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Abstract

An experinent using a time-dependent, two.diiensiomiI pliotoclielmical nIodel of the tropo-
4,

sphere to model the vertical and zonal distribution of ozone and its precursors is presented.

The experiment examines two cases. Case I sinulates vertical transport due to dilfusion

and zonal transport due to advection, with surface eiiiissions of ozone precursors in the

center of the model domain representing an urban environment with light wind conditions

favorable for the formation of ozone in concentrations grealer than 80 parts per billion by

volume (ppbv). In Case II, an elevated source of ozone and its precursors is introduced

at the upstream boundary in order to investigate the rOle of advection of these chemical

species on ozone concentrations.

The first simulation produces surface ozone concentrations greater than 120) ppbv in the

air above the urban area, and the second simulatio , prod tres all increase of 3 - If percent. in

this region. A comparison of Case I and Case I1 results shows that enhanced photocleimical

production of ozone due to the addition or ozone's precursors plays all importa.t role il

this increase.
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Abstract

An experiment using a time-dependent, two-dimensional photochemical model of the tropo-

sphere to model the vertical and zonal distribution of ozone and its precursors is presented.

The experiment examines two cases. Case I simulates vertical transport due to diffusion

and zonal transport due to advection, with surface emissions of ozone precursors in the

center of the model domain representing an urban environment with light wind conditions

favorable for the formation of ozone in concentrations greater than 80 parts per billion by

volume (ppbv). In Case II, an elevated source of ozone and its precursors is introduced

at the upstream boundary in order to investigate the role of advection of these chemical

species on ozone concentrations.

The first simulation produces surface ozone concentrations greater than 120 ppbv in the

air above the urban area, and the second simulation produces an increase of 3 - 10 percent in

this region. A comparison of Case I and Case II results shows that enhanced photochemical

production of ozone due to the addition of ozone's precursors plays an important role in

this increase.
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Chapter 1

Introduction

The presence of ozone (03) in the troposphere is a very significant environmental hazard.

Ozone is estimated to cause greater than $1 billion of crop damage each year in the U.S.

(Heck et al., 1982). Human health is adversely impacted by ozone concentrations that com-

monly occur in parts of the United States during summer. A recent study shows exposure

to ozone concentrations of 0.12 ppm (the current Environmental Protection Agency (EPA)

standard) for one to six hour periods reduces the volume of air that a person is able to

breath (Follinsbee et al., 1988). Ozone also accelerates the aging of the lungs and causes

other adverse bio-chemical changes to the lungs (Sun, 1988).

Ozone is an important infrared (IR) absorber in the troposphere because the 9.6 pm

band of ozone is in the center of the IR window (Ramanathan, 1988). This makes ozone

an important greenhouse gas. Changes to the amount of ozone present in the troposphere

will change the radiative balance between the earth and the atmosphere, possibly resulting

in changes to climate. Doubling the amount of ozone in the troposphere could result in

I



CHAPTER 1. INTRODUCTION 2

an average global temperature increase of 0.9 K (Fishman et al., 1979). In comparison,

a doubling of C02 could lead to an increase of 3.5 to 4.5 K (Ramanathan, 1988). This

contribution is not as large as the contribution the major greenhouse gas, C02, would

make with a similar increase, but the contri~ution due to ozone is still significant. Because

tropospheric ozone may be increasing 3 - 5 times faster than C02 over the past 20-30 years

(Logan, 1985), the impact on climate of these these two gases may be comparable (Vukovich

and Fishman, 1986).

Episodes of widespread elevated ozone levels (greater than 80 ppbv) occur over the

United States each summer. These episodes are frequently associated with air stagna-

tion events characterized by weak, slow moving, persistent high-pressure systems (Logan,

1989). Some occurences of high ozone concentrations were explained by the occurrence of

tropopause folding events in which a large amount of ozone rich stratospheric air is injected

into the middle and lower troposphere (Danielsen, 1968), while normal concentrations of

ozone at the surface were thought to originate in the stratosphere and be transported to the

surface by other large scale motions (e.g., Fabian and Pruchniewicz 1973). In both cases,

ozone was treated as chemically inert in the troposphere. The Logan (1989) analysis of

meteorology for high ozone episodes indicates that transport of ozone from the stratosphere

to the surface due to tropopause folding is not the primary mechanism for these high ozone

occurrences.
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Starting with Crutzen (1973), and Chameides and Walker (1973), studies of the tropo-

spheric ozone budget were done with one dimensional models incorporating ozone photo-

chemistry. These early photochemical studies were done under the hypothesis that photo-

chemical processes were the dominant important source of ozone in the troposphere. These

first models did not consider the role of atmospheric transport mechanisms in the ozone

budget.

Current one dimensional models treat both photochemistry and vertical atmospheric

transport mechanisms as contributors. The model used for this study is an expansion of

Fishman and Carney (1984). It includes vertical transport by diffusion with simple models

of the boundary layer, and also models transport due to fair weather cumulus clouds. The

photochemical model includes reactions important in the tropospheric budget of ozone and

its precursors. Of primary importance in this study are tLhe reactions due to the oxides of

nitrogen (NO,,), non-methane hydrocarbons (NMIIC), and carbon monoxide.(CO). These

chemical species are precursors to the the formation of tropospheric ozone and as such, are

very important factors in controlling ozone photochemistry in the troposphere (Fishman et

al., 1985). Studies have linked increased emissions of these chemical families due to fossil

fuel burning and biomass burning to increases in tropospheric ozone (Logan 1985; Fishman

and Crutzen 1978; Fishman et al., 1985; Fishman et al., 1990).

The primary goal of this research is to investigate the role of horizontal advection in

the pho tochemical production of ozone during elevated ozune events. 'To accomplish this,

a model of the photochemical generation and transport of ozone and its precursors over
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a typical southeast U.S. air stagnation event is developed by expanding an existing one-

dimensional time dependent photochemical model of tlhe troposphere to two dimensions

by including large scale advection in the vertical and in one horizontal direction. A wind

field representative of the synoptic scale features of one such event is incorporated into the

model.



Chapter 2

Methodology

The one-dimensional photochemical model described by Fishman and Carney (1984) serves

as the starting point for the two dimensional Eulerian photochemical model used in this

study. The one-dimensional model has been expanded to include a horizontal advection

term and a vertical advection term.

2.1 The Continuity Equation

The general form of the two-dimensional (2D) continuity equation for a chemical species Xi

is:

X = Ej + PA - [XdD + -w[M]-l- + 1

+ a,-[MOx + "x \ ox

where

[Xi] is the concentration of the chemical species X (molecules cm-3 ),

5
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Ei is the emission rate of Xi (molecules cm- 3 sec-1),

P is the ph. 1 -chemical production rate of Xi (molecules cm - 3 sec - 1),

[Xj]Dj is the photochemical destruction rate of Xi (molecules cm- 3 sec - 1 ),

[M] is the concentration of air molecules,

Ii is the volume mixing ratio of Xi,

K, is the vertical eddy diffusion coefficient,

If. is the horizontal eddy diffusion coefficient,

w is the vertical velocity component, and

u is the horizontal velocity component.

This equation defines the rate of change of the molecular concentration of a chemical

species in time as the net amount of production, destruction, vertical advection, vertical

diffusion, horizontal advection, and horizontal diffusion. In this study, the horizontal dif-

fusion term is ignored because emissions are given in terms of area sources, so small-scale

horizontal details of concentration are smoothed out, and because the grid scale precludes

resolution of small scale effects in the horizontal.

The domain of the model is a grid covering 12 kin in the vertical and 1000 km in the

horizontal (see figure 1.) Grid spacing is 50 km in the horizontal and irregular in the

vertical. Above 2 km, vertical grid spacing is I km. Below 2 km, grid spacing is 250 m

with an additional layer at 2 m which serves as the lowest level where species concentration

is calculated. The grid points at the surface serve only as computational points for finite

differencing. The grid is placed over the southeast United States so that the horizontal wind

field is representative of a summertime Bermuda high situation which is often observed over
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Ht (kin) Model Domain

12 - • a
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Figure 1: A schematic representation of the grid spacing used in this study.
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the region during air stagnation events.

