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Capon's maximum likelihood method (MLM) is being used increasingly for improved
localization and high resolution of sources in matched-field processing (MFP) in a waveguide
environment. When the noise component is dominated by modal noise (that is, noise due to
excitation of the modal structure of the waveguide by distant sources of acoustic energy, e.g.,
wave action, distant shipping), the MLM can become unstable; when the number of modes
(M) supported by the waveguide is considerably less than the number of sensors (N), a
"reduced" MLM is available to stabilize the processing [Byrne et al., J. Acoust. Soc. Am. 87,
2493-2502 (1990) ]. In this paper the sector-focused stability (SFS) methods of Byrne and
Steele (Proc. IEEE., ICASSP 1987) are employed to treat the case of M nearly equal to N.
Simulations, using a shallow-water range-independent environment, are presented to illustrate
the increase in stability of SFS over MLM in the presence of phase errors on the sensors or
more general mismatch.

PACS numbers: 43.30.Wi, 43.60.Gk

INTRODUCTION rameters, such as those describing the bottom. Other studies
of sensitivity of MFP to mismatch have considered: pertur-

Matched-field processing (MFP) is a type of signal pro- bations in water depth and geoacoustic parameters; 3 the
cessing procedure that involves the comparison of signal re- use of waterborne modes only, as well as sound-speed profile
plica vectors obtained from models of the acoustic propaga- and sediment mismatch;' 4 and reduction of array aperture
tion, such as normal mode expansions for and coverage of the water column."5 Several authors have
range-independent waveguides, with received signal data. In investigated the estimation procedures themselves and have
cases where a plane-wave propagation model is generally suggested new estimators to overcome problems with mis-
inadequate, MFP has been shown to be a useful method for match. Shang""-8 has studied the mode space processing
detection and localization of sources. The need to go beyond mentioned in Tindle et al.,4 and Yang' 9 has suggested pro-
the plane-wave assumption was discussed more than a dec- jection onto certain eigenvector subspaces to increase the
ade ago by Hinich' and Bucker,2 and later by Mermoz.3  number of resolvable modes. Shang2' has also discussed the
Tindle et at." introduced what has come to be called "mode use of MFP with known sources to determine waveguide
space pro essing." Hinich' considered modal noise as a su- parameters.
perposition of sources in the waveguide and showed that the It is well known that Capon's MLM estimator is sensi-
statistical maximum likelihood estimation of unknown pa- tive to mismatch between the assumed model and the actual
rameters could be achieved with the number of sensors (N) data. For the plane-wave, case Byrne and Steele"' showed
equal to the number of modes (M) supported by the wave- that certain eigenvectors of the cross spectral matrix (CSM)
guide. Heitmeyer el alP considered MFP for the Pekeris R could become unstable when a correlated noise compo-
model. nent is present, which leads to deterioration of the MLM in

To achieve high resolution, while controlling computa- the presence of phase errors or other mismatch. A "sector-
tional load, several authors have considered nonlinear meth- focused stability" (SFS) method has been developed 2 to
ods. The most widely studied is Capon's estimator," called overcome this instability. The situation in the normal mode,
the "maximum likelihood method" (MLM) by Lacoss," as rather than the plane-wave, case is closely analogous to that
well as the "minimum variance distortionless look" by oth- studied by Byrne and Steele.' " The presence of modal
er. 9 For a detailed discussion of MLM applied to MFP see noise (distant noise sources exciting the modal structure)
Bajeroer et al.'0 Klemm"1 2 considered a maximum en- creates similar eigenvetor instability. Byrne et a/.23 derived
tropy-type estimator and studied the effects of mismatch due mode space MLM, or "reduced ML" (RML), as a special
toinomplete or inaccurate knowledge of environmental pa- case of SFS and showed that it could improve stability when

1543 J. Acout8 oc. Am. U(), December 190 0001 -49et90O/i264OWOO ) 1990 Aousww Sodey at Afeic a m

- -- - - 1I 2B 195



the number ofmodes is significantly less than the number of ed beam space processing to avoid the effects of nonwhite
phones. In this paper we develop sector focusing further, to noise on eigenvector-based methods. Lee and Wengrovitz33

achieve increased stability and reduced computational load showed that the SFS procedure can be effective in overcom-
in the normal mode case. This enhanced sector to agree with ing mismatch due to finite averaging in estimating the CSM.
focusing can improve RML when the number of modes is Van Veen and Williams34 considered general dimensionality
about equal to the number of phones. reduction methods for reducing computation, and Xu and

