/L

T CLASSIFICATION YF THI/PAGE ‘ .
/
/ REPORT DOCUMENTATION PAGE
T Y N N Y R R T RLSHINCHVE MARRINGS
3 DISTHIBUTION/ AVAILABILTY OF dePORT
ppraved for pohlic velonce,
AD—A231 153 dir-inationvalamit o
e 5. MONITORING ORGANIZATION REPORT NUM
AFOSRTR- w1V ,
NAME Or PEREORMING ORGANIZATION 6b OtHICE SYMBOL 7a NAME OF MONITORING ORGANIZATION o
. (tf applicable) . . . s
aorge Washington University WS Air Force Office of Scientific Re
ADDRESS (City, State, and ZIP Code) 7b  ADDRESS (City, State, and ZIP Code)
1i1 Stop 210 Bldg. 410, Bolling Air Force Base
ASA Langley Research Center Washington, D.C. 20332
ampton, VA 23665
NAME OF HINDING/SPONSORING gb OFFICT SYMBOL 9 PROCUREMENT INSTRUMLNT IDENTIFICATION NUMBER
ORGANIZATION if licabl .
FOSR (ot AFOSR-90-0252
ADDRESS (City, State, and 2iP Code) 10 SOURCE OF FUNDING NUMBERS
ldg. 410, Bolling Air Force Base PROGRAM PROJECT TASK WORK UNIT
. 9 ‘NT . . ) X
ashmgton, D.C. 20332 ELEMENT NO NO NO ACCESSION NO
61102F 2302 ‘

/

THITLE (inddude Secunity Classitication) /
ffective Computational Strategy for Predicting the Response of Complex Systems | & {

FERSONAL AUTHOR(S) Ahmed K. Noor

. TYPE OF KEPORI 13b. TIML COVERED 14. DAIE OF REPORT (Year, Month, Day) |i5 PAGE COUNT

Final FROM 3/1/90 10 8/31/90 October 1, 1990 60

SUPPLEMENTAKRY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and identify by block number)
FIELD GHOUP SUB-GROUP Computational strategy, predictor-corrector, symmetry

- transformation, operator splitting, mixed formulation,
iterative techniques

ABSTRACT (Continue on reverse «f necessary and wentuty by block number)

1 effective computational strategy is developed for generating the response of complex
/stems using (small or large) perturbations from the response of a simple structure (or
simpler mathematical/discrete model of the original structure). Two general approaches
~e developed for selecting the simpler model and establishing the relations between the
~iginal and simpler models. The two approaches are: decomposition or partitioning
:rategy, and hierarchical modeling strategy. Two effective partitioning strategies are
ied. The first is based on uncoupling of load-carrying mechanisms, and the second is

1sed on symmetry transformations. The hierarchical modeling used is a predictor-corrector
.erational process based on using a simple mathematical model in the predictor phase and
rrecting the response using a more accurate mathematical model. .,

.

- .

DISTRIBUTION / AVAILABILITY OF ARSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

R} UNCLASSIFIE DIUNLIMITED AME AS RPT. 1 DTIC USERS Unclassified

NAME OF RESFONSIBLE INDIVIDUAL 220, TELFPHONE (Include Arca Code) | 22¢ OFFICE SYMBOL
Spencer T. Wu (2uz) 767-6962 AFOSR/NA

FORM 1473, 5a MAR Bl APR edition may be used untl exhausted.

SECURITY_CLASSIFICATION OF THIS PAGE
All other ediions are obsolete 0 T ThTormo T mhemm s e




{

Joint Institute for Advancement of Flight Sciences

THE GEORGE WASHINGTON UNIVERSITY

Final Report
Granmt No. AFOSR-90-0252

EFFECTIVE COMPUTATIONAL STRATEGY FOR PREDICTING
THE RESPONSE OF COMPLEX SYSTEMS

Acocession For N

NTIS GRAZI g
DTIC TAB

Unannounced ]
Justification . __ ____|
By

Distribution/

Avallability Codes

Avall and?or
Dist Special

A-

October 1990

TN
E .

5 9




ABSTRACT

An effective computational strategy is developed for generating the response of complex
systems using (small or large) perturbations from the response of a simple structure (or a simpler
mathematical/discrete model of the original structure). Two general approaches are developed
tor selecting the simpler model and establishing the relations between the original and simpler
models.  The two approaches are:  decomposition or partitioning strategy, and hierarchical
modeling strategy.  Two effective partitioning strategies are used. The first is based on uncou-
pling of load-carrying mechanisms, and the second is based on symmetry transformations. The
hierarchical modeling used is a predictor-corrector iterational process based on using a simple
mathematical model in the predictor phase and correcting the response using a more accurate

mathematical model.

N RESEARCH OBIJECTIVES

The objective of the present study is to develop an effective computational method for
generating the response of a complex system using flarge perturbations from that of a lower-
order model associated with a simpler system (or a simpler mathematical/discrete model of the
original system). As an integral part of the proposed strategy an attempt will be made to unify
and realize the full potential of a number of multilevel computational strategies, some of which
were developed by the principal investigator and his colleagues. The multilevel strategies
include reduction methods, hybrid modelinglanalysis technigues, and partitioning imethods.
Reduction methods are techniques for substantially reducing the number of degrees of freedom of
the initial discretization, and have been successfully applied to a number of vib ation and non-
trear structural and thermal problems.  Hybrid modelinglanalysis technigues can achieve
significant reductions in the analysis time by incorporating the known physical behavior into the
computational model of the system and by using different analysis methods and/or models in
predicting the different response characteristics of the cnginlg‘cring systems.  Partitioning meth-
ads are based on vreaking the large (and/or complex) problem into a number of smaller (and/or
simpler) subproblems.  The solution of the original problem is generated using information

provided by the individual subproblem:




The proposed strategy is believed to combine the following three major characteristics:

1) gives physical insight about the response

2) helps in assessing the adequacy of the computational model; and

3) is highly efficient.

The strategy will first be applied to: a) the nonlincar postbuckling problem of composite
structires: b) reanalysis of large structures in the presence of geometric nonlinearities; then ¢)
ceupled field problems. The nostbuckling recponse of the highly anisotropic composite structure
is generated using large perturbations from the response of a simpler structure.  The three key
elements of the strategy to be exploited in the tirst two applications are: 1) mixed (or primitive
variable) formulation, with the fundamental unknowns consisting of both stress and displacement
parameters; 2) operator splitting, or additive decomposition of the different arrays in the equa-
tions of the given structure to the corresponding arrays of the simpler, or previously-analyzed,
structure plus correction terms; and ¢) application of a reduction method and/or a stable iterative

method for the efficient generation of the equations of the given structure.

RESEARCH ACCOMPLISHMENTS
During the period March 1, 1990 to August 31, 1990, two tasks have been performed. The
first is the development of an improved partitioning strategy for large-scale structural problems.
The second is the development of a predictor-corrector approach for generating the steady-state
thermal response of multilayered composite plates and shells.  The two tasks are described
subsequently.

Improved Partitioning Strategy for Large-Scale Problems

The governing equations for the discrete model of the original structure can be written in
the lollowing compact form:

[KItZ) = {Q) th)
where {Z) s the vector of stress parameters and generalized displacements; [K} is the global
structure matrix which includes the flexibility and strain-displacement matrices: and {Q} is the
global right-hand-side vector.

In the decomposition strategy the vector of fundamental unknowns {7} is partitioned into




smaller subvectors. The governing discrete equations, Eqs. |, are partitioned accordingly. The

simpler model is associated wih the uncoupled equations in the partitioned variables.  For the
case of two partitions, the process can be described by embedding Egs. | in a single-parameter
family of equations as follows:

Kip s .« Kp fz'}z,fQ‘} 2
« K» Ko |22

where 17,1, 17,1 and {Q}, {Q,} are the partitions of the original vectors {Z) and {Q}); A isa
1 1 ] “ p

tracing parameter which identifies all the correction terms needed in going from the simpler
model to the discrete model of the original structure; and a dot (o) refers to a zero submatrix. The

simpler model corresponds to A=0 (uncoupled equations in {Z;} and {Z,}), and the discrete
model of the original structure corresponds to A=1 (fully coupled equations). The solution
corresponding to A=1 is generated from the corresponding solution at A=0 using an iterative
process such as the Preconditioned Conjugate Gradient (PCG). Note that the correction vectors
of the iterative process, provide a direct measure of the sensitivity of the response quantities to
the coupling terms (viz., the terms associated with the tracing parameter A in Eq. 2).

