow. 

For a body with elliptical cross-section and thin 
lifting surfaces aligned with the principal axes of the 
ellipse, this analytic solution is obtained by using 
successive conformal mapping transformations. The 
global transformation (noted c = *(Z), with Z = -z + £y) 
maps the symmetry plane (y = 0), the elliptical 
boundary, and the horizontal and vertical fins into a 
subset of the real axis in the (T-plane. The transformation 
is the composite of the following mappings: 

i) ellipse of semi-axes b and a into the unit.circle: 

* 
Z +   (Z2-aW/2 

a+b (9) 

ii) unit circle into a flat plate: 

■?-* + ! 

i»') flat plate with vertical fence of height qe into a 
flat plate: 

,,    »2      ,1/2 
(XX) 

In the <T-plane, the flow is that associated with a 
point vortex in a crossflow (see Nixon et al.3). The 
freestream velocity magnitude in cr-space is 
(a+b)jjesin(a)/2. The point vortex used in each 
streamwise plane models the rotational component of 
the flowfiela by being given a strength ro equal to the 

numerically integrated vorticity in that plane. The 
location of the vortex in Z-space is chosen to be the 
centroid of vorticity.* 

Let F be the complex potential associated with the 
analytic solution in the transformed plane; the spanwise 
and normal velocities v and w can then be recovered 
according to: 

and 

V    -    Im 

W    - -Re 

[_dF dx\ 
\ off dZj (X2) 

(13) 

If A is a constant along the boundary, then 
Equations 8 are used to supply CAP-TSD with the 
required Neumann boundary conditions on $. The 
inclusion of the sin(or) term in Equation 8 reflects the fact 
that the equations of motion are solved in a reference 
frame attached to the body, i.e., at an angle of attack a 
from the freestream. 

In the original CAP-TSD code, the computational 
fuselage is a rectangular cylinder which encompasses the 
entire body. Such a configuration was used in 
computations by Nixon et al./3 for a body with a 2:1 
elliptical cross-section. For such bodies, the separation 
line lies close to the 90* roll angle, and the shear layers 
are known to separate almost vertically. There are, 
however, several problems with this representation of 
the fuselage, in particular, the fact that the exact location 
of the vorticity jet cannot be determined accurately, since 
one must account for the transport of vorticity within the 
space bounded by the true and computational body 
surfaces. Furthermore, the vorticity distribution at a far 
away boundary cannot be represented by a single 
outward vorticity jet at some location on that boundary. 
This problem becomes especially acute with low aspect 
ratio ellipses, and in particular in the case of circular 
cross-sections. 

The difficulty was circumvented by modifying the 
CAP-TSD code so as to represent the computational 
fuselage by a serrated-edged cylinder which closely 
approximates the actual solid boundary. The obvious 
advantages of this modification are: i) an accurate 
calculation of the vorticity transport phenomenon close 
to the separation point; ii) a lesser dependence on the 
model used for the transfer of boundary conditions 
(Equations 12 and 13); and Hi) convergence of the true 
and computational surfaces towards one another, with 
increasing grid resolution in the crossflow plane. Most 
importantly, this representation of the computational 
fuselage can retain the cartesian grid of the CAP-TSD 
code. The resulting grid is shown in Fig. 1, where the 
cross-section of the actual body has been outlined. The 

•In the two-dimensional point vortex model, it is necessary to consider the 
existence of a 'feeding sheet' along the branch cut because ar/ it*0. 
This is because the variable circulation results in a if/il term in the 
Bemouitii equation, hence producing a pressure tump across the branch 
cut. The resultine force must be balanced by the Joukowski force on 
the vortex core." This 'force-free' (but not moment-free) vortex 
condition leads to an O.D.E. for the vortex position and circulation20 as 
a function of time, for given initial conditions. Since r is known such 
an approach would essentially amount to a duplication of the vortidty 
transport equation. Therefore, the simple centroid model was retained 
in the present boundary conditions. 
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arrow in the close-up figure indicates the roll angle 
convention. 

