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ABSTRACT

An effective computational strategy is developed for generating tile response of complex

systems using (small or large) perturbations from the response of a simple structure (0r a sillpler

mathematical/discrete model of tile original structure). Two general approaches are developed

for selecting the simpler model and establishing the relmtions betv'tcil tile original and simipler

n11oel s. The two approaches are: decomposition or partitioning strategy, and hierarchical

modeling strategy. Two effective partitioning strategies are used. Tile first is based on uncou-

pling of load-carrying mechanisms, and the second is based on symmetry transformations. Tile

hierarchical modeling used is a predictor-correcto, iterational process based on using a simple

mathematical model in the predictor phase and correcting the response using a more accurate

mathematical model.

RESEARCH OBJECTIVES

The objective of the present study is to develop an effective computational method for

generating the response of a complex system using ltrge perturbations from that of a lower-

order model associated with a simpler system (or a simpler rathematical/discrete model of the

original system). As an integral part of the proposed strategy an attempt will be made to unify

and realize the full potential of a number of multilevel computational strategies, some of which

were developed by the principal investigator and his colleagues. The multilevel strategies

i[Itcitle reduction Iethods, hybrid modeling/analysis techniques, and partitioning mnethods.

Reduction methods are techniques for substantially reducing the number of degrees of freedom of

the initial discretization, and have been successfully applied to a number of vib-ation and non-

liiear structural and thermal problems. Hybrid modefing/anaysis techniques can achieve

significant reductions in the analysis time by incorporating the known physical behavior into tile

computational model of the system and by using different analysis methods and/or models in

predicting the different response characteristics of tile engin~ering systems. Partitioning melh-

,ls arc b,,sed oil, '.eaking the large (and/or complex) problem into a number of smaller (and/or

simpler) suhproblems. The solution of the original problem is generated using inlformation

provided by the individual subproblem:.



The proposed strategy is believed to combine the following three major characteristics:

I ) gives physical insight about tile response

2) helps in assessing the adequacy of the computational model; and

3) is highly efficient.

The strategy will first be applied to: a) the nonlinear postbckling problem o. composite

structures; b) reanalysis of large structutes in tihe presence ol geometric nonlinearitis; then c)

:a':el/iel probems. The oof dtbuc!l;:g 'c.;2-e of tie highly aniisotuopiC composite structure

is generated using large perturbations from the response of a simpler structure. The three key

elements of the strategy to be exploited in the first two applications are: I ) mixed (or primitive

variable) formulation, with the fundamental unknowns consisting of both stress and displacement

parameters; 2) operator splitting, or additive decomposition of the different arrays in the equa-

tions of the given structure to the corresponding arrays of the simpler, or previously-analyzed,

structure plus correction terms; and C) application of a reductiol method and/or a stable iterative

method for the efficient generation of the equations of the given structure.

RESEARCH ACCOMPLISHMENTS

During the period March 1, 1990 to August 31, 1990, two tasks have been performed. The

first is the development of an improved partitioning strategy for large-scale structural problems.

The second is the development of a predictor-corrector approach for generating the steady-state

thermal response of multilayered composite plates and shells. The two tasks are described

subsequently.

Improved Partitioning Strategy for Large-Scale Problems

The governing equations for the discrete model of the original structure can be written in

the following compact foril:

IKIIZ) = IQ) (1)

where (Z) is the vector of stress parameters and generalized displacements: I KI is the global

structure matrix which includes the flexibility and strain-displacemnent matrices: and I QI is the

global right-hand-side vector.

