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Abstract

For a class of single-input single-output nonlinear systems with unknown con-
stant parameters, we present a direct model-reference adaptive control scheme.
which requires only output, rather than full-state, measurement. The nonlin-
earities are not required to satisfy any growth conditions. The assumptions on
the linear part of the nonlinear system are the same as in the standard adaptive
control problem for linear systems, which now appears as a special case of the
nonlinear problem solved in this paper.
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1 Introduction

Until a few years ago, adaptive linear [1,2] and geometric nonlinear [3.4] methods belunged
to two separate areas of control theory. They were helpful in the design of controllers for
plants containing either unknown parameters or known noniincarities, but not both. In the
last few years the problem of adaptive nonlinear control was formulated to deal with the
cenioll of plants containing both unknown parameters and known nonlinearities. A realistic
plan of attack to this challenging new problem led through a series of simpler problems. each
formulated under certain restrictive assumptions. The two most common assumptions are
those of linear parametrization (5-17] and full-state feedback [5-15].

The purpose of this paper is to avoid the full-state feedback assumption and to remove
the specific restrictions of previous output-feedback results [16,17].

In the linear case, the adaptive output-feedback designs follow either a direct model-

reference path or an indirect path via adaptive observers. Current research on adaptive

t

observers for nonlinear systems [18-20] indicates that the indirect path may become promis-
ing for adaptive nonlinear control. However, the major stumbling block along this path
continues to be its linear-like proof of stability which imposes restrictive conic conditions on
the nonlinearities [16,17]. Under such linear growth constraints the actual nonlinear problem
is, in fact, not addressed.

In this paper we formulate and solve a truly nonlinear output-feedback problem by fol-
lowing the direct modcl-reference path of Feuer and Morse [21]. In contrast to other more
popular adaptive linear control methods [1,2], the method of Feuer and Morse offers a possi-
bility to prove stability without any growth constraints. In a companion paper [22] we have
exploited this possibility to solve a full-state-feedback adaptive nonlinear control problem.
In this paper we present an adaptive output-feedback result without nonlinearity growth
constraints.

The results of this paper apply to nonlinear input-output models consisting of a linear
transfer function and output-dependent nonlinearities. The coefficients of the transfer func-

tion and the parameters multiplying the nonlinearities are unknown. For th~ linear part. the
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assumptions of miz\limfim phase and known sign of the high-frequency gain are the same as
in the adaptive linear._': control theory, which now appears as a special case of the nonlinear
theory presente_c‘i.qia Rhis paper.

For easier understanding, the new adaptive scheme is first designed for a particular system
of sufficient complexity to be illustrative of hoth the design procedure and the stability
proper 3s of the resulting closed-loop adaptive system. In Section 2 we design the adaptive
scherne for this system and then prove the stability and tracking properties of the resulting
adaptive system in full detail. The design procedure for the general case is presented in
Section 3, and the proof of stability and tracking is given in Section 4.

Nonlinear input-output models are intimately tied to state-space equations which orig-
inate from nonlinear pnysicai laws expressed in specific state coordinates. In Section 5 we
give a state-space form of the class of nonlinear plants which have the desired input-output

representation, and characterize this class of plants via a set of geometric conditions.

2 Adaptive Scheme Design: An Example

The purpose of this section is to make both the proposed adaptive scheme and the main
features of the Feuer-Morse method more easily accessible to the reader with the usual

background in control theory and limited familiarity with adaptive linear control.

2.1. Nonlinear system properties. The nonlinear system is assumed to be minimum-
phase [3, Chap. 4] and its nonlinearities depend only on the output variable. This implies that
the nonlinar system is linearizable by output injection [23]. The input-output description of

a typical nonlinear system of this kind is given by

D%y = (D*+2D + )u+90 [D’ps(y) + Dpa(y) + polv)] - (2.1)

where u and y are the scalar control and output, respectively, D = Tiz and # is an unknown

constant parameter. To address a truly nonlinear problem, we choose the nonlinearities

which do not satisfy linear growth constraints:

(&%
|99
~——

po(y) =", pily)=v* +20°. paly) = ye¥ + 2% + 0.




It is important to notice that these nonlinearities are not in the span of u, and, hence, the
system (2.1) is not full-state linearizable by static output feedback, or even by static full-
state feedback, as shown in Sect.5. However, it is input-output linearizable by full-state
feedback [2, Chap.4].

The above structural and growth properties of (2.1) and its relative degree {3, Chap.4]
show that (2.1) is a nonlinear system of considerable complexity. However, this svstem also
satisfies a structural constraint under which the results of this paper are applicable: /¢

nonlinearities do not enter the system before the control input u.

2.2. Augmenting the CE control. As in most adaptive designs, our first step is to
find a dynamic output-feedback control that guarantees the specified stability and tracking
properties when the parameter 0 is known. Most adaptive schemes then replace th unknown
f with its estimate 8 and implement the so formed “certainty-equivalence” control. Such
certainty-equivalence designs have been satisfactory in adaptive linear control, but have failed
to produce truly nonlinear results because of their inherent linear growth constraints {16,17].
To avoid this difficulty we musi go beyond the certainty-equivalence approach. Following
Feuner and Morse (21|, we will augment the certainty-equivalence control by an additive term
u which will counteract the effects of rapidly growing nonlinearities. It will also provide us
with additional flexibility in the proof of stability.

The certainty-equivalence part of our control will be designed to match a reference model
of the same relative degree as that of the nonlinear plant (2.1). As this plant is input-
output linearizable by full-state feedback, we will choose the simplest lincar reference model

of relative degree three:

(D+ 1)y, =r. (2.3)

The first step in matching this reference model is to filter the plant equation (2.1) by the
strictly proper stable filter I'//E,, where F' is a monic polynomial of degree 2, and F, is a

monic Hurwitz polynomial of degree 4. This results in

A rB FD? FD a .
F; y= EUTO { L p2ly )+"El’1(u)+L—Pu('/) (2.1]




where A = D® B = D?+2D + 1 as in (2.1). It is now straightforward to verify that the

desired matching is achieved by the control

ut = —%y +r—0v(y) - ————FBE: B, (2.5)
provided that
FD? FD F .
_ , £o (). 2.6
v(y) g, )+ g, 1)+ gopoly) (2.6)
and that G, a polynomial of degree 4, and F satisfy the polynomial equation
FD*+ G =(D+1)°E,. (2.7)

Note that the polynomial FB — E, in (2.5) is of degree 3, since FB and E, are both monic
polynomials of degree 4. As an illustration, the choice E; = (D + 2)* yields the following

solution of (2.7):

= D?4+ 11D +51 (2.9)

G = 129D* +192D° + 168D* + 80D + 16. (2.9)

When the control (2.5) is applied to the system (2.1) and the initial conditions of the
filters used in (2.3), (2.5) and (2.6) are exactly matched with those of the system (2.1). then
(2.5) achieves the exact tracking y(¢) = y.(¢) for all t > 0. However, the initial conditions of

(2.1) are unknown and the tracking can be achieved only asymptotically, that is,
y(t) = ye(t) + €(t) — yt) ast — oo, (2.10)

where €(t) is the exponentially decaying tracking error caused by the mismatch of the initial
conditions.

