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AFIT/GCE/ENG/90D-07

A bstract

Algorithm animation is a visualization method used to enhance understanding of

the functioning of an algorithm or program. Visualization is used for many purposes,

including education, algorithm research, performance analysis, and program debugging.

This research applies algorithm animation techniques to programs developed for parallel

architectures, with specific emphasii on the Intel iPSC/2 hypercube.

While both P-time and NP-time algorithms can potentially benefit from using visual-

ization techniques, the set of NP-complete problems provides fertile ground for developing

parallel applications, since the combinatoric nature of the problems makes finding the

optimum solution impractical.

The primary goals for this visualization system are: Data should be displayed as

it is gener2-ted. The interface to the target program should be transparent, allowing the

animation of existing programs. Flexibility - the system should be able to animate any

algorithm.

The resulting system incorporates and extends two AFIT products: the AFIT Algo-

rithm Animation Research Facility (AAARF) and the Parallel Resource Analysis Software

Environment (PRASE). AAARF is an algorithm animation system developed primarily

for sequential programs, but is easily adaptable for use with parallel programs. PRASE

is an instrumentation package that extracts system performance data from programs on

the Intel hypercubes. Since performance data is an essential part of analyzing any parallel

program, views of the performance data are provided as an elementary part of the system.

Custom software is designed to interface these systems and to display the program data.

The program chosen as the example for this study is a member of the NP-complete

problem set; it is a parallel implementation of a general Set Covering Problem (SCP).

x



Graphical Representation of

Parallel Algorithmic

Processes

I. Introduction

A significant problem with analyzing the behavior of algorithms executing on multi-

processor architectures is that it is difficult to "see" what the data looks like or "watch"

the activities of the processes in real time. Algorithm animation can provide a window

so that the programmer or user can view the dynamic behavior of an algorithm and its

data structures. Animation improves the understanding c. ',orithms and their applica-

tion to specific problems by graphically representing the internal activities (both data and

control flow) of an algorithm during its execution. Animation of parallel algorithms has

the potential to help educators, students, and researchers attain a better understanding of

complex algorithms and assist them in developing new ones.

1. 1 Background

A program consists of algorithms that manipulate data structures. When designing

a program, the programmer usually selects an algorithm, matches it with some appropriate

data structures, and then tests it to determine whether the choices that were made are

correct. This cycle repeats until the programmer is satisfied with the results.

The problem with this approach is in the test phase - the programmer has very

limited information to evaluate the algorithm other than the results it produces. If the

programmer could "look inside" the algorithm and data structures as the program is run-

ning, evaluating the algorithm's performance would be much easier. This is what algorithm

animation does best. It provides the means to "look inside" the algorithm and actually

see the actions as they are occurring.

With parallel processing systems becoming more prevalent, the problem of evaluating

algorithms is much vorse - determining what a program is doing is not just evaluating
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the individual processes, but also their interaction - which can be nondeterministic. Un-

derstanding what is happeni.zg within an algorithm can be very difficult[23].

The human mind is a very specialized system - it is very efficient at interpreting

and comprehending vast amounts of visual information. Algorithm animation can take

advantage of this capacity by presenting the internal activities of an algorithm graphically

and allow a greater understanding of the process than previously possible[26:3].

1.2 Problem

This is the problem - the programmer needs a way to "see" what is happening

inside of a program in order to effectively develop, understand, and evaluate it.

Systems of this sort fall under the category of program visualization tools. One

specific type of program visualization is called algorithm animation. Algorithm animation

is the form of visualization that focuses primarily on displaying data and data structures,

rather than control structures[12:19].

1.3 Objectives

The goal of this study is to develop an algorithm animation facility for parallel

processes executing on different architectures, from multiprocessor systems to uniprocessor

multitasking systems, with primary emphasis on the Intel hypercube.

To be useful, a parallel algorithm animation system must be able to:

" Animate any algorithm

" Allow users to interact with the algorithm

" Support the addition of new algorithms to the system

" Display animated data in real-time

The problem divides into the components described in the following paragraphs.

1.3.1 Data Collection Since the purpose is to observe the data structures within

a program, a method must be developed for extracting appropriate data from within a
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program as it is running. The objective is to get enough information from the program

without significantly disturbing its normal functioning.

1.3.2 Data Display In order for the data to be easily interpreted it must be dis-

played in a neat, well-organized manner. Different ways of displaying the data are ne ,ed

to provide different types of information from the data. The user should be able to select

the desired displays and rearrange them on the screen as needed.

1.3.3 Algorithm Control As a minimum, the user should be able to reset, start,

and stop an algorithm. In some cases the ability to control the execution speed of the

algorithm under analysis could be useful. Another essential form of control is the ability

to change the execution parameters of an algorithm.

1.3.4 Algorithm Implementation There must be an organized, structured interface

between the animation system and the algorithm being implemented. The data collection

routines must not interfere with the structure of the algorithm being implemented.

1.4 Assumptions

The following assumptions are based on conclusions drawn by Fife[12:4] and others:

1. Algorithm animations cannot be generated automatically. Since the operations per-

formed by each type of algorithm are different or used in different combinations,

automated detection and interpretation of these operations is not possible. A sim-

ilar argument holds for developing the graphical views of the data. The same data

can mean different things when presented in different ways. This does not rule out

the use of an automated system for identifying obvious operations or events, but a

programmer familiar with the algorithm is needed to complete the task.

2. Any algorithm can be animated. All algorithms manipulate data structures, so there

is always some possibility for displaying that data in order to gain insight into the

operation of the algorithm.
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1.5 Scope

The object of this study is to develop techniques for visualizing the operation of

programs. Different algorithms are implemented to test these techniques, but algorithm

research is not part of this study. The result of this research is a prototype system for

animating parallel algorithms.

1.6 Summary of Current Knowledge

Only recently has any work in parallel algorithm animation been reported. All of

the work has been in animating specific algorithms or specific types of data. Displaying

parallel system performance data is where most effort seems to be directed. Other areas

of activity include animating parallel matrix manipulations. Since each of these systems

could be considered to be a special case of a general parallel algorithm animation system,

they are good candidates for a starting point in developing a general system.

One system, Seeplex from Tufts University[8], is currently capable of real-time display

of data from a parallel system. Unfortunately, its use is limited to the NCUBE hypercube,

a system that is not available at AFIT. The rest of the systems perform off-line data

analysis. All of the systems contain two common components: data collection routines

that obtain data from the processes running on the parallel system and a display program

that runs on a graphic workstation.

There are several systems that can be considered a special case of parallel algorithm

animation. These systems provide a solid foundation for developing a general system for

animating parallel algorithms; they are discussed in more detail in Section 2.3.

1. 7 Approach

Recognizing the significant effort already invested in the area of program visualization

and parallel processor performance analysis, the design of the prototype animation system

emphasizes the use of existing systems as a foundation and developing new software to add

new capabilities.
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Several existing systems were evaluated and the most suitable one chosen for the

foundation. The systems were evaluated using these criteria:

Availability: In order for the system to be used, it must be available in source code

form and have no licensing requirements or restrictions on its use. The necessity

of available source code is based on the assumption that the system will require

modification to form a part of the algorithm animation system. There can be no

restrictions or licensing requirements since the resulting animation system will be in

the public domain.

Environment: The system must be able to run in an environment that is available at

AFIT (this includes computer type, operating system, and windowing environment).

Expandability: The design of the system must be capable of being extended to meet

the new requirements. This also includes documentation - it is difficult to extend

a design if there is no explanation on exactly what the original design is.

Once the foundation system is chosen, techniques from other systems are used to fill in as

many gaps as possible. This provides a base for the parallel algorithm animation system.

The remaining parts of the system are developed using a high level language and software

engineering principles.

The C programming language[21] is the most likely language since it is the primary

language supported by the UNIX operating system[32, 2] available on the computer systems

at AFIT.

The system is tested by implementing several algorithms, concentrating on parallel

search programs. This class of programs is interesting due to its exponential growth in

search time as the size of the problem increases. These problems are good candidates for

improved performance using parallel techniques.

1.8 Summary

The goal of this thesis investigation is to develop the means to "see" what is occurring

during the execution of a program on a parallel system. Emphasis is placed on the Intel
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bypercube, due to its availability.

The next chapter contains the requirements definition for the animation system, a

brief review of program visualization and parallel program instrumentation, the literature

review, and an evaluation of existing systems for use in this research. Chapter III describes

the design of the prototype animation system. The implementation of the prototype system

is presented in Chapter IV, and the process of animating an algorithm is described in

Chapter V. Conclusions and recommendations are presented in Chapter VI.

Included in Appendix A is the source code for a parallel sort program discussed in

Chapter II. The data formats related to PRASE are contained in Appendix B. Appendix C

contains an updated programmer's manual for AAARF, and Appendix D contains an

updated user's manual for AAARF.
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II. Requirements Analysis and Specification

This chapter describes the requirements analysis process. First, a brief review of

program visualization and instrumentation is provided for background. The next section

describes the characteristics of a real-time parallel algorithm animation system, the follow-

ing section reviews current work in the area of parallel program visualization, and the final

section provides an evaluation of the currently available systems for use as a foundation

for this research.

For the sake of consistency and standardization, the formal definition of an algorithm,

the terms and definitions relating to algorithm animation, and the algorithm animation

system model described in Fife[12:8-17] is used throughout this chapter and the rest of this

thesis.

2.1 Background

The purpose of this section is to introduce terms and definitions for the two subject

areas that form the basis for this research: program visualization and instrumentation

of software. If additional information is needed, the references provide a more detailed

discussion of these subjects.

2.1.1 Program Visualization Program visualization is the use of graphics to illus-

trate some aspect of a program's execution[26:2]. This is a very broad definition, but

within program visualization there are four major categories based on the type of infor-

mation displayed and the method used for display:[26:15]

" Static display of program code

" Static display of data

" Dynamic display of program code

* Dynamic display of data

The last category is also called algorithm animation[12:19].
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There is mich research being done in program visualization, and Fife[12] and Meyers[26]

review many of the systems available now.

2.1.2 Instrumentation The term instrumentation is usually used in reference to

electronic equipment that is used to monitor the conditions within a circuit or system.

When applied to software, the term means very much the same. Instrumentation in soft-

ware consists of modules that are inserted into the user's code to monitor an activity and

send data out to another system so that it can be displayed. An undesirable side effect

of instrumentation is that it can disrupt the timing and performance of the program it is

monitoring. An in-depth discussion of the effects of instrumenting software is presented

by Marinesru[25].

2.2 Requirements Analysis

In addition to the requirements described by Fife for an algorithm animation system

for sequential algorithms[12:23-26], the parallel algorithm animation system should have

the following requirements:

1. The ability to animate programs running on another host. This is necessary since

the parallel system may not have the ability to support the graphics requirements of

the animation system. This includes the ability to start and stop the algorithm on

the remote system.

2. A built-in capability to display performance data from the parallel system. System

performance is an essential part of analyzing any parallel algorithm, so it should be

part of the basic animation system.

3. The animation system must not place limitations on the structure, size, or configu-

ration of the program running on the parallel system. This requirement is based on

the second assumption in Section 1.4 - if any program can be animated, then the

system bhould be able to animate it.

4. The animation system should display data from the algorithm in real time. Real

time doesn't mean that the display needs to be updating as fast as the data is
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being generated on the remote host; that may not be very useful, or even practical.

This requirement only specifies that the displaying of the data begin before the

target program has ended. This allows the user to get immediate feedback from

the parallel program; program parameters can be adjusted and anomalies detected

without having to wait for the entire run to complete. This can amount to large time

savings, especially when each program run takes a long time.

5. The system must be able to animate existing programs. Since the animation system

can be used for research and education, it is advantageous to be able to take programs

that were developed independent from the animation system and animate them so

that their behavior can be observed and evaluated. This requirement is also beneficial

when using the animation system as a debugging tool - the final program will not

be a part of the animation system, so it shouldn't have to be designed around the

animation system.

2.3 Related Work

Until very recently, there has been little work in animating parallel algorithms. In

April 1990 at the Fifth Distributed Memory Computing Conference, a paper was pre-

sented by Couch[8] that described Seeplex, a system for real-time performance analysis

of hypercute programs. In addition, three systems that perform offline analysis were

presented[l6, 27, 30].

Most of the work that is related to parallel algorithm animation is in the area of

performance analysis of parallel computing systems. These systems are usually divided

into a data collection monitor that is incorporated into the user's programs, and an offline

report generator or viewing program. Figure 2.1 shows a typical arrangement for this type

of system. This process can also be thought of as an animation system that is displaying

the activities of the operating system instead of an application program.

The following sections describe the systems mentioned above, and others that are

related.
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Target program

Viewing system

Report Generator

Figure 2.1. Typical Performance Analysis System

2.3.1 Seeplez Seeplex[8] is a real-time performance monitor for hypercube systems.

It was developed from Seecube (described below), but has a ma'or difference - instead

of getting the performance data from monitors inserted into the user's code, the data is

extracted directly from the custom operating system on the nodes of an NCUBE hyperc,,he.

The available displays include node activity, communication channel activity, and node

computation rates.

The display software is implemented on a Sun workstation and is capable of control-

ling the program execution, the type and quantity of monitoring data produced, and the

views of the data that are used.

2.3.2 ParaGraph ParaGraph is a system that was developed by Mike Heath at the

Opk Ridge National Laboratory (ORNL) Mathematical Sciences Division[16]. ParaGraph

is not the product of a distinct research effort; it is the result of an ongoing effort to develop

a tool to aid other research. It accepts performance data from PICL (described below)

and displays it in many ways. It provides node activity and node CPU utilization, as well

as high-level and detailed views of message passing activity between nodes. ParaGraph
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operates in a post-processing mode, providing an offline analysis capability.

ParaGraph is implemented under the X Window system, giving it the capability to

run on many different host systems.

2.3.3 Seecube Seecube is a system designed at Tufts University for monitoring ac-

tivity within a hypercube architecture[7]. The system is divided into three pieces - the

data collector, the resolver, and the graphical display driver. The data collection routines

are inserted into the programs that run on the nodes of the hypercube. They collect event

information and send it to the host where it is stored for later analysis. The resolver takes

the collected data and correlates it so that corresponding reads and writes are matched

up and everything is in time order. The display driver provides the means of viewing the

data in many different formats.

The data collection routines are implemented for the NCUBE hypercube and the

resolver and display components run on a Sun workstation.

2.3.4 PICL The Portable Instrumented Communication Library (PICL)[15] is an-

other tool developed at ORNL. PICL is a dual-purpose system; its original function was

to provide a portable, consistent communications interface for distributed-memory multi-

processor systems. PICL was later expanded to provide data for performance evaluations,

algorithm analysis, and algorithm animation. The data produced by PICL is used as input

to ParaGraph, an off-line animation package also developed at ORNL. ParaGraph provides

up to ten different views of the data, and allows multiple views to be active simultaneously.

A complete implementation of PICL is available for several systems, including the

Intel iPSC/2, the Intel i860 hypercube, and the NCUBE. An implementation for the Intel

iPSC/1 hypercube is under development. The ParaGraph animation system is imple-

mented under the X Window system.

2.3.5 PRASE This system was developed at AFIT by Capt Mark Kahl[19]. It is

based on the Seecube system. It replaces the Seecube data collection routines with new

ones that are smaller, faster, and produce data that is more compact. PRASE provides

a translator so that the Seecube display driver can be used to view the data. A unique
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feature of PRASE is that the user is not burdened with inserting calls to the data collection

routines - preprocessors are provided that find the calls to the system functions that the

user wants to monitor and substitutes calls to the data collection routines.

PRASE has been implemented on both the Intel iPSC/1 and iPSC/2 hypercubes.

2.3.6 Monit While the previously described systems monitor operating system level

activities, Monit is designed to monitor at a slightly higher level[22:163-174]. It was devel-

oped by Microelectronics and Computer Technology Corporation, Austin, Texas, to mon-

itor the activities within the run-time kernel of a custom programming language [22:165].

It also provides a data collection portion and a post-processor to display the data.

The target machine for this programming language is the Sequent 8000 multiproces-

sor system, and the display program is implemented on a Sun workstation.

2.3.7 AAARF The AFIT Algorithm Animation Research Facility (AAARF) was

developed by Capt Keith Fife[12]. In its current state, it is used for animating sequential

algorithms; however, it was designed so that it could easily be extended for use with parallel

algorithms.

AAARF is implemented on a Sun workstation using the SunView windowing inter-

face. It uses the event-driven nature of the SunView system to manage multiple algorithms

simultaneously, as well as multiple views of a single algorithm. The displayed data is pro-

duced by an instrumented program that runs as a child process under AAARF. It is this

feature of AAARF that makes it suitable for adapting to parallel algorithm animation:

there is no limitation on how the data is generated - it could be from a process on the

local system, or a process on another system feeding data through a communications link

to AAARF.

2.3.8 Other Work Others have developed similar types of animation systems, in-

cluding Rover and Wright[30], and Paul and Poplawski[27]. These systems take data from

an instrumented program, filter, sort, or otherwise preprocess it, then use another program

to interpret the data visually.
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Another area of significant work is in animating sequential algorithms. Many systems

exist that can animate a sequential algorithm, including BALSA[6] and TANGOi31]. Fife

provides a summary of this class of animation system in his research[12:18-22].

2.4 Evaluation

The systems described in the previous section all perform a function similar to real-

time parallel algorithm animation, yet each one differs slightly. This section evaluates the

available packages for use as a starting point for this research.

2.4.1 Criteria for Evaluation Since none of the packages described above com-

pletely meet the requirements in Section 2.2, it is assumed that any package selected for

use needs to be at least modified and possibly extended. The criteria used for evaluat-

ing the packages must account for this, but also needs to take into account how well the

package already meets the requirements.

Certain requirements must be met for a package to even be considered:

1. Source code must be available

2. There can be no licensing requirements or restrictions for use

3. The program must be usable in an environment that is available at AFIT

Specific criteria for evaluating all packages include:

1. The package must be well-documented, including user's manual and source code

documentation

2. The design of the system must be capable of being extended

These items are subjective and indicate the amount of effort that would be required if the

package is selected for use. The candidates for the data collection system are also evaluated

on these factors:

1. Probe Effect - how much impact do the collection routines have on performance of

the program under observation
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2. Intrusiveness - what effect do the collection routines have on the structure of the

program being monitored

3. Source Code Complexity - how easy is it to make any necessary modifications

The first two factors determine the impact that the collection routines have on the program

under test. In order to get valid results, the impact should be as small as possible. Once

again, the last factor serves as an indicator of how much effort would be required to use

this package.

2.4.2 Discussion Applying the first set of criteria eliminates some packages due to

hardware and software incompatibilities. Unfortunately, one of these packages is Seeplex,

the only package that currently has a real-time capability. Seeplex is designed to get its

trace data directly from a custom operating system on the NCUBE hypercube, which is

not available at AFIT. Monit is also eliminated because its source of data is not available

at AFIT.

The remaining packages do not contain both the data collection and display com-

ponents, so the evaluation of display packages and data collection packages is discussed

separately.

2.4.2.1 Display Component With one exception, the remaining display pack-

ages are designed to display performance data. Seecube and ParaGraph both present

different views of the performance data and have no capacity for displaying algorithm-

specific data without extensive modifications throughout the program to interpret and

display the new type(s) of data.

AAARF is the exception - it was designed to display algorithm specific data. Un-

fortunately, there is no built-in provision to display performance data, but performance

displays can be developed in the same way an algorithm specific display is created.

The quality of the displays produced by the three candidates is approximately equal,

although the format and content of the Seecube displays is more difficult to interpret than

the ParaGraph displays.
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Regardless of the choice of packages, displays for algorithm specific data need to be

created. With AAARF, the performance displays also need to be created, since AAARF

has no predefined displays. This, however, is one of AAARF's strengths - flexibility. It

allows the programmer/user to develop the displays exactly as they need to be for each

program.

2.4.2.2 Data Collection Component There are only two data collection pack-

ages that meet the conditions for candidacy: PRASE and PICL. The rest require hardware

that is not available at AFIT.

In a sense, comparing these two packages on an equal basis is not fair to either pro-

gram because they were developed for different purposes: PICL's primary function is as a

portable communications model that can be implemented on many different architectures

without modifying anything except low-level communications primitives; PRASE was de-

veloped to instrument programs for one specific system and one communications model.

Both packages, however, prcduce similar types of trace data from programs running on an

Intel iPSC/2 hypercube.

To measure the probe effect when using the two packages, a simple parallel shell sort

was instrumented. The execution of the program was timed; the results are in Table 2.1.

Times are in milliseconds. To avoid any delays that may be caused by the host activity,

the time is measured from just after the node program receives its part of the data from

the host until just before it sends its part of the data back to the host. There is very

little difference between the times from the original uninstrumented program and the two

instrumented ones.

The overhead due to the instrumentation is based on the number of messages sent

between nodes. The sorting algorithm used sends the same number of messages regardless

of the size of the data - that is why the overhead seems to be independent of the size of

the data. The source code for the shell sort is included in Appendix A.

Ideally, there should be no change to the program under test that is a direct result

of instrumenting it. Once again, the two packages take different approaches on this topic.

PICL presumes that the programmer uses its library when developing applications, then
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Table 2.1. Results of the Probe Effect Comparison
Elements Original Instrumented With

Sorted Sort* PRASE* PICL*
1024 50 58 58
2048 85 101 95
4096 167 179 176
8192 376 386 392
16384 726 735 732
32768 1565 1577 1573
65536 3323 3329 3327

*Time in milliseconds

turns on the data collection when needed. The intrusiveness of this is small because the

program is designed around the data collection package. On the other hand, if the library

doesn't directly support the methods the programmer wishes to use, the programmer has

to change m.thods or find another way to approach the design of the prograrr. This is

quite intrusive.

PRASE is very transparent to the program being tested. It has a preprocessor that

takes the program source code and inserts its own initialization code and calls to the

collection routines. The user only has to put a special comment in the source to let the

preprocessor know where to put the initialization code. This lets the programmer develop

the program and later instrument it to analyze its activities; and when the analysis is done,

the program is not burdened with the added overhead of the inactive instrumentation.

The PICL source is quite complex due to its primary purpose: portability. It is

constructed in a layered manner so that only the bottom layer needs to be replaced when

porting the package to a new system. This generic approach makes the code more complex

because a given operation can require many different functions in different places. PRASE

is targeted to one architecture - the Intel hypercube. This allows the collection routines

to be simple and concise.

The documentation for the two packages also varies widely. PICL has excellent

detailed documentation; the reference manual is well organized, and the source is appro-

priately commented. The reference manual is not complete - the high-level functions are

not documented, but these are not required to do most communications tasks. By way of
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contrast, the documentation for PRASE is limited in nature and not up to date. There is

a User's Manual [20], but it wasn't updated when PRASE was ported to the iPSC/2 from

the iPSC/1. There is no technical manual other than Mark Kahl's thesis [19], which is at

too high of a level to be useful for modifying or enhancing PRASE. The data collection

routines in the file prase-code. c are mostly unstructured, and the source code comments

are directed at the level of a non-programmer, not at the level of a programmer familiar

with hypercube programming.

2.5 Specifications

The display package that best fits the requirements is AAARF. The advantages of

using AAARF are:

" It is currently capable of real-time algorithm animation

* It was developed at AFIT and source is available

" It was designed to be flexible to encourage modifications and extensions

" The documentation is excellent, both manuals and source code

The only major disadvantage to using AAARF for the display component is that it

has no pre-defined library of views. This is somewhat offset by the well-defined interface

AAARF provides to simplify the task of creatilig views. The performance views from

ParaGraph are very well done, and can serve as patterns for some of the views for AAARF.

In spite of its poor documentation, the selection for the data collection component is

PRASE. Since the performance impact of the two packages is nearly identical, the choice

is based on the subjective factors of intrusiveness and ease of use. PR.ASE's transparent

nature makes it simple to apply to existing programs, while PICL requires redesigning the

program around its library. The simple nature of PRASE's source code overcomes its poor

documentation and makes it easy to modify.
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2.6 Summary

This chapter has detailed the requirements for the real-time parallel algorithm an-

imation system. Current work was reviewed and evaluated for use as a foundation for

this research; there were no systems that completely met the requirements, but a combi-

nation of AAARF and PRASE provides enough existing functionality and expandability

that together they provide a good place to start. The integration of these packages into

the algorithm animation prototype is discussed in the next chapter.
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III. System Design

This chapter presents a high level design for the real-time parallel algorithm anima-

tion system prototype. The detailed design is covered in Chapter IV.

3.1 Design Philosophy

The philosophy supporting the design of this system is to use existing software as

much as possible. The primary reason is to avoid duplication of effort. There is no need

to spend much time and effort creating a new tool if it has already been done by someone

else. The existing works may need to be modified, but the effort is minimal compared to

recreation (and documentation).

The object of this design is to assemble a system that meets all the requirements

using existing packages where possible and developing new software as needed.

3.2 System Description

As was discussed in Section 1.3, the design of the parallel algorithm animation system

decomposes into four major components:

1. Data Collection

2. Data Display

3. Algorithm Control

4. Algorithm Implementation

The first three components comprise the animation system itself, while the last involves

the use of the system to animate an algorithm; the discussion of this topic is contained in

Chapter V.

The requirements in Section 2.2 to a great extent determine the structure of the

animation system. The first requirement states that the animation system must be capable

of animating a program running on another host; this splits the system into at least two
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Figure 3.1. Relationships between the major components of the system

parts, one running on the workstation and one on the remote host. The fourth requirement

requires real-time display of data from the algorithm - this requires that the parts be

in continual communication with each other, and precludes the post-processing mode of

operation.

The third and fifth requirements simultaneously make the system more difficult to

design but make it significantly more useful - these requirements specify that there is

to be minimal interference to the program being animated. This gives the system the

capability to animate an existing program - as is done in Chapter V. The diffculties

arise from the fact that the animation system can assume nothing about the structure of

the program, the methods used to acquire the hypercube system, or the method used to

load the nodes with their programs. To properly handle as many different possibilities as

possible, the portion of the system on the remote host is divided into two major parts: one

to collect the data from the program and send it to be displayed, and the other to control

the program itself.

The design of each of the major parts of the animation system is discussed in the fol-

lowing sections. Figure 3.1 shows the major components of the system and the interaction

among them.
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3.2.1 Display System This component of the animation system is responsible for

displaying the data being collected from the program on the remote system. The second

requirement in Section 2.2 specifies that displays must be provided for performance data,

since performance analysis is an essential part of analyzing any parallel program. Addi-

tional displays may also be required to display data specific to an algorithm or a group of

algorithms.

The display system also provides the user with the capability to interact with the

algorithm, including setting program parameters, starting the program, and stopping it.

This component of the animation system runs on the graphic workstation used to display

the data.

3.2.2 Data Collection System This is the component that contains the instrumen-

tation that is inserted into the program being animated. In order to meet the third

requirement, the instrumentation should be transparent to the target program - few

changes should be necessary to the target program to insert the instrumentation.

In the current implementation of the operating system on the nodes of an Intel

hypercube, the nodes cannot directly access systems outside the hypercube. This requires a

separate process running on the hypercube host processor that collects the data generated

by the instrumentation and forwards it to the display system. Even if the nodes could

communicate directly with other systems, it may not be advisable to burden the node

processors with the overhead of network communications, making the separate process

useful for performance reasons. This is the only component of the system that is required

to run on the remote system.

3.2.3 Algorithm Control System All requests to start and stop the target program

are executed by this component. This component must be independent of any algorithm,

but must be flexible enough to control most, if not all, programs. This component can

reside on any system, but should run on the remote system to allow easier control of

the target program. To meet the fifth requirement in Section 2.2, the algorithm control

system should not eliminate the ability to start the program on the remote host manually -
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programs may have an interactive user interface. This does, however, remove the capability

to stop the program from the display system.

3.3 System Integration

As was stated in Section 1.7, the design of this system will incorporate existing works

as much as possible. Section 2.4 evaluated the systems described earlier in that chapter

as candidates for use in this research. The systems that were decided on in Section 2.5

are the AFIT Aljorithm Animation Research Facility (AAARF)[12] for the display system

and PRASE[19] for the data collection system. The rest of this section discusses the

modifications and additions necessary to integrate these systems into the parallel algorithm

animation system.

3.3.1 Display System AAARF already has the capability to support the require-

ments described above for the display system. The parallel animation system can be

implemented as an algorithm class[12:14] under AAARF's management.

AAARF was designed using Object-Oriented Design (OOD) principles. There are

four basic classes that were used to build AAARF[12:40-45]:

Windows: This class represents a rectangular area on the display that can contain text,

graphics, and other windows. Windows can be moved and resized.

Panels: This class is a specialized .iibclass of windows. Panels provide a means for the

user to monitor and modify system parameters. Panels cannot be resized.

Menus: The menu class provides the user an opportunity to select from a list of options.

Components: A component is one piece of the interface to an implementation of an

algorithm. The three special cases of component are input, algorithm, and view.

Figure 3.1 shows a high-level view of the relationships between the objects for AAARF.