The vectors {Z,} and {Z;} are chosen to be the symmetric and antisymmetric compo-
nents of the response vector (each is approximately half the size of the original vector, {Z}). The
simpler model (A=0) corresponds to a symmetrized structure in which the symmetric and an-
tusymmetric components of the response vector are uncoupled. This approach can be thought of
as a physical domain decomposition. If the PCG technique is used in generating the solution at
A=1, and the preconditioning matrix is selected to be the left-hand side matrix corresponding to
A=(), then each of the correction vectors is either symmetric or antisymmetric.

The convergence of the PCG technique can be expedited by replacing Egs. 2 by the
following equivalent form of two uncoupled equations in 1Z,} and {Z,}:

-1 , -
l:K” .]_ Ki2Kp Ky . IZ'}—IQ'}_;\ K12K3Q 3

- Ky . Ky K]) Kp2 12 @ K21 K[ Q).
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Note that for A=1, each diagonal block of the total left-hand-side matrix is in the form of Schur




complement which is not formed explicitly. Rather, the preconditioning matrix is selected to be

the first matrix on the left-hand side (corresponding to A=0) and the PCG technigue is used in
generating the solution at A=1. The results of this research are reported in Ref. 1.

Predictor-Corrector_Approuach for Generating the Steady-State Thermal Response of Mulii-
layered Plates and Cylinders

A predictor-corrector procedure has been developed for the accurate determination of the
temperature and heat flux distributions in thick multilayered composite plates and shells. The
procedure is based on using o linear through-the-thickness temperature distribution in the predic-
tor phase. The functional dependence of temperature on the thickness coordinate is then calcu-
lated a posteriori and used in the corrector phase.

Extensive numerical results have been conducted for linear steady-state heat conduction
problems, showing the effects of variation in the geometric and lamination parameters ¢ 4 the
accuracy of the thermal response predictions of the predictor-corrector approach. Both antisym-
metrically laminated anisotropic plates, and multilayered orthotropic cylinders are considered.
The solutions are assumed to be periodic in the surface cordinates. For each problem the stand-
ard of comparison is taken to be the analytic three-dimensional solution based on treating each
layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach
for predicting the thermal response of multilayered plates and shells with complicated geometry

is investigated. The results of this study are reported in Ref. 2.

PUBLICATIONS
I. Noor, A. K. and Peters, J. M., "Strategies for Large-Scale Structural Problems on High-

Performance Computers,” Communications in Applied Numerical Methods (1o appear).

o

Noor, A. K., Steady-State Heat Conduction in Multilayered Composite Plates and Shells,”

Computers and Structures (to appear).




STRATEGIES FOR LARGE-SCALE STRUCTURAL PROBLEMS
ON HIGH-PERFORMANCE COMPUTERS

Ahmed K. Noor and Jeanne M. Peters
Center tor Computational Structures Technology
University of Virginia
NASA Langley Research Center
Hampton, VA 23665

SUMMARY

Nove! computational strategies are presented for the analysis of large and complex struc-
tures. The strategies are based on generating the response of the complex structure using large
perturbations from that of a simplcr model, associated with a simpler structure (or a simpler
mathematical/discrete model of the original structure).  Numerical examples are presented to

demonstrate the effectiveness of the strategies developed.




STEADY-STATE HEAT CONDUCTION IN MULTILAYERED
COMPOSITE PLATES AND SHELLS
Ahmed K. Noor and W. Scott Burton
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ABSTRACT

A study is made of a predictor-corrector procedure for the accurate determination of the
temperature and heat flux distributions in thick muhilayered composiie plates and shells. A
linear through-the-thickness temperature distribution is used in the predictor phase. The func-
tional dependence of temperature on the thickness coordinate is then calculated @ posteriori and
used in the corrector phase.

Extensive numerical results are presented, for linear steady-state heat conduction
problems, showing the effects of variation in the geometric and lamination parameters on the
accuracy of the thermal response predictions of the predictor-corrector approach. Both antisym-
metrically laminated anisotropic plates, and multilayered orthotropic cylinders are considered.
The solutions are assumed to be periodic in the surface coordinates. For each problem the
standard of comparison is taken to be the analytic three-dimensional solution based on treating
each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector
approach for predicting the thermal response of multilayered plates and shells with complicated

geometry is discussed.
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STRATEGIES IFOR LARGE-SCALE STRUCTURAL PROBLEMS
ON HIGH-PERFORMANCE COMPUTERS

Ahmed K. Noor and Jeanne M. Peters
Center for Computational Structures Technology
University of Virginia
NASA Langley Research Center
Hampton, VA 23605

SUMMARY

Novel computational strategics are presented for the analysis of large and complex struce-
tures. The strategies are based on generating the response of the complex structure using large
perturbations from that of a simpler model, associated with a simpler structure (or a simpler
mathematical/discrete model of the original structure). Numerical examples are presented to

demonstrate the effectiveness of the strategies developed.

1. INTRODUCTION

Dynamic and nonlinear response calculations for future acrospace systems are expected to
require nrocessing rates far in excess of computers built around a single processing unit. This is
because of the complexity of these systems and the high degree of sophistication of the comput-
ational models required for simulating their response (see, for example, Refs. | and 2). The
utroduction of novel forms of machine architecture has brightened the prospects for meeting
future large-scale computational needs. Most of the new machines achieve high performance
through vectorization and/or parallelism. These include top-of-the-range supercomputers such as
CRAY-3, CRAY Y-MP, as well as computing systems based on readily available and inexpen-
sive basic units such as the hypercubes, the Connection Machine, and the transputer networks,
The churuclcrisiics of several new machines are summurized in Refs. 3, 4, 5 and 6. Much work
has been devoted to the development of efficient vector and parallel numerical algorithms for

-

performing matrix operations, solution of algebraic equations, and extraction of eigenvalues (see,
for example, Refs. 7, 8 and 9).  Also, a number of special strategies have been proposed for

increasing the degree of paratlelism and/or vectorization in finite clement computations. Most of




the special strategies can be thought of as applications of mudtilevel computational processes, and
include reduction methods, hybrid modeling/analysis techniques, and partitioning methods.
Reduction methods are techniques for reducing the number of degrees of freedom ol the il
discretization and have been successfully applied to a number of vibration and nonlincar prob-
lems of structures (see, for example, Refs. 10-13).  Hybrid modelinglanalysis techniques can
achieve significant reductions in the anaiysis time by incorporating the knowin physical behivior
into the computational model of the structure and by using different analysis methods and/or
models in predicting the different response characteristics of the structure (see, for cxample,
Refs. 14 and 15). Partitioning methods are based on the intuitively obvious and well-established
practice of breaking the large (and/or complex) problem into a number of smaller and/or
simpler) subproblems.  The solution of the original problem is generated using mformation
provided by the individual subproblems (see, for example, Ref. 16). The two key advantages of
partitioning  techniques  are computational

efficiency and modular implementation.

The present study 1s an attempt to unify and realize the full potential of & number of
multilevel computational strategies for solution of large-scale structural problems.  Specifically,
the objective of the present piaper is to report the progress made in developing computational
striategies which, in addition to being efficient on high-performance computers, combine the
following two major characteristics:

1) give physical insight about the response: and

2) help in assessing the adeguacy of the computational model.