When the parameter # is unknown, we replace it in (2.5) by its estimate 6, to be obtained
from a parameter update law. To this “certainty-equivalence” part of our control we add a
term & which will be a handy tool later. So, our adaptive control will be of the tollowing
form:

G

: - E
P S ] P DY (2.11]
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When applied to the nonlinear plant (2.1), this control yields the following input-output

description of the resulting feedback system:

y:mil—)g[r+(9~9>u(y)+ “"}-i-c(t), (2.12)

where, as in the case when 8 was known, ¢(t) contains all the exponentially decaving terms
caused by the mismatch of the initial conditions. It should be observed that with an exact
estimate A = @ the linearization of (2.12) is achieved.

Introducing the error variables

~

€E=Y —~ Y, é:@—@, (2.13)

and taking the difference between (2.12) and the reference model (2.3), we obtain the tracking
error equation:
1 .
- . 5
e_(D+1)3 [0u(y)+u]+e(t), (2.14)
2.3. Error augmentation and swapping. Following the standard practice in adaptive

control, we now set out to construct an error equation in which the parameter error is filtered

only by a strictly positive real (SPR) transfer function. As a first step, we rewrite (2.14) in

the form
1 ~ 1 1 )
T DT [0(D+1)2U(y)}+_‘_(0+1)3”
! ) 1 ) ! . -
Ry o] - (D+1) [9(D+ 1)2”(’”} elt). (2.15)

The first term in (2.15) is in the desired SPR form, while the second term is due to the
additional control term @. As for the third and fourth terms, these are the familiar swapping
terms, whose presence is caused by the time-varying nature of : if § were constant, these

two terms would cancel out. Let us therefore define the augmented error € as
E=¢e+1g, (2,16}

where the term ny represents all the undesirable terms in (2.14):

f ] ] ..

- R T N -
R ICES AT ESIE v - 53 1)[0( )21.'(1/)H : (2.17)

o =

6




The signal multiplying 0 in the first Lrackets 1s of paciicular importatce and 1s dencted by

1 ‘
}).1 :ml/‘\y) L_)Alﬁ)

Considering v(y) as the input and h, as the output, we represent (2.13) in the state-space

form

[:l} :h:.f10h+bu(y). (219,

<

0 1 0
AOZ[-—-I _2}, b:[l}. 1220

[t can now be verified that 7 is the output cf the third order system

where

| 3N
[
—

o = —MNo+m (-
n
72

The variables h; and 7, from (2.19) and (2.22) allow us to express the tracking error as

[
[
[N

N = Aon — b — bl (

1

R
i

|6k — m] +e(t). (2.23)

!

The analogous expression for the augmented error is

€ =

51 [0h:] + e(2) . -

and it has the desired SPR form: the parameter error § multiplied by the “regressor”™ h; is

the input into the SPR filter 1/(D + 1).

2.4. Update law. From this point on, the route prescribed by most of the adaptive lincar
control literature is to choose a normalized gradient update law and to set v = 0 (thus
returning to a pure certainty equivalence control). In the case of adaptive linecar systems.
boundedness of the closed-loop signals can then be established using the Gronwall lemma
or some type of small-gain argument. Attempts to apply this tyvpe of stability proof to
nonlinear systems have so far been successful only wlien conie constraints are imposed on

the nonlinearities. Without such linear growth constraints. the term (U = 0) vy} can canse

-]




some signals to escape to infinity in finite time if the parameter error 0 — 0 15 not rapidiy
decreased. The dithiculty with normalizations of update laws 1s that they dont atlow o
rapid enough decrease of the parameter error when this error 1s most harmful. A simelation
example of instability of a full-state-feedback scheme with normalization [14} is given in our
companion paper [22]. where it is also shown that an unnormalized update law preserves
global stability. We are. therefore. motivated to look for an unnormalized npdate law

The SPR form of (2.214) suggests the unnormalized gradicut update law

():/llf;. i

[
e
it

Given the complexiiy of the nonlinear system (21). it is hikely that such a <imple npdare
faw will shift the difficulties in the adaptive design to the proof of stability. Indeed. this s
the case. A simple Lvapunov-like function involving €2 and 0% has a nonpositive derivative,
but fails to prove boundedness of y. [t clearly shows. however. that 5, must be taken mro
account. Qur next attempt is with the function

Ly, s 0 1 -
vV, = 5 (62 + 62 +/¢ 62(T)dT> + 7)-7er77, (2206

<

where P is the posiuve definite solution of the Lyapunov equation

31 -
PAo+ ATP = —2[ = P = 13 ol 207,
Using (2.22), (2.24) and (2.25), we compute
. 1 1 .
Vo= —5(E—et) -5 (&8 + 20T Phiye + 297 Pha] . (228

and try to render it nonpositive. The tool we have prepared for this task i1s u. However. it
turns out to be unpossible to counteract the effects of the two-dimensional vector hh, ¢ by
u aione. Hence, we need an additional degree of freedom involving hy. This prompis us to
replace n 1 (2.26) by the new vector

51—
G o= &lh)m + .

Rt

to

{




where the nonlmear function £ (A1 s at our dispusal  With the new variables [ the nog

negative function to be used i our proof s

[ s S =, i -
V= :((“‘?‘0',“‘?“ / 62(T)(1T>+‘—Q1Pg Y
KN Jt / 2
Lo evalnare Vowe need ¢ which is obtained by differentiating (2.29) and nsing (2,195 2224
o= G-l =Sy G
o=~ = 20+ 280R0)G - u - Y LA
X Y
, . . ST
+&ih) |G = Ao —E‘.‘.h’l)ﬁi] b=l
1 oh,
[ntroducing the notation
J
u o= ~hl \ R (2002
—hyh, — hi&,
we compute the tune derivative of Voas:
, 1 R 1,
Vo= -3(("~t(!))“—gjﬁ——{3t'2 ~ P Pwe
£ ¢ 1
T SIS51 )
+VP i B R - J&, X 2
=200+ u =60+ 50 - 5hed
Jh,

2.5. Design equation. We now have two tools to make V' nonpositive: the function &by .
and the control termi u. With these tools we will attempt to represent the quantity enclosed
in braces m 12.33) as the sum of two squares. It turns out that this is possible to achieve by

decomposing P as I = Py + Py such that the following design equation holds:

. -
_ ) s161
[)1 H,‘IL‘I I)I'g. + [)gll'lb‘1 )2L: = P . . 3. “)51 . . 1230
=20 ru=80G+EG - —h]G
()hl |
The substitntion of (2,34} into (2.33) vields the desired form for 1
- 1 , 2 RN € .T : &3 -T y e e
14 = msle=dt)) =00 - 5 ¢ P —(3«’\ [’ghﬁ) < 0. (2.35:

Onr task 15 now 1o find Py P £0hy) and @ which satisfv the desien equation (2,347, For
et > e !
the example considered herel the svstematic procedure of Sect. 3 gives the following <olntion

for Iy and Py

20 11
{2 = . o RN
! 0 0 " 1
2]