2.2 Photochemistry

The photochemical reactions used in this model are taken from the one-dimensional model

described by Fishman and Carney (1984) with the addition of isoprene chemistry after Lur-

mann et al. (1986). The reaction rate coefficients used in this study are shown in Appendix

A. The model allows for explicit numerical integration of the chemistry of long lived species

such as the alkanes ethane, butane, and hexane, as well as the alkenes ethylene and propy-

lene. It also generates concentrations for species such as acetaldehyde, peroxyacetylnitrate

(PAN) and other partially oxidized compounds. These species have highly variable lifetimes

and their concentrations are computed using implicit inegration. The short-lived radicals,

such as OH, HO 2 and their analogs derived from non-met bane hydrocarbons are calculated

using steady state approximations. No advection or diffusion of the short-lived species is

calculated. Integration of the photochemical terms of the continuity equation is done using

Euler-backward time differencing. A time step of 3 min has been used in this study.

Emission rates of CO, NMIIC and NO. are the independent variables in this study. The

background surface emission rates are shown in Table 1. The emission rates for CO, NMttC,

and NO. at three grid points near the center of the horizontal domain were increased by a

factor of twenty to simulate emission rates consistent with an urban environment.



CHAPTER 2. METHODOLOGY 9

Table 1: Background emission rates

Species Chemical Formula Emission Rate
(mol cm - 2 sec -1 )

Oxides of Nitrogen NO, 0.5E 11
Carbon Monoxide CO 3.75E 11
Ethane C2116  O.1E 11
Butane C4H10 .2E 11
Ilexane C6111.1  .1E 11
Ethene C2114  0.1E 11
Propene C3 H1 0.1E 11
Isoprene, C5 118  5.OE 11

* Average daytime emission rate. Isoprene is not emitted at night.

2.3 The Wind Field

The wind field used in the model represents an idealized flow during a summertime Bermuda

high situation over the southeast United States. The wind field taken as a guide in con-

structing the winds used in this model is from the European Centre for Medium Range

Weather Forecasts (ECMWF) analysis for 1200 UTC, 26 July 1987.

During the period starting on July 16 through July 31, a persistent high pressure system

was in place over the southeast United States. The high pressure system prevented large

scale precipitation and kept skies generally clear. Temperatures were high during the period

with many stations in the southeast reaching 1000 F. While synoptic scale precipitation

events were not present, isolated moist convection produced measurable rainfall amounts at

some stations in the southeast. During this period, elevated levels of ozone were recorded

throughout the Southeast and there were numerous violations of the ozone standard of 120
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•j

Figure 2: 500mb analysis for 1200 UTC, 26 July 1987. From Daily Weather Maps Weekly
Series, July 26, 1987. Dasheu line indicates the horizontal domain for model calculations.

ppbv for one hour (McNider, 1989). The 26 July, 1200 UTC surface analysis depicts a large

high pressure area over the entire southeast with the high centered over southern Arkansas.

Surface winds were generally light and variable throughout the entire region. Through 500

mb, winds over the region remained light. Synoptic conditions are depicted in figures 2 and

3.

The ECMWF winds for the standard pressure levels are depicted on figures 22 - 26 in

appendix B. They show a weak westerly (positive) zonal wind component over the Southeast

at 1000 mb, and a variable zonal wind component at 850 mb. At 700 mb and above, the zonal

wind component is easterly (negative) over the region. The vertical motion for the 26 July



CHAPTER 2. METHODOLOGY 1

Il]l

ILI9

--- 6- 
4

65111 1A ?2S 4

so 73 6.. ,j U ~

I Sil9* 57

*b-~6 3 I-"1"A 7 '

.:;. 4?

100 I0V2 Ill 2

July~V 26I98)



CHAPTER 2. METHODOLOGY 12

1987, 1200 UTC wind field was calculated by the kinematic method. The resultant vertical

motion field has a maximum value of 0.6 cm s- 1. This is four orders of magnitude smaller

than zonal wind values. However, vertical gradients of the trace species that this study is

concerned with are greater than their horizontal gradients. Thus, fluxes of trace species due

to synoptic scale vertical motion may be as much as one to ten percent of horizontal fluxes

and thus may play a significant role in the transport of these species in the free troposphere.

In the planetary boundary layer (PBL), transport due to turbulent eddy motions is much

more important than transport due to any synoptic scale vertical motions. This study is

an initial attempt to examine the feasability of expanding the Fishman and Carney (1984)

model to two dimensions and is primarily concerned with horizontal advective effects For

these reasons, and to simplify interpretation of model outiput, the effects of vertical motion

are ignored in these experiments.

The wind field used in the model is further simplified by requiring zonal homogeneity,

thereby eliminating a horizontal gradient in the wind field. The resultant wind continues

to emulate some specific characteristics of flow over the southeast United States during a

Bermuda high, namely light westerlies are present in the lower PBL with light easterlies

above. This feature was considered important for the present study because it may provide

a mechanism for recirculating ozone and its precursors from the boundary layer that have

been advected away from an emission source back over the region where it originated. This

flow reversal is illustrated in figure 4.
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WIND PROFILE
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Figure 4: The wind profile used in this study.

2.4 Boundary Conditions

"Clean" air enters any upstream boundary; the horizontal gradients of all chemical con-

centrations are assumed to be zero outside the model domain so that concentrations at

upstream boundaries are not changed by the advection terms. Vertical motion at both

upstream and downstream boundaries is set to zero. Vertical motion throughout the model

domain is set to zero with the exception of the chemical species listed in Table 2 where

deposition velocities are prescribed for the surface grid points.

At 12 km, vertical gradients of most species are set to zero so that net changes in

concentrations due to diffusion are zero. Downward fluxes of 6.6 x 101° tool cm - 2 sec- 1

for ozone (Malilman et al., 1980) and 2 x 108 mol CM- 2 sec- 1 for reactive nitrogen (Levy

w
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Table 2: Deposition velocities (After Fishman and Carney
19841).

Species Chemical Formula Wd (cm sec- 1 )
Ozone 03 0.5 (night)

1.5 (day)
Oxides of Nitrogen NO 0.5
Nitric acid HN0 3  0.5
Dinitrogen pentoxide N205  0.5
Iydrogen peroxide 11202 0.2,
Formaldehyde H2CO 0.2
Acetaldehyde CI13CII0 0.2
All nonmethane hydrocarbons C,:H 0.1
PAN C113CO 3N0 2  0.05
Isoprene C5 H8  0.0

* deposition velocity for all peroxides

et al., 1980) are the two exceptions.

2.5 Boundary Layer Parameterization

Turbulent transport of chemical species in the boundary layer is modeled by allowing the

profile of the vertical eddy diffusion coefficient K. to vary with the time of day. Carney

(1984) and Fishman and Carney (1984) have enlisted a model of the convective PBL and a

model of the nocturnal PBL to predict the height of the well mixed layer at hourly intervals.

2.5.1 The Convective PBL

The model used to predict the height of the convective PBL is taken from Zeman and Ten-

nekes (1977). The convective mixed layer grows through turbulent entrainment at its upper
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boundary. This model applies a parameterized turbulent kinetic energy (TKE) equation to

the base of a temperature inversion at the top of the PBL. The TKE equation is solved to

provide a ratio of the heat flux near the surface and the negative heat flux at the inversion

base:

SC -Cdw (2)
F3  1 + C, (Iu*)2  '(2

where

Fi is the heat flux at the inversion base,

F, is the heat flux at the earth's surface,

C1 , Cd, and Ct are empirical coefficients,

wb is the Brunt-Vaisali frequency in the stable air above the boundary layer,

h is the height of the mixed layer,

w* is the convective velocity scale,

T, is the temperature at the surface,

g is the acceleration due to gravity, and

AO is the inversion strength (temperature jump).