Ill tile decomposition strategy the vector of fundamental unknowns I ZI is partitioned into



smaller subvectors. The governing discrete equations, Eqs. 1, are partitioned accordingly. The

simpler model is associated wih the uncoupled equations in the partitioned variables. For the

caSe of two partitions, the process can be described by embedding Eqs. I in a single-paraiiieter

family of eluations as follows:

f 1<2 J {K2 -K 12 J tQ2J(2

where [Z 1 I , -{Z2 1- and {Q1 I, IQ2} are the partitions of the original vectors {Z} and IQ ); k is a

tracing parameter which identifies all the correction terms needed in going from the simpler

model to the discrete model of the original structure; and a dot (.) refers to a zero submatrix. The

simpler model corresponds to .=O (uncoupled equations in { Z1 } and { Z2 ) , and the discrete

model of the original structure corresponds to k=-1 (fully coupled equations). The solution

corresponding to X=I is generated from the corresponding solution at X=() using an iterative

process such as the Preconditioned Conjugate Gradient (PCG). Note that tile correction vectors

o'l the iterative process, provide a direct measure of the sensitivity of the response quantities It

the coupling terms (viz., the terms associated with the tracing parameter k in Eq. 2).

The vectors { Z, I and { Z2 I are chosen to be the symmetric and antisymniretric compo-

nents of the response vector (each is approximately half the size of the original vector, I Z)). The

simpler model (k=O) corresponds to a symmetrized structure in which the symmetric and an-

tisymmetric components of the response vector are uncoupled. This approach can be thought of

is a physical dtomain decomposition. If the PCG technique is used in generating the solution at

.=1, and the preconditioning matrix is selected to be the left-hand side matrix corresponding to

X=O, then each of the correction vectors is either symmetric or antisymmetric.

The convergence of (he PCG technique can be expedited by replacing Eqs. 2 by the

following equivalent form of two uncoupied equations in J Z, and I Z, 1:

K K 1  -II K-1.Ki 1 2 21  f1 Z, fQ'} 1{2 22 Q3
K 11 K K12 ]) K-z2  K_

Note that for X=I, each diagonal block of the total left-hand-side matrix is in the form of Schur



complement which is not formed explicitly. Rather, tile preconditioning matrix is selected to IV

tile first matrix on the left-hand side (corresponding to X=O) and the PCG techniqiLe is used ill

generating the solution at X= 1. The results of this research are reported ill Ref. I.

Predictor-Corrector Approach for Generating the Steady-State Thennal Response of Multi-
lavered Plates and Cylinders

A predictor-corrector procedure has been developed for the accurate detenination of tile

temperature and heat flux distributions in thick multilayered composite plates and shells. The

procedure is based on using a linear through-the-thickness temperature distribution in the prediCL-

tor phase. The functional dependence of temperature on tile thickness coordinate is then calcu-

lated a posteriori and used in tie corrector phase.

Extensive numerical results have been conducted for linear steady-state heat conduction

problems, showing the effects of variation in tile geometric and laninafiion parameters I the

acCIIraCv of the thenmal response predictions of the pred ictor-corrector al)l)roach. Both antisyni-

metrically laminated anisotropic plates, and multilayered orthotropic cylinders are considered.

The solutions are assumed to be periodic in the surface cordinates. For each problem the stand-

ard of comparison is taken to be the analytic three-dimensional solution based on treating each

layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach

for predicting the thermal response of multilayered plates and shells with complicated geometry

is investigated. The results of this study are reported in Ref. 2.

PUBLICATIONS

I. Noor, A. K. and Peters, J. M., "Strategies for Large-Scale Structural Problems on High-

Performance Computers," Communications in Applied Numerical Methods (to appear).

2. Noor, A. K., Steady-State Heat Conduction in Multilayered Composite Plates and Shells,"

COmputers and Structures (to appear).
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SUMMARY

Novt-! conmputaiionaI strategies are presented for the analysis ot large and complex struc-

tures. The strategies are based onl generating the response of the complex structure using large

perturbations from that of a siniplcr model, associated with a simpler structure (or a simpler

mathematical/discrete miodel of' the original structure). Numerical examples are presented to

demionstrate thle effectiveness of thle strategies dleveloped.
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ABSTRACT

A study is made of a predictor-corrector procedure for the accurate deteriination of the

temperature and heat flux distributions in thick multilayered composite plates and shells. A

lineatr tli'ough-the-thickness te!'2peramture distribution is used in the predictor phase. The func-

tional dependence of temperature on the thickness coordinate is then calculated a posteriori and

used in the corrector phase.

