
' i-

AD-A231 160
December 1990 THESIS/

An Implementation of Opportunistic Scheduling for
Robotic Assembly

Allan Wayne Butler

AFIT Student Attending: Texas A&M University AFIT/CI/CIA-90-125

AFITVGI

Wright-Patterson AFB OH 45433-6583

Approved for Public Release lAW 190-1
Distributed Unlimited

ERNEST A. HAYGOOD, Ist Lt, USAF

Executive Officer

DTIC
199

B D

80

CXF

OPPOTUN ISTIC SCIEDUJLING

FOR~ ROBOTIC ASS E?4BLY

A Thesis

by

ALLAN WAYNE BUTLER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

DECEMBER 1990

Major Subject: Industrial Engineering

91 2 06 084

iii

An Implementation of Opportunistic Scheduling

for Robotic Assembly. (December 1990)

Allan Wayne Butler

B.E., Brigham Young University

Chair of Advisory Committee: Dr. Cesar 0. Malave

-- The goal of this Ee &t Ti is to combine computerized

vision and artificial intelligence programming in an

application of robotic assembly that will use opportunistic

scheduling. Opportunistic scheduling is making a schedule

based on current "opportunities . A robot provided with a

vision system has the capability of recognizing random

opportunistic events. However, vision systems have many

limitations. A heuristic method of taking pictures is

developed to improve object recognition reliability. The

robot is given basic assembly knowledge using the production

rule methodology, and assembly precedence information using a

database of partial order sets. Dynamic state information is

also maintained by the program. Parts are delivered randomly

on conveyor belts. The robot is given the capability of

assembling a mix of products and assembling multiple products

concurrently. Thus, the robot can assemble a product in any

feasible way and schedule an optimal plan according to i-he

random arrival of parts. A user friendly interface with the

robot is developed. (

iv

ACKNOcWLEDGEM4ENTS

I would like to thank my committee for the counseling

and guidance they gave to me during my research. A special

thanks to Dr. Cesar 0. Malave, my committee chairman, who

spent a great deal of time helping me to develop my ideas,

and who encouraged me to make my non-thesis project into a

full thesis.

My greatest appreciation goes to my wife Bev and to my

children Michael, David, and Britta for their unselfish love

and undying support throughout the eighteen months we have

been at Texas A&M.

/

Accession Tor

NTIS GRA&I
DTIC TAB
UzWinounced
Ju rloatio --.-- ,.

By

Distributiorif
Avullability Codes

SpAvsci lor
t~a~Special

V

Page

ABSTRACT..........................iiiI

ACKNOWLEDGEMENT.......................iv

TABLE OF CONTENTS.......................v

LIST OF FIGURES......................vii

LIST OF TABLES.....................viii

CHAPTER

I INTRODUCTION....................1

1.3. Trends in the Market Place 1
1.2 Robots in Assembly................2
1.3 The Problem...................4

1.3.1 Robotic Programming.............5
1.3.2 Random Assembly...............5

1.4 Method of Approach................7
1.4.1 Computer Vision...............7
1.4.2 Artificial Intelligence...........8
1.4.3 Literature Survey...............9

1.5 Research Objectives...............12
1.6 Thesis Outline..................13

II THE APPARATUS....................14

2.1 The Robot.................................15
2.2 The Robot Cel1..................16
2.3 The Vision System................18

2.3.1 More Inflexibility..............19
2.3.2 Determining Vision Parameters........21

2.4 Prototype Training................24
2.5 Transformations.................26

III THE APPROACH....................28

3.1 The Picture Taking Heuristic 28
3.2 Multiple Assemblie 34
3.3 The Database....................35
3.4 Program Interf ace................37
3.5 opportunistic Logic...............38

3.5.1 State Information..............38
3.5.2 Programming Rules..............40

IV RESULTS AND CONCLUSIONS..............44

4.1 Discussion of Advantages.............44

vi

CHAPTER Page

4.2 Discussion of Short Comings...........46
4.2.1 Short Comings of Apparatus 46
4.2.2 Shiort Comings of the Approach........47

4.3 Conclusions...................49

REFERENCES.........................52

APPENDIX

A LISTING OF OPPORTUNISTIC PROGRAM..........54

A.1 Program Schedule.................54
A.2 Program Assemble.................54
A.3 Program Pick-Place................60
A.4 Program Database.................61
A.5 Program Position.................66
A.6 Program Start-up.................67

B LISTING OF VISION HEURISTIC PROGRAM 70

B.1 Program Sh.look.................70
B.2 Program Take.a.picture..............72
B.3 Program Center..................72

VITA............................73

vii

FIGURE Page

1. Top view of robotic work cell 17

2. Histogram of time required for vision recognition 30

3. Picture taking heuristic32

4. A precedence diagram of a simple assembly . . 35

5. Robotic program interface 39

6. Flow chart of opportunistic logic 41

viii

ILMJ-3 C)F Thr2 11EA -

TABLE Page

1. Statistical characteristics of vision prototypes 15

2. vision system program commands 20

3. Vision system parameters 21

4. Picture taking data. 29

CHAPE R~ I

Methods of assembly have come a long way since the first

assembly lines of Henry Ford. F. W. Taylor, for example,

using scientific management in his studies, was the first to

recommend short breaks for the workers as a way to reduce the

effects of fatigue and improve productivity [1].

The manual assembly lines of today have been improved by

using new techniques for line balancing, frequently changing

worker assignments, and allowing workers to control the speed

of the conveyor system [2]. Even with these advancements,

many new kinds of problems have resulted from our continuing

technological revolution- The requirement for smaller

tolerances and higher quality generates a need for increased

consistency and standardization in manufacturing processes.

In addition, many tasks which are strenuous or even hazardous

are still being done by humans.

1.1 Trends in the Market Place

Referring to the available colors of the mass produced

Model-T, Henry Ford said, "They can have any color they want

as long as it's black". This humorous comment was indicative

This thesis follows the style and format of the IEEE
Transactions on Robotics & Automation.

2

of the attitude behind the early methods of mass production.

Today, consumers are not so easily satisfied. Customers

want products to bc personalized or unique. These types of

demands can be easily seen in the automotive industry. Each

customer demands unique requirements for color, stereo, air

conditioning, cruise control, etc.

Personalized items can not be mass produced. This fact

gives rise to batch production, but yet the desire for higher

manufacturing flexibility is quickly becoming a requirement.

Flexibility is the ability to change from manufacturing one

product to a different product with little time lag.

Ideally, the most flexible job shop could produce one item,

followed by the production of a completely different item

using the same machines and without any additional time for

changes in set-up. The key here is to minimize set-up time.

As the need for greater flexibility in manufacturing

grew, industry returned to manual labor. Man's ability to

make almost instantaneous changes in behavior gives him a

significant advantage in the constantly changing world of

flexible manufacturing. However, the advantages of manual

labor are being outweighed by a great disadvantage - the high

cost of labor.

1.2 Robots in Assembly

Robots are an extension of computers. As computers have

become more powerful, robots have become more capable. At

3

first, it was hoped that robots would be the solution to many

problems in manufacturing, but it is not easy to build a

machine as adaptable as humans. Only recently have robots

been built that can make significant contributions.

The first large scale us. of computerized robots was in

1978 by General Motors as part of their Programmable

Universal Machine for Assembly (PUMA) system that included

conveyors, part feeders, and assembly robots working

alonqside humans [3]. Robots are now being used for welding,

spray painting, inventory control, material transfer, machine

part loading/unloading, and much more [4,51.

It is difficult for robots to adequately perform

assembly operations. This difficulty is mainly due to the

high degree of dexterity and sensory feedback needed to

perform assembly operations. These types of operations are

simple for a human, but to an insensitive, inflexible machine

they are diffioult, at best. Measures of robotic attributes

such as work volume, load-carrying capacity, accuracy

repeatability, and arm speed were developed as a method of

comparing robot capabilities to task requirements [4].

Robots are the most flexible machine available today.

However, there is a great deal of inflexibility that comes

with this flexibility. Robots are generally accompanied by

many special fixtures to hold work pieces. Special

pre-processing has to be done in order to sequence and orient

parts, and specialized feeders are required to position

parts. There is also the problem of how to deal with errors

(an error occurs whenever any part is slightly misplaced).

In the past, a great deal of time and money was spent

designing and building fixtures, forcing the changing world

of assembly into the structured environment of the robot. In

addition, long hours were spent attempting to program the

robot to do many detailed tasks. It has been reported that

about 90 percent of the robotic programmed instructions are

detailed procedures on how to recover from errors [6].

A great deal of research has been done to find better

ways to send information to robots about their surroundings

[4]. Tactile sensors indicate when (touch) and how hard

(force) the robot touches an object. Range sensors in"-7ate

know how close the robot is to an object. Interlock sensors

such as microswitches and infrared sensors signal to the

robot the presence or absence of an object. Probably the

sensor that stimulated growth of robotics the most is

computerized vision [4,5].

Despite the high capital investment required and the

difficulties discussed above, robotic applications have

become cost effective. Robots are now capable of faster

assembly times and increased consistency, leading to better

quality. Yet, much more is needed. Robots are going to have

to get "smarter".

1.3 The Problem

Manual assembly is too costly and robotic assembly is

5

too inflexible. The problem, then, is that robots must

become more flexible in assembly operations to adequately

fulfill the production requirements and control the rising

prices associated with assembly. This work uses computerized

vision, artificial intelligence, and opportunistic scheduling

in an attempt to increase robotic flexibility.

1.3.1 Robotic Programming

The program for a robot is essentially a plan.

Normally, the programmer has enough information to develop

this plan. However, in assembly, there is usually more than

one way to assemble a part. The programmer decides which of

these many ways the robot will use to assemble the part. The

robot will then assemble the part in the same way every time,

and the environment must be changed to accommodate the fixed

plan.

Research has been done to find methods for automatically

generating an optimal assembly plan [7,8,9,10]. Even if an

optimal assembly plan was determined using any one of these

methods, the optimal solution would change if the arrival

sequence of components to be inserted changed over time.

1.3.2 Random Assembly

In today's world of manufacturing the acronym CAD/CAM

(Computer Aided Design/Computer Aided Manufacturing) has

6

causnd a great deal of excitement, and significant attempts

are being made to implement its concepts. Just-in-Time (JIT)

manufacturing is another exciting subject of the day. For

simplicity, JIT manufacturing is defined as a method of

manufacturing that is directly driven by demand. If a

quantity of five is requested by a customer, a quantity of

five is produced. When a variety of products are offered, an

element of randomness is introduced.

CAD/CAM methods include techniques for generating an

aggregate production plan which is used to determine a master

schedule for production. The master schedule is a list of

quantities for each assembly to be produced in the next

planning pjriod. The Goal-Chasing Method [11] is a technique

for determining an optimal assembly sequence given a master

schedule. Since a customer's request for any particular item

is a random variable, the master schedule will continually

change, consequently, so does the optimal assembly sequence.

Another part of CAD/CAM is the materials requirement

planning (MRP) which controls the ordering, sequencing, and

timing of component delivery. The MRP is dependent on the

master schedule previously determined. Since the master

schedule frequently changes, so does the MRP [12]. Desiring

to eliminate inventories (at least maintain them at the

lowest possible level) production will correspond very

closely to the random demands of the customer. Thus, a fixed

optimal production rate and sequence are unacceptable under

these dynamic conditions.