Substitution of {2.36) into (2.34) results o
r YRV

2h1G)

&G

o 4o L
dh,

which directiv vields the tollowing solutions for &, and u:

[(hihe + hi + Eh3)7 = 2R11 G0+ [(hvhe + AT + &R1)%] G } -

hz) G -6 +u

&L= 2/1'“1‘
io= [3h3hy + 2k} — 4hY + (hihy + AT + 20007 ¢,
+ (28] + (hoha + BT+ 207)] G2
tsime (2 29) and the notation
z1o= Shihy + 281 + (14 2h])(hihy + A + 207)°
s2o= 2hY 4 (hihy + AT 4 2RY)F
u can be defined in terms of available signals as
U= o1 + Pz
To summarize, the complete closed-loop adaptive system is
Plant:
D% = (D*+2D+1)u+0 [D'paly) + Dpily) + poly )|
Control:
G - FB -~ E),
v S EyET o Ou(y) - —E +om 4 2
[‘pdate law:
i = hie,e=e+no=y—y +mn
Fulters:
h = Agh + huiy)
o= Aonp = bleun + pan2) = hhe
Mo = ot

10
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where y, is the output of the reference model (2.3) and v(y) is defined in (2.6).

2.6. Stability and tracking. The stability and tracking properties of (2.143) are now
established using the nonnegative function V from (2.30), whose derivative, given in (2.33). is
nonpositive. Because of the piecewise continuity of 7(¢) and the smoothness of the nonlinear
functions pg, p;, p2, the solution of (2.43) has a maximum interval of definition, which we
denote by [0.t;). We will now show that ¢; = oc.
From (2.30) and (2.35) we conclude that €, ¢, and 6 are bounded on [0, £f). Solving (2.29)

for n and using (2.33) we obtain

T =

= G2 2
Thus. the boundedness of ¢ implies that 7, is bounded, w_.ich, in turn, implies that 7 is
bounded: 15y = —no + 1. Since é and 7y are bounded, e is bounded: e = & — 15. By the
boundedness of y,. this implies that y is bounded: y = e +y,. Hence, v(y) is bounded. which
means that k is bounded: h = Agh +bv(y). {2.44), The boundedness of h and { implies that
n and @ are bounded (cf. (2.44) and (2.39)).

This does not yet prove that u is bounded. From (2.11), to prove the boundedness of u

FB - B - FE, :

we only need to show that ——B—éu is bounded. Since Es is of relative degree 1.

2 2

FB-F, .
we can express ————u in the form
2

FB- L, . E E

- lu= £, >+ 1 Ll + €(t) . (2.43)
£, (D+ 1D+ Ay ((D+1)3 D+ M (D+1)

where Ay 1s a positive constant and £y, Ey are polynomials of degree 2. Now (2.15) clearly
H

w 1s bounded for + = 0,1.2. Since y is bounded and

shows that u is bounded if —

(D +1)3

the plant is minimum phase and of relative degree 3, it follows that —u is bounded.

b
(D+1)

Differentiating (2.14) and substituting —0u(y) + i from (2.11), we obtamn for 1 = 1.2

D -
AT ml/}u(y)—}-ﬂ]{»((f)

. [’) )+ 1B, & el 200
= —_— 1t — _—y — ¢ .10
D+ 1p LT T ‘

11




Di—l

Using h, = sv(y), 1 = 1,2, from (2.19) and rearranging terms in (2.46) we get

(D+1)
D FB : D G D
=) o — | —y— 7| - ——hi0 t). (2.47
(D+1)3[E2u] ¢ (D+1)3[E2y ’] Dyt et) (=A%)
From (2.24) we have
e = é—1ng=—e+0h +n0—m + €t) (2.18)
= 6—0hy— hle+0hy—no+m —ma+ hiE+€(t). (2.19)

Since &, h, 7, 6 are bounded, (2.48) and (2.49) imply that é, & are bounded. Hence. by (2.47).

D FB ;
D+ 1)p [ E, u] is bounded for ¢ = 1,2. The boundedness of (D_+1_)3u for i = 1,2 then
follows from the boundedness of ——1———u and the recursive expression

(D+1)
D? D' FB D(FB - E;) D! ]
- - t). 2.50
(D+1P" " (D+1P By 5 orpe T (2.50)

Next, ve prove that the state of the plant is bounded. From (2.12) it follows that D'y.
0 < : < 3 are bounded. Combining this with the fact that the plant is minimum phase. we
conclude that the state of any minimal realization of (2.1) is bounded on [0, t().

Thus, we have shown that the state of the closed-loop adaptive system (2.43) is bounded
on its maxinimm interval of existence [0,tr). Therefore, t; = oco.

Finally, we prove convergence of the tracking error to zero. From tf = co and (2.33) we
conclude that V is bounded and integrable on [0,oc). Furthermore, the boundedness of ¢
(cf. (2.24)), ¢ (cf. (2.31)), and A (cf. (2.19)), implies that V' is bounded. Hence. 1" — 0 as
t — oc, which implies (cf. (2.35)) that € — 0, ( — 0 (since h is bounded). This. in turn.

implies that n, — 0 as t — oc by (2.21). We conclude that

[ BV
-
—_
—

y—y,:n:é—no———»()as‘ta'x\. (2.




3 The Systematic Design Procedure

Even though the expressions in the general case become more complicated than in the

preceding section, the main steps of the design procedure remain essentially the same.

3.1. Nonlinear system properties. We consider the class of n-dimensional nonlinear
systems which have an input-output description expressed globally by the n-th order scalar
differential equation

m

ul + 3 D" [poly) + P (1)0] - (3.1)

1=0

=
o
<
It
=
S
=)
S

where

e the coefficients ag, ..,a,_, of the denominator polynomial A(D) = D™ 4+ a,_, D" +

+ ag are unknown,

o the coefficients by, ..., b,,(m < n — 1) of the numerator polynomial B(D) = b,, D™ +

-+« + by are unknown, but B(D) is known to be Hurwitz, and the sign of b,, is known.
e §; 1s an {-dimensional vector of unknown parameters,

® q(y), pi,(y). 0 <1 <m, 0 <j < ¢, are smooth nonlinearities with ¢(y) # 0 Vy € IR.

p;(0)=0,0<:<m,0< ;<L

Systems in this class are linearizable by output injection, and input-output linearizable by
full-state feedback, but not necessarily full-state linearizable, even by full-state feedback. as

will be shown in Sect. 5.

