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Abstract

For a class of single-input single-output nonlinear systems with unknown con-
stant parameters, we present a direct model-reference adaptive control scheme.
which requires only output, rather than full-state, measurement. The nonlin-
earities are not required to satisfy any growth conditions. The assumptions on
the linear part of the nonlinear system are the same as in the standard adaptive
control problem for linear systems, which now appears as a special case of the
nonlinear problem solved in this paper.
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1 Introduction

Until a few years ago, adaptive linear [1,2] and geometric nonlinear [3.4] methods belngcd

to tvo separate areas of control theory. They were helpful in the design of controllers for

plants containing either unknown parameters or known noniinc,,ities, but not both. In the

last few years the problem of adaptive nonlinear control was formulated to deal with the

fat plants containing both unknown parameters and known nonlinearities. A realistic

plan of attack to this challenging new problem led through a series of simpler problems. each

formulated under certain restrictive assumptions. The two most common assumptions are

those of linear parametrization (5-17] and full-state feedback [5-15].

The purpose of this paper is to avoid the full-state feedback assumption and to remove

the specific restrictions of previous output-feedback results [16,17].

In the linear case, the adaptive output-feedback designs follow either a direct model-

reference path or an indirect path via adaptive observers. Current research on adaptive

observers for nonlinear systems [18-20] indicates that the indirect path may become promis-

ing for adaptive nonlinear control. However, the major stumbling block along this path

continues to be its linear-like proof of stability which imposes restrictive conic conditions on

the nonlinearities [16,17]. Under such linear growth constraints the actual nonlinear problem

is, in fact, not addressed.

In this paper we formulate and solve a truly nonlinear output-feedback problem by fol-

lowing the direct modcl-reference path of Feuer and Morse [21]. In contrast to other more

popular adaptive linear control methods [1,2], the method of Feuer and Morse offers a possi-

bility to prove stability without any growth constraints. In a companion paper [22] we have

exploited this possibility to solve a full-state-feedback adaptive nonlinear control problem.

In this paper we present an adaptive output-feedback result without nonlinearity growth -

constraints.
a

The results of this paper apply to nonlinear input-output models consisting of a linear

transfer function and output-dependent nonlinearities. The coefficients of the transfer func-

tion and the parameters multiplying the nonlinearitie4 ;re unknown. For th- linear p,)rt. tdi-
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assumptions of minimum phase and known sign of the high-frequency gain are the same as

in the adaptive linear, control theory, which now appears as a special case of the nonlinear

theory presented. i his paper.

For easier understanding, the new adaptive scheme is first designed for a particular system

of sufficient complexity to be illustrative of both the design procedure and the stability

proper, s of the resulting closed-loop adaptive system. In Section 2 we design the adaptive

scheme for this system and then prove the stability and tracking properties of the resulting

adaptive system in full detail. The design procedure for the general case is presented in

Section 3, and the proof of stability and tracking is given in Section 4.

Nonlinear input-output models are intimately tied to state-space equations which orig-

inate from nonlinear physical laws expressed in specific state coordinates. In Section 5 we

give a state-space form of the class of nonlinear plants which have the desired input-output

representation, and characterize this class of plants via a set of geometric conditions.

2 Adaptive Scheme Design: An Example

The purpose of this section is to make both the proposed adaptive scheme and the main

features of the Feuer-Morse method more easily accessible to the reader with the usual

background in control theory and limited familiarity with adaptive linear control.

2.1. Nonlinear system properties. The nonlinear system is assumed to be minimum-

phase [3, Chap. 4] and its nonlinearities depend only on the output variable. This implies that

the nonlinar system is linearizable by output injection [23]. The input-output description of

a typical nonlinear system of this kind is given by

D 5 y = (D 2 + 2D + I)u + 0 [D2p2(y) + DpI(y)+ Po()1 •(2.1)

where u and y are the scalar control and output, respectively, D = £, arid 0 is an unknown

constant parameter. To address a truly nonlinear problem, we choose the nonlinearities

which do not satisfy linear growth constraints:

Po(Y) = y3 , p1() = Y2 + 2y , P2(Y) = ye + + . (2.2)

3
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It is important to notice that these nonlinearities are not in the span of u, and, hence, the

system (2.1) is not full-state linearizable by static output feedback. or even by static full-

state feedback, as shown in Sect. 5. However, it is input-output linearizable by full-state

feedback [3, Chap. 4].

jThe above structural and growth properties of (2.1) and its relative degree [3, Chap. 4]

show that (2.1) is a nonlinear system of considerable complexity. However, this system also

satisfies a structural constraint under which the results of this peper are applicable: ,LL

nonlinearities do not enter the system before the control input u.

2.2. Augmenting the CE control. As in most adaptive designs, our first step is to

find a dynamic output-feedback control that guarantees the specified stability and tracking

properties when the parameter 0 is known. Most adaptive schemes thcn replace th unknown

0 with its estimate 0 and implement the so formed "certainty-equivalence" control. Such

certainty-equivalence designs have been satisfactory in adaptive linear control, but have failed

to produce truly nonlinear results because of their inherent linear growth constraints [16,17].

To avoid this difficulty we mu6i go beyond the certainty-equivalence approach. Following

I Feuer and Morse [211, we will augment the certainty-equivalence control by an additive term

CL which will counteract the effects of rapidly growing nonlinearities. It will also provide us

with additional flexibility in the proof of stability.

The certainty-equivalence part of our control will be designed to match a reference model

I of the same relative degree as that of the nonlinear plant (2.1). As this plant is input-

output linearizable by full-state feedback, we will choose the simplest lincar reference model

of relative degree three:

(D + 1)'yr = r. (2.3)

The first step in matching this reference model is to filter the plant equation (2.1) by the

Istrictly proper stable filter nE 2 , where F is a monic polynomial of degree 2, and F2 is a

monic Hurwitz polynomial of degree 4. This results in

F, A[ B t+ FD'2 (Y + FD 1)1( ) p )j
E2FA 2 E2

I 4

I



where A = D5 , B = D2 + 2D + I as in (2.1). It is now straightforward to verify that the

desired matching is achieved by the control

G FB -E2
u + r--Ov(y)- U (2.5)

E2 £2

provided that
FD2  FD F

v(y) - p2(Y) + y-pI(Y) + -pO(Y) (2.6)

and that G, a polynomial of degree 4, and F satisfy the polynomial equation

FD + G = (D + 1)3 E2 . (2.7)

Note that the polynomial FB - E.2 in (2.5) is of degree 3, since FB and E2 are both monic

polynomials of degree 4. As an illustration, the choice E2 = (D + 2)' yields the following

I solution of (2.7):

F = D 2 +11D + 51 (2.8)

I G = 129D 4 + 192D 3 + 168D 2 + SOD + 16. (2.9)

When the control (2.5) is applied to the system (2.1) and the initial conditions of the

filters used in (2.3), (2.5) and (2.6) are exactly matched with those of the system (2.1). then

I (2.5) achieves the exact tracking y(t) = yr(t) for all t > 0. However, the initial conditions of

(2.1) are unknown and the tracking can be achieved only asymptotically, that is.,

y(t) = yr(t) + 6(t) --+ yr(t) as t --+ oc, (2.10)

where e(t) is the exponentially decaying tracking error caused by the mismatch of the initial

conditions.