7

1.4 Method of Approach

The goal of this research is to combine computerized

vision and artificial intelligence programming in an

implementation of opportunistic scheduling that will increase

robotic flexibility in assembly. In this section

computerized vision and artificial intelligent programming

are introduced, and then a literature survey of opportunistic

scheduling is presented.

1.4.1 Computer Vision

Computer vision digitizes an image and, through various

algorithms, calculates geometric characteristics such as area

in square pixels, centroid, and boundary information about

the object in view. (Note that a pixel is a single dot of

light which composes a picture.) Once the vision system is

trained by showing it examples of an object (a prototype), it

can match this prototype with a picture of the same object in

any orientation (object recognition) (4,5].

A robot provided with a vision system, has a method of

identifying placement errors, out of tolerance parts, and

improperly sequenced parts. However, there are many

limitations to vision systems. Most vision systems can give

only two dimensional information (the X and Y axis and the

rotation around the Z axis). Another limitation is lighting.

The amount and type of lighting used is very important, and

8

changing either will seriously effect the ability of the

vision system to recognize trained objects. (Often, if the

lighting is changed, the vision system must be re-trained to

recognize the objects under the new conditions). Due to the

variability in lighting, each picture taken of an object will

be slightly different. Also, the algorithms used for object

recognition are very computationally intensive, allowing

errors. These types of errors can be due to the camera

resolution and the less than perfect matching of images to

prototypes. The combination of these two variables produces

a significant possibility of an error in object recognition.

A heuristic method of taking pictures is developed to improve

the overall recognition capability of the vision system.

Object recognition can be a very slow process,

especially if objects are allowed to overlap or touch. The

assumption in this work is that objects do not overlap or

touch. In this way, the vision system simply has to

recognize objects under the same conditions in which it was

trained.

1.4.2 Artificial Intelligence

As a method of representing sequencing constraints,

engineers frequently use precedence diagrams [2,13,17,18].

One good way to program precedence diagrams into the computer

is by using partial order representation of knowledge

(explained in detail in chapter 3) [15]. This database of

9

assembly precedence information will be easily maintainable.

A user friendly interface with the robot is developed to

simplify making changes associated with the dynamic nature of

assembly.

The robot is given some basic knowledge about

assembly in the form of rules. The robot continually checks

the rules until one applies and then executes the procedure

that accompanies that rule. This method of programming is

called the production rule method. Rules govern such things

as when to get a component from the machine buffer rather

than look for a new one on the incoming conveyor belt. It

also maintains information regarding which components are

already inserted and which components can be inserted (state

information).

1.4.3 Literature Survey

Opportunistic scheduling is making a schedule based on

the current "opportunities" or environmental status [16]. By

using the production rule methodology, opportunistic

scheduling can be incorporated in robotic programming [15].

The problem arises when the actual arrival rate or the

specific sequence of components is different from the fixed

conditions programmed into the robot. This is known as the

difference between planning and scheduling [13) (or planning

and control [14]).

10

Planning is defined as:

Given a task and detailed information about present
capabilities, select an optimal way to accomplish
the task in the future [13].

Scheduling is defined as:

Given a plan, and detailed information about the
present abilities, complete the task in the most
robust and time-efficient way possible [13].

In most robotic programs a schedule is given to the

robot along with the plan. Yet, the information required to

schedule the events previously planned is not actually

available until the time of execution. To illustrate this

difference, consider the following example. A particular

manufacturer has a robotic workstation dedicated to the final

assembly of one of his products. The robot has been

programmed to assemble the product in a fixed, but optimal

way. Components for assembly are delivered to prescribed

locations by specialized part feeders, and base assemblies

are loaded manually by a technician. As long as tolerances,

location, orientation, sequence, and arrival times exactly

correspond to the plan and schedule programmed in the robot,

production will run smoothly.

If unplanned events occur, however, production will

stop. For example, if the robot is due for regular

maintenance, assembly of the product would come to a complete

stop until work was finished. If a placement error occurred,

production would stop until the error was corrected by the

human technician. If a component was fed to the robot out of

1i

sequence, assembly would completely stop until the error was

corrected.

Similarly, if unscheduled events occur production will

stop. If a component does not arrive when the robot is

scheduled to pick it up, an error occurs. Thus, a programmed

robotic assembly schedule only adds constraints to the

environment by forcing it to further conform.

In this research components are delivered to the robot

in a partially or completely random order on a simple

conveyor belt. This randomness generates the need for a

buffer to temporarily store components not yet needed. There

are many ways to use a buffer. Probably the first strategy

used was one called fixed-buffering [13,19]. Using this

strategy, the robot takes the random components, identifies

them, and places each of them in a known buffer location.

Once all the components are located and placed in the buffer,

the robot assembles the product using the single fixed plan.

Another strategy is called fixed-build [13,20]. This

strategy is applicable when components arrive in a bin that

contains all the necessary components for the assembly. The

robot identifies the components and picks them up in the

sequence it needs for its fixed assembly plan.

Both of these strategies are inferior to a strategy that

uses opportunistic reasoning [13]. An opportunistic robot is

capable of performing an assembly according to any one of the

many feasible assembly plans. It can also determine which

plan would be optimal according to the sequence in which the

12

parts are delivered.

If the opportunistic robot was given the capability of

assembling a mix of products and assembles multiple products

concurrently, an even greater advantage is gained. The

advantage of assembling multiple products concurrently is the

reduction in the average number of components in the buffer

that results from random delivery. For example, when

assembling four products, the robot will be looking for at

least four different components instead of just one. With

the introduction of multiple assemblies, priorities must be

used in order to overcome the conflict that occurs when two

or more assemblies require the same component at the same

time.

1.5 Research Objectives

By giving the robot the ability to "sense" its

surroundings and some "intelligence" with regard to assembly,

the need for fixtures is significantly reduced and the robot

can use opportunistic scheduling in real time production. A

robot is interfaced with a computer vision system. The

camera for the vision system is mounted on the robot arm so

the camera can be positioned by moving the robot arm.

The robot program uses a database of component

precedence information and includes rules for assembly. With

this knowledge, the robot can act for itself almost

"intelligently" as it assembles products according to the

13

opportunistic schedule it develops at the time of program

execution. The objectives for this research are:

1. A user friendly interface with the robot for flexible
production of multiple assemblies.

2. A heuristic method of taking pictures to improve
overall reliability of object recognition for the vision
system.

3. A program that uses a partial order representation of
assembly precedence information, and rule-based assembly
knowledge.

4. Implementation of the above interface, heuristic
search, database, and rule-based program on the Adept"'
single arm robot with arm-mounted camera.

1.6 Thesis Outline

Chapters two and three explain the apparatus and

approach used. Chapter four gives a discussion of the

results, conclusions and recommendations for further

research.

14

CHAPTER I I

THE APP I PTUS

The task of solving this research problem was simplified

by using the "blocks world", and requiring only simple

insertion operations. There are twenty wooden blocks to be

recognized. Ten of the blocks have simple geometric shapes

milled into them. The other ten blocks are cut into the

shapes that fit the holes. All the blocks are 3/, of an inch

thick. The shaped blocks average about one and one half

inches across. They were cut out on a band saw and have

slightly rounded corners to better fit the holes. The robots

work table is black, therefore, the shapes are painted white

to give the best possible contrast and camera resolution.

The blocks with holes are about two and a half inches square

and have the shaped hole generally located toward the center.

The holes were milled into the bases with an NC milling

machine. Most of the blocks allow about 1/16th of an inch

tolerance between the hole and the shape. The blocks are

painted black; and the holes, white. This coloring is to

accentuate the hole parameters and hide the overall block

dimensions.

The geometric shapes used were: circle, section,

triangle, square, pentagon, hexagon, trapezoid, cross, oval,

and star (See Table 1). These blocks are connected together

to simulate four different products. The circle, section,

15

triangle, and square are connected to make assembly number 4,

and is given component precedence that simulates two plates

with two fasteners. The pentagon, hexagon, and trapezoid are

connected together to make assembly number 3. The cross and

oval make assembly number 2, and the star is assembly

number 1.

Table 1. Statistical characteristics of vision prototypes.

Number Physical Mean Difference
Prototype Examples Memory Dimensions* Area in Area

Name Taught Rea. (XxYxZ) in. (Pixels) (Pixels)
Circle 10 2 l' 9/ 32x1 9/ 32x 23/ 32 8365
Cir.base 10 2 1 20/ 32x1 20 / 32x 11/ 32 9251 886
Section 11 4 l1"/3 2xl'4 / 32x 23/ 32 7362
Sec.base 10 4 18/510 1148 1I/" 8510 1148
Triangle 10 4 123/ 32xl16/ 32x 23/ 32 5865
Tri.base 10 4 1 26/ 3 2 x11"/ 32x' 5/ 32 6866 1001
Square 7 4 1 9/ 32x1 9/ 32x23/ 32 6883
Sa.base 7 4 11/,1xi/ 32 2J2 7781 898
Pentagon 7 5 l'/ 32x1 6 / 32x 23/ 32 7024
Pen.base 7 5 120/ 3 2 xl' 8 / 32x12/ 32 7942 918
Hexagon 7 4 11 9/ 3 2x'2 4 / 32x 23/ 32 7295
Hex.base 7 4 L2 2 Xj16/"X2/ 8404 1109
Trapezoid 7 4 1 7/3 2 x 0 /3 2 x2 3 /3 2 6943
Tra.base 7 4 12 1/ 32 X112 / 32 X 7 /3 2 7931 988
Cross 7 7 12 1/ 32 x1 2 2 / 3 2x 2 3 / 3 2 7013
Cro.base 7 7 l2 /.XIL'/±X./, 8391 1378
Oval 8 3 ll'/ 32 x 2 x 23/ 3 2 8907
O.base 8 3 14/ 3 2 x2 '/ 3 2 X12 / 3 2 10109 1202
Star 7 6 2 x1 30 /3 2 X2 3 / 32 6675
St.base 7 6 210 / 3 2 x2 3 / 3 2 X1 3/ 3 2 9140 2465

* All bases are 21/ 2x21/2 x 2 3 /1 2 inches. The dimensions shown are
of the matching hole.

2.1 The Robot

The robot is an Adept T robot which is a SCARA (Selective

Compliance Assembly Robotic Arm) type robot. The work volume

16

for a SCARA type robot is cylindrical with the robot at the

center of the cylinder. It has one arm with four degrees of

freedom (X, Y, Z, and rotation around the Z axis). The

gripper is a small pneumatic suction cup.

The robot is required to assemble four different

assemblies concurrently. Depending on product priorities and

amount of work in process, the robot schedules the assembly

operations. Through a system of conveyors and infrared

sensors, the robot maintains continuous production.

The AdeptT robot uses VALII as its programming language.

This application is written in VALII and utilizes the

supplemental AdeptvisionII T commands to operate the

associated vision system.

2.2 The Robot Cell

The components to be inserted arrive in random sequence

on a conveyor passing through the robots work space (See

Figure 1). An infrared sensor stops the conveyor when a

component is in the pickup region, and signals to the robot

that a component has arrived. The component is randomly

oriented and randomly located within the pickup regiun.

If a needed component is not already stored in the

buffer and if a component is present in the pickup region,

the robot will go to the conveyor. Using the vision system,

the robot will identify and locate the new component. Once

the component is identified, the robot will either insert it

17

R

R = The robot manipulator and circular work space.
I = Incoming base assembly conveyor and pickup region.
C = Incoming component conveyor and pickup region.
F = Outgoing finished assembly conveyor and drop region.
B = Buffer region for components.
X = Region for placement of rejected parts.
1, 2, 3, and 4 = Work regions by number.