Extensive numerical results are presented, for linear steady-state heat conduction

problems, showing the effects of variation in the geometric and lamination parameters on the

accuracy of the themal response predictions of the predictor-corrector approach. Both antisym-

metrically laminated anisotropic plates, and multilayered orthotropic cylinders are considered.

The solutions are assumed to be periodic in the surface coordinates. For each problem the

standard of comparison is taken to be the analytic three-dimensional solution based on treating

each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector

approach for predicting the thermal response of multilayered plates and shells with complicated

geometry is discussed.
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STRATEGIFS FOR LARGE-SCALE STRUCTURAL PROBLEMS
ON llIGH-PERFORMANCE COMPUTF-RS

Ahmed K. Noor and Jeanne M. Peters

Center foi Computational Structures Tcmnology
University of Virginia

NASA Langley Research Center
Hampton, VA 23665

SUMMARY

Novel computational strategies are presented for the analysis of large and complex struc-

tures. The strategies are based on generating the respow~se of the complex structure using large

perturbations from that of a simpler model, associated with a simpler structure (or a simpler

nmathematical/discrete model of the original structure). Numerical examples are presented to

demonstrate the effectiveness of the strategies developed.

1. INTRODUCTION

Dynamic and nonlinear response calculations for future aerospace systems are expected to

require nrocessing rates far in excess of computers built around a single processing unit. This is

because of the complexity of these systems and the high degree of sophistication of the comput-

ational models required for simulating their response (see, for example, Refs. I and 2). The

iitroduction of novel fomis of machine architecture has brightened the prospects for meeting

future large-scale computational needs. Most of the new machines achieve high perfoniancc

through vectorization and/or parallelism. These include top-of-the-range supercomputers such as

CRAY-3, CRAY Y-MP, as well as computing systems based on readily available and inexpen-

sive basic units such as the hypercubes, the Connection Machine, and the transputer networks.

The characteristics of several new machines are summarized in Refs. 3, 4, 5 and 6. Much work

has been devoted to the development of efficient vector and parallel numerical algorithms for

performing matrix operations, solution of algebraic equations, and extraction of eigenvadues (see.

for example, Refs. 7, 8 and 9). Also, a number of special strategies have been proposed for

increasing the degree of parallelism and/or vectorization in finite element computations. Most of

1



tile -,pecial strategies can be thought of as applications of intlUtih'lvl computational pre',.ws., ;nd

i nclude reduction mIethods, hybrid modeling/analysis techniques, and partitioning mefthod,.

Redution m'thods are techniques for reducing the number of (legrccs of freedo r of the i ril

discrctization and have been successfully applied to a inumber of vibration and no li near proh-

lctus of structures (see, for example, Refs. 10-13). Hybrid moding/analysis the'hmiq/c.% can

achieve significant reductions in the analysis time by incorporating the known physical bchlivior

into the computational model of the structure and by using different analysis methods and/or

models in predicting the different response characteristics of the structure (see, for example,

Refs. 14 and 15). Partitioning methods are based on the intuitively obvious and well-establishcd

practice of breaking the large (and/or complex) problem into a number of smaller (and/or

simpler) subproblcms. The solution of the original problem is generated using informliation

provided by the individual subproblems (see, for example, Ref. 16). The two key advantages of

partitioning techniques are computational

efficiency and modular implementation.

The present study is an altctmpt to unify and realize the full potential of a number of

multilevel computational strategies for solution of large-scale structural problems. Specifically,

the objective of the present p:tper is to report the progress made in developing computational

strategies which! in addition to being efficient on high-performance computers, combine the

following two major characteristics:

I ) give physical insight about the response, and

2) help in assessing the adequacy of the computational model.