An algorithm class is actually an instantiation of an algorithm window. The object rela-

tionships for an algorithm class are shown in Figure 3.3.
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Since a large part of creating an algorithm class is the same, no matter what the

algorithm, AAARF provides a common library[10:26] that implements most of the common

parts of each object, leaving the programmer to fill in the details for the specific algorithm

being animated. This approach is advantageous because the common library mostly shields

the programmer from having to deal with SunView (the windowing system) except for the

actual drawing commands used to create the views. The requirements for implementing

an algorithm class are described in The AAARF Programmers Manual[lO:41].

3.3.2 Data Collection System The PRASE system forms the core of the data col-

lection system. In its current form, PRASE consists of the instrumentation routines that

are inserted into the target program, and a separate program that runs on the hypercube

host processor that collects the data from the instrumentation routines and writes it to

disk files (one for each node) for later processing.

The instrumentation routines themselves intercept system calls, write essential in-

formation to a trace buffer, and then call the system routines. The PRASE routines are

quite efficient and complete - few modifications are necessary.

To support the remote hosting of the algorithm as well as the real-time requirement,

the separate program that collects data from the instrumentation routines needs modifi-

cation - the data needs to be sent directly to the display system instead of a disk file. At

this point, any unneeded data can be filtered out to reduce the communications load.

The existing collection program is not concerned with the time information contained

in the instrumentation data, since all time-ordering is done at a later stage in the processing

for that system. The real-time requirement for this animation system makes it necessary

to time-order the data so that the display system gets the data in the order it is generated.

The buffering that occurs in the communications system on the hypercube can cause data

arriving from the node processors to arrive out of the proper time sequence; some method

must be implemented to ensure that the data is sent to the display system in proper time

order.
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3.3.3 Algorithm Control System There is nc. existing product or system that meets

the needs of this component of the system. It needs to be designed to interface directly

with the display system, as well as the operating system so that it can control the target

program.

3.3.4 Communications While not an actual component of the animation system,

the communications system plays an important part in the design. The system is divided

into several independent pieces that must communicate with each other; there are three

different communications environments that are encountered:

1. Within the hypercube

2. Between processes on the same system

3. Between processes on different systems

The communications environment inside the hypercube consists of 10MB Ethernet

links between nodes, and a multiplexed Ethernet connection between the host and all

nodes. The communications between the nodes is quite fast due to the direct links and

specialized communications hardware on the Intel iPSC/2. The links between the nodes

and the host, however, are relatively slow.

Communications between processes, whether local or remote, depend heavily on the

operating environment. Fortunately, UNIX provides a standard set of communications

primitives that allow a consistent communications environment across multiple systems.

In the case that the instrumentation produces data at a higher rate than the commu-

nications system can deliver it, there must be a mechanism to prevent the resulting data

backups from significantly affectirg the operation of the target program.

3.4 Summary

This chapter describes the packages that form the foundation of the parallel algorithm

animation system, the changes that need to be made to them, and the additional software

that needs to be designed to integrate them into the animation system. The packages were
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chosen so that few changes are required to interface with each other. The new modules

that need to be developed are an algorithm class for AAARF, a program to collect the

data on the remote system and send it to the display system, and a program to control

the target program. The next chapter details the modifications required to AAARF and

PRASE and the design of the new modules.
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IV. Detailed Design and Implementation

This chapter describes in detail the design and implementation of the parallel algo-

rithm animation system. This covers the changes to AAARF and PRASE that are required

as well as the new programs and modules that need to be developed.

The three main components of the animation system are discussed separately. The

discussion of the display component covers the development of the algorithm class for

AAARF and the changes to the existing AAARF software. Section 4.2 describes the

changes that are necessary to the PRASE software and Section 4.3 dis- Usses the design

of the algorithm control process that runs on the remote system. The communications

system is an integral part of all the components, but it is described in a separate section

to reduce repetition and permit a more comprehensive discussion of the methods used.

4.1 Display System

4.1.1 AAARF Algorithm Class As described in Section 3.3.1, an algorithm class

under AAARF is an instantiation of an algorithm window. The composition of an algo-

rithm window is shown in Figure 3.3. The AAARF common library provides most of the

functions required to implement the algorithm class - Figure 4.1 shows which objects are

implemented in the common library. The objects that are drawn in solid lines are com-

pletely implemented in the common library, and the rest are partially implemented. To

complete the implementation of the algorithm class, only those functions that specifically

deal with the algorithm being implemented need to be developed. This includes not only

the functions that put the displays on the screen, but also ones that process the data be-

ing received from the algorithm, and others that maintain any data structures internal to

the algorithm class. The common library was designed such that the programmer design-

ing and implementing the animation can concentrate primarily on developing the displays

instead of being distracted by the details of the environment.

Here are the objects left incomplete by the common library[10:47-50]:

* Master Panel
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Figure 4.1. Objects implemented by the common library

" Status Panel

" Algorithm Component

* View Component

In addition to completing the objects listed above, the common library needs some

global variables defined[lO:45]:

" The name of the algorithm class

" An icon to use for the class
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* Parameters for the Speed control

* Size of one event packet from the algorithm

Some of the functions and data structures required to complete the algorithm class

are the same, no matter what parallel algorithm is being animated. This is because the

data collection system is always used to provide the event data; the raw performance data is

always in the same format. This makes it possible to create a library of common functions

that can be used for all parallel animations. Since the library is mostly concerned with

collecting and displaying performance data, the library is called the parallel views library.

The library contains the entire algorithm component and parts of the view component.

This simplifies the job of animating a parallel algorithm by allowing the programmer to

focus on developing the algorithm data views without being concerned about the details of

getting the data from the algorithm and displaying performance data. The parallel views

library is fully documented in the updated AAARF Programmer's Manual contained in

Appendix C.

The rest of this section is devoted to describing the development of the objects

required to complete the algorithm class. The development of the components contained

in the parallel views library is discussed in the appropriate section below.

4.1.1.1 Master Panel The Master Control Panel (MCP) is the central point

for controlling all aspects of the algorithm class' operation. A sample MCP is shown in

Figure 4.2. Some o' 'he items on the panel are common to all animations, and these are

set up by the common library. The input parameters can be different for each algorithm,

so they must be provided for each algorithm. The selection of which algorithm within a

class also must be provided. The breakpoints to allow and the list of available views also

canrot be put into the common library. Since items are added to this panel, help for these

items also is needed.

The specific functions required to complete this object are:

* addInput:ection() - adds the items to the MCP that accept the input parameters

for the algorithm
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" getInputParameters() - reads the input panel items to get their current values

" setlnputParameters() - sets the input panel items to saved values

" addAlgorithmSection() - adds the panel items that select the algorithm within

the class

" getA1gorithmNameC) - provides a string containing the name of the current algo-

rithm

" getAlgorithmParameters C) - reads the algorithm panel items to get their current

values

" setAlgorithmParameters ) - sets the algorithm panel "tems to saved values

" setBreakPointItemo) - adds choices to the pre-existing breakpoint panel item

" setViewItem() - adds the available views to the pre-existing views panel item

" masterHelp() - fill a help panel with text describing the items added to the panel

The MCP shown in Figure 4.2 is from an animation of a simple parallel sorting

algorithm. The top section controls the execution of the animation and is provided by the

common library. The input section shown here contains items that control the random

array generator used in the sort program. It can also contain parameters that select the

data set to work on, the number of processors to use, and other types of data that need

to be provided to the program under observation. The next section on the panel contains

the options for the performance view library. This section is provided as a basic part of

the parallel animation system by the performance view library. The button labeled "View

Options" activates another panel that contains all the controls for the performance views.

This panel is shown in Figure 4.3. The bottom section controls the layout of the animation

windows. The panel items are created by the common library, but the list of available views

comes from the performance view library and the algorithm specific views.

4.1.1.2 Status Panel The status panel's purpose is to provide a place for the

animation to display textual information about the status of the algorithm. The status

panel from the parallel sort animation is shown in Figure 4.4. The only predefined part of
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this panel is the panel itself - since the contents of the panel are algorithm-dependent,

the programmer must create and maintain the panel.

These are the functions required to complete this object:

" buildStatusDisplay ) - creates all the panel items needed to display the algorithm

status

* updateElementOfInterestO) - called when the middle mouse button is pushed

within a display; this can be used to display status about a particular element of

region of the display

" updateStatus() - put current status information into the status panel items

" statusHelp() - provides text for a help panel that describes the contents of the

status panel

The top part of the status panel in Figure 4.4 contains information about the sort

algorithm. The bottom part is provided by the performance views library and displays

information from each trace record as it is processed.

4.1.1.3 Algorithm Component This object is the interface between the algo-

rithm and the rest of the system. This part of the system is not provided by AAARF since

it is highly dependent on the algorithm being animated and the communications method

used. These are the functions required to complete this component:

" runAlgorithmlnBackgroundo) - invoke the background process that executes and

controls the algorithm

" getIEC) - pass commands to and get event data from the background process

The method for executing the algorithm suggested by the AAARF manual is to

implement it as a child process and get data through a UNIX socket[33] (see Figure 4.5).

The parallel animation system requires a more complex implementation of this component.

Since the parallel algorithm runs on another computer, tLe child process for this algorithm

class is a program that reads data from the data collection system on the remote host
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Type: Receive Node: 0

Time: 165 PID: 472

Data: Source: 5 type: 560 length: 4

Figure 4.4. Sample Status Panel
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and makes it available to the views through the UNIX socket. The child process also

preprocesses the data, converting it from the PRASE format into a form more easily used

by the views. The algorithm control commands and input parameters are also passed

through the child process to the algorithm control system on the remote host. Figure 4.6

shows how the new child process interacts with the other components of the system.

AAARF

Child
A lgorithm c r c s

Class

Algorithm

Figure 4.5. Original AAARF Child Process

The nature of the remote operation provides some conditions that cannot be ignored.

A significant problem is that the remote host may not be available. The display system

should be able to recover in the case that the target program either doesn't start, or

terminates before the network connections are established. The remote operation also

dictates a sequence of actions that must be followed:

1. wait for remote system to request connection for all communications links

2. establish all communications links

3. wait for and process all data

4. recognize the end of the data and shut down all links

Different things are done depending on where the current point in the sequence is. To

determine what to do at a given time, the status of the remote connection is maintained;
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Sun Hypercube

Algorithm

AAARF Control

System

AgrtmChild Data Algorithm
Algritm Process Collection

Cls Syte Instrumentatiov

Figure 4.6. Modified AAARF Child Process

the first two steps in the sequence correspond to the remote program starting, item three

corresponds to the remote program being alive, and the last step indicates that the remote

program is dead. This sequence of activities is started every time a run is requested from

the remote host.

Parallel programs tend to be very nondeterministic - two successive runs may not

produce the same result; the program may not even reach the solution the same way. To

give the user the capability to replay a run so that a given action can be observed without

waiting for it to reoccur, the child process could write the data to disk file(s) as it arrives

from the remote host. This makes three operating modes possible:

1. Live - display data as it arrives from the remote host

2. File - retrieve data from disk file(s) and display

3. Live/Write to Disk - display data as it arrives, but also write it to disk file(s) for

later display
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In live mode, the data is received from the algorithm via a network connection and

translated from the PRASE data format into a local data structure. When the data is

being written to disk, it is written before any translation is made, to allow the source of the

data to be transparent to the rest of the processing. The translation involves performing

byte-order swaps; this is required because the Intel 80386 processor stores numbers low

byte first, while the Sun SPARC processor stores them high byte first[33]. The translation

is accomplished on this end of the connection to avoid excessive loading of the the remote

system.

A complexity introduced by the parallel animation system is that all of the event

data blocks are not necessarily the same size. The approach taken by Capt Fife in the

original AAARF system is to make the event block large enough to handle the largest

block of data that would be sent. For local communications, this may be acceptable; but

for network communications, the overhead of sending longer messages than necessary can

be excessive. Since all the PRASE trace data is fixed length, one communication link can

be used to send that type of data. If an event block is smaller than the length of the trace

data record, it is sent using the PRASE prasemark functions. If it is longer, then a flag

record is sent in the trace data link, and the data block itself is sent in another link. Since

most of the data being sent is trace records, the smaller overhead involved with processing

a fixed-length data stream can be exploited without incurring excessive delays by sending

larger blocks than are needed.

In an attempt to avoid the situation where the view component is waiting on the

child process because it uses data faster than the child process can read it from the remote

system, a small buffer is used to keep records on hand. The algorithm data needs a special

type of buffer - since there is no guarantee that the data is going to arrive in the exact

order it is needed, there needs to be a way to make sure there is always data available

(if there is any data to make available). Since each processor generates the data blocks

sequentially, it suffices to make sure that at least one data block for each processor is

avaielable. In the case that more than one data block for a processor is received while a

data block for another processor is being searched for, the blocks are kept in order using a

queue structure, one for each processor. See Figure 4.7 for a diagram that illustrates this
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LiL

S-"header block

GE algorithm data block

Figure 4.7. Queue Data Structure for Algorithm Data

To control the algorithm on the remote system, a two-way communications link

provides the means to send commands to and receive status from the algorithm. As with

the original child process management, there is a quit command to inform the child process

to terminate. Since establishing a network connection can be a time-consuming process,

this should be avoided; so instead of terminating the child process between runs in a

session, a reset command is issued to instruct the child process to flush its queues, and to

pass the reset command through to the remote system.

Data is retrieved from the child process by using two commands, one for trace data

(the original 6etIE() function) and the other for algorithm data (a new function called

getDatao).

4.1.1.4 View Component This is the component that generates the graphics

commands that are displayed in the view windows. There are three functions required to
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complete this object:

* processIE0) - processes the data in the event packet into information suitable for

display

* paintAllViews() - generates the commands that construct the views from scratch

" updateAllViews() - generates the graphics commands to update each view to

reflect either new data that has arrived or an advance in time

AAARF itself does not provide views - the programmer designing the animation

develops custom views for each algorithm. The views may be reused with other algorithms,

but the view may need to be modified to accept the data from the new algorithm.

Since most analysis of pprallel algorithms involves analyzing system level performance

data which does not change from one algorithm to the next, it is possible to design a set

of views to display this performance data that can be reused unmodified by any paracliz

algorithm animation.

The performance views contained in the parallel views library show basic information

regarding message passing between processes, overall communications load, communica-

tions statistics for each node, and CPU utilization. As was discussed in Section 2.5, these

views are patterned after those in ParaGraph; this is by no means an exhaustive set of

performance displays, but merely a collection of displays that has proven useful. The

views show different types of statistics, as well as different levels of detail. The views are

described in the following paragraphs:

Utilization This view is a histogram that displays the number of active

processes on the vertical axis, and time on the horizontal axis. Figure 4.8 shows the

utilization view during a run. The top part is colored in red to indicate the number of

processors that are idle, and the bottom is green, giving the number of active processors.

The active vs. idle state of a processor is derived from the message traffic: if a processor

is blocked waiting for a message, then it is idle. Otherwise the processor is active.
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(Jantt This is a traditional view of processor activity. Each prccessor

has a section of the vertical axis, and time is shown on the horizontal axis. When a

processor is idle, that segment of the vcrtical axis is colored red; when the processor is

active, it is green. The status of a processor is determined in the same way as for the

utilization view. A sample Gantt view is shown in Figure 4.9.

Feynman The name for this view was taken directly from the corre-

sponding ParaGraph display, though it may not have much relevance to the actual data

being displayed. This view shows two different types of data: processor status and mes-

sage passing activity. Figure 4.10 shows an example of this view. The processor status

is shown in a similar fashion to the Gantt view, except that the data is shown as a thin

horizontal line that is broken when the processor is blocked. Once again, the horizontal

axis represents time. The message activity is shown by drawing lines between the hor-

izontal lines representing the sending and receiving processors: The ends of the line are

positioned according to the send and receive times. This clearly shows message passing

patterns, delays, and bottlenecks. These displays are generated using trace records from

send and receive system calls.

Communications Statistics This view provides a detailed look at the

communications activity of a single (selectable) node. With time along the horizontal axis,

the display is split into two parts: the upper half of the display shows outgoing message

statistics, and the lower half shows incoming message statistics. Figure 4.11 shows a sample

display. The data displayed can be chosen from three types: processor source or destination

for each message, length of the messages, or the type of the messages.

Communications Load This view shows statistics on pending messages

(messages that have been sent but not received) for the entire system versus time. Ei-

ther the number of pending messages or the total length of all pending messages can be

displayed. Figure 4.12 is an example of this view.

Queue Size Statistics for the input queue for one (selectable) node are

displayed in this view. The presentation of the data is identical to the communications
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load view; The data is shown in relation to time, and either the number of messages or the

total length of all messages in the input queue for the node is displayed. A sample of this

view is shown in Figure 4.13.

Message Lengths This view uses a different method of presenting mes-

sage passing information. The view contains a matrix, and a send operation causes an

element of the matrix to be colored. The sending processor number determines the row

and the receiving pro.essor determines the column of the matrix. The length of the message

determines the color used to fill in the element. See Figure 4.14 for an example.

Message Queues This view displays the current status of the input mes-

sage qiieue for all the processors. As Figure 4.15 shows, the display is a histogram with

the processors along the horizontal axis. The vertical axis can show either the number of

messages in the queue or the total length of the messages in the queue. As the queue levels

rise and fall, a 'high water mark' is left behind to mark the highest level that was attained

for the run.

Kiviat This is very similar to a traditional kiviat chart - the processors

are spread out around a circle and 'spokes' are drawn from each processor to the center of

the circlk (see Figure 4.16). The CPU utilization for each processor is calculated and plotted

along the corresponding spoke of the wheel, with the center representing 0%. The polygon

resulting from connecting points from adjacent spokes of the wheel creates a pattern that

can be used to indicate the balance of the processing load among the processors. A 'high

water mark' is also implemented here to indicate the highest level of processor activity.

Animation Once again, the name for this view was taken from Para-

Graph; the term, however, could be applied to any of the other views. This particular

view shows the processors arrayed around the outside of a circle. The color of the pro-

cessor indicates its status - idle, busy, blocked, or sending. In addition, lines are drawn

to show message activity among the processors. When a message is sent, a line is drawn

connecting the sending and receiving node; when the message is received, the line is erased.

Figure 4.17 shows an example of this view.
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4.1.2 Modifications to AAARF AAARF needs no modification to meet the require-

ments in Section 2.2 or to comply with the high-level design laid out in Chapter III. Mod-

ifications are only necessary to allow the design of the algorithm class discussed in the

previous section to function properly. There are only two areas that need to be changed;

1. Adapt the main processing and display cycle to allow time-based displays

2. Make the interesting event handling more general to allow the algorithm recorder to

handle variable-length records

Every effort is made - prevent these muidifications from affecting the use of the common

library by existing sequential animations.

4.1.2.1 Time-based Displays The way in which AAARF processes algorithm

events[10:39] is to get an event from the algorithm, send it to the algorithm class to process,

then update the displays. This is carried out in the function animateTheAlgorithm() in

the common library. This process is controlled by a timer interrupt inside the common

library. The duration of the timer interrupt is controlled by the Speed slider on the Master

Control Panel and serves to limit the rate at which events that can be processed, which

slows down the update rate of the displays.

In order to implement the time-based performance views, the strictly event driven

nature of the display update cycle needs to be modified to allow the timer interrupt to

actually simulate an amount of time within the algorithm. Since the algorithm-specific

function processIEO) already returns a value that indicates the state of the animation,

all that is needed is to pass a flag (masked onto the current return value) that indicates

whether or not to get another event from the algorithm during the next cycle. During

each cycle, the flag is checked and if it is set, a NULL value is passed to processIEO

and updateAllViewso) instead of the event. These functions recognize this and perform

time-only updates instead of normal data update processing.

To prevent this modification from affecting existing animations, the flag is initialized

to the FALSE state.
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4.1.2.2 Generalized Event Data Handling The recording function provided by

the common library assumes that the interesting event data is fixed-length and is contained

in one contiguous block. This assumption fails with the data structures used in the parallel

animation system.

The recording capability was designed to be transparent to all the functions that

process and display event data. In the function that is executed every time the timer

expires, the status of the recorder is checked, and if it is playing back a recording, the

event is read from the recorder data structure rather than from the background process.

This isolates the view component from the source of the data. This structure is illustrated

by Figure 4.18.

Recorder

SAlgorithm -----. Views

Window

Algorithm

Figure 4.18. Algorithm Event Data Flow

Using an object oriented viewpoint, this is theoretically equivalent to the class struc-

ture shown in Figure 4.19. The top item is the Algorithm Window itself. This is where

the decision is made as to the source of the data. The two items below it are subclasses of

the Algorithm Component. Since the recorder and algorithm interface provide the same

services to the algorithm window, they could be considered different implementations of

the same base class. The bottom item is a new class called Data Services. This is the only

class being discussed here that should know the exact structure of the event data. The
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recorder should call upon the data services class to read and write events to a recording

file. The algorithm interface class should call on the services class to read data from the

child process. Isolating the structure of the event data is beneficial because none of the

other classes is dependent on the structure of the data.

Algorithm
Window

Algorithm
Interface

Data
Services

Figure 4.19. Class Structure for Recording

In the implementation of the recorder in AAARF, the class structure described in

the preceding paragraph is followed, except for one item: the recorder does its own reading

and writing of the event data to the recording file, instead of using the data services

class. This limits the recorder's capability to save all the data. Adding two functions to

the algorithm component (readIE() and writeIE) that read and write event data to the

recording file, and modifying the recorder to use these functions solves this problem and
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allows the recorder to function in the parallel animation environment. The isolation of the

data dependent operations is completed by adding a freeIEO) function that destroys the

event when it is no longer needed.

4.2 Data Collection System

The data collection system consists of two parts: the instrumentation routines that

extract data from the target program, and the collection program that collects the data

from the node processors and forwards it to the display system.

4.2.1 Instrumentation The instrumentation routines that are embedded into the

target program extract trace and algorithm data from the algorithm and send it to the

collection program on the host. This function is quite adequately handled by the PRASE

instrumentation. The routines intercept most major system calls relating to communica-

tions and provide a means to send user-generated data along with the system trace data.

It is this feature that is used to send algorithm data to the display system.

The instrumentation consists of three object modules that are linked in with the node

programs, a header file that is included in all source files for the program, and a series

of code fragments that are inserted in various parts of the program. A typical header

file is shown in Figure 4.20. The main function for the node process is instrumented to

initialize and terminate the tracing. Figure 4.21 shows the placement of these actions.

The host program also is modified; the remote collection program is started after the cube

is allocated, but before the node processes are loaded. At the end of the host program,

but before the node processes are terminated, the host must wait for the remote collection

program to finish collecting the data from the nodes. These modifications are shown in

Figure 4.22.

4.2.2 Remote Collection Program This program has two ma: r purposes: to relay

data from the instrumented program on the processors to the display system and to ensure

that the data from the different processors is properly interleaved to produce a time-ordered

data stream to the display system.
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8ifdef PRASE

$include "aaarfincl .h"

extern PROC praseproca D[aXODES];

extern unsigned long praseostart.tine;
extern unsigned long praseloueat.nodo;

#define exit praseoxit
#definue -exit prase-exit

*def ine flick praseflick

#define irecv praseirecv
*define crecv prasecrecv
*define isend praseisend
*define caend prasecsend

Sendif

Figure 4.20. Typical instrumentation header file

The PRASE program that collects trace data from the nodes and writes it to disk

files, prase-c'ct, serves as the skeleton for this program. Its functionality, however, is

much less than is required for the new collection program, aaarf clct. As was discussed

in Section 3.3.2, prase-clct performs no time-ordering of the data, and writes the data

from each node to a separate file. aaarf_c1ct must take the data from all the nodes and

produce one time-ordered output data stream. Since the modifications to prase-clct are

so extensive, aaarf clct is considered to be a new module rather than a modification to

an existing PRASE program.

The instrumentation on the processors dump their trace data to the host processor by

sending it via a specific message type. This means that the data from all the processors is

read through one receive call by the collection program. Since there is no way to guarantee

that the data being sent from different processors arrives in the same order in which it

was generated, the data collection program must be able to temporarily store the data,

arrange it in time order, and then send it out.

This is accomplished through the use of a prioritized linked list. As trace data arrives

from the processors, it is inserted into the prioritized list according to its time stamp. The

time stamp of the record at the head of the list is compared with the time of the record

just received: if the difference is more than a certain threshold, the top item on the list
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mainC)

1* local variables *

Sifdef PRASE
praae..procs[OJ.nu,..pida a 1;
prane-procs[OJ.pids[O) - 0;
prase-procs[1).num-pida - 1;
prase-procsil).pids[0) - 0;
prase-procs[2].nuu-pids - 1;
prase-.procs[2j.pids[O) - 0;
prase-.procs[3).num-.pids - 1;
prase-procs[31.pids[0) a 0;
prase-.procs[4J.niu..pids - 1;
prase-procs[4).pids[0) . 0;
p~aS3-.p=ocs[SJ .numpidz - 1;
prase-procaSE5.pids[0) - 0;
prase-.procs[6j.zum-pids - 1;
prane-procsE6).pids[O) - 0;
prase-procs[7J.num-pids - 1;
prase-procs[7).pidsEOj - 0;

prase-.lovest-node - 0;
prass.atart~tiue - 0;

praseinito;

Sendif

/* normal processing *

Sit dot PRASE
praseendo;

Sezadif

/* termination processing o

Figure 4.21. Instrumenting the main node function
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ain()

/* local variables *1

Sifdef PRkSE
FILE *praseoptr;

Sendif

/* start of main program */
/* initialization */
getcube(....);

Sifdef PRASE
systen("aaarfclct 1000000 k");

Sendif

/* load node programs */
/* process data */

Sifdef PRASE
praseendo;

.endaf

/* terminate node programs */
I

Figure 4.22. Instrumenting the host process

is removed and sent to the display program. The threshold ran be controlled by the user

through an item on the MCP. The threshold needs to be large enough to compensate for

delays in the sending of messages and for the slight difference between the clocks on the

processors. It also depends on the method used to send data from the instrumentation to

the host. If each trace record is sent as soon as it is generated, then the threshold value

can be relatively low; but if the trace records are held up and sent in blocks, then the

threshold needs to be higher to account for the time difference between the beginning and

end of the block of trace records. The blocking factor for the trace records is set through

a definition in the aaarf -user.h header file.

The algorithm data is sent to the display program as soon as it arrives, since the flag

record in the trace data serves to properly order the blocks at the displ-y system.

Another change from the operation of prase-clct is the removal of the dependence

on the PRASE configuration file. prase-clct reads the configuration file to determine

the nunaber of end trace records that it needs to read before it terminates. The way the

instrumentation is implemented, each process on each node sends an init trace record
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when it has completed its initialization - aaarf _clct counts these init records and uses

this count to determine when to terminate.

4.2.3 Modifications to PRASE Aside from the collection program discussed in the

previous section, there are no changes to PRASE needed to meet the requirements in

Section 2.2 or the system design in Chapter I1. The changes described in this section are

required to provide data that can be used by the performance views.

There are four things that need to be changed in PRASE:

1. Synchronization Logic

2. Timer Resolution

3. Receive-Blocking Trace Record

4. Send/Receive Matching

Each of these modifications is described in the following paragraphs.

4.2.3.1 Synchronization Logic In order to be able to display data from differ-

ent nodes in the same view, the time stamps in the trace records must correspond to some

global time. This is also important for matching sends with the corresponding receives.

The method PRASE uses to synchronize time on the nodes is not very effective. Analysis

of trace files produced for the probe effect test in Section 2.4.2.2 showed that the time

stamps for some send records occurred after the time stamp for the corresponding receive

record.

The method used by PRASE[19:B9-BlO] is to designate the lowest numbered node as

the controller, and every other node would exchange messages with it, time the messages,

and attempt to correct its own time to match the controlling node. This synchronization

is performed in the praseinit() function at the beginning of every run. This method is

ineffective because the timing of the messages assumes that the controller node was waiting

for the message and instantly responded with its reply. In actuality, since all nodes try to

synchronize at about the same time, messages get queued up, and the timing is off.

4-27



The PICL package had no such problems because it employs an exchange of 1 byte

messages with each of its nearest neighbors in the hypercube connection pattern using a

blocking read. As soon as the synchronization function finishes the last read, the timer

function is called to obtain the base time for the run. Analysis of PICL trace files indicates

that the times on the nodes are (initially) usually within 100,4s of each other.

This same synchronization method, when incorporated into the PRASE instrumen-

tation routines, produced similar results.

4.2.3.2 Timer Resolution The 80386 processors in the Intel iPSC/2 hyper-

cube execute some operations rapidly such that the standard mclock() function would

produce the same time stamp for the begin and end times for each trace record; sometimes

even consecutive events have the same time stamp. The mclocko) function returns the

time in milliseconds, but the time value is not necessarily updated every millisecond. This

makes ordering events and calculating CPU utilization for the node processors difficult.

PICL contains a timer with a resolution of 1 microsecond. This is accomplished by

directly accessing a hardware timer/counter. Normally, node programs are not allowed

to directly access the node hardware, so the node program needs to be loaded with a

special undocumented xload() function. This is unsupported by Intel and may disappear

in future releases of the node operating system, but it provides the needed resolution

for differentiating events during a program run. Another way to load the node program

with the necessary hardware access is with the -D option on the load command from the

command prompt[18]. This method is much better since it doesn't rely on undocumented

features.