When the parameter 0 is unknown, we replace it in (2.5) by its estimate 0, to be obtained

from a parameter update law. To this "certainty-eq(uivalence" part of our control we aild a

term u, which will be a handy tool later. So, our adaptive control will be of the tollowinlg

for n l:
G 

FB - E2I = y + r - O£(2) + 2.

I5



When applied to the nonlinear plant (2.1), this control yields the following input-output

description of the resulting feedback system:

-( + 1 ( -[d)V(Y) id + ,(t) (2.12)

where, as in the case when 0 was known, f(t) contains all the exponentially decaying terms

caused by the mismatch of the initial conditions. It should be observed that with an exact

estimate 9 = 0 the linearization of (2.12) is achieved.

Introducing the error variables

e=Y-Yr, 9=-9, (2.13)

and taking the difference between (2.12) and the reference model (2.3), we obtain the tracking

error equation:

e1 ft,(V) + fl] + E(t), (2.14)e-(D + 1)3

2.3. Error augmentation and swapping. Following the standard practice in adaptive

control, we now set out to construct an error equation in which the parameter error is filtered

only by a strictly positive real (SPR) transfer function. As a first step, we rewrite (2.14) in

the form

1 [ (y)] 1)3
(D+i) (D+ 1)2 + 2+.

I(D + 1) ] (D + 1) (D+) 2 v( + (2.15)

The first term in (2.15) is in the desired SPR form, while the second term is due to the

additional control term a. As for the third and fourth terms, these are the familiar swapp i,.

terms, whose presence is caused by the time-varying nature of 0: if 0 were constant. these

two terms would cancel out. Let us therefore define the augmented error e as

I = e + qO, (2.16 )

where the term qo represents all the undesirable terms in (2.14):

SI I 1- I I 1 11

I L0 = (D + 1)3U± (D + 1)3 [U ) (D i ) L(D +).

6I



The signal multiplyig 0 in the firs, 1,ackets is of p'ticular iflotiC2( is dt-11uttrd IK'

D±+ 1)2

Considering v(y) as the input and h, as the output, we represent (2. 18) in tHie stal e-SPae

for = A oh bv(y). 2. 19

wvhere

It can now be verified that 710 is the output of the third order system

O -7+ 111 (2.21

A q -II -h)i. 2
The variables hi and q, from (2.19) and (2.22) allow us to express the tracking- er'rot as

I [hj - q + ( . (2.2:3)

I The analogous expression for the augmented error is

D + +IcIt+ (2.2-1

Iandl it has the dlesired SPR form: thre parameter error 0 multiplied by the --regressor" hi is
the input into the SPR filter 1/( D + I).

I 2.4. Update law. From this point on, the route prescribed by most of the adlaptive 11lar

Icontrol literature is to choose a normalized gradient update law anid to set 11 =_ (thuls

returning to a pure certainty equivalence control). In the case of adaptive linear svstens.

boti ided ness of the closed- loop signals c-an then be established usinrg the 0 roirwall leiimia

or soin type of siriall-gain argument. Attemp1 ts to apply thils type of st abilityv proof to

I nonlinea~r systemns hiave so far- been successful onily wvlfen conlic const rajint; are i> 1 wd'1o

Hie rionilincaities. Withouit such linear growth constraints. the teruii - 0) 1"!/ calCal(



S0i1i(- -igna11ls. to eS, 11pe to inlitY ill finlite tillie if the paraiuieter error (10 iS, iiwi

de(cre ased. 'Iht' lhiilt v with inormtalizat ions of iupdat e laws is t hat t hey\ dii't; I

rapidl enoulgh ol 'crease of the p~araImeter error when this error is most harmful, A.\s

exa ni1p V of Inst abili ty of a full-state-feedback schemre withl normal izat ion [1,11 is g ~i m

companion paper 22[. where it is also shown that an unnormnalized updlate liaw iirt strv1*(

global stability. W\e are, therefore, motivated to look for anl uniormahized Imj)(ati i'

1 hie S P form ii (2.24) sugg-ests the unnormalize( I radlit tit ulle law

(; i yen the comlplexit v of tilt, nun B near systemn (2 1 ). it is likely that Such a it p' u~

law will shift the difficulties in the adaptive design to the proof of st ability. liidccdthP 1,~

he case. A simrple Lvapunov- like function i nvolvinrg _2 ari 2 has a: non pot i I i

bu t fallIs to prove boundedness of y. It clearly shows, however. that 71,) nilist bet It '11 i rllt

account. Our next attempt is with the function

V -T '±2 ± (~ c2(7)d7) + 71 r P71  (2.26 i

where P is the posjitve definite solution of the Lvapunov equation

PAO + = -21 = fP ] .

I'sinr (2.22), (2.2-1) and (2.2.5), we compute

E -a-(t))2 - 2 + 2 qTPhhie +± ~b,22

andJ try to render it nonpositive. The tool we have prepared for this task is it. lhow ever, it

turns out to be impossible to counteract the effects of the two-dimrensional vector hlih1 hiy

it alone. Hence, we need an additional degree of freedom involving It,. This promip:, utS to

replace rj in (2.26) by the new. vector

8 i



W t(,,( t nemila fritic tionl 11 /1 I at o.i r disposl'd W it 1h l nw ;ttf4

lie(-'atve flmc iwi 1,)he iiwd I'o rp o fi

+-, + ~ -

14) tOV~dlilf V weidc whic(h is olbtaj ned bv differentiat ing (2,29) cmdi iing2,I 1 2.