For the vorticity boundary condition at the body, a 
flow separation condition is simulated by the injection of 
vorticity into the flowfield at the point of separation. For 
steady flow, a modified version of the Stratford 
criterion6 is used to determine the separation line: 

dC ,1/2. 
Rea x 10 -6 

0.1 (14) 

- 0.35 sin(a) 

where Cp' is the modified pressure coefficient7 and s is 
the virtual length of the turbulent boundary layer, as 
seen in the crossflow plane. 

Although two-dimensional Navier-Stokes 
calculations of unsteady flow around a circular cylinder 
have been performed8 as a first step towards the goal of 
formulating a truly dynamic version of the Stratford 
criterion, the results presented in this manuscript are 
mostly limited to its quasi-steady implementation. 
Typical separation lines obtained in this mariner are 
provided in Fig. 2. For the body geometry described in 
Section 6, this figure shows the temporal variations of 
the computed separation line (i.e., the separation roll 
angle .0S measured from the windward stagnation point 

. as a function of streamwise distance along the body), for 
a step change in angle of attack at t = 0, from a = 15° to 
a = 20-. 

In each crossflow plane, the strength of the 
vorticity jet is derived from the observation that for a flat 
plate boundary layer of thickness 6, the streamwise 
vorticity flux per unit span is given to thr order of 
boundary layer theory by: 

consistency with the model used to transfer velocity 
boundary conditions, the Stratford criterion is 
implemented on the true surface of the body by making 
use of the inverse transformation Z = x'1^) to obtain Cp 
(see Section 5). This same transformation can, in turn, be 
used to compute the intersection of the stagnation 
streamline with the computational boundary. This 
location would determine the placement of the vorticity 
jet on the computational fuselage. At the present time, 
the computer code is set up to prescribe any distribution 
of normal vorticity fluxes along the computational 
fuselage boundary. For simplicity, the results presented 
in this paper consider only the model case of a 
concentrated vorticity flux placed at the closest grid 
point from the location of separation. 

An additional difficulty in the integration of the 
vorticity transport equation arises from the fact that, in 
the original CAP-TSD code, vorticity was initially pulled 
away from the computational domain and towards the 
body, due to the downwash effect. This problem was 
circumvented by placing the body parallel to the grid and 
considering the freestream flow to be inclined at an angle 
of attack a. As a first approximation, the disturbance 
potential $ can be solved using the method of integration 
in CAP-TSD, as long as a remains small, although in the 
present study the theory is pushed well beyond its 
limits, i.e., for finite a. The potential, f is therefore 
replaced by (# + sin(a) z) in order to resolve the 
transport of vorticity away from the computational 
fuselage. 

b) Farfield and Symmetry Plane, The farfield 
boundary conditions are based on characteristic 'non- 
reflecting' boundary conditions for $, and on the fact 
that the rotational flow component must vanish away 
from the solid boundary.3 The non-reflecting boundary 
conditions are derived after Whitlow.10 These are: 

undy ---. (15) 

where Ue is the velocity at the edge of the boundary 
layer. At the point of separation, it is assumed that a net 
fraction A of this vorticity flux is injected into the 
freestream. This method has been formally shown1 to be 
equivalent at subsonic speeds to the "vortex cloud" 
method used by Mendenhall and Perkins.9 In its 
numerical implementation, the incremental normal 
vorticity flux released between x and x + Ax is derived 
from the condition: 

x+Ax a2 

f    V Ods « i(V2 +W2 )AAx 
J       J      n 2    ap    sp (16) 

where the subscript "sp" denotes a value ai separation, 
and Sj and s, are values of the curvilinear coordinate 
along the body in the crossflow plane, placed on either 
side of the separation point. The empirical "vortex 
reduction factor' X determines the amount of vorticity 
shed at that point and was set to be equal to 0.6 in the 
present calculations. 