The microsecond resolution timer pclocko) is added to the PRASE routines as a

replacement for the mclock() system function. It returns the time in microseconds as an

unsigned long, the same as mclock(, allowing a direct substitution in the source code.

As a falback, the clock routines can recognize when the node program wasn't loaded with

the proper access rights, and reverts to using mclockC).
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4.2.3.3 Receive-Blocking Trace Record Several of the performance views de-

pend on this type of record to determine when a processor is sitting idle waiting for a

message to arrive. The current PRASE onl3 puts out one receive record when the receive

has completed; the record indicates the idle period in the difference between the beginning

and ending time stamps, but by the time the record is received, it is too late to reflect the

idle status in the displays.

PRASE is easily modified to produce this record type by putting code to fill and send

a trace record before the system blocking receive call is issued. The only data available to

put in the record is the type of message being waited for, but the presence of the record

in the trace is enough to properly display the node's blocked status.

4.2.3.4 Send/Receive Matching The PRASE instrumentation functiors per-

form limited send/receive matching on the fly by assigning each message a number. Each

node pair has its own sequence, which effectively counts the number of messages a given

pair of nodes has exchanged. This processing is not needed in this context due to the

better synchronization and higher resolution clock. The matching of sends and receives is

more efficiently accomplished at the display processing stage since data from all the nodes

is present. Since the processing is not needed, it should be removed to avoid maintaining

unused code.

4.3 Algorithm Control System

This part of the animation receives commands directly from the display system and

exercises control over the target program running on the remote host. It must respond

to two commands from the display system: start the program on the remote host, and

terminate the target program. These operations are accomplished using the UNIX fork()

and execlv()[2] to start the target program, and the kill() functions[2] to terminate it.

4.4 Communications

The discussion in this section is concerned mainly with the communications between

the workstation running the display system and the remote system, as well as the corn-
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munication between processes on the workstation. The communication between the host

and node processors on the hypercube is straightforward and is discussed in the design of

PRASE[19:3-8].

4.4.1 Protocol The communications between the two computers is accomplished

using UNIX socket-based inter-process communications[33]. The main network protocol

available on systems at AFIT is the Internet Protocol (IP). This protocol provides a

means to directly address any host connected to the network. The Transmission Control

Protocol (TCP) provides the mechanism to make a connection between processes residing

on separate hosts.

Each side of a communications link must initialize a socket, specifying that the

TCP/IP protocol family will be used. One side then sets up its socket into listen mode

by selecting a port number for the TCP to use in identifying attempts to connect to the

socket. Each link must choose a unique port number. After the socket is in listen mode,

the process waits for the other process to initiate the connection. When the connection is

terminated or broken, the socket does not need to be reinitialized; the process just waits

for another connection attempt. The other side of the connection initiates the connection

by specifying both the network name (or address) of the other system and the TCP port

number selected by the listening side.

Once the connection is set up, the link needs no special treatment - data is passed

using standard UNIX read() and writeC) function calls. The only significant difference

between the socket and any other file or communications is that the underlying network

protocols are free to take a large data block and break it up into smaller packets for

transmission. If a read() call is issued for such a large block and all of the smaller packets

haven't arrived yet, the read(0 call will return with whatever data has arrived - it doesn't

wait for all the pieces to arrive. A subsequent read for the remainder of the data will receive

the rest of the large block.

4.4.2 Connections Figure 4.23 shows the communications links set up for the ani-

mation system. There are two process pairs that communicate - the child process on the
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workstation receives data from aaarfclct on the remote host and sends back commands.

The child process on the workstation also sends commands to the algorithm control process

on the remote host.

Sun Hypercube

2001
aaarf.clct

2010

2065

Child

,' Algorithm

200 Control

Process

Figure 4.23. Connections between processes

The child process on the workstation receives two types of data from aaarf clct:

trace data and algorithm data. The simplest way to accommodate both types of data

without adding overhead is to use two separate connections. The connection for the trace

data uses the TCP port number of 2001, and the algorithm data connection uses port

number 2010. The only command that is sent back to aaarf _clct is notification that all

the data has been received and it may terminate. Otherwise, if aaarf clct terminated

before all the data has been received, the connection would be broken and the data lost.

The command connection uses TCP port number 2065.

The communications from the background process and the algorithm control process

only requires one link - it is a simple one-way command path. This connection uses TCP

port number 2000.
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4.4.3 Communications Management The background process on the workstation

has several communications-related tasks:

" receive commands from the main algorithm class process

" wait for connections to be established with the processes on the remote host

" receive trace data from aaarf .clct

" receive algorithm data from aaarf..clct

" send commands to aaarf .clct

* send commands to the algorithm control process

" send trace data to the main process

" send algorithm data to the main process

All of the operations that send data occur in response to commands from the main algo-

rithm class process. The tasks involving receiving or waiting can occur at any time, as is

discussed in Section 4.1.1.3. There are two methods that can be used to enable the process

to receive its inputs in any order. The first is to poll each input to see if data is ready

using the ioctl() function. This method is acceptable, but the overhead of performing the

ioctl() calls is not trivial. The other method uses another function in the UNIX library:

select(). This function takes a list of input sources and waits until at least one of them

is ready before returning. It performs the same function as ioctl(), but the polling loop

is implemented more efficiently at a lower level. The select ) function is versatile enough

that any type of input may be monitored - both incoming data and connection attempts

can be caught with the same select() call.

4.5 Summary

This chapter covers the detailed design and implementation of the parallel algorithm

animation system. The algorithm class for AAARF is developed, as well as the parallel

views library. Only minor modifications are made to the original AAARF system. The

PRASE instrumentation routines also don't require major modification. The design of the
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data collection and algorithm control processes for the remote system is discussed, and the

communications system used to tie all the processes together is described.

This completes the discussion of the design of the algorithm animation system. An

example of the use of this system is described in the next chapter.
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V. Parallel Algorithm Animation

This chapter describes the general process of animating a parallel algorithm. As

was stated in Section 1.4, it is assumed that any program can be animated; the discus-

sion is started with an overview of parallel algorithms and programs that can benefit from

animation. The rest of the chapter follows the animation of one algorithm, a parallel imple-

mentation of the NP-complete Set Covering Problem (SCP) developed by Andy Beard [3].

The target system for this example is the Intel iPSC/2 hypercube.

To support the design of other parallel animations, the methods and techniques

described in this chapter are condensed into a step-by-step procedure in the updated

AAARF Programmer's Manual in Appendix C.

5.1 Animation Process

The process of animating an algorithm can be decomposed into three tasks:

1. Analyze the algorithm to determine the basic operations

2. Develop ways of displaying the algorithm and its data

3. Instrument the program

These steps assume that the algorithm has already been implemented to the point that

the program can be executed on the target system.

Even though the process has been divided into three parts, there isn't a sharp dis-

tinction between them. The analysis of the algorithm needs to be done with the displays in

mind. When developing displays, the side effects of instrumentation need to be considered.

Instrumentation must be done so that the displays have all the data needed so they can

function. The interrelationship is so tight that all three need to be worked concurrently.

The next section discusses various categories of algorithms and how they could benefit

from animation. Section 5.3 provides a very brief description of the SCP and an associated

parallel implementation. For a more complete discussion of NP-Complete problems, refer

to Beard [3], Aho [1], and Johnson [14]. The rest of the chapter documents the actions

relating to animating the SCP.
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5.2 Problem Domain

Many different types of programs can benefit from using animation. Many programs

fall into two major categories: those whose execution completes in polynomial time (1'-

time) and those whose execution completes in ezponential time, if not longer (A/p-time or

NP-hard). It should be mentioned that more complex problems also exist[I], the analysis

of which could also benefit from using animation techniques.

The first category (P-time) includes algorithms such as sorting, matrix manipulation,

greedy seasJucii, etc[5, 28, 17]. The parallel Shell sort implementation used for evaluating

the instrumentation packages in Chapter II is an example of this class of program. The

main benefit that this class of programs gets from animation is for the user or programmer

to see the algorithm progressing, and to see how different methods affect the algorithm's

internal processing, as well as its output.

The other class of programs (A/P'-time) include many search techniques (especially

optimal search techniques), the traveling salesman problem, and many others[14]. Since

these programs have completion times that have a lower bound of fl(c ' ) time, efficient

algorithms are needed to solve moderate to large problems in a reasonable amount of time.

Animation can allow the programmer to easily see where the inefficiencies in the program

may be for a given application. In a parallel environment, animation is also useful in

showing the activity of each processor and how all the processors interact.

5.3 SCP Background

The set covering problem (SCP) is a member of the class of NP-complete prob-

lems [1:392]. The problem is to find the minimum number of columns in a 0-1 matrix such

as in Table 5.1 such that each row is covered by at least one column. The columns are

referred to as sets, hence the name. A common variation of the problem is to assign a

cost to each set and find the combination of sets that both covers all the rows and has a

minimum (or maximum) cost. The SCP is defined more completely by Cristofides [9:39],

who also developed an A* search algorithm for solving the problem. This algorithm is

sequential in nature, but it served as the basis for Beard's work[3].

5-2



Table 5.1. Sample 0-1 Matrix

1 0 1 1 0 0 0 1 0 0 0
2 1 0 1 0 1 0 0 0 1 0
3 0 0 0 1 0 0 0 0 0 1
4 1 0 0 1 0 1 0 0 0 0
5 1 0 1 0 1 0 0 0 1 1
6 00 0 0 0 0 0 1 0 0
7 1 1 0 0 0 0 0 0 0 1

2 3 6 9 4 5 1 7 3 2

The sequence of operations used by Beard are as follows:

1. Read the matrix from the data file

2. Perform all reductions that are enabled

3. Sort the matrix

4. Convert the matrix into a linked-list structure called a Table that the searching

process uses to determine the next step to take

5. Divide the problem into pieces

6. Search until all pieces of the problem have been exhausted

The problem is divided into pieces using a data decomposition technique. The entire

search process maps onto a tree structure referred to as the search space. The search space

is decomposed by expanding the tree in a level manner (all the leaves are at the same

depth) until the desired number of leaves exist. The search process actually works on the

subtree below each leaf expanded during the division process.

Beard's implementation of the SCP distributes the searching process among the nodes

of the hypercube, reserving one node to serve as a central controller. Three methods of

distributing the work were implemented:

* A coarse-grained approach that divides the search space a priori such that each node

on the hypercube knows in advance what it will search. When a node completes its

work, it sits idle until the rest of the nodes complete.
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" A fine-grained approach that divides the search space into more pieces than there are

nodes. The controller node passes a new piece to each node as it finishes its current

piece.

* A dynamic load-balancing method that starts the same as the fine-grained method,

but when the controller runs out of pieces, the nodes re-distribute their workload

using a token-passing technique to keep as many nodes working as is possible.

Each of the methods is (mostly) a superset of the previous one. The fine-grained method

moves the division of work from the searching nodes to the controller, and the load-

balancing method adds another phase of operation to the fine-grained method.

The searching process itself is a typical A* search. The basic factor used to determine

if the search should proceed along a path down the tree is the cost of the current cover -

if it is greater than the current best cover maintained by the controller node, the process

backtracks and tries a different path. The implementation also allows two other factors to

be used in addition to the cost - a dominance test and a lower-bound test[3:3-19]. If any

of the three factors indicates that the search should not proceed, that branch is abandoned

and another branch is tried. The search terminates when all branches have been either

searched or eliminated.

5.4 Animating the SCP

As was mentioned previously, the process of animating a parallel algorithm divides

roughly into three major activities, but there is considerable overlap among the activities.

There is also no specific order in which things must be done. It is an iterative (and

concurrent) design process that only stops when the programmer is satisfied with the

visualization (animation) results.

The LUCUbt-gjIn version of the SCP implementation is used for this example because

it provides a simple interface to the animation system. Once this animation is complete,

the more advanced versions of the program could be animated by extending the initial

animation.

5-4



The main area of interest when analyzing search algorithms is to look at the tree-type

structure that results from the searching process, and the state at each node reached in

the search process. This is usually referred to as the search space, while the organization

of the data being manipulated is referred to as the problem space.

5.4.1 Analyzing the Algorithm In order to animate an algorithm, it needs to be

analyzed to distill its basic components. Fife proposes this specification for an algorithm:

The specification of an algorithm can be given by the quad-tupie {D, I, S, E}
where D is a set of data structures, I C D is a set of primary data structures,
S is a sequence of instructions, and E is a set of algorithm events.[12:11I

Both D and I are data structures, with the difference being that while the algorithm

may use the entire set of data structures contained in D, only those in I are of any interest

in an "external" view of the algorithm. The set E contains those fundamental operations

(or events) that, when executed in the proper order, cause the algorithm to function. These

events can be input, output, or actions that change the state of the algorithm. S is the

sequence in which the events are executed to accomplish the algorithm's task.

For algorithm animation, the analysis needs to focus on D and E. S isn't as im-

portant since the animation is showing the execution of the program, not controlling it.

"Animating the algorithm consists of developing meaningful graphical representations of

the algorithm events and intermediate states[12:121". Simply displaying the data struc-

tures and their contents is not enough since frequently (as in the SCP) algorithms don't

modify the contents of their data structures at all! The actions taken by the algorithm and

the decisions made by the algorithm can present considerably more about an algorithm

than just the data structures.

5.4-1.1 Data Structures The analysis of the data structures should be focused

on what data is necessary to display not only the external results of the algorithm (an

"external" view), but also some of the internal operations ("internal" views). In some

cases, such as the SCP, the primary data structure used for display is not even used
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in the algorithm! Beard's implementation uses an A* branch and bound graph search

technique[28:75-851, which is easily mapped onto a tree structure; the tree is useful because

it shows the entire history of the search, including all dead-ends. The algorithm running

on the hypercube uses a stack data structure to keep track of its position in the table since

it has no need to maintain a history of its searching.

The significant data structures within the SCP algorithm are the matrix itself, along

with the index arrays used to access it. Another data structure that is used frequently in

the A* algorithm that can be eanployed for animation is a simple integer array. This array

is used to keep track of which sets are currently being considered for the cover.

5.4.1.2 Algorithr E,,ents In the context of algorithm animation, there are

two types of algorithm events: events that correspond to actual algorithm operations (as

discussed in the previous paragraph) and events that provide information to the user or

the display program. The latter type of events may include notification that a certain

phase of operation is complete, or simply passing data structures to the display program

to use for the displays.

The events must be chosen such that the display can be updated or modified when

something "noteworthy" occurs in the algorithm. Sometimes this means choosing an event

that signals the start of a process, and one that signals the end. The purpose of the event

at the end may be simply to pass an updated data structure to the display, or to reset the

display to keep it from getting cluttered. Events should also be identified whenever one

of the significant data structures changes, which allows the displays to keep track of the

Lurrent state of these structures.

The choice of events is the very core of the animation design - the rest of the

animation is driven by the events produced during a run of the algorithm. These guidelines

can be used to determine what events to use:

Using the program source code as implemented on the target system (or even
a higher level design language), one should identify the major operations per-
formed by the algorithm:
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c Start at a high level to get the big picture, and then go to lower levels to
get more detail if needed.

9 Function calls in the top-level routine are prime candidates for events.

* If the program has several phases of operation, consider events that mark
the transition between phases.

Remember that the level of de-tail needed is driven by the complexity of the
displays - some displays are very effective with mainly high-level events, while
others need a detailed account of the algorithm's progress.

When analyzed in this manner during the first iteration in the animation design

process, the SCP program contains at least these events:

Init Cube This is an information type event that's purpose is to let the dispiays know

that the algorithm has started, since a lot of time-consuming data transfer operations

are performed at the beginning of the program.

Matrix Dims This is a data event. It provides the display with the dimensions of the

matrix being searched, the number of processors allocated to do searching, and the

dimension of the hypercube that is allocated for the task. This is simply a copy of a

data structure that the controller processor sends to all the searcher processors.

Matrix This is another data event that sends the matrix being searched to the display.

Since the matrix is actually stored in three. pieces by the algorithm, this event should

also be divided into three corresponding events, one for each piece.

Reduce This is an event to indicate that the program is about to enter one of the three

possible matrix reductions[3:3-24]. Since the purpose of this particular animation

is to display the searching process, this one event is sufficient to indicate that the

program has reached this point in its execution.

Sorting Just before the searching process starts, the matrix's rows and columns are sorted

to improve the efficiency of the search[3:3-9]. Once again, Fince the sort is not the

emphasis of the animation, it is simply marked, and not expanded further.

Send Matrix Another information event whose purpose is to indicate that the final re-

duced and sorted matrix is being sent to the searchers by the controller.
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Recv Matrix This informational event indicates that the searching processes are waiting

to receive the matrix from the controller.

Forward A searcher has moved forward in the search process. The new set number and

the cost of that set are included as data in the event.

Backtrack The search has run into a dead-end. The reason for the dead-end is included.

Finished Search A searcher has finished all work assigned to it and is ready to terminate.

Build Table A searcher is building the internal data structures necessary to perform the

search.

Build Start Sets A searcher is determining which branches of the search tree it is re-

sponsible for searching.

New Subgraph A searcher is about to start searching a new portion of the search tree.

Finished Subgraph A searcher has finished searching a branch of the search tree.

Global Best This event marks the arrival at the controller of a solution that is the best

one found so far. This is a significant occurrence since this is one factor that can

limit the time spent searching for the solution.

5.4.2 Displaying the Algorithm This activity is in some ways the whole purpose of

the animation effort. It is definitely the end result of the animation desigr process. This

is also the most difficult step - there are no specific methods to generate displays for

the algorithm data. There may also be several different ways that the same data can be

displayed:

In an ideal program analysis environment, each aspect of... program behavior
would be revealed by some view wherein the cause is manifest. No one view is
sufficient; any particular view contains either too much or too little information
to understand some aspects of a program's behavior. Unless the programmer
knows exactly what to look for, interesting phenomena can be lost in the sheer
volume of information. [23]

The developer of the displays relies upon creativity and experience to determine appropri-

ate ways of displaying the data for the given application.
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Figure 5.1. Typical representation of a SCE search tree

In the case of the SCP, one display that has already been mentioned is a representa-

tion of the search tree created by the algorithm as it progresses. A typical way of drawing

the SCP search tree is shown in Figure 5.1. The information usually presented is the num-

ber of the set included in the cover at each level, possibly the cost of that set, and the total

cost of the cover at each leaf of the tree. This information can easily be displayed using the

data received through the events described in the previous section. In this case, there is

one more dimension available: color. Although the current best cover can be represented

in Figure 5.1 by using thicker lines, it is much more striking and visible to use color to

show which branch of the tree is the current best cover. Another piece of information that

is lacking in the normal tree is the reason that the algorithm stopped processing a branch

of the search tree. The reason can be put in the figure using text and numbers, but that

serves to clutter the drawing. Color is a convenient way to display the reason without

unnecessarily cluttering a display that can become very crowded with a large data set.

The result of using color to enhance a traditional SCP search tree is shown in Fig-

ure 5.2. The start node at the top is colored black, and the lines connecting the nodes

in the tree are black. As a node is expanded, it is colored green; when the algorithm
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Figure 5.2. SCP tree display for a 10xlO matrix

backtracks from a node, it is colored according the reason:

Cyan the cost of advancing from that node is greater than the current best cost

Red the node represents a solution to the problem

Gray there are no more possible solutions below this node

Blue the cover so far failed the dominance test[3:3-19]

The node contains the number of the set selected at that stage in the search, and the cost

for the partial or complete cover is shown below each leaf in the tree. Finally, the best

cover is indicated by drawing the lines connecting the nodes in the best cover in red, and

by turning the solution node at the bottom purple.

5.4.3 Instrumenting the Program Instrumenting the target program occurs in two

stages - first, the performance monitoring routines are inserted, then the function calls

to extract the algorithm data for the events. The performance instrumentation is inserted

first for two reasons: performance data is normally needed for "complete" analysis of the

algorithm, and the event data extraction functions use the performance instrumentation

to carry the events to the display system.
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Because of the existence of the PRASE preprocessor[20:3-1], inserting the perfor-

mance instrumentation is simple; the programmer creates a configuration file that describes

the program[20:2-3], and the preprocessor does the rest. If for some reason the instrumen-

tation needs to be inserted manualy, it is a simple process: a header file is included at the

top of every source file, and some code is inserted at the very beginning and end of the

main process on the node.

There are two pieces of code that need to be inserted into the host process - the

aaarf _c1ct process must be started at the beginning of the run before the node processors

are loaded, and the host process must wait for all the trace data to be collected before it

terminates the node processes. These code fragments are described in Section 4.2.1.

Inserting the instrumentation for all the algorithm data must be done manually. As

was discussed in Section 4.1.1.3, there are two methods for marking an event, depending

on how much data is required to accompany the event. If there is little or ro data, the

IEO function is used; it accepts three parameters - the integer event number and two

integer data values. If there is more data associated with the event than will fit in the

IEO) function call, there is another function called IE-data() that accepts the integer

event number, a pointer to a data block, and the length of the block. The IE-data()

function is slower, and should be used only when necessary.

For each of the events chosen in Section 5.4.1.2, one should insert one of the two event

functions. There are three general situations that occur when inserting the instrumentation

calls:

" The event is simply a marker, with no data

" The event requires data, and the data is already available

" The event requires data, and the data does not exist

The first case is straightforward: insert a call to IEO) with the event number. This is

illustrated in Figure 5.3. The next situation isn't as simple. If the data required for the

event is in the form of one or two integers, insert a call to IEO) with the event number and

the data as parameters (see Fgure 5.4). If the data is too large for IEO, pu, in a call to
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IE-data() providing the event number. a pointer to the data, and the length cf thodaa.

This type of event is shown in Figure 5.5.

The last situation occurs when the event number or event data is not explicitly

available from variables or location within the program. In this case, statements must be

inserted into the program to determine the data or event number to send. The backtrack

event for the SCP is of this type. The decision to backtrack is made implicitly by a series

of "if" statements throughout the processing loop. At the end of the loop, if none of

the "if" statements are true, it continues with the loop by default. The exact reason for

backtracking needs to be found so that it can be passed with the event to the display.

Figure 5.6 shows the code that is used to determine the reason for backtracking. For

performance and efficiency reasons, this should be avoided, since the calculations needed

to generate the event data can affect the operation of the algorithm; In some cases, tlough,

it is the only way to get certain types of data.

See Appendix E for information on both the original and instrumented source for

the SCP program.

5.4.4 Iteration As was stated previously, the process of animating an algorithm is

an iterative activity, somewhat similar to the spiral lifecycle model for software development[4]

- start out completing a small-scale implementation or prototype, then add to it in stages

to develop the final implementation.

The events that are chosen depend to some extent on what is needed to create the

displays; the development of the displays depends on the types of data that can be extracted

without imposing an unacceptable performance penalty. The instrumentation task is the

only one that truly must be done as the last step in an animation development cycle.

5.5 Ideas for Further Analysis

There are two areas for further analysis of the general SCP program: animate the

more advanced stages of the program (the fine-grained and load balanced implementations),

and to develop more displays for the algorithm class.
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ift MyMID <- JimSearchers ) *I participate in the search. 5

/* Build the table. */
IE (BUILD-TABLE * UNUSED, UNUSED);
PerformanceData[3) - mclocko);
if ( BuildTableC&Table) -- ERROR){

perror('scpno6%t. sainO: Error building table. Exiting');
exit (ERROR);

Part oruanceData [31 - mclock() - Port ormanceData [3)

/* Calculate the starting sets. */
IE (BUILD-START-SETS. UNUSED, UNUSED);
Part ormanceDat a [4 - nclockO;
TotalStartingSets - :iuildStartingSets(Table, &Front. kRear. &Current);
Current - Front;
PertforuanceData[4) - aclock() - PtrforuanceData[4);

/* Calculate the number of StartingSets for this processor. e
Perf ormanceDat a[2) - MylumSt artingSets -

NodeStartingSets (TotalStartingSets, NuaSearchers. MyNID);

/e Search the StartingSets. 5

NodeBestCost - KAXINT;
PerformanceDatal] - aclocko;
PartforuanceData [5) - OL;
for( j-0; j<NyNumStartingSets; j++){

IE NEW-SUBGRAPH, UNUSED, UNUSED);
NyNextStartingSet -

NextStartingSet(Front, &Current, lumSearchers, NyNID);
Perforuanc*Data[S) +- ScpSearch(NartStartingSet. &NodeBostCost);

PerfornanceData(1J - sclock() - PerfornanceData[1J;
IE(FIISED-SERCH. UNUSED. UNUSED);

coond(FIIISREDTYPE. kDuany, 0. CONTROLBID. CONTROLPID);

}/* end if( MNID <- NumSearchers )*

Figure 5.3. Event that uses no data (from scpndcg. c)
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if( !DoainatingSet kk !A-LowerBound){

/* Save this node. */
IE(ORWARD. ThelextSet->Col, (Set+(TheNez-tSet-)Col))->Cost);
PushOnStack(&Top. ThelextSet);
ExpandedNode s++;

/* Mark the set and all vertices. *
MarklndAdd(ThelextSet, &NuaVerticesCovered * &CurrentCover,

kNextElesent);
CurrentCost +- CostOfNextSet;
CostOfNextSet - 0;
if( NextElement > MaxNextElement){

MaxlextElement - NextElement;
I

1 I end if( !DominatingSet k !A-LowerBound ).

Figure 5.4. Event that uses existing data (from scpndcg. C)

I. Receive AdjMat. Vertex, and Set from the host. .
ReceiveVector(ATRI..TYPE. (char *)Adj~at, Ivertseksets. sizootint));
IE..data(ATRII.ADJ, (char *)AdjMat. NAT-SIZE);

Receiv*Vector(VERTEX.TYPE. (char *)Vertex, Iverts. sizeof (VERTEX));
IE-data(ATRI..VERT, (char *)Vortex, VERTSIZE);

ReceiveVector(SET-TYPE, (char *)Set, Baets, sizecf(SET));

IEdata(MATRX..SET, (char *)Set, SET_.SIZE);

Figure 5.5. Event with large data (from scpcntcg.c)
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/*.eeee****ee***e*******e*****************ee*******/*

/* At this point, I have a cover or a I can't get a lower cost cover. */

/* If I have a cover and its cost < all other costs. Replace the 5/

/, best with my cover and send it to the controller. 5/

if( NuaVerticesCovered -- Nverts && CurrentCost < BestCost ) {
BestCost - CurrentCost;

*(CurrentCover + NuCoveringSets) - CurrentCost;

csend(NEWIBESTTYPE. CurrentCover, sizeof(int)(NuCoveringSets+l).
CONTROLNID, CONTROLPID);

} /* end if( NumVerticesCovsred -- Nverts && ... ) e/

/* IE code */
if(NumVerticesCovered -- Nverts)

IE(BACKTRACK, SOLUTION. UNUSED);
}
else if (!TheNextSet)

if (ALowerBound)
IE(BACKTRACK, LOWER-BOUND, UNUSED);

else

IE(BACKTRACK. COMPLETE, UNUSED);
}
else if (CurrentCost+CostOfNextSet >- BestCost)

IE(BACKTRACK. COST, UNUSED);
else

IE(BACKTRACK. UNDETERMINED, UNUSED);

/* Backtrack. */

do {

Figure 5.6. Event that requires derivation (from scpndcg. c)
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5.5.1 Advanced Methods Since each method is built on the previous one, animating

the more advanced SCP programs is a relatively simple task. Most, if not all, of the events

chosen for the coarse-grained solution would apply to both the other methods. Just the

improvements to the algorithm would need instrumentation. The load-balancing version

would be the most amount of work since it adds another separate process that would need

instrumenting.

5.5.2 Additional Views Only one view was developed for this example, but that

doesn't mean that there aren't any other views possible. Some possible variations on

the tree view developed above is to add more data concerning the state of each node.

This would also make necessary a method of zooming in on a particular node of the tree;

otherwise the display would get very cluttered for large data sets.

Another variation of the tree view is to have the display follow the progress of a

particular processor, keeping the current position in the tree in the center of the view.

This would allow the user to analyze the activities of a single processor without having to

follow it manually through the whole tree.

With the implementation of the token in the load-balancing version of the SCP,

another view could be developed to track the progress of the token and the load-balancing

activity that it handles.

5.6 Scalability

One major difficulty in animating programs is that the amount of information re-

quired to adequately inform the user of the activities of the algorithm rapidly becomes

overwhelming for medium and large sets of data. Even with high resolution displays, the

minimum size of a displayed item is one pixel, and there are approximately one million

pixels on a typical graphical workstation's display. Large data sets can easily create dis-

plays that exceed these display limitations - the SCP, when used to solve a 100 by 100

matrix, generates a display that exceeds the 2000 by 2000 pixel canvas allocated for the

view! For smaller data sets, this is not a serious problem, but in some cases, an algorithm
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behaves differently for different sized input data - displaying a large amount of data can

become necessary.