In Sec. I we present some background on the issue of Buckley3" analyzed the statistical improvement due to di-
sensitivity to mismatch of ML and on the recently popular mensionality reduction. Cox et aL.36 have studied conven-
technique of dimensionality reduction, of which SFS is a tional beamforming on selected subarrays for MFP with
special case. In Sec. II we present the SFS method in detail, long arrays, to reduce computational load.
discuss the normal mode model, and consider the role of In matched-field processing one is usually dealing with
normalization in matched-field processing. In Sec. III we a waveguide that imposes structure on the propagating field.
discuss the simulations performed and describe the results. Distant sources of acoustic energy (shipping, surface
Finally, we have a brief statement of the conclusions we waves) can excite the modal structure of the waveguide and
draw from this work. present to the array a noise vector whose structure reflects
1. BACKGROUJND that waveguide. We refer to this as modal noise. When the

waveguide supports fewer modes than phones (M<N),
Shortly after the appearance of Capon's paper," Seleg- such modal noise presents to the array the same sort of struc-

son24 showed that the resolving properties of the MLM esti- tured, low-dimensional vectors presented by signal sources.
mator could deteriorate if there are phase or amplitude er- The problem is closely analogous to the spherical isotropic
rors in the data. He also noted (in a private communication noise and oversampled array case discussed above.22

recalled by McDonough 2 ) that the wider the spread be- Dimensionality reduction can be implemented in MFP
tween the largest and smallest eigenvalues of the cross spec- through so-called mode space processing (MSP). In a relat-
tral matrix R, the more severe the deterioration. McDon- ed paper, Byrne et aL.23 used the SFS approach to derive
ough 2

1 obtained quantitative measures of the sensitivity of mode space MLM processing and to examine the improve-
MLM to mismatch. Cox26"27 viewed sensitivity to mismatch ment in stability this procedure affords. When the number of
as related to ability to resolve sources or to reject interfer- modes is not significantly less than the number of sensors the
ence, and suggested several methods to improve stability, advantage of MSP over MLM is not dramatic, and further
including multiple main lobe constraints. Vural2" pointed reduction of dimension is warranted. We consider a method
out that mismatch is most serious at high signal-to-noise for achieving further dimensional reduction in this paper:
ratio (SNR) and considered the use of multiple main lobe using regions of range-depth space to define the sectors; and
constraints and derivative constraints to combat the prob- using the eigenstructure of related positive definite matrices
lem. The use of multiple linear constraints was also treated to determine the essential dimensions of the sectors, and to
by Steele.29 Grays" noted that stability can be obtained by provide the transformations required.
processing the output of several presteered beams (beam The basic idea of dimensionality reduction is the use of a
space processing), provided the beams are sufficiently or- nonsquare N by K matrix V (K < N) with orthonormal co-
thogonal. More recently, Cox et al.3' have achieved robust lumns ( V V = I) to project the data vectors onto a subspace
beamforming by imposing a constraint on white noise re- of dimension K. The resulting CSM of the projected data is
sponse. T = V* R V, which is K by K. All subsequent processing in-

Byrne and Steele2 related the sensitivity of the MLM volves only T. If the columns of V are the steering vectors
estimator to that of particular eigenvectors of the CSM and associated with pre-selected beams, then T is the CSM used
showed that, by modifying MLM to reduce the influence of in beam space processing.' If the beams are not orthogonal
the unstable eigenvectors, stable estimation was possible. initially, an orthogonalization procedure (using, say, "QR
Their analysis showed that instability increases with the factorization" or Gram-Schmidt37 ) is needed to produce V.
presence of noise components that appeared signal-like to If the columns of Vare selected columns of the NbyNidenti-
the array (such as spherical isotropic noise to an oversam- ty matrix, then T is the CSM obtained by deleting certain
pled line array). Of course, such components lead to the sensors of the array (subarray processing). One objective of
eigenvalue spread that concerned Seligson and McDon- dimensionality redution is to reduce the size of the matrix
ough. To combat sensitivity, Byrne and Steele22 suggested to be inverted without destroying much signal information.
the SFS procedure, which also has the advantage of dimen- If the signal vector of interest lies in the span of the columns
sionality reduction, reducing the size of the matrix to be in- of V, then there is no loss of signal energy. Another objective
verted for estimation by using an Nby K (K < N) projector is to prewhiten the noise-only CSM. If R = S + Q, with S
matrix V, with V V= I (the t denotes conjugate trans- and Q the signals-only and noise-only CSM, respectively,
pose), to transform R to the K by K matrix V1 R V. Dimen- then to whiten Q with a square matrix (no dimensionality
sionality reduction has become popular recently and has reduction) requires exact knowledge of Q. However, V QV
been used for a variety of purposes, including simple reduc- can be made close to a K by K identity matrix, when K4N
tion of computational load. and the columns of Vare obtained from nearby beam-steer-