2. BASIC IDEA AND KEY LELEMENTS OIF THE PROPOSED STRATEGIES

The strategies developed are based on generating the response of a large and complex
structure using large perturbations from that of a simpler model associated with a simpler
structure (or a simpler mathematical/discrete model of the original structure). The key elements
of the proposed strategies are: 1) mixed (primitive variable) formulation with the fundamental
unknowns consisting of stress parameters, generalized displacements and, for dynamic problems,

velocity components; 2) operator splitting or restructuring of the discrete equations of the origi-




nal (complex) structure to delineate the contributions of the simpler model and the correction
terms; and 3) stable iterative process for the efficient generation of the response of the complex
structure starting from that of the simpler structure. Although in some applications the strategies
can be used in conjunction with the single-field displacement formulation, there are several
applications in which the use of the mixed formulation is essential,

2.1 Goverining Eqguations

The governing cquations for the discrete model of the original structure can be written in
the following compact form:

IKI{Z) ={Q] (hH
where (7)) s the vector of stress parameters and generalized displacements; [K] s the global
structure matrix which includes the flexibility and strain-displacement matrices; and [Q] is the
global right-hand-side vector.

2.2 Relations Between the Original and Simpler Models

The crux of the proposed strategics is the proper selection of the simpler structure and/or
the simpler model. For a given complex structure, a multitude ol choices of the simpler structure
can be made. The best choice s that which exploits the characteristics of the high-performance
computers and satisfies, to the greatest extent possible, the two major characteristics listed in the
preceding section. For each choice, the relations between the simpler model and the original
structure can be established, and an efficient computational procedure can be developed for
generating the response of the original structure using large perturbations from that of the
simpler model. Two general approaches are described subsequently for selecting the simpler
model and cstablishing the relations between the original and simpler models. The two ap-
proaches are: decomposition or partitioning strategy, and hicrarchical modeling strategy. For
simplicity, the two approaches are described with reference to their application to hincar stress
analysis problems. However, they dre equally applicable to nonfincar and dynamic prodlems.

"

3. DECOMPOSITIGN OR PARTITIONING STRATEGY

In the decomposition strategy the vector of fundamental unknowns (7] is partitioned into

smaller subvectors. The governing discrete equations, Egs. 1, are partitioned accordingly. The




simpler model is associated wih the uncoupled equations in the partitioned variables. Tor the
case of two partitions, the process can be described by embedding Eqs. 1 in a single-parameter
family of equations as follows:

Ky e .\ . Kpp {Zl}:[Ql} 2)

. K2 Ky o Z)  1Q

<

where {Z,}, {Z2} and {Q,}, {Q2} are the partitions of the original vectors {Z) and (Q); A isa

tracing parameter which identifies all the correction terms needed in going from the simpler
model to the discrete model of the original structure; and a dot (o) refers to a zero submatrix. The

simpler model corresponds to A=0 (uncoupled equations in {Z,} and {Z,}), and the discrete
model of the original structure corresponds to A=1 (fully coupled equations). The solution
corresponding to A=l is generated from the correspondir - solution at A=0 using an iterative
process such as the Preconditioned Conjugate Gradient (PCG). Note that the correction vectors
of the iterative process, provide a direct measure of the sensitivity of the response quantities to
the coupling terms (viz., the terms associated with the tracing parameter X in Eq. 2). Among the
effective partitioning strategies developed in the present study are the following two:

a) Uncoupling of Load-Carrying Mechanisms. For example, if the original structure is
associated with a two-dimensional shell structure, the simpler structure can be associated with
the corresponding plate structure in which the membrane and bending load-carrying mechanisms
are uncoupled.

b) Symmetry Transformations. This is accomplished by selecting {Z;} and {Z;} to
represent the symmetric and antisymmetric components of the response vector (cach is ap-
proximately half the size of the original vector, (Z)). The simpler model (A=0) corresponds to a
symmetrized structure in which the symmetric and antisymmetric components of the response
vector are uncoupled. This approach can be thought of as a physical domain decomposition. I
the PCG technique is used in generating the solution at A=], and the preconditioning matrix is
selected to be the left-hand side matrix corresponding to A=0, then cach of the correction vectors
is either symmetric or antisymmetric. The details of the symmetry transformations are describud

in Refs. 17, 18 and 20).




4. COMMENTS ON THE DECOMPOSITION STRATEGY
The following comments regarding the decomposition strategy are in order:
I. The convergence of the PCG technique can be expedited by replacing Egs. 2 by the

following equivalent form of two uncoupled equations in {Z,} and {Z,}:
-1 -1
[K,, . :] \ Kiz2 Ky Koy . le} {Ql} N Kj2K,, Q2 3
- -1 - - - :
. K22 . K2| K” K12 122 QZ Kz] Kll Ql

LZgs. 3 are obtained from [gs. 2 by eliminating {Z;} from the first equation and {Z; } {rom the
second equation. Note that for A=1, each diagonal block of the total left-hand-side matrix is in
the form of Schur complement which is not formed explicitly. Rather, the preconditioning
matrix is selected to be the first matrix on the lefi-hand side (corresponding to A=0) and the PCG
technique is used in generating the solution at A=1. The technique is outlined in Appendix A.

2. Equations 3 can be thought of as the governing finite clement equations of an cquiva-
lent structure whose response under the modified loads (given by the total right-hand-side
vector), is identical to the response of the actual structure when subjected to the given loads.
The equivalent structure has uncoupled load-carrying mechanisms (or uncoupled symmetric/
antisymmetric response vectors).

3. The decomposition process can be repeated to effect further reduction in the size of the
partitions of the original vectors and matrices. However, as the number of partitions increases,
the coupling between them increases, and therefore, the number of iterations in the PCG tech-
nique increases. Consequently, the proposed strategy may not be effective on multiprocessor
computers with fine granularity and small local memories (e.g., the hypercubes and the Connec-

tion Machine of Thinking Machines, Inc.).

5. HIERARCHICAL MODELING STRATEGY
The simpler model is selected as one with considerably fewer degrees of freedom than
those of the discrete model of the original structure. The governing equations of the simpler

model can be written in an analogous form to those of the original structure, as follows:




kitz) = (q]) (-
The response vectors of the onginal and simpler models are related through the interpolation
operator [I'] as follows: |

(2} =1T](z) (5)
where [T} is a rectangular transformation matrix (interpolation operator).

Based on Egs. 4, the relations between [k, |[K] and {q]), | Q] are given by:

Ik] =ITTKJIT (6)

tq) = (M'{Q) (7)
where superscript t denotes transposition, and [T]' is referred to as the restriction operator.

Among the possible choices of the simpler model in this category are the following two:

a) Discrete maodel, based on the same mathematical model and the same discretization
procedure used for the original structure, but with considerably fewer degrees of freedom. The
resulting numerical process is similar to the classical multigrid technique.

b) Discrete model, based on a mathematical model of lower dimensionality than that used
for the original structure.  TFor example, if the original structure is modeled using a two-
dimensional plate or shell theory, the simpler model can be associated with a one-dimensional
thin-walled beam theory (with the effects of flexural-torsional coupling included). The interpola-
tion operator, [I"], then reflects the basic assumptions made in the dimensionality reduction (i.e.,
in going from a two-dimensional shell/plate theory to a one-dimensional thin-walled beam
theory: namely, the projection of each cross-section on a plane normal to the initial centroidal
axes does not distort during deformation). This approach can, therefore, be thought of as a

physical multigrid method.

6. NUMLERICAL STUDIES
To assess the effectiveness of the foregoing strategiesy a number of lincar and nonlinear
stress analysis, free vibration, buckling and dynamic problems of complex structures have been
solved by these strategies. For cach problem the solutions obtained by the foregoing stritegies

were compared with thouse obtained by the direct analysis of the original (complex) structure.




Some of these applications are reported in Refs. 17-20. Two applications of the decomposition
strategies are presented herein: 1) linear stress analysis of cantilevered composite shallow shell
with unsymmetrical lamination in the thickness direction; 2) nonlinear dynamic problem of
laminated anisotropic panel with ‘an off-center circular cutout. The two applications are dis-
cussed subsequently.

Both structures were modeled by using mixed finite element models with the stress resul-
tants allowed to be discontinuous at interelement boundaries. A 12x12 grid was used for the first
structure and a 192-element-grid was used for the second structure. Biquadratic shape functions
were used in approximating each of the generalized displacements, and bilinear shape functions
were used for approximating cach of the stress resultants.  The characteristics of the finite
element model are given in Ref. 21.