One common way of displaying larger images that fit on the available display is to

average adjacent pixels to reduce the number of displayed pixels without losing much of

the original data. In some algorithm views, this approach may be acceptable, but for views

such as the tree developed above, this approach cannot work. In general, the decision must

be made between seeing every detail in the algorithm data, or seeing a "fuzzy" view that

displays the algorithm at a higher level.

If a high level view is acceptable, then there must be a way to reduce the amount of

data being di.played. The averaging of adjacent pixels mentioned above is one possibility

if the view is a 2 or 3-dimensional graph of the data. For the tree, one possibility is to

collapse the subtrees into a representative display item that still conveys the state of that

part of the whole display. As the data sets get larger, statistical analysis may become

useful in reducing the amount of data displayed.

Sometimes, merely having the ability to zoom in and enlarge a small section of the

view, and being able to move the enlarged area around is enough to allow a display to be

useful, even with very large amounts of data. Even with compression or reduction of the

algorithm data to reduce the display size, the ability to zoom in to see the detail may be

beneficial.

One factor that has so far been ignored in this discussion of the results of large

amounts of data is the probe effect of the instrumentation. As more data is generated,

the communications system can be pushed to its limit, and processes may end up being

delayed because the data is being produced faster than the instrumentation and display

system can process it.

5.7 Other Applications

To this point, the discussion about animating an algorithm has only been concerned

with a full animation - analyzing the algorithm, developing specific views for the algo-

rithm, and so forth. It is also possible that the existing view library already contains views
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that adequately display the necessary information for analyzing the algorithm. There is

no need to go through the effort of designing a full animation when the existing system

meets the needs!

In this circumstance, the process of animating the algorithm reduces to one step -

insert the performance instrumentation. An algorithm class is available for AAARF that

just implements the views from the performance mews library. It can display data from

any program that contains the instrumentation. This application of the parallel animation

system fills the need to simply display performance data from a program with minimal

effort.

This performance display class was used to aid another student in debugging a sim-

ulation system [24]. The system was stopping unexpectedly during a run, without giving

any indication as to what the problem was. The simulation system consists of different

processes on each node - some generating simulation events, some consuming the events,

and some nodes performed both functions. From what limited information was available,

the student had concluded that there was a deadlock condition. Analysis of the perfor-

mance displays revealed a different reason: the first node in the chaiu of producers and

consumers was generating events so rapidly that the next nodes in the chain were too busy

consuming the events sent to them to generate any new ones to pass along.

5.8 Summary

This chapter discussed the methods and techniques used to animate parallel algo-

rithms. The animation of a parallel implementation of the set covering problem was de-

scribed as an example of these methods. The usefulness and limitations of the animation

was discussed, as well as possible improvements and additional displays. The last section

discussed problems relating to animation of algorithms that operate on large amounts of

data.
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VI. Conclusions and Recommendations

This chapter discusses the functionality of the prototype parallel algorithm animation

system developed as a part of this research. Also, conclusions that can be drawn from this

research and recommendations for further research in this area are presented.

6.1 Evaluation of the Prototype

The prototype designed and implemented for this research meets the requirements

stated in Chapter II:

1. Animate programs on a remote host

2. Development of built-in performance views

3. No limits on program structure

4. Display data as it is generated

5. Animate existing programs

Proper operation of the prototype was verified using three different programs written

for the iPSC/2 hypercube:

" A Shell sort program

" A parallel implementation of a set covering problem (SCP)

" A simulation system

Testing of the parallel views library consisted mainly of black-box style tests that verified

that the trace data inputs produced appropriate outputs on the display. The algorithm

classes that were developed were tested in a similar fashion, using the algorithm data as

the test inputs.

The three test programs were quite different in nature, which demonstrates the pro-

totype's ability to animate a wide variety of algorithms. All three programs were developed
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separately, then animated at a later time. Because of the transparency of the instrumen-

tation, the only modifications or additions made to any of the programs were the ones

required to insert the instrumentation.

Algorithm views were developed for both the Shell sort and SCP[3] programs. The

Shell sort is described in Appendix A. The views for both programs were developed using

views from other animations provided with the AFIT Algorithm Animation Research Facil-

ity (AAARF) package that were adapted for the data structures used in these algorithms.

This demonstrates the modularity and reusability of the AAARF package. In addition,

the parallel views library was included to provide views for performance data.

The simulation system[24] provided an additional source of performance data to test

the animation system. As a result of this testing, a separate algorithm class was developed

for AAARF that allows the user to view performance data from any program on the

iPSC/2 that has been instrumented with the routines provided with the prototype. This

algorithm class simply invokes the performance views library to process and display the

trace data. The program may be started remotely from the master control panel for the

algorithm class, or manually by a user on the hypercube. This capability allows users

to view performance data without having to go through the effort of devcl3ping custom

displays. It is an alternative to using systems such as Seecube[7] or ParaGraph[16] which

require manual manipulation of data files that must be transferred from the hypercube to

the workstation running the display.

The remote hosting of algorithms was successful, although it is possible to lock

up the display system if for some reason the program on the remote system terminates

unexpectedly. This happens because AAARF requests an event from its child process, then

issues a reado) call, which blocks until data is ready. If the algorithm has terminated,

there is never going to be any data, so AAARF is locked up and must be killed from a

command line in another window.

Even though the algorithm class was designed around the guidelines provided by

Fife[10], one feature in AAARF does not function when a parallel animation is being run:

the algorithm recorder. Section 4.1.2.2 discussed this problem and proposed a solution;
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unfortunately, there was not enough time to implement this solution. This limitation is

somewhat offset by the capability of the child process to write the data received from the

algorithm directly into disk files. These files can then be read in at a later time to replay the

run without having to rerun the program on the remote host. This also gives the capability

to read and display files produced by the original PRASE instrumentation package. This

'recording' capability is limited and not as versatile as AAARF's algorithm recorder -

the recorder saves the environment along with the data, allowing th. view, algorithm, and

input parameters to be rebet to the appropriate settings when the recording is played back.

6.2 Conclusions

The prototype demonstrated that real-time animation of parallel algorithms is pos-

sible, but the speed of the various components put an upper limit on the amount of data

that can be displayed. These limits are discussed in Section 6.2.1.

The design philosophy emphasizing reusability was key to the success of this research

effort. By using two existing systems as a foundation, the research could focus on devel-

oping the specific areas necessary for real-time parallel algorithm animation: performance

views, communications, and program instrumentation.

The mE;thodology for animating parallel algorithms presented in Chapter V proved

to be succesful - the three overlapping phases of the design are sufficiently general to

be applicable to any algorithm (parallel or sequential), yet are specific enough to assist in

developing the animation. The only difference between animating a parallel algorithm and

animating a sequential one is how to call the instrumentation function - the analysis of

the algorithm and the design of the displays is the same.

The AAARF Programmer's Manual contained in Appendix C has been updated to

cover the requirements for animating a parallel algorithm, as well as the steps that need to

be taken to develop the animation. This documentation makes the task of developing the

algorithm class for AAARF and instrumenting the target program very straightforward.

6.2.1 System Limitations As fast as the computer bpytems are today, there is still a

limit on how much data may be processed. The rest of this section describes the limitations
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of the components used in the prototype an.ination system.

6.2.1.1 Communications The communications system, while adequate for an-

imating small-scale problems, is not fast enough to handle the massive data flow produced

by an animation of a large problem. The critical link in the data flow unfortunately also

is the weak link; the communications between the node and host processors on the hyper-

cube is quite slow. This is the case with a standard iPSC/2 hypercube, which has no other

method of getting data from the nodes to another system. There are hardware upgrades

that allow the node processors to talk directly with remote systems, but such a system

was not avaliable for comparison.

The result of the slow communications with the host is that the outgoing message

queues for the node processors fill up, eventually causing the node to block waiting to

send another message. This affects the relative order in which the nodes process the

problem, which can affect the outcome. There was no obse.ved affect on the SCP other

than an increase in the number of nodes explored in the search tree. This increase can be

attributed to delays in each node processor receiving the global best messages being sent

by the controller.

6.2.1.2 Data Reduction This limit is caused by limited CPU capacity. In the

current implementation of the animati3n system, all the data reduction is done on the

workstation. While a Sun 4 workstation has a relatively fast processor, that processor

does everything - including all the data reduction and display management. Sharing the

processor in this manner slows down the entire system. This is compounded by the large

amount of data that is generated by large problems or detailed instrumentation.

6.2.1.3 Display Speed Aside from the communications bottleneck on the by-

percube, the major slowdown results from the slow update speed of the display on the Sun

4 workstation. The time taken to redraw the active views is too long to display data in

anything close to real time - for some display combinations, the screen update rate is less

than once per second!
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6.3 Recommendations for Future Research

There are two recommendations for further work in the area of parallel algorithm

animation based on this particular investigation:

6.3.1 Animation Views There needs to be more effort invested in developing ways

to display data. So far, the major effort has been to develop the tools; now that the tools

are available, the emphasis should be on methods of displaying data.

The large amounts of data generated by the animation system present a major prob-

lem when displaying data - how to display the data without overwhelming the user. The

use of color in animation needs to be explored further, since color can be used to convey

information instead of creating a more complex display.

Currently, all the views developed for AAARF are two dimensional; the use of three

dimensional graphics could be used to provide additional means to display data. This

may not be feasible until the problems with display speed and CPU loading are solved -

the calculations associated with displaying three dimensional data can severely load the

system, possibly slowing it down too much to be useful.

6.3.2 AAARF Redesign There are two major reasons to redesign the basic AAARF

program. The first is that the system is only available for the Sun workstations. While this

is a common system in many academic and research facilities, there are other systems that

are commonly available that could be utilized to improve the performance of AAARF.

The other major reason for redesigning AAARF is that it requires too many resources,

namely window devices and memory. The SCP algorithm class with its large tree view

requires 24 MB of real memory, mainly for the large canvases allocated for the views. This

also limits the number of algorithm classes that can be active simultaneously to one! The

number of window devices required when four algorithm classes are active exceeds 128.

These resource requirements exceed the available resources on most available workstations

- many Sun workstations are only configured with 8 MB of memory and 64 window

devices. The additional window devices can be created, but it adds additional overhead

in the UNIX kernel. The redesign process needs to rework the methods used to allocate
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resources so that they are only allocated when needed, instead of allocating all resources

at initialization.

These two problem areas, as well as the CPU loading and possibly the display speed

problems could be helped considerably if the redesign included a new implementation under

the X window system[29:354]. X allows, even encourages, portability among different

hardware environments. This permits AAARF to be designed o run acceptably on a

minimally capable system, yet allow it to benefit from higher perfoi mance systems.

The resource allocation methods can be reworked during the redesign, but the effort

can benefit from X's different handling of resources - each item in a display under X

doesn't require a specific entry in the device tables. Each view can be contained in a

separate window, allowing it to be allocated and deallocated on demand.

One major benefit of using X is that is has built-in support for distributing the

processing and display activities over several systems connected by a network. This can be

used to ease the load on the system driving the display. This way, the different components

can be placed on systems that are best suited to the task. The use of X can also help ease

the display speed problem by utilizing multiple displays on different systems; one X client

can connect to multiple X display servers.

6.4 Summar'y

The methodulogy presented in Chapter V proved to be useful in developing anima

tions. The development of a system that can animate parallel algorithms in real time was

successful, but several problems were discovered. The major problem is speed; both pro-

cessing speed and communications speed. Two recommendations are made - put more

effort into developing displays for animations and redesign AAARF for use with the X

window system.
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Appendix A. Parallel Shell Sort

This appendix contains the source for the Shell sort used to evaluate the instrumenta-

tion packages in Chapter II and to test the animation system. The program was developed

as a lab exercise for the EENG 689 Algorithms for Parallel Processing course. The algo-

rithm was derived from one found in Solving Problems on Concurrent Processors[13:34 1],

one of the texts used for the course.

The program consists of two source files, one for the program on the host processor

that distributes the data to the nodes and collects it at the end of the run, and the other

is the program that runs on all the node processors. The node program was instrumented

with the PPA\SE C preprocessor.
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myhost(Shell.p.c)

1-- -- -- -> Begin Code added by the PRASE C Preprocessor *

# include "prase..extern~h

#define exit praseexit
#define -exit prase exit

#define crecv prasecrecv
# define csend prasecsend 10

1-- -- -- -> End Code added by the PRASE C Preprocessor *

*FILE Shell~c
*DATE :1 November 90
*VERSION: 1. 1

*A UTHOR : Capt Ed Williams
*DESCRIPTION: 

2
* This program runs on each of n nodes.

*FUNCTIONS:

* main() - Directs execution of the She.'! sort.
* Ascend() - Comparison routine for qsort
* merge hi() - performs merge with another node and keeps the
* high part of the result
* merge low() - performs merge with another node and keeps the
* low pam' of the result
* msort() - performs a merge sort

*HISTORY: 
3

* Borrows heavily from the bitonic sort which was written
* by K Fife and M Proicou.
* (1 May 90) version 1.0 - initial version for EENG 689 Lab

#include <stdio.h>
#include "aaari.h' / to get JE definitions *

**cube node fulnctions
*1 40

long ginvo, grayo, infacounto, infonodeo, infopido,, infotypeO;
long iprobeo, irecvo, isendo, myhosto, mynodeO, mypido, nodedimo;
long numnodeso;
long mclocko;

#define MANAGER myhost() my-host
#define MY -HOST -PID 1L
#define NODE -PID 472L
#deflne ALLNODES -1
#define PKT -DATUM 51L5
#define PKT -LENGTH 50L
#deflne STATUS 5'01,
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myhost-main (Shell. px)

#define PKT-SENDA 128L
#define PKT-SENDB OL
#define WORK-SIZE 65536L
#define NODE PID 472L

int Data area[WORK-SIZE], Work-area[2* WORK SIZE];
long mypid; 60

long my-nodejid;
int chunk-size, chunkilen;

*FUNCTION: main()
*FUNCTION NUMBER: 0 (Shell.c)
*VERSION NUMBER: 1.0
*D4TE: 1 May 90
*DESCRIPTION:

* Runs th Shell Sort. Accepts. data length and the data 70

from ihe host, sorts its piece of the data, then starts
* the two-stage sort process. The nodes are organized as

a gray- code ring. The first stage is a diminishing
* increment merge. The second stage is a "mop-UP"
* phase which uses a nearest neighbor merge repeatedly
* until the data is completely sorted.

INPUT PARAMETERS:
* piece of data from host

*OUTPUT PARAMETERS:
* piece of sorted array to host so

*CALLED BY:
* Loaded by host program ShellHost

*FUNCTIONS CALLED:
* merge hio, mergejowo, qsort()

*HISTORY:

* (1 May 90) version 1.0 - initial version for EENG 689 Lab

main() main

int Ascendo; 90

char bufl8O];
int i, done, other -status;
long num-nodes, mask, ringpos;
long cnt, frjiode, fr-pid;
long d;
long time;

/*#$*PRASE BEGIN MAIN*/

100

-- ----- > Begin Code added by the PRASE C Preprocessor *

prase-procs[O].numpids = 1;
praeccprocs[O].pids[O]1 = 472;
prase-procs[l].num Pids = 1;
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main(Shell.pxc)

prseprocs1.pids[O] = 472;
prase-procs[2].numpids = 1;
prase-procs[2J.pids[O] = 472;
prase-procs[3].num-pids = 1; 110
prase-procs[3.pids[O] = 472;
prase-procs[4].num-pids = 1;
prase-procs[4j.pids[OJ = 472;
prase-procs[5].num-Pids = 1;
prase-procs[5].pids[O] =472;
prase-.procs[6].num-Pids =1;
prase-procs[6.pids[O] =472;
prase-.procs[7].num-Pids = 1;
prase-procs[7].pids[O] = 472;

120

prase-lowest node = 0;
prase-start-time =0;

praseinitQ;

1- -- -- - -> End Code added by the PRASE C Preprocessor *

130

my node-id = myncdeO; /my node number ~
rny-pid =mypido;
d = nodedimo; 1*Dimension of the cube *
num nodes = I << d;

**Find out how many elements to sort

crecv(PKTLENGTH, &chunk-size, sizeof chunk-size);
if(chunk-size > WORKSIZE) 140

printf('Can't handle array of size %d, max is %s\n',chunk uize,WORKSIZE);

**Messages with chunk-size elements, require chunk-len bytes

chunk-len = chunk-size * sizeof(int);

Gti :.'c 9isto to be sorted from the cube manager

crecv(PKT-DATUM, Data-area, chunk len);
IE(GOT-DATA, 0, 0);
IE-data( HIDE, Data-area, chunkjlen);
time = mclocko;

Ssort the data, so that only merges are required later
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main(Shell.pxc)

*1 160
IE(IND-SORT, 0, 0);
qsort(Data-area, chunk-size, sizeof(int), Ascend);
IE-data(HIDE, Data area, chunk-len);

Sthis is the decreasing increment sorting process

**each loop cuts the distance between nodes in half

for(i = d-1; i >= 0; i--) 170

mask << 1i;

if(ginv(mynode-id) > ginv(my-node-id mask))
mergehi(mynodle-d mask);

else
merge-low(nrr node-id mask);

*this is the mop-up stage ISO

*it is similar to a parallel bubblesort, except instead of

**compare/swap operatiinne, the standard merge operation is
**used.

done =1,
while(done)

ringjpos = ginv(mynodeid);
if(ring-pos ==0) 190

f
done = merge-low (gray (ri ngpos +4 1));

I
else if(ring-pos == num-nodes - 1)

f
merge-hi (gray (ring-pos -1)

done = 0;

else if(ring-pos &1
{ 200

merge-hi(gray(ring-pos -1)

done =merge-low (gray (ring-pos + 1));

else

done = merge-low (gray (rin g-pos + 1));
merge-h i(gray (ringpos -1)

/1 210

*if done is still 0, then no changes were made.
**signal the rest of the no3des
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main-Ascend(Shell.p.c)

,/
IE(SENDSTATUS, 0, 0);
csend(STATUS, &done, sizeof(int), ALLNODES, NODEPID);

/ * wait for all nodes to reply */

IE(WAITSTATUS, 0, 0);
for(i = 0; i < num nodes-1; i++)
{220

crecv(STATUS, &otherstatus, sizeof(int));
done += otherstatus;

}
IE(RUNNING, 0, 0);

** Send my portion of sorted data to host*/
time = mclock() - time; 230

!E(SENDDATA, 0, 0);
csend(PKT DATUM, Data-area, chunklen, MANAGER, MYHOSTPID);

printf("Sort took %d ms on node Vd\n", time, my node id);

* ------ > Begin Code added by the PRASE C Preprocessor */

praseend); 240

* ------ > End Code added by the PRASE C Preprocessor */

.myhost
/ ***********************************************************************

• FUNCTION: Ascend(a, b)
* FUNCTION NUMBER: 1 (Shell.c)
* VERSION NUMBER: 1.0 250

• DATE: 1 May 90
* DESCRIPTION:
* comparison function for use by the quicksort library routine.

* INPUT PARAMETERS:
* a, b - pointers to data items
* OUTPUT PARAMETERS:

* Comparison result
• CALLED BY:
• qsort()
* FUNCTIONS CALLED: 2ef

• none
* HISTORY:
• (1 Mfqy 90) version 1.0 - initial version for EENG 689 Lab

int Ascend(a,b) Ascend
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Ascend-myhost(Shell.p.c)

int *a,*b;
{

if(*a > *b)

return 1;
if(*a < *b) 270

return -1;
return 0; /* equal */

...myhost
/ ***********************************************************************

* FUNCTION: merge-hi(dest)
* FUNCTION NUMBER: 2 (Shell.c)
* VERSION NUMBER: 1.0
* DATE: 1 May 90 280

* DESCRIPTION:
* Merge with other node and keep the high part of the
* data. This is done by sending this node's data to

* the other node, who does the merge, and wait for the
* high data to come back.
* INPUT PARAMETERS:
* dest - node to merge with
* OUTPUT PARAMETERS:
* none
* CALLED BY: 290

* main()
* FUNCTIONS CALLED:
* none
* HISTORY:
* (1 May 90) version 1.0 - initial version for EENG 689 Lab

merge-hi(dest) mergehi
long dest;
{

int i, frnode, fr.pid, cnt; 300

char buf 61];

/,

* Send data to destination node
,/

IE(MERGEHI, dest, 0);
csend(PKTSENDA+my-node_id, Data-area, chunk-len, dest, NODE_PID);

/,
** Wait for data from other node 310
*/

crecv(PKTSENDB+(dest), Data-area, chunklen, &cnt, &fr-node, &frpid);
IE_data(HIDE, Data-area, chunklen);

I
... myhost

/ ***********************************************************************...m h t
* FUNCTION: merge-low(dest)

11:41 Oct 25 1990 Page 6 of Shell.p.c



rriyhost-merge-low (Shell.p. .c)

*FUNCTION NUMBER: 3 (Shellc)
*VERSION NUMBER: 1.0
*DA~IE: 1 May 90 320

*DESCRIPTION:

* Merge with the other node and keep the low part of the
* data. This is done by waiting for the other node to
* send its data, then performing the merge, then sending

* the high end of the data back to the other node.
INPUT PARAMETERS:

* dest - node to merge with
*OUTPUT PARAMETERS:

* none
*CALLED BY: 330

*main()

*FUNCTIONS CALLED:
*msori()

*HISTORY:

(1 May 90) version 1.0 -initial version for EENG 689 Lab

merge-low(dest) merge-low
long dest;
I

int i, fr-node, fr-pid, cnt; 340

char bufq8 ];
int done-flag;

/ * Receive from node (dest) *
IE(MERGE-LOW, dest, 0);
crecv( PKT-SENDA+(dest), Work-area+chunk-size, chunk len);

**At this point:
--------------------------------------------------------------- 350

**WorkArea =Iempty I Stuff Just Read I

**Merge stuff just read with my data area. Stuff is
*already sorted so only a merge is needed. Merge places

*its result into Work-area.

done-flag = msort(Work-area+chunk size, Data-area, chunk-size,
chunk_size, Work area);

360

**move low data back into local data area

for(i = 0; i < chunk-size; i++i)
Data area[i] = Work-area[i];

*send hi data back to other node

coend(PKT -SENDB+my-nodejid, Work area+chunk size, chunk len,
dest, NODEPID); 370
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merge-low-msort (Shell.p.c)

IE-data(HIDE, Data-area, chunkilen);

return done-flag;
I

...myhost

* FUNCTION: msort(iptr, jptr, sizeofi, sizeofj, tArray)
* FUNCTION NUMBER: 4 (Shell.c)
* VERSION NUMBER: 1.0

* DATE: 1 May 90 380
* DESCRIPTION:
* performs a merge sort
* INPUT PARAMETERS:
* iptr, jptr - pointers to data blocks
* sizeofi, sizeofj - sizes of each data block
* tArray - pointer to destination area
* OUTPUT PARAMETERS:
* merged array
* CALLED BY:
* mergelow0  390

* FUNCTIONS CALLED:
*none

* HISTORY:
* (1 May 90) version 1.0 - initial version for EENG 689 Lab

msort(iptr, jptr, sizeofi, sizeofj, tArray) rsort
int *iptr, *jptr, *tArray, sizeof i, sizeofj;
{

int i = 0, j = 0, k;
int flag; 400

int *kptr, *tiptr, *tjptr;

kptr = tArray;
tiptr = iptr;
tjptr = jptr;

while(i < sizeofi && j < sizeofj)
{

if(*iptr < *jptr)

{410
*kptr++ = *iptr++;
i++;

else
{

*kptr++ = *jptr++;
j++;

flag =(i == 0); 420

if(i -= sizeof i)

{
for(; j < sizeofj; j++)
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msort (S Iiell.p c)
*kptr++ = *jptr++;

else

for(; i < sizeof-i; i++)
*kptr++ = *iptr++;

} 430
return flag;
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ABS(Shellostxc)

" FILE: ShellHost.c.m hs
" DATE: 1 November 90

*VERSION: 1.0
*AUTHOR: Capt Ed Williams
*DESCRIPTION:

*Hypercube host program to execute and time a parallel
*Shell Sort Algorithm

*FUNCTIONS:

m rain() - inputs the number of elements from the command 10
* line and calls the sort function.

* do-ShelC) - Shell sort routine
* CheckSori() - confirms sortednes:; of array
* printArray() - disi lays array

*HISTORY:

$ (1 May 90) version 1.0 - initial version for BENG 689 Lab
* (I November 90) version 1.1 - added AAARF random array
* generator for use with AAARF.

#include <sys/types.h> 20

#include <sys/errno.h>
#include <stdio.h>

extern int errno;

#define PKT -LENGTH 40L
#define PKT -DATUM 30L
#define COLS 4
#define HOST-PID IL
#dt-fine PID 472L 30

#define ALL -NODES -1
#define MAX ARRAY SIZE 65536
#define TRUE 1
#define FALSE 0
#define MAX-RAND 32767

#define MAX(a, b) ((a > b)? a b) MAX
#define MIN(a, b) ((a < b)? a b) M IN
#define ABS(a) ((a > 0)? a a * 1) ABS

40

Scube manager functions

long cubeinfoo, ginvo, grayo, irifocounto, infonodeo, infopido, infotypeo;
long iprobeO), irecvo, isendo, myhosto, m~nodeO, mypido, nodedimo;
long numnodeso;

int value M AX-ARRAYSI Z E3,
ternp[MAX-ARRAY-SIZE];

so

Srandom number generator parameters
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int sortedness 0;
int seed =-0
mnt pattern =
int cycles 1;
int invert 0;

60

**variables used to 7et the cube

char CubeName[8]. Nodes[51;
int Status, NextName, Waiting =FALSE;
unsigned long WaitTime;

" FUNCTION: main()
" FUNCTION NUMBER: 0 (ShellHost c) 70

" VERSION NUMBER: 1.0
*DATE: 1 May 90
*DESCRIPTION:

* Inputs the 7?umber of element-t to sort from the command
* line, starts the sort, and then checks the result.