Figure 1. Top view of robotic work cell.

or store it in a buffer location for later us(.

Once an assembly is complete, the robot places it on an

outbound conveyor for finished products, and then moves to an

incoming conveyor to obtain a new base assembly to assemble.

Like the components, the base assemblies can be randomly

sequenced, randomly oriented, and randomly located within the

pickup region of the conveyor. The base assembly is placed

18

in an empty work region and the state information for that

region is updated. (A work region is an area of the robot

work space that is designated as a location for assembling

products. See Figure 1.)

The buffer has a maximum capacity of ten components, but

is a revolving buffer in which the fiLst location is always

filled first, then the second, etc. For this reason, buffer

location ten is rarely used. However, if the buffer is full,

and the robot needs to store one more component, the robot

will stop working and signal for help from the operator.

The reject location is where the robot places all the

parts (components and base assemblies) that are considered

out of tolerance. In this project, the robot is given four

work regions, but the number of regions can be adjusted to

fit production needs and the size of the products being

assembled.

2.3 The Vision System

The camera for the vision system is mounted on the arm

of the robot. It produces a grey scale image. Each pixel in

the camera image is assigned a numerical value from 0 to 256

(0 being black and 256 being white). The image analyzer is

binary, so the gray scaled image must be converted to ones

and zeros. This is accomplished by a user defined threshold.

All pixel values less than the threshold are converted to

black (zero), and all pixel values above the threshold are

19

converted to white (one).

The camera is mounted on the robot arm in such a way as

to allow it to move only in the X-Y plane. Objects up to

eight inches outside the robot work space can be seen and

recognized by the vision system, but not picked up by the

robot arm. As a result of this constraint, all visual

searches are limited to the robot's work space. The vision

system used by the AdeptM robot is the AdeptvisionII M system.

This system has its own software for training and object

recognition. The AdeptvisionII M system has many parameters

that effect object recognition.

In addition to these parameters, AdeptvisionIITm also has

many programming commands used for incorporating vision

analysis into regular robotic programming. The commands used

in this research are listed in Table 2 with a brief

interpretation of the function of each [21].

2.3.1 More Inflexibility

Even though the vision system gives the robot great

flexibility, it, in and of itself, is very inflexible. The

lighting, camera focus, and camera aperture setting all must

be held constant. If an object is moved closer to (or

farther from) the camera (or if the camera is moved closer to

or farther from the object), the vision system will not

recognize the object. This peculiarity occurs because object

"appears" larger (or smaller) than the prototype given to

20

the vision system.

Reflections and shadows on or around the objects cause

problems with recognition. Standard incandescent light bulbs

produce sharp reflections and shadows, where as florescent

light sources produce diffuse light with soft shadows.

Table 2. Vision system program commands

COMMAND DESCRIPTION
VPICTURE - Directs the vision system to take a picture

and hold it for later analysis.
VLOCATE - Executes vision analysis of a picture

previously taken.
VFEATURE - Command used to access the information

resulting from vision analysis.
VQUEUE - Chronological list of objects seen and their

respective VFEATURE information.
VTRAIN - Command used to initiate a training session to

teach prototypes to the vision system.
VLOAD - Command used to load a vision prototype into

the active vision memory.
VSTORE - Command used to store vision prototypes on

disk after a training session.
VDISPLAY - Command for changing the mode of image display

on the monitor.

Room lighting was used along with a florescent ring

light located around the lens of the camera. Since the room

is large, lighting consisted of 20 panels, each with four

florescent lamps. The ring light around the camera is

focused at the center of the picture frame. The difficulty

with shadowing was considerably reduced by using a

transformation to place the object in the center of the

camera where the advantage of the ring light was the greatest

(This topic will be discussed later in this chapter).

21

2.3.2 Determining Vision Parameters

When setting vision parameters, the overall goal is to

minimize the time spent by the robot in identifying and

locating objects. Table 3 is a list of the parameters used

and a short interpretation of their effects [21].

Table 3. vision system parameters

PARAMETER DEFAULT APPLIED DESCRIPTION

V.BORDER.DIST 0 0 Reduce image border to
mask out clipped objects.

V.FIRST.COL 1 1 - 150 Set first column of camera
data to be processed.

V.FIRST.LINE 1 1 - 150 Set first line of camera
data to be processed.

V.LAST.COL 375 250 - 375 Set last column of camera
data to be processed.

V.LAST.LINE 483 350 - 483 Set the last line of
camera data to be
processed.

V.MAX.AREA 262144 15000 Set size of largest object
to process.

V.MAX.PIXEL.VAR 1.5 1.5 Set max pixel deviation
for fitting image
boundary.

V.MAX.TIME 10.0 1.1 Set max time for
recognition analysis.

V.MAX.VER.DIST 3.0 1.9 Set pixel tolerance for
match verification.

V.MIN.AREA 16 2900 Set size of smallest
object to process.

V.MIN.HOLE.AREA 8 8 Set size of smallest hole
to process. (not used)

V.THRESHOLD 127 110 Set grey scale value that
separates black from
white.

The parameter V.MAX.AREA controls the size (in square

pixels) of the largest object that the vision system will

22

attempt to process. The default value for this variable is

262,144 square pixels. Reducing the size of the largest area

to be processed will reduce vision system processing time by

eliminating the need to process large images like fixtures.

In this application, the maximum size of an object to be

analyzed was arbitrarily set at approximately 1.5 times the

area of the largest part to be identified, the base assembly

for the oval. Observations indicate that the vision system

gives an average area of 10,109 square pixels to the oval

base. Thus, the parameter V.MAX.AREA was set to 15,000.

Similarly, the parameter V.MIN.AREA controls the size

(in square pixels) of the smallest area to be processed.

Increasing this parameter can reduce processing time by

eliminating small, insignificant objects and "ghost" images

due to reflections and other imperfections in the work

pieces. This parameter was arbitrarily set by taking

approximately one half the area of the smallest part. The

smallest object in this application was the triangle at 5,865

square pixels. Thus, the parameter V.MIN.AREA equals 2,900.

Upon setting the lighting as desired, a picture was

taken of one of the objects, and the threshold was adjusted

until a clear, sharp image was displayed on the monitor.

Using this threshold value, all the objects were examined to

produce clear images. If an image was not clear, adjustments

were made. Once the vision system consistently produced

clear, sharp images for all the parts, the camera was

calibrated, and a transformation matrix was calculated to

23

transform camera image locations into robot world locations.

The threshold value used was 110.

One of the most important variables, other than

threshold and lighting, was the tolerance used to confir the

recognition of an object. This parameter is dependant on

many things. Since the tolerance is measured in pixels, the

length of a pixel is important. To determine this value for

the vision system, the square component was used. The vision

system reported the area of the square to be 6883 square

pixels. Careful measurement revealed that it was 1 9/32 inches

on a side. Using this information, one inch equals 64.75

pixels, or a ratio of approximately 1:65 (accounting for

rounding of the corners etc.). This relationship produces a

vision system resolution of 0.015 inches, the smallest

distance the vision system can measure.

The resolution of a vision system can be improved by

moving the camera closer to an object (which also requires

re-training of prototypes), or by exchanging the camera

itself for one with a longer focal length (i.e. from a 25mm

camera to a 50mm camera). Upgrading the vision board can

also improve resolution, but a high resolution vision board

is being used in this research.

Quality control checks can be done by setting the number

of pixels used to confirm object recognition. For example,

using the 0.015 inch resolution, a tolerance of plus or minus

0.030 inches on a part would require a tolerance of two

pixels for the vision system. This allows an image to be two

24

pixels too big or too small and still be matched with the

prototype.

In an actual manufacturing setting, this tolerance would

correspond to the design tolerances of the part being

produced. In this research, however, this value was

determined to be the largest value possible without

misidentifying a part. Of the shapes and holes used, the set

with the smallest difference in pixel areas were the circle

and the circle base. Careful measurement showed that the

circle had a diameter of 1 19/32 inches and the circle

base (the hole) had a diameter of 1 21/31 inches, a difference

of 0.0625 inches in diameter. From the resolution determined

above, 0.0625 inches is equivalent to 4.0 pixels. The

tolerance for the diameters should, then, be less than 2.0

pixels. The parameter V.MAX.VER.DIST controls this variable,

and is set to be 1.90.

2.4 Prototype Training

Giving the vision system prototype images for later

matching (training or teaching) is a critical process, and

many factors must be considered before beginning. Once all

the vision parameters and lighting conditions have been

decided, it is a good idea to learn how the vision system

will represent the boundaries of the part [22]. In most

cases the vision representations are not what the user

envisions. Knowing how the vision system models the boundary

25

of the part will help in editing the prototype boundaries.

For example, if the vision system always represents a curved

surface with a line, then making that surface a line in the

prototype will speed up vision recognition.

The vision system needs multiple examples (about 10) of

each part being trained. The first example is the most

important, because it is the model for all others. This

means that all other examples must have the same number of

corners and the same type of edges.

The vision system could be trained to find

pre-determined gripper points for the objects, but the top

surfaces of all blocks used in this research are flat. So,

the robot simply picks them up by using the centroid of the

shape determined by the vision system.

Correctly orienting the component before placing it in

the hole was one of the more difficult functions to program.

This function can actually be done in many ways, but the

easiest, and the method used, was to simply teach the

component and the hole to the vision system in the exact same

orientation. The reason this method works is because the

location returned by the vision system includes the

rotational difference between the object recognized and the

prototype taught. Thus, simply by moving the component from

its present location to the location of the hole, the

component will have the same orientation as the hole. This

may seem obvious, but if there is a difference in the

orientation of the prototypes, then the exact difference must

26

be known and compensated for before the component can be put

into the hole.

2.5 Transformations

During the calibration of the camera, a transformation

is developed. When the vision system sees an object, it

calculates the location of the object's centroid relative to

the origin of the camera. (The camera origin is the bottom

left corner of the picture.) This relative location is given

to the robot which must use the calibration transformation to

convert it to a location relative to the robot's origin.

In the application of this research on the Adept M robot,

two other transformations were developed and found useful.

The first is the centering transformation. This

transformation places an object previously viewed, in the

center of the camera's field of view and calculates the

difference between the object centroid and a point near the

center of the camera. Once this difference is found, the

robot arm is moved this distance in the direction of the

object.

The third transformation was developed as a result of

the difficulties encountered with recognition of objects on

the conveyors. (These difficulties are explained more fully

later.) This transformation allows the robot to put down the

part it is carrying and then move the arm so the part is in

the center of the camera for identification purposes. This

27

transformation makes use of the calibration transformation

(inverting it) and the centering transformation (using the

relative camera center location). The importance of these

transformations is discussed in the next chapter.

28

CHAPTER I II

THE AP RO C

The issues dealt with in this chapter are mainly the

details of the vision heuristic, database and state

information representation, user interface, and the program

logic for opportunistic scheduling.

3.1 The Picture Taking Heuristic

With all other vision parameters set, the maximum time

allowance for vision system analysis can be determined.

V.MAX.TIME is the variable that controls this important

system parameter. The default value, as noted in Table 3, is

10 seconds, which almost insures an object will be

recognized. In a manufacturing environment, however, where

seconds are critical, 10 seconds is too long. To determine

an optimal time, two issues were considered. The first was

to determine experimentally how long the vision system

actually required to identify each of the objects. After

training the vision system with all the necessary prototypes,

ten pictures of each of the objects were taken and analyzed.

Each object was randomly located within the camera's field of

view. Table 4 shows the resulting times.