6.1 Linear Stress Analysis of Cantilevered Composite Shallow Shell

As an application of the strategies based on uncoupling of the load-carrying mechanisms
and symmetry transformations, consider the graphite-epoxy composite shallow shell with
trapezoidal planform shown in FFig. 1. The shell is subjected to uniform normal loading and has

nonzero curvatures k; and k, and an unsymmetric lamination in the thickness direction. The

bending and membrane load-carrying mechanisms of the structure are, therefore, coupled. Also,
because of the unsymmetry of the structure, the response does not exhibit any symmetry. The
two decomposition strategies outlined in section 3 were applied. The number of stress and
displacement degrees of freedom in each partition is given in Table 1.

a) Uncoupling of Load-Carrying Mechanisms. The simpler structure is selected to be the

composite plate with zero curvatures and with the bending-extensional coupling neglected
(corresponding to A=0 in Egs. 2 and 3).

Figure 2 shows the normualized contour plots for the generalized displacements in the
original and sitﬁplcr structures.  The strong coupling between the in-plane and bending degrees
of freedom is evident from this figure. An indication of the accuracy and convergence of the

P
solutions obtained by using the PCG technique, in conjunction with both Eqs. 2 and 3, is given in

Fig. 3. The standard of comparison is taken to be the direct solution of the original structure. As

can be seen from Fig, 3, the normal displacement and total strain energy obtained by using the




PCG technigue, in conjunction with both Eqs. 2 and 3, converge. However, the convergence is

faster lor Lygs. 3.

b) Symmetry Transformations. The simpler structure is selected to be a structure whose
response vector exhibits mirror S);fmmctry with respect to line cc (see Fig. 4). Solutions were
obtained using the PCG technique, in conjunction with Egs. 2 and 3. Also, for the sake of
comparison the PCG technique was used in conjunction with the displacement finite element

model which is equivalent to the mixed model used herein (see Ref. 21). The vectus (27} and
{Z,) in Eqgs. 2 and 3 are associated with displacement degrees of freedom only. Figure 4 shows

the normalized contour plots for the displacements in the original and simpler structures.  An
indication of the accuracy and convergence of the solutions obtained by using the different PCG
solutions is given in Fig. 5. As can be seen from Fig. 5, the displacement formulation results in
much slower convergence than the mixed formulation and for both the mixed and displacement
formulations, the use of Eys. 3 results in faster convergence than that of Egs. 2.

6.2 Nonlinear Dynamic Analysis ol an Anisotropic Panel with an Off-Center Circular Cutout

As an application of the stratecgy based on symmetry transformations to nonlinear dynamic
problems, consider the laminated anisotropic cylindrical panel with an off-center circular cutout
shown in Fig. 6. The loading is assumed to be uniformly distributed and normal to the panel
surface and has a step variation in time. The panel is made of graphite-epoxy material (sce Fig.
6). Mixed finite element models were used for the spatial discretization, and implicit three-step
method was used for the temporal integration.

A two-level iterative process (with two nested iteration loops) was used to generate the
symmetric/antisymmetric components of the response vectors at each time step. The top level
iteration (outer iteration loop) is the Newton-Raphson iteration, and the bottom-level iteration
(inner iteration loop) is the PCG iteration. The PCG iteration was applied to Egs. 2.

At each time step, three Newton-Raphson iterations and an average of 20 PCG iterations
(per Newton-Raphson iteration) were required to obtain five significant digits of accuracy of the
response quantities obtained using Lqgs. 2. The details of the analysis are given in Ref. 20.
Normalized contour plots for the displacement and velocity components at 3.0 msec, drawn on

the undeformed middle surface of the panel, are shown in Fig. 7. The measured CP times and




processing rates on a single CPU for the different modules of the proposed strategy, are shown in
Fig. 8 As can be seen from Fig. 7, the processing rates of most of the modules was over 175
MFLOPS and the processing rate for the most time-consuming module (module 4 - incorporation
of boundary conditions and matrix decomposition) was 2747 MFLOPS. Comparison of the
wall-clock times obtained by the present strategy on one-, two- and four-CPUs, with those of the
direct analysis of the panel (with no partitioning) are given in Table 2. As can be scen from
Table 2, the use of the present strategy on a four CPU CRAY-YMP machine reduces the total
analysis time by over one order of magnitude, compared with that required by the direct analysis
(on a single processor). It is anticipated that the speedup ratios can be increased by further
optimizing the Fortran code used in implementing the computational procedure of the partition-
ing strategy. The sustained processing rate would then be increased to that of the direct analysis

implementation.

CONCLUDING REMARKS

Novel computational strategies are presented for the analysis of large and complex struc-
tures. The strategies are based on generating the response of the complex structure using large
perturbations from that of a simpler structure (or a simpler mathematical/discrete model of the
original structure). Two general approaches are described for selecting the simpler model and
establishing the relations between the original and simpler models. The two approaches are:
decomposition or partitioning strategy, and hierarchical modeling strategy. Two elfective
partitioning strategies are proposcd. The first is based on uncoupling of load-carrying
mechanisms, and the second is based on symmetry transformations. Numerical results are

presented to demonstrate the effectiveness of the decomposition strategies.
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APPENDIX A - PCG TECHNIQUE
USED TFOR THEE SOLUTION OF EQS. 3

FFor convenience, Egs. 3 can be written in the following compact form:

[1K1,-MKIRIKE KR ] (75 = {10} -MKR K] {Q
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Ky . [ Klz:]
K], = . IKa =
IK] [ Kzz:) [Kla Ky
Qi Z,
o= ’ ARS
1l {Qz} vz {Zz}

The four major steps of the solution are:

Step | - Initialization

1. Obtain an initial estimaie, {Z}, of {Z) by solving the equations:
[KloiZ}o =1{Qlo

‘Then obtain the vector {Z}, using the equations:
[Klo{Z}o =K {Z}s

2. Obtain the corresponding preconditioned residual, {y}, by solving the equations:

IKlo{y}to = -IKIA({Z},~{Z}s)
= {R}o

where {R}, is the initial residual vector,

3. Set the initial conjugate search direction vectors {S}, = {y}o and obtain the vector {S}, by
solving the equations:

IKlo{S}, =K {S}e

Step 2 - Line Search and Updating of Solution and Residual

For i=0, begin the iteration loop and do the following:

4. Compute the step length a; along the search direction:

{yR{R} ;

% = ISIIKIL Sk - K (ShY

where superscript t denotes transposition,
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5. Update the solution:
{Z}in ={Z}; + o {S};

6. Obtain the vector {Z};, using the cquations:
IKlo{Z} it = {K}AZ iy

7. Compute and update the new residual vector using the equations:
{RYii={R} —o4[Klo{S} + (KA ({Z}in1 —{Z})

Siep 3 - Convergence Check

8. IR}i41 <€ IR|, where IRl is the Euclidean norm of the residual vector and € is a prescribed

tolerance, then stop, otherwise continue.

Step 4 - Computation of New Search Direction Vector

9. Solve for the preconditioned residual vector {y }i4g

[Klo{y}is1 ={R}ix1

10. Compute the orthogonalization coefficient, [3;,,, using
8., = Wi (R
+i =
{y}i{R};

11. Update the conjugate search direction vector
{Shst ={ylis1 +Bint {Sk

12. Obtain the vector {S };,; using the equations
[Klo {S st = IKIA{S Fis

13. Stepiby 1 and go to 4.
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Table 1 - Number of degrees of freedom in each partition for the two decomposition strategies.
Cantlevered composite shallow shell (see Fig. 1).

Nonzero Uncoupling of Load-Currying Symmetry
Degrees Mechanisms* Transformations**
of
Freedom

(Z) | (Z,) (Z,) | (Z,)
Stress 1728 2880 2304 | 2304
Parameters
Generalized 1200 1800 1512 | 1488
Displacements

*[{7Z,] is the vector of degrees of freedom associated with (N, N,, N,,) and (uy, u,); and {Z,} is
the vector of degrees of freedom associated with (M,, M,, M, Q,, Q,) and (w, ¢,, ¢,)

**(Z,) and are symmetric and antisymmetric components of the response vector.
!
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Table 2 - Performance evaluation of the symmetry transformation strategy on the CRAY-
YMP4/432 at CRAY Research, Inc., in Mendota Feights, MN.  UNICOS 5.1.10 operating
system, CET 77 compiler version 4.0.0.