With the ratio between the heat flux at the surface and at the inversion determined,

equations 3 and 4 may be solved numerically for the height of the mixed layer and the

inversion strength:
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- = (AO)h (3)

The prognostic equation for the potential temperature difference (ASO) is:

O(AO) Oh r' - F(4)
ot = IT h

where -1 is the vertical gradient of potential temperature in the air above the inversion. The

resultant daytime PBL height ranges from about 200 m at sunrise to 1800 m at 1630 local

time.

2.5.2 The Nocturnal Bounday Layer

Fishman and Carney (1984) use the model from Smeda (1979) to determine the height of

the nocturnal boundary layer. Based on similarity theory, it assumes growth of the PBL

is due to mechanical turbulence from interaction of wind with the surface. The prognostic

equation for the growth of the PBL is:

Oh (u)F 1 -( hf 1 (5
at=~ hf[

where C1, C2 and a are empirical constants,

u* is the friction velocity, and

f is the Coriolis parameter.

Values of C1, C2 and a are taken to be 0.60, 3.3, and 3. respectively after Smeda (1979).

As the nocturnal PBL is formed, the remnants of the convective PBL are decoupled

from the effects of the surface. The time required for the turbulence above the nocturnal
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PBL to dissipate was estimated to be four hours by Benkley and Schulman (1979). This

time interval is incorportated into the model by Fishman and Carney (1984). The resultant

nocturnal PBL height profile decreases rapidly from 1800 m at 1630 local (L) to 200 m at

midnight where it remains though the remainder of the nighttime hours.

2.5.3 Vertical Diffusion

The O'Brien (1970) K formula is used to to determine the K profile as a function of

the heights provided by the PBL models. This gives a cubic profile for K, in the PBL.

Additionally, residual turbulence is allowed to dissipate after sunset as a function of the PBL

height. The formulation is allowed to produce a maximum value for K , of approximately

102 m2 sec - 1 while preserving an average tropospheric value of 10 m 2 sec - 1.

2.6 Numerical Techniques

Two techniques are employed to intergrate the continuity equation. For long lived species,

the advection terms are integrated by the conservation of second order moments method

after Prather (1986) and the remaining terms are integrated using the Euler-backward

method. For short lived species, concentrations are assumed to be in steady state so that

no integration is necessary.

2.6.1 Integration of Diffusion and Photochemical Terms

The Euler-backward method was used by Fishman (1977) to explicitly integrate the diffusion

and photochemical terms of long lived species forward in time, and is the method used in
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this study. This method has been shown by Matsuno (1966) to damp out high frequency

oscillations that can develop during integration. This feature is important in this study

because sharp gradients at the surface and the top of the boundary layer could otherwise

create excessive coniputational dispersion. The cost of using this scheme is greater numerical

diffusion in comparison to schemes such as the leapfrog method. Fishman (1977) shows that

the Euler-backward method has accuracy comparable to forward time differencing when

intergrating photochemical terms and thus these terms are not adversely impacted by its

use. Spatial gradients are determined using second order centered finite differencing.

The Euler-backward scheme is a predictor-corrector scheme. The scheme is illustrated

below by integrating the diffusion term. Ignoring all terms but vertical diffusion, the con-

tinuity equation is:

C9['i] a 0 (Kj[M]z )Ot O (6)

The predictor step creates a "first guess" of the concentration [Xi]* at the forward time

step n + 1.

[Xi]*(n+l) = Xi]n +O (Iz[M] ) At (7)

From the first guess of the concentration [Xi]*, a first guess of the species mixing ratio 10

is found and is used in the next step. The next (corrector) step creates the final value for

the concentration at the forward time ste p.

[x]n+1 = C,, + a K[AI) At (8)
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"2.6.2 Integration of the Advection Terms

Numerical integration of the advection equation presents a number of problems to the

modeler. Conventional integration techniques create undesired computational dispersion,

negative values, and numerical diffusion. The treatment of photochemical production and

destruction in the model used in this study r'equires short time steps, amplifying the need for

a scheme with minimal numerical diffusion. Large spatial gradients of chemical species near

the surface and at the top of the PBL necessitate a scheme with little computational diffu-

sion. Additionally, the scheme must conserve the species and be positive-definite because

negative chemical concentrations cannot be dealt with and are physically unrealistic.

Two advection schemes were considered for use in this model. The first scheme examined

was that of Smolarkiewicz (1983). This approach to the advection problem starts with

the zero order "upstream" scheme and applies a correction to the upstream result. The

correction step employs an "antidiffusion velocity" Ud which is the negative of velocity

describing flux due to implicit diffusion and is described for the x direction by the following

equation:

'Ud 'i,,,pi ( i (9)
[Xi] OX

where Kim.pi is the coefficient describing implicit diffusivity.

The second scheme, and the one that was ultimately chosen, is the conservation of

second order moments scheme developed in Prather (1986). In this scheme the mixing ratio

of a chemical species in each grid box is expressed as a second order polynomial.
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pi(x, z) = moKo + rn.Km + t . + in. K + .KIz + mxzK (10)

where K0 = 1,

K, and Kz are first order functions of x and z respectively,

If.., and K,, are second order functions of x and z respectively,

lfx, is a first order function of x and z,

mo is the zero order moment coefficient,

m, and m, are the first order x and z coefficients respectively,

rxx and m,, are the second order x and z coefficients respectively, and

MXZ is the cross term coefficient.

The functions Ej (for j = x, xX, z, zz, xz) are choseii to be orthogonal with each other.

The moments Sj are then defined as the product of the mixing ratio and the orthogonal

functions integrated over the volume of the grid box. Each moment Sj is further decomposed

into two moments representing the )ortion remaining in the grid box and the portion leaving

the grid box. The updated moments are recomposed from the moments representing the

portion leaving the upstream grid box and the moments representing what remains in the

grid box. The sum of these updated moments represents the updated mixing ratio of the

center of the box.

The second order moments method is stable up to where the product of the wind speed

and the time step equals the dimension of the grid box. It has been to shown produce errors

of more than an order of magnitude smaller thani the Smolarkiewicz scheme (Prather 1986).

For a complete explanation of the method see Prather (1986).
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Experimental Design

3.1 Background

During a regional high ozone outbreak, cities in the region may exceed the EPA standard for

ozone. In certain instances, local governments are then required to implement costly local

pollution abatement measures. This approach assumes that high ozone levels are primarily

due to local pollution sources. Furthermore, the success of these efforts depends on whether

local pollution emissions are a strong forcing mechanism in tropospheric ozone production.

To test the validity of this assumption, an experiment is set up, using the two-dimensional

model, to determine the role of local emissions of NOT, NMIIC, and CO in the production

of ozone. In this experiment two cases are, amined. The first case simulates increased

surface emissions over an area in the center of the model domain that is 150 km wide. The

second case simulates urban emissions identical to the first case, and also simulates the

advection of polluted air into the model domain in a layer between 1.325 km and 3.5 km.

21
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The second case determines if advection of ozone and its precusors from outside tlhe region

could be a strong forcing mechanism in the development of high concentrations along with

local production of pollutants.

Model integration is carried out to five days. This length of time is representative of

the residence time of the stagnant high pressure systems that this study is investigating

(Vukovich and Fishman, 1986). At day 5, the model is very near steady state, hence model

results are shown from day 5 only. Any additional integration has little change on the result.

3.2 Model Parameters

In Case I, surface emissions of NO., NMIIC, and CO are increased to twenty times the

background emission levels listed in table t at the gridpoints 400, 450, and 500 km from

the model's western boundary. This level of emissions is approximately half of the values

for urban emissions used by Richardson (1988) in a study of ozone production over Atlanta,

Georgia. These lower emissions are compensated for by the broad area (150 kin) over which

they are emitted in the two-dimensional model.

In Case II, surface emissions of NO., NMIIC, and CO are the same as Case I. Ad-

ditionally, the flux of ozone and precursor rich air into the model is simulated by setting

initial ozone concentrations at the upstream boundary to 50 ppbv in the layer between 1.325

km and 3.5 km. Photochemical production and vertical diffusion is allowed to change the

concentration of ozone in the air advected into the model.