The transfer of the vorticity jet boundary condition 
to the computational fuselage and the transport of 
vorticity from that point are analyzed next.  For 

upstream boundary:    $ -    0 

Downstream boundary: 0X "   §[§-7§K 
Upper boundary:           #z - -§ *t + *y 
Lower boundary:           ^2 -   5*t+Ay 

Spanwise boundary:    #v - ~2  *t ~ Az 

where: 

Ä - M2                B - 2M2 
eo                                               co 

C - E+2F0x 

2 
D -   (|f4A)1/2 E - 1-M2 

F - -i<y+1>M« 

(17) 

(18) 

The present study is restricted to pitching motion only 
About the symmetry plane, v and n are antisymmetric in 
y; therefore at y = 0: 

*y + Az=0;O = 0 (19) 

c) Horizontal Vins and Wake, For horizontal 
lifting surfaces, the boundary conditions on 0 are 
unchanged from their original treatment in CAP-TSD 
(Refs. 11 and 12). Along the top (+) and bottom (-) 
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surfaces of the surface, the vertical disturbance velocity 
is specified according to a flow tangency condition: 

** = 6±(x,y,t) (20) 

where & represents the local vertical deflection angle at 
the fin surface. Across the wake, the vertical velocity 
component $7 is required to be continuous, while the 
wake circulation, r, is convected downstream12 by 
integrating the equation 

rx + rt=:0 (21) 

It may be shown13'14 from a contour integral in the 
trailing edge plane of the fin that an initial condition at 
the trailing edge is given by: 

ricW***t.W-*\&# (22) 

Equation 21 can be used to represent at each streamwise 
location the effect of the wake on the body, by assigning 
a strength I". to point vortices placed at each spanwise 
grid location of the wake cut. This horizontal array of 
point vortices is then mapped into o"-space, inducing a 
complex velocity 

der      £-? 2 
j 

2*    j 
1_ 1 (23) 

where a- is the location of the individually mapped 
vortices and 3*. denotes the complex conjugate'of c. The 
summation is carried out over the set of spanwise grid 
locations representing the wake. The complex velocity 
dF'/dc induced by the wake circulation is subsequently 
added to dF/do- in Equations 12 and 13 to give the 
proper spanwise and normal boundary conditions on the 
computational fuselage. 

5. Pressure Coefficient Calculation 

At the solid surfaces the pressure coefficient is 
calculated using the isentropic15 relation: 

V« 

j^-lL-LU^M, 

(24) 

q     -  q ;)] ^ -1) 

where q2 is the squared modulus of the total velocity. 
Nixon et al.2 pointed out that in order to get the correct 
effect resulting from the tilting of the lee-side vortex 
away from the surface, it is necessary to apply a second 
order correction to q2 so that it includes the rotational 
component of streamwise velocity: 

" j axay 
dz (25) 

The inclusion of this higher order term has been 
shown2'3 to yield more accurate results and lays a 
theoretical foundation for the "empirical correction" used 
by Mendenhall and Perkins.9 

In order to obtain Cp at the body surface, it is 
necessary to know q2 and 3f/dt at the body. This is 
achieved by inverting the transformation used to transfer 
boundary conditions from the true body surface to the 
cartesian computational fuselage. Grid points Z 
belonging to the computational boundary are first 
projected orthogonally onto points Zg which belong to 
the true body surface. Based on the analytic solution for 
a point vortex in a crossflow, the complex velocities at 
the corresponding points in <r-space can be related 
simply. It can be shown that the velocities at a and cs 
differ by an additive complex quantity K which depends 
only upon a, <rs, and the strength and position of 
potential vortices present in the model. Following the 
derivations of Ref. 3, this same transfer function K, is 
used to obtain the complex velocity at cs, based on the 
actual (i.e., calculated) velocity at a, i.e.: 

-1, 
SI    -    (-w-iv)ä* 
dff\ * 'der 

+    K(at<Tst<rotcryVotr^) 

(26) 

where <r is the mapped location of the rotational body 
vortex ot strength ro, and the «r/s and r/s represent the 
location and strength of the H: wake vortices. The 
complex transfer function, K, is given by: 

i     £) i_ 4ÜL  [ 1 JL_ 
2* £o 3k-*j    *-*! 

(27) 

o-.-tfj       o*-<r, 'a-*j 

The scaled crossflow velocity at the body surface is 
given, therefore, by the inverse mapping: 

-w -iv      -    |(-W- iv) da 

-1. 