These values are plotted in Figure 2. Notice that of

the 200 pictures taken and analyzed, only 16 required more

29

than one second to process, and these were mainly the base

assemblies where shadowing was a problem.

Table 4. Picture taking data

Circle Triangle Pentagon Trapezoid Oval
Trial Section Square Hexagon Cross Star
1 0.26 0.29 0.37 0.24 0.29 0.75 0.34 0.46 0.42 0.50
2 0.24 0.50 0.35 0.32 0.27 0.54 0.38 0.46 0.91 0.46
3 0.21 0.59 0.38 0.98 0.29 0.94 0.80 0.64 1.28 0.59
4 0.26 0.35 0.50 0.30 0.30 0.61 0.53 0.40 0.34 0.45
5 0.26 0.59 0.26 0.27 0.32 0.51 0.62 0.35 0.40 1.12
6 0.26 0.42 0.32 0.29 0.29 0.58 0.75 0.46 1.58 0.43
7 0.24 0.30 0.46 0.24 0.40 0.69 0.45 0.43 0.62 1.25
8 0.22 0.38 0.38 0.30 0.30 0.64 0.61 0.53 0.74 0.85
9 0.22 0.50 0.43 0.27 0.26 0.75 0.43 0.48 0.43 0.43

10 0.22 0.34 0.34 0.27 0.27 0.64 0.38 0.56 0.40 0.74

Cir.base Tri.base Pen.base Tra.base O.base
Trial Sec.base Sq.base Hex.base Cro.base St.base
1 0.29 0.51 0.50 0.82 0.50 0.43 0.50 0.50 0.77 0.66
2 0.22 0.51 0.62 0.80 0.42 0.40 0.53 0.48 0.50 0.80
3 0.29 1.28 0.37 0.88 0.42 0.35 0.50 0.50 0.51 1.50
4 0.32 0.74 0.51 1.39 0.85 0.29 0.75 0.59 0.45 0.90
5 0.32 0.62 0.35 1.01 0.64 0.40 0.51 0.77 0.78 2.30
6 0.29 0.38 0.88 0.72 0.51 0.30 2.02 0.50 0.51 0.80
7 0.27 0.38 0.46 0.85 0.38 0.74 0.43 0.59 0.35 0.91
8 0.26 0.40 1.26 1.34 0.50 0.58 0.58 0.51 1.28 0.59
9 0.27 0.38 0.82 0.96 0.53 0.30 0.37 0.54 0.54 0.56

10 0.64 0.40 4.05 0.93 0.46 0.42 0.40 0.48 1.73 1.18

The application parameter settings listed in Table 3

(V.MAX.TIME = 1.1 sec), produce a 0.92 probability of object

recognition. Increasing V.MAX.TIME to 1.5 seconds would give

a 0.97 probability of object recognition. The allowable time

for analysis can be reduced and still maintain a relatively

high probability of object recognition. As a result of these

findings, the parameter V.MAX.TIME was set at 1.1 seconds.

The second issue considered arose as a result of

30

VI S! ON RECOGNI TI ON TI ME

4 -

42

W 24
06

, in [lni n n

0.2 0. S 1.4 2 2.6 3.2 3.a

0. 1 1.' 2.3 2.3 S.5 4.1

T1 me (se)

Figure 2. Histogram of time required for vision recognition.

restricting the time allowed for image processing, which

causes the possibility of not recognizing a valid part. A

closer look at Table 4 will show that even if a part required

more than one second to be identified on the first trial, it

could easily be recognized in much less than one second in

the second trial. This leads to the vision system picture

taking heuristic.

31

Figure 3 shows the logic diagram for the picture taking

heuristic. This program is actually called as a subroutine

by the main program. By first memorizing the initial

location of the robot arm, the subroutine can move the arm

and still return it to its original location when program

control returns to the main program.

Taking an initial picture and storing the vision

information about each of the objects viewed (e.g. object

locations, name of prototype matched, and verification

percentage) gives the program a starting point. If no object

is viewed, the subroutine returns to the main program.

During training, the vision system was given a minimum

recognition of 75 percent verification. This means the

vision system will match a prototype with an image when only

75 percent of the image border matches the prototype border.

This low percentage for matching (called verification) is

very desirable, since parts can be randomly located within a

region (the region being the camera field of view). However,

when it comes to inserting components and performing quality

control checks, the vision system must calculate the centroid

and boundaries of the object very accurately.

The heuristic verifies that the image was matched with a

prototype to at least the 90 percent level. If an object is

seen, but does not meet this criteria, the object is centered

in the camera view, and another picture is taken. If, on the

second attempt, the image more closely matches the prototype,

the stored vision information for this object is updated and

32

RECORD TAKE A TEMPORARILY REDUCE
STORE VISION

ARM PICTURE INFOEXATION FOR CAMERA
LOCATION VIEW

EACH OBJECT SEEN

FOR EACH
OBJECT SEEN

ALL NO isOBJECTS UPDATE DETERMINE VERIFY
VALIDATED? STATE LOCATION < 90?

INFORMATION OF OBJECT

YES YES
<i *

ENLARGE CE271'ER

CAMERA OBJECT IN

VIEW CAMERA

BETTER YES is
MOVE INFO EATURE(9 TAKE A
ARM TO > VERIFY? PICTUREUPDATE
ORIGIHAL VERIFY
LOCATION

Ila

Y is NO is ITO
VERIFY NUMBER OF

90? ICTURMS
> 5?

YES

WAS

YES THE
OBJECT
RECOG-
IIZED?

110

0 BWJ E C=T

Figure 3. Picture taking heuristic.

33

the 90 percent test is made again. This loop is executed

five times if the criteria are not met. Taking up to five

pictures, each picture having a 0.92 probability of object

recognition, gives an overall object recognition reliability

of 0.9999967 for the vision system [23]. If, at the end of

five attempts, the object is not recognized, it is determined

to be "foreign" or outside of acceptable tolerances for the

assembly. In this way the vision system conducts quality

control checks while performing assembly operations. If an

object is found to be out of tolerance, the robot picks it up

and drops it into the reject region.

There is still a possibility of an object being

recognized after centering and taking five pictures, but not

to the 90 percent criteria. In these instances the vision

information stored is used as if the object had passed the

test.

Notice that after the initial picture, the camera view

is reduced. This is accomplished by changing the parameters

V.FIRST.COL, V.FIRST.LINE, V.LAST.COL, and V.LAST.LINE. The

camera view is reduced just in case more than one object was

seen in the initial picture, which, in turn, reduces vision

analysis time. When an object is centered, it should be the

only object fully visible to the camera. This eliminates the

confusion that might result from seeing a different object

the second time. Just before the subroutine returns to the

main program, it enlarges the camera view back to full, and

moves the robot arm back to its original location.

34

3.2 Multiple Assemblies

The robot is required to assemble four assemblies

concurrently, taking advantage of the random delivery of

components, decreasing the overall assembly time, and

reducing the required buffer size. Assembling multiple

products concurrently also introduces the need for

priorities.

The priority of an assembly is based on two things.

First, the database maintains a relative priority of each of

the assemblies that the robot is capable of assembling. This

information is based on which assemblies generally require a

higher production rate. With a mix of assemblies arriving in

a random sequence, there exists the possibility that any two

of the assemblies will be processed concurrently. Priorities

are used by the robot to resolve conflicts that arise when

two or more base assemblies require the same component at the

same time. Therefore, each assembly must have a unique

priority value of one or greater. The lower the priority

value the more important the assembly. A priority of zero

means the robot will not process the assembly.

The priority value of any one base assembly can be

decreased (made more important), depending on how long it has

been in a work region awaiting completion. This time limit

is based on how many other assemblies have been completed

since the waiting base assembly arrived. The program

maintains a running total of the number of products completed

35

since it was initially executed. A value of 10 completed

assemblies is arbitrarily *.zed as the limit for when the

priority value of the waiting assembly is temporarily

lowered. Priority information is part of the permanent

database, and can easily be modified through the user

friendly program menus (discussed in the next two sections).

3.3 The Database

The partial order representation of knowledge from

artificial intelligence was used to represent the component

precedence information in the robot. The two dimensional

array PREC[X,Y] is this database. Consider the precedence

diagram in Figure 4.

Figure 4. A precedence diagram of a simple assemble.

36

In list form, this precedence diagram would be represented as

follows:

((l),(7),(1,0),(2,1),(3,1),(4,2),(5,2),(6,3),(7,3))

The first two elements describe the information (i.e.

one assembly in the database, and the first assembly has

seven constraints.) An individual constraint such as (4,2)

indicates that component four requires component two be

inserted first. This same knowledge would be represented in

the array PREC[X,Y] as follows:

Corresponding List
Element

PREC[0,0] = 1 PREC[1,0] = 7 ((1),(7),
PREC[I,l] = 1 PREC[1,2] = 0 (1,0),
PREC[I,3] = 2 PREC[I,4] = 1 (2,1),
PREC[1,5] = 3 PREC[I,6] = 1 (3,1),
PREC[I,7] = 4 PREC(1,8] = 2 (4,2),
PREC[I,9] = 5 PREC[I,10] = 2 (5,2),
PREC[l,11] = 6 PREC[I,12] = 3 (6,3),
PREC[I,13] = 7 PREC[I,14] = 3 (7,3))

Along with precedence information the database maintains

the names of assemblies and components. The vision system

returns the name of the prototype that matched the object

viewed. Comparing this returned name to the names stored in

the robot memory produced a method for retrieving all

component and assembly information pertaining to the object

located.

The precedence, part number, and name information

constitute the permanent database. Each of these values can

be easily modified through the database manager program. In

this program the user can add, edit, or delete precedence

37

constraints. The database is capable of maintaining a large

number of constraints (1 Megabyte storage). Depending on the

number of components and complexity of assemblies, the robot

could be programmed to assemble more than 100 different

products.

3.4 Program Interface

The entire robotic program interface consists of menus.

The top-level interface is represented by Figure 5 [24]. By

executing program 'Schedule' the Main Menu will appear. The

Main Menu has six options. Option number one is to execute

program 'Assemble'. This program is the opportunistic

scheduling program.

Main Menu option numbers two and three are database

manager programs. Option number two controls assembly

priority information, and option number three controls the

component precedence information. To add, edit, or delete

assemblies from the database, select option number three.

When the user is adding new information into the

database, the robot assigns a new number to the new assembly

(assembly number) and each of the new components (part

number). This "part number" is used when setting precedence

constraints.

Selecting option number four from the Main Menu displays

the location menu. This menu allows the user to quickly move

the robot arm-mounted camera to view any of the work regions.

38

option number five of the Main Menu displays a menu of

all the vision prototypes that are on the hard disk memory of

the robot. A selected prototype will be loaded into active

memory for immediate vision recognition capability.

3.5 Opportunistic Logic

The flow chart for the overall opportunistic logic can

be seen in Figure 6. It should be noted that the program has

no end but is an infinite loop. Thus, the robot is either

working or waiting for delivery of parts.

3.5.1 State Information

The first thing the program does is to initialize the

state information. The array REGION[X] maintains information

about which base assembly is in each of the four working

regions.

The component state information for each region is

maintained by the array STATE[X,Y]. This array contains the

precedence information for the assembly in REGION[X] from the

array PREC[X,Y], but is updated each time a component is

inserted (the dynamic precedence requirements). It should be

noted that the X values are different in the STATE[X,Y] and

PREC[X,Y] arrays. In PREC[X,Y], X is the assembly number,

but in STATE[X,Y], X is the region number.