3.2. Augmenting the CE control. The design objective of the certainty-equivalence
part of our control is to match a reference model of the same relative degree as that of
the nonlinear plant (3.1). As this plant is input-output linearizable by output feedback. we

choose the linear reference model:
E(DYEAD)yy, = Rr, Ey(D) = Eyj(D)Ey(D). (3.2)

13




where E,(D). Ey( D), Ey (D), Eq( D) are monic Hurwitz polynomials of degree n — 1. n—1.
n -m—1,and m, respectively, and R(D) is a polynomial of degree h < n —1. Filtering (3.1)
by the strictly proper stable filter F'// E>, where F' is a monic polynomial of degree n —m — 1.
we obtain

FA FB ™ FD q -
TV = g b + X [pely) + 0] (33)

[t 1s now straightforward to verify that in the case when the coefficients of A(D}) and B(D)
and the parameters 6; are known, the desired matching is achieved by the control

1 G M : [Tj T D

U= — o ——=—y + =71 — — —p;;
(I(Z/){ E, E, j=0 Ey =0 Exn'"

(y)} - é—: [q(y)U']} : (3.4)

provided that G, a polynomial of degree n — 1, F', M, T, and Lg satisfy the polynomial

equations
FA+b,G = E\E, (3.5)
M = éR (3.6)
T, = Z};HUF, 0<j<t, bho=1 (3.7)
Ly = iFB—EQ. (3.8)

Note that Lg 1s a polynomial of degree n—2, since both —1-FB and F» are monic polynomials
of degree n — 1. When the control (3.4) is applied to th:e1 system (3.1), asymptotic tracking
1s achieved:

y(t) = y(t) +e(t) — y(t) ast — oo, (3.9)
where €(t) is the exponentially decaying tracking error caused by the mismatch of the initial
conditions.

We now rewrite the control (3.4) as
= ——— [o"(y.u". 0] . (3.10)

where the ng dimensional vectors ) and ¢ (with ng = 2n + (£ + 1)(n — m)) are defined as

-
0 = {go. Gty —motaos o tonem-t bt
---Ji()»-A-.f()l_’n_m—x-ﬁn()-w-~ﬁ(m—2] (311
14




‘ D,_ R D LAY D& D oD
T = n—1 n-m-1 n-m-—1
o (y,u,r) = s =T i 1
(y BV E P §E22p°(y) e Dy —paly).
En—m—l =D -511—2
ey =22y ——puly) u® 3.12)
£ §E22pz(J) E, lq(y)w’] (

with D defined as the (k + 1)-dimensional row operator Dy = [1,D,..., D*]. The form
(3.10) is particularly useful in the case where the coefficients of A(D) and B(D) and the
components of the vector §; are unknown. Since in that case the parameter vector v aelined
in (3.11) and used in (3.10) cannot be computed, it is replaced by an estimate 0. The so
formed “certainty-equivalence” control is then augmented by an additive term @ which is yet

to be designed. Hence, the adaptive control will be of the form:

1

u =

Filtering the svstem equation (3.1) by the strictly proper stable filter . and using
(3.5)-(3.3) and (3 11)-(3.12), we obtain:

FA BF ™ D'F

E\E,

ElE’zy - ElEg{ +ZE1E2 {pto(y)-;-p‘ (y)e} +6( ) (314)
y = = [ Jul + = +Z[ ZD' 5 )] + €(t) (3.15)
y = E1 qly y = E21 prd E22Pt] y e
y = éﬁ{ (y)u+ o' (y,u,r)0 + ﬂr} +€(t) (3.16)
/ - E] q J J7 bl E2 1 .

where, as in the case when 6 is known, €(t) denotes a linear combination of exponentially
decaying terms caused by the mismatch of the initial conditions. Substitution of {3.13) into
(3.16) yields the following description of the resulting feedback system:

b { R

Y=, b, E,

T+ (y,u,r) (0—0)+a}+e_(t). (3.17)
Introducing the error variables
e=y—y, 0=0-9, 13.18)

and taking the difference hetween (3.17) and the reference model (3.2). we obtain the fracking
error equation:

bm T
e:—[::[¢ (J,Itr()+ll]+( (3.1

15




In the special case of relative degree one (n — m = 1), the design is extremely simple.

Since the transfer function |b,|/F) is SPR, the parameter update law
b = sgn(bn)Té(y, u,r)e, (3.20)

where ' = I'T > 0 is the adaptive gain, guarantees boundedness of all the closed-loop signals
and convergence of the tracking error € to zero [1, Chap. 5], and the control augmentation is

not needed: @ = 0.

3.3. Error augmentation and swapping. For relative degree higher than one (n —m > 1).
the design becomes considerably more complicated, since |b,]/E; is no longer SPR. We first

rewrite (3.19) in the form

1 P | b
= 0T— ] _m.___
DT [bm E0¢(y’u’r) + £
bm l AT AT 1 29
_ 0T —_4 3.21
ooy 5 07 - o] + e, 321
where
Eo(D)Y(D + X)) = E1(D). (3.22)

[n contrast to the example of Sect. 2, where the high-frequency gain b,, was known. here

1t 1s unknown. Therefore, using an estimate i)m and denoting Em = b, —I;ﬂ., we rewrite (3.21)

in the form
1 o1 . 1 1 1 fap
D+ n? AR (EO“ 5T E 1
1 o/1 1 1 .-
by | —1— 6T = + — |07 >] t). 3.23
+D+%[’<&“ ot [07e])] + et (3.23)

Since the first summand in (3.23) is in the desired SPR form, we define the augmented error
é=€+770, t;ll)

where the term 1y represents all the undesirable terms in (3.23):

1 [ (1_ S R r)}
- - b (=it = T —6 + — [ . 3.25)
N I W L A N +&J %) e
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—— — — —— —— —— [ X —_—— L Tty ——— —— ——

The vector multiplying 8 in the first term is denoted by
== 9 ) (3.26)
= ] T). A
: EO yvua

Considering ¢(y, u, ) as the input and ¥ as the output, we represent (3.26) in the matrix

state-space form: .
H = A\H + b¢T(y,u,r)

(3.27)
T = c'H,
where (c, Ag, ») is 2 minimal realization of 1 /Ej:
cT(sI — Ag)" b = L (3.28)
EQ(S)
Now 7, 1s the output of the (n — m)-dimensional system
o = —oo + bnc'y (3.29)
N o= A —bu-Hb. (3.30)

The variables ¥ and ¢'7 from (3.27) and (3.30) allow us to express the tracking error as (cf.

(3.21))

1
€ =
s+ Ag

The analogous expression for the augmented error is

(6071 — bmcTn] + €(t). (3.31)

1
s+ Ao

R

[hméTUJ - Bchn} + e(t), (232

and it has the desired SPR form: the parameter errors 0 and b,, are filtered only by the SPR
filter 1/(s + Ao).

3.4. Update law. As in Sect. 2, we choose the unnormalized gradient update laws suggested

by the SPR form of (3.32):

0 = sgn(b,)Tve (3.33)

i),n = —‘ycTné, (3.34)
where I' =TT > 0 and 5 > 0 are the adaptive gains.

17




From Sect. 2 we kncw that in the proof of stability there will be a need to balance the

interaction between n and H. Therefore, we introduce the new variables ( :

(=5"'n, S=C7=C,, (3.35)
wheren=n-m -1,
1—1 T

c,-s[c,Agc,...,(Ag‘) c] , i=1,...,7 (3.36)

i . A

§LE -

Z = Jagn + §2E2 (3.37)

| én1Bao1n |
E;i=[Lx; O, 0<j<i, (3.38)

and [ix; is the 1 x 1 identity matrix. The components of the i-dimensional row vectors &,
are nonlinear functions of the elements of H which represent the aforementioned additional
degrees of design freedom. In order to show that the matrix S defined in (3.35) is invertible,
we note that, because of the structure of the matrices E, ; defined by (3.38), the matrix =

is lower triangular with ones on its diagonal. From this and the aforementioned functional

1

dependence of & on H, it follows that =~' always exists and that the elements of both =
and =-! are polynomial functions of the elements of H. Furthermore, C;' exists because
(¢!, Ap) is assumed to be an observable pair.