2. BASIC IDEA AND KEY ELEMENTS OF TIIE PROPOSED STRATEGIES

The strategies developed are based on generating the response of a large and complex

structure using large pertiration.s from that of a simpler model associated with a simpler

structure (or a simpler mathematical/discrete model of the original structure). The key elements

of the proposed strategies are: I ) mixed (primitive variable) fonnulation with the fundamenmal

tnknowns consisting of siress parameters, generalized displacements and, for dynaii ic rC VbleII I,

velocity components; 2) operator splitting or resrucluring of the discrete equations of the origi-

2



nal (complex) structure to delineate the contribLtions of the simpler model ,!nd the correction

terms; and 3) stable iterative process for the efficient generation of the response of the conplcx

structure starting from that of the simpler strcture. Although in some applications the steies-,

call be Lsed in conjunction with the single-field displacement formulation, there are ;cvcri d

;i ppl icat toils in which lthe use of the mixed formulation is essential.

2 1 Eiver- lquations

The governing eLutitOnS for the discrete model of the original structure call be written in

the following compact form:

!KIIZ) (i)

whcrc (Z) is the vector of stress paraieters and generalized displacemectnts; IKI is the jh)lhl

SruIctRI c nMlatrix which includcs the flexibility and strain-displacement matrices; and IQ) is the

global right-hand-side vector.

2.2 Relations Beitween the Original and Simpler Models

The crux of the proposed strategies is the proper selection of the simpler structure mail/ ,r

the siller model. Vor a given complex slructure, a m1ultitidC of choices of the simpler Structurc

can be made. The best choice is that which exploits the characteristics of the high-performance

computters and satisfies, to the greatest extent possible, the two major characteristics listed in the

preceding section. For each choice, tile relations between the simpler model and the original

strlc.'utre call he established, and in efficient conputationial procedure can be developed for

generating tie response of the original structure Using large pertrbationts from that of the

simpler nodel. Two general approaches are described subsequently for selecting ,he simpler

model and establishing tile relations between the original and simpler models. Tile two ap-

proaclhes are: decownposition or partitioning strategy, and hierarchical nodeing strawegy. For

simplicity, the two approaches are described with reference to their appIlication to linear ,tres

analysis problems. I lowever, they ;ire equally applicable to nonlinear and dynamic pro3lenml.

3. DECOMPOSITION OR PARTITIONING STRATEGY

In tile decomposition strategy tile vector of fundamenial tinknowns ('ZI is partitittd int,

smaller subvectors. Tile governing liscrete equations, F(qs. I, re partitioned accordiigly. Thc

3



simpler model is associated will the uncoupled equations in the partitioned variables. For tile

case of two partitions, the process can be described by embedding El.s. I in a single-paranicter

family of equations as follows:

(K eK] { .]J{ Z2 } - {Q2} (2)

where {Z1 }, Z2 } Ind {Q, I , Q2} are the partitions of the original vectors (Z) and (Q)} X is a

tracing parameter which identifies all the correction terms needed in going from the simpler

model to the discrete model of the original structure; and a dot (.) refers to a zero submatrix. The

simpler model corresponds to X=O (uncoupled equations in {Z} and {Z 2}), and the discrete

model of the original structure corresponds to X=! (fully coupled equations). The solution

corresponding to X=l is generated from the correspondi, " solution at X=O using an iterative

process such as the Preconditioned Conjugate Gradient (PCG). Note that the correction vectors

of the iterative process, provide a direct measure of the sensitivity of the response quantities to

the coupling terms (viz., the terms associated with the tracing parameter X in Eq. 2). Among the

effective partitioning strategies developed in the present study are the following two:

a) Uncoupling of Load-Carrying Mechanisms. For cxample, if the original structure is

associated with a two-dimensional shell structure, the simpler structure can be associated with

the corresponding plate structure in which the membrane and bending load-carrying mechanisms

are uncoupled.