The arrays NEEDR[X] and NEEDC[X] are the arrays that

39

1. Assemble Parts
2. Modify Assembly Priorities

Program Selection #1 3. modify Component precedences Selection Hat h
Assemble ~ 4. View Work Regionsprga

5. Load vision Prototypes

0
0 0

PRIORITY MENU
Change PRIORITY for

1i. <name of assembly #1> 0 LOCATION MENU - VISION PROTOTYPE MEN U-
2. <name of assembly #2> e View LOCATION of 1.* <name of prototype #1>

I. Work Region #1 2. <name of prototype #2>
2. Work Region #2

n. <name of assembly #n>
n+1. PREVIOUS MENU n. <name of prototype #--i>

n. Work Region #3 [n+1. CONTINUE
n+l* Previous M4ENU

Database Manager
Change PRECEDENCE information

1. ADD new assembly information 1
2. EDIT existing assembly information
3. DELET'E assembly information
4. RETURN to previous ME~NU

1 .<ipa ontan n
(n. AD a prcdec c-ntrin

n. ~EdtE preecedeoncerconsan

n+1. ADR t previeneostrEnU

Figure 5. Robotic program interface.

40

maintain information about which regions have a requirement

for which components. The variable NEEDC[O] is the current

number of components required by all regions (the size of the

arrays).

3.5.2 Programming Rules

Only six basic rules are used in this logic. More rules

could be added later to further enhance program capability.

For example, a rule for when a new base assembly is actually

a partially completed assembly requiring rework/completion

could be added. As seen in Figure 6 (diamond shaped figures

represent rules), the first rule is the main rule. Rule one

is, if a work region is empty, fill it with a new base

assembly from the incoming conveyor. If a value in the array

REGION[X] is zero, then there is no base assembly in that

region. The robot attempts to keep all regions full in order

to maintain the production rate at its highest.

Rule two is part of the procedure applied when rule one

is executed (there is an empty work region). Rule two is, if

a base assembly is in the pickup region, grasp it and move it

to the empty work region. The conveyor that carries the base

assemblies to the work area has an infrared sensor that

signals to the robot when a new base assembly is present in

the pickup region. The signal number is 10. Using the

vision system, the robot identifies and locates the new base

assembly in the pickup region. The robot then grasps the new

41

G
INITIALIZE

PICK
STATE PLACE
INFORMATION UPDATE NEW BASE

STATE

INF01mTION IN WORKING
REGION

YES

ALL is GO TO WAS
LOCATE THE D70

WORKI NO A BASE YES BASE OBJECr :=:REJECTIREGIONS IN PI PI IDENTIFY RECOG- CTFULL? REGION? REGI NEW BASE ZED OBIECT

YES NO

ANY
YES WORKING No WAIT FOR

REGIONS BASE

DETERMINE
NEEDED

C-OMPONENTS
PUT

IN BPONENTPUT

R:UFFER

YESCOM- GO TO LOCATE WAS
IT== NO ES Y THE 170

PONEMT COMPONENT IDENNrIF OBJECTPO IN PICKUP PICKUP 17EN RECOG-IN REGION NENT IZED?UFF REGION
? ?

YES NO

GET COMPONENT WAIT FOR

WITH HIGHEST COMPONENT

PRIORITY SIGNAL

INSERT

CCMPONENT I

ASSEMBLY

UPDATE

STATE
INFORMATION

S PUT COMPLETEDNMO SENBL YES ASSEMBLY ON
CCMPLTL=rE OurPUT

CONVEYOR

Figure 6. Flow chart of opportunistic logic.

42

assembly and places it in a vacant work region, and the

program updates the STATE[X,Y] array for that region.

If there is no new assembly in the pickup region, the

robot, referring back to the data for rule one, applies rule

three. Rule three is, if a work region is full, determine

needed components for the base assembly in that region. If

there is work to be done, the robot goes to work. If not,

the robot waits for the signal from the base assembly

conveyor.

Rule four is, if needed components are in the buffer,

insert them into the appropriate base assembly that has the

lowest priority value. Array BUFFER[X] contains the

component "part number" that is presently stored in buffer

location X. This rule can be checked by examining the arrays

NEEDC[X] and BUFFER[X] for matching component numbers.

If none of the needed components are in the buffer, rule

five applies. Rule five states, if a component is in the

pickup region, put it in a buffer location. The infrared

sensor for the component conveyor provides signal number 11.

If no component is in the pickup region, the robot will wait

for the signal from the component conveyor. When a component

is present, the robot arm moves to the pickup region and

using the vision system locates and identifies the component.

The component is placed in a buffer location and the array

BUFFER(X] is updated by the program. After rule five, the

program returns to rule four.

Rule six is the finished assembly rule, and says, if an

43

assembly is complete, place it on the finished product

conveyor. This rule is checked by the STATE[X,Y] array. If

this array contains no constraints for a given work region

and the REGION[X] array indicates that an assembly is present

in that work region, the assembly is considered complete (all

precedence information has been satisfied). When an assembly

is complete, it is placed on the finished product conveyor

and the REGION[X] array is updated to represent the empty

work region.

After applying rule six, the program returns to rule

one. These rules with their respective procedures maintain

production but allow the production rate to change

dynamically.

44

CHIAPTEE I V

RESLT'S AND CONCLUSIO~NS

The results of this research were very positive. In

this chapter, successes and short comings are discussed.

4.1 Discussion of Advantages

In many applications, one robot is dedicated to the

assembly of one product. Sometimes, the robot may have

programs stored in memory for other assembly operations, but,

even then, it is restricted to assembling one product at a

time. In order for the robot to assemble a different

product, it must first load the respective program. Often,

fixtures must also be changed, requiring lengthy set up

times.

To fully understand the possible advantages of

opportunistic assembly, reconsider the following example. A

particular manufacturer has five separate product lines.

Each of these lines has a robotic workstation dedicated to

final assembly. Each robot has been programmed to assemble

its product in a fixed, but optimal way. Components for

assembly are delivered to prescribed locations by specialized

part feeders, and base assemblIes are loaded manually by a

technician.

If one of the robots breaks down or is due for regular

45

maintenance, assembly of the product assembled by that robot

would come to a complete stop until repairs were finished.

If a placement errcr occurred at one of the workstations, the

line would stop until the error was corrected by the human

technician. If a component was fed to the robot out of

sequence, assembly of that product would completely stop

until the error was corrected.

If, however, each of the five robots were given vision

capability and programmed to use opportunistic scheduling,

the situation would change. There would be no placement

errors, except those due to vision inaccuracy, because all

parts being delivered can be randomly located and randomly

oriented in the pickup regions. Specialized part feeders

would not be necessary because simple forms of part feeding

(i.e. conveyors) can now be utilized.

Production stoppage due to out of sequence components,

would never occur, because the components and base assemblies

can be in any sequence. Furthermore, if each of the robots

were programmed to use a database containing the assembly

knowledge of each product, the five distinct workstations

would become five mixed workstations, each capable of

assembling any of the products being assembled. With mixed

workstations, if one robot stopped for maintenance, the other

four robots would still be producing a mixture of all the

products. Thus, the production of any one product would not

stop due to one robot stopping. There is also the savings

that result from the need for fewer fixtures, and the time

46

savings due to the elimination of pre-processing of parts.

4.2 Discussion of Short Comings

Even though the above advantages are significant, there

are a few short comings to be discussed. Short comings with

the design of the work cell and the equipment used will be

discussed first, and is followed by a discussion of

difficulties with opportunistic scheduling.

4.2.1 Short Comings of the Apparatus

Probably the greatest difficulty encountered was the

recognition of components on the conveyor. If the vision

prototypes are taught from the conveyor, then the vision

system can recognize the parts on the conveyor but not in the

work area (The work area and conveyor are at different

heights in the test case studied). The converse is true

also, if the prototypes are taught from the work area, the

vision system can not recognize them on the conveyor. (If

the conveyor and work area had been designed to be the same

height, this inconvenience is eliminated.)

There is a significant savings in assembly time if the

vision system recognized the parts as they arrive on the

conveyor. However, for some unknown reason, when an object

was on the conveyor, the vision system always miscalculated

47

the centroid, causing the robot to pick up the object

incorrectly. This error is about 1/2 of an inch, so the

robot can still pick up the object (due to the size of the

objects being used).

To temporarily overcome this difficulty, the vision

system is used only to locate an object on the conveyor.

Once located, the robot places the object in a buffer

location, and uses the "step back" transformation to move

back and take another picture for identification purposes.

It is suspected that there is a problem with lighting on the

conveyor. (The light from the infrared sensor is visible to

the camera and may cause uneven lighting.)

Many unwanted shadows caused problems with proper

placement of components. A part not centered in the picture,

would have shadows causing incorrect calculation of the

centroid. The miscalculation was sometimes off by as much as

1/4 on an inch which was too large to correctly insert the

component. The centering transformation was used to reduce

this error. The location error could be almost eliminated by

changing the lighting methods and the relative position of

the light sources. More light in the correct direction would

minimize shadowing and produce a more evenly lighted work

area.

4.2.2 Short Comings of the Approach

There are a few difficulties with opportunistic

48

scheduling. For example, the definition of an opportunity

and what creates an opportunity must be known and programmed

into the robot in advance. In this research, opportunities

were restricted in the robot workstation to the random

arrival of base assemblies and components. However, if the

technician picked up a component that had fallen off the

conveyor and put it in the buffer, an error would occur

because this "opportunity" was not allowed by the present

production rules.

A method must be devised to evaluate each of the

opportunities. Assembly priorities, component precedence

information, the first-come-first-serve inventory discipline,

and the production rules for assembly were used in this

research to evaluate opportunities. Making provisions for

more types of opportunities causes the recognition and

evaluation of an opportunity to become more complex.

Knowing in advance w),.ch alternatives will be available

due to an opportunity is a difficulty people face every day.

Opportunistic scheduling is no different. The programmer

must know what kind of opportunities would come to a robot in

the future. He would have to program a method for evaluating

each of them and know which alternatives will be available.

All this must be given to the robot before it can take

advantage of an opportunity.

The method used to represent knowledge can also create

difficulties. In this research the assembly precedence

information was maintained as arrays in the form of a partial

49

order. Methods available for this implementation were

limited by VALII, the language of the robot. However, there

are several, including better, alternative methods for

knowledge representation. One example would be an AND/OR

graph representation that would reduce the size of the

database needed to represent the precedence information [25].

4.3 CONCLUSIONS

The goal of this research was to combine computerized

vision and artificial intelligence programming in an

application of robotic assembly that would use opportunistic

scheduling. An Adept' single manipulator robot was provided

with the capability of visually recognizing random

opportunistic events. The objective of a heuristic for

taking pictures was accomplished, and the heuristic

significantly improve overall reliability of object

recognition for the vision system. The requirements for

specialized part feeders and pre-processing of parts were

virtually eliminated, allowing all base assemblies and

components to be delivered randomly on conveyor belts to the

robot work cell.

The robot was given basic assembly knowledge using the

production rule methodology from artificial intelligence and

assembly precedence information using a database of partial

order sets. Dynamic state information was also maintained by

the program. The objective to use artificial intelligence

50

program-ming was thereby fulfilled. The robot was also given

the capability of assembling a mix of products and assembling

multiple products concurrently. The robot was thus able to

assemble products in any feasible way and schedule an optimal

assembly plan according to the random arrival of parts.

There was an objective to develop a user friendly

interface with the robot for flexible production of multiple

assemblies. This objective was accomplished with the

database and the Database Manager program menus.