Several authors have considered dimensionality reduc- ing vectors, that is, we can achieve a local whitening of the
otn for the plane-wave case. Bienvenu and Kopp 2 suggest- noise without knowing Q.33
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When the objective is to stabilize MLM estimation, the noise (so G = average (rWt) and has the same form as
projection matrix V is selected to eliminate or reduce the SASt, but for a large J, representing the contributions of
contribution coming from unstable eigenvectors of R. For many distant noise sources); and H = average (,1/t ) is the
the case of normal mode propagation considered in this pa- CSM of nonmodal noise.
per, the columns of V can be chosen to be the M mode- When the number of modes Mis less than the number of
sampling vectors (leading to the RML estimator") or can sensors N, both the signal vectors Us, and the modal noise
correspond to a subsector of range and depth space. vectors Uy represent energy projected onto a smaller dimen-

sional subspace, the span of the columns of U, so that signals
II. THE NORMAL MODE MODEL, SECTOR-FOCUSED and modal noise are not easily separated. When the modal
STABILITY AND NORMALIZATION noise component UGUt dominates R, the lowest eigenvec-
A. The normal mode model tors of R tend to be nearly orthogonal to all the columns of U

Using the notation of Shang" we write the field excited and hence to every p(r,zo) = Us(r,z0 ). This is closely analo-

by a point source in the far field of a waveguide in a normal gous to the plane-wave situation, with spherical isotropic
m e panson t fnoise and an oversampled linear array, and will cause MLMmode expansion as to be sensitive to phase errors.

S U) If M is much less than N, stability can be achieved byp (r,Z,Zo ) = 7ri "Um zs.(rzo), (1)
letting the V in the SFS method be the (orthogonalized)

where z, is the source depth, z is the receiver depth, and r is columns of U.2 If M is not much less than N, greater stabil-
the source range from an arbitrary origin (usually where the ity can be obtained by choosing as our sector a subset I of
vertical array is located). The U,, (z) are the eigenfunctions 0" = (rz) space whose essential dimension is K < M, and
of the depth-only Sturm-Liouville boundary value problem: then proceeding with SFS on the reduced K by K matrix
U_ (z) is called the mth mode. The coefficients s. (r,zo ) V1 R V, as described below.
represent the excitation of the mth mode by a source at range In Sec. III we discuss simulated cases of normal moder and depth zo: propagation and the use of SFS to stabilize the MLM estima-

s,, (r,)= exp (3 iri/4) exp(-/, r) exp (ik,. r) tr

X U. (zo) V2r/k.r, (2) B. Sector-focused stability

where k,. and f,, are horizontal and vertical wave numbers, We assume, initially, an arbitrarily configured array of
respectively. Higher modes and continuous modes are con- N sensors. The narrow-band single-snapshot data vector is
sidered as noise, since we are interested in far-field sources. the N by I vector x and the (sampled) cross spectral matrix
Sampling the pressure field using sensors at depths z. is R average (xxt), where the average is taken over the
(n = I .... N) we obtain the (narrow-band) data vector available number of snapshots. We assume that R has (ap-