(28) 

+ *(*VVVo'rj)(§|, 

Similarly, the complex potentials at o*g and a can 
easily be related using the following relation: 

- 6 + Re 

]) - sin(a)-^-ne(o-a-^) 

Hence, 30/3tls is not equal to d0/3t, and must be 
modified in order to account for the temporal variations 
of co,-ro and I\ , which are the source of additional 
phase lagsMn the determination of the pressure 
coefficient. 

6. Results 

Time-accurate calculations were performed for a 
missile-shaped body of 11:1 aspect ratio and circular 
cross-section. The body is an ogive-cylinder with a 3- 
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caliber nose and 8-caliber straight section, chosen to 
allow comparisons with Tinling and Allen's16 

experimental data. In order to demonstrate the current 
capabilities of the code, generic rectangular horizontal 
and vertical fins could also be added to the body, as 
shown in the perspective view of Fig. 3. Each fin was 
infinitely thin and placed at zero angle of attack with 
respect to the body. The leading and trailing edges of 
the fins were located at X^/L « 0.74 and Xt /L = 0.86, 
respectively. The horizontal lifting surface had a span 
equal to 85% of the maximum body radius. The body 
was configured at a mean angle of attack a = 15*, which 
could be oscillated sinusoidally with an amplitude of 
+20%. The Mach number was varied between Mw = 0.3 
and MM= 1.5. 

For all of the results presented in this manuscript, 
the computational mesh size was 45 x 32 x 50 in the 
streamwise, spanwise, and normal directions. The 
cartesian grid was designed to optimize spatial 
resolution around the separated flow region, and 
extended at least-five body diameters in the spanwise 
and normal directions (Fig. 1). 

In order to verify the accuracy of the analytic 
transfer of boundary conditions described in Section 4, 
pressure distributions were computed for a purely 
irrotational calculation. Fig. 4 shows the Cp distribution 
as a function of roll angle, in a stream wise plane which 
corresponds to the straight section of the body. The data 
points (open symbols) represent the pressure coefficients 
calculated according to the method described in 
Section 5, where the grid points closest to the actual 
body (i.e., the inner "corners" in Fig. 1) have been used. 
This computed pressure distribution is compared to the 
analytical solution for potential flow around a circular 
cylinder (dashed line in Fig. 4). Since the body diameter 
is constant around this stream wise location, the two 
pressure distributions are expected to compare relatively 
well, provided that the appropriate vertical shift is 
added to the analytical solution. Note that this shift 
must be introduced, in order to take into account the 
local value of a streamwise component of velocity, which 
differs from unity. As may be seen from Fig. 4, the 
agreement, in the absence of vorticity, is quite 
satisfactory. This implies that the transfer of boundary 
conditions that was derived in Ref. 3 may be used 
reliably, to the extent that the surface rotational 
velocities induced by the distributed vorticity can be 
adequately represented by the effect of a point vortex. 

The decomposition of the flowfield into rotational 
and irrotational velocity components is illustrated in Fig. 
5, for a crossflow plane intersecting the fins. The left 
hand graph shows the irrotational velocity component, 
V0 + sin(cr)k, where k is the unit vector in the positive z- 
direction. The rotational component VXA (middle graph) 
illustrates the presence of a formed vortex away from the 
surface. The total velocity field*(right hand side) is the 
superposition of rotational and irrotational flow 
components. 

Fig. 6 shows the details of vorticity contours at 
X/D = 10.1 in the absence of fins, and illustrates the 
entrainment of vorticity from the point of shear layer 
separation, towards the core of the vortical structure 
exhibited in Fig. 5. The corresponding global dynamics 
of three-dimensional vorticity transport and vortex roll- 
up are illustrated in Fig. 7 for the case of a step change in 
angle of attack at t = 0, from a = 15° to a = 20 •, at a 

Mach number M«. = 0.3. In the present calculations, the 
incorporation of dynamic effects through the coupling of 
outer flow dynamics with the instantaneous motion of 
the separation line was inhibited along the forebody. In 
the absence of this restriction, vorticity at the nose is 
introduced too far away from the surface. This results in 
loss of coupling and early separation of a weak tip , 
vortex. The source of this problem is similar to that 
identified earlier in the crossflow plane and has to do 
with the cylindrical nature of the computational fuselage 
in CAP-TSD. Consequently, vorticity jets were only 
introduced from the end of, the forebody section (i.e., 
beyond X/D = 2.5), as seen from Fig. 7. 