The nonnegative function to be used in our stability proof is

- < . 0 A
y=dt (éz+ | b | 0FT10 + ibfn + i/ 62(T)d7’) +2¢TP¢. (3.39)
9 ‘7 /\0 t n

The form of (3.39) is the same as that of (2.30), where P is the positive definite solution of
the Lyapunov equation

PAg+ ALP = ~Q,. (3.10)

To evaluate V we need ¢, which is obtained by differentiating (3.35) and using (3.30), (3.33)
and (3.36)-(3.33):




. d ;.
¢ = S71(Agny — b — sgn(b,) HType) + - (57"
= S57'A,S¢ + S (bt + sgn(b,)HTwe) — S™18¢
= Ao¢ —sgn(bn)S T HTYE + 571 (ApS — SAq — S)( — S~ 'bu. (3.41)

Introducing the notation

w = —sgn(bm)S'lHsz (3.42)

W o= S7'(SAs—AS+8), (3.43)
we rewrite (3.41) as

( = Aol + we — W = S™'ba, (3.44)

and compute the time derivative of V' as

: 1 1\ A 2) . .
V=—3<\/:\;é—\/)\_06> OTQDC——-E{ZJ-( (wé—bV{—b“ba)}( (3.45)

r4

3.5. Design equation. The tools we have at our disposal to make V nonpositive are the
functions &(H) and the control term a. With these tools we will attempt to represent the
quantity enclosed in braces in (3.45) as the sum of 2 squares. It turns out that this is possible

to achieve by decomposing P as P = ", P; such that the following design equation holds:

> PwwTP{ = P(W¢ + S™'ba). (3.46)

=1

The substitution of (3.46) into (3.45) vields the desired form for V:

1 D Ao
ot (e ) - - 2o

Our task now is to find P;, £,(H) and @ which satisfy the design equation (3.16). Following

(- —gTPw) <0. (3.47)

i=1

the development in [21], we define
P, =CTMC,, (3. 18]
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where

M, = (P!

M, = (cpaer)” (LX.» - EC;P'lchAIJEJ_i) , i=2....7. 3:19)
i=1
In {21. Lemma 1] it is proved that (3.48)-(3.49) result in
i P =P (3.30)
CjP‘lc?‘;,-C,» =0, 1<j<i<n. (351)
This proof is now given for completeness. From (3.49) we have
L = C;P“‘C?]V[¢+SC,-P_ICjTM,-E,-,,-
=1
= CiP‘lzi:C’Ez\fIkEk,,-. (3.52)
k=1
Premultiplying both sides of (3.52) by C; and using the identity
Ce = E;Ci, k<, (3.33)
we obtain
Ci = C;P! Z CEMCy . (3.54)

k=1
Evaluating (3.54) at : = 7 and using the nonsingularity of C; we obtain (3.50). Furthermore.

premultiplying (3.54) by F,;, where j < ¢, and using (3.53) again, we obtain

T
Ut
)

C,=CP' S CRMCr, i> 7. (3.

k=1

But from (3.54) we have

J
C,=C;P7' Y Ci MCy.,

k=1
which, combined with (3.35), results in (3.51).

[laving established (3.50) and (3.51), we now set out to find £,(H) and @ which. along
with P; defined by {3.48)-(3.49), satisfy the design equation (3.46). Substituting (3.138) into
(3.46) we obtain

W¢+ S~ tbu = P'Y CIMCoww CTMTC,. (3.56)

=1
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Using (3.43) we rewrite the design equation (3.56) as

(S40 - AS + 8) ¢+ bu=SP' Y CTM.Cawn CTMTC.

i=1

Premultiplying both sides of (3.57) by ¢TAy ™! fori = 1,..., 7, we obtain

AN (AGSC - ba) = AL [5 (AO - Py Ch M Ciww™CT M,C,) + 8

J:

1=1
T gi-1p- e =
+c Ay b, 1<:< 7.

From (3.35), (3.37) and (3.53) we have

0
£Ch
Cﬁn.”’ = ECﬁ = Cﬁ + 62(;2
L En1Crny i
which gives
cls = L

CTAB—ls = CTAG—l +£Ciny, 1<1<n

Furthermore, from (3.35) and (3.37) we have

0
. . . EICI
TATYS = TACICTEC, = JAYICT! _
Eﬁ—lC"ﬁ—l
~ éi——lci-—la 1 Slsﬂ'-

where we have used the defimition of C, to obtain the last equality. Finally.

definition (3.28) of the tr.ple (¢, Ay, b) we have:

cTAy's = 0, 1<i<n-1
CTAg_lb = 1.
21
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i

(3.60

(3.61)

(3.62)

from the

(3.63)

(3.6:4)




ar S - S S - .

Substituting (3.60)-(3.64) into (3.58) results in

T . ' 1'1‘ v T -1 N
c 1(l)+'fz -‘,x = \cl—lcl—l+c 'A1:)+£1—1(t—l"10—(c A(‘) +£x—l(1—l,)
n
-1 ~+T v o T/T T - . g -
x PYCRMCuuw CIMINC, 0 1 <i<n - (3.6
=1
_ [ . - T 7 - T - .
Eo= (TARS = 6ol et Al = S Coy A+ (TATT G
n 1
x PTISTCTNCouwTCTMIC | ¢ RENE
PARRS 1) J J J
=1

At this point, we have almost achieved our goal of finding &, and u which satisty the desien
equation and thus render V' nonpositive. Still, (3.65)-(3.66) are in a rather complicated form
and. moreover. they involve the time derivatives of the functions £,. Therefore, we now ~et

out to simplify (3.65)-(3.66) and to express £,_; as explicit functions of available sigrals.

1
1

Motivated by the appearance of the terms C,» in (3.65)-(3.66), we mntroduce the o
dimensional column vectors wy. . ..wy which are defined ax
w,=Ciw, 1<:1<n. SN

Combining (3.67) with (13.53) we see that these vectors satisfv the recursive expressions
wn, = Chw AN
w, = Foawse, 1<:0<n-1. 1360
Using (3.38) we can rewrite (3.69) as
w =fwl, wi), 1<i<n-1. (3T

We now set out to obtain explicit expressions for wy,.. ,ws in terms of & Substianing
(3.42) into {3.68) results in

—wp, = —sgn{b, )C  HT W 3T

We then nse (3.27). (3.37) and (3.70) to rewrite (3.71) as

0] [
¢ F . T
st Wy ¢ cly . . e
Lixn + ) [ nol } = —sgn(h,) , HUH e 3T
. Wyn R
Al d oyn~1
5'1—-1[‘71—1,7} ( x\”
22




By (3.38). (3.72) 15 equivalent to

U

slll‘l,ﬁ.—l . N T
[(n-l')x(n—l) + R Wno = _Sgn(bm)(—- vi—l/{rll C

4 -
\iz—.ZL".—‘Z.n—l

Wan + Enitony = —sgnlby )T AT e,

Starting from (3 737 (3 T4). one can repeat the above procedure to show that 3.