P(r.Zo) [(3) proximately) the form
J

Letting U be the N by M matrix whose mth column is R = a2p(O9)p(O1 )* + Q, (7)
[ (U,_ (z,),..... U.(z.)]- , and s(r,zo ) be the Mby I vector
whose mth entry is s,_ (r, z,), we can then write where the p(O,) are the signal vectors assumed to lie in a

parametrized set {p(0), 0 in fl} and Q is the noise-only
p(r,z0 ) = Us(rzo). (4) CSM. For now the0 have no further significance and may be
We assume that the single snapshot data vector x has the scalar or vector quantities. The objective is to determineJ, as

form well as the 0, and (perhaps) the aJ, usually without knowl-
J edge of Q. Capon's MLM estimator is a popular choice be-

x = A~isr,zj) + noise cause it does not require Q and, for sufficiently high signal-
to-noise ratio (SNR), achieves better resolution

J A1 Us. + Uy+ 1, (5) (determination ofJ) than conventional methods (e.g., Bart-Alett) ' Other procedures, such as "optimal array prcess-

ing" or eigenvector-based methods, require a prewhitening
where r, and z,), are the range and depth, respectively, of the of R that necessitates knowledge of Q.
Jth source; s, = s(r,z 4j ); the entries of y represent the exci- Capon's MLM proceeds as follows: for each fixed value
tation of the various modal amplitudes by aggregate noise 0 = (o we find the linear filter f = f(a)) that minimizes aver-
sources; 17 is random white noise; and the A, are independent age output power f' R f, subject only to the constraint of no
random variables representing time-varying channel fluctu- distortion of p(w):ft p() = 1. The well-known solution is
ations (a Rayleigh fading channel, for example). To lessen
the effects of noise it is common to take R = average (xx t ), f(m) = R -'p(a)/[p(w)'R - 'p(w)]. (8)
where the averaging is performed over the available snap- Applying this optimal filter to the actual data gives the
shots. Then our model for R becomes average output power ft (w) R f(w) equal to

R = USASUt + UGU* + H, (6) i/Lp(w)IR - 'p(a) ] = MLM(w), (9)

where the Jth column of S is s(rszoa ); A is the variance- which is Capon's estimate of the power associated with
covariance matrix oftheA; UGU1 is the CSMofthe modal 0 w. Because of the appearance of R ' in (9), those el-
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J genvectors of R corresponding to the lowest eigenvalues (let vanish at the surface. This is easily seen in Eq. (1). There-
us call them the "lowest" eigenvectors) have the greatest fore, if one wishes peaks in the ambiguity function to reflect
influence on MLM( ). As discussed by Byrne and Steele,2  the presence of acoustic sources and not the relative magni-
the presence of a correlated noise component Q, correspond- tude of the individual p (o), then a normalization of the pro-
ing to the superposition of many signal-like noise sources, cessor is required.
can cause these lowest eigenvectors to become unstable in Before deciding what this normalization should be, we
the presence of mismatch (such as phase errors). To stabi- must consider the processor response to the noise-only case,
lize the estimation of the 0, one must reduce or eliminate the to see what background the processor will provide. First,
contribution from these unstable eigenvectors. The SFS consider the case of white noise, which is totally uncorrelat-
method is designed to achieve this stability. ed between the hydrophones so that the time-averaged cross-

The MLM estimator is the averaged output of the linear spectral matrix R = Q is completely diagonal. Further, as-
filter in (8), which is dominated by the lowest eigenvectors sume that the average acoustic power delivered to each
of R. When the modal noise (UGUt) component of Q is hydrophone is constant so that R is some multiple of the
significant, the lowest eigenvectors of R tend to be nearly identity matrix. In this case it is simple to evaluate MLM (W)
orthogonal to the columns of U, hence to allp(O), and MLM from (9):
becomes unstable. The sector-focused stability (SFS) meth- MLM(w) = N(o)/pt(w)p(w), (12)
od employs a modification of (8) to eliminate the instability,
at least for estimation within a pre-selected subset I of a. where N(o) is the (as yet undetermined) normalization

For any N by K matrix V, every linear filter g = g(w) function. The sector-focused estimator SFS(w) (11) be-

can be written uniquely as g = Va + w, where Vt w = 0 and comes

ais some Kby I vector. The more w dominates gthe more g SFS(o) = N(W)/p t (w) V(VV) - 'V t p(w), (13)
will be orthogonal to the columns of V. Those g whose w N(w)/pt(w)VV4 p(), (14)
component is missing are those least orthogonal to the co-
lumns of V; thus the additional constraint that g(w) = Va since V* V = I.
for some a simply makes it harder for g(w) to be orthogonal Before interpreting what we have just found, let us con-
to the columns of V. The answer is to build V from vectors sider the other extreme type of noise field one might encoun-
p(O), 0 in 1, thus making g(w) more stable for estimation ter in an acoustic waveguide. Let us consider noise propagat-
within 1. ing to the array from a large number of distant point sources