*INPUT PARAMETERS: none
*OUTPUT PARAMETERS: none
*GLOBALS USED: value - data array
*GLOBALS AFFECTED: none
FUNCTIONS CALLED: do-Shell() - Shell sort driver so

* CheckSort() - ch-cks that array is actual'y sorted
*HISTOA:

* (1 May 90) version 1.0 - initial version for LENG 669 Lab

main(argc, argv) main
int argc;
char *argvU;

unsigned items;
unsigned long num-nodes; 90

if (argc < 3 11 argc > 8)

printi("Run and time a parallel Shell sort on a hypercube \n");
printf(" USAGE: ShellHost number-of-elements number..oi..nodes\n');
printf(1 number-.o -elements - between 32 and 66536\n");
printfQ'1 number-.ot-noc~es - nodes to use\n");

exit('1);

else if(r-.rgc == 3) 100

items 7-atoi(argv[ll);
num-nodes =atoi(argv[2]);

else if(argc 8)
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itemf = atoi(argv[l]); 

an

num-nodes =atoi(argv[2]);

sortedness =atoi(argv[3]);

seed = atoi(argv[4]); 110
pattern =atoi(argv [5]);
cycics = atoi(argv[6]);
invert = atoi(argv[7]);

sprintf(Nodes, 'Id", num-nodes);
do f

sprintf(CubeName, "Shell%d", NextNanie);
Status = _getcube(Cube Name, Nodes, NULL, 0);
if(Status -1

{ 120
if(-rrno ==EQNOGUBE)

if(!Waiting)

f
printf("7.d node(s) not available, retrying . .. \n", num nodes);
Waiting =TRUE;

I
WaitTime =mclocko;
while( mclocko-WaitTinie < 10000.0

130

else if( errno ==EQCUBEEXISTS

++NextName;

else

perror("Error during -getcubeo, Exiting");
exit(1);

} 140
/*Siaius = get cube (CubeNam e, sNodes, NULL, O);*/

}while( Status -= -1
printf("Allocated cube is called %s.\n", CubeName);
setpid'HOST-PID);

systen("aaarf clct Vt);

if(items > (MAX ARRAY-SIZE))
f 150

printf("Sorry, can only sort %u items.\n", MAX-ARRAYSIZE);

else if(items < 32)

printf("Sorry, need at least 32 items to sort. \n");
I
else
{
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doShell(value, items);
1 160

exit(0);

...ABS
/ ***********************************************************************

* FUNCTION: doShell(values, mum items)
* FUNCTION NUMBER: I (ShellHost.c)
* VERSION NUMBER: 1.0
* DATE: 1 May 90
* DESCRIPTION:

* Does a Shell merge sort on an Intel hypercube. The node program 170
* Shell is loaded, and the data is partitioned among the processors
* for sorting. This procedure generates a vector, using storage
* space allocated by the main routine and passed as a parameter.
* INPUT PARAMETERS:
* A pointer to a vector of integers (values) and the
* number of items to put in the vector.
* OUTPUT PARAMETERS:
* The vector is filled with numbers, and sorted.
* CALLED BY: main()

* HISTORY: Iso
* (1 May 90) version 1.0 - initial version for EENG 689 Lab
** *** * ** * *** ** *** ***** ***** *** * ***** ** *** * **** ** ******* **** *** ** *******

#define PKTLENGTHMSG 50 / Packet type for length msg
#define PKTDATUM MSG 51 /* Packet type to send/receive sorted data */
#define MAX-ARRAY MAXARRAYSIZE /* Mazimum Size of array to sort */

#define LFSTART 1
#define LFUNPROT 4

190

doShell(values, num-items) doShell
int valueso;
int num items;

I
long numnodes, /* number of active nodes in the cube */

cnt, /* number of bytes received *1
fr-node, /* node id originating message *1
frpid; /* process id originating message '7

int i; /* counter */
extern int rand(); /* Random number generator *1 200

extern char *malloco;
int chunk-size, chunk-len;
long node_idx;
int j, all_nodes -

long ring-pos;
void randarrayo;

int *sorted-data; /* pointer to return area of sorted data */

210

/* Start of code added for PRASE routines '/
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FILE *praseptr;

/* End of code added for PRASE routines ~

/*Load("~Shell", ALLNODES, PID);*/

_xload(" Shell", &all-nodes, 1, PID, LFSTART ILFUNPROT, 0);
num -nodes =1«nodedimo;
if( (num items/num nodes) *nhlm-nodes != num -itemns)20

f
puts("Error, number of items must be a multiple of the number of nodes");

I

randarray (values, seed, sortedness, num -itemns, pattern, cycles, invert);

*uncomment the appropriate statement for the data organization

for (i =0; i < num items; i++#) 230

values[i] =rand(';
values fi] =i
values fi] = num-items - i - 1;

**Tell the node program the size of the chunk it must sort
*chunk sqizL Number f elements to sort 240
*chunk-len ==size of the chunk in bytes for send/recv commands

chunk-size =num -itemns /num-nodes;
chunk-len chunk-size *sizeof(int);

for(node_idx = 0; node idx < num ~nodes; node idx++

csend(PKT LENGTH MSG, &chunk size, sizeof(chunk size),
nodejid~, PID);

250

**Send each node its part of values[] to sort.

for( node-idx = 0; node-idx < num-nodes; node-idx++

csend(PKT DATUM MSG, values+ (chunk-size* nodelidx), chunkilen,
gray(nodejidx), PID);

1* 260
SWait for nodes to send data back to me!

for(i=O;i < num-nodes; i±+)
f
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crecv(PKTDATUMMSG, temp, chunk-len);

ring_pos = ginv(infonode();
for(j 0; j < chunk-size; j++)
f

values[ring-pos*chunksize + j] = tempb]; 270
}

/* Start of code added for PRASE routines */

printf("Waiting for data collection to finish. \n");
while((praseptr = fopen("prase.end","r"))== NULL);

system("rm prase-end");
fclose(prase ptr);

280

/* End of code added for PRASE routines */

/,
** wait for all nodes to end
,/
waitall(ALL-NODES, PID);

return;

...ABS
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/ *********************************************************************** 291
* FUNCTION NAME: void randarray(long*, long, long, long, long, long, long)
* FUNCTION NUMBER: 2 (ShellHost.c)

* VERSION NUMBER: 1.2
* DATE: 15 Sep 1989
* DESCRIPTION :
* Function creates an unsorted array of integers between
* 1 and elements with no repeats. The array's sortedness is
* declared as a percentage (from 0 to 100) and relates to the
* average distance an element is from it sorted postion. For ezample, 300

* for a 100-element orray with 50% sortedness, most elements will be
* less than 100".bC-' position out of place. The seed to the random
* number generator is also specified. The array is further
* specified by pattern, cycles, and invert. These six parameters
* provide a means for reproducing a specific array.
* INPUT PARAMETERS:
* array - pointer to an array of integers. It is assumed
* that memory has already been allocated.
* seed, sortedness, elements,
* pattern, numberOfCycles, invert - siz parameters from which 310

* an interesting input array can be created
* OUTPUT PARAMETERS:
* array - filled with (un)sorted integers.
* FUNCTIONS CALLED:
* srand( - random number seed function
* rand() - random number generator
* HISTORY:
* (5 May 89) Created for AAARF prototype.
* (20 July 89) Modified eztensively by Ed Wiliams to accomodate
* cycles, inverse order, and patterns. 320

* (10 August 89) Modified slightly to conform to AAARF
* requirements.
* (15 Sept 89) - Version 1.0
* (1 November 90) Copied to Shell Sort Program
* *** ***** *** *** ** *** ****** ** * * ** ** ****** ***** ** *** ***** **** ***** ***** * *

void randarray(array, seed, sortedness, elements,
pattern, numberOfCycles, invert)

long arrayf;
long seed, sortedness, elements, pattern, numberOfCycles, invert;

{ 330
register int i, j, inc, cycle, displacement, temp;

float pc.displacement, maxdisplacement, rjraction;
int rando, srando;

inc = invert ? -1 1;

pc-displacement = (float)(100 - sortedness)/100.0;
maxdisplacement = (float)elements * pc.displacement;
(void)srand((unsigned)seed);

340

j = (inc > 0) ? 1 : elements;
switch(pattern)
4
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case 0: / * linear input data generator (original) '
for (i = 0; i < elements; i++, j +i= inc)

array[i] = j;
break;

case 1: /*sawtooth input data generator '
cycle = 0;
inc * = numberof~ycles; 350

for ( i = 0; i < elements; i-l-)

array[i] = j
j += inc;
if((j > elements) II 1 < 1))

cycle++;
j = (inc > 0) ? 1 + cycle elements - cycle;

} 360
break;

case 2: in =( ubrfyls;/ * bitonic input data generator ~

for(i = 0; i < elements; i++)

array i] = j
j += inc;
if((j > elements) 11 < 1))

inc = -inc; 370

j = j + 1 + inc;
ifoj > elements) .j += inc;

break;

SAPPLY SORTEDNESS FACTOR **'

for ( i= 0; i < elements; i+± 380

do

r-fraction = (float)rand() (float) MAX-RAN D;
rjfraction = 2.0 * rjraction - 1.0;
displacement = (int)( ( max-displacement + 1.0) *rjfraction);

while (ABS(displacement) >= MAX( (elements-i), i ))

j = i + displacement; 390

if ( ( j >= elements ) 1( j < 0) )
j = i -displacement;

temp =arrayliJ;

Fnrray[i] = arraybj];
array~] = temp;
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..MIN
400
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Appendix B. PRASE Data Formats

This appendix describes the data formats used to transfer data between the instru-

mented program on the remote system and the display system, and the utility programs

developed to display and manipulate the data outside the AAARF environment.

Trace Data Format

The trace data records use the same format as the PRASE [19] system. This com-

patibility was maintained so that (to a limited extent) trace data from original PRASE

instrumentation can still be displayed. The data format for the original PRASE imple-

mentation is contained in Appendix C of the PR.ASE User's Manual [20], but it is covered

here as well because the process of porting the system to the iPSC/2 changed the lengths

of the individual items. The relevance of the data is also discussed in the context of the

parallel animation system. Figure B.1 shows a pictorial representation of a trace record.

Header
Common Data for

All Records

Message User

Information Specified

Data

Figure B.1. PRASE trace data record

The record is constructed using a C structure containing a union, so that the

first part of the record can remain fixed for all records, while the last part can vary to

accommodate different records. The C type declaration for the trace record is shown in

Figure B.2. Each member of the structure is explained in detail below. All time fields are
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in microseconds since the start of the trace run. The reference time is taken after the node

processes are synchronized, so time zero is close to the same physical time on all nodes.

* This is the structure that defines the
" format of the data coming from the
" monitoring routines. See the documentation
" for a description of the contents.
" NOTE: The int/long/unsigned data in the
" record comes from the hypercube in
" byte-reversed order (thanks to Intel).
eeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeees 8~ s@/

typedef struct
{

char record-type [6);
long recordingnode;
long recordingpid;
unsigned long begin-time;
unsigned long end-time;
union
{

struct
{

long channel nu_;
long message-type;
long message-size;
lon$ messagecount;
long addressed-node;
long addressedpid;
long position-marker;

} message;
char char.marker[14J;
double double-marker;
float float-marker;
int int_marker;
long long-marker;
short shortmarker;

I data;
} PRASERECORD;

Figure B.2. PRASE Structure Definition

record-type This is a six-character field that identifies the type of the record. It is used

to determine which member of the union to use to access the rest of the record. The

valid entries in this member are:

s init - this record marks the end of the initialization of the instrumentation

routines. This record is used by the other parts of the system to determine the

number of processes active for tracing.
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" end - this record marks the end of the tracing on the node processors.

" flick - corresponds to a flick() system call.

" led - corresponds to a led() system call.

" iprobe - corresponds to a iprobeo) system call.

" recv - corresponds to a irecvO) system call.

" isend - corresponds to a isendo) system call.

" crecv - corresponds to a crecv() system call.

" crecvb - this is a new record type that indicates a node process has entered a

crecv() call.

" csend - corresponds to a csendo) system call.

" mchar - allows the user to insert a 14 character message into the trace data

stream.

* mable - allows the user to insert a C double value into the trace data stream.

* mf lot - allows the user to insert a C float value into the trace data stream.

* mint - allows the user to insert a C int value into the trace data stream. This

is a 32-bit quantity stored in low-byte-first order.

" mlong - allows the user to insert a C long value into the trace data stream.

This is a 32-bit quantity stored in low-byte-first order.

" mshrt - allows the user to insert a C short value into the trace data stream.

This is a 16-bit quantity stored in low-byte-first order.

The open, close, grled, rdled, stat, and slog record types were removed from

the iPSC/2 version because they have no equivalents in the new system library. The

dump record type is not used in the animation system to reduce overhead.

recording-node This is an integer (32-bit) that contains the node number of the processor

that created this trace record.

recording-pid This is an integer (32-bit) that contains the process ID of the process that

created this trace record.
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begin-time This is the relative time at the start of the operation that is being traced.

end-time This is the relative time at the end of the operation that is being traced, but

before the trace record is written.

data This is the union that maps the rest of the record differently depending on the type.

If the type is one of the user-provided record types, the appropriate -marker member

is used. If the type is one of the message-passing calls, the message member is

used. Otherwise, this member is unnecessary and should be ignored. The message

structure is described below:

channel-num This is an integer (32-bit) that is unused and is always 99.

message-type This is an integer (32-bit) that contains the user-specified type of the

message.

message-size This is an integer (32-bit) that contains the length of the message in

bytes.

message-count This is an integer (32-bit) that is unused and is always -1.

addressed-node This is an integer (32-bit) that contains the processor number of

the originator of a received message or the destination of a sent message.

addressed-pid This is an integer (32-bit) that contains the process ID of the origi-

nator of a received message or the destination of a sent message.

position-marker This is an integer (32-bit) that is unused and is always -1.

The channel.num, message-count, and position.marker members are maintained

for compatibility with PRASE - they are not used in this system.

Algorithm Data Format

The format of the data in the algorithm data stream can be discussed at two different

levels. At a low level, it is simply a variable-sized data block that contains a header that

describes the source and length of the block (see Figure B.3). The fixed-length header is

processed first, then the data follows.
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Node #

Length

Algorithm Data

Figure B.3. Algorithm data record

The header consists of two 32-bit integers in low-byte-first order. The first integer

is the number of the node processor that originated the block. The second integer is the

length of the block in bytes. The two integers and the data block are put into the data

stream in three separate write 0 calls, and therefore must be read from the stream in the

same fashion. When reading from a file, this restriction does not apply.

From a higher point of view, the format of the data block can be anything that is

needed. There is only one restriction on the data block - it must fit the communications

medium. The only link that has a size restriction is the link from the nodes to the host;

the size limit for a message is 256k bytes. Within this limit, the data block can contain any

type of data that the instrumentation requires. Each class of algorithms will usually have

different algorithm data formats; but a single algorithm class can also use several different

formats.
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Appendix C. AAARF Prgrammer's Manual

This appendix contains the AAARF Programmer's Manual. The changes made to

AAARF are major enough to cause iignificant changes in this manual. The entire manual

is contained in this appendix, even though only portions were modified. The original

manual was written by Keith Fife [10].

Since the manual is intended to be a separate document, its page numbers do not

follow the numbering system for this thesis.
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Revisions

December 1989 This document was first released by Capt Keith Fife as a part of
his Masters Thesis[4j.

December 1990 Material was added to document the enhancements made by Capt
Ed Williams to support research for his Master's Thesis[181. The major changes
are:

" The class-common library was modified to be a separately compiled unit
that is linked into the class-specific program

" The parallel views library is documented in Section 6

" Section 8 contains a description of the process of animating an algorithm.
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AAARF Programmer's Guide

Captain Keith C. Fife

Captain Edward M. Williams

1 Introduction

The AFIT Algorithm Animation Research Facility (AAARF) is an interactive algo-
rithm animation system. It provides a means for visualizing the execution of algo-
rithms and their associated data structures. AAARF allows the user to select the
type of algorithm, the input to the algorithm, and the views of the algorithm. Several
control mechanisms are provided, including stop, go, reset, variable speed, single-step,
and break-points. Other features of AAARF include:

" Multiple Algorithm Windows

* Simultaneous Control of Multiple Animations

" Animation Environment Save and Restore Capability

" Multiple View Windows within each Algorithm Window

" Animation Record and Playback

" Algorithm State Display and Interrogation Capability

" Master Control Panel for monitoring and modifying the input, algorithm, view,
and control parameters to an algorithm animation.

AAARF runs on Sun3TM and Sun4TM workstations using SunOSTM (Sun Mi-
crosystem's version of the AT&T UNIXTM operating system) and the SunViewTM

window-based environment. AAARF is designed for use with color monitors. It can

be used with monochrome monitors, but the displays are not as informative. AAARF
is written in the C programming language.
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AAARF has two types of users: end-users who view and interact with the algo-
rithm animations, and client-programmers who develop and maintain the AAARF
program and its algorithm animations. This manual is intended for client-
programmers. It describes the overall AAARF implementation and provides a
guide for creating new algorithm animations for AAARF. End-users should refer to
the AAARF User's Manual [3].

Client-programmers should have experience with AAARF as end-users and be fa-
miliar with the terms and concepts associated with algorithm animation. Experience
with C, UNIX, and SunView is assumed. The following references are recommended:

" Getting Started with SunOS: Beginner's Guide [12]

" Setting Up Your SunOS Environment: Beginner's Guide [15]

" The SunViewi Beginner's Guide [16]

" The C Programming Language [8]

" C Programmer's Guide [11]

" Network Programming [13]

* SunViewl Programmer's Guide [17]

" Pixrect Reference Guide [14]

* Algorithm Animation [2]

" The Graphical Representation of Algorithmic Processes [4]

The next section presents an overview of AAARF and an introduction to terms
and concepts associated with algorithm animation; this is the starting point for new
AAARF programmers. After gaining some familiarity with AAARF, this section
may be used only as a reference. Section 3 discusses the AAARF main process.
This section is intended primarily as a maintenance guide for the AAARF main
process; however, it is also recommended reading for programmers who are creating
new algorithm animations.

Section 4 introduces the animation level of AAARF. Aspects of AAARF algorithm
animations common to all algorithm classes are presented here. Section 5 discusses the
class-specific aspects of creating algorithm animations. Sections 4 and 5 are essential
references for the development of new algorithm animations. A library for displaying
parallel performance data is described in Section 6 followed by a description of the
instrumentation routines for gathering data from parallel processes in Section 7.

The process of animating an algorithm is presented in Section 8. Section 9 presents
some ideas and suggestions for AAARF extensions and programming projects.
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2 Overview

This section presents an introduction to several topics of interest to AAARF pro-
grammers and anin'ation developers. It outlines some basic concepts of algorithm
animation and presents an overview of the AAARF system architecture. The Sun-
View Notifier and program documentation are also discussed. It is important to un-
derstand the concepts presented in this section before beginning to develop AAARF
applications. See the references listed in Section 1 for more detailed presentations.

2.1 Algorithm Animation Concepts and Definitions

These concepts, extracted from [4] and [2], are critical for maintaining AAARF and
its algorithm animations.

Animation Components An algorithm animation consists of three components:
an input generator, an algorithm, and one or more animation views (see Fig-
ure 1).

Input Generator An input generator is a procedure which provides input to an
algorithm; the input may be generated randomly, read from a file, or entered
by the user.

Animation View Animation views are graphical representations of an algorithm's
execution. The view refers to both the graphical representation and the software
that generates the view.

Interesting Event (IE) Animation views are driven by interesting events that oc-
cur during the execution of an algorithm. Interesting events are input events,
output events, and state changes that an algorithm undergoes during its ex-
ecution. The type, quantity, and sequence of IEs for a particular algorithm
distinguish it from other algorithms.

Algorithm Class Algorithms which operate on identical data structures and per-
form identical functions are from the same algorithm class. The Array Sort class
includes quick sort, heap sort, bubble sort, and other in-place sort algorithms.
Algorithms from the same class generally share input generators and views, al-
though certain views and input generators may be ineffective with particular
algorithms. For instance, the tree view is very meaningful for heap sort, but
nearly useless for any other sort.

Algorithm Animation System Model The elements of an algorithm animation
system are depicted in Figure 2 and include the environment manager, compo-

nent library, and library manager.



View 1

A
[ G~e np u ~t~ l Algorithm

View n

Figure 1: Algorithm Animation Components

Environment Manager The environment manager is the process with which end-
users interact to select, control, and view algorithm animations. The environ-
ment manager supports multiple algorithm animations and provides a means
for controlling their execution.

Component Library The component library is a collection of algorithm compo-
nents arranged by algorithm class. The environment manager calls routines
from the component library.

Library Manager The library manager is the process with which client-
programmers interact to maintain the component library. The library manager
provides a means to add and delete classes and to create, modify, or delete
algorithms, input generators, and views within algorithm classes. Although the
environment manager uses the component library directly, changes made by
the library manager should not affect the environment manager. The modified
components should be immediately ready for use by the environment manager.

Parameterized Control User-selectable parameters are associated with each com-
ponent. Algorithm parameters affect some aspect of how the algorithm executes.
For example, with a quick sort algorithm, what partitioning strategy should be
used; as the partitions get smaller, at what point should another type of sort
be used; what other type of sort should be used. Input parameters affect the
input generator - what seed is used to generate a set of random numbers; how
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C lass # 1 < .................................... C lass # n

Inputs Component Inputs

Algorithms Library Algorithms
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Algorithm Animation
System

Environment Library
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End-User Client-Programmer
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Figure 2: Algorithm Animation System
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"sorted" is a set of unsorted numbers; what is the general form of a series of
numbers. View parameters affect how the animation is displayed in the view
window. For example, what shape is associated with the nodes in a graph; how
should an arbitrary graph be positioned.

2.2 AAARF Architecture

AAARF uses three levels of execution linked via UNIX sockets [13:191-217] to imple-
ment the algorithm animation system model. Sockets are the interprocess communi-
cation mechanism provided by the UNIX operating system. Figure 3 shows the levels
of execution.

AAARF
Main Process

Class-Specific Class-Specific
Window-Based Window-Based

Process Process
1 n

Class-Specific Class-Specific
Background Background

Process Process

Figure 3: AAARF Levels of Execution
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The AAARF Main Process

AAARF's top-level process acts as the environment manager. It provides the main
screen, a mechanism for saving and restoring animation environments, a mechanism
for controlling multiple algorithm animations simultaneously, and a means for starting
new algorithm animations.

* In general, the AAARF main process requires the least attention from client-
programmers.

The Class-Specific Window-Based Process

The second level of execution is the class-specific window-based process. The window-
based level of execution provides the animation views, an animation recorder, a status
display for interrogating the state of the algorithm, and a master control panel for
monitoring and modifying the parameters that affect the animation. The view com-
ponent of Figure 2 is implemented at this level.

The Class-Specific Background Process

The third level of execution is transparent to the user; this level is the implementation
of the input generator and algorithm components of the algorithm animation system
model (Figure 2). It provides the window-based level with the IEs that drive the
animation. The IEs can come from an implementation of the algorithm within the
background process or from a program on another system communicating with the
background process.

12



2.3 Windows

AAARF uses three types of -, indows to provide the user with multiple simultaneous
algorithm animations and multiple views of each animation. Figure 4 shows the types
of windows used by AAARF and their relationship to one another.

AAARF
Main Screen

Algorithm Algorithm

Window ......... Window
1 n

View ~ViewViwie

Figure 4: AAARF Windows

AAARF Main Screen

This is a full-screen window within which all interaction with AAARF is contained.
The main screen currently supports up to four algorithm windows.

9 The actual number of algorithm winlows possible is dependent on the system
configuration, cpu load, and memory availability.
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Algorithm Window

All animations take place within algorithm windows. Every algorithm window is
associated with a particular algorithm class. Algorithm windows may be created
and destroyed at any time, but no more than four can be active at any time. Each
algorithm window supports an animation recorder, a master control panel, i. status
display, and up to four view windows. Algorithm windows can be resized and moved
anywhere on the AAARF screen; they may overlap one another.

Sticks Sticks

Sticks Sticks

AAARF Centralized Animation Contral]~ .
C GO j STP RESET

Figure 5: Multiple Algorithm Windows
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View Window

View windows, or views, are windows associated with a particular view of an algo-
rithm. Every algorithm window has at least one and as many as four active view
windows. View windows can be resized and moved, but they cannot grow outside of
the algorithm window and they may not overlap.

... . .. ... ... .... .. ... ..........

Sticks C pares

Tree (Heap) -Moves (Max = 5)

Figure 6: Multiple Views within an Algorithm Window
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2.4 AAARF Directory Structure

The AAARF directory structure consists of the aaarf parent directory and four sub-
directories: bin, main, common, and include. Any number of class subdirectories
may also be included, but there is no requirement for them to exist within the aaarf
directory.

aaarf

Iclasscls

directory < .......... directory
1 1

Figure 7: AAARF Directory Structure

The bin subdirectory contains the aaarf executable image, the class-common li-
brary, and the default AAARF class file (.aaarfClasses). The AAARF classes file
lists the available algorithm classes and the name of the executable file for each class.
Section 3.2 addresses the AAARF class file in more detail. Typically, algorithm class
executables are also stored in bin, but it is not a requirement.

The main subdirectory contains source code for the main AAARF process. Sec-
tion 3 discusses the files in this subdirectory.
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The common subdirectory contains source code commcn tc all algorithm Llabses.
Client-programmers use this source code as a starting point for building new algorithm
animations. Section 4 discusses the files in this subdirectory.

The include subdirectory contains the header files and icons used by AAARF.
If class subdirectories exist, they contain the source code for their respective al-

gorithm class executables. Section 5 discusses the functions required for creating an
algorithm animation.

2.5 SunView

SunView is an object-oriented system that provides a set of visual building blocks for
assembling user interfaces. SunView objects include windows, pointers, icons, menus,
alerts, panel items, and scrollbars. AAARF makes extensive use of SunView objects;
only the background process does not use SunView.

SunView is a notification-based system. The Notifier acts as the controlling entity
within an application, reading UNIX input from the kernel, and formatting it into
higher-level events, which it distributes to the appropriate SunView objects. The
Notifier notifies, or calls, various procedures which the application has previously
registered with the Notifier. These procedures are called notify procedures. The
SunView Notifier model is shown in Figure 8.

2.6 Program Documentation

The existing source code is fully documented in accordance with AFIT System Devel-
opment Documentation Guidelines and Standards [5]. Most functions are less than
one page long and most modules contain less than ten functions. The existing AAARF
source code should be used along with this manual in developing new animations.
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mouse Dkeyboard process
input .......... input input

input on UNIX file descriptors

Notifier

formats input into SunView events

Sunview Sunview
object ................................... object

1n

notify notify notify notify
procedure ] procedure procedure -c.-'"' procedure
for item 1 for item m for item 1 for item m

Figure 8: SunView Notifier Model [17:23]
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" FILE: The module name (UNIX file name)

* PROJECT : AFIT Algorithm Animation Research Facility (AAARF)

* DATE : Date of current version number

* VERSION : Current version number

* AUTHOR: Person or persons who are responsible for the module.

* DESCRIPTION : Description of the module's function.

" FUNCTIONS : List of functions implemented in the module.

" REFERENCES : References which could help explain what's happening
in the module.

" HISTORY : List of major changes to the module

Table 1: Module Header Information

" FUNCTION NAME: Name of the function.

" FUNCTION NUMBER: Function's number within this module.

" VERSION NUMBER: Current version number.

" DATE : Date of current version number.

" DESCRIPTION : Detailed description of what the function does.

" INPUT PARAMETERS : List and description of input parameters.

" OUTPUT PARAMETERS : List and description of output parameters.

" FUNCTIONS CALLED : List of functions called.

* HISTORY: List of major changes to the function.

Table 2: Function Header Information
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2.7 Client-Programmer Tasks

Client-programmers are most frequently concerned with the window-based level and
its corresponding background process. Undoubtedly, their most difficult task is iden-
tifying IEs and developing meaningful views to represent them; this task is described
in Section 8. Other typical tasks include:

" Adding new input generators and modifying existing input generators for an
existing algorithm class.

" Adding new algorithms and modifying existing algorithms for an existing algo-
rithm class.

" Adding new views and modifying existing views for an existing algorithm class.

" Developing new algorithm classes.

" Improving and extending capabilities of main AAARF process.
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3 The AAARF Main Process

The AAARF main process is not associated with any particular algorithm animation,
but provides an environment in which any algorithm animation can be controlled. The
AAARF main process is stand-alone, but without animation processes to run, it is
not very interesting. The source code for the AAARF main process is contained in
the main subdirectory and consists of the following files:

" aaarf.c Creates the main AAARF screen and displays the welcome screen.

" aaarfControl.c Creates and maintains the Central Animation Controller.

" aaarfEnvironment.c Creates and maintains the AAARF Environment Control
Panel.

* aaarfMenu.c Creates and maintains the AAARF main menu.

" aaarfWindows.c Opens and closes algorithm windows. Maintains accounting
information regarding open algorithm windows.

Each module has a corresponding header file in which the module's functions,
globals, and data structures are declared. The following sections discuss each of the
five modules.
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3.1 aaarf.c

This is the top level module for the AAARF main process. It creates the AAARF
main screen and calls functions from the other modules to create their respective
contributions to AAARF. Table 3 lists the functions included in aaarf.c

The aaarfEventDispatch() function interposes user input to AAARF such that:

" The cursor's screen position is saved when the right mouse button is depressed.
Windows and panels appear at the most recently recorded cursor position.

" If AAARF is iconic, the left mouse button deiconifies AAARF. Otherwise the
left mouse button is ignored, thus disabling its usual function of popping and
pushing windows.

" If AAARF is iconic, the middle mouse button is used to move the icon. Other-
wise, the middle button is ignored, forcing the AAARF main screen to be either
full-size or iconic. This eliminates any problems with hidden or lost algorithm
windows among other application windows.

* Ignore ACTION keys. Forces use of mouse and eliminates another way to loose
windows.

A polling timer is associated with aaarfShowWelcomeMes sage() in main (. When
window-main.-oop() is entered, the Notifier calls aaarfShowWelcomeMessage(. It
displays the AAARF help screen and disables its polling timer. Occasionally, on a
Sun3, the help screen is displayed before the AAARF main screen - the solution has
been to set the polling timer for a longer interval.

int main(int, char**)
Notifyvalue aaarfEventDispatch(Frame, Event, Notifyarg, Notify event type)
Notifyvalue aaarfShowWelcomeMessage(Notifyclient, int)

void aaarfI-elp()

Table 3: Function Prototypes for aaarf.c
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3.2 aaarfMenu.c

This module creates the main menu. In doing so, it registers a notify-procedure for
each menu item with the Notifier. When a menu item is selected, the Notifier evokes
the appropriate function. Table 4 lists the functions implemented in aaarfMenu.c.

At startup, main() calls setupMainMenuo) which looks for the AAARFCLASSES
environment variable. If it's set to a valid AAARF class file, that file is used to gener-
ate the algorithm class menu. Otherwise, the default AAARF class file, .aaarfClasses,
is used.

The AAARF class file contains a list of algorithm class names and their corre-
sponding executable image file names. setupMainMenuo) reads the class names into
the classStrings array used to define menu items. It reads the executable filenames
into the classPrograms array used by aaarfWindows.c to execute the animations.

void setupMainMenu()
caddr-t menuHelp(Menu, Menu-item)

Table 4: Function Prototypes for aaarfMenu.c
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3.3 aaarfControlxc

This module creates and manages the central control panel. Table 5 lists the functions
implemented in aaarfControl. 

setupCentralControl 0) registers centralControlDi spat ch 0) with the Notifier.
openControlPanel() is registered by setupMain.Menuo) in aaarfMenu..

centralControlDispatch() handles most panel events internally, but calls
closeControlPaneiO and controlHelpo) to close the panel and display a help
screen. It uses aaarfAnnounceoC to send control commands to the active algorithm
animations.

void setup Central Control()
void centralControlDispatch(Panel-item, struct inputevent *)

caddr-t open ControlPanel(Menu, Menu-itemn)
void closeControlPanel()
void controlHelp()

Table 5: Function Prototypes for aaarf Control.
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3.4 aaarfEnvironment.c

This module creates and manages the AAARF environment save and restore feature.
The functions implemented in this module are listed in Table 6.