- ' -. ,i + 2c1(h1 ) - u-1l2

+I ,0 h -1 1

j Ihtr Iic i lt1 III( I lot *lt loll

Ac ~I Iuu11te t hII tun I de Icri vat Ive o f V as;:

1 . r -2
( I t

I2.5. Design equation. W\e niow have twvo tools to make V noriposit ive: the fuiiict 1)ii c

ar(id the 7onitrol te rmi i. WAith these tools we will att empt to represent hjti ii iwtYvtcl~

IN hl~';U i II f233) aIs the sulm of two so-utares. It turns ouit that this Is po sible t') alhavo h.

dV~ilposlng P) &s 1) P1 + P2  suich that the followig. dt sigri cqat i holds:

2cC

W'l su I I t It 11t loll of I2.31) int1o , .33 vteldls thle desi-rd formi for 1"

IOur tajsk I, tiovw to finid P,. P)2 .cj1 ;111) and which sattisfy t he (lesim cr (1 iiat ]oil '2,1. r

lie e Xampl, coot []de(red here, the Svsterilat ic p rccedure of Sect. 31 ''it(-i ~lo~hL ~lt

for P, ami' ] )z{ d



uhi-soittutioni of (2.36) into (2 3-1) results ill

[(ih +< h'+]h)
0 1 (2 37)- + -- I I(-2 I fo Ih2 ) (I 1

hl tirect v virh V tile followinug solutions 1r and ut

I h44 
(42.3S-,

[ Sh~h, +2 1h4 - Wh + (hlh 2 + 11 + 20 )21 ,

+ [2h" + (hlh 2 + h.f + 2_,, 9] (2 ,2.3 3)

2 2 21)) and t lie notation

. Shh., + 2hi + (1 +2h (hh2 + [if + 2h6 .

I - 2h' + (/h Ith2 + / + 2h>' 2 11;

, CrM1 bc ,cfiried in terms of available signals as

I= '.-1 7 '492'12 .2.42)

lo sumnarize, the complete closed-loop adaptive system is

Plan it:

D~y =(D + 2D + 1)u + 0 [D2p2(Y) + Dpi(y) ±p(y

Control:

G + FB -E 2

E2 E2

[pdat law: 2.18.

I Iilt(rs:
I = Aoh + ty

=o- b(F1 r;1 + .,2) --f+/

1 1/ - -1/0 I 1i



where y,. is the output of the reference model (2.3) and V(y) is defined in (2.6).

2.6. Stability and tracking. The stability and tracking properties of (2.43) arc now

established using the nonnegative function V from (2.30), whose derivative, given Ill (2.35). is

nonpositive. Because of the piecewise continuity of r(t) and the smoothness of the nonlinear

functions PO',p,P the solution of (2.43) has a maximum interval of definition, which we

dlenote by [0, tf). We will now show that tf = 00.

From (2:10) and (2.35) we conclude that e, (', and 0 are bounded on [0, tf). Solving (2.29)

for 71 and using (2.38) we obtain

772 ( 2 -2hi 1

Thus, the bounidedness of C implies that 77h is bounded, N-ich, in turn, implies that 1Io is

bounded: ?7 = -i/o + 711. Since e and )70 are bounded, e is bounded: e = e- t~o By the

botindedness of yr, this implies that y is bounded: y' = e + y,. Hence, v(y) is bounded, which

riwans that h is bounded: A Aoh ± bv(y). (2.44), The boundedness of h and C Implies that

r; and ui are bounded (cf. (2.44) and (2.39)).

This does not yet prove that u is bounded. From (2.11), to prove the boundedness of u

we nl ned o sowtha F - , is bounded. Since F -E2is of relative degree 1.

We1 Can e1xpress E2 u In the form

FB 2 ED 2 E3(± E 4 ]

EBL2  (D+13(£2 A) ( ) D___ '+ A (D-+-1) 3 j + ). (.3

where , is a positive constant and E3. £4 are polynomials of dlegree 2. Now (2.1) clel-Iri

ldiows thiat u is bounided if - is ? bounded for i. =0, 1, 2. Since y, Is hounded 8ind
(D +1 Y3I

tie planit is ininimium phase and of relative degree :3, it follows that U-~ Is hounded.
(+ 1)T,

Difforontiating (2.14) and substituitinig -O)v(ij) + u~ from (2.11), weo obtain for 11. 2:

z) 11 [hDI ~

(D +~ I)+ +(t

(L)1).) 1 hi, + E2 +- ]+rI t



Using h, -(D + )V(y) i= 1,2, from (2.19) and rearranging terms in (2.46) we get

D' [G ] D
D____ F B : _____ D hjO + c(t), (2.47)(D -+1 )3  (DE, [D + I- E,+__

From (2.24) we have

e e - o =-±+ Ohl + go - 7h + (t) (2.4S)

S -+Ohl+Ohl+io- 7+E(t)

= - - h 2e + h 2 - YO + 71 - q 2 + h + ((t). (2.49)

Since e, h, i;, 0 are bounded, (2.48) and (2.49) imply that , E are bounded. Hence, by (2.47).
D' 1)3 FBu] is bounded for i = 1,2. The boundedness of (D 1 )3 u for i = 1, 2 thenD +I a LE2 J (D-

follows from the boundedness of u and the recursive expression(D + -1)3

D& D' FB D(FB - E2 ) D '- 1
u -U + 6(t). (2.30)

(D+)3 (D+1)3 E2  E-2  (D+1) 3

Next, v:e prove that the state of the plant is bounded. From (2.12) it follows that D.,

0 < i < 3 are bounded. Combining this with the fact that the plant is minimum phase. we

conclude that the state of any minimal realization of (2.1) is bounded on [0, tf).

Thus, we have shown that the state of the closed-loop adaptive system (2.43) is bounded

on its maxinvum interval of existence [0, tf). Therefore, tf = oc.

Finally, we prove convergence of the tracking error to zero. From tf = cc and (2.35) we

conclude that V/ is bounded and integrable on [0, oc). Furthermore, the boundedness of '

(cf. (2.24)), k tcf. (2.31)), and A (cf. (2.19)), implies that V is bounded. Hence. I -0 as

I - cC, which implies (cf. (2.35)) that 0 -- 0, ( - 0 (since h is bounded). This, in turn.

implies that go -- 0 as f ---+ oc by (2.21). We conclude that

S- Y = - q0 0as t---4 cc (2.5t)

12



3 The Systematic Design Procedure

Even though the expressions in the general case become more complicated than in the

preceding section, the main steps of the design procedure remain essentially the same.

3.1. Nonlinear system properties. We consider the class of n-dimensional nonlinear

systems which have an input-output description expressed globally by the n-th order scalar

differential equation

A(D)y = B(D) [q(y)u] + E D' [pio(y) + P((y)O,] (3.1)

where

e the coefficients a0 , .- ,a,, of the denominator polynomial A(D) = D n + a,-1 D -1 +

I+ a0 are unknown,

* the coefficients b0, ., b(m < n - 1) of the numerator polynomial B(D) = b_ D m +

+ b0 are unknown, but B(D) is known to be Hurwitz, and the sign of b, is known.