Full Structure
(optimized code)

Partitioned Structure
(ncarly optimized code)

Number of
degrees of
freedom

IRIR displacements

6144 stresses

971 displacements
1536 stresses

achieved by
partitioning
strategy

Semibandwidth 700 315

of equations

Wall clock time 171 58.6 (1 CPU)

for first ten 29.7 (2 CPUy)

steps, (sec.) 16.4 (4 CPUY)

Sustained speed 277.6 246

on onc CPU,

MFELOPS

Speedup due to 1.0 (1 CPU)

multiprocessing 1.95 (2 CPUy)
345 (4 CPUs)

Total speedup 1.0 292 (1CPU)

5.76 (2 CPUs)
10.43 (4 CPUy)
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Cantilevered composite shallow shell with trapezoidal planform considered in the
present study.

Normalized contour plots for the generalized displacements evaluated at A=0
(uncoupled load carrying mechanisms) and at A=1. Cantilevered composite shallow
shell shown in Fig. 1. Spacing of contour lines is 0.2 and dushed lines represent
negative contours.

Convergence of normal displacement, w, at point a and total strain energy, U, ob-
tained by using PCG technique in conjunction with Eqgs. 2 and 3. Cantilevered
composite shallow shell shown in Fig. 1. lteration O corresponds to uncoupled
load-carrying mechanisms.,

Normalized contour plots for the displacement components at A=0 (symmetrized
structure) and at A=1. Cantilevered composite shallow shell shown in Fig. 1. Spacing
of contour lines is 0.2 and dashed lines represent negative contours.

Convergence of normal displacement, w, at point a and total strain energy, U, ob-
tained by using PCG technique in conjunction with Egs. 2 and 3. Cantilevered
composite shallow shell shown in Fig. 1. lteration () corresponds to a symmetrized
structure.

Laminated anisotropic composite panel with an off-center circular cutout used in the
present study.

Normalized contour plots for generalized displacements and velocity components at
t=3.0 Msec. Laminated anisotropic composite panel with an off-center circular cutout
subjected to uniform normal loading p,=-50,000 Pa (sce Fig. 6). Spacing of contour

lines is 0.2 and dashed lines represent negative contours.

Measured CP times and CP speed on one CPU of the CRAY-YMP4/432. Laminated
anisotropic composite panel with an off-center circular cutout subjected to uniform
normal loading p =-50,000 Pa (see Fig. 6).
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STEADY-STATE HEAT CONDUCTION IN MULTILAYERED
COMPOSITE PLATES AND SHELLS
Ahmed K. Noor and W. Scott Burton
Center for Computational Structures Technology
NASA Langley Research Center
Hampton, VA 23665
ABSTRACT

A study is made of a predictor-corrector procedure for the accurate determination of the
temperature and heat flux distributions in thick multilayered composite plates and shells. A
linear through-the-thickness temperature distribution is used in the predictor phase. The func-
tional dependence of temperature on the thickness coordinate is then calculated a posteriori and
used in the corrector phase.

Extensive numerical results are presented, for lincar steady-state heat conduction
problems, showing the effects of variation in the geometric and lamination parameters on the
accuracy of the thermal response predictions of the predictor-corrector approach. Both antisym-
metrically laminated anisotropic plates, and multilayered orthotropic cylinders are considered.
The solutions are assumed to be periodic in the surface coordinates. For each problem the
standard of comparison is taken to be the analytic three-dimensional solution based on treating
cach layer as a homogeneous anisotropic medium. The potential of the predictor-corrector

approach for predicting the thermal response of multilayered plates and shells with complicated

geometry is discussed.

NOTATION
Cys CT integration constants (see Eqgs. 8 and 9)
h thickness of plate (or shell)
hi_1 . h; distance from the middle surface to the bottom and top surfaces of the jth
layer, respectively
Kf;” Integrated thermal conductivity coefficients (see Egs. 20)

(i,t=1103;J=1,2,3)




ki (=110 3)
L,
Lo
m

NL

n

Q
QW (1=1,2)
g (i=1to3)

R, (i,1=1103)

r()
sU, s\ (a,1=1,2)
T
To' Tl
X1, X2, X3
B
0
A =1
=1+ XJ/ro

&I’&.v?.'c

n,

I .
I =j 5 Rii q;q, dV =thermal potential of structure

I

respectively
thermal conductivity coefficients for a typical layer
side length of plate (or cylinder) in x; direction
side length of plate in x3 direction (2[1r,, for cylinders)
longitudinal wave number (in x, direction)
number of layers of plate (or cylinder)
circumferential wave number
internal heat generation per unit volume

integrated heat generation (see Eqs. 17)
heat flux components in the x; coordinate directions
thermal resistivity coefficients for a typical layer
radius of middle surface of cylinder
integrated heat flux componemnts (see Eqgs. 17)
temperature
temperature functions used in first-order heat conduction theory (see Ly
14)
orthogonal coordinate system
tracing parameter identifying anisotropic terms
fiber orientation angle

for plates

for cylinders
dimensionless coordinates in the x;, X, and x5 coordinate directions (see

Fig. 1)

functional defined in Eq. §

component of TT associated with the tn-plane heat flux components

qy and q2




I, component of IT associated with the transverse heat flux component (3

Ranges of Indices (subscripts and superscripts)

I 1,2

J12.3 i
it 1,23

J I toNL

op 1,2

INTRODUCTION

The expanded use of advanced composite materials in aerospace, automotive, shipbuilding,
nuclear and other high tech industries has stimulated interest in the accurate prediction of the
thermal response of laminated anisotropic plates and shells. A number of approaches have been
developed for the determination of the heat transfer characteristics and thermal response of
laminated anisotropic plates and shells. Some of these approaches are similar to the ones used in
predicting the mechanical response of composite plates and shells and include microstructural
models in which the fibers and matrix are each treated as homogeneous isotropic (or anisotropic)
material (see, for example, Refs. 1, 2 and 3); and lamination theories in which the multilayered
composite is replaced by an equivalent homogeneous anisotropic material and effective thermal
conductivities are obtained in terms of the component conductivities (see Refs. 4, 5 and 6).
Analytic, semi-analytic and finite element solutions for the heat conduction three-dimensional
solids are presented in Refs. 7, 8,9, 10, 11 and 12. A number of approaches have been proposed
for the reduction of the three-dimensional heat transfer problem in laminated plates and shells to
a two-dimensional problem. These include global approximation models in which the order of
the governing differential equations is not dependent on the number of layers (see, for example,
Ref. 13); discrete layer models (Refs. 14 and 15) in which the order of the governing differential
equations depends on the number of layers, integral transform techniques (Ref. 16), and operator
methods (Ref. 17). |

A simple predictor-corrector procedure has been developed by the authors in Rels. 18, 19

and 20 for the accurate determination of the global as well as the detailed response characteristics




of isothermal plates and shells. The procedure is based on using the information obtained from a
simple two-dimensional shear deformation theory to correct certain key elements of the comput-
ational model (in an inexpensive postprocessing mode), and hence, improve the response predic-
tions. The present study is an addptation of the predictor-corrector procedure to the heat transfer
prablem of multilayered composite plates and shells.

To sharpen the focus of the study, only linear steady-state heat conduction of composite
plates and cylinders is considered. The plates are assumed to be antisymmetrically laminated
with respect to the middle plane, and the cylinders are constructed of orthotropic layers. [For both
the plates and cylinders, the thermal response quantities are assumed to be periodic in the surface

coordinates.

2. MATHEMATICAL FORMULATION
Figure 1 shows the geometric characteristics of multilayered plates and cylinders as

lollows: L; = the length of the plate (or cylinder) in the x; direction; h = total thickness of the
plate (or cylinder); r, = the radius of the middle surface of the cylinder; and L, = the length of the
plate in the x; direction (2mr, for the cylinder). The dimensionless coordinates &, &>, § are

introduced, where

_x
E.;l - LI (l)

X2
&2 =11, 2)
undC:z;—3 (3)

X3 : .
where A=1 for plates and | + ' for cylinders; and x3 = r-r, for cylinders,

Q

2.1 Basic Assumptions

The computational madels are based on the following assumptions:
I. Each layer is considered as a homogencous anisotropic material with the clfective

thermal characteristics obtained using micromechanics equations (see, for example, Refs. 5 and




6).