b) Symmetry Transformations. This is accomplished by selecting {Z, } and { Z I} to

represent the symmetric and antisymnetric components of the response vector (each is ap-

proximately half the size of the original vector, (Z)). The simpler model (X=0) corresponds to a

symnietrized structure in which the symmetric and antisymmetric components of the response

vector are uncoupled. This approach can be thought of as a physical domain decomnposition. If

the PCG technique is used in generating the solution at X=,, and the preconditioning matrix is

selected to be the left-hand side matrix corresponding to X=0, then each of the correction vectors

is either symmetric or antisymnictric. The details of the symmetry transformations are describcd

in Refs. 17, 18 and 20.

i I



4. COMMENTS ON THE DECOMPOSITION STRATEGY

The following comments regarding the decomposition strategy are in order:

1. The convergence of the PCG technique can be expedited by replacing Eqs. 2 by the

following equivalent form of two uncoupled equations in { Z, } and { Z 2 }:

2- KX 2 K22 K3

K22  L K2 1 KIK j)Z 2  Q2  K2 , K 1 QJ

Eqs. 3 are obtained from Eqs. 2 by eliminating { Z, I from the first equation and { ZI I from the

second equation. Note that for X=I, each diagonal block of the total left-hand-side matrix is in

the form of Schur complement which is not formed explicitly. Rather, the preconditioning

matrix is selected to be the first matrix on the left-hand side (corresponding to X=O) and the PCG

technique is used in generating the solution at ?u=l. The technique is outlined in Appendix A.

2. Equations 3 can be thought of as the governing finite element equations of an equi'va-

lent structure whose response under the modified toads (given by the total right-hand-side

vector), is identical to the response of the actual structure when subjected to the given loads.

The equivalent structure has uncoupled load-carrying mechanisms (or uncoupled symmetric/

antisymmetric response vectors).

3. The decomposition process can be repeated to effect further reduction in the size of the

partitions of the original vectors and matrices. However, as the number of partitions increases,

the coupling between them increases, and therefore, the number of iterations in the PCG tech-

nique increases. Consequently, the proposed strategy may not be effective on multiprocessor

computers with fine granularity and small local memories (e.g., tile hypercubes and the Connec-

tion Machine of Thinking Machines, Inc.).

5. HIERARCI-IICAL MODELING STRATEGY

The simpler model is selected as one with considerably fewer degrees of freedom than

those of the discrete model of the original structure. The governing equations of the simpler

model can be written in an analogous form to those of the original structure, as follows:



Ikllz) = (q ()

The response vectors of the original and simpler models are related through the interpolation

operator 11-1 as follows:

IZ) = IF(z) (5)

where I F] is a rectangular transformation matrix (interpolation operator).

Base(] on Eqs. 4, the relations between [k], I KJ and (q), I QI are given by:

Ik] = IFI'IKIIFI (6)

tq) =1IF1'(Q) (7)

where superscript t denotes transposition, and [FIL is referred to as the restriction operator.

Among the possible choices of the simpler model in this category are the following two:

*i) Discrete model, based on the saine mathenatical nodel and the same dliscretization

procedutre used for the original structure, but with considerably fewer degrees of freedom. The

resulting numerical process is similar to tie classical multigrid technique.

b9) Discrete model, based on a mathematical model of lower dimensionality than that used

Jor the original structure. For example, if the original structure is modeled using a two-

dimensional plate or shell theory, the simpler model can be associated with a one-dimensional

thin-walled beam theory (with the effects of flexural-torsional coupling included). The interpola-

tion operator, [FI, then reflects the basic assumptions made in the dimensionality reduction (i.e.,

in going from a two-dimensional shell/plate theory to a one-dimensional thin-walled beam

theory, namely, the projection of each cross-section on a plane normal to the initial centroidal

axes does not distort during deformation). This approach can, therefore, be thought of as a

physical inultigrid nethod.