* 1 is an e-dimensional vector of unknown parameters,

I e q(y), pi,(y)" 0 < i < m, 0 < j < e , are smooth nonlinearities with q(y) # 0 Vy G ff?.

pi%(O) = 0, 0 < i < rm, 0 < j < e.

I Systems in this class are linearizable by output injection, and input-output linearizable by

full-state feedback, but not necessarily full-state linearizable, even by full-state feedback, as

will be shown in Sect. 5.

3.2. Augmenting the CE control. The design objective of the certainty-eqivalence

part of our control is to match a reference model of the same relative degree as that of

the nonlinear plant (3.1). As this plant is input-output linearizable b output f,,,Ilback, we

choose the linear reference mo(lel:

h,'(D)E2(D)y = Rr, E2(D) = E 21(D)E 22 (D). (3.2)

13



where Ei(D), E2( D), E21(D), E22(D) are monic Hurwitz polynomials of degree n - ta, 71 - I.

n - rn - 1, and oz, respectively, and R(D) is a polynomial of degree It < n- 1. Filtering (3.1)

by the strictly proper stable filter F/E 2 , where F is a monic polynomial of degree - rn - 1

we obtain

FA FB mn F'2 r(3

E -y [q(y)u] + Z: --En - [PiO(Y) ± 'YO 33
i= 0

It is now straightforward to verify that in the case when the coefficients of A(D) and B(D)

and the parameters 01 are known, the desired matching is achieved by the control

I G T m D ] Lou -qy - y + 1--1.r- j" ( --- [q(y)u*] . (3.4)

() 2 j=O E21 j=0 E22 E2

provided that G, a polynomial of degree n - 1, F, M, T and Lo satisfy the polynornial

equations

FA + bG = ElE2 (3.5)
V-
Al =- b R (:3.6)

b,
1

Tj -01JF, 0 <j<e, 010 I(3.7b,
1

Lo - FB-E 2 . (3.S)
b1

Note that L0 is a polynomial of degree n-2, since both -FB and E2 are monic polynomials
b,

of degree n - 1. When the control (3.4) is applied to the system (3.1). asymptotic tracking

is achieved:

i y(t) = y (t) + (t) -- + yr(t) as t - -- + c , (3.9 )

I where f.(t) is the exponentially decaying tracking error caused by the mismatch of the initial

conditions.

We now rewrite the control (3.4) as

I1' q(y) [qr(y, U', -)O , (3.10)

whore th n6-diinensional vectors 0 and p (with n0 = 2n + (f[ + 1)(on - rn)) are lheti ', as

1 0) = go, , ,Jn-I,-? , tOO,.. ,ton n .... It 1), t) 71..... -

/. , . ,- o ..... , fori. 2 3.1 1

I 14t



I
L- 1  R" -n-m,-1 'n Dz , Dn-,,-l 1 Dr(y, U I') ___-_--g - Dr m-. -u -i~ ) m

-2 y 2 ,E21 E22 Po(y) E' T2 1 P,(Y) "

21= ii=2277, rn PDt I Dn-2rqyul :.

with D defined as the (k + 1)-dimensional row operator Dk = [1,D,.... Dk]. The form

(310) is particularly useful in the case where the coefficients of A(D) and B(D) and the

components of the vector 01 are unknown. Since in that case the parameter vector , ue"ned

in (3.11) and used in (3.10) cannot be computed, it is replaced by an estimate 0. The so

formed "certainty-equivalence" control is then augmented by an additive term ft which is vet

to be designed. Hence, the adaptive control will be of the form:

q(y) [ (y, u, r)(0 + . (3.13)

F
Filtering the system equation (3.1) by the strictly proper stable filter EE 2  and using

(3.5)-(3.S) and (3 11)-(3.12), we obtain:
FA BF .. D' F [io/y) + pT(y)O,] +ft3 ABEmD- t (3.14)E1 E2

y  E1E2 (q(y)u) + _ EE 2 +P (t) ±(3.14)± e
E,~l (qyl

y - { [q(y)u] y + D -Pij (Y) + e(t) (3.1-5)
j=O i=0

y = -- i q(y)u + T(Y' u, r)O + r + 6(t), (3.16)

where, as in the case when 0 is known, e(t) denotes a linear combination of exponentially

decaying terms caused by the mismatch of the initial conditions. Substitution of (3.13) into

(3.16) yields the following description of the resulting feedback system:

, b= n + 6 (y , , ) (0 - 0) + d + (t). (3 -.17)

Introducing the error variables

C= Yr, 0=0-0), (3.lS)

an( taking t he difference between (3.17) and the reference model (3.2), we obtain t he(' It1 ,41

rrror equiatjo :

E= " [tT(u, r)O + I, (t) . (:I.1 ,

15



In the special case of relative degree one (n - m = 1), the design is extremely simple.

Since the transfer function Ibi /E, is SPR, the parameter update law

0 = sgn(b)FO(, u, r)e, (3.20)

where F = FT > 0 is the adaptive gazn, guarantees boundedness of all the closed-loop signals

and convergence of the tracking error e to zero [1, Chap. 5], and the control augmentation is

not needed: ft = 0.

3.3. Error augmentation and swapping. For relative degree higher than one (n > 1)

the design becomes considerably more complicated, since ibm/ 1 is no longer SPR. \Ve first

rewrite (3.19) in the form

e [bmT+(Y, r)] + itD + Ao Eo u,

+ b- [T] - T ' 5 + (t), (3.21)

where

Eo(D)(D + Ao) = Ei(D). (3.22)

In contrast to the example of Sect. 2, where the high-frequency gain bm was known, here

it is unknown. Therefore, using an estimate bm and denoting b, = b, - b,, we rewrite (3.21)

in the form

e 1±AjbmOj (~ '~' ~~ )D + Ao E0o E (o _ 0Eo Eo 00]
bD, [i (± T1_± + [6T]) + C(t) . (:3.2:3)

Since the first summand in (3.23) is in the desired SPR form, we define the augmented error

= e + 77o, (3.2-1)

where the term iro represents all the undesirable terms in (3.23):I P (o_0T4 ,TO])] (3.25)
0- D + AO[m11 Eo E )

16



The vector multiplying 0 in the first term is denoted by

= -- 0(y,u, r). (:3.26)

Considering 0(y, u, r) as the input and as the output, we represcnt (3.26) in the matrix

state-space form:AoH+bT(y,ur)

(3.27)

I T = cTH,

where (c, A0 , b) is a minimal realization of IEo:

cT(sI - Ao)-lb O(S) (:3.28)

Now qo is the output of the (n - m)-dimensional system

o = -Aoo + bmCT?7 (3.29)

0 = Ao7 - bfi - HO. (3.30)

II The variables 0, and cTr from (3.27) and (3.30) allow us to express the tracking error as (cf.