To obtain the projection matrix V we begin by simulat- randomly distributed in depth and range (in fact, distribu-
ing a noise component equal to the superposition of many tion in range only is sufficient) so that no near-field effects
independent sources within Y; that is, we form (an approxi- are included. Then it has been shown that the mode space
mation of) Q(.) = average {p( 0 )p(0)* }, for 0 in 1. Tak- cross-spectral matrix will be diagonal in form.2 3 39 4

0 If we
ing the eigenvector/eigenvalue decomposition Q(Z) also assume that the average acoustic power carried by each
= WL Wt, W* W =I, L = diag {A, ... . }, we define the normal mode is equivalent, then the mode space CSM [i.e.,

essential dimension of Y to be the number k of (essentially) Gin Eq. (6)1 is simply a multiple of the identity matrix and
nonzero terms in L. The matrix V has for its columns these k the phone space matrix is R = Q = UU". Because R = UU
columns of W, so Vis Nby K and V1 V= I. is not invertible, we cannot resort to (8) and (9) for the

We derive the SFS method by modifying Capon's meth- MLM. We must directly solve the problem: minimize
od as follows: for each fixed 0 = w within Y wefindthe linear ft (w)R f(w) = ft (w) UU" f(w),subjecttoft (w)p(ta) = 1.
filter g = g(w) that minimizes g Rg subject to the con- The MLM esimate will then be f(w)R f(w) for the optimal
straints g*p(w) = I andg= Va, where ais aKby I vector f(w). Writingg = Ut f(w), theproblem becomes: minimize
and therefore g is in the span of the columns of V It is unim- gg subject to 1 = ft(w)p(w) = ft(w) Us(o) = gts(w). The
portant what a is; the point is that g(w) cannot now have a solution is
sizablecomponent orthogonal to the columns of V. Proceed-
ing as before, we find that the optimal filter is g = [s(w)(w) ] - 's(w). (15)

From
g(w) = V( V*R V) - iVtp(w) g~g ft(M)R f(w) = f(w) UUtf(a,), (16)

X [p(w)V( V t RV) -Vtp(w) 1- (10) we see that the MLM is gtg or,

and the average output power is the SFS estimator: MLM(W) = N(W)/st(W)s(w). (17)
S'(W)RS(w) = l/[p(W)tV(VtRV) - i Vp(W) ] Similarly, SFS(w) takes the form,

= SPS(w). (11) SFS(oa) =N(a,)/s*(w)UtV(VtUUtV) -VtUs(w). (18)

If the columns of Vare simply orthogonalized columns
C.Po uu Of a hn .wt o. mng of U then V= UG for some invertible G, and it follows that

As they appear in Eqs. (9) and (I[), MLM(ai) and S reducesto

S S() have singularities wherever p( ) approaches zero. SFS(w) = N(w)/st(w)s(o). (19)

Ths is pttncipallyaproblem near the surface ofawaveguide Now that we know what MLM(a,) and SFS(a,) look like in
since, from the acoustic boundary conditions, p(a) must these noise fields, we turn to the question of the appearance
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of their corresponding processor responses. Hz. The vertical receiving array consists of 31 equally spaced
For the ambiguity surface to be useful, the background hydrophones spanning the central 450 m of the water col-

against which signals are sought must be relatively fiat. If the umn. Here we will be concerned with propagation over
noise component is white, with the MLM surface for white ranges between 10 and 18 km from the source.
noise only being given by (12), the best normalization is
N(w) = p(w)&*p(w). However, if the noise is mainly modal,
normalizing MLM by N(co) - s (w)s(co) will produce a B. Construction of the CSM
flatter background. Because we are concerned in this paper The matched-field processor accepts as data input the
with the effects of a sizable modal noise component we have cross spectral matrix R, which is calculated as the sum of the
chosen the latter normalization, signal-only matrix S and the noise-only matrix Q,

Ill. SIMULATIONS R = S + Q. (20)

A. Environmental model For a source located at range r and depth zo, SNAP yields
p(r,zo ) and s(r,zo ) of Eq. (9), from which Smay be calcu-