Flux of pollutants in the layer is simulated by requiring the average flux of pollutants
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into the model due to horizontal advection to be 20 percent of tlhe surface emission of

pollutants occuring in the urban area of the model. This yields concentrations for NO, up

to 1.1 ppbv. The range of values measured by Buhr et al., (1990) for NO. at a surface site

in central Pennsylvania is 1.5 to 6 ppbv. The concentration of pollutants in the air advected

in from upstream is then reasonable, assuming a boundary layer origin.

3.3 Model Sensitivity

The model output indicates a high sensitivity to ozone deposition velocity. Fishman (1985)

lists ozone deposition rates found in the literature. They range from 0.24 cm s- 1 to 2.0 cm

s- 1 for mid-latitude forest land. Siliman et al. (1990) uses an ozone depositon velocity of

2.5 cm s- 1 in a regional model over various parts of the contiguous United States. Model

sensitivity is illustrated in figure 5 and figure 6. These figures show ozone concentrations

at 150OL for day five of two model runs where ozone deposition velocities are set to 0.5 cm

s- 1 and 3.0 cm s- 1, respectively. The maximum concentration of ozone at the surface is

reduced by more than 60 ppbv by raising the deposition velocity from 0.5 cm s- 1 to 3.0

cm s- 1. The actual ozone maximum in figure 6 is elevated well above the surface. This

illustrates the effect of the more intense ozone sink that a high deposition velocity creates.

The dramatic change illustrates the need for a good understanding of surface deposition

processes. Since this study concentrates on the role of horizontal advection rather than

the role of surface sinks of ozone, a detailed test of model sensitivity to ozone deposition

velocity is not carried out here. The values for ozone deposition velocity used in this study
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are 1.5 cm s- 1 during daytime hours and 0.5 cm s- 1 during nighttime hours. These values

are a compromise between the values found in the literature and are felt to be realistic

parameterizations of ozone deposition in the Southeast.

Ozone concentration and concentrations of' pollutants are also very sensitive to wind

strength. Concentrations of ozone precursors in the lower PBL over the area of elevated

emissions are inversely proportional to wind speed and therefore the contribution of urban

emissions to urban ozone levels diminishes as surface wind speed increases and the wind is

allowed to carry pollutants away.
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Figure 5: Ozone distribution of 1500L, day five of model run. Ozone deposition velocity is
equal to 0.5 cm s- 1 . The top of the figure shows the troposphere from 2-12 kin, while the
bottom figure expands the ordinate to show detail in the PBL. The abscissa indicates the
horizontal extent of the computational domain. The bold line on the abscissa marks the
urban emissons region.
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Chapter 4

Results

4.1 Results of Case I

Plots of ozone, NO.,, CO, and butane from 1500L, on day five of Case I are depicted on figure

7 through figure 10 respectively. Butane is included to show the distribution of a NMHC. By

day five, ozone concentrations are approaching steady state with changes in ozone between

day four and day five at 1500L less than five percent. However, ozone concentration shows

the large diurnal change expected with the elimination of photochemical production at night.

A more complete series of plots, showing concentrations at time invervals of six hours on

day five, are located in Appendix C. Figures 27 through 30 show the reduction in ozone near

the surface due to the absence of photochemical production at night. Figures 31 through

34 show a reservoir of NO. accumulating at night due to the absence of photochemical

oxidation processes. Likewise, CO and butane concentrations are greater near the surface

during nighttime hours as illustrated by figures 35 through 38 and figures 39 through 42.

27
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Figure 7: Forecast distribution for ozone at 1500L, day five of Case L. Contour increments
are 10 ppbv. The top of the figure shows the troposphere from 2-12 km, while the bottom
figure expands the ordinate to show detail in the PBL. The abscissa indicates the horizontal
extent of the computational domain.
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Figure 8: As in figure 7 for NO,. Contour increments are 0.1 ppbv for the top figure and 2

ppbv for the bottom figure.
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Figure 9: As in figure 7 for CO. Contour increments are 50 ppbv.
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BUTA (PPBV) 35N DAY 5, 1500L
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Figure 10: As in figure 7 for butane. Contour increments are 1 ppbv for the top figure and

2 ppbv for the bottom figure.
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The effect of surface emissions on model output is negligible above 4 km due to less vertical

diffusion in the free troposphere than in the PBL. CO has a longer chemical lifetime than

the other species plotted (on the order of one week) and therefore would have the highest

likelihood of being transported above 4 km by vertical diffusion. CO varies by less than 20

ppbv between 4 km and 12 km.

In contrast to the limited vertical extent of increased ozone levels, increased ozone levels

are seen 500 km downwind of the area of high pollutants emissions. Ozone concentrations

of 80 ppbv or more extend 250 km downwind. As a caveat to these results, one must

remember that meridional homogeneity is assumed in the model. To more properly model

an urban plume, it would be necessary to include horizontal diffusion effects. This would

allow quicker dillution of the urban plume.

The remnants of an ozone maximum produced near the surface by the photochemical

production of ozone during daylight hours of (lay four remain visible on figure 7 at a height

of 1.5 km, 200 to 350 km from the origin. Two ozone maxima, created one and two days

earlier by photochemical production, are visible on figure 28.

The forecast maximum agrees reasonably well with the surface ozone concentrations ob-

served at Marietta and 40 km southwest at Atlanta, Georgia on 26 July. The concentration

recorded at 1500L on that day is 149 ppbv at Marietta, and 85 ppbv at Atlanta (McNider,

1989), while the model produced a maximum surface concentration of 123 ppbv after five

days of model integration. These values reflect the high concentrations associated with

urban regions under air stagnation conditions. The model result is 17 percent lower than

the observed value at Marietta and '45 percent higher than the observed value at Atlanta.
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It is important to remember that the model was not intended to simulate this secific

case, but these observations can serve to gauge the validity of the model parameters used for

this study, such as the wind profile, and depo, ition velocities. The approximate agreement of

the model results t6 surface observations suggests that the values used for these parameters

are appropriate for this study.

4.2 Results of Case II

Figure 11 through figure 14 depicts the distribution of ozone, NO,, CO, and butane at

1500L, on day five of Case II. The introduction of ozone and its precursors through the layer

between 1.325 km and 3.5 km at the upstream boundary creates a layer of high ozone values

that decreases from approximately 110 ppbv at the upstream boundary to approximately

85 ppbv at the downstream boundary. A modest increase in the concentration of ozone at

the PBL maximum centered 525 km from the origin is achieved by the reduced upward flux

of ozone and its precursors out of that region, brought on by the reduced gradient between

the PBL and the free troposphere. The region at the surface with ozone concentrations

exceeding the EPA standard of 120 ppbv expands from 70 km wide in Case I to 90 km wide

in Case II. This is a 28 percent increase in the size of that region.

The rapid decrease of NO. between 1.325 kin and 3.5 km near the upstream boundary

is visible on figure 12 and illustrates the short chemical lifetime of NO,. An air parcel in the

layer described above traverses the horizontal domain of the model with only small changes

in concentrations of ozone, CO, and butane (see figures 11, 13 and 14) due to the longer
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Figure 11: Forecast distribution of ozone at 1500L, day five of Case II. Contour increments
are 10 ppbv. The top of the figure shows the troposphere from 2-12 kin, while the bottom
figure expands the ordinate to show detail in the PBL. The abscissa indicates the horizontal
extent of the computational domain. The bold line at the upstream boundary marks the
region of elevated emissions of ozone and precursors.
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Figure 12: As in figure 11 for NO,. Contour increments are 0.5 ppbv for the top figure and

2 ppbv for the bottom figure.
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Figure 13: As in figure 11 for CO. Contour increments are 50 ppbv.
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Figure 14: As in figure 11 for butane. Contour increments are 1 ppbv for the top figure and
2 ppbv for the bottom figure.



CHAPTER 4. RESULTS 38

chemical lifetime of these species. Of the families of reactions involving the three ozone

precursors NOW, CO, and NMIIC at concentrations found in the boundary layer, the NO.

family is more important in controling ozone photochemistry (Fishman et al., 1985), but

in this case, the rapid destruction of NO. prevents a large addition to ozone production in

the urban plume due to interaction with the elevated polluted layer.