The anatomy of the flowfield is perhaps best 
described by the evolution of the velocity field at various 
downstream positions along the body (Fig. 8). At 
X/D « 4.0, little vorticity has been injected into the outer 
flow. The formation of a small region of reversed flow 
first becomes evident around X/D = 5.6. The 
phenomena of vortex roll-up and strengthening with 
increasing downstream distance can be observed from 
the evolution of the flowfield at X/D = 7.9 and 
X/D = 9.7. These observations remain qualitatively 
similar to those of Ref. 3, although in the latter work, the 
vortex strength and its vertical location were 
exaggerated, due to the inaccuracies involved in 
positioning a concentrated vorticity jet at a distant 
computational boundary; as previously discussed. 

A quantitative comparison of pressure 
distributions at several downstream locations is made in 
Fig. 9. These pressure distributions are compared to the 
experimental data of Tinling and Allen16 (open symbols) 
and the predictions of Mendenhall and Lesieutre1' 
(dashed lines), using the "vortex cloud" method.8 At all 
three locations, the current predictions are seen to 
overshoot both the experimentally acquired values and 
the vortex cloud predictions in the separated flow 
region* By comparison with the results of Nixon et al.,3 

one can infer that the discrepancy may be due to the 
lower strength of the rotational flow component. In the 
vortex cloud method, incipient separation was reported 
to take place around X/D = 1.0, but was only allowed 
beyond X/D = 2.5 in the present calculations. The level 
of disagreement between the experimental data and the 
current results is also seen to diminish with increasing 
downstream distance (a result also observed in Ref. 2). 

Fig. 10 illustrates the effect of Mach number at an 
angle of attack a - 15* by comparing crossflow 
velocities / vorticity distributions at Mw = 0.3 and 
M„ = 1.5. As can be seen in this figure, the vorticity shed 
into the lee-side vortex is weaker in the supersonic case. 
This results in a smaller vortex, residing closer to the 
surface than in the case of subsonic flow. 

One of the objectives of this study is to assess the 
aerodynamic phase lags-which occur in unsteady 
separated flow. The phase lags result from various 
dynamic effects, which include lags in the position and 
strength of-vortices with respect to the body motion. 
These phase lags originate from the fact that the position 
and strength of a vortex at any streamwise location 
along the body are the integral consequence of vorticity 
transport dynamics on the one hand, and the unsteady 
rate at which vorticity is fed into the vortex sheet on the 
other. Therefore the 'history effect' is related to 
convective phase delays, as well as additional time lags 
associated with the separation process itself. Ref. 8 
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provides a detailed account of the application of indicial 
theory to the prediction of unsteady separation. 

In this approach, the motion of the separation 
point and the unsteady vorticity flux in a given crossflow 
plane are analyzed using two-dimensional time-accurate 
Navier-Stokes calculations. The study described in Ref. 8 
shows that for viscous flow about a two-dimensional 
cylinder, the time-dependent behavior of both separation 
angle and vorticity flux can be accurately predicted 
using a convolution integral/ based on the knowledge of 
the step response of the flowfield to a small perturbation 
in Macn or Reynolds number. 