In setupEnvironmentPanel (), the initial AAARF environment path is set to the
value of the AAARFENV environment variable, if it exists and is a valid directory.
Otherwise the initial path is set to the user's current working directory.

setupEnvironmentPanel () registers environmentHelp ), buildMenu(),
environmentDispatch (), closeEnvironmentPanel(), and getSelectiono) with
the Notifier. createMainMenuo) registers openEnvironmentPanel(). The file and
environment selectors are associated with a menu. buildMenuo) is associated with
each of the menus and getSelection is associated with each of the selectors.

Since the paths and files are constantly changing, the path and file menus cannot
reliably be built until immediately before they are displayed. When the path or
menu selector icons are activated, the buildMenu() function is called to create the
appropriate menu. First, all the old menu items are destroyed. Then the new menu
items are created from the current pathNames and fileNames lists.

pathNames and fileNames are built by calls to getSubdirectorieso) and
getDirectory(. The name lists are built when the environment panel is opened
and after every file operation.

The environmentDispatch() function handles all the file transactions and error
checking.

void setupEnvironment Panel()
void environmentDispatch(Panel-item, struct inputevent*)

caddrt openEnvironmentPanel(Menu, Menuitem)
void closeEnvironmentPanel(Panelitem, struct inputevent*)

Menu buildMenu(Menu, Menu-generate)
int getSelection(Panel-item, Event*)

void environmentHelp(Panel item, struct inputevent*)

Table 6: Function prototypes for aaarfEnvironment.c
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3.5 aaarfWindows.c

This module opens, closes, and monitors algorithm windows. Communication with
the algorithm processes is via UNIX sockets. The ALGWINDOW and AAARFSTATE data
structures are used to manage the algorithm windows. Table 7 lists the functions
implemented in this module and Table 8 presents the data structure definitions.

createMainMenu() registers openAlgorithmWindow(), aaarfIconifyC), and
aaarfKill() with the Notifier. aaarfChildMonitoro) is registered as the termi-
nation notify-procedure for each algorithm window process.

Both openAlgorithmWindov() and restoreEnvironment() fork algorithm win-
dow processes. They get a socketpair, fork a process, send the process some setup
data, and update aaarfState.

aaarfChildMonitor() is notified each time a child process terminates. It updates
the aaarfState. This function is not called when a child process is killed (UNIX
kill() function), provided the function that kills the child waits (UNIX wait()
function) for the child process to terminate.

AAARF, all AAARF panels, all open algorithm windows, and all their open panels
are iconified and deiconified by aaarfIconify).

aaarf Announce () provides a channel for sending commands to all algorithm pro-
cesses. Typical commands are ICONIFY, GO, STOP, and RESET. It always waits

for an acknowledgment.
saveEnvironment() and rest oreEnvironment ) are the only other functions

that communicate directly with the algorithm window process. They also write and
read environment parameters to and from disk files.

killWindow() is used to kill algorithm window processes. It uses the UNIX
kill() function. After killing a process it uses the UNIX wait4() function to wait
for the process to terminate.
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void setupAlgorithmWindows()
caddr-t openAlgorithmWindow( Menu, Menu-item)

int aaarfAnnounce(int)
Notify-.value aaarfChildMonitor(Notify-.cli ant, int, union wait*~, struct rusage*)

Menu-.item aaarflconify(Menu-item, Menu-generate)
void saveEnvironrnent(int)
void restoreEnvironment(int)

caddr-t aaarfKill(Menu, Menu-itemn)
void kill Window(int) _______________

Table 7: Function Prototypes for aaarf indows.

typedef struct

int open;
int pid;
int socket;
int class,;

ALG-WINDOW;

typedef struct

ALGWINDOW algWindow [MAX-ALG-WINDOWS];
int numberOpenWindows;
int CCopen;
int OCx;
int OCy;

AAARF-STATE;

Table 8: aaarffindows.c Data Structures
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4 Class-Common Library

Each algorithm class that AAARF call,-- is actually a stand alone process. Without the
communication links to AAARF, the process could be executed without the AAARF
main process. Every lgorithm class proce~ss has the following common features:

" Main function gets setup parameters from AAARF,

" Creates base window for animation,

" Creates the master control panel,

" Creates the algorithm window menu,

* Creates the four animation canvases (views),

* Creates the animation recorder,

" Creates the status display,

" Runs the backg-oind process,

" Paints the active canTases,

" Enters the SunView main loop.

The AAAR class-common library presents client-programmers a framework for
developing new algorithm animations by providing all the common functions. The
client-programmer simply develops the class-specific input, algorithm, view, and con-
trol functions. The object code for the functions provided by the class-common library
is combined into the library 1ibAAARF. a located in the bin directory.

Not only does the AAARF class-common library make animation development
easier for client-programmers, it also forces a cob._-ftiPnt animation interface for the
end-user. Every algorithm class supports the same set of tools, and those tools work
identically for every algorithm class. After animating one algorithm, end-users can
animate any algorithm, regardless of the algorithm class or its client-programmer.
The class-common library also ensures a consistent commun'cations interface with
the AAARF main process.

The source code for the AAARF class-common library is in the common subdi-
rectory and consists of the following files:

* aaarfCommon.c Creates the base window for the algorithm class. Creates t.e
algorithm window menu and the animation canvases. It also handles some other
miscellaneous initialization tasks.
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" aaarfMaster.c Creates the master control panel and sets up the control section
of the panel.

" aaarfRecorder.c Creates the animation recorder. It also provides the primary
interface to AAARF.

" aaarfViews.c Sets up the view section of the master control panel and creates
the status display. Handles the view resizing and repainting and manages the
animation.

" aaarfUtilities.c This is a set of functions used by the AAARF main process as
well as the animation processes.

Each module has a corresponding header file in which the module's functions,
globals, and data structures are declared. Each of the five modules are discussed in
the following sections.

In addition to the module header files, the following header file defines constants
and data structures that are shared between two or more modules:

e commonDefines.h Defines constants and data structures shared by all modules
within the class-common library. This header file appears as Table 9.

This last set of header files contains definitions that are necessary for both the
class-common library and class-specific functions. These header files are contained in
the include subdirectory:

" aaarfDefines.h Defines system-wide constants used by all levels of AAARF. This
header file is included in all AAARF source code modules. Table 11 lists the
aaarfDefines.h header file.

" aaarflPC.h This file defines interprocess communication (IPC) constants and
data structures shared by the AAARF main process and the class-common
library modules. This header file is listed in Table 12.

* classCommon.h This file defines constants and data structures defined by the
class-common library and shared with the class-specific modules. Table 13 lists
the classCommon.h header file.

29



#define PVIEWS 0
#define PLAYOUT 1
#define POPEN 2

#define PWIDTH 0
#define P.HEIGHT 1
#define PXPOS 2
#define PYPOS 3
#define PCOLOR 4
#define PMOPEN 5
#define PMXPOS 6
#define PM-YPOS 7
#define PROPEN 8
#define PRX.POS 9
#define PRYPOS 10
#define PSOPEN 11
#define PSXPOS 12
#define PSY..POS 13

#define PBREAKPOINTS 0
#define PSINGLESTEP 1
#define PSPEED 2

#define AUTO-RESIZE 10
#define USER-RESIZE 20
#define PROP.RESIZE 30
#define LAYOUT-STACKED 0
#define LAYOUT.SIDEBS 1
#define LAYOUT-CORNERS 2
#define LAYOUT-FILL 3

#define ALGSTOP 0
#define ALGGO 1

Table 9: commonDefines.h (1 of 2)
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#define ALG-RESET 2
#define ALG-TOGGLE 3
#define ALGYFINISHED 4
#define ALG-QUERY 5
#define ALG.WIN-OPEN 6
#define ALG..WIN-CLOSE 7

#define REC-OFF 0
#define RECA{ECORD 1
#define RECYPLAY 2
#define REC-RESTART 3
#define REC...REVERSE 4
#define RECYFORWARD 5
#define REC-QUERY 6
#define REC-ATJIEAD 7
#define REC-ALNEXT 8
#define REC-ATTAIL 9
#define RECYFINISHED 10
#define REC-STOP 11
#define REC-.GO 12

#define TKOFF 0
#define T-ON 1
#define T-STEP 2
#define T-QUERY 3
#define TIMER-.NULL (struct itimerval *)O)

typedef struct

PARAMS input;
PARAMS algorithm;
PARAMS view;
PARAMS control;
PARAMS window;

RESTORE-PAK;

Table 10: commdP4Defines.h (2 of 2)



#define MAX-CLASSES 50
#define MAX-ALG.WINDOWS 4
#define MAX-VIEWS 4
#define MAX-AAARF-.NAME..SIZE 15
#define MAX-FILES 100
#define MAX-FILENAME.SIZE 256
#define MAX-PATHS 100
#define MAX-PATHNAME-SIZE 1024
#define DISPLAYEDY-ATILLENGTH 25
#define MAX-COMMANDILINE-SIZE 1124
#define AAARF-AINIMUM-WIDTH 500
#define AAARF2AINIMUMLEIEIGHT 500
#define MAX-STRING-LENGTH 1024
#define ASCILINTJ.LENGTH 20
#define MIN.WINDOW-WIDTH 150
#define MIN -WIND OW-HEIGHT 150

#define OFF 0
#define ON 1
#define FALSE 0
#define TRUE 1
#define STOP 0
#define GO 1
#define CHILD 0
#define PARENT 1
#define DOWN 0
#define UP 1

#define DEFAULL-SLIDER-WIDTH 256
#define MAX-.RAND 2147483647

#define MAX(a, b) ((a > b)?a: b)
#define MIN(a, b) ((a < b)?a: b)
#define ABS(a) ((a > 0)?a: a * -1)

Table 11: aaarfflefines-h
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#define NEW-WINDOW -1
#define ICONIFY 100
#define DEICONIFY 101
#define SIMULTANEOUS-GO 200
#define SIMULTANEOUSSTOP 201
#define SIMULTANEOUS-RESET 202
#define ENV-SAVE 300
#define SEND-DATA 301
#define ACKNOWLEDGE 400

typedef struct
{

int width;
int height;
int xPos;
int yPos;
int color;

}
SETUP-PACKET;

Table 12: aaarflPC.h
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#define ANIM-FINISHED 5
#define ANIM..BREAK 3
#define ANIM-CONTINUE1
#define ANIMWAITING 0x80

#define PARAM..SIZE 50
typedef int PARAMS[PARAM.SIZE];

typedef struct

PARAMS input;
PARAMS algorithm;

INITYPAK;

typedef struct

Canvas canvas;
Pixwin *pjxwjfl;

int open;
int view;
int width;
mnt height;
mnt xPos;
int yPos;

VIEW-WINDOW;

typedef struct

VIEW-WINDOW window[MAXNVIEWS];
int nuinberOpenViews;

VIEW-STATE;

Table 13: classCommon.h
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4.1 aaarfCommon.c

This is the top level module fo± the class-specific window-based process. It creates the
base algorithm window, the algorithm window menu, and the animation canvases on
which the views are displayed. Table 14 shows the functions included in this module.

main ) creates the base algorithm window and registers
framelnterposeDispatch() to monitor window events. It calls several functions
to create the standard set of algorithm window tools. aaarfCommandDfispatch() is
registered to monitor the UNIX socket to the AAARF main process.

framelnterposeDispatch() catches events in the base algorithm frame before
they are dispatched to the appropriate function. Most events are accepted. If a resize
event is detected, the old and new sizes are recorded and the window's current views
are repainted with calls to resizeAllViews () and repaintAllViews ().

aaarfCommandDispatch() monitors a socket to AAARF. When commands are
received, the appropriate functions are called.

The algorithm window is iconified and deiconified in setAlgWindowState() .The
state of the animation and the state and position of the algorithm panels are preserved.

createAnimationCanvas() creates the algorithm canvases (view windows) and
registers canvasInterposeDispatch() and canvasEventDi spat ch () to handle
events within a canvas. canvasInterposeDispatch() catches canvas resize events
and redisplays all views. canvasEventDispatch0 catches middle and left mouse
button clicks within the canvases to update elementOf Interest and control the an-
imation.

createklgMenuo) creates the algorithm window menu and registers
menuDispatch() with the Notifier. algWindowHelp() shows a help screen for the
algorithm window menu and algKill ) destroys the algorithm window.

setAlgWindowTitle ) is called frequently by several different functions to set the
algorithm window title bar to reflect the current algorithm name and recorder status.

openFonts() opens an array of fonts for writing text to canvases, fonts[0]
through fonts[5] are empty. The remaining array elements point to fonts whose
point size is equal to their array index.
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int main(int, char*)
Notify-value framelnterposeDispatch(frame, Event, Notify-.arg, Notify..-event Aype)
Notify-.value aaarfCommandDispat ch(Notify.-client, int)

void setAlgWindowState(int)
void createAnimationCanvas(int)

Notify-value canvaslnterposeDispatch(frame, Event, Notify..arg, Notify.-event ype)
Notify-value canvasEventDispatch( Window, Event*, caddrA)

void createAlgMenu()
caddr-.t menuDispatch(Menu, Menuitem)

void setAlgWindowTitle()
void openFonts()
void algWindowHelp()
void n.-gY____ _____________

Table 14: Function Prototypes for aaarfCommonxc

36



4.2 aaarfMaster.c

This module creates the master control panel. The master control panel is
divided into four sections: control, input, algorithm, and view. The class-
common library provides the control and view sections with some help from the
class-specific setBreakPointsItems() and setViewNames() functions. The input
and algorithm sections are provided by the class-specific addInputSection() and
addAlgorithmSection() functions. The functions included in aaarf]Master.c are
listed in Table 15.

createMasterControl() creates the master control panel. It calls functions to
setup the four sections of the panel. It registers the masterEventDispatch() with
the Notifier to monitor the Help and Close buittons.

addControlSection() sets up the control section of the master control panel. It
registers controlEventDi spatch () with the Notifier.

The getControlParameters ) and setControlParameters() functions are used
to save and set control parameters for the animation recorder and environment control
functions. They both use the PARAMS structure for parameter storage. PARAMS is
simply an array of integers. The size of the array is set by the client-programmer in
the class-specific header file.

void createMasterControl()
void masterEventDispatch(Panelitem, struct inputevent*)

int addControlSection(Panel, int)
void controlEventDispatch(Panelitem, struct inputevent*)
void get ControlParameters(PARAMS)
void set ControlParameters(PARAMS)

Table 15: Function Prototypes for aaarfMaster.c
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4.3 aaarfRecorder.c

This module implements the animation recorder and manages parameter exchanges
with AAARF. Table 16 lists the functions implemented in this module and Table 17
presents the data structures defined for this module. The SETUP-PACKET structure
defined in aaarflPC.h (see Table 12) is also used.

createRecordero) creates the recorder panel and registers recordDispatchC),
buildMenuo, and getSelection() with the Notifier. The recorder's path and
recording selectors work exactly like the path and environment selectors of the envi-
ronment control panel (Section 3.4).

Recordings are stored in a linked list structure (see Figure 17). The list is managed
with three pointers: head, tail, and next. playIE() provides IEs by traversing the
linked list. The list is doubly linked, but the current version of AAARF does not
support reverse playback. Recordings are created with saveIE() which accepts an
IE, malloco)s a new node, and adds the IE. restartRecording() sets the next
pointer to the head of the list. freeRecorderMemory() frees the memory previously
allocated for a recording. readRecording() and writeRecording() are used for
reading and writing recordings to disk.

setRecorderStateo) controls the recorder functions and maintains state infor-
mation regarding the animation recorder.

readParameters() and restoreParameters() are used to restore the animation
state. getParameters() and sendParametersToAAARF() are used to save the ani-
mation state.
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void createRecorder()
void recordDispatch(Panel-item, struct inputevent*)

Menu buildMenu(Menu, Menu-generate)
int get Selection(Panel-item, Event*)
int setRecorderState(int)

void readParaineters (SETUPY-ACKET, int, int)
void restoreParameters()
void getPararneters()
void sendParametersToAAARF(int)
void readRecording(int)
void writeRecording(int)
void restart Recording()
void freeRecorderMernory()

IE-PACKET *playIEQ
void saveIE(IEYPACKET*)
void recorderHelp()

Table 16: Function Prototypes for aaarfRecorder.c

typedef struct IEnode IE-NODE;

struct IEnode

IE-NODE *lastIE;
IEYPACKET IEpacket;
IE-NODE *nextIE;

Table 17: aaarfRecorderxc Data Structures
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4.4 aaarfViews.c

This module sets up the view section of the master control panel, creates the status
display panel, and manages the animation views. Table 18 lists the functions included
in this module. The VIEW-STATE data structure is used to manage the view windows.
This structure is defined in class Common.h (Table 13).

addViewSectiono) creates the view section of the master control panel and
registers viewDispatcho) with the Notifier. The getViewParameters() and
setViewParameters ) functions are used by the recorder and the environment con-
trol to get and set view parameters. restoreViews() is used to restore a particular
view window configuration after a restore operation.

createStatusDisplayo) creates the status display and
registers statusDispatcho) with the Notifier. It calls buildStatusDisplay() to
build the class-specific portion of the status display.

main() associates a polling timer with animateTheAlgorithmC), which is the
heart of the animation. There are two ways this timer can be used: it can signal
when the next IE is to be fetched, or it can be used to simulate real time. The
normal processing that occurs when the timer expires is to get an IE, process the IE,
and update the displays. The class-specific function processIEO) processes the IE
and returns a value that indicates the state of the algorithm:

ANIM-FINISHED the algorithm has finished

ANIMBREAK the algorithm has reached a breakpoint

ANIMCONTINUE the algorithm is proceeding

In addition to these values, processIEO) can shift into simulated-time
mode by overlaying the status value with ANIMWAITING - this prevents
animateTheAlgorithmo) from getting another IE until ANIMWAITING is removed
from the status value, while processIE() is called and the displays are updated.

The polling timer is controlled by setAlgTimer(); it is set at the end of
animateTheAlgorithmo) if the algorithm state has changed. The display state is
controlled and managed by setDisplayStateo). It is checked at the start of ev-
ery pass through animateTheAlgorithmo); if the display state is not set to ALG.GO,
nothing happens in that pass.

resizeAllViews() sizes all open views according to an argument from the calling
function and the current view parameters.
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Lit add ViewSection(Panel, int)
int viewDispat ch (Panel-item, unsigned int, Event*)

void get ViewPararneters(PARAMS)
void set ViewParameters (PARA MS)
void restore Views()
void resizeAllViews(int)

iiLA setDisplayState(int)
int setAlgTimer(int)

void createStatusDisplay()
void st atusDi spat ch(Panel-item, struct inputevent*)

Notify-value animateTheAlgorithm(Notify-client, int)

Table 18: Function Prototype-, for aaarfViews.c
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4.5 aaarfUtilities.c

This module consists of functions that are common to both the AAARF main process
and the algorithm animation processes. The functions are listed in Tabble 19.

getScreenResolution sets the screen height, width, and depth.
panelFrazneEventDi spat ch () ;s a notify procedure which suppresses the default

SunView menu from popping up c-n panels. It is associated with al panels used in
AAARF.

characterFiltero) ib used to filter user input from the keyboard; it only passes
numbers and alphabetic characters.

getDirectoryo) and getSubdirectorieso generate a list of files and paths
respectively.

use.:Warning() displays an alert message with the argument provided.

void get ScreenResolution(int*, int*, int*)
Notify-.value panel FramneEventDispatch(Frarne, Et, Notify..arg, Notify..event-type)

Panel-setting characterFilter( Panel-item, Event*)
int getDirectory(char*, char*, char*)
int get Sub directories (char*, char*)

void userWarning(Framne, char*)

Table 19: Function Prototypes for aaarfUtilities.c
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5 Class-Specific Functions

The most difficult part of developing an algorithm animation is determining how
to meaningfully represent an algorithm's state. There's no procedures or rules for
making such a determination; it's usually best to start with the familiar static rep-
resentations found in text books. After creating a simple view, it's easier to devise
more complex and possibly more interesting views. Determining the nature of the
graphical representation is a matter of creativity; this section is more concerned with
the mechanics of presenting the view.

The AAARF class-common library provides client-programmers a framework for
developing new algorithm animations. This section describes the class-specific re-
quirements of the framework and presents recommendations for using the framework
to develop new algorithm animations. The ArraySort algorithm class is used as an
example throughout this section and a minimum implementation of an algorithm
class is provided to use as a foundation. The source code for the ArraySort class is
included in the ArraySort subdirectory of the AAARF distribution, and the template
source is provided in the Skeleton subdirectory.

Section 5.1 describes how to set up a working directory to begin development of
a new algorithm animation. Section 5.2 recommends a method for testing algorithm
animations under development. Section 5.3 outlines the general requirements for a
new algorithm animation. The remainder of the section describes the requirements
in more detail.

The program development methods presented in this section are just sugges-
tions. Experienced programmers may prefer variations of these methods or even
a completely different approach to program development. However, adherence
to the suggested methods insures some degree of uniformity among algorithm
class implementations, making it easier for any programmer, regardless of their
experience level, to modify or complete any another programmers project.
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5.1 Creating a Working Directory

Begin by creating a working directory. Copy the contents of the Skeleton directory
to use as a template for ,he development. Either edit the Skeleton files or create new
files using the Skeleton files as a guide. In either case, existing algorithm classes are
probably the best guide for developing new algorithm classes. Check with the system
administrator to obtain the location of the AAARF source directories; Figure 9 shows
typical commands for setting up a working directory.

DALI<l> mkdir BinPack

DALI<2> cd BinPack
DALI<3> cp /usr/local/src/aaarf/Skeleton/*

Figure 9: Creating a Working Directory for the Bin Packing Class

5.2 Testing a New Algorithm Class

Test new animations by creating a local AAARF class file that includes the name and
path of the algorithm class under development. Copy the default AAARF class file
to a local file, add the new algorithm class to the local file's list of classes, and set the
AAARFCLASSES environment variable to the local AAARF class file. Now when
AAARF is evoked, it uses the local AAARF class file. This allows programmers
to work on animations without interfering with other AAARF users. When the
animation is ready for public distribution, add its name and path to the default
AAARF classes file.
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5.3 General Requirements

There are three categories of requirements for developing an algorithm class:

" The class-common framework requires 20 class-specific functions and 5 global
variable declarations. The declarations and functions can be distributed among
any number of arbitrarily named modules.

" There must be a paintXXXO) and an updateXXXO) function for every view that
is implemented.

" There must be a background process that maintains a communications link to
the window-based process for reporting IEs generated by the algorithms.

There are two different types of background processes, depending on where
the algorithm is executing. If the algorithm is actually implemented within
the background process, the process usually consists of a mainC) function to
establish communications with the window-based process and to call the input
generator and the appropriate algorithm, an IE Dispatcher to send interesting
events to the window-based level, and the algorithm functions. Figure 10 shows
the general structure of this type of background process.

If the algorithm is on another system, the background process serves as an
intermediary to collect information from the remote system and present it to
the window-based process. The background process still contains a maino)
function that establishes communications with the window-based process, but
instead of directly invoking the algorithm, it establishes communications with
the remote system, collects the events from the algorithm, and passes them
along. The structure shown in Figure 10 would then be implemented on the
remote host.
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Figure 10: Background Process Structure
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5.4 Class-Specific Data

The AAARF class-common functions need five class-specific variable declarations:

" className A character array containing the name of the algorithm class.

* classIcon A variable containing the icon to be used for the class. iconedit, an
icon editor available on most Sun workstations, can be used to create an icon,
or any icon in the include subdirectory can be used. The icon file is used to
initialize the variable using SunView macros.

* TIMER-SCALE An integer multiplier for the number of milliseconds between calls
to animateTheAlgorithmo. It may take a few iterations to get this number
just right; 3000 is a good starting point. The number must be greater than
zero.

" TIMER-OFFSET An integer initialized to the minimum number of milliseconds
between calls to animateTheAlgorithmo). This number must also be greater
than zero; one is a good starting point.

" IE-LENGTH An unsigned integer initialized to the length of one IE data block.

These declarations are contained in the file Init. c in the Skeleton subdirectory.
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5.5 Input Functions

Three input functions are required by the class-Common library; they are listed in
Table 20. addInputSection ) uses SunView panel items to provide a mechanism for
setting parameters to the input generator. The master control panel handle and a
row number within the panel are passed to the function. Panel items are positioned
beginning at the row number. After all panel items are placed, the row number
at which the next panel section can begin is returned. Notify procedures for the
input section are not required, but may be used if deemed necessary by the client-
programmer.

getInputParameters() and setInputParameters() provide a means for saving
and setting parameters to support the recorder and the environment controller.

These functions are contained in the file Input. c in the Skeleton subdirectory.

int addInputSection(Panel, int)
void getInputParameters(PARAMS)
void setInputParameters(PARAMS)

Table 20: Required Input Functions
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5.6 Algorithm Functions

Four algorithm functions are required for the class-common library; they are listed
in Table 21. One function is for adding algorithm panel items to the master control
panel, and two functions are used to save and restore the algorithm parameters.
The fourth function, getAlgoritmName is used to post the algorithm name on the
algorithm frame title bar. It returns a pointer to the currently selected algorithm
name. A notify procedure for the algorithm panel is not required, but can be used if
deemed necessary by the client-programmer.

These functions are contained in the file Alg. c in the Skeleton subdirectory.

int addAlgorithmSection(Panel, int)
char *getAlgorithmName()
void getAlgorithmParameters(PARAMS)
void setAlgorithmParameters(PARAMS)

Table 21: Required Algorithm Functions
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5.7 View Functions

The class-common library only requires three view functions, but for every view sup-
ported by an algorithm class, there must also be a function to paint and update
the view within an arbitrarily sized view window. Table 22 lists the required view
functions. When one view requires painting or updating, they all do; thus the two
functions paintAllViews() and updateAllViews (). Since the update operation de-
pends on the current IE, updateAllViewso) requires an IE as an input argument.

processIE() accepts the current break point setting and the current IE and
returns the animation state: stop, continue, or finished. It also returns a value
indicating the way in which the timer is used - see Section 4.4. Within the routine,
the animation data structure is modified in accordance with the current IE.

These functions are contained in the file View. c in the Skeleton subdirectory.

int processIE(int, IEPACKET*)
void paintAllViews()
void updateAllViews(IEPACKET*)

Table 22: Required View Functions
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5.8 Status Functions

Four status functions are required; they are listed in Table 23. The status functions
share several global variables with the view functions, so they are typically grouped
together in the same module. ArraySortView.c is an examples of a module that
combines the view and status functions.

buildStatusDisplay() creates the class-specific entries in the status display. The
status display handle and a row number are input parameters. statusHelp() pro-
vides a help screen for the status display.

updateElementOfInterest ) is closely related to the view functions in that it
must determine which element or aspect of an animation a user has selected.

updateStatus ) is also related to the view functions - processIE() updates the
appropriate variables for the status display. The updates are applied to the status
panel when this function is called.

These functions are contained in the file View. c in the Skeleton subdirectory.

void buildStatusDisplay(Panel, int)
void updateElementOfInterest(int, int, Window)
void updateStatus()
void statusHelp(Frame)

Table 23: Required Status Functions
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5.9 Control Functions

There are five control functions required by the class-common library. They are listed
in Table 24. The setVievItemo) and setBreakPointItem() functions are used to
set the class-specific portions of the view section and control section of the master
control panel. masterHelp() provides the class-specific help screen for the master
control panel.

runAlgorithmInBackground() is an important function that manages the algo-
rithm state structure and the class-specific background process. It is complemented
by the function termAlgProcessingO, which terminates the background process in
preparation for terminating the run.

getIE() is the communications link to the background process. It sends an
IErequest and receives the next IE.

These functions are contained in the file Control. c in the Skeleton subdirectory.

void runAlgorithmlnBackground()
void termAlgProcessing()

IEPACKET *getIE()
void set BreakPointltem(Panel-item)
void setViewltem(Panelitem)
void masterHelp()

Table 24: Required Control Functions
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6 Parallel Views Library

The parallel views library is a collection of functions that are common to most, if not
all, animations of parallel algorithms. The library provides two main services:

" A communications link with the remote system hosting the algorithm

" A collection of views that display parallel performance data

The library is implemented as a set of functions that are called by the class-specific
functions described in Section 5. There is also a background process that accompanies
the library. An algorithm class that constitutes a minimum use of the library is in
the Performance subdirectory. It is simply the files from the Skeleton directory with
the calls to the parallel views library inserted in the appropriate places.

This section describes the library in enough detail so that a client-programmer
can use it in an animation - a thorough description of its design and implementa-
tion is presented in Chapter IV of Graphical Representation of Parallel Algorithmic
Processes[18].

The source for the parallel views library is located in the PViews subdirectory in
the AAARF distribution and contains the following files:

" PControl.c Contains the functions that control the background process.

" PViews.c Contains the functions that process the incoming performance data
and maintain the local data structures used by the performance views. Also
contains the functions that control the appearance of the performance views.
This file has an associated header file called PViews.h.

" PVXXXX.c There are ten of these files, each one containing the functions that
draw and update a performance view.

" Utils.c This is a collection of miscellaneous functions that are needed to process
data coming from the remote system.