In order to demonstrate the effectiveness of the sector- lated,

focused stability technique, we have performed numerical

simulations of a shallow-water, range-independent environ- S p (rZ 0 )p*(rZ0 ). (21)

ment, as shown schematically in Fig. 1. This environment, The magnitude of the elements of p(r o ,zo ) are adjusted to
which is modeled after a location on the continental shelf off scale the trace of this matrix to give the signal level required
the southern California coast, consists of a water channel of for the simulation.
500-m depth overlying a sediment layer and an isospeed, The noise matrix Q has two components. The first is the
semi-infinite subbottom. The sound-speed profile for the wa- "modal noise" matrix, representing noise that is correlated
ter and sediment layers and top section of the subbottom are between the hydrophones when detected at the array. This is
shown in Fig. 2. In addition to the sound-speed difference, modeled by summing contributions from 1500 individual
there is also a density contrast between the water layer and
the sediment. The water density is 1.0 g/cc and the sediment
density is 1.5 g/cc. There is an attenuation factor in the sedi-
ment layer of 0. 1 dBM, .

The acoustic field calculations for these simulations .
were performed using the SACLANTCEN normal-mode
acoustic propagation (SNAP) model. For the set of environ-
mental parameters shown in Figs. I and 2, the SNAP model 100
indicates 14 propagating modes at a source frequency of 30

200-

30(]-WATER

FREQUENCY = 30 Hz: 14 PROPAGATING MODES

PROFILE SURFACE NOISE SOURCE E
SOUND SPEED SOURCES 400

Z=0 4000

HYDROPHIONE r 0 S
ARRAY 10 km 18 km

SPAN - 450 m 50

M) N 31 1
500m WATER

ZN~~ 450 mm 50

SEDIMENT 600

700

SUB-BOTTOM
80o|ol. ....... I S .. .. ... .. . I I 11lI lliI ~ l l l

1450 1500 1550 1600 1650 1700 1750 I800 1850
SOUND SPEED Wmis)

FIG. I. Schematic diagram showing the acoustic environmental model used
in the simulations. The geometrical arrangement of the array, the place-
ment ofsurface noise sources. and the delineation of the search space (later FIG. 2. Sound-speed profile for the continental shelf environment used in
divided into search sectors) are also indicated in this diagram. the simulations.
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sources, which are placed at a depth of 7 m and distributed
evenly in ranges from 0.3 to 500 km from the array. The
SNAP model implicitly assumes cylindrical symmetry when
calculating the acoustic field. Therefore there is a require- 30
ment that each of the 1500 sources in the sum represent an
annulus of sources surrounding the array whose radius is the
range of the source from the array. To accomplish this, the
input level of the sources must be scaled so that the average
intensity registered at the hydrophones from all of them will
be the same. The second component of Q is noise that is
completely uncorrelated between the hydrophones ("white o
noise") and may be modeled as a multiple p of the identity
matrix. The total noise matrix then becomes

Q =,pip+pL. (22)

In these simulations we will monitor the relative degradation
of the MLM and SFS estimators when phase errors are intro-
duced onto the signals received at the hydrophones array.
The introduction of these phase errors takes the form of a
similarity transformation of R,

R' = DRD t , (23)

where D = diag {e'("}, and the 0, are derived from a set of 0 0

random numbers which are scaled to give the desired maxi- PHASE ERROR (deg)
mum phase error incident upon the array. Figure 3 shows a
realization of the random set OiI scaled to give a maximum
value for the error of + I deg. From Eq. (23) we see that the
similarity transformation amounts to a rotation of the data FIG. 3. Realization of the set of random phases (maximum salue -f- I
matrix about a direction determined by the relative magni- deg) used to introduce phase errors onto the hydrophone array by means ofmgi the similarity transform (23).

tude of the phase errors and through an angle determined by

their overall magnitude. Although the perturbations consid-
ered here were phase errors, other forms of mismatch would
also lead to similar degradation of MLM. The SFS approach
offers greater stability to other types of mismatch, such as present in the data. Since we are concerned only with stabi-
erroneous environmental parameters, since the exact nature lizing Capon's MLM we do not include comparisons with
of the perturbations is not important in the development of conventional (Bartlett) estimation. The advantages and dis-
SFS. advantages of MLM and Bartlett have been discussed at