Figure 15 depicts the difference in the ozone profiles of Case I and Case II at 1500L

on day five of the model runs. It shows that the high concentration of o-one advected in

from the upstream boundary was most effective in raising ozone concentrations where ozone

levels were already high due to enhanced surface emissions of precursors in the center of the

model domain. The relative maximum at 300 - 350 km downstream from the origin, at a

height of 1.5 km shows that the high ozone and precursor concentrations advected into the

model between 1.325 km and 3.5 km, were able to interact with the ozone maximum that

was produced at the surface a day earlier. A similar but less robust maximum is seen at

500 km downstream, at a height of 0.75 ki. This maximum is located at the same place

as the ozone maximum seen on figure 7. These maxima on figure 15 are most likely due

to a reduction in ozone and precursor gradients between the PBL and the free troposphere

that occured when ozone and precursors were increased aloft. In turn, dhe reduction of the

vertical gradient of ozone between the free troposphere and the top of the PBL reduced the

net flux of ozone out of the PBL.

Figure 16 shows virtually no change in NO, concentrations between Case I and Case II

at 1500L on day five of the model runs due its shorter chemical lifetime. Figure 17 and figure

18 show features of CO distribution and butane distribution similar to ozone distribution
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Figure 15: Forecast ozone distribution for Case Il at 1500L, day 5, minus forecast distri-
bution for Case I at the same: time. Contour increments are 10 ppbv on the top figure and
2 ppbv on the bottom figure. The abscissa indicates the horizontal extent of the computa-
tional domain.
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features on figure 15. Additionally, CO and butane increases are observed throughout the

PBL and at the surface, downwind of the area of increased emissions. This increase is due

to vertical eddy diffusion, which acts on ozone as well. In the case of CO and butane, the

lack of a large sink at the surface allows the increase to remain near the surface. These

long-lived species may then be advected over the area of increased surface emissions and

help contribute to the increase in ozone over that region.

The area labeled M on figure 17 is an area where little difference exists for CO between

Case I and Case II. This minimum may be partially caused by a small numerical error.

Figure 13 shows a maximum in concentration of CO (labeled H) just upstream of area

M. The gradient between these two points much greater in Case II than in Case I. The

advective scheme used in this study may create a numerical error downstream of a large

gradient (Prather, 1986). The dispersion error is smaller in Case I because the gradient

between H and M is smaller. There is little evidence of this effect on figures showing

distribution of other species because CO has a longer chemical lifetime. The numerical

simulation of photochemical processes (and the simulation of vertical diffusion as well) in

the model used for this study acts to diffuse sharp gradients and dampen high frequency

waves such as those produced by the numerical advection scheme. This occurs because the

photochemical term and vertical diffusion term act on the zero order moment (which equates

to the average value of a grid box) and do not affect the higher order moments. Because the

change in CO concentration due to photochemistry is small compared to other species, the

damping effect is less. If the minimum at M is due to a numerical error, it does, not present

a serious problem in interpreting model results, but significantly reduces the value of the



CHAPTER 4. RESULTS 41

NOX DIFFERENCE (PPBV) DAY 5, 1500L

12

11

9

7

6

4

3 *500

2 I I I I I I I
E0 50 100 160 200 250 300 350 400 450 600 550 600 660 700 750 800 850 909 950

0 50 100 150 200 250 300 353 400 450 500 550 600 650 700 750 000 059 900 950

Horizontal Distance (kin)

Figure 16: As in figure 15 for NO,. Contour increments are 0.1 ppbv for the top figure and
2 ppbv for the bottomn figure.
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Figure 17: As in figure 15 for CO. Coutour increments are 50 ppbv for the top figure and
10 ppbv for the bottom figure.
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Figure 18: As in figure 15 for butane. Contour increments are 1 ppbv for the top figure and
.5 ppbv for the bottom figure.
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"graphs showing the differences in tracer distributions between Case I and Case II. Some

photochemical models incorporate more explicit numerical damping techniques to reduce

the impact of these small-scale features. Hlad such a procedure been implemented for the

model simulations, the area of concern would have produced a much smoother maximum

difference.

It is interesting to note that the maximum of the ozone differences at 300 km on the

horizontal axis and at a height of 1.5 km (shown in figure 15) is located downstream of the

maxima of CO and butane (shown on figures 17 and 18 respectively). This suggests that

enhanced photc iemical production of ozone due to the increase .f precursors is primarily

responsible for the above mentioned net increase of ozone rather than diffusive vertical flux

of ozone itself.

To investigate this possibility further, differences during a nighttime hour are examined.

Figure 19 depicts the difference in the ozone profiles of Case I and Case II at 0000L on day

five of the model runs. The small vertical gradient between 0.5 km and 1.8 km indicates

that the residual turbulence from the daytime convective boundary layer has mixed the

ozone introduced from above quite uniformly. The larger gradients above and below this

layer show the effect of the sharply reduced diffusion.

The differences in CO and butane at 0000L on (lay five, shown in figures 20 and 21,

show the same effect but to a lesser degree than ozone. Additionally, maxima are visible

below 1.8 km, which are remnants of the maxima from the daytime hours (which are

illustrated in figures 17 and 18 for (lay 5.) The fact that there is no such maximum for

ozone in figure 19 illustrates the diurnal nature of the ozone maximum at point M on
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Figure 19: Forecast ozone distribution for Case II at OOOOL, day 5, minus forecast distribu-
tion for Case I at the same time. Contour increments are 10 ppbv on the top figure and 2
ppbv on the bottom figure.
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CO DIFFERENCE (PPBV) DAY 5, 0000L
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Figure 20: As in figure 19 for CO. Coutour increments are 50 ppbv for the top figure and

10 ppbv for the bottom figure.
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BUTANE DIFFERENCE(PPBV) DAY 5, 0000L
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Figure 21: As in figure 19 for butane. Contour increments are 1 ppbv for the top figure and
.25 ppbv for the bottom figure.



CHAPTER 4. RESULTS 48

figure 15 and is further evidence that the enhanced increases in ozone at point M are due

to the increased photochemical production brought on by the increased concentration of

precursors upstream. This maximum represents 50 percent of the increase at point M, thus

enhanced photochemical production apparently doubled the increase in ozone at M. If this

maximum is indeed due entirely to photochemical production, advection of precursors in

the manner simulated in this study can play as significant a role in the enhancement of

ozone concentrations in the upper PBL over an urban area as does the advection of ozone

in the manner simulated in this study.

The analysis presented here is primarily qualitative in nature and cannot lead to any

definitive conclusion, but suggests that advection of precursors can play a significant role

in enhancing ozone concentrations in the PBL, given the parameters used in the model for

Case II. Further experimentation using the two- dimensional model presented here could

help get a better estimate of the importance of the possible advection of precursors to ozone

production. To take the problem a step further and achieve a quantative understanding,

detailed measurements designed to yield horizontal and vertical structure of ozone and its

precursors must be done to determine the relative importance of the roles that photochem-

istry and transport have on their two- and three- dimensional distributions.



Chapter 5

Summary

An experiment using a time-dependent, two-dimensional photochemical model of the tro-

posphere to model the vertical and zonal distribution of ozone and its precursors has been

presented. In Case I, the experiment simulates vertical tranisport due to diffusion and zonal

transport due to advection, with surface emissions in the center of the model domain rep-

resenting an urban environment and with light wind conditions favorable for the formation

of ozone concentrations greater than 80 ppbv. To investigate the role of the advection of

ozone and its precursors into a region under such conditions, an elevated source of these

trace species is added at the upstream boundary (Case II) to simulate their advection into

the model domain from a distant source.

The model incorporates parameterizations of the daytime convective boundary layer

and the nocturnal boundary layer to simulate the flux of trace species between the PBL

and the free troposphere due to vertical diffusion. Horizontal advection is simulated using

a highly idealized wind profile derived from the meteorological conditions present during an

49
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elevated ozone event over the southeastern United States in July 1987.

In Case I, the simulation of an urban emission source produces surface concentrations of

ozone 120 ppbv up to 50 km downstream of the area of high surface emissions and surface

concentrations 80 ppbv or greater as far as 225 km downstream. The vertical extent of the

plume is less than 4 km.