(3.21))

e [b,6T, - bmCTl + '(t). (:3.31)s +AoII

The analogous expression for the augmented error is

1 [hT/ _ bCTq ]  
2

j ~s+Ao -'mTl1~ t

and it has the desired SPR form: the parameter errors 0 and b, are filtered only by the SPR

Ifilter 1/(s + Ao).

I 3.4. Update law. As in Sect. 2, we choose the unnormalized gradient update laws suggested

by the SPR form of (3.32):I0
0 = sgn(b,)Ft, (33:

b,_ - - CT (3.3

where f, = FT > 0 and y > 0 are the adaptive gains.

17I



From Sect. 2 we kic, that in the proof of stability there will be a need to balance the

interaction between q and H. Therefore, we introduce the new variables (:

C = 5-'7, S - CE(..35)

where n n - rn - 1,

C- c, .. , (A c , A = 1, ..., h (3.36)

0

- In + E2.z (3.37)

Ej, xj [Ij, 0]jx, 1 0<J < (33i,8

and Ii×, is the 1 x i identity matrix. The components of the i-dimensional row vectors C,

are nonlinear functions of the elements of H which represent the aforementioned additional

degrees of design freedom. In order to show that the matrix S defined in (3.35) is invertible,

we note that, because of the structure of the matrices E,,, defined by (3.38), the matrix :

is lower triangular with ones on its diagonal. From this and the aforementioned functional

dependence of , on H, it follows that E' always exists and that the elements of both E

and - are polynomial functions of the elements of H. Furthermore, C- 1 exists because

(c', A0 ) is assumed to be an observable pair.

The nonnegative function to be used in our stability proof is

V," (e2+ b ,I OTpr1, + -b', + j 62(7)dr) + C TP . (3.39)

The form of (3.39) is the same as that of (2.30), where P is the positive definite solution of

th e L y ap u n ov eq ua tio n P .4 0 + A P - Q o.

To evaluate V we need 4, which is obtained by differentiating (3.35) and using (3.30), (3.33)

and (3.36)-(3.38):

18



Id
S - ' (Aoq - bu - sgn(b)HFO() + dt (-

S-'AoS( + S-'(bi + sgn(bm)HFOb ) -S-'

=4( - sgn(b,)S-'HFQ + S-'(AoS - SAO - S)( - S-'bu. (3.41)

Introducing the notation

w =-sgn(bm)S-'HF ,  (:3.-12

w = S- 1 (SAo - AoS + () (3.43)

we rewrite (3.41) as
(= Ao4( + w - W'V - S-lb., (:3.44)

and compute the time derivative of V as

I - (T C) Ao~T 4  2Ao 2t
o -n n 4 -  (w  -  V S b .)} (3.45)

3.5. Design equation. The tools we have at our disposal to make V" nonpositive are the

functions ,(H) and the control term ii. With these tools we will attempt to represent the

quantity enclosed in braces in (3.45) as the sum of it squares. It turns out that this is possible

to achieve by decomposing P as P Pi such that the following design equation holds:

PiwwTp, = P(WV + S-'bfi). (3.46)

The substitution of (3.46) into (3.45) yields the desired form for f;:

I1 = - E 2 2 (T < 0. (3.47)

Our task now is to find P,, &(H) and u which satisfy the design equation (3.46). Followiti

the development in [21], we define

P, - CT X!*C, ( :. I S'

I19
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where

.1, = ,p(C -1P C )- 1

= (cP-1CT)- - ECP-CfMjE,,) , i ....

In [21. Lemma 1] it is proved that (3.48)-(3.49) result in

P, = P (:3.50)

CjP-CTMiVhC, = 0, 1_j<i < .. (:3.51)

This proof is now given for completeness. From (3.49) we have

i-1
Ii×,= CP-iM + E C, P- ICJTM. Ej,i

= ~l

C i - C T A I E k,i . (3 .5 2 )}
k=I

Premultiplying both sides of (3.52) by Ci and using the identity

Ck = Ek,iCi, k <i (3.53)

we obtain

Ci= C p C T "VlkCk (3.54)

k=1

Evaluating (3.54) at i = h and using the nonsingularity of C, we obtain (3.50). Furthermore,

premultiplying (3.54) by Epi, where j < i, and using (3.53) again, we obtain

C = C P- Ck MkCk, i > j . (:3.55)
k=l1

But from (3.54) we have

Cj CJP- '11 TICk

k=1

which, con!I ,vfd with (3.55), results in (3.51).

Having established (3.50) and (3.51), we now set out to find ,(1/) and it which, along

with P, defined by (3.48)-(3.49), satisfy the design equation (3.46). Substituting (3.-18) into

(3.46) we obtain

W( + S-bu' = P- Z'r M C,I,,TCT JC,. (3.56)

20
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i Using (3.43) we rewrite the design equation (3.56) as

(SAO - AoS + ) + ba = SP-' ZCT VCU-;WZTC I ,C. (3.57)

Premultiplying both sides of (3.57) by cTAio-1 for i h1... f, we obtain

I4'T-',I(AoSc - bii) = cTl S Ao - P- 1  CT crMCwwTCTMC) + ;

+c -Ab , 1 I < t. (3 5S)

From (3.35), (3.37) and (3.53) we have

0

CfS = ECf:C f, + 2C2:

! which glives

c = CT (3.60)

cTA'S = cTA' - ' + i-lCi-l- 1 < z < ( :3.61)

I Furthermore, from (3.35) and (3.37) we have

| A'o-' S : Ao0-'C-'- -Cf At-C:' &,

I CTA16 T,-C~~= T~c l 0

<i K . (3.62)

I where we have used the definition of Cf to obtain the last equality. Finally, from the

definition (3.28) of the tr.ple (c, A,, b) we have:

T,4o-'b 0, 1 < i < n-i (3.3

0 cT,0-1b =

21



Substituting (3.60)-(3.64) into (3.58) results in

_~ i ± T  + .C,_ Ao (cr.1 - 1 +, C('z )
f t oC

p-lZ Tt ClLW XI) C' I < i < -
s 1 

,
S<I<=1

IL cT 0 C A + t," .C + C-Q '- - , i - ( n - I A O  ,n - - -- ,

Xl -- ( , .1 ' 1 /

At this point, we have almost achieved our goal of findino , and ?t which satisfv t i ,:

equiation and thus render V nonpositive. Still, (3.65)-(:3.66) are in a rather cornpll( ,1 ! ) Ii

and, moreover. they involve the time derivatives of the functions c,. Therefore, we ,.\ ,-'k

out to simplify (3.65)-(3.66) and to express - as explicit functions of available Kids.