One of the results was that periodic fluctuations of 
the vorticity flux exhibited a 50% amplification at a 
reduced frequency based on diameter and crossflow 
velocity of: Jf = 2*fD/Uc = IS. For the 11:1 aspect ratio 
body described above and at a mean angle of attack 
a = 15% this corresponds to a reduced frequency based 
on body length of approximately k = 6.5. At a Mach 
number M«, = 0.9 and for a hypothetical body length 
L = 10 m, this would correspond to a frequency 
/ = 10.5 Hz, which is well within the range of structural 
frequencies exhibited by, e.g., sea-skimming missiles.18 

To illustrate this effect, the total normal force 
coefficient (i.e., including body and fins) was recorded 
(Fig. 11) as a function of time, for the case of an 
oscillating angle of attack a(t) = a0 + a1H(t)sin(ktU0P/L)/ 
where H(t) is the Heaviside step function, a0 =15*, 
ctj = 3#, and k = 6.47. Two calculations were performed 
at a Mach number M,,, = 0.9. In the first calculation (solid 
line), the Stratford criterion (Equation 14) is used at each 
time step to determine the separation location. This 
location is used to obtain V^p and Wsp in Eq. 16. The 
value of the crossflow velocity at separation then 
specifies the normal vorticity flux according to 
Equation 16. This first scenario represents, { before, a 
'quasi-stead/ implementation of the Stratford criterion. 

In a second calculation initiated from the same 
steady state, a negligible amplification of separation 
angle fluctuations was assumed, while a time-dependent 
vorticity flux y(x,t) was imposed based onthe findings of 
Ref. 8. This flux had an identical mean, fix), to that of 
the first calculation, but had a fluctuating component 
equal to 0(y(x,t)-\Kx)), where ß = 155. The amplification 
factor ß was chosen to be real because previous results8 

have indicated that the phase delay at that frequency is 
close to zero. The resulting normal force coefficient is 
indicated by the dashed line in Fig. 11. As may be seen 
from this figure, the total normal force lags the motion 
by approximately 320« in both cases. However, 
significant differences are observed between peak values 
and harmonic content of the oscillatory loads. 

As a final word of caution, it should be noted that 
the results of Fig. 11 do not represent a realistic 
evaluation of the importance of dynamic effects on the 
separation process, but are simply meant as an example 
illustrating the way in which small changes in the 
separation (vorticity) boundary conditions may affect the 
total loads. Among the reasons that this second 
calculation may not be realistic are the fact that the 
results of Ref. 8 are limited to low Reynolds numbers 
and small amplitudes. Additionally, the instantaneous 
perturbations of the Navier-Stokes equations involved 
step changes in Mach number and Reynolds number, 
rather than in the surface pressure distribution, which is 

the basis of the Stratford criterion. In other words, the 
3uasi-steady implementation of the Stratford criterion 

oes not correspond to a quasi steady change in angle of 
attack, as evidenced by the temporal evolution seen in 
Fig. 2. In spite of these differences, it should be noted 
that additional motion of the separation point has been 
ignored, and that a seventeen-fold increase in Reynolds 
number (Fig. 12) suggests an increase in phase delays, as 
well as further amplification of fluctuations in the 
vorticity flux. This implies that the differences in the 
predictions of Fig. 11 may actually underestimate the 
effects of unsteady separation. 

7. Concluding Remarks 

The theory that was developed in Ref. 3 to treat 
flow separation and related vortex effects in unsteady 
transonic flow around slender bodies was implemented 
using a modified version of the CAP-TSD5 computer 
code. This theory involves the simultaneous solution of 
a modified Transonic Small Disturbance equation, a 
vector potential equation, and a three-dimensional 
unsteady vorticity transport equation3. In the present 
work, refinements in the representation of the 
computational fuselage are shown to yield significant 
improvements over previous predictions. The results of 
time-accurate computations for complete missile 
configurations at subsonic, transonic, and supersonic 
speeds suggest that realistic angle of attack 
configurations may be calculated using CAP-TSD, thus 
showing considerable potential for aeroelastic 
computations and unsteady aerodynamics. 
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Figure 1. Cross-sectional Views of the Cartesian Grid 
(Left: Full Grid; Right: Close-up Illustrating 
Serrated-Edged Computational Fuselage, 
with Roll Angle Convention). 
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Figure 4. illustration of the Accuracy of the Transfer of 
Boundary Conditions by Comparison of Pressure 
Coefficient Distributions between a Purely 
Irrotational Calculation (X/D = 7.9) and the 
Analytical Two-Dimensional Potential Flow 
Solution (a = 15», M„ = 0.3). 
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