The introduction of an elevated source of ozone and its precursors in Case II produces

a modest increase of ozone (3 - 10 percent) in the region where high ozone values already

exist due to high surface emissions. This increase " partly due to enhanced photochemical

production of ozone brought on by increased levels of the longer-lived precursors such as

CO and NMHC, rather than NO., whose increase is very small due to its depletion prior to

reaching the center of the model domain. The increase in ozone values is also due to reduced

vertical flux of ozone out of the PBL brought on by a reduced ozone gradient between the

PBL and the free troposphere. The surface region with ozone concentrations exceeding the

EPA standard of 120 ppbv grows by 28 percent from 70 km wide in Case I to 90 km wide in

Case II. An analysis of the change in concentrations of ozone, CO and butane between Case

I and Case II shows that a maximum in the ozone increase at a point in the upper PBL in

Case II is downstream of the maximum in increases of CO and butane. This suggests that

enhanced photochemical production is responsible for this maximum in the PBL rather than

downward flux due to vertical diffusion. The lack of this maximum at night supports this

further by showing that the maximum has a diurnal cycle. The diurnal cycle is indicative

of photochemical forcing. This maximum represents 50 percent of the increase, of ozone in

the region where it is located, and thus, enhanced photochemical production has apparently
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doubled the increase in ozone in that region.

These results suggest that horizontal transport of ozone precursors may influence re-

gional tropospheric ozone production, if transport of these precursors does indeed exist on

the scale simulated in the model. Current observations are insufficient to determine if long

range horizontal transport of ozone precursors does occur. The lack of observations of re-

gional high ozone occurences other than relatively sparse surface observations and satellite

derived columnar values restricts the ability to compare model simulations with observa-

tions. Future field studies may provide the needed data to answer these questions.

The model used in this study lacks the simulation of meteorological phenomena such as

large and small scale vertical motions, terrain effects and a time dependent wind field. Each

of these could be significant forcing mechanisms on ozoiie distribution, and future studies

must address them. Future work will also require a three-dimensional model in order to

fully understand the role of transport on the distribution of ozone and its precursors.

Despite its drawbacks and limitations, the two-dimensional model used in this study

has utility in further investigations of the role of transport on ozone distribution. This

study can be continued by devising new experiments to investigate the role of transport

of ozone and its precursors in a quantitative manner. The State of Florida is interested in

investigating the effect of sea-breeze circulations on ozone distribution (Florida Department

of Environmental Regulation, 1990). This is an investigation for which the present model

with an idealized time-dependent wind field appears well suited.



Appendices

A Reaction Rates

52



APPENDICES 53

Table 3: Chemical reactions and rate constants following Richardson et al., 1990

Reaction Reaction Rate (sec - 1) Reference

(1) 0( 3 P)+0 2 (+M) O3 (+M) o( - 2

0+ M 6.2E-3,1,(T/300)

(2) O(D)(+M) O(3P)(+M) .79*1.SE-11 exp(107/T)
+.21*3.2E-11 exp(67/T) a

(3) O(ID)+11 2 0 -- 2011 2.2E-10 a

(4) 0('D)+H2 (+0 2 ) -1 1102 +011 9.9E-11 a
(5) O('D)+CI14(+0 2 ) - C11302+011 1.,IE-10 a
(6) 0('D)+CI 4(+0 2 ) -

H2 +CH 2 0(+0 2 ) 1.,IE-11 a
(7) 0 3 +hv - O(ID)+0 2  2.9E-5 * f
(8) 03+hv -- 0( 3P)+0 2  3.6E-4 * f
(9) OH+03 - 1102+02 1.6E-12 exp(-940/T) a

(10) OH+112(+02) - I102+H20 1.2E-11 exp(-2200/T) a
(11)' OH+11202 -- 1102+1120 3.IE-12 exp(-187/T) a
(12) OH+1102 -H 20+02 7+4[A][Ao]-'(1.OE-11) t a
(13) I102+H02 H20 +02 Temp. and Press. Dependent a
(14) H20 +hv -- 2011 ,.OE-5 * f
(15) H02+03 O 01+202 I.,E-1I exp(-580/T) a
(16) 11202 --+ Heterogeneous Loss 4.OE-05 I f
(17) NO+HO 2 - N0 2 +OH 3.7E-12 exp(240/T) a

(18) NO+0 3 -- NO 2 +02 2.2E-12 exp(-1430/T) a
(19) NO+NO3 -- 2NO 2  8.OE-12 exp(250/T) a
(20) N0 2 +OH(+M) - IIN0 3  Temp. and Press. Dependent a
(21) 11N0 3 +OI- N0 3 +I12 0 9.AE-15 exp(778/T) a
(22) 1N0 3 +hv - OH+NO 2  1.3E-7 * f
(23) HN0 3 --+ Heterogeneous Loss ,I.0l-05 ++ f
(24) N0 2 +11O2 (+M) HNO,i(+M) Temp. and Press. Dependent b

(25) HN0 4 +OH - N0 2 +112 0+0 2  1.3E-12 exp(380/T) a
(26) HNO 4 -. H0 2 +N0 2  Temp. and Press. Dependent b
(27) ItN0 4 +hv - 110 2 +NO 2  5.,E-6 * f

(28) N0 2 +NO 3 (+M) - N2 0 5(+M) Temp. and Press. Dependent c
(29) N2 05+H 2 0 --+ 21N0 3  1.3E-21 b
(30) N2 05 --, N0 2 +NO 3  [Rate(28)](7.5E26*(300/T)) 3 2

* exp(- 11080/T) d
(31) N2 05 +hv -+ N0 2 +.N0 3  2.2E-5 * f
(32) N0 2 +0 3 - N0 3 +0 2  [.2l'i-13 exp(-2,150/T) a

(33) NO-2+hw --+ 0(3 p)+NO 6.3E-3* f
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Table 3 continue([.

Reaction Reaction Rate (sec-') Reference

(34) N03 +Iw -4 N0 2+0O(3 p) 2.3E-1 * f
(35) N03 +hv --+ NO+0 2  2.SE-2 * f
(36) NO2 -*Heterogeneous Loss S.OE-7 t f
(37) NO 3 -?Heterogeneous Loss 4.OE-7 t f
(38) 0H4+OH(+0 2 ) -+ 011302+1120 2.4E-12 exp(-1710/T) a
(39) CH30 2+NO - 01 3 0+N0 2  4.2E-12 exp(180/T) a
(40) CH3 02 +1102 -C 1130011+02 7.7E-141.exp(1300/T) a
(41) 011302+011302-+

1.401120+.81102+.601130H±02 1.E- 13 exp(220/T) b
(42) 01130+02 -* 01120+1102 9.2E-13 exp(-2200/T) a
(43) 01130011+01 -* 11302+1120 2.6E-12 exp(-190/T) a
(44) OH3 00H+hv C* 1130+011 4.9E-6 * rA

(45) 01130011 - heterogeneous loss 4.OE-5 t f
(46) 0113011+011 I 1102+01120+1120 3.OE-12 exp(-327/T) b
(47) C120+OH1(+02) - 00+1102+l[20 1.OE -tl b
(48) 0H2 0+hv - 00+21102 2.6F-5 * f
(49) C1120+Iw -* 00+2 L.SE-5 * f
(50) 01120 -* heterogeneous loss 1.0OE-6 t f
(51) C0+OH(+02) --+ 002+1102 Tempf. and Press.