2. Heat transfer coefficients and thermal characteristics of all layers are independent of
temperature.

3. Perfect thermal contact exists between layers (i.e., the temperature and the normal flux
component are continuous at layer interfaces).

4. No heat flux is generated at the internal surfaces.

5. The thermal response is governed by two sets of equations, namely, the heat flow
balance equation and the generalized Fourier’s law of heat conduction. These equations are
given subsequently for multilayered anisotropic plates and cylinders.

2.2 Governing Equations for Individual Layers

The governing three-dimensional equations for each layer of the plate (or shell) can be
written in the following form (see, for example, Refs. 21 and 22):

a) leat Flow Balance

dig + 924, +)|; dy (Aq3) —Q=0 (4)
and
b) Generalized Fourier’s Law
4 ki Pk Bk (T
2p = kap Bkay |{ 02T (5)
U3 symm k3 AT

or, the inverse relations

d Ryy BRiz BRy3 Y rq,
D TH =-— Rz PRay jqu2 (0)
0T symm Ra3 q3

where g; (i=1 to 3) are the flux components in the x; coordinate directions; T is the temperature;
ki =k,; (i1=1to 3) are the thermal conductivity coefficients of the material of the layer; R, are the

thermal resistivity coefficients; Q is the internal heat generation per unit volume; d, = d/dx, and

B=0 and 1 for orthotropic and anisotropic layers, respectively.




Equations 4 and 6 are the stationary conditions of the following two-field functional:

ﬂl(qi,T) =j i ()iT+ .l, Qiqe Ry + QT | dxy dxy dxy (7)
v 2

i

J . : . : :
where d; = I (i=1103), and a repeated index 1 or in the siume term denotes summation over
‘M

its full range (1 to 3).

2.3 Reduction to a Two-Dimensional Problem

In the present study, the reduction of the three-dimensional heat conduction problem
described in Egs. 4 and 5 (or 6) to a two-dimensional problem is accomplished by assuming a
linear temperature variation in the thickness coordinate; and replacing the laminated plate (or
shell) by an equivalent single-layer plate (or shell). The governing equations of the resulting
first-order heat conduction theory are obtained by integrating Egs. 4 and S in the thickness
direction. Because of the discontinuity of the thermal conductivity coefficients, the integration is
performed layer-by-liyer.  The fundamental equations of the first-order heat conduction theory

are given in the Appendix.

3. PREDICTOR-CORRECTOR PROCEDURE

3.1 Basic Idea of the Procedure

The predictor-corrector procedure used in the present study is an iterational process in
which the thermal response obtained in the first (predictor) phase of the analysis is used to
correct the temperature distribution and, hence, improve the response predictions.  Numerical
experiments have shown that only one or two iterations are needed (in the corrector phase) 1o
obtain highly accurate response predictions.  The application of the procedure to multilavered
composite plates and shells is described subsequently. The superscript o refers to the predictions
ol the first-order heat conduction theory; and a bar (-) over a symbol refers to the thermal re-
sponse quantities obtiained by using three-dimensional equatiops.

3.2 Predictor Phase

The first-order theory outlined in the previous section s used to evaluate through-the-

. . o o . N
thickness temperature, TV, and Mlux components ¢ and ;. Then the flux component gy by




integrating Eqgs. 1 in the thickness direction as follows:

X3
— | [}) o :
4z :_X IJ;’ x’(alql +az(])_ “Q) de; +C(| (%)
—/e

The temperature distribution in the thickness direction, T, is obtained by integrating the

third equation of Egs. 3 as follows:

X3
T= _[ [B (Rn qi + Ry tl-‘g’) +Raa L—IJ] dx3 +or ©)
~h/2

In Egs. 8 and 9, ¢ and c are integration constants obtained from the conditions at the outer
surfaces ol the laminate.

Note that because of the discontinuity of q; and ¢ at layer interfaces, the integrations in
Cgs. 8 and 9 are performed in a piecewise manner (layer by layer).

3.3 Corrector Phase

The calculation of the corrected thermal response of the plate (or shell) may be con-
veniently divided into three steps: namely, 1) generation of coordinate (basis) temperature
functions; 2) computation of amplitudes of the coordinate functions, and 3) evaluation of the
corrected through-the-thickness flux components using three-dimensional continuum cquations.

The first two steps are described subsequently.

1. Generation of Coordinate (Basis) Temperature Functions. The temperature '—l: s
decomposed into symmetric and antisymmetric functions of the thickness coordinate x3. Each of
the symmetric and antisymmetric functions is further subdivided into an initial and correction
function. The initial functions are associated with the temperature distribution T, obtained in the
predictor ph:lSC.‘ The correction functions are nonlincar functions in x3 and are assoctated with
the difference T=T". Since the initial functions satisly the temperature boundary conditions i
the outer surfaces of the plate (or shell), the correction functi’¢;ns vinish on these surfaces.

2. Computation of the Amplitudes of the Coordinare Functions.  The resulting four

-

symmetric/antisymmetric functions associated with the temperature are now chosen as coor-




dinate (or basis functions), and the temperature is expressed as a linear combination of the four
functions, with unknown parameters (representing the amplitudes of the coordinate functions (or
temperature modes). The four unknown parameters are obtained by using a direct variational
procedure. '

Note that further improvement can be obtained by performing additional correction steps.

This s accomplished by replacing T",q‘]’ and q‘z' in Egs. 8 and 9 by the response (uantities

obtained in the preceding corrector step and repeating the corrector phase.

4. NUMERICAL STUDIES

To assess the accuracy and effectiveness of the predictor-corrector computational proce-
dure, a large number of heat-conduction problems of multilaycered composite plates and cylinders
have been solved by these techniques. The composite plates considered in the present study are
square laminates with Ly =L, =1.0, and have antisymmetric lamination with respect to the middle
plane. The composite cylinders considered are closed circular cylinders with orthotropic layers,
and with L =r,=1.0. The fibers of the different layers alternate between the circumferential and
longitudinal directions, with the fibers of the top layers running in the circumferential direction.
The temperature boundary conditions at the top and bottom surfaces, as well as the thermal
response, are periodic in x; and x; with periods 2Ly and 2L, for plates (2L, and L, for
cylinders).

For both the plates and the cylinders, the x3 coordinate is a principal material direction.
Morcaver, for the antisymmetrically laminated plates, the thermal conductivity coefficients for a
pair of layers j* and j° which are symmetrically situated with respect to the middle plane satisty

the following relations:

kf{” = kff" (i=1 to 3 and 1 1s not summed)
K =40 =0 (0=12) (im

Ky =4
with similar relations for the thenmal resistivity coefficients.

Equations 10 are satisfied for angle-ply antisymmetric laminates, cross-ply symmetric




laminates, and combinations of the two. In the case of symmetric or unsymmetric cross-ply
laminates, k)3 =0 and the matrix of thermal conductivity coefficients is diagonal. The same is
true for the matrix of thermal resistivity coefficients.

The material ch'.\rzxctcris(icsl of the individual layers are taken to be those typical of high-
modulus fibrous composites, namely:

kpe=5.0 , krr=0.5
where subscript L refers to the direction of fibers and subscript T refers to the transverse direc-
tion. For plates the symmetric and antisymmetric (in the thickness direction) components of the

temperature were assumed to be of the form:
'i's sin n&; sin €, and (1)
'i"a cos &, cos nE, (12)
where subscripts s and a refer to the symmetric and antisymmetric components (in the thickness
direction).  The values of 'i‘s and 'i‘u at the top surface of the plate are given by
'i‘s=25() and 'i‘"=5(). Note that the trigonometric functions used in describing the surface

distributions of the symmetric and antisymmetric components of the temperature are different.

For cylinders, the temperature distribution was assumed to be of the form:

T\ _(T
= ° cosm&; cos2mnk, (13)

Ti Ti

where 'i’,,z 300 and 'i‘i=200. Subscripts o and i refer to the outer (tup) and inner (bottom)

surfaces of the cylinder, respectively. JFor each problem, the solutions obtained by the four
models described in Table | were compared with the analytic three-dimensional continuum

solutions.