The last objective was to implement the above interface,

vision heuristic, database, and rule-based program on the

Adept single arm robot with arm-mounted camera. All these

things were implemented and the results were very favorable.

The following is a discussion of the three positive

contributions of this research.

1. The need for fixtures and restrictive part feeders

was drastically reduced. Using the arm-mounted vision

system, part location and orientation do not have to be pre-

processed to conform to the robots programming. This, in

turn, reduces the time required for product assembly. Also,

the manual placement of base assemblies is eliminated.

2. Vision recognition time was reduced using the

heuristic developed. The heuristic reduced the time required

for object recognition and improved the overall object

recognition reliability of the vision system. Quality

control can be accomplished more consistently during the

assembly process (with no added processing time). Errors due

51

to improper placement of parts were also nearly eliminated.

3. One robot can assemble multiple products

concurrently. It is no longer necessary to dedicate a robot

to one product line. Using a database of assembly precedence

information and multiple working regions, the set up times

between diversified products are almost non-existent.

Programming in the production rules for opportunistic

scheduling permits production scheduling and sequencing to

dynamically change without any necessary changes to the robot

cell.

Thus, it can be seen that combining computer vision and

artificial intelligence in the implementation of

opportunistic scheduling for robotic assembly produces a very

powerful and flexible tool for modern assembly.

There are still a great many issues to be studied that

would improve this application to the point of possible

implementation in a real assembly plant. Further research

could include:

1. Incorporate opportunistic scheduling on a
multiple arm robot.

2. Simulate opportunistic assembly to determine
the extent of advantages over other methods, and
the effect of randomly sequenced components.

3. Study the effects of assembling multiple
products concurrently, and the effect of the number
of work regions.

4. Develop an application of opportunistic
scheduling for assembly rework and the effects of
partially assembled products being fed to the robot
at the same time as new base assemblies.

52

REFERENCES

[1] Hoard P. Emerson and Douglas C. E. Naehring, Origins of
Industrial Engineering. Atlanta, Ga: Institute of Industrial
Engineers, 1988.

[2] Mikell P. Groover, Automation, ProduciLion, Systems, and
Computer-Integrated Manufacturing. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1987.

[3] Isaac Asimov and Karen A. Frenkel, Robots. New York, NY:
Nightfall, Inc. and Karen A. Frenkel, 1985.

[4] Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, and
Nicholas G. Odrey, Industrial Robotics. McGraw Hill
Publishing Company, 1986.

[5] Ulrich Rembold, Christian Blume, and Ruediger Dillman,
Computer-Integrated Manufacturing Technology and Systems.
New York, NY: Marcel Dekker, Inc., 1985.

[6] A. L. Giacobbe, "Diskette Labeling and Packaging Systems
Features Sophisticated Robot Handling", Robotics Today, pp.
73-75, April 1984.

[7] D. Chapman, "Planning for Conjective Goals", Artificial
Intelligence, Vol 32, No. 3, pp. 333-377, July 1987.

[8] T. L. De Fazio and D. E. Whitney, "Simplified Generation
of All Mechanical Assembly Sequences", IEEE Journal of
Robotics & Automation, pp. 640-658, Dec 1987.

[9] J. D. Wolter, "On the Automatic Generation of Assembly
Plans", Proc. IEEE Int. Conf. Robotics and Automation, pp.
62-68, 1989

[10] Kai-I Huang, Cesar 0. Malave, and Milden J. Fox, Jr., "A
Review of Assembly Sequence Planning Problems", Department
Industrial Engineering, Texas A&M University.

[11] Yasuhiro Monden, Toyota Production System. Norcross,
Ga: Industrial Engineering and Management Press, 1983.

[12] David D. Bedworth and James E. Bailey, Integrated
Production Control Systems. New York, NY: John Wiley & Sons,
1987.

[13] B. R. Fox, K. G. Kempf, "Opportunistic Scheduling for
robotic Assembly", Proc. IEEE Int. Conf. Robotics &
Automation, 1985, pp. 880-889.

53

[14] Barbara Hayes-Roth, et. al., "Human Planning Processes",
A Report prepared for the Office of Naval Research, December
1980.

[15] Steven L. Tanimoto, The Elements of Artificial
Intelligence. Rockville, MD: Computer Science Press Inc.,
1987.

[16] Barbara Hayes-Roth, Frederick Hayes-Roth, "Cognitive
Processes in Planning", A Report prepared for Office of Naval
Research, December 1978.

[17] T. 0. Prenting, and R. M. Battaglin, "The Precedence
Diagram: A Tool for Analysis in Assembly Line Balancing",
Journal of Industrial Engineering, Vol. 15, No. 4, pp. 208-
211, 1964.

[18] Lynwood A. Jonson and Douglas C. Montgomery, Operations
Research in Production Planning, Scheduling, and Inventory
Control. New York, NY: John Wiley & Sons, 1974.

[19] A. P. Ambler, H. G. Barrow, C. M. Brown, R. M. Burstall,
and R. J. Popplestone, "A Versatile System for Computer-
Controlled Assembly", Artificial Intelligence, Vol. 6, pp.
129-156, 1975.

[20] Interim Report #3, Research for Intelligent Task
Automation, Air Force Contract #F33615-82-C-5092, July 15,
1983.

[21] AdeptVision Users Manual, Adept Technology Inc., 1986.

[22] Vision Training Course Manual, Adept Technology Inc.,
1987.

[23] K. C. Kapur and L. R. Lamberson, Reliability in
Engineering Design. New York, NY: John Wiley & Sons, 1977.

[24] David L. Parnas, "On the Use of Transition Diagrams in
the Design of a User Interface For an Interactive Computer
System", Proc. of the 24th National Conf. of the ACM, pp.
379-385, 1969.

[25] Luiz S. Homem De Mello and Arthur C. Sanderson, "And/Or
Graph Representation of Assembly Plans", IEEE Trans. on
Robotics & Automation, pp. 188-199, Apr 1990.

54

I~ I r I ~ C31F ILJII IC

]PEC:K7I:QI4

A.1 Program Schedule

.PROGRAM schedule()
10 TYPE $clear.screen,/C4

TYPE /X19,"*********** SCHEDULING MENU******E
TYPE /X19,-"* 1

TYPE /X19,"1* 1. Assemble Parts I

TYPE /X19,"1* 2. Modify Assembly Priorities 1

TYPE /X19,"1* 3. Modify Component Precedences*1
TYPE /X19,"1* 4. View Work Regions*1
TYPE /Xl9,"1* 5. Load Vision Prototypes
TYPE /X19,"1* 6. Exit 1

TYPE /X19,"1* *11

TYPE /1,3********************
TYPE 1 Of
PROMPT "1 ENTER CHOICE: ",menu
CASE menu OF

VALUE 1:
CALL assemble()

VALUE 2,3:
CALL databaseo(

VALUE 4:
CALL position()

VALUE 5:
CALL start.up()

VALUE 6:
HALT

ANY
TYPE /Cl,/XlO,"1Please enter an integer between 1 and

5 inclusive. ",/Cl
PROMPT "1 Press RETURN to continue. ",menu

END
GOTO 10

.END

A. 2 Program Assemble

.PROGRAM assemble()
; initialize state information (all 0's)

55

; region[x] - assembly number for the assembly in region x
; part(x,y] - part number of component y in assembly x
; produced[x] - arrival sequence number for region[x]
; produced[O] - cumulative total of products assembled
; state[x,y] - dynamic precedence information for region[x
; prec[x,y] - permanent precedence info - all assemblies
; prior[x] - dynamic priorities for region[x]
; pri(x] - permanent priorities - all assemblies
; needc[x] - part number for needed component
; needc[O] - total number of needed components
; needr[x] - work region needing corresponding needc[xJ
; buffer[x] - part number - component in buffer location x
; comp_loc[xl - location of component x (null if not known)
; insertloc[xj- location of hole x (null if not known)
; base-loc[x] - location of base assembly
; picjloc[x] - location for camera to view work regions
; numregions - total number of work regions (4)
; comp-con - conveyor location of component pickup region
; finish-con - conveyor location for product dropoff region
; base-con - conveyor location for assembly pickup region
; cum-numparts- cumulative number of components in database
; $assembly[x] - name of assembly x in the database
; $comp[x,y] - name of components y in assembly x

1 LEFTY
MOVE home
BREAK
x= 1
WHILE (x <= num-regions) DO

region[x] = [x] ;region[x] = 0 for implementation
produced[x] = 0
buffer[x] = 0
needc[x] = 0
needr[x] = 0
state(x,0] = 0
SET base_loc[x] = NULL
y = 1
WHILE (y <= part[x,0]) DO

state[x,y*2-1] = 0
state[x,y*2] = 0
y = y+l

END
x = x+l

END
x=1
WHILE (x <= 10) DO

SET comp_loc[x] = NULL
SET insertloc[x] = NULL
x = x+l

END
produced[O] = 0

; Load the STATE arrays with the experimental assembly info

56

X=
WHILE (x <= num-regions) DO
y = 0
WHILE (y <= prec~region~x],OI*2) DO

state[x,y] = prec~region[x],y]
y = y+1

END
x = x+l

END

;Locate the base assemblies placed in the work regions.

X = 1
WHILE (x <= num-regions) DO

prior[x] = pri[region[x]]
IF priorix] > 0) THEN
MOVE picjloc[x]
BREAK
flag = 10
CALL sh.look()

END
x =x+1

end
flag =0

;Now back to the program - How many regions are full?

5 x=l1
full =0

max-prior = 0
WHILE (x <= nunmregions) DO

IF (region[x] > 0) THEN
full = full+l
IF (prior~x] > maxprior) THEN

max-prior = prior~xI
END

END
IF (produced[0] >= produced[x]+l0) THEN ;bump prior
prior[x] = prior~x]-l
produced~x] = produced[0]
IF (prior[x] <= 0) AND (pri~region[x]] > 0) THEN

priorrx] 1
END

END
x = x+l

END

;Are all the work regions full?

IF (full == num-regions) THEN

;Determine needed components & rank them by region priority

57

10 p=
z1
needc [O 0 0
WHILE (p <= max-prior) DO
y = 1
WHILE (y <= num-regions) DO

IF (prior[y] == p) THEN
x = 1
WHILE (x <= state~region~y],I1) DO

IF (state~regiofl[y],x*2] == 0) THEN
needc[0] = needc[0]+1
needc~z] = state~region~y],x*2-1]
needr[z] = y
z =z+1

END
x = X+1

END
END
y = Y+1

END
p = P+1

END

;Are the needed components in the buffer?

15 X= 1
WHILE (x <= needcflo]) DO

y = 1
WHILE (y <= 10) Do ;buffer size is ten

IF (buffer~y] == needc[x]) THEN
CALL pickplace(comp-loc[needc[x]],

insertjloc[needc[x]])

;Now update state information

k = 1
WHILE (k <= state~needr[xI,0) Do

;Erase the constraints that were just fulfilled

IF (state~needrlxl,k*2-l] == needc[x]) AND
state[needr[x],k*2] == 0) THEN

1 = k*2-1
WHILE (1 <= state[needr[x],O]*2) Do

IF (1+2 > staterneedr[x],O*2) THEN
state~needrllx],l] = 0

ELSE
state[needr[x],l] = state(needr[x],l+2]

END
1 = 1+1

END
state(needr[x],0] = state[needrllx],01-l

58

;Update constraints requiring the component just inserted

m= 1
WHILE (m <= state[needrrx],0]) Do

IF (state[needr[x],m*2] = needc[x]) THEN
state[needr[x],m*2] =0

END
m = m+1

END
END
k = k+1

END
SET comp-loc~needcrx]I = NULL
SET insert_loc[needc[x]] = NULL
buffer~y] =0
GOTO 20 ;Jump out of loops

END
y = y+l

END
x =x+1

END

;Is a component in the pick up region?