<'(‘!1ll\';ll('nl to

ey CT
Wy, + £y ety -
= —sgn{b,,) . HTH «¢.
EA + Erz—llv'i~l (1 ‘4(’)1_1
fHlence the exphar expressions for the vectors wy..  wy are
il = esgath, ) (THTH )
; ~ - - -~ . ‘ .
u‘xr = :n'll_l. —sgnih,, ) (l‘r.‘l[‘) YT Hr(') —&qwy s =200 o
Combinig (3 31 and (3.67) we obtain
143 1
CpiT T N L V2 VPN NIY o DRSSPIV ot SR
1 Z( | M, Cwn ) A\[J C, = (LF Z(,J M, Chicwe ™ ( j .\11 .
;=1 =1

= (Pt e e MR,
1=l

(LN

1

where

vV, = P Z ( r .\[Ju‘_,uf.\ljI E... =1 .n

=1

Tlhis the last term in (3.65) and (366} can be rewritten as

7
"'I"\:)—l + &40 )P‘lZ(‘Jr.\lj(,'Ju'wr(_VJT.\I)r( =

1=1

L

=0 011+ & 3k )0 PTY0 MCoew' O e
=1

= ([0 01+ & g )0 NG

= (("I 4":)-l + \cl—l('r—l)‘\yx('l

23
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Introducing the ¢ x (¢ + 1) matrix R4, = [0, I} and Substituting (3.80) into (3.65)-(3.66)

we obtain

51(,‘1 = £:-1(~vz—1 + fz—-l(jz-l‘k‘l) - (C'I‘f{a—l + fz—lcvx—l)"\;l(vl
= [51-1E1—1,1+€x—11zx _(CT/YO‘I +€;_IC',_])JV,'] C/‘l. 1 = 1.....T~l— l (5R1)
o= {"T”‘SLS - ‘7T4'18 - {éﬁ—lEﬁ—l,h + én—er‘z

N §aciCasi) .\"ﬁ] Ca} . (3.82

\

This form makes it apparent that the design equation (3.56) is satisfied by the recursive

CXPIes<ions

& = —c'N, (3.83)
\cx = Sl-lEn—l.x +£l—lBl - (CTAAB‘-l +£l—1C1—1) A‘VI’ = ‘3-‘ﬁ ‘:;~‘\'1-‘
u o= [crAS - <CT:18 + fﬁcﬁ) S . i3.85)

To tinally solve the design equation. we need to express £,_; in (3.84) as an explicit function
of available signals. We frst show via an induction argument that (3.76). (3.77). (3.701.
(3533) and (3.54) imply that the elements of w;, :V, and £ are polynomial functions of the

elements of C I

o tors =1, this fact 1s obvious from the definitions:

wy = —sgn(b, ) HL(C H)!
Vo= PCT Mywpwl MT
51 = —CT.'\[l.

o Fori =k < n—1, suppose the elements of wy, Vi and & are polvnomial functions of

the elements of CcHo Then. the derivative of € can be expressed as

g Ok
fo=S T Lk (3.86)
ok )zz:l k'J(')}Lk‘J

where b s the j-th column of Clf and S [Oh, 15 the & x ) matrix of partial

derivatives of S(C ) with respect to the elements of hie, But from (3.27). (3.63).
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(3.64), and the definition of Ry, ,, we obtain

Cell = CoAgH = RepCoinH, 1<k<na-1.

Combining (3.86) and (3.87) we can express £, as

9k
Sk - Z hk+1]RE+lah

e f'or: =4 + 1, we have

wl,, = {wg,—sgn(()m)[o...OI]C;CHHF(ClH)T—fkwk]

. . ~1~T T T
Nert = NeEywyr + P Cl\+1A]k+lu"k+lu)k+l‘l"‘[k+1

.
s
o)
—

d
fk+1 = Zh’k+1JRk+lah£k Ek k1 T ffch+1 - (C A + {ka) \k+1 .

Hence. the elements of wiy,, Niey1 and x4y are polynomial functions of the elements

of (Jk+1 H.

Thus. the term £&_, in (3.84) can be calculated explicitly from (3.38).

The design procedure is now complete The expressions for & and @, which guarantee

that the nonnegative function V in (3.39) has the nonpositive derivative (3.47). are

&L= “CT‘vl .
¢ _ ’19 T pT agl 1 ) T 4:1-1 ¢ T
St — Z thRx ?} t—1.2 + E:—le - (C Ao + sx—le-l) A\x .
i—1,)
u = ',9 7)
PT = ’7T"1(’; - ( T l() + O n) (C;IE 'Vﬁ>_1 .

The designed closed-loop adaptive system is:




Plant:

y

Control:
u

Update law:

Filters:
H
T
7o

U

where ye is the ontput of the reference model (3.2), o(y.u,r) is defined in (3.1

(ce, Av, bs) is a minimal state representation of the plant equation (3.1):

—@n-1

-y

Az + beg(y)u + 3 cass [poly) + p1 ()01

1=0
Cgl‘

1 T i T
L [Ty + 5T
q(y) -
sgn(b,)l've
—~cTne

e+ng =Y~ Yt

AoH + b6t (y,u,r)
cTH
—_ \07]0 -+‘ i)mCTT]

Agn — bg.oTr] — Hsgn(b,)Tye,

with 7,,_, the (n — 7)-th coordinate vector in ™.

7

(3.99)

2y, and

(3.91)

The stability and tracking properties of (3.90) are established in the next section.




4 Stability and Tracking

We are now ready to state and prove our main result:

Theorem 4.1. For any uniformly bounded and piecewise continuous reference input r, all
the signals in the closed-loop adaptive system (3.90) are well-defined and uniformly bounded
on [0. o), and, in addition,

lim e(t) =0, tlirgzo n(t) — 0, tlir?o no(t) =0. (4.1)

t—o0

Proof. Due to the piecewise continuity of r(¢) and the smoothness of the nonlinear functions
appearing in the definitions of various terms in the closed-loop system (3.90), the solution
of (3.90) has a maximum interval of existence [0, ¢). On this interval, the time derivative of

the nonnegative function V defined in (3.39)

1 1 foo A
V=s <é2+ | b | 677710 + — b2 + T/ ez(T)dT> OQTPQ
0

<

computed along the solutions of (3.90), is given by (3.47):

2 = E
o _ l - 1 AO T . 2)0 i € -T z
‘/ - —7)' (v /\06'— \/Ee) —_ﬁ_c QOQ ——ﬁ—._ <3"‘C th> SO