Table 1 - Characteristics of the models used in the numerical studies

Number of tterations in

Model Predictor Phase the corrector
Pharse,

1 First-order heat conduction theory 0

2 (based on assuming a linear temperature l

ZA variation in the thickness coordinate) 2

2B 3

For plates, three parameters were varied, namely: the thickness ratio of the plate, h/L;; the
number of layers, NL; and the fiber orientation angle of the individual layers, 0. The thickness

ratio was varied between 0.01 and 0.5; the number of layers was varied between 2 and 20; and 0
was varied between 0° and 45°. For cylinders, three parameters were varied, namely: the
thickness ratio h/r,; the number of layers, NL; and the circumferential wave number, n. The
longitudinal wave number was selected to be 1, and the length-to-radius ratio, L/r,,, was selected

to be 1.0. The number of layers was varied between 2 and 20; h/r, between 0.01 and (.5, and n

between 0 and 10.
As a step towards establishing the range of validity of the predictor-corrector procedure

and the number of iterations required in the corrector phase, the thermal potential of the structure,

| . . . .
I =_[ 5 R, q; q. dV (i, =1 to 3); was decomposed into two components: I1; associated with

. . 1 . .
q; and qy; and [, associated with ¢, (I'Ty = | 5 R33 q3 q3 dV). The total thermal potential of
1 12 2 I3 Ul ) 13 43 p

the structure Il = Iy + I1,. The assessment of the predictor-corrector procedure included both
the global thermal response characteristics, IT, TT; and Iy, as well as detailed temperature and

fux distributions in the thickness direction.
Typical results are given in Figs. 2, 3 and 4 for the antisymmetrically laminated plates, and
in Figs. 5, 6 and 7 for the multilayered orthotropic cylinders. The effects of variation of the two

parameters, h/L;, NL for plates (and h/L{ and n for cylinders) on the thermal potential compo-

10




nents I1; and [15, obtained by the three-dimensional continuum model are depicted in Fig. 2

for plates and in Fig. 5 for cylinders.
An indication of the accuracy of the thermal potential components Il and I;, obtained by
J
the predictor-corrector procedure, is given in Figs. 3 and 6. Figures 4 and 7 give an indication of
the accuracy of the temperature and heat flux distributions in the thickness direction. In Fig. d
both the symmetric and antisymmetric parts of the thermal response quantities (with respect to

the middle plane) are shown. Note that since the symmetric and antisymmetric components of
each thermal response quantity are multiplied by different trigonometric functions in x; and x,,
the value of the response quantity is a linear combination of the two components.

An examination of Figs. 2 to 7 reveals:

1. The ratio of the thermal potential component Il /T increases rapidly with the increase
in h/L; from 0.01 up to h/L,=0.1 for plates (and h/L; from 0.01 to 0.15 for cylinders with n < 2).
The decrease in [T} /I is associated with a sharp decrcase in [To/T1. Further increases in h/Ly are
associated with a slow decrease in 1, /T and a slow increase in Il /IT (see Figs. 2 and 5).

2. The ratios IT{/T1 and IT,/IT are somewhat insensitive to variations in the number of
layers NL. For plates these ratios are also somewhat insensitive to the fiber orientation angle 0
(results not shown).

3. For antisymmetrically laminated plates, the accuracy of the predictions of the first-order
heat-conduction theory, Model 1, deteriorates rapidly as h/L; increases. This is true for both the
global as well as the detailed thermal response characteristics. For plates with NL=10, 8=45°,
h/L{=0.1, the error in I predicted by Model | was 7.4% and increased to 165% for h/L=0.3 (see
Fig. 3).

4, The accuracy of the predictions of the first-order theory and its range of validity cian be
significantly improved by using one or two iterations in the corrector phase, Models 2 and 2A,
even for very thick plates and shells. As an example to this, gor plates with h/L,=0.5, the error in
[T was 249%. The corresponding errors after one and two iterations in the corrector phase were
only 3.2% and 0.08%, respectively (see Fig. 3).

5. For orthotropic cylinders the accuracy of the predictions of Model 1 deterioriates

1




rapidly as the circumferential wave number, n, increases. As an example to this, for cylinders

with h/r =0.5, NL=10, n=2, the error in I1 predicted by Model 1 was 220%, and increased 1o

378% for n=6. The use of one and two iterations in the corrector phase (Models 2 and 2A)
reduced the errors for n=6 to 9.8% and 0.64%, respectively (see Fig. 6).

6. The thickness distributions of temperature and flux components obtained by the
predictor-corrector approach are highly accurate. For plates and cylinders with h/L; € 0.5 and n
< 5, the distributions of the response quantities after two iterations (Model 2A) in the corrector
phase were almost indistinguishable from the exact three-dimensional solutions (see, for ex-
ample, Figs. 4 and 7).

7. Numerical experiments (not presented herein) have shown that the use of higher-order
heat conduction theories for multilayered composites based on a global cubic variation, or
higher-degree polynomial approximation, for the temperature through the thickness results in

highly accurate temperature, as well as heat flux components ¢, and ;. However, the transverse

heat flux component g, obtaincd by these theories is not as accurate.

5. POTENTIAL OF THE PREDICTOR-CORRECTOR PROCEDURE

The predictor-corrector procedure appears to have high potential for the accurate predic-
tion of the thermal response of multilayered composite plates and shells. The numerical studies
conducted for antisymmetrically laminated anisotropic plates and simply supported orthotropic
cylinders demonstrated the accuracy and effectiveness of the predictor-corrector procedure. In
particular, the following two points are worth mentioning:

I. The predictor-corrector procedure can be applied, in conjunction with finite element
models, to the analysis of anisotropic plates and shells with arbitrary geometry. The calculation
of the heat flux component in the transverse direction, and the correction phase (including the
calculation of the transverse temperature distribution) can be performed on the element level for
selected elements (in the critical regions of the plate and shell,models).

2. Although any of the two-dimensional heat conduction models can be used in the first
(predictor) phase of the predictor-corrector procedure, the first-order theory involves fewer

temperature parameters than higher-order theories.

12




6. CONCLUDING REMARKS

A study is made of a predictor-corrector procedure for the accurate determination of the
temperature and heat flux distributions in thick multilayered composite plates and shells. A
first-order heat conduction theory, based on linear through-the-thickness temperature distribu-
tion, is used in the predictor phase. The functional dependence of temperature on the thickness
coordinate is then calculated @ posteriori and used in the corrector phase.

Extensive numerical results are presented, for linear steady-state heat conduction
problems, showing the effects of variation in the geometric and lamination parameters on the
accuracy of the thermal response quantities obtained by the predictor-corrector approach. Both
antisymmetrically laminated anisotropic plates, and multilayered orthotropic cylinders are
considered. The solutions are assumed to be periodic in the surface coordinates, and for each
problem the standard of comparison is taken to be the analytic three-dimensional solution based
on treating each layer as a homogeneous anisotropic medium.

The numerical results clearly demonstrate the effectiveness of the predictor-corrector
procedures for the accurate determination of the global as well as detailed thermal response
characteristics of multilayered plates and shells. The accuracy of the response quantities ob-
tained in the first (predictor) phase for thick laminates (h/L; 2 0.1) may be unacceptable.
However, the use of one or two iterations in the corrector phase improves the predictions sub-
stantially and results in highly accurate distributions of temperature and heat flux components

through the thickness.
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APPENDIX - FUNDAMENTAL EQUATIONS OF THE FIRST-ORDER
HEAT CONDUCTION THEORY USED IN THE PRESENT STUDY

The fundamental equations of the two-dimensional first-order heat conduction theory used

in the present study are given in this appendix.

Temperature Distribution

The temperature is assumed to have a linear variation in the thickness coordinate as follows:

T=T, +x3 Ty r (14)

where T, and T} are functions of x| and x;.