" PRASEBG.c This is the background process. It serves as the link between the
algorithm on the remote host and the views.

There is also a header file to be included in the program using the library in the
include subdirectory:

* PRASE.h This header file contains the definitions needed by the client-
programmer when using the library.
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The externally useable functions are contained in the files PControl.c, PViews.h,
and Utils.c; the rest of the files are described as well because they could serve as
patterns or templates for custom views developed for an algorithm. Each of the files
is discussed in the following sections.
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6.1 PControl.c

The functions in this module are used mostly by the functions in the files Control.c
and View.c in the Skeleton subdirectory. The prototyp,-s for these functions are listed
in Table 25. They are provided to centralize the interface with the background process
in one place, and to put some of the performance items on the Master control panel.

termAlgProcessingo) is a replacement for the function normally found i- the
Control.c class-specific file. It is provided here so that the impleme: "ati'-I of the
h-.ckground brocess is insulated from the client-programmer.

resetPChild() is called at the beginning of the class-specific function
runAlgorithmInBackground() in Control.c. It checks to see if the background pro-
cess is active - if it is, the function sends the background process a reset command;
otherwise, this function creates the background process. Initialization data is then
sent to the background process.

getIEC) is also a replacement for the class-specific function in Control.c cf the
same name. This function requests a trace block from the background process, and
then waits until the trace block is received before returning.

getData() retrieves an algorithm data block for the specified node from the back-
ground process; a request is sent and the function returns when the data block is
received.

setPViewltem() is called by the class-specific function setViewltem() in the
file Control.c. It adds the performance views to the list of available views for the
animation. This function should be called before any custom views are added because
the constants defined in PRASE.h that are required to use the windows are very order-
dependent.

setPBreakPointltem() is called by setBreakPointItem() in file Control.c in the
Skeleton subdirectory. lts function is to add any performance related breakpoints to
be added to the Master Control Panel; currently, there are no breakpoints available
- the function is provided for completeness.

void termAlgProcessing(void)
void resetPChild(char *, char *, char *)

TRACE-DATA *getIE(void)
char *getData(int)

int setPViewItem(Panehitem *)
void setPBreakPointItem(Panel-item *)

Table 25: Function Prototypes for PControl.c
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6.2 PViews.c

The functions in this file (listed in Table 26) have four tasks:

" Process the incoming data into data structures required by the displays

" Call the appropriate functions to draw and update the active displays

" Update the status panel

" Maintain the parameters for the performance views

processPIE() processes the trace data for the performance displays. It is called
by processlE) in the file View.c. This function keeps track of the current simulated
time and the times of the incoming records; if the time of the new record is in advance
of the current sii.iulated time, it returns the ANIMWAITING value, which is passed
back to .nimateTheAlgorithm() to prevent another trace block from being fetched
until the current time has caught up with the time of the current record. This
arrangement makes it necessar) to do some processin, in processlEO) so that the
ANIMWAITING value is incorporated into its return value.

int processPIE(int, TRACE-DATA *, int *)
void resetPViews(void)

void paintAllPViews(void)
void updateAllPViews(int)

void buildPStatusDisplay(Panel, int)
void updatePStatus(void)

int addP ControlSection(Panel, int)
void PPanelDispatch(Panel.item, Event *)

int addPControlPanel(Panel, int)
void PControlDispatcher(Panel-item, int, struct inputevent *)

Panelsetting PTimeDispatcher(Panel-item, Event *)
void PcontrolEventDispatch(Panel-item, Event *)
void getPC ntrolParameters(PARAMS)
void setPControlPtrameters(PARAMS)
void controlHelp(void)

Table 26: Function Prototypes for PViews.c
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resetPViews() is called by resetPChild() to clear the local data structures
before starting a new run of the animation.

paintAllPViews () and updateAllPViews() control the displays, calling the ap-

propriate paintXXXXview() or updateXXXXview() function to perform the necessary

operations.
buildPStatusDisplay() adds the performance trace information to the sta-

tus panel. It is called by buildStatusPanel() in the file View.c, usually af-

ter the algorithm-specific information is added. updatePStatus() is called by

updateStatus () to update tile information in the status panel.
The performance views have a number of parameters that control what informa-

tion is displayed and how it is displayed. To give the end-user access to these parame-

ters, an item is added to the Master Control Panel (MCP) by addPControlSection(.

This function is called by addInputSection() in the file Input.c. The parameters
themselves are much too numerous to add to the MCP, so another panel is created

to hold them - this panel is activated by a button added to the MCP. This control

pa nel is shown in Figure 11. PPanelDispatch() is called by the Notifier when the
button is pushed to activate the control panel.

addPControlPanel() is the function that creates the control panel. The func-

tions PControlDispatcher 0, PTimeDispatcher, and PcontrolEventDispatch()

are called by the Notifier to handle user actions on the control panel. controlHelp()
displays help for the control panel.

getPControlParaimeters () and setPControlParameters(0 are called by

getInputParameters() and setInputParameters respectively to add the parallel
view parameters to the collective state of the animation that is saved and restored

by the common library.
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Figure 11: Performance Views Control Panel
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6.3 PVXXXX.h (Draw and Update View)

There are ten of these files - one for each performance view:

" ANIM - Processor animation view

" COMM - System communications load view

" CSTA - Communications Statistics for a single processor

" FEYN - Feynman view of processor communications

" GANT - Traditional Gantt chart

" KIVT - Kiviat chart showing processor utilization

" MLTH - View of lengths of messages being passed

" MSGQ - Size of input queue for each processor

" QSIZ - Size of the input queue for one processor over time

" UTIL - Processor utilization view

The prototypes for the functions that may be found in these files are contained in
Table 27.

Each view has a function to draw the display on the canvas (paintXXXXviewo)
and a function to update the display in response to new data or an advance in time
(updateXXXXview()). If a view has local data structures that need to be updated,
a processXXXXdata() function can be provided to accomodate the requirement. If
the internal data structures of the view need to be cleared between animation runs, a

resetXXXXview() can be included, and a call to this function is placed in the function
resetPViews ).

void paintXXXXview(int)
void updateXXXXview(TRACEDATA *, Pixwin *)
void processXXXXdata()
void resetXXXXview(void)

Table 27: Function Prototypes for a typical PVXXXX.c
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6.4 Utils.c

This file contains miscellaneous functions to assist the client-programmer in dealing
with data generated by the algorithm on the remote system. The prototypes for these
functions are in Table 28.

ginvo) is a function that accepts a node number and converts it to the node's
position in a gray-ordered ring on a hypercube.

Swap4 () performs the byte-order swapping necessary to convert integers from the
Intel 'low byte first' arrangement to the Sun/SPARC 'high byte first' order.

int ginv(int)
int Swap4(short *, unsigned)

Table 28: Function Prototypes for Utils.c
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6.5 PRASEBG.c

This is the background process that communicates with the remote system and
the window-based process. A client-programmer doesn't explicitly call any function
within this module, but if the rest of the library is used, this program is automatically
invoked.

Since the client-programmer doesn't use this module directly, a full description
of each function contained within it is not included here - a description of the
design and implementation of this program is contained in Chapter IV of Graphical
Representation of Parallel Algorithmic Processes[18].

The background process has these major tasks:

1. Receive and buffer event data coming from the remote system

2. Respond to data requests from the window-based process

3. Relay algorithm control requests to the remote system

To accomplish these tasks, the background process communicates with two pro-
grams that reside on the remote system: aaarfclct and server. These programs
are described in Section 7. The background process receives the event data from
aaarficlct, and sends the algorithm control commands to server.



6.6 PRASE.h

This file contains definitions that may be necessary when using the parallel views
library. The most important item in the file is the structure definition of the trace
data record that is received from the background process. This structure is shown in
Table 29.

Except for the sturcture definition, this header file has the same format as dhe
Class.h header file in the Skeleton subdirectory. Care must be taken, however, when
assigning constants for views, breakpoints, and IE numbers - some of these values
are already being used by the Parallel views. The Class.h file in the Performance
subdirectory has comments inserted that indicate which values are being used by the
library.
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typedef struct

int type;
int IEAype;
int node;
int pid;
unsigned lonzg time;
unsigned long busy;
mnt dest;
int dest-pid;
int from;
int from-pid;
int msg~type;
int msglength;
union

char mchar[15];
int mint;
long miong;
short mshort;
double mdouble;
float mfloat;

}data;
}TRACE-DATA;

Table 29: Trace Data Structure
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7 Parallel Program Instrumentation

The purpose of this section is to familiarize the client-programmer with the operation
of the instrumentation that resides on the remote system. A detailed description of
the design and implementation of these programs can be found in Graphical Repre-
sentation of Parallel Algorithmic Processes[18].

The instrumentation consists of three components:

* Functions that are inserted into the user's program to gather data

" The program aaarf _clct that collects the data and passes it to the background
process on the workstation

* The program server that can start and stop the user's program

7.1 Instrumentation Functions

These functions are contained in the library aaarf_-inst. a. They, with the help of
the PRASE proprocessor[7], intercept calls to system routines so that data can be col-
lected about them. The performance data that is collected is sent to the aaarf _clct
program executing on the host processor of the hypercube. The instrumentation
routines are slightly modified versions of the PRASE instrumentation functions[6].
These are the functions contained in the library:

" System call intercept routines:

- praseexit()

- prase-exit()

- praseflicko)

- praseledo)

- praseiprobeo)

- praseirecv()

- prasecrecvO

- praseisendo)

- prasecsendo)

" User data routines:

- prasemarkcharo) Inserts a short string into the trace data stream.
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- prasemarkdouble() Inserts a double precision number into the trace data
stream.

- prasemarkfloat ) Inserts a single precision number into the trace data

stream.

- prasemarkint ) Inserts an integer number into the trace data stream.

- prasemarklong() Inserts a long integer number into the trace data stream.

- prasemarkshort () Inserts a short integer number into the trace data
stream.

S Instrumentation support routines:

- praseinit () This function initializes tracing and synchronizes the nodes
so that all times are based on a common reference point.

- prase-dump ) This function is called by other instrumentation routines to
send a record.

- praseend ) Called by the main function just before termination, this func-
tion inserts an end record into the trace data.

- prase-sync() This function is called by praseinit() to synchronize the
nodes.

The only functions that the client-programmer would use (if any of these are used)

are the user data routines - the rest are automatically invoked at the appropriate
time.

The user data routines are used to pass algorithm data through the instrmentation
to the workstation for use in creating and updating displays. There are two functions
that the client-programmer calls to pass algorithm data:

IE(type, datal, data2) This function is used to pass small amounts of data -
specifically, two integers and the event type. This event is passed to the display
system using the prasemarkchar() instrumentation routine; the integers are
formatted into a string and put into the trace record.

IE-data(type, pointer, length) This function is used when there is more data to
be passed than IEO can hold. The pointer can point to any data block of any
length (up to 128k bytes). The event type is sent using the prasemarkint ()
instrumentation routine, and the data block is sent as it is to aaarficlct.
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7.2 aaarf -clct

This program is a separate process that executes on the host processor of the hyper-
cube while the user's program is running on the node processors. It listens for data
messages being sent from the nodes, arranges them in time order, and relays them to
the background process on the workstation.

7.3 server

This is the program that controls the user's program in response to commands sent
from the background process on the workstation. It receives two parameters from the
background process when the user's program is to be started: the directory to make
the default for running the user's program, and the complete command line necessary

to invoke the user's program. When the command is received to terminate the user's
program, it issues the appropriate commands to carry out the request.
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8 Animating an Algorithm

This section suggests a procedure that can be followed when animating an algorithm.
This procedure can be applied equally to sequential and parallel algorithms - the
main difference is the actual methods used to extract the information from the pro-
gram.

8.1 Animation Process

The process of animating an algorithm can be decomposed into three tasks:

1. Analyze the algorithm to determine the basic operations

2. Develop ways of displaying the algorithm

3. Instrument the program

These steps assume that the algorithm has already been implemented to the point
that the program can be executed on the target system.

Even though the process has been divided into three parts, there isn't a sharp
distinction between them. The analysis of the algorithm needs to be done with the
displays in mind. When developing displays, the side effects of instrumentation need
to be considered. Instrumentation must be done so that the displays have all the data
needed so they can function. The interrelationship is so tight that all three need to
be worked concurrently. There is no specific order in which things must be done. It
is an iterative (and concurrent) design process that only stops when the programmer
is satisfied with the visualization (animation) results.

8.1.1 Analyzing the Algorithm

In order to animate an algorithm, it needs to be analyzed to distill its basic compo-
nents. These basic components fall into two categories: operations and data struc-
tures. The operations are also referred to as events. "Animating the algorithm
consists of developing meaningful graphical representations of the algorithm events
and intermediate states[4:12]". Simply displaying the data structures and their con-
tents is not enough since frequently algorithms don't modify the contents of their
data structures at all! The actions taken by the algorithm and the decisions made by
the algorithm can present considerably more about an algorithm than just the data
structures.

The analysis of the data structures should be focused on what data is necessary
to display not only the external results of the algorithm (an "external" view), but
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also some of the internal operations ("internal" views). In some cases, the primary
data structure used for display is not even used in the algorithm!

In the context of algorithm animation, there are two types of algorithm events:
events that correspond to actual algorithm operations and events that provid-! infor-
mation to the user or the display program. The latter type of events may include
notification that a certain phase of operation is complete, or simply passing data
structures to the display program to use for the displays.

The events must be chosen such that the display can be updated or modified when
something "noteworthy" occurs in the algorithm. Sometimes this means choosing an
event that signals the start of a process, and one that signals the end. The purpose
of the event at the end may be simply to pass an urdated data structure to the
display, or to reset the display to keep it from getting cluttered. Events should also
be identified whenever one of the significant data structures changes, which allows
the displays to keep track of the current state of these structures.

The choice of events is the very core of the animation design - the rest of the
animation is driven by the events produced during a run of the algorithm. These
guidelines can be used to determine what events to use:

Using the program source code as implemented on the target system (or
even a higher level design language), one should identify the major oper-
ations performed by the algorithm:

* Start at a high level to get the big picture, and then go to lower levels
to get more detail if needed.

" Function calls in the top-level routine are prime candidates for events.

* If the program has several phases of operation, consider events that
mark the transition between phases.

Remember that the level of detail needed is driven by the complexity of the
displays - some displays are very effective with mainly high-level events,
while others need a detailed account of the algorithm's progress.[18:5-6]

8.1.2 Displaying the Algorithm

This activity is in some ways the whole purpose of the animation effort. It is definitely
the end result of the animation design process. This is also the most difficult step -
there are no specific methods to generate displays for the algorithm data. There may
also be several different ways that the same data can be displayed:

In an ideal program analysis environment, each aspect of ... program be-
havior would be revealed by some view wherein the cause is manifest. No
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one view is sufficient; any particular view contains either too much or
too little information to understand some aspects of a program's behav-
ior. Unless the programmer knows exactly what to look for, interesting
phenomena can be lost in the sheer volume of information. [9]

The developer of the displays relies upon creativity and experience to determine
appropriate ways of displaying the data for the given application.

8.1.3 Instrumenting the Program

This is where the animation process differs for sequential and parallel algorithms;
the method used to transfer the data from the algor;thm to the display is highly
dependent on the environment in which each part is executing. The function calls
may look similar, but there is much more that needs to be done for parallel algorithms.

For each of the events chosen, insert a call to the data collection function. There
are three general situations that occur when inserting the instrumentation calls:

e The event is simply a marker, with no data

e The event requires data, and the data is already avaliable

* The event requires data, and the data does not exist

The firs,, case is straightforward: insert a call containing the event number. The
next situation is almost as simple - insert a call containing the event number and
the associated data. The last situation occurs when the event number or event data
is not explicitly available from variables or location within the program. In this
case, statements must be inserted into the program to determine the data or event
number to send. For performance and efficiency reasons, this should be avoided,
since the calculations needed to generate the event data can affect the operation of
the algorithm; In some cases, though, it is the only way to get certain types of data.

Sequential Algorithms For sequential algorithms, the only data that needs to be
collected is that which is required for the displays. This is accomplished by adding a
function to the program similar to the IEO function in BG.c in the Skeleton subdi-
rectory. Modify the function so that it collects and sends the data provided by the
algorithm. The data sent is usually defined by a structure definition in Class.h so
that all the class specific modules have access to it.

Parallel algorithms With parallel programs, instrumenting the target program
occurs in two stages - first, the performance monitoring routines are inserted, then
the function calls to extract the algorithm data for the events. The performance
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#ifdef PRASE

#include "aaarf_iucl.h"

extern PROC prase.proce[MAXIODES];

e tern unsigned long prase-start.time;
extern unsigned long praselowest.node;

#define exit praseexit

#define -exit prase.exit

#define flick praseflick

#define irecv praseirecv

#define crecv prasecrecv

#define isend praseisend
#definf csend praseceend

#endif

Figure 12: Tyrical instrumentation header file

instrumentation is inserted first for two reasons: performance data is normally needed

for "complete" analysis of th,. algorithm, and the event data extraction functions use

the performance instrumentation to carry the events to the display system.
Because of the existence of the' PRASE preprocessor[7:3-1], inserting the perfor-

mance instrumentaton is simple; the programmer creates a configuration file that
describes the program[7:2-3], and the proprocessor does the rest. If for some reason

the instrumentation needs to be inserted manually, it is a simple process: a header
file is included at the top of every source file, and some code is inserted at the very
beginning and end of the main process on the node. The header file is shown in

Figure 12 and the additions to the n-in function are shown in Figure 11.
There are two pieces of code that need to be inserted into the host process -

the aaarf .clct process must be stirted at the beginning of the run before the node
processors are loaded, and the host process must wait for all the trace data to be
coliected before it terminates the node processes. These code fragments are -hown in

Figure 14.
Inserting the instrumentation for all the algorithm data must be done manually.

There are two methods for marking an event, depending on how much data is requiied
to accompany the event. If there is iittle or no data, the IEO function is used; it
accepts three parameters - the integer event number and two integer data values. If
there is more data associated with tbe event than will fit in the (EO) function call,
there is ancther functioa called IE-datao) that accepts the integer event number,

a pointer to a data block, and the leihgth of the block. The IE-data() function is
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/* local variables *

#ifdef PRASE
pras...procsEo).num-.pids = 1;
prase-.procsEO).pido[O) = 0;
prase-.procstl.num-.pids = 1;
prase-.procsilJ.pids[O) = 0;
prase-.procs[2) .nium-.pids = 1;
prase-.procs[2].pids(0] = 0
prase-procs[3.nim-.pids = 1;
prase..procs[3].pids[O] = 0;
prase-.procsE4).num-.pids = 1;
prase-.procs[4).pidsE0] = 0;
prase-.procsES.nun..pids = 1;
prase-.procs[S).pids[O] = 0;
prase-.procs[63.num-.pids = 1;
prase-.procs[6L.pids[OJ = 0;
prase-.procs (7].num-.pids = 1;
prase-.procs[7).pidsE0) = 0;

prase-.lowest-.node =0;
prase-tat.time =0;

praseinitoC;
Sendif

/* normal processing *

#ifdef PRASE
praseendC);

#.ndif

/* termination processing *

Figure 13: Instrumenting the main node function
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mainC)

/* local variables */

#ifdef PRASE
FILE *prase-ptr;

#endif

/* start of main program */
/* initialization */
getcube ...);

#ifdef PRASE
system("aaarf-clct 1000000 k");

#endif

/* load node programs */
/* process data */

#ifdef PRASE
praseendo);

#endif

/* terminate node programs */
}

Figure 14: Instrumenting the host process



slower, and should be used only when necessary.

8.1.4 Iteration

As was stated previously, the process of animating an algorithm is an iterative activity,
somewhat similar to the spiral lifecycle model for software development[1] - start
out completing a small-scale implementation or prototype, then add to it in stages to
develop the final implementation.

The events that are chosen depend to some extent on what is needed to create the
displays; the development of the displays depends on the types of data that can be
extracted without imposing an unacceptable performance penalty. The instrumenta-
tion task is the only one that truly must be done as the last step in an animation
development cycle.
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9 AAARF Projects

This section presents suggestions for AAARF extensions and animation projects.

1. Extend the AAARF class file to include other configuration variables that are
currently either compile time defines, hard-coded defines, or environment vari-
ables. For example, maximum number of windows; maximum number of views;
max.u-i- acd ini,,iiiur,, vindow size; default recording and environment paths;
default algorithm window color codes; etc. Most likely, two configuration files
are required: one for the AAARF administrator and one for the user.

2. Implement a "snap" option which forces the width, height, and position of
windows to be a multiple of some number of pixels. This feature makes it easier
to create windows of the same size and to align them neatly for comparisons.

3. Modify the animation recorder such that reverse playback is supported. This
allows the end-user to immediately review an interesting part of a (recorded)
animation, without restarting the recording.

4. Extend the animation recorder's capabilities such tha! every animation is always
recorded. This allows the user to use the reverse button at any time during the
animation. An interesting part of an animation could be reviewed immediately
(currently, the user must wait for the algorithm to finish before playing the
recording). When the user hits the reverse button, the recorder provides IEs to
the view functions; the background procedure continues to wait with its next
IE. If the animation returns to the point at which the reverse button was hit,
IEs are again retrieved from the background procedure.

5. Extend the capability of the recorder such that it records control events. For
example, detect and record speed changes, changes in the break point setting,
user requested stops, etc. This permits end-users to create recordings that
emphasize a particular event or set of events within an animation.

6. Develop a linkable library of animation objects similar to that developed by
John Stasko in TANGO [10]. The library should provide a set of primitive
graphic objects and functions to support smooth animation of the objects be-
tween two points or along a predetermined path. This could greatly simplify
the development of the view functions, arguably the most grueling programming
task for the client-programmer.

7. Modify the AAARF class-common library such that it is a linkable library.
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8. Add a current state indicator to the algorithm window structure. The indicator
reflects the current state of the algorithm (running, stopped, finished, etc) and
the current state of the recorder (recording, reverse, forward, paused, etc).
Unlike the status display panel which may be opened or closed, this indicator is
always displayed. The information can appear on the title bar or within some
reserved area in the algorithi~i window.

9. Modify AAARF's color table usage so that pixrect patterns are used in addi-
tion to color. This should provide more interesting displays on monochrome
monitors.

10. Develop a bin sorting algorithm class. Algorithms should include first-fit, best-
fit, worst-fit.

11. Develop a tree searching program that animates various type of search algo-
rithms: depth-first, breadth-first, etc.

12. Animate several numerical approximation methods such as finding roots, inte-
gration, least common denominator.

13. Animate the "Drinking Philosophers" problem using a petri net representation.
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Appendix D. AAARF User's Manual

This appendix contains the AAARF User's Manual. The changes made to AAARF

did not affect the existing user interface, but the new capabilities needed to be included.

The entire manual is contained in this appendix, even though only portions were modified.

The original manual was written by Keith Fife [11].

Since the manual is intended to be a separate document, its page numbers do not

follow the numbering system for this thesis.
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Revisions

December 1989 This document was first released by Capt Keith Fife as a part of
his Master's Thesis[3].

December 1990 Section 5 was addcd to document the enhancements made by Capt
Ed Wiiliams to support research for his Master's Thesis[8]. The major changes
are:

" Section 1 is updated to describe the new material

" Section 5 is added to describe the use of AAARF to animate parallel
processes
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AAARF User's Manual

Captain Keith C. Fife

Captain Edward M. Williams

1 Introduction

The AFIT Algorithm Animation Research Facility (AAARF) is an interactive algo-
rithm animation system. It provides a means for visualizing the execution of algo-
rithms and their associated data structures. AAARF allows the user to select the
type of algorithm, the input to the algorithm, and the views of the algorithm. Several
control mechanisms are provided, including stop, go, reset, variable speed, single-step,
and break-points. Other features of AAARF include:

" Multiple Algorithm Windows

" Simultaneous Control of Multiple Animations

" Animation Environment Save and Restore Capability

" Multiple View Windows within each Algorithm Window

* Animation Record and Playback

" Algorithm State Display and Interrogation Capability

" Master Control Panel for monitoring and modifying the input, algorithm, view,
and control parameters to an algorithm animation.

AAARF runs on Sun3TM and Sun4TM workstations using the SunOSTM (Sun Mi-
crosystem's version of the AT&T UNIXTM operating system) and the SunViewTM

window-based environment. AAARF is designed for use with color monitors.
Monochrome monitors can be used, but the displays are not as informative.
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AAARF has two types of users: end-users who view and interact with the algo-
rithm animations, and client-programmers who develop and maintain the algorithms
and animations. This manual is primarily for end-users; it describes how to use
AAARF. Client-programmers should refer to the AAARF Programmer's Manual [2].

This manual introduces users to algorithm animation and AAARF. It explains
how AAARF can be used to explore algorithms in ways not previously possible. No
previous experience with algorithm animation is required; interested readers may
refer to The Graphical Representation of Algorithmic Processes[3] for more detailed
information. Though not necessary, some familiarity with SunOS and SunView is
helpful. The following references are recommended:

* Getting Started with SunOS: Beginner's Guide [5]

" Setting Up Your SunOS Environment: Beginner's Guide [6]

" The SunViewl Beginner's Guide [7]

The next section introduces algorithm animation, describes the AAARF system
architecture, and presents an overview of AAARF's use of SunView. Users should be
thoroughly familiar with the concepts presented in this section before using AAARF.
Section 3 explains how to start the AAARF program and describes the major com-
ponents of the AAARF main screen. Section 4 discusses algorithm windows and
explains how to start and control animations. Section 5 describes the steps that need
to be taken to run animations of parallel programs. Section 6 presents some exercises
to test and develop an understanding of AAARF.
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2 Overview

This section examines the general architecture of AAARF and introduces some Sun-
View concepts necessary for understanding and effectively using AAARF. The defi-
nitions that follow are extracted from [3] and [1]; they are critical to an exact under-
standing of the concepts of this section:

Animation Components An algorithm animation consists of three components:
an input generator, an algorithm, and one or more animation views (see Fig-
ure 1).

View 1

Input
Genertor Algorithm

View n

Figure 1: Algorithm Animation Components

Input Generator An input generator is a procedure which provides input to an
algorithm; the input may be generated randomly, read from a file, or entered
by the user.

Animation View Animation views are graphical representations of an algorithm's
execution.

Interesting Event (IE) Animation views are driven by interesting events that oc-
cur during the execution of an algorithm. Interesting events are input events,
output events, and Rtate changes that an algorithm undergoes during its ex-
ecution. The type, quantity, and sequence of IEs for a particular algorithm
distinguish it from other algorithms.
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Algorithm Classes Algorithms which operate on identical data structures and per-
form identical functions are from the same algorithm class. The Array Sort class
includes quick sort, heap sort, bubble sort, and other in-place sort algorithms.
Algorithms from the same class generally share input generators and views, al-
though certain views and input generators may be ineffective with particular
algorithms. For instance, the tree view is very meaningful for heap sort, but
nearly useless for any other sort.

Parameterized Control User-selectable parameters are associated with each com-
ponent. Algorithm parameters affect some aspect of how the algorithm executes.
For example, with a quick sort algorithm, what partitioning strategy should be
used; as the partitions get smaller, at what point should another type of sort
be used; what other type of sort should be used. Input Parameters affect the
input generator - what seed is used to generate a set of random numbers; how
"sorted" is a set of unsorted numbers; what is the general form of a series of
numbers. View parameters affect how the animation is displayed in the view
window. For example, what shape is associated with the nodes in a graph; how
should an arbitrary graph be positioned.

2.1 AAARF Architecture

AAARF uses three levels of execution linked via UNIX sockets to animate algorithms.
Figure 2 shows the levels of execution.

AAARF Main Process.

AAARF's top-level process provides the main screen, a mechanism for saving and
restoring animation environments, a mechanism for controlling multiple algorithm
animations simultaneously, and a means for starting new algorithm animations. This
level serves as a high-level manager of the animation environment.

e In general, The AAARF main process is the only level of execution with which
end-users need be concerned.

Class-Specific Window-Based Process.

The second level of execution is the algorithm class-specific window-based process.
The class-specific level of execution provides the animation views, an animation
recorder, a status display for interrogating the state of the algorithm, and a master
control panel for monitoring and modifying the parameters that control the anima-
tion.
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AAARF
Main Process

Class-Specific Class-Specific
Window-Based Window-Based

Process Process
111 n

it if

Class-Specific Class-Specific
Background Background

Process Process

Figure 2: AAARF Levels of Execution

Class-Specific Background Process.

The third level of execution is completely transparent to the user; this level imple-
ments the input generator and algorithm. It provides the window-based level with the
IEs that drive the animation. The actual algorithms being animated run at this level.
The background process waits with the next IE until the window-based level sends
an IE request. The background process sends the IE and executes the algorithm until
the next IE occurs. It stops again and waits for an IE request from the window- based
level.

8



2.2 Windows

AAARF uses three types of windows to provide the user with multirle simultaneous
algorithm animations and multiple views of each animation. Figure 3 shows the types
of windows used by AAARF and their relationship to one another.

AAARF
Main Screen

Algorithm Algorithm
Window .... Window

Vie Viw Vew View

.. ... ... ... .. ... .... ... ................... > .o o

Figure 3: Types of Windows used by AAARF

AAARF Main Screen.