IF SIG(l1) THEN
LEFTY
MOVE comp-con
BREAK

30 CALL take.a.picture()
VLOCATE (0) $part, vioc
IF VFEATURE(1) THEN

SET tempi picloc:RZ(-jt[4]):vtran[1]:vloc
SET objioc =shift(templ BY 0,0,-69)

;Put the new component in an empty buffer location

x = 1
WHILE (x <= 11) DO ;buffer size is 10

IF (x ==11) THEN
y =1
WHILE (y < x) DO

TYPE $cHR(7)
buffer~y] =0
y = y+1

END
TYPE /Cl,/X-:,"*** BUFFER OVERLOAD**~
PROMPT " EMPTY BUFFER AND PRESS RETURN"
GOTO 1

END
1F (buffer[x] == 0) THEN
APPRO objioc, 40
SPEED 20

59

MOVES objioc
CLOSEI
DEPART 40
APPRO bufferjloc[x], 160
SPEED 20
HOVE buffer-loc[x]
OPENI
DEPART 186.95
BREAK
GOTO 35 ;Jump out of loop

END
x =x+1

END

;Now identify the component just put in the buffer.

35 HERE #tempi
HERE tempi1
DECOMPOSE a[1J = #tempi
MOVE templ:RZ(-a[4]):ivtran[l]:icent
BREAK
PARAMETER V.FIRST.LINE =100

PARAMETER V.LAST.LINE = 383
PARAMETER V.FIRST.COL = 150
CALL sh.look()
PARAMETER V.FIRST.LINE =1

PARAMETER V.LAST.LINE =483

PARAMETER V.FIRST.COL =1

;Is the new component needed?

buffer[x] = seen
GOTO 15

ELSE
GOTO 30

END
ELSE ;Wait for a component to come.
WAIT 11
GOTO 25

END

;Is an assembly complete?

20 x=l1
WHILE (x <= num -regions) DO

IF (state~x,0] == 0) AND (region(x] <> 0) THEN
CALL pick-place(base locllregion[x]], finish-con)
region[x] = 0 ;reset region value to zero
GOTO 5

END
x = x+l

END
GOTO 5

60

; If all regions are not full, get another base assembly.

ELSE
40 IF SIG(10) THEN

MOVE basecon
BREAK
CALL sh.look
x= 1
WHILE (x <= num-regions) DO

IF (region[x] == 0) THEN
IF (DX(baseloc[seen] <> 0) THEN
CALL pick-place(baseloc[seen], regionloc[x])
region[x] = seen
prior[x] = pri[seen]
SET base-loc[seen] = region_loc[x]
x = 5 ;Jump out of loop

END
END
x = x+l

END

;If no base is in the pickup region, is a work region full?

ELSE
IF (full > 0) THEN
GOTO 10

If all work regions are empty wait for a base assembly.

ELSE
WAIT 10
GOTO 40

END
END

END
.END

A.3 Program Pick-place

.PROGRAM pickplace(from, to)
APPRO from, 50
SPEED 20
MOVES from
CLOSEI
DEPART 50
APPRO to, 50
SPEED 20
MOVES to
OPENI

61

DEPART 50
BREAK

.END

A. 4 Program Databa; se

.PROGRAM databaseo)
20 TYPE $clear.screen

IF (menu == 3) THEN
TYPE /C4,/X15,"************** DATABASE MANAGER

TYPE /X15,"*"',/X44."1*"
TYPE /X15,"1*" ,/X8, "Change PRECEDENCE information",

/X7, t1*Of

TYPE /X15,"1*",/X44."1*"

1'*11 TYPE /X15,"1* 1. ADD new assembly information", /X1Q,

TYPE /X15,"1* 2. EDIT existing assembly information",

TYPE /X15,"1* 3. DELETE assembly information", /X11,

TYPE /X15,"* 4. RETURN to previous MENU", /X15, '*

TYPE /X15,"*"1,/X44."1*"
TYPE /lI***************

PROMPT "1 ENTER CHOICE: ",data
TYPE $clear. screen
CASE data OF

;The following is for adding a new assembly to the database.

VALUE 1:
IF (DEFINED(part[0,0])) THEN
part(0,0] = part[0,0]+l

ELSE
part[0,0] = 1

END
prec[0,0] = part[0,0]
num = part[0,0]
TYPE /C2
PROMPT "1 Enter a name for the new

assembly: "1, $assembly[num]
TYPE "1 "

PROMPT "1 Enter the number of components
in the new assembly: "l,part[num,0]

TYPE "f "t

prec~num,0] = part[num,0]

Give each new component a part number.

62

x=
WHILE Qx <= part[num,O]) DO

cum-num-parts = cum-num-.parts+1
prec~num,x*2-1] = cum-num-parts
prec~num,x*2] = 0
part~num,x] = cum_num-parts
x =x+1

END

;Ask for names (to match vision prototypes) of components.

x =1
WHILE (x <= part~num,0]) DO

TYPE /XlO,"Enter a name for component number",
x, /S

PROMPT ": ",$comp~num,x]
x =x+l

END
flag =0

GOTO 30 ;Goto 'EDIT MENU'

;The following is the EDIT MENU - editing precedence info.

VALUE 2:
flag = 0

40 TYPE /C2,/XlO,"Enter the name of the assembly to
EDIT" ,/S

PROMPT ":",$ans

rnum =1
WHILE (num <= part[0,0]) Do

IF Sassembly[num3 == Sans GOTO 30
num = num+1

END
TYPE /Cl,/XlO,"Sorry, assembly ",$ans," was not

found in the database.",/Cl
PROMPT "1 Press RETURN to continue. ",$ans
GOTO 20 ;Return to 'DATABASE MANAGER'

30 TYPE Sclear.screen
IF (flag == 0) THEN

TYPE /C2,/X20,"*************** EDIT MENU

TYPE /X23," Edit precedence constraints"
ELSE

TYPE /C2,/X20,"************** DELETE MENU

TYPE /X23,"~ Delete precedence constraints"
END
TYPE /X23," for ",$assembly[num] ,/Cl
x = 1
WHILE Qx <= prec[num,0]) DO

IF (prec[num*2] > 0) THEN
TYPE /X22,x,". Component #",prec[num,x*2-l],"

requires component P", prec[num,x*2]

63

ELSE
TYPE /X22,x,". Component #"1,prec[num,x*2-l], "1

requires no components"
END
IF (x == prec~num,O]) THEN

IF (flag == 0) THEN
TYPE /X22,x+l,"1. ADD a precedence

constraint"
TYPE /X22,x+2,"1. DELETE a precedence

constraint"
TYPE /X22,x+3,"1. RETURN to previous MENU"

ELSE
TYPE /X22,x+l,"1. RETURN to previous MENU"

END
END
x = x+l

END
TYPE /X35, "Enter Choice",/S
PROMPT "1: ",edit
IF (flag == 1) THEN

IF (edit == prec[num,0]+l) THEN
flag = 0
GOTO 30 ;Goto 'EDIT MENU'

ELSE
GOTO 60 ;Goto 'DELETE a constraint'

END
END
CASE edit OF

;Add a basic constraint then GOTO the edit =enu to edit.

VALUE prec[num,0]+l:
flag = 2
prec~num,0] = prec[num,0]+l
TYPE /Cl,/X10,"1Enter the name of the component

constrained", /S
PROMPT 11 ",$ans
x = 1.
WHILE (x <= prec[num,0]) DO

IF $comp[num,x] == $ans THEN
prec[num,prec~num,0]*2-l] = x
edit = x
GOTO 50 ;Goto 'Edit a constraint'

END
x =x+l

END
edit =prec(num,01

Scomp(num,edit] = $ans
prec[num,edit*2-l] = prec(num,0]
GOTO 50 ;Goto 'Edit a constraint'

;Delete a constraint & update constraints dependent on it.

64

VALUE prec[num,0]+2: ;DELETE a constraint
60 IF (flag ==0) THEN

flag =1
GOTO 30 ;Goto 'DELETE MENU'

ELSE
prec[num,edit*2] = 0
x = 1
WHILE (x <= prec~num,0]*2) DO

IF (prec[num,edit*2-1] == prec[num,x]) AND
(x <> edit*2-1) THEN

y = edit*2-l
WHILE (y <= prec[num,O]*2) DO

IF (y+2 > prec[num,0]*2) THEN
prec[num,y] = 0

ELSE
prec[num,y] = prec[num,y+2]

END
y = y+l

END
prec[num,0] = prec[num,01j-l1
GOTO 30 ;Goto 'DELETE MENU'

END
x = x+2

END
GOTO 30 ;Goto 'DELETE MENU'

END

;Return to the 'DATABASE MANAGER'.

VALUE prec[num,0J+3:
GOTO 20

END

;The following is edit a constraint.

50 IF (edit <= prec[num,0]) THEN
TY±PE /C1,/X5,"Enter the component number

required by component #" ,part[num,edit] ,/S
PROMPT "1: "1,ans

;Is the component required in the assembly?

x = 1
WHILE (x <= part[num,0]) DO

IF (part[num,x] == ans) THEN
IF (flag == 0) THEN

prec[num,edit*2] = part(num,x]
ELSE

prec~num,prec~num, 0]*2] = partjlnum,x]
END
flag = 0
GOTO 30 ;Return to EDIT MENU

END

65

x =x+1
END
TYPE /Cl,/XlQ,11Sorry, component #11, ans, "1 is

not used in 11, $assembly[numj, /C1
PROMPT "Press RETURN to continue. "

$ans
GOTO 30 ;Return to EDIT MENU

END

;The following deletes an entire assembly from the database.

VALUE 3:
70 TYPE $clear.screen

TYPE /C4,/X20,h'*************** DELETE MENU

TYPE /Cl,/X25,"1DELETE an entire assembly from"
TYPE /X25,11the database.",/Cl
x=l1
WHILE (x <= prec[0,0I) DO

TYPE /X23,x,11. 11,$assembly[x]
x = x+l

END
TYPE /X23, x,1"RETURN to previous MENU"
TYPE /Cl,/X20,

TYPE /Cl,/X35,"1ENTER CHOICE"1,/S
PROMPT "1: 11, delete
IF (delete > prec[0,0]) GOTO 20 ;Return
x = delete
WHILE (x < prec[0,0I) Do

$assembly[x] = $assembly[x+l]
prec~x,0] = prec~x+1,0]
y = 1
WHILE (y <= prec[x,0]*2) Do

prec[x,y] = prec[x+l,y]
IF (y <= prec[x,0]) THEN

Scomp[x,y] = $comp(X+1,y]
END
y = y+l

END
x = x+l

END
prec[0,0] = prec[0,0]-l
GOTO 70 ;Return to DELETE MENU.

;Return to the 'SCHEDULING MENU'.

VALUE 4:
GOTO 100 ;Goto END of this program

END

;The following menu allows changing of assemibly priorities.