\lotivated by the appearance of the terms C' " in (3.65)-(3.66 , wti I ,-

dimensional column vectors wl .... w,, which are defined its

w, = Ciw , I < < n . 3 .7

Combining (3.67) with (1.53 we see that these vectorssatisfv the recursiw,

Uc, = C fte _ _ -t,

t v , = E .+ I t + , < i < n ) -1 : .

I'sing (1:3S) we can rewrite (3.69) as

T =_ TU1 tLT u-1
W - IW'

W e now set out to obtain explicit expressions for iei ... . iv, in term s of c,. Sul -)-! IT ii ,

(3. 12) into (3.68) results inI _ =_-sgn(bm)CJ[IF" :3 7I,

We then ,s(, (3.27). (3.37) and (3.70) to rewrite (3.71) as

0 C

I, ×,, + 1 I - - sg n ( ,, ) .A () I l l 11 c: '

I i - I [,
EIIC



13' (3.3S) (:3. 72 is t'lnI va ent t o l~ 1 . snb ),~I I':

.)tarl rII_ froril 3 7:3 i 3 7 ic n' repeat thle above proced ure to show t hat T3 72

('(111valen to

I ~~ ~ ~ " IC -tobj lf c 37

I lh':I'. tile explicit e.XpressIonlS for t le vectors u,. iv IP,~ r

[I (cb, , ( I i'f :3.C

t IIIII" II 3 1(T 1 ~ II[U'c (367 wez- oi-i '

Uy- f' r~ .1c Jdlc- 1C)cc( '

I~~~~~~ ~ ~ ~ [tZ~~ II II' c! f. latirII 5 aII13 ank -Itt"IIa

+ cI -I VIF1 L LI'. FcI F(

o I C F, cA1

I w le ;t ei i 1( ;) vj {3()ca e w Iittna

12 :3



I

SlntrIu IIcinI" the x (I + I) liatrix [):+1 = [0, I,×,J and Substituting (3.80) into (3.6.5) (3.66)

WC°! Oh)I}llII

- ,-. 1..... - 1 3.8!)

E, f " + O -+ IR, IC,_ j1  c,,
T -j - i - 1 ~

(cT A-, + C t 1)N(3C4 ~.,S2'

Phis formi niakes it a[parenit that the design equation (3.56) is satisfied by the r,-ci si'Ve

i ,t p i~tScT Is

,=&- E,1 , + 1_, - (cTA0 + _ , 2, .... n3"-

N - (c ± &ch) s I

lo tinailv solve the design equation. we need to express i,-] in (3.84) as an explicit tuum, in

of available signals. We Prst show via an induction argument that (3.76). (3.77). 3.7.3 :3 S3) and (3.8-1) imply that the elements of wi, N, and {, are polynomial functlulls 'I kci,

elements of C11:

I9 * I,)r i = 1. this fact is obvious from the definitions:

3 wI = -sgn(b,)C' 1HF(C 1H)'

'VI = P-'CT ViwmIIVA!j

I -cT

3 For A = , < it - 1, suppose the elements of Wk, Nk and k are polynomial fuIctions Of

Ih lenietrl s)f (H'. ThII Ien. tI ie derivative of k can be expressed ;is

& = ]d.k, , .st

Ivl ert, /I is t ie j-th cIlI I1111 of Ck11 aIld ( k/)hk i; the A' x j iatrix )f" parti l

,t'.vt es nf k.(('k/1) with res)ect to the ('lelnents of hk. but from (3.2

'21



(3.64), and the definition of Rk+l, we obtain

Ck I=C'kAoI = Rk+ICk 1H, 1 < k < 3- 1.T

Combining (3.86) and (3.87) we can express k as

= T T k3.8)

j=k k+h

IFor. I k+ 1, we have

\"k+l = kEk k+l p-I . CT Al 7' T U

Nk+I= Ek,,+k+ - + Rk+ - (crAk + &-Ck)Ak+.

j=l ctk,3

Hence, the elements of wk+l, Nk+l and G+1 are polynomial functions of the elements

of Ck+I Hr

Thus. the term ,_I in (3.84) can be calculated explicitly from (3.SS).

The design procedure is now complete The expressions for c, and ,, which guarantee

that the rionrinegative function V in (3.39) has the nonpositive derivative (3.17), ;re

"I _C \r 1

3. =Z hE ,, , + ,, - (TAt- + ,C. _C , . . i " 2....
j=h

(3.S9)

C-- C A0 + it & ) (c 'n c.)-

The designed closed-loop adaptive system is:

2.5



I
I
I

Pla nt: I .=Ax + bvq(y)u + E n-i [PIo(Y)+ p7(y)0]

i=0IT.
Control

U=_ [_ (T(y, I, r) 6 + " T 77s

Update law: (3.90)

0 = sgn(b,)Fzt

b, = -- ic qe

e C + r/o = y - Y, + qo

I Filters:

[ = AoH + bOT(y,u,r)

-OT = cTH

j 1o = -A 0 70 + bmCT77

= Aoq - b T?7T - Hsgn(bm)Ve.

I where yr is the output of the reference model (3.2), o(y. u, r) is defined in (3.12i. and

(c,, A,,, b,) is a minimal state representation of the plant equation (3.1):

0
-an-I.I a10 0

A = , c = 3.91)

I -o 0 0 0
L bo

I with he (n - )-th coordinate vec-tor in if'n.

Ihle stability and tracking properties of (3.90) are established in the iext section.

26
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4 Stability and Tracking

Ve are now ready to state and prove our main result:

Theorem 4.1. For any uniformly bounded and piecewise continuous reference input 7, all

the signals in the closed-loop adaptive system (3.90) are well-defined and uniformly bounded

on [0, oc), and, in addition,

lir e(t) = 0, lirn 7(t) -- 0, imr 7o(t) = 0. (4.1)

Proof. Due to the piecewise continuity of r(t) and the smoothness of the nonlinear functions

appearing in the definitions of various terms in the closed-loop system (3.90), the solution

of (3.90) has a maximum interval of existence (0, tf). On this interval, the time derivative of

the nonnegative function V defined in (3.39)

( -m1 A 0

computed along the solutions of (3.90), is given by (3.47):

V, = -_ ( 6) _ - )TQo( _ 2Ao (TPW) 2 < 0.