Heat Balance Equations

The two global heat balance equations can be written in terms of the integrated heat flux

15




components as follows:

da SY QW +(Aa)| . —(Agy)|] =0 (15)
Ay= e AT
du S =8N QD 4 (x3hany)| - (3 Mp) | =0 (16)
X3‘h/ X1~-|l/2
where

) _

Su NL hj Y(().) q(l x;(;’ :
s Z j Ags dxs (17)

QW T Aty

with yqy =Aand ¥ =1, a0 = 1,2 and I = 1,2. Note that a repeated index o in Egs. 15 and 16

denotes summation over the range 1,2; and o is not summed in Eqs. 17.

Generalized Fourier’s Law

A1) | | SRV
Sfi = _Kt(ll)i OBTU - (13 T, - K((1|+}|) aﬂ T (18)
M m _ )
where
NL hj
] -
Kfl) =j-Z| ,[ Vi) Vo) ki X;(;J K dxj (20)
=ty
j-1

with vy =vy =VA vy = INA ;= 1,2,3; it = 1,2,3; and oB = 1,2. Note that a repeated
index B3 in Eqs. 18 and 19 denotes summation over the range 1,2; and i,t are not summed in Egs.

20).

Governing Equations

The two governing differential equations in the temperature functions T, and T, are ob-
,

tained by replacing the quantities Su , S(’) in Eqs. 14 and 15 by their expressions in terms of

T, and Ty (Egs. 19 and 20).

Trigonometric Functions for the Temperature and Integrated Heat Flux Components
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The temperature and integrated heat flux components are assumed in the present study to be

perivdic in both the x; and x; directions with periods of 2L, and 2L, for plates (and 2L, . L, for

cylinders). The following products of trigonometric functions are used for the different response

1

quantities:

Antisymmetrically laminated plates:

T, = T(,mn sin ma&; sin nn&,
H ( . .
Ty, Sy (T,mn Sy ) cos mnE, cos nnE,

(S(]) Sm) (S(mn S( 5 ) cos mn€; cos nng,

mn
(S(L')., S(lz)) = (S.(Zln)m, S(,?') ) sin mng,; cos nwE,
“ mn

Multilayered orthotropic cylinders:

1 |
(T(,, Ty, S )) - (T(,mn T Sgn)m) cos mn§; cos 2nnE,
(S(l‘), S(lz)) = (S(ll) , S(,Z) ) sinmng; cos 2nng;
mn mn

(S(zl), 8(22)) = (S(Z” ,S(Zz) ) cos mng; sin 2mné;
mn mn

(23

(24)

7

The governing equations can be reduced to a set of algebraic equations through the use of the

trigonometric functions, Eqs. 21 to 27. Note that the trigonometric functions, Eqgs. 21 to 27,

provide exact solution for the governing differential equations of antisymmetrically laminated

plates and multilayered orthotropic cylinders.
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LIST OF FIGURES

Figure 1 - Laminated composite plates and cylinders used in the present study.

Figure 2 - Effect of thickness rniio, h/L;, and number of layers, NL, on components of the
thermal potential obtained by three-dimensional continuum model.  Antisymmetri-
cally laminated plates with prescribed surface temperatures 'i.‘ sin g, sin n&; and
'i‘u cos m&; cos ;. At the top surface :l"s= 250, 'i’u = 50, 8=45°,

Figure 3 - Effect of thickness ratio, h/L, on the accuracy of the total thermal potential, I, and
the thermal potential components, I, I1;, obtained by the predictor-corrector proce-
dure.  Antisymmetrically laminated plates with prescribed surface temperiatures
’i‘s sin gy sinmE;  and 'i‘u cos n&; cos nE,. At the top  surface

T, =250, T, = 50, 0=45°, and NL=10.

FFigure 4 - Accuracy of temperature and heat flux components obtained by predictor-corrector
procedures. Antisymmetrically laminated plates with prescribed surface temperatures
'i‘s sinw§, sinmg, and ”i‘,, cos n&; cos n&,. At the top  surface
'i‘s = 250, 'i‘n = 50, 6=45°, h/L,=0.5, and NL=10.

Figure 5 - Effect of thickness ratio, h/L|, and circumferential wave number, n, on therml

potential components, obtained by the three-dimensional continuum model. Multi-

layered  composite  cylinders  with  prescribed  surface  temperatures

Ty =T, cos &y cos 2mngy, Ty =T; cosmé; cos 2mngy; T,=300, ;= 200, L/,

=1.0, NL=10.

Figure 6 - Effect of circumferential wave number, n, on the accuracy of the total potential, 11,
and thermal potential components, IT;, IT,, obtained by the predictor-corrector
procedures.  Multilayered composite cylinders with prescribed surfuce temperatures

To ='i'(, cos €y cos 2mng,, T =T, cos n§| cos 2nng5; 'i‘(,= 300, 'i}z 200, L/,

=1.0, NL=10, h/r =0.5.




Figure 7 - Accuracy of temperature and heat flux components obtained by predictor-corrector
procedure. Multilayered composite cylinders with prescribed surface temperatures

T, = 'i‘l, cos m&y cos2mn&,, T, = '}'i cos &) cos 2nngy; 'i‘(,z 300, 'i‘, =200, L/r,

=1.0, h/r =0.5, NL=10, and n=1.




aaepins
9|PPIN

F-_c
19he| yif

@.T L NI— . FMn—.x

NM nNX

0+ ¢9Cx




by
G0 Y0 €0 20 10 0

] [ | I ]

T4
sollel
0s' lenuajod
leunayl

7A

00°t




by

S0 %0 €0 20

1o

0

= T

az {3ponW
VYT (3ponN

Z 12poyy
L (apoyy

ot

St

V4

ST

b1y

S0 v0 €0

co

Lo

vexa u

T

0

oot

S0 ¢0

by

£0

o

o
0z
—U-0F
€ — H
u
oy
0s




vZi3pon

zispoy o
L12poN o

(183

:E—Eanu m.NUn\W.NU

nnETumnm (.ﬂU—\q.mU

R MO

IGE-*UQuNm.ﬂU—\w.FU
0 §2°0- 0S50 S.20- O1t- 0 92’0 0§0- SILQ- Q'L QL S0 [s] S0- 0L [+ M8 §¢0 0Ss0 s20 o
T T ! T T p ¢ , T ¢ T = 050
2 Hﬁ ) “
’ S ~4 e 4 szo-
Q a e
o) Q a
n$ 23 a k]
] a ] 2
- a - a 240
o ) a )
aa L ] 3
-] -]
-1 -] a
o 2 —1s20
Fl -] e
aQ o
) a I_
° Q
d 090
lwemﬁuman.wuﬁ\q;.u kﬁE-BQnQQ.NU—\Q.NU Nne_uomnwm.ﬂc—\m.nu Nﬁs—nuh~0<h—\(h
S0 0 S0 0L o't S0 0 S0 0b- S0 0 6S2Z0-080- G40 O1- oL S0 2] S0 o.ro.m.o.
r | — T ] | T T 1 f ( T T =
2 o = 8 ] a a
$ : N . < .
- S
gl ) : % . ;
F 3 ‘
a —f Q a — [ ] -0
F I
a ° M a
i B s LR B foeo
@
%, . | %, ¢
A -~ | 0s0




sojjel
* Jenusjod
jewiayl

00t




U '3GUINU 3ABM [211U343,WNaI) U 13QUING 3ABM [B1IUI3WNANYD
8 9 v z 0 8 9 v z 0
b m——— T oL * : S~ —
_—=102 - ST
Lowexay .
az 12pop 1% 9s
vZ 3o
Z 13po -10° 8¢
t 13pow .% *
0's e 00'L

U ‘Jaguinu aAeMm jBIjUIIWINILY
8 9 14 4 0

h\\\l—\\:\lﬂ‘ I ot
-10v
_unuonr—
‘u
—0¢

- 00t




me~.~un~0 FU_\FU

NlE—«umnﬂNU_\NU

NﬂE——unxu mu_\mu

Xaupaexa, 1y
Or'L SOL 00 SEQ O ZL 60 90 €0 O 0L S0 0 S0 0L 0L 80 90 ¥O0. 20
- Ta T T T T r T : T > T 050
a Q a
[ ] [ ]
2 -] -]
3 2 1 sz°o-
a a a
a a
a a a
- &
VZI9PON  + . : o 2
a s
ZI9POW o s . . .
LI3po . H . §20
wex3 . a .
[ ] - ]
[}

0s'0