66

ELSE
TYPE /X4,"1NOTE: For priorities, the lower the number,

the more important"
TYPE /XlO,"1the assembly. No two assemblies should

have the same priority."
TYPE /X1O,"1A priority of 0 means the assembly will NOT

be assembled."
TYPE /CXO"**********PRIORITY MENU

TYPE /X30,"Change PRIORITY for",/Cl
x =1
WHILE (x <= part[0,0]) DO

IF (x == part[0,0]) THEN
TYPE /X14,x,"1. ",$assembly[x],/X2,pri~x],/X6,x+l,

"1. Previous MENU"
ELSE

IF (part[0,0] > 0) THEN
TYPE /X14,x,"1. "1,$assembly[x],/X2,pri[x],/X6,

x+1,11. "1,Sassembly[x+l] ,/X2,pri[x+l]
IF (x+2 > part[0,0]) THEN

TYPE /X14,x+2,"1. Previous MENU"
END

ELSE
TYPE /X14,x,"1. Previous MENU"

END
END
x = x+2

END
TYPE/CXOh*****************

TYPE /X32,"1ENTER CHOICE"1,/S
PROMPT 11 11, assembly
IF (assembly > part[0,O]) GOTO 100 ;Return
TYPE /Cl,/XlO,"1Enter the new PRIORITY for the

assembly" ,/S
PROMPT "1: "1, pri[assembly]
GOTO 20 ;Return to 'PRIORITY MENU'

100 END
.END

A.5 Program Position

.PROGRAM position()
num = 0

20 TYPE $clear.screen
IF (num == 1) THEN
TYPE /Cl,/X19,"1The camera is viewing work region

number", boc
ELSE

67

TYPE /Cl,/XlO,"1The following menu allows you to view
the different work"s

TYPE /XlO,"1regions. By choosing a number in the menu
below, the robot will"

TYPE /X1O,"1position the camera over the region
specified. The assembly can"

TYPE /X1O,"1be located anywhere in the camera's field
of view."

END
TYPE /C2,/X25,"******* LOCATION MENU ****

TYPE /X25,"1* *19

TYPE /X25,"1* View LOCATION of
TYPE /X25,"1* f

WHILE (x <= num-regions) DO
TYPE /X25,"1* "1,x,"1. Work Region #11, x," *

IF (x == numregions) THEN
TYPE /X25,"1* "1,x+1,"1. Previous MENU*1

END
x = x+l

END
TYPE /X25,"1**1
TYPE /2,***************
TYPE /Cl,/X32,"1ENTER CHOICE"1,/S
PROMPT "1: 1, boc
IF (loc > num-regions) GOTO 100 ;Return
MOVE pic-loc(loc]
num = 1
GOTO 20 ;Return to 'LOCATION MENU'

100 TYPE""
.END

A.6 Program Start.up

.PROGRAM start.up()
LOCAL $f ile, cam.vert, num, Sans, Spart

; If the camera is not calibrated, recall calibration data

IF NOT DEFINED (vtran[l]) THEN
VGETCAL(1) va[]
IF va(9] <> 0 THEN
SET vtran[l] = TRANS(va[9],va[101,0,0180,vailll)

ELSE
$f ile = "1c:armcaml.dat"
cam.vert = 1
TYPE /Cl,/X5,"Recalling camera calibration data."

; CALL system subroutine 'load.area' to recall data.

68

CALL load.area($file, cam.vert, threshold,
blacklight, vtran[cam.vert], vb[], $error)

END
END

; Set desired vision system parameters.

PARAMETER V.MAX.AREA = 15000
PARAMETER V.MIN.AREA = 2900
PARAMETER V.MAX.VER.DIST = 1.9
PARAMETER V.THRESHOLD = 110
PARAMETER V.MAX.TIME = 1.1

; Determine the number of prototypes all ready in the system

•num = 1
VSHOW AB11000, Sprotos[num]
WHILE VFEATURE(1) DO

num = num+l
VSHOW ^B1000, Sprotos[num] ;array of prototype names.

END

; The 'VISION PROTOTYPE MENU'...an experimental menu only

50 TYPE $clear.screen
TYPE /C2,/X25,"VISION PROTOTYPE MENU",/C!
TYPE /X30,"1. CIRCLE"
TYPE /X30,"2. SECTION"
TYPE /X30,"3. TRIANGLE"
TYPE /X30,"4. SQUARE"
TYPE /X30,"5. PENTAGON"
TYPE /X30,"6. HEXAGON"
TYPE /X30,"7. TRAPEZOID"
TYPE /X30,"8. CROSS"
TYPE /X30,"9. OVAL"
TYPE /X29,1l0. STAR"
TYPE /X29,"l1. CONTINUE"
TYPE /CI,/X29, "ENTER SELECTION",/S
PROMPT ": ", ans

; Load the prototype requested from the hard drive.

CASE ans OF
VALUE 1:

$file = "c:circle.vs"
$part = "CIRCLE."

VALUE 2:
$file = "c:section.vs"
Spart = "SECTION."

VALUE 3:
$file = "c:triangle.vs"
Spart = "TRIANGLE."

VALUE 4:

69

$file = "1c:square.vs"
$part = "SQUARE."

VALUE 5:
$file = "1c:pentagon.vs"
$Part = "1PENTAGON."1

VALUE 6:
$file = "1chexagon.vs"
$Part = "HEXAGON."

VALUE 7:
$file = "1c:trapezoid.vs"
$Part = "1TRAPEZOID."1

VALUE 8:
$file ="1c:cross.vs"
$Part = "CROSS."

VALUE 9:
$file = "Ic:oval.vs"l
$Part = "OVAL."

VALUE 10:
$file = "Ic:star.vs"l
$Part = "STAR."

VALUE 11:
GOTO 100 ;take a picture and plan

ANY
GOTO 50 ;Return to 'VISION PROTOTYPE MENU'

END
num = num+2
IF (num > 6) THEN
TYPE /C1,/X5,"1THE VISION SYSTEM MEMORY CAN HOLD A

MAXIMUM OF SIX PROTOTYPES.",/C1
PROMPT "1 Press RETURN to continue.", $ans
GOTO 50 ;Return to 'VISION PROTOTYPE MENU'

END
TYPE /C1,/X5,"Loading prototype ",$part
VLOAD (5) $file
GOTO 50

100 TIPE ,'Ci, "Takng a picture and planning recognition...
PLEASE WATI/Cl

VDISPLAY 3
VPICTURE

END

70

B.1 Program Sh.look

.PROGRAM sh.look()
TYPE $clear.screen,/C2

seen = 0

; Memorize initial robot arm location

HERE temp

; Take an initial picture and record all vision information.

CALL take.a.picture()
SET corner = temp:RZ(-jt(4]):vtran[l]
SET center = corner:TRANS(96.52,76.2,0,0,180,0)
objnum = 0
WHILE (VQUEUE(0) > 0) DO

VLOCATE (0) $part, vloc ;takes next image off queue
objnum = objnum+l
SET objloc[objnum] = picloc:RZ(-jt[4]):vtran[l]:vloc
$objname[objnum] = $part
verify[objnum] = VFEATURE(9)

END

; Reduce camera view area for centering

PARAMETER V.FIRST.LINE = 100
PARAMETER V.FIRST.COL = 75
PARAMETER V.LAST.LINE = 383
PARAMETER V.LAST.COL = 300
kount = 1
WHILE (kount <= objnum) DO

IF (verify[kount] < 90) THEN
TYPE /X5,"I'm centering the thing for a better

look..."
CALL center()
numpic = 1

20 CALL take.a.picture()
numpic = numpic+1
VLOCATE (0) $partl, vlocl
IF VFEATURE(1) THEN

IF (VFEATURE(9) > verify[kount]) THEN
verify[kount] = VFEATURE(9)

71

$objname~kount] = $partl
SET objloc~kount] = picloc:RZ(-jt(4-]):

vtran[1] :vlocl
IF (verifyrkount] > 90) GOTO 30 ;Jump out

END
IF (numpic < 5) GOTO 20 ;Take another picture

ELSE
GOTO 500 ;Test next object seen

END
END

30 SET objloc[kount] = SHIFT(objloc[kount] BY 0,0,-187)

;Reject the unrecognized part.

IF $objname~kount] == I""' THEN
TYPE /X5,"1I didn't recognize that thing.",/C1
CALL picW...place(objloc[kount] ,rejectjloc)

;Do a database match with the vision information.

ELSE
TYPE /X5,"1I found the 1",$objname~kount],"1 and I'm

"1,verify[kount],"1% sure.",/C1
1 =1
WHILE (i <= part[0,0]) DO

;Find out which hole was seen.

IF flag == 10 THEN
j =1
WHILE (j <= part[i,0]) DO

IF $objname~kount] == $holeri,jl THEN
SET insertjloclpart[i,j]]=

SHIFT(objloc[kount] BY 0,0,20)
GOTO 500 ;Test next object seen

END
j = j+l

END

;Find out which component was seen.

ELSE
j =1i
WHILE (j <= part[i,0IJ) DO

IF $objname[kount] == $comp[i,j] THEN
SET comp-loc[part[i,j]] = objloc[kount]
seen = part(i,j]
j = part~i,0] ;Jump out of loop
1 = part[0,0]

END
j = j+1

END
IF $objname~kount] == $assemblyli] THEN

A

72

SET baseloci] = objloc(kount]
i = part[0,0] ;Jump out early

END
END
i i+l

END
END

500 kount kount+l
END

; Enlarge field of view & move robot back before returning.

PARAMETER V.FIRST.LINE = 1
PARAMETER V.FIRST.COL = 1
PARAMETER V.LAST.LINE = 483
PARAMETER V.LAST.CQL = 375
MOVE temp
BREAK

.END

B.2 Program Take.a.picture

.PROGRAM take.a.picture()

; Find joint 4 position in picture location.

HERE picloc
HERE #picloc
DECOMPOSE jt(l] = #picloc
VPICTURE (1) ;Take a picture on camera 1.
VLOCATE (,2) "nothing" ;Wait until processing complete.

.END

B. 3 Program Center

.PROGRAM center()
DECOMPOSE a[l] = temp
DECOMPOSE b(l] = center
SET trans[l] = TRANS(a[l],a[2],a[3],a[4],a[5],b[6])
SET trans[2] = INVERSE(center):objloc[kount]
MOVE trans[1]:trans[2]
BREAK

.END

73

Allan Wayne Butler

His parents are Allan Lloyd Butler and Jeanie

Ruth Butler (Jones). After attending the University of

Washington (U of W) for a year, Allan served two years as a

missionary for the Church of Jesus Christ of Latter-Day

Saints in Rome, Italy. Returning home, Allan resumed his

studies at the U of W. In 1983 he transferred to Brigham

Young University (BYU) in Provo, Utah where he met and

married Beverly Dawn Montague on 21 April 1984. In June of

1985, Allan was commissioned a 2nd Lieutenant in the U. S.

Air Force, graduated from BYU with a degree in Mechanical

Engineering, and became a father to Michael Wayne Butler.

Allan attended pilot training at Reese AFB, Texas, and later

was assigned as a Contracting Officer at Hill AFB, Utah. In

June 1987 David Allan Butler was born. While at Hill AFB,

Allan developed many computer applications that were well

received by the Air Force. One award he received was the

1988 Commander-in-Chief's Installation Excellence Award given

by the Secretary of Defence. In 1988, Allan was selected as

one of the "Outstanding Young Men of America". Later he was

assigned to the Industrial Engineering Department at Texas

A&M University to work on a master's degree. While at Texas

A&M, was born. Allan is now a Captain in

the U. S. Air Force and a member of Alpha Pi Mu Honor

Society. Address: 1116 E Toppenish Ave, Toppenish, WA 98948,