This is a full-screen window within which all interaction with AAARF is contained.
The main menu can be popped up anywhere on the AAARF main screen. The main
screen supports up to four algorithm windows.

* The actual number of algorithm windows possible is dependent on the system
configuration, cpu load, and memory availability.
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Algorithm Window.

All animations take place within algorithm windows. Every algorithm window is
associated with a particular algorithm class. Algorithm windows may be created and
destroyed freely, but no more than four can be active at any time. Each algorithm
window supports an animation recorder, a master control panel, a status display, and
up to four view windows. Algorithm windows can be resized and moved anywhere
on the AAARF screen; they may overlap one another. The algorithm menu can be
popped up anywhere along the algorithm window title bar.

Sticks Sticks

Sticks Sticks.a~tl Ail
LP AAARF Centralized Animation ControlI O D STOP D RESETD

Figure 4: Multiple Algorithm Windows
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View Windows.

View windows, or views, are windows associated with a particular view of an algo-
rithm. Every algorithm window has at least one and as many as four active view
windows. View windows can be resized and moved, but they cannot extend beyond
the algorithm window and they may not overlap.

...... ..... ..... ......

Sticks mnpareu

Tree (Heap)

Figure 5: Multiple Views of a Single Algorithm Animation
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" Right Button. The right button is used almost exclusively to pop up menus
(see Section 2.4) from which selections can be made.

" Middle Button. The middle button is used primarily to position and resize
windows. Figure 9 describes the procedure for moving and resizing windows.
The middle button is also used to select an element of interest within a view
window by clicking on the desired element.

" Left Button. The left mouse button is used to activate panel items (see Sec-
tion 2.5). It is also used to control algorithm animations; clicking in a view
window starts and stops the animation.

Figure 6: Mouse Button Usage

2.3 The Mouse

Almost all interaction with AAARF is through the mouse. The mouse is used to
move the pointer, or cursor, around the screen. The mouse buttons may be either
clicked (pushed and immediately released) or depressed (pushed and held until some
action is complete). The function of the mouse buttons depends on the application;
Figure 6 describes the mouse button functions. Figure 9 explains how to use the
mouse to manipulate windows and panels.

• Just as you can type ahead of the display with the keyboard, you can "mouse
ahead" of the display with the mouse. Depending on the CPU load and the
number of active processes, display update can be slow. Rest assured the mouse
input will, eventually, be acknowledged. Be careful when mousing ahead - you
may be clicking on something that won't be there when the click is serviced.
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" Main AAARF Menu. This menu is accessed by pressing the right mouse button
anywhere on the AAARF background screen.

" Algorithm Window Menu. This menu is accessed by pressing the right mouse
button anywhere along the title bar of an algorithm window.

" Panel Selectors. These menus are accessed by depressing the right mouse but-
ton on panel selectors (Section 2.5) or panel choice items (Section 2.5).

Figure 7: AAARF Menus

2.4 Menus

AAARF uses menus to allow users to make a selection from among several choices.
Users pop up menus by depressing the right mouse button. Generally, menus remain
visible only as long as the right button remains depressed. While a menu is visible
and the right mouse button is depressed, moving the cursor over a particular menu
entry causes that entry to be highlighted. Releasing the right mouse button with a
menu item highlighted selects that menu item. Figure 7 describes the three types of
menus used in AAARF.

A menu entry with a right-arrow indicates that a pull-right menu is associated
with that menu item. Moving the cursor over the right-a :row exposes the pull-right
menu from which a selection can be made. Usually, the first item in a pull-right menu
is the default selection for an item with a pull-right menu.

2.5 Panels

Panels allow users to interact with AAARF through a variety of panel items such as,
panel buttons, panel selectors, choice items, and panel tezt items (see Figure 8).

Panel Buttons

Panel buttons are used to specify an action. Panel buttons are activated by clicking
the left mouse button with the mouse pointer positioned over the panel button.

Panel Selectors

Panel selectors are used to pop up a menu from which a particular menu item can be
selected. Panel selectors are activated by depressing the right mouse button with the
mouse pointer positioned over the panel selector. The mouse button is released after
the desired menu selection is highlighted.

13
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Figure 8: Panel Item Examples

Choice Items

Choice items are used to set options. Choice items appear as cycle items, choice
buttons, check boxes, and panel sliders. All choice items except the panel slider can
be used as either a panel button or a panel selector. Panel sliders are activated by
clicking the left mouse button at the desired position on the slider bar.

Text Items

Text items allow the user to enter data from the keyboard. AAARF requires very
little keyboard interaction.
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* Moving Windows and Panels. To move a window, position the cursor over the
window's border. Press and hold the middle button while repositioning the
cursor to the window's new position. Release the middle mouse button and the
window moves to the new location. Panels are moved with the same procedure.

* Resizing Windows. To resize a window, position the cursor over the window's
border, press and hold the control key and the middle mouse button while
repositioning the cursor to the window's new border position. Release the
mouse button and the window resizes. Panels cannot be resized.

* Bringing Windows and Panels to the Front. To completely expose a partially
hidden window, click the left mouse button on the hidden window's border.
The procedure for panels is identical.

Figure 9: Manipulating Windows and Panels
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2.6 Alerts

AAARF uses alerts to display help screens, to warn users of internal eTors, and
to get confirmation for dangerous commands. The user must click on one cf the
alert buttons before input is be accepted in any other window or panel. Figure 10
shows an alert asking the user to confirm deletion of an environment file. Note that
the YES button has a darker outline than the NO button. A button with a dark
outline indicates that it is the default choice; it may be selected with the mouse or,
alternatively, by hitting the return key.

AAARF Environivent Control Panel

Do you really want to delete the
envirorenent, exerciftel? th

rS AVE - I RESTORE:)

Figure 10: AAARF Alert Example
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3 Getting started

Set your UNIX path variable to include the AAARF executable directory. Your
instructor or system manager knows the AAARF directory path. See [6] for more
information on setting UNIX paths. Run AAARF by entering aaarf at the UNIX
command line prompt.

3.1 Welcome Screen

The first thing you see is the AAARF welcome screen. Click the left mouse button
on the CONTINUE button to begin the session.

3.2 The Main Menu

Press and hold the right mouse button with the mouse pointer anywhere on the
AAARF scrten to pop up the main menu. Move the cursor to select from the following
choices:

" Iconify AAARF

" New Algorithm Window

* Central Control

" Environment Control

" Help

* Kill AAARF

Iconify AAARF

This selection causes AAARF and all its animations to become an icon. The icon may
be moved anywhere on the screen. While in the icon state, all animations are stopped
and most menu items are deactivated. AAARF is deiconified by either clicking the
right mouse button on the icon or selecting Deiconify AAARF from the main menu.

New Algorithm Window

To open a new algorithm window, highlight this selection. Move the cursor over the
right arrow to reveal the algorithm class menu (see Section 3.3). Highlight one of the
available classes and release the mouse button Figure 11 shows the AAARF main
menu with the algorithm menu exposed. An algorithm window with a default data
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set and algorithm appears. Up to four windows may be active simultaneously. See
Section 4 for controlling the algorithm window.

Iconif 1y ARF M
I [lQlM !Sj3lQ l'li 3DM 

n j  Tn-Ploce Array sorts

Central Control Traversa
Envrth nent Control Pane

r
l tap T e C l

palp l Greatest Common Demoninatoor
K1 11 AAARF r

Figure 11: AAARF Main Menu

Central Control Panel

This selection causes the Central Control Panel to appear. The Central Control Panel
provides a means to simultaneously control the animations in all open algorithm

windows. See Section 3.4 for more information about the Central Control Panel.

Environment Control Panel

This selection causes the Environment Control Panel to appear. The Environment
Control Panel provides a means to save and restore AAARF environments. See
Section 3.5 for more information about the Environment Control Panel.

Help

This selection displays a help screen which briefly explains the function of each main
menu item, how to use the mouse, and how to open a new algorithm window. This
help screen is the same as the welcome screen that appears immediately after the
program is evoked.
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Kill AAARF

This selection ends the AAARF program. The user is first asked to confirm the kill
command.

3.3 Algorithm Class File

AAARF has a default set of algorithm classes from which the user can select when
opening new algorithm windows. The default classes are named in the .aaarfClasses
file loca .-d with the AAARF executable image. The default algorithm class file
can be overridden by setting the AAARFCLASSES environment variable to the
filename of some other algorithm class file. See [5] for more information regarding
UNIX environment variables.

e The default algorithm class file suffices for most end-users.

3.4 Central Control Panel

The AAARF Central Control Panel provides a means for simultaneously controlling
multiple animations. The usual animation controls pro- 1ed by the algorithm window
are still enabled when using the Central Control Pa ,:Il. Figure 4 shows the Central
Control Panel. Use the right mouse button to initiate the following actions:

* Help Displays a help screen explaining the Central Control Panel fun-tion and
controls.

* Close Closes the Central Control Panel. The panel can be reopened by selecting
it again from the main AAARF menu.

9 Go Simultaneously starts animations in all open algorithm windows. Anima-
tions which have already run to completion are not affected. Use Reset followed
by Go to restart a completed animation

* Stop Simultaneously stops animations in all open algorithm windows. Has no
affect on animations that have already run to completion

* Reset Simultaneously stops and resets all animations to their respective initial
conditions. Animations may be running when the Reset button is pushed.
There is no UNDO for a Reset.
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3.5 Environment Control Panel

The AAARF Environment Control Panel provides a means for saving the current
animation environment or restoring a saved environment. The environment includes
all user options currently selected: window size, window placement, input parame-
ters, algorithm parameters, and view parameters. The Environment Control Panel is
shown in Figure 12.

AAARF Envirormient Control Panel

I Path I
e Path: /kflfe/aaarf/enviromvents

Envirornment: heap4in

r SAVE ( RESTOREJ DELETE

Figure 12: AAARF Environment Control Panel

Use the Path Selector to select a directory in which environments can be saved
and restored. The path selector menu is activated by depressing the right mouse
button on the Path Selector icon. The path can be changed only by the Path Selector;
there is no option to enter the path from the keyboard. By default, the initial path
is set to the user's current working directory. The path can be initialized to any
valid directory by setting the the AAARFENV environment variable to the desired
path. Typically users keep all their AAARF environments in a particular directory
and set AAARFENV to that directory path. See [5] for more information on setting
environment variables.

o To save an AAARF animation environment, the user must have write privileges
for the selected directory.
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Use the Environment Selector to select an existing environment name, or en-
ter an environment name from the keyboard. Environment names consist of 1 to
15 alphanumeric characters. If a selected directory has no environment files, the
Environment Selector menu does not pop up.

When the environment name is selected, click on Save, Restore, or Delete
to perform the desired operation. Only 100 saved environments are permitted per
directory, so it may become necessary to delete unused environments.

* Save and delete operations are relatively fast, but restore operations can take
several seconds depending on the current CPU and memory load.

The environment control panel is not considered part of the environment with
respect to save and restore operations. The panel can be closed only by clicking on
the Close button.
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4 Algorithm Windows

Animations take place in algorithm windows. When an algorithm window is first
opened, a default data set, algorithm, and view are provided. These may be changed
by opening the master control panel as described later in this section.

Up to four algorithm windows can be active simultaneously. Algorithm windows
can be moved, sized, iconified, or destroyed at any time. Algorithm windows contain
from one to four non-overlapping view windows for viewing the algorithm in execution.

* Depending on the CPU load and the number of active processes, it may take
several seconds for a new algorithm window to open. Be patient - give the
workstation a few seconds to respond before trying again.

4.1 Algorithm Window Menu

Press and hold the right mouse button with the mouse pointer anywhere on the
algorithm window title bar to pop up the algorithm window menu. Figure 13 shows
the Algorithm Window Menu. Move the cursor to select from the following choices:

" Iconify

" Master Control

" Animation Recorder

" Status Display

* Help

" Kill

Iconify

This selection causes the algorithm window to become an icon. While in the icon
state, the animation is stopped. The algorithm window can be deiconified by clicking
on the icon with the left mouse button or selecting Deiconify from the algorithm
window menu.

Master Control

This selction causes the Master Control Panel to appear. The Master Control Panel
provides the user a means for controlling the input, view, algorithm, and control
parameters for the animation. Section 4.2 discusses the Master Control Panel in
detail.
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Animation Recorder

This selection causes the Animation Recorder to appear. The animation recorder
provides a means for creating, saving, and playing animation recordings. Section 4.3
discusses the Animation Recorder.

Status Display

This selection activates the algorithm status display which presents information re-
garding the algorithm's current state. The middle mouse button can be used to
extract more detailed information regarding a particular element or area of interest
within the algorithm. The Status Display is discussed in Section 4.4.

Help

This selection displays a help message which describes each of the options available
from the algorithm window menu.

Kill

This selection permanently closes an algorithm window.
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4.2 Master Control Panel

Figure 14 shows a typical Master Control Panel. The panel is divided into four sepa-
rate but interdependent sections: the control section, the input section, the algorithm
section, and the view section.

~Animation Master Control Center

CONTROL OPIONS

Animation Speed: [100] 0 18

Single Step E3 [ Break Point Selector

INPUT OPTIONS

Elements: [15] 15 1 26

__- ALGORIT?4 OPTIONS -

Algorith Type : CPreorder Traversal

-_ VIEV OPTIONS

View Selector View Layout: C Stacked

Figure 14: Master Control Panel for Traversal Algorithm Class

Control Section

The control section provides panel items for controlling the execution of the algorithm
animation. The Go, Stop, and Reset buttons have obvious effects on the animation.
To restart an animation which has run to completion, the Reset button must be hit.
An alternative to these buttons is clicking the left mouse button in any of the open
view windows. An algorithm which has run to completion can be reset by clicking
the left mouse button in a view window.

The Single Step check box, the Speed panel slider, and the Break Point Se-
lector are three more control mechanisms provided by the control section. Activating
single-step mode causes the animation to stop after every IE. Selecting one or more
break points causes the animation to stop after every IE which matches a selected
break point. The speed control affects the execution speed of the animation; 100 is
full speed, and 0 is very slow speed.
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Input Section

The input section provides parameter controls to produce a variety of input data sets
for a particular algorithm class. Changes to input parameters do not take effect until
the animation is Reset.

Algorithm Section

This section provides, as a minimum, a panel cycle item for selecting the algorithm
to be animated There may be optional parameters for particular algorithms. For
instance, quick sort options might be minimum partition size and the method for
selecting a pivot value. Changes to algorithm parameters do not take effect until the
animation is Reset.

View Section

This section provides, as a minimum, a panel selector for selecting from one to four
views of the animation, and a panel cycle item for selecting the layout of the views
within the algorithm window. There may be optional parameters for controlling the
appearance of the view, such as the representation or size of nodes in a binary tree.
Changes to view parameters take effect immediately.

4.3 Animation Recorder

Each algorithm window supports an animation recorder for recording and playing
back computationally intensive animations. Figure 15 shows the AAARF animation
recorder. The recorder also provides a convenient means for saving a particular set of
algorithm parameters. Currently the recorder does not support playback in reverse.

The recorder is always in one of three states: OFF, RECORD, or PLAY. The
algorithm window title bar reflects the current state of the recorder. Depending on
the current recorder state, some operations may not be possible or allowed. Warnings
are issued before any recording is erased.

The Help button activates a brief help screen explaining how to use the animation
recorder. The recorder can be closed only by clicking on the Close button.
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SAVE LOAD DELETE

Figure 15: AAARF Animation Recorder

Recording

To record an animation, click on the RECORD button. The animation resets us-
ing the currently selected parameters, and the algorithm window title bar displays
u**** RECORDING ****". Control the animation as usual. When the animation

is finished, the recorder switches to PLAY mode and the algorithm window title bar
displays "**** PLAYBACK ****". The recording can now be saved or played back.

e Control commands are not saved; only the interesting events c.e recorded.

Playback

Before a recording can be played, it must be recorded. Recordings can be saved,
reloaded, and played; or just recorded and played without saving. Once a recording
is loaded into the recorder, the algorithm window title bar displays "**** PLAY-
BACK ****". Playback can be started in several ways: the FORWARD button
on the recorder, the GO button on the Master Control Panel, the GO button on
the Central Control Panel, or by clicking the left mouse button in a view window.
Since only the interesting events are recorded, the view parameters can be changed
while the recording is playing back; likewise the recording can be controlled just like
a "normal" animation.
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File Functions

Use the Path Selector to select a directory in which recordings can be saved and
restored. The path selector menu is activated by depressing the right mouse button
on the Path Selector icon. The path can be changed only by the Path Selector;
there is no option to enter the path from the keyboard. By default, the initial path
is set to the user's current working directory. The path can be initialized to any
valid directory by setting the the AAARFREC environment variable to the desired
recording directory. Typically, users keep all their AAARF recordings in a particular
directory, possibly partitioning it into subdirectories corresponding to each algorithm
class. The AAARFREC environment variable is set to the parent directory name.
See [5] for more information on setting environment variables.

* To save an AAARF animation recording, the user must have write privileges
for the selected directory.

Use the Recording Selector to select an existing recording name, or enter an
recording name from the keyboard. Recording names consist of 1 to 15 alphanumeric
characters. If a selected directory has no recording files, the Recording Selector
menu does not pop up.

When the recording name is selected, click on Save, Restore, or Delete to
perform the desired operation. Only 100 saved recordings are permitted per directory,
so it may become uecessary to delete unused recordings.

Loading a recording sets the input, algorithm, and control parameters to those as-
sociated with the recording; the view parameters are not affected. Saving a recording
resets all parameters to their state at the beginning of the recording.
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4.4 Status Display

Each algorithm window supports a status display which provides information relating

to the current state of the algorithm. Figure 16 shows a typical Status Display.

The information and format may be different for each algorithm class. Users can

interrogate the animation regarding specific aspects of the algorithm, such as a tree

node or array element state by clicking the middle mouse button in a view window

on a particular element of interest.
The Help and Close buttons perform their usual functions.

Al _ 11Agoiti 1nia ionRsac b ci I____A
Uicks

HELP AAARF Animation Status Panel CLOSE

Element of Interest - 9

State - MOVING
Current value of this element - 1

Number of moves for this element - 4

Comparisons against this element - 5

Algorithn State

Moving element 9 to position 10

TOTAL MOVES - 58

TOTAL COMPARES - 70

Figure 16: Status Display for ArraySort Algorithm Class
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5 Parallel Algorithm

Using one of the parallel algorithm classes is similar to using a sequential animation.
The difference is the added care that must be taken due to the link to the remote
system that is hosting the algorithm. The AAARF processes must be able to com-
municate with the remote system to start the algorithm, as well as receive the data
from it.

5.1 Remote System Set-up

The person running AAARF must have an account on the remote system. Further-
more, the account on the remote system must be set up to allow commands to be
submitted from the workstation using rsh. This requires the presence of a file in the
user's home directory called .rhosts. For the Intel iPSC/2 with UNIX System V
Release 3.2, this file simply needs to contain a list, one per line, of the hosts that are
allowed to remotely access the hypercube.

To make it possible for AAARF to run the algorithm remotely, two changes need
to be made to the startup shell script; .cshrc for the csh(1) shell, and .profile for
sh(1). The first change entails adding the directory containing the executables for
the aaarfxclct, av, and server programs to the PATH environment variable. The
other change is to create a new environment variable called AAARFSYSTEM. As
the name implies, this must be set to the name of the Sun workstation that is used
to run AAARF.

5.2 Running the Animation

Once the remote system is set up, the animation can proceed. If the animation is fully
implemented, the rest of the session will proceed just as in Section 4. The Master
Control Panel controls the algorithm on the remote system just as if it were on the
workstation.

* Due to the link with the remote system, the response time for starting a new
run is quite long, sometimes as long as a minute or more - be patient!

Some algorithms cannot be started remotely; sometimes the program is interactive,
which makes it difficult for AAARF to control it. In these cases, the program must
be started manually by someone logged into the remote system. The only difference
this makes is that the program must also be terminated manually, since AAARF has
no control over it.

Currently, it is not possible for AAARF to know whether the remote program
started correctly or not. Some programs display messages indicating activity; these
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messages are displayed in the window on the Sun workstation that is used to invoke
AAARF, but the default configuration of AAARF uses the entire screen - preventing
the user from seeing these messages. If these messages are useful, AAARF can be
started with parameters that control the size of the area of the screen used by AAARF:
the format is aaarf width height. The minimum size is 500 pixels square, about
one-sixth of the screen in the upper left corner. By preventing AAARF from taking
over the entire screen, the command window used to invoke AAARF is still visible,
and messages from the remote program can be used to determine its status. It is
also advisable to have another window active that is logged into the remote system
so that the status of the program can be checked manually.

9 Do not attempt to start the animation by clicking the left mouse button in the
window or by clicking the GO button on the Master Control Panel if the remote
program has not started properly - AAARF will freeze and you must kill all
programs on both systems manually.

5.3 Parallel Performance Views

This section describes the performance views that are available in every parallel algo-
rithm animation that uses the parallel views library[8:4-3]. Each of the performance
views is described in the following paragraphs. The views are controlled by the View
Options button in the Performance View Parameters section of the Master
Control Panel.

The performance views contained in the parallel views library show basic informa-
tion regarding message passing between processes, overall communications load, com-
munications statistics for each node, and CPU utilization. These views are patterned
after those in ParaGraph[4]; this is by no means an exhaustive set of performance
displays, but merely a collection of displays that has proven useful. The views show
different types of statistics, as well as different levels of detail.

Utilization This view is a histogram that displays the number of active processes
on the vertical axis, and time on the horizontal axis. Figure 17 shows the utilization
view during a run. The top part is colored in red to indicate the number of processors
that are idle, and the bottom is green, giving the number of active processors. The
active vs. idle state of a processor is derived from the message traffic: if a processor
is blocked waiting for a message, then it is idle. Otherwise the processor is active.

Gantt This is a traditional view of processor activity. Each processor has a section
of the vertical axis, and time is shown on the horizontal axis. When a processor is
idle, that segment of the vertical axis is colored red; when the processor is active, it is
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Utilizat ion

Figure 17: Sample Utilization View

green. The status of a processor is determined in the same way as for the utilization
view. A sample Gantt view is shown in Figure 18.

Feynman The name for this view was taken directly from the corresponding Para-
Graph display, though it may not have much relevance to the actual data being
displayed. This view shows two different types of data: processor status and message
passing activity. Figure 19 shows an example of this view. The processor status is
shown in a similar fashion to the Gantt view, except that the data is shown as a thin
horizontal line that is broken when the processor is blocked. Once again, the hori-
zontal axis represents time. The message activity is shown by drawing lines between
the horizontal lines representing the sending and receiving processors: The ends of
the line are positioned according to the send and receive times. This clearly shows
message passing patterns, delays, and bottlenecks. These displays are generated using
trace records from send and receive system calls.

Communications Statistics This view provides a detailed look at the communi-
cations activity of a single (selectable) node. With time along the horizontal axis, the
display is split into two parts: the upper half of the display shows outgoing message
statistics, and the lower half shows incoming message statistic,,;. Figure 20 shows a
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Figure 20: Sample Communications Statistics View

sample display. The data displayed can be chosen from three types: processor source
or destination for each message, length of the messages, or the type of the messages.

Communications Load This view shows statistics on pending messages (messages
that have been sent but not received) for the entire system versus time. Either
the number of pending messages or the total length of all pending messages can be
displayed. Figure 21 is an example of this view.

Queue Size Statistics for the input queue for one (selectable) node are displayed
in this view. The presentation of the data is identical to the communications load
view; The data is shown in relation to time, and either the number of messages or the
total length of all messages in the input queue for the node is displayed. A sample of
this view is shown in Figure 22.

Message Lengths This view uses a different method of presenting message passing
information. The view contains a matrix, and a send operation causes an element of
the matrix to be colored. The sending processor number determines the row and the
receiving processor determines the column of the matrix. The length of the message
determines the color used to fill in the element. See Figure 23 for an example.
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Figure 23: Sample Message Lengths View

Message Queues This view displays the current status of the input message queue
for all the processors. As Figure 24 shows, the display is a histogram with the
processors along the horizontal axis. The vertical axis can show either the number of
messages in the queue or the total length of the messages in the queue. As the queue
levels rise and fall, a 'high water mark' is left behind to mark the highest level that
was attained for the run.

Kiviat This is very similar to a traditional kiviat chart - the processors are spread
out around a circle and 'spokes' are drawn from each processor to the center of the
circle (see Figure 25). The CPU utilization for each processor is calculated and plotted
along the corresponding spoke of the wheel, with the center representing 0%. The
polygon resulting from connecting points from adjacent spokes of the wheel creates
a pattern that can be used to indicate the balance of the processing load among the
processors. A 'high water mark' is also implemented here to indicate the highest level
of processor activity.
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Figure 24: Sample Message Queues View

Animation Once again, the name for this view was taken from ParaGraph; the
term, however, could be applied to any of the other views. This particular view
shows the processors arrayed around the outside of a circle. The color of the processor
indicates its status - idle, busy, blocked, or sending. In addition, lines are drawn to
show message activity among the processors. When a message is sent, a line is drawn
connecting the sending and receiving node; when the message is received, the line is
erased. Figure 26 shows an example of this view.
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6 Exercises

This section presents exercises to test and develop your skill using AAARF. The
first exercise directs you through an entire AAARF session. The remaining exercises
require a little more thought.

Problem 1. Compare the performance of Straight Selection Sort to Straight
Insertion Sort for sorting an array of 25 numbers. The nambers are already sorted,
but in reverse order. Record the animation of the fastest algorithm. How many total
moves were required? How many comparisons?

1. Startup AAARF by typing aaarf at the UNIX command line prompt.

2. Click on CONTINUE to close the welcome screen.

3. Open two ArraySort algorithm windows, by popping up the main menu, se-
lecting the New Algorithm Window item, and then selecting Array Sorts
from the pull-right algorithm menu.

4. Open the Master Control Panels for both windows.

5. Select Straight Insertion Sort for one window and Straight Selection Sort for the
other.

6. Select 25 elements, 100% sorted, and Inverted order for both windows.

7. Select stacked Sticks, Moves, and Compares views for both windows.

8. Set speed to 100% in both windows.

9. Close both Master Control Panels.

10. Open the Central Control Panel.

11. Arrange the algorithm windows and Central Control Panel such that the algo-
rithm windows are the same size, no windows are hidden, and both animations
are easy to see and compare. Figure 27 shows a possible arrangement.

12. Open the Environment Control Panel. Select a directory and an environment
name, and save this environment.

13. Close the Environment Control Panel.
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Figure 27: Possible Window Arrangement for Exercise 1.

14. Using the Central Control Panel, Reset both algorithm windows.

15. Using the Central Control Panel, start both algorithms by clicking on Go.

16. Determine which algorithm is fastest and close (Kill) the other window.

17. Open the Status Display for the fastest algorithm window and note the total
comparisons and moves.

18. Close the status display.

19. Open the Animation Recorder.

20. Hit the Record button, then hit Forward.

21. When the animation is finished, save the recording.

22. Open the Master Control Panel and change the parameter settings. Hit the
Reset button.

23. Load the recording that was just saved. Notice that the parameter settings
reset to those associated with the recording.
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24. Playback the recording.

25. Close the Recorder and Kill the algorithm window.

26. Pop up the AAARF main menu and Kill AAARF.

Problem 2. Open three Traversal algorithm windows. For each algorithm
window, select 26 as the tree size, set the control to single step, and select both the
tree and list views, but let the tree view dominate the algorithm window. Select a
different algorithmn, for each window. Arrange and size the algorithm windows so tlRt.
all three can easily be seen. Open the Central Control Panel and run the animations
simultaneously. Save the environment. Which algorithm traverses the entire tree
first? Which is last?

Problem 3. A program module to maintain a sorted array of numbers must
be developed for the B-10 bomber automatic pilot software. The array of numbers is
built by another module from five other sorted lists of numbers. Sometimes the five
sub-lists are sorted in ascending order, other times in descending order. The sub-lists
are always composed of at least 10 elements. Use AAARF to determine the best
sort algorithm for this program module. Create an AAARF environment to compare
the top two sort algorithms. Save the animation environment. Which algorithm is
probably best?

Problem 4. Determine what effect the reduction, lower bound, and dominance
test options have on the search process of the Parallel Set Covering Problem (SCP)
algorithm. Chose a set of appropriate option combinations and make (at least) one
run using one of the 20.20. x input data sets. Determine what factors sould be used
to compare the results of each run. Which option has the greatest impact?
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Appendix E. SCP Source

The source modules for the set covering problem implementation that were modified

during the installation of the instumentation are contained in Volume 2. The entire in-

strumented program, as well as the original SCP program can be obtained by contacting

Dr. Gary Lamont at the following address:

Dr. Gary Lamont

AFIT/ENG

Wright-Patterson AFB, OH 45433

Phone: (513) 255-3450

email: lamontQafit. af .mil
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Appendix F. Source Code

The source code for AAARF, the algorithm classes developed for this thesis, the

instrumentation, and support programs is included in Volume 2 and is aralable through

the AFIT library.
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