Dependent b
(52) 02116+011(+02) 0 211502+1120 1.7E-11 exp(-1232/T) b
(53) 02Hs0 2+NO -*C 2 115 0+N0 2  1.2E-12 exp(180/T) b
(54) 0121502+1102 -* 2150011+02 7.7E-14 exp(1300/T) a
(55) 0211502+0211502 --+ 1.601130110

+1.21102+.402115011 M.E-1'l b
(56) C2 H5 0(+0 2 ) I~ 01120+011302 33.0 b
(57) 021150+02 -- AC1HO+110 2  1.2E-13 exjp(-1350/T) a
(58) 02115001+011 C~ 211.502+1120 2.6E- 12 exp(- 190/T) a
(59) 02HSOI1+Iw C~ 1130+011 1.9E-6 *f

(60) 021150011 --+ heterogeneous loss 4.OE -5 tf
(61) 02115011+011 - 1102+01130110+1120 1.OE-I1 exp(-313/T) b
(62) C1130H0+011(+02) I0113003+112 6.9E-12 exp(250/T) b
(63) CH3CIIO+hv -* 113003+1102 5.6E * f
(64) CH3 OIIO+Iw CO+1102+C1[302 L.OE-6 * f
(65) 01130110-- heterogeneous loss 'l.0E-6 t f
(66) C113 003+NO - C113 0 2 +N\0 2 +C00 2 1.2E-12 exp(180/T) b
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Table 3 continued.

Reaction Reaction Rate (sec-1 ) Reference

(67) C113 003 +N0 2 -~PAN 4.7E-12 b
(68) PAN -* CH 3C0 3+N02  1.95E16 exp(.-13543/T) b
(69) CH3 003 +H0 2 --+ MAP+0 2  3.OE-1I b
(70) MAP+OH - .5C113C03

+.5GLYC+.5011 +H120 1.OE- 11 b
(71) MAP+hv -- 011+H0 2+CI120 5,E-4[Rate(NO +hv)] b
(72) MAP -~ heterogeneous loss L.OE-5 I f
(73) C2H4+0H --* ETH02+1120 1.66E-12 exp(474/T) b
(74) ETHO2+NO -, N0 2+.2GLYC+

1.60H2 0+H0 2  1.2E-12 exp(180/T) b
(75) ETHO2+110 2 --* EP 3.OE-12 b
(76) ETHO2+ETIIO2 -- * 1.2GLYC+1.2110 2

+0.4C 2 H1501+O.4C1 3C11 5.OE - H b
(77) GLYC+0II --+ .5GC03+.5GLYX

+H120+.51102 16- e
(78) GLYC+Iw -, C112O+2110 2+CO 2[Ra(CCI 3CHO]

+hv to CH30 2)] b
(79) GLYC -* heterogeneous loss 41.0 E -3 f
(80) EP+01H .5ET1102+.5GLYC

+.50H+H20 1.OE-11 b
(81) EP+/w --+ 011H02+GLYC 5.E-4I[Rate(NO +hv)] b
(82) EP --* heterogeneous loss L.0E-5 4+ f
(83) G003+NO -~N0 2+H0 2 +G1120+C0 2  1.2E-12 exI(180/T) b
(84) GCO3+N0 2 -GPAN '1.7E-12 b
(85) GPAN - GC03±N02  1.95E16 exp(-13543/T b
(86) GLYX+0H '1102+200+1120 1.1.5E-11 b
(87) C2114+03 -4 G112 0+.'I 2O +.121102

+.4200+.06C1, 1 +.211'120+.18C0 2+112  1.2E-1,1 exp(-2633/T) b
(88) C112 02+NO -*C11 20+N0 2  7.OE-12 b
(89) C112 02 +N0 2  CH20+N0 3  7.OE-13 b
(90) C1120 2+11 20 - COI 11011LOE-18 b
(91) 1100011+011 -~1102+1120+C'02 3.2E-13 b
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Table 3 conltinuedC(.

Reaction Reaction Rate (sec1) Reference

isoprene reactions
(nl) 05118+01 - RI0 2  2.5E- 11 exI)(409/T) g
(N2) R102+NO -*.9(N0 2±110 2+CH 2 0)

+A45(MVK +MACR)+. 1(products) 4.2E-12 exp(180/T) b
(13) R102 +H0 2 -+RIOOlf 3.OE-12 g
(14) RIOOH+OH 10 2  1.OE(-11) g
(15) RIOOH+Iw - OH+CH-2Q

+H0 2 +.5(MVK+MACR) 5.E-4[Rate(NO +hv)] b
(16) RIQOH --+ Heterogeneous Loss 4.OE-05 t f
(17) MVK±OH VRO2  :3.OE-12 exp(500/T) b
(18) VRO2+NO .9N0 2

+.6(HAC+CH 3C03 )
+.3(110 2+0H120+MGLY) 4.2E- 12 exp(180./T) b

(19) VRO2+110 2 --+ VROOH 3.OE-12 g
(110) VROOHf+O1II- VRO 2  1.OE-1I1 g
(111) VROOHf+hv -*01+01120

+H0 2+MGLY 5.OE-'1[ltate(N0 2 +hv)] b
(112) VROOH -* Heterogeneous Loss 4.0E-05 f
(11) HAC±OI1 - HACO 1.5E-11 b
(114) HAC+/w - CH 2O+2II0 2+GO '1.OE-6 f
(11) HAG -, Heterogeneous Loss '1.OE-06 ++ f
(116) HAC+N0 2  HNO 3±HACO 5.2E-16 b
(11) HAOO+N0 2 - MPAN 1.7E- 12 b
(118) IPAN - HACO+N0 2  1.95E+16 exp(-13500/T) b
(19) HACO+NO -, N02+110 2+C1'1 20 4.21,- 12 exip(180/T) b
(120) HACO+H0 2 - products 3.OE-12 b
(121) MGLY+OH -C013003+00 1.7E-11 b
(122) MGLY+/iv -~Clf 3 0 3 +110 2 +CO 4.OE-6 f
(123) MGLY --+ Heterogeneous Loss 4 .OE-06 ++f
(124) MACR+OH MIA0 3  1.02E-11 b
(125) MAO 3+N02 -*MPAN 1.7E-12 b
(126) MPAN ,* MAO 3+N02  1.95E+16 exp(-13500/T) b
(127) MAO 3 +NO -~N0 2 +MAO 2  4.2E-12 exp(180/T) b
(128) MA0 2+110 2 -*products 3.0E-12 b
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Table 3 continued.

Reaction Reaction Rate (sec - 1 ) Reference

(129) MAO 2+NO NO 2+MAO 1.2E-12 exp(180/T) b
(130) MAO+HO 2 -- products 3.OE-12 b
(131) MAO+NO NO 2-rHO2 +MGLY 4.2E-12 exp(180/T) b
(132) MAO 3+H0 2 - products 3.OE-12 b
(133) MACR+OH - MR0 2  3.86E-12 exp(500/T) b
(134) MRO2 +NO - .9(N0 2+H0 2

+CH 20+MGLY) +.l(products) ,.2E-12 exp(180/T) b
(135) MR0 2+HO 2 -, MROOH 3.OE-12 a
(136) MROOH+OH MR0 2  1.OE-11 a
(137) MROOH+hv Cf l20+HO2+MGLY 5.E-4[Rate(NO +hv)] b
(138) MROOH -- Heterogeneous Loss .0E-05 t f
(139) C5H8 +0 3 --+

.5CH 20+.3(MACR+MAOO)
+ 2(CH20-+MVK+MVKO+CO) 7.OE- 15 exp(1900/T) b

(140) CH 20 2+NO -, N0 2 +C11 2 0 7.OE-12 b
(141) CH 20 2+H0 2 - products 3.OE-12 b
(142) MVKO+NO -- MVK+NO 4.2E-12 exp(180/T) b
(143) MVKO+110 2 -- products 3.OE-12 b
(144) MAOO+NO - MACR+N0 2  4.2E-12 exp(180/T) b
(145) MAOO+HO 2 --+ Products 3.E-12 b
(146) MVK+0 3 - .5(CI12 0+MGLY)

+.2(CII 20 2+HO 2+MCRG+CO)
+.15(ACHO+CH 3CO3 ) 4.OE-15 exp(-2000/T) b

(147) MCRG+NO -- MGLY+N0 2  ,.2E-12 exp(180/T) b
(148) MCRG+H0 2 -+ products 3.E-12 b
(149) MACR+0 3 -+ .5(CH-20+MGLY)

+.4CO +.2(CGI 20 2+H0 2+MCRG)
+.15CH 30 2  4.4E-15 exp(-2500/T) b

'DeMore et al., (1982)
bLurmann et al., (1986)
'Kircher et al., (1984)
dMalko and Troe (1982)
eNiki et al., (1984)

fRichardson et al., (1990)
gJacob and Wofsy (1988)

* for 500m at noon
t A=atmospheric number density: Ao= atmospheric number density at the surface
t Heterogeneous loss rates within the boundary layer
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B ECMWF Wind Fields

WIND SPEED 1000MB

Figure 22: ECMWF wind field for 1000mb, 1200 UTC, 25 July 1987. All wind speeds are
under ten m/sec.
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WIND SPEED 850 MB

Figure 23: As in figure 22 for 850mb.