\We conclude that V. , 0, bm and C are bounded on [0, tf) by constants depending only on the

initial conditions of (3.90). This implies that 9, b, are bounded on [0, tf). The boundedness

of . together with (3 60) implies that c 77 is bounded; from the definition of q70 in (3.90) and

the boundedness of b, and cT77 it follows that q0 is bounded. But since e = - h0, and c, 170

are bouinded, we have that c is bounded. Now from the boundedness of r we have that Yr

is bounded, and, hence, y is bounded, since y = e + yr. The boundedness of y implies that

all the nonlinearities appearing are bounded, and, furthermore, that q(y) is bounded away

from zero. Filtering the system equation (3.1) with the strictly proper stable filter / BE 1

and rearranging terms, we obtain

A + D'[ ,(()+

[q(ij)?t = 7J,: BE,7 Y)
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I

which, by the boundedness of Y, implies that -q(y)u is bounded. The boundedness of H is

now established by proving that the row vectors cTAOH, 0 < i < n - 1 are bounded. This.

in turn, is proved as follows: First, from [21, Lemma 5] we have that the first n derivatives

of c can be expressed as

Pi ( c (,O m, C:HCi )...C, (4.3)

where the pj's are continuous functions of their arguments and the e's are exponentially

decaying terms. This is straightforward to show (cf. (2.48)-(2.49) in the example of Sect. 2).

Istarting from e o- and using (3.90) and the facts that the derivative of ( is given by

= Ao( + we - P-1  ,  (O.A)

and that the elements of wi, N, and j are polynomial functions of the elements of C, H.

I Second. from (3.27) we have

D'TCT A H OT o(Y', ,r) + 0(t 0< < - (.
I 

_o

where ,(t) are n0-dimensional row vectors of exponentially decaying terms. Then. we use

I (3.12) to express 0 as
SoT(y u,r) = -(y,r), -- -[q(y)u] (4.6)

with

Un-,-,,_m_,,77n-r-.,I D' Dn-m_, D z

E2' E j=0E1j2 22

being bounded, since y and r are bounded. Combining (3.13), (3.19) and (4.5) we obtain

the following expressions for the first i derivatives of the tracking error e:

I eD') _[T + + ~t

bmD' [q(y)u + 0T( ,,u, r)O] + (t)

binD2  bmEoD DZ -I,)0+(t
- D' [q(y)u] + , Eo 1 (y,'?, ) + ((t)

l Dl E o

b-D' [q(y)u] + m cT4-l HO + (t), 1 I < i-l. (I.<)I El 01
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It is important to note that bmEoD 1E, is stable and proper. The boundedness of c -4)H is

now established for i = 0,. .. , h - 1 by the following induction argument:

3 For i = 0, (-1.5)-(4.6) give

3 T  ,_(y, r), [q( y)u](4.9

Eo EoDE2 1

Since (y, r), - [q(y)u] are bounded and E 1 D-2 q

F 1  EE 2 is a row of stable proper filters. (4.9)

implies that cTH is bounded. Furthermore, we have already shown that e is bounded.

3 For 1 < i < h.- 1, assume that cTA oH and e(k) are bounded for 0 < k < i - 1. Hence.

C,H is bounded, and, by (4.3), e(') is bounded. Then, rewriting (4.S) as

D' 1 e EoD T A 01
b [q(y)u] = H + (t), (4.10)

Dbm

we conclude that .1 [q(y)u] is bounded. Finally, using (4.5)-(4-7), we obtain

c TAtH D: Uy Dr DT, -2 [q(y)u]

Dr Ao = -(y, r) , EoE- D

I= ), EoE ET[q.y-u]+ (t). (1.11)

Hence, cTAt0H is bounded.

This proves that H is bounded, which, by (4.3), means that c(', 1 < I < fi, are bounded.

Next, we prove the boundedness of it. From (3.13), the boundedness of 0 and the fact that

q(y) is bounded away from zero, it. follows that u is bounded if fu and 6(y, a, r) are bounded.

The boundedness of I implies the boundedness ofp, E and --'. Since q = S( =

and E and ( are bo'inded, 71 is bounded as well. Hence, a is bounded. From (4.6)-(4.7).

to prove boundedness of 6(y, u, r) we only need to show that D [q(y)u]. \Ve first rewit

(4.8) as
(U) s [q(y)ul = +I() TD TA'-'H 0 + c (t), I < 1. < - , (1.12)

Elb,, El
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which implies that D' [q(y)u] is bounded for i = 1,. ,., - 1. Combining this with the fact

that [q(y)u] it follows that D [q(y)u] is bounded for i = 1 n - 3. Differentiating

(4.12) with i h - 1 and using (3.27) and (3.64) we obtain

3 [q(y)u] = el ED [cD AfH + ¢'(y,u,r)] 0 + c(t) (4.13)

Substituting @r(y, u, r) from (4.6) and rewriting (3.11) as T 
- [jT 0 -2], we express (4.1:3)

as

L D E2 + eo,_ 2D - l Eo3 ~[q(yJ)u] = [~)

= e(f) - EoD cT AfHO + D(y,r), -3"[q(y)u]j + E(t), (4.14)

L D
which implies that L [q(y)u] is bounded. Since L is of degree n - 2 and - [q(y)u] is
bounded for I = 1 . n - 3, it follows that D [q(y)u] is bounded. Hence. D 2 [q(y) ]

is bounded, which proves that u is bounded.

In order to show the boundedness of the state of the plant, we note that the boundedness

of u and (3.16) imply that D'y, 0 < i < n - m, are bounded. From this and the fact that

B(D) is Hurwitz, we conclude that the state x in (3.90) is bounded.

We have thus proved that the state of the closed-loop adaptive system (3.90) is bounded

on [0, tf). Hence, tf = 3o

To prove the convergence of the tracking error e to zero, we first note that (3.39) and (3.17)

imply that fV' is bounded and integrable on [0, oc). Furthermore, the boundedness of t- (cf.

(3.32)), ( (cf. (4.4)) and II (cf. (3.90)) implies that ,V is bounded. Hence, 1* -- 0 as t - -'C'

which, in view of (3.47), proves that -+ 0, ( --+ 0 as t --+ oo. Since r/ = S and S is

bounded, q , 0 as t --- oc. Combined with (3.90) and the boundedness o b. this also

proves that r;o -- 0 as t -* c. Thus,

lim [y(t) - y(t)1 - i [(t) - 770(t)] = 0. (4.15)
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5 The Class of Nonlinear Systems

Most models of nonlinear systems are expressed in specific state coordinates. From that

state-space form it may not always be obvious whether or not the nonlinear system at hand

has the input-output description assumed in Sect. 3. Therefore, we now give cocrdinate-

free geometric conditions which are necessary and sufficient for a single-input single-output

nonlinear system of the form

; = f(z; a) + g(z;a)u (5.1)

y = h(z; a)

to have an input-output description of the form (3.1), which is repeated here for convenience:

A(D)y = B(D) [q(y)u] + E D' lP,0(y)+ PT(y)Oi] • (52)
i=0

In (5.1) z E ?' is the state, u E ff? is the input, y E UI? is the output, = [=1. E i W

is a vector of unknown constant parameters, and f, g, h, are smooth vector fields with

Sf(0; a) = 0, h(0; a) = 0, for all a E W, g(z) # 0 for all z E R' . In (5.2)

I the coefficients a 0,... a,- of the denominator polynomial A(D) = DI' + a,-_ID - I +

+ a0 are unknown,

* the coefficients b0, . .. ,b,(rn < n - 1) of the numerator polynomial B(D) = 1),, D'

.. + bo are unknown,

* 01 is an e-dimensional vector of unknown parameters, resulting from a possible overpa-

rameterization in which products and powers of the original unknown parameters ,

are treated as new parameters (so that f > r),

* q(y), pj(), 0 < i < m, 0 < j < e are smooth nonlinearities with q(y) $ 0 Vy E It?.

pi, (O)= 0, 0 < i < n, 0 <j <e.