We conclude that V. &, 8, b, and ¢ are bounded on [0.¢) by constants depending only on the
initial conditions of (3.90). This implies that 8, b, are bounded on [0, ¢). The boundedness
of ¢ together with (3.60) implies that ¢Ty is bounded; from the definition of 7 in (3.90) and
the boundedness of b, and ¢T7 it follows that 1o is bounded. But since e = & — no, and €. no
are bounded, we have that e is bounded. Now from the boundedness of r we have that y,
is bounded, and, hence, y is bounded, since y = e + y,. The boundedness of y implies that
all the nonlinearities appearing are bounded, and, furthermore, that ¢(y) is bounded away
from zero. Filtering the system equation (3.1) with the strictly proper stable filter 1 /B L,

and rearranging terms, we obtain

LI lely)d = [351/+Z BF, = oty + ol (42)

V]
-]




. T 1 : .
which, by the boundedness of y, implies that —E—q(y)u is bounded. The boundedness of H is
1
now established by proving that the row vectors cTAYH, 0 <1 < 2 — 1 are bounded. This.
in turn, is proved as follows: First, from [21, Lemma 3] we have that the first 7 derivatives

of e can be expressed as
6(1):/'1‘1' (évé~8manOaCiHycij€1)a i:l,...,fl\ (43)

where the p,’s are continuous functions of their arguments and the ¢,’s are exponentially
decaying terms. This is straightforward to show (cf. (2.48)-(2.49) in the example of Sect. 2).
starting from e = é — 5y and using (3.90) and the facts that the derivative of ( is given by
(= Aol +we — P7Y CIM,Cww™CTMICL(, (+.4)
=1
and that the elements of w;, NV, and §; are polynomial functions of the elements of C,H.
Second, from (3.27) we have
T 4i D' 1 2 - -
cAoH=E—o (y,u,T)+&(t), 0<:1<a-1, (4.5)
0

where €(t) are ng-dimensional row vectors of exponentially decaying terms. Then. we use

{3.12) to express ¢ as

| D._ o
o (y,u.r) = | P(y,r), 5 2[q(y)u}}~ (4.6)
2
with
— D—n—l R bn—m—l i Di D-n--~m—1 i ' -~
r) = g, —r, —=22 NS 2 poly) L S RIINT i
o(y.r) [ £V ET T E ;)Enpo(y) £ ;}Enm(y) (4.7)

being bounded, since y and r are bounded. Combining (3.13), (3.19) and (4.5) we obtain

the following expressions for the first i derivatives of the tracking error e:

b,, D! .
(v) _ m T ~
e = E, [45 (g, u,r)0 + u] + (1)
b D}
= [q(y)u+¢T(y,u,r)0] + €(t)
N
[sz me D -1
= )E] lq(y)u] + Ei) DEO o (y. u.r)0 + €(t)
£ ! ;
= 2 gyl + PER AT HO 4 d(0), 1< <L (+4.5)
El El
28




It is important to note that b,, EoD / E, is stable and proper. The boundedness of ¢! AL H is

now established for : = 0,...,72 — 1 by the following induction argument:

o For: =0, (1.5)-(4.6) give

SR DU
C H - [Eou(y’r)‘) EOE‘Z [Q(y)u]
1 E.D,_, 1 ,
[EOU(1 ’r) k] EOE2 El [q(y)u]} ( )
1 El-ﬁn—2

Since v(y,r), (¢(y)u] are bounded and is a row of stable proper filters. (4.9)

By EoE,
implies that ¢T H is bounded. Furthermore, we have already shown that e is bounded.
e For1 <: < -1, assume that ¢cT AXH and e!®) are bounded for 0 < k < : — 1. Hence.

C.H is bounded, and, by (4.3), e!!) is bounded. Then, rewriting (1.8) as

Dt 1 . D
7 law)u] = 7—e¥ —EEO.—CTAB-IHG-Fe(t). (4.10)
m 1

1

cFALH = [

’—f—'—[Q(y)uHE(t)}- (4.11)
2

Hence, c¢T AL H is bounded.

This proves that H is bounded, which, by (4.3), means that e*), 1 < i < @, are bounded.
Next, we prove the boundedness of u. From (3.13), the boundedness of § and the fact that
q(y) is bounded away from zero, it follows that u is bounded if @ and @(y,u,r) are bounded.
= RV ]

The boundedness of H implies the boundedness of ¢, = and =-!. Sincen = S¢ = ()" '=C;.

and = and ¢ are bounded, n is bounded as well. Hence, @ is_l)ounded. From (4.6)-(1.7).

to prove boundedness of é(y,u,r) we only need to show that ——=2 [9(y)u]. We first rewite
2
(4.8) as
D' 1 EoD _
— [g(y)u] = —e ~ 0 CTA:)—IH() +e(t), 1 <i<sn-1, (1.12)
E, b, E,
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which implies that o [¢(y)u] is bounded for i = 1,...,7 — 1. Combining this with the fact

1
t

1 D :
that ol lq(y)u] it follows that oA [¢(y)u] is bounded for : = 1,...,n — 3. Differentiating
1 2

(4.12) with : = 2 — 1 and using (3.27) and (3.64) we obtain

Dm 1 . EoD - -
A lq(y)u] = b—-e(”) - 2 [CTASH + ¢l(?/,u,7‘)] 0+ €(t). (4.13)
1 m 1

Substituting ¢ (y,u,r) from (4.6) and rewriting (3.11) as 87 = [ET, lon_2], we express (1.13]

as
L _ DﬁEQ + gon_gDn—lEo
I ... EoD ol ,}
I C I L D L 7 ] £, (414
b E | AcH O + [V(y,r), i [q(y)ul} J+e( ), (4.14)

13

which implies that —é— [¢(y)u] is bounded. Since L is of degree n — 2 and 5 [q(y)u] 1s
2 2

n-2

n—-2

bounded for : = 1,...,n — 3, it follows that [g(y)u] is bounded. Hence. (q(y)u]

is bounded, which proves that u is bounded. ’ :

In order to show the boundedness of the state of the plant, we note that the boundedness
of u and (3.16) imply that D'y, 0 < i < n — m, are bounded. From this and the fact that
B(D) is Hurwitz, we conclude that the state z in (3.90) is bounded.

We have thus proved that the state of the closed-loop adaptive system (3.90) is bounded
on [0.tr). Hence, t; = oo.