In this paper we use four parameters to characterize the length in the literature." 'to

simulated data cross-spectral matrix. First, the source level An important input to all matched-field processors is
(SL) is the average of the diagonal elements of the signal- the set of replica field vectors (or steering vectors) p(r ,z, ).
only matrix S, expressed in dB relative to unity. Second, the where i denotes the ith search point (or trial source loca-
total noise level (TNL) is defined as the average diagonal tion). Again, we have used SNAP to produce these vectors
element of the total noise matrix Q, also expressed in dB fora grid of points within a search space selected to span 0 to
relative to unity. Third, the modal to white noise ratio 200 m in depth and 10 to 18 m in range (see Fig. I). Now for
(MWR) is the ratio of modal to white noise power, again in each range/depth point in the search grid we can calculate
dB. Fimally, the random phase error (RPE) identifies the MLM using Eq. (9):
magnitude of the phase errors, and is expressed as a multiple s (ri,Z,) s ( r,,z,)
of the random number elements displayed in Fig. 3. For ex- MLM(r,,z,) = (24)
ample, an RPE = 10 deg means that we multiply the phase P(rzjlR p(rz)

errors in Fig. 3 by 10, which would give values of 0, varying where we have implemented the sts normalization of Eq.
between - 10 deg and + 10 deg, and then form the rotation (17).
matrix D. When calculating the SFS estimator, one is free to

choose the size and shapes of the individual sectors. We leave
the question of optimal sector geometry for future investiga-

C. Comparson of HIM and SF8 tion. Our aim here is to show that even a very simple choice
Now that we have the simulated data matrix R, the of sectors yields a very stable processing result. In our simu-

problem is to attempt to extract the source information from lations of SFS we divided the total search space into 16
it using matched-field techniques. Here we will compare the equally sized sectors. Each sector covers 50 m in depth and 2
performance of Capon's MLM to SFS when phase errors are km in range. Thus, calculation of the sector-focused proces-
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sor requires the formation of 16 matrices V describing each a 10.0
of the 16 sectors within the search space. cc 7,5

For each sector Y, the calculation of V proceeds in three 5.0.
main steps. First we form a cross-spectral matrix as follows: 25

Q (Y.) -- Y . pjp , (25 ) 0.€

many uv -25.

where the sum is taken over many sources distributed Ij 1 0
throughout the sector of interest. The exact number of 1 16 1 1 ,4
sources in this sum is not important so long as it is large
compared to the number of hydrophones in the receiving
array. This assures that the eigenvectors of N will span the

N sector in question.
Next, we numerically determine the eigenvalues and ei- FIG. 4. MLM ambiguity surface with a random phase error of 0 deg.

genvectors of Q(M). The columns of V are then chosen to be
a set of K eigenvectors corresponding to the largest (not
close to zero) eigenvalues of Q(M). The exact value of K and
the form of V depends, in general, on both the size and loca-
tion of the sector in question. However, K is limited to take a
value between one and the number of propagating modes in located at a range of 14.5 km and a depth of 30 m. We will be
the waveguide. This is easily demonstrated by considering concerned with the performance of the MLM and SFS esti-
two limiting cases. First, consider shrinking the size of the mators as a function only of the random phase error intro-

sector to a single point. In this case Q(1I) is composed of a duced at the hydrophone array. Essentially, the requirement

single dyad and will therefore have exactly one nonzero here is to localize a source with input level - 10 dB within a
eigenvalue. Second, expand the sector to span the entire noise field dominated by spatially correlated (modal) noise.

waveguide. Here the number of large eigenvectors will be In Fig. 4 we see the MLM ambiguity surface for an

equal to the number of degrees of freedom. For an acoustic RPE = 0 deg. On this surface the signal peak is clearly resol-
waveguide this is equal to the number of modes, and so the vable against a moderate background with a detection factor

matrix Q(X) will have M nonzero eigenvalues. In our simu- PBR = 9.06 dB, and is located at the correct range and
lations we choose K = 11, so that Vis a 31 X II matrix. depth. This is to be expected, since there is no difference