We first note that a minimal state representation of (5.2) is given by

5 = 4,x + h +q(y)u [ Pid) +Pi'0),(.5.:3)
i=0

= TYJ = CT X, =

31



with As-, b , cs, _ as defined in (3.91). Hence, the following statement becomes obvious:

Fact 5.1. The nonlinear system (5.1) has an input-output description of the form (.5.2) If and

only if there exists a global in z, possibly parameter-dependent, diffeornorphism transforming

(5.1) into (5.3).

Using this fact, we now state the following result:

Proposition 5.2. The system (5.1) has an input-output description of the form (,5.2) if

and only if the following conditions are satisfied for all z e ]& and for the true value of the

parameter vector a:

(Cl) the one-forms dh, dLfh,... , dL'-'h are linearly independent

(C2) [adl, ad]= 0, i,j =0,... n - 1, where g is uniquely defined by

L 0L,1h= 0.. 2-

(C3)

ad = Z dj(c,)adj + [pio'(y) + PT(Y)0 1 ad' g
j=O j=0

1g, ad'fg 0, j0,...,n - 2

g = q(y) c.(a)ad'og,

with d,(a), cj(a) polynomial functions of a, 01 the new unknown parameter vector.

and pi(y) = p'(v)dv, i = 0 .. , f

(CI) the vector fields f and g are complete.

Proof. Using Proposition 3 of [23]., it is straightforwaird to show that conditions (C1)-(C3)

are necessary aad sufficient for the existence of a local diffeomorphism such that in thee ew
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U

coordinates the system (5.1) is expressed as

0

I~~~- (-)'oa o,.[ ~~~~~ ~ (-1)'d0 a0 1Co(-~* m ~ ~~

Io
0

+ (-I) [po(Y) + Pn()0,.

3 which is exactly in the form (5.3), where the coefficients a0 ,.a.. b0, .. b... depend on

the physical parameters a. From [24], condition (C4) is necessary anrd sufficient for the aboveI diffeomorphism to be global. [

I Remark 5.3. The above proposition gives a set of geometric conditions characterizing

the class of nonlinear systems to which our adaptive scheme can be applied. \Vhenever3 the conditions i(CI)-(C4) can be verified a priori, the input-output description (5.2) of the

nonlinear system at hand is determined directly from (C3), without the need to compute the

I diffeomorphism of Proposition 5.2. Unfortunately, the verification of (CI)-(C'4) may require
I some a priori information about thle unknown parameter vector a.

Remark 5.4. The conditions of Proposition 5.2 are satisfied by nonlinear systems that

I are linearizable by output injection and input-output linearizable by full-state feedback.

I However, Jhey needI not be full-state feedback linearizable.

We illustrate these two remarks with an example.
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Example 5.6. It may not be obvious that (2.1) is the input-output description of the

U nonlinear system

3 = +2 +Q (yY + 2y2)

- 3 - a(2yeY y2)

z3 = z4 + Qyey (5.5)

z4 = z 5 + aey 2

+ cy
3

y = z 1 +2z 2 +z 3 .

3 However, this can be established by checking the conditions (C1)-(C4). Straightforward

calculations show that for (5.5) we have

5 0 a 3a
19z, Oz2  0z93  Oz4  az53 ad 5 a [-3y2g + (2y + 6y 2 )ad1f -(ye" + e + 4y + 3y2)ad 2] (5.7)

g = - + 2ad j - ad}. (5.)

I Hence, the conditions (C1)-(C4) are satisfied for all a and the input-output description of

i (5.5) is
D5 y = (D 2 + 2D + 1)u + O[D 2(ye y + 2y 2 + y 3) + D(y 2 + 2y 3) + y3], (5.9)

3 where 0 = a. It is important to note that to determine this input-output description no

explicit change of coordinates was required. In this simple example, however, one can find

5 the corresponding change of coordinates by inspection:

3 xi = z 1 +2z 2 +z 3

X2 = z2 +2z 3 + z 4

3 X3 = Z3 + 2z, + z 5  (5. 10)

IX4 = z 4 +2z. 5

X5 = 75 •
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In these coordinates, (5.5) becomes

X 1 == X22

I 12 = 23

X3 X4 +u+a(YeY+2y2y3) (5.11

3X = LL+ y 3

X5= it+

I We immediately see that (5.11) has the input-output description (5.9).

However, it should also be pointed out that (5.5) is not full-state feedback liiearizabhc,

since the distribution

g3 = span {g, adg, ad2g, ad3g} (5.12)

is not involutive[3,41.

6 Conclusions

I This paper has extended the theory of adaptive control for linear systems to a class of systems3 which are essentially nonlinear in the sense that their nonlinearities are not restricted by any

growth constraints. in spite of this absence of growth constraints, all the stability arid

tracking results are global.

The assumptions on the linear part of the system are the same as in the standard adaptive3 theory for linear systems. However, to guarantee the aforementioned global properties. the

systematic design procedure has departed from the two main ingredients of most adaptive3 schemes for linear systems: the certainty-equivalence control and the normalization of the

update law. In addition to the certainty-equivalence part, the control contains a term which

3 counteracts the effects of rapidly growing nonlinearities. Thanks to the presence of tlhis

term, the normalization of the update law is avoided, which allows the rapid (lecrease of

I the parameter error. This proved to be crucial in preventing finite escape times common in

systems with rapidly growing nonlinearities.
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The class of nonIin ear systemns has been restricted 1w coord Iinate lice( geonlet I, c (oiid It I'()Ii>,

U which are equivalent to the structural requirements that the nonilinearities depeiin Iuilv ')1

the output and (10 not enter the system before the control does. anid that the zero dyiiamti>>

are linear and exponentially stable. Relaxing these restrictions, and, thus enlarging the las>;

of systemns that can be adaptively controlled Using only output Iesuesn is torpic r

furt her research.
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