To prove the convergence of the tracking error e to zero, we first note that (3.39) and (3.47)
imply that V is bounded and integrable on [0, c0). Furthermore, the boundedness of ¢ {cf.
(3.32)), ¢ (cf. (4.4)) and H (cf. (3.90)) implies that V is bounded. Hence, V' — 0 as t — .
which, in view of (3.47), proves that € - 0, ( — 0 ast — oo. Since n = S¢ and S is

bounded, n — 0 as ¢t — oco. Combined with (3.90) and the boundedness or b,,. this also

proves that ng — 0 as t — oo. Thus,

Jim [y(t) = ye(t)] = Jim [e() = no(t)] = 0. (4.15)
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5 The Class of Nonlinear Systems

Most models of nonlinear systems are expressed in specific state coordinates. From that
state-space form it may not always be obvious whether or not the nonlinear system at hand
has the input-output description assumed in Sect.3. Therefore, we now give cocrdinate-
free geometric conditions which are necessary and sufficient for a single-input single-ontput

nonlinear system of the form

: = flzia) + gz a)u (5.1)

y = hizia)
to have an input-output description of the form (3.1), which is repeated here for convenience:
A(DYy = BUD)laly)ul + 3 D' [paly) + #0101 52
In (5.1) = € IR is the state, u € IR is the input, y € R is the output, a = [a; ... a,]! € I
1s a vector of unknown constant parameters, and f, g, h, are smooth vector fields with

fl0;a) =0, h(0:) =0, for all a € R, g(2) # 0 for all z € [R*. In (5.2)

o the coeflicients aq, ..., a,_; of the denominator polynomial A(D) = D" + a,_, D" ' +
pol)

- 4+ ap are unknown,

e the coefficients by, ..., b, (m < n — 1) of the numerator polvnomial B(D) = b,, D™ +

- 4 by are unknown,

e f, is an {-dimensional vector of unknown parameters, resulting from a possible overpa-
rameterization in which products and powers of the original unknown parameters a,

are treated as new parameters (so that ¢ > r),

* q(y), p,(y), 0 < m, 0 < ; < £ are smooth nonlinearities with q(y) # 0 Vy € [R.

Pi;(0)=0,0<2<m, 0<) < ¢

We first note that a minimal state representation of (5.2) is given by

o= Agr +beqly u+}:vn,[p,o )+ pX(y)0,

y = Cg.’l,‘\
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with Ag, bg, cg, £n; as defined in (3.91). Hence, the following statement becomes obvious:

Fact 5.1. The nonlinear system (5.1) has an input-output description of the form (5.2) if and
only if there exists a global in z, possibly parameter-dependent, diffeomorphism transforming
(5.1) into (5.3).

Using this fact, we now state the following result:

Proposition 5.2. The system (5.1) has an input-output description of the form (5.2) if
and only if the following conditions are satisfied for all z € IR™ and for the true value of the

parameter vector o:
(C1) the one-forms dh,dLh,...,dL% 'h are linearly independent
f f J P

(C2) [ad}g,ad’fg =0, ¢,5=0,...,n—1, where g is uniquely defined by

(C3)

n-1 ] m
adjy = Y dja)adig+ Y [pio'(y) + 7}  (1)0:] ad}g
=0 7=0

[g,adjg} =0, j=0,...,n=2
9 = q(y)d_ci(a)ad) g,
]:

v

with d;(a), cj(a) polynomial functions of a, 6, the new unknown parameter vector.

and pi(y) = /yp;(u)du. P=0.....¢
0
(C4) the vector fields f and g are complete.

Proof. Using Proposition 3 of [23], it is straightforward to show that conditions (C'1)-((3)

are necessary aud sufficient for the existence of a local diffeomorphism such that in the new




coordinates the system (5.1) is expressed as

0
I (—l)dn—-l(a)
= | ! ) ()
T = z (_1)n-mcm qly
| (~1)pdst@) 0 .0 5
L (=1)"co ]
_ 0 )
0 L
T 0 [poly) + PR ()01 (5.4]
(=1)" [pooly) + 23 (4)01] |
y = Iy,
which is exactly in the form (5.3), where the coeflicients ag,....an_1, by, .. .. b depend on

the physical parameters a. From [24], condition (C4) is necessary and sufficient for the above

diffeornorphism to be global. -

Remark 5.3. The above proposition gives a set of geometric conditions characterizing
the class of nonlinear systems to which our adaptive scheme can be applied. Whenever
the conditions (C1)-(C4) can be verified a priori, the input-output description (5.2} of the
nonlinear system at hand is determined directly from (C3), without the need to compute the
diffeomorphism of Proposition 5.2. Unfortunately, the verification of (C1)-(C4) may require

some a priori information about the unknown parameter vector a.

Remark 5.4. The conditions of Proposition 5.2 are satisfied by nonlinear svstems that
are linearizable by output injection and input-output linearizable by full-state feedback.

However, 'hey need not be full-state feedback linearizable.

We illustrate these two remarks with an example.
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Example 5.6. It may not be obvious that (2.1) is the input-output description of the

nonlinear system

= nta (3yey + 2y2)

3 = 3-« ('Zyey + y2)

3 = z4+aye’ (5.5)
4 = z5+ ozy2

= u+ay’

y = 1 +2z2 423,

However, this can be established by checking the conditions (C1l)-(C4). Straightforward

calculations show that for (5.5) we have

0 0 0 d

§ = Sm——4— 43— 2 4 —— 6
Y ) Z1 832 + 623 824 825 v ))
adig = «a [—3y2§ + (2y + 6y*)ad;g — (ye! +e¥ + 4y + 3y2)ad§§] (3.7)
g = —g§+2adsj—adig. (5.8)

Hence, the conditions (C1)-(C4) are satisfied for all a and the input-output descrintion of
(5.5) 1s

D’y = (D* +2D + l)u+8[D*(ye* + 2y* + y°) + D(y* + 2y°) + ], (3.9)

where §# = «o. It is important to note that to determine this input-output description no
explicit change of coordinates was required. In this simple example, however, one can find

the corresponding change of coordinates by inspection:

T, = 242z +z;
Ty = 29+ 2z3+4 zy4
T3 = 23+ 224+ 35 (5.101
Ty = 24+ 225
Is = o5,
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In these coordinates. (5.5) becomes

I, = I

Ty = I3

I3 = 14+u+a(yey+2y2+y3) (5.11)
Ty = ITs+ (y2 + 2y3)

Iy = u+ ay3

y = I,.

We immediately see that (5.11) has the input-output description (3.9).
However, it should also be pointed out that (5.3) is not full-state feedback lincarizable.

since the distribution

—_
Y
—
(g%

—

G* = span {g,ad;g. ad%g. ad}g}

is not involutive[3,4]. 0

6 Conclusions

This paper has extended the theory of adaptive control for linear systems to a class of systems
which are essentially nonlinear in the sense that their nonlinearities are not restricted by anyv
growth constraints. In spite of this absence of growth constraints, all the stability and
tracking results are global.

The assumptions on the linear part of the system are the same as in the standard adaptive
theory for linear systems. However, to guarantee the aforementioned global properties. the
systematic design procedure has departed from the two main ingredients of most adaptive
schemes for linear systems: the certainty-equivalence control and the normalization of the
update law. In addition to the certainty-equivalence part, the control contains a term which
counteracts the effects of rapidly growing nonlinearities. Thanks to the presence of ths
term. the normahzation of the update law is avoided, which allows the rapid decrease of
the parameter error. This proved to be crucial in preventing finite escape times common in

systems with rapidly growing nonlinearities.
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The class of nonlinear systems has been restricted by coordinate-{ree geometric conditions
which are equivalent to the structural requirements that the nonlinearities depena only on
the output and do not enter the system before the control does, and that the zero dynanies

are linear and exponentially stable. Relaxing these restrictions, and thus enlarging the class

of systems that can be adaptively controlled using only output measurement, is a topic of

further research.
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