Within each sector, we can now form the SFS estimator between the replica field vectors and those used to construct

as follows: the data matrix. In Fig. 5 we see the SFS ambiguity surface,

also for #h, case of zero phase error. This surface was pro-
SFS(r,,z,) = p s (rz, )s(r,,z) ) . (26) duced by using the division of the search region into 16 sec-

,z,) V( V*R'V) -. 'Vp(r,,z ) tors, each 50 m in depth by 2 km in range, described above.
This figure indicates that, in the RPE = 0 deg case, the SFS

D. Quantification of the estimator functions estimator offers no advantage over MLM. Although the sig-
nal peak is still easily resolvable and correctly located, theIn order to quantify the perforniance of the estimators, background is actually slightly worse than with MLM. The

and to distinguish between visually similar ambiguity sur- value of PBR falls to 8.28 dB.
faces, we calculate a detection factor for each function L Let us now see the effects of increasing the phase error.

In Fig. 6 we display the MLM ambiguity surface for an
Detection Factor. PBR = (P - p)/a(expressed in dB), RPE = 45 deg. It is seen that, with this amount of phase

(27)

where P is the value of the ambiguity function at the known
source location, p is the average level of the ambiguity func-
tion ignoring the region immediately around the source
peak, and , is the standard deviation of the ambiguity func- -10.

tion ignoring the region immediately around the source -

peak.cc75
This factor has been discussed previously in the litera- 50

ture. 3 We do not infer statistical behavior from it, but use it 25

as a measure of "goodness."

E. Results and analysis 13 1

In all of the simulations considered here we maintain 16/ 17
constant values for: the signal level (SL = 50 dB); the total
noise level (TNL = 60 dB); and the modal-to-white noise
ratio (MWR = 30 dB). We also consider a single source Fo(). 5.SFSambiguity surface with arndomphaseerrorof 0deg.
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FIG. 6. MLM ambiguity surface with a random phase error of 45 deg. 2 "'"--------- --...

error, the MLM processor has been degraded and distorted 0 20 40 60 80 100 120

to the point where the signal peak has vanished and has been RANDOM PHASE ERROR (deog)
replaced by two large spurious sidelobes. One of these is lo-
cated at range 1 1.5 km while the other, although found at
range 14.5 kin, is lcated at the surface rather than at the

FIG. 8. Variation of PBR for both the MLM and SFS prtocessors as a func-input depth of 30 m. Evidently the MLM processor is inef- tion of random phase error.
fective for localization purposes once this level of phase error
is reached. In contrast, we see the SFS ambiguity surface for
an RPE = 45 deg in Fig. 7. Here the signal peak is still clear-
ly resolvable abov te background. In fact, comparison of
Fig. 7 with Fig. 5 shows that the introduction ofphase error performs effectively out to relatively large values of RPE,
has led to no discernible degradation or distortion of the SFS giving a PBR of 5.99 dB at RPE = 90 deg and a PBR of 3.84
surface. Rather, the quality othe surface, from a signal eo- dB at RPE = 100 deg. Apart from a narrow range near
calization viewpoint, seems to have improved slightly, With RPE = 0deg (where both processors work almost identical-
the value ofPBR increasing to 8.55 dB when the RPE is 45 ly) the SFS consistently outperforms the MLM by 2-6 dB
deg. over the range of RPE considered.

In Fig. 8 curves are plotted that indicate the variation of

PBR for both the MLM and SFS processors as a function of IV. CONCLUSIONS
RPE. As the phase error is increased we see the MLM curve
fall very steeply from its initial value of 9.06 dB at RPE l- An improved matched-field processor, the "sector-fo-
deg, to a value of 2.55dB at RPE = 20 deg. It then dereases cused stability" (SF ) method, has been developed to pro-
more slowly as the RPE is further increased, reaching 1.81 vide more stable source estimation performance in a wave-
dB at RPE = 100 deg. However, the SF curve is dramati- guide in the presence of high levels of correlated (modal)
cally different. As the phase error is increased, the value of noise. Under these conditions the "maximum likelihood"
PBR also increases (see again Figs. 5 and 7), reaching its (ML) method shows serious deterioration whe small ran-
maximum of 8.55 dB at RPE = 45 deg. After this point, the dom phase errors are introduced onto the hydrophones.

values of PBR begin tq slowly fall; but the processor still However, the SFS method continues to return stable and
accurate source estimates with levels of random phase error
which are several times that which induces failure of the ML
method.
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