WIND SPEED 700 MB

Figure 24: As ini figure 22 for 700mb.
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WIND SPEED 500 MB

Figure 25: As in figure 22 for 500mb.

WIND SPEED 300 MB

Figure 26: As in figure 22 for 300mb.
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C Trace Gas Distibutions - Case I

Figures 27 through 30 depict ozone distribution for OOOOL, 0600L, 1200L and 1800L on day

5 of the Case I model run. Figures 31 through 34 depict NO. distribution for OOOOL, 0600L,

1200L and 1800L on day 5 of the Case I model run. Figures 35 through 38 depict CO

distribution for OOOOL, 0600L. 1200L and 1800L on day 5 of the Case I model run. Figures

39 through 42 depict Butane distribution for OOOL, 0600L, 1200L and 1800L on day 5 of

the Case I model run.
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OZONE (PPBV) DAY 5, 0000L
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Figure 27: Forecast distribution of ozone for Case I at OOOOL on day 5. Contour increment

is 10 ppbv. The top figure shows the troposphere from 2-12 km, while the bottom figure

expands the ordinate to show detail in the PBL. The abscissa indicates the horizontal extent

of the computational domain.



APPENDICES 63

OZONE (PPBV) DAY 5. 0600L
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Figure 28: As in figure 27 for 0600L on day 5.
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OZONE (PPBV) DAY 5, 1200L
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Figure 29: As in figure 27 for 1200L on day 5.
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OZONE (PPBV) DAY 5, 1800L

12 1 -T -

11

7

6

4

3

0 go log13 150 200 250 333 353 433 450 503 553 630 653 733 750 800 853 900 950

2

o So 133 153 233 253 303 353 403 453 533 553 633 650 733 750 030 953 933 953

H-orizontal Distance (kin)

Figure 30: As in figure 27 for 1800L on day 5.
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NOX (PPBV) DAY 5, 0000L
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Figure 31: Forecast distribution of NO. for Case I at OOOOL on Day 5. Contour increment
is 0.2 ppbv for the top figure, 4 ppbv for the bottom figure.
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NOX (PPBV) DAY 5, 0600L
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FigLre 32: As in figure 31 for 0600L on day 5.
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NOX (PPBV) 35N DAY 5. 1200L
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Figure 33: As in figure 31 for 1200L on day 5. on day 5. Contour increment is 0.1 ppbv for

the top figure, 2 ppbv for the bottom figure.
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NOX (PPBV) DAY 5, 1800L
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Figure 34: As in figure 31 for 1800L on day 5.
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Co (PPBV) 35N DAY 5, 0000L
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Figure 35: Forecast distribution of CO for Case I at OOOOL on day 5. C ntour increment is

50 ppbv.
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Co (PPBV) 35N DAY 5, 0600L
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Figure 36: As in figuie 35 for 0600L on day 5.
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Co (PPBV) 35N DAY 5, 1200L
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Figure 37: As in figure 35 for 1200L on day 5.
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Figure 38: As in figure 35 for 1800L on day 5.



APPENDICES 74

BUTA (PPBV) 35N DAY 5. 0000L

12

11 -

1s

9

7

6

4

2 -.. 0

E 0 50109 156 20 2510 366 351 400 450 510 551 610 650 710 750 91l B5 906 950

00

0 59 108 150 211 250 311 351 400 456 566 551 600 650 706 756 000 856 906 956

Horizontal Distance (kin)

Figure 39: Forecast distribution of butane Case I at OOOOL on day 5. Contour increment is

1 ppbv for the top figure, 2 ppbv for the bottom figure.



APPENDICES 7

BUTA (PPBV) 35N DAY 5, 0600L

12 1

11

19

9

7

6

4

3 00- -

2 0

'9 0 50 100 150 200 250 300 353 403 450 500 551 660 656 703 750 800 853 900 953

-C

00

0 53 130 150 233 256 333 351 403 453 503 550 630 650 733 753 833 850 90 953

Horizontal Distance (kin)

Figure 40: As in figure 39 for 0600L on day 5.
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Figure 41: As in figure 39 for 1200L on day 5.
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Figure 12: As in figure 39 for 1800L on day 5.
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D Trace Gas Distibutions - Case II

Figures 43 through 46 depict ozone distribution for OOOOL, 0600L, 1200L and 1800L on

day 5 of the Case II model run. Figures ,17 through 50 depict NO. distribution for OOOOL,

0600L, 1200L and 1800L on day 5 of the Case II model run. Figures 51 through 54 depict

CO distribution for O0OOL, 0600L, 1200L and I800L on day 5 of the Case II model run.

Figures 55 through 58 depict Butane distribution for OOOOL, 0600L, 1200L and 1800L on

day 5 of the Case II model run.
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Figure 43: Forecast distribution of ozone for Caise 11 a OOOOL on day 5. Contour increment
is 10 ppbv. The top of the figure shows the troposphere from 2-12 kin, while the bottom
figure expands the ordinate to show detail in the PI3L. The abscissa indicates the horizontal
extent of the computational domain.
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Figure '15: As in figure '13 for 1200L on day 5.
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Figure 46: As in figure ,13 for 1800IL on (lay 5.
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Figure 47: Forecast distribution of NO for Case 11 at OOOOL on day 5. Contour increment
is 0.2 ppbv for the top plot, 4 ppbv for thc bottom p)lot.
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Figure 48: As in figure 47 for WGOOL on day 5.
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Figure 49: As in figure 47 for 1200L on day 5. Contour increment is 0.1 ppbv for the top
plot, 2 ppbv for the bottom plot.
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Figure 50: As in figure 47 for ISOOL on day 5.
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Figure 51.' Forecast distribution of CO for Case Il at O000L on day 5. Contour increment

is 50 ppbv.
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Figure 52: As in figure 51 for 0600L on day 5.
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Figure 53: As in figure 51 for 1200L on day 5.
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Figure 54: As inl figure 51 for 1800L on day 5.
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Figure 55: Forecast distribution of butane for Case I1 at OOOL on day 5. Contour increment

is 1 ppbv for the top figure, 2 ppbv for the bottom figure.
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Figure 56: As in figure 55 for 0600L on day 5.
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Figure 57: As in figure 55 for 1200L on day 5.
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Figure 56: As in figure 55 for 0600L on day 5.
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Figure 58: As in figure 55 for 1800L on day 5.
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Abstract

An experiment using a tinie-dependcnt, two- d i nensional phIotochemnical nio(Iel of the tropo-

sphecre to model the vertical and zonal distribution of ozone and its precursors is p~resenlted.

The experiment examines two cases. Case I simulates vertical transport (Iue to difrfusion

and zonal transport due to advection, with surface einissions of ozone precuirsors in tlhe

center of the model domain representing an urban environment with light wind conditions

favorable for the formation of ozone in concentrations greater thman 80 parts l)Cr billion by

volume (ppbv). In Case II, an elevated source of ozone and its precursors is introduced

a~t the upstream boundary in ordcr to invstigate the m-Ole of advection of these cmeiical

species on ozone concentrations.

The first simulation produces surface ozone concentrations greater than 120 pJpbv in thme

air above the urban area, ammd the second simulation prJodutces an inmcrease of 3 - 10 p~ercent in

timis region. A comparison of Case I and Case 11 results showvs that enhanced phIotocemical

prodluctionm of ozonme (lim to time additionm of ozomme's precursors plays anm imp~ortanlt role in

tis increase.
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