6. NUMERICAL STUDIES

To assess the effectiveness of the foregoing strategics, a number of linear and nonlinear

stress analysis, free vibration, buckling and dynamic problems of complex structures have been

solved by these strategies. For each problem the solutions obtained by the foregoing stratcgies

were compared with those obtained by the direct analysis of the original (complex) structure.

6



Some of these applications are reported in Refs. 17-20. Two applications of the decomposition

strategies are presented herein: 1) linear stress analysis of cantilevered composite shallow shell

with unsymmetrical lamination in the thickness direction; 2) nonlinear dynamic problem of

laminated anisotropic panel with' ain off-center circular cutout. The two applications are dis-

cussed subsequently.

Both structures were modeled by using mixed finite element models with the stress resul-

tants allowed to be discontinuous at interelement boundaries. A 12x 12 grid was used for the first

structure and a 192-element-grid was used for the second structure. Biquadratic shape functions

were used in approximating each of the generalized displacements, and bilinear shape functions

were used for approximating each of the stress resultants. The characteristics of the finite

element model are given in Ref. 21.

6.1 Linear Stress Analysis of Cantilevered Composite Shallow Shell

As an application of the strategies based on uncoupling of the load-carrying mechanisms

and symmetry transformations, consider the graphite-epoxy composite shallow shell with

trapezoidal planform shown in Fig. 1. The shell is subjected to uniform normal loading and has

nonzero curvatures k, and k2 and an unsymmetric lamination in the thickness direction. The

bending and membrane load-carrying mechanisms of the structure are, therefore, coupled. Also,

because of the unsymmetry of the structure, the response does not exhibit any symmetry. The

two decomposition strategies outlined in section 3 were applied. The number of stress and

displacement degrees of freedom in each partition is given in Table 1.

a) Uncoupling of Load-Carrying Mechanisms. The simpler structure is selected to be the

composite plate with zero curvatures and with the bending-extensional coupling neglected

(corresponding to X=O in Eqs. 2 and 3).

Figure 2 shows the normalized contour plots for the generalized displacements in tile

original and simpler structures. The strong coupling between the in-plane and bending degrees

of freedom is evident from this figure. An indication of the accuracy and convergence of the

solutions obtained by using the PCG technique, in conjunction with both Eqs. 2 and 3, is given in

Fig. 3. The standard of comparison is taken to be the direct solution of the original structure. As

can he seen from Fig. 3, the normal displacement and total strain energy obtained by using the

7



PCG technique, in conjunction with both Eqls. 2 and 3, converge. However, the convergence is

faster for Eqs. 3.

b) Symmetry Transforrmations. The simpler structure is selected to be a structure whose

response vector exhibits mirror symmetry with respect to line cc (see Fig. 4). Solutions were

obtained using the PCG technique, in conjunction with Els. 2 and 3. Also, for the sake of

comparison the PCG technique was used in conjunction with the displacement finite element

model which is equivalent to the mixed model used herein (see Ref. 21). The vectuis tZ 1 ) and

(Z,) in Eqs. 2 and 3 are associated with displacement degrees of freedom only. Figure 4 shows

the normalized contour plots for the displacements in the original and simpler structures. An

indication of the accuracy and convergence of the solutions obtained by using the different PCG

solutions is given ini Fig. 5. As can be seen from Fig. 5, the displacement formulation results in

much slower convergence than the mixed formulation and for both the mixed and displacement

formulations, the use of Eqs. 3 results in faster convergence than that of Eqs. 2.

6.2 Nonlinear Dynamic Analysis of an Anisotropic Panel with an Off-Center Circular Cutout

As an application of the strategy based on symmetry transformations to nonlinear dynamic

problems, consider the laminated anisotropic cylindrical panel with an off-center circular cutout

shown in Fig. 6. The loading is assumed to be uniformly distributed and normal to the panel

surface and has a step variation in time. The panel is made of graphite-epoxy material (see Fig.

6). Mixed finite element models were used for the spatial discretization, and implicit three-step

method was used for the temporal integration.

A two-level iterative process (with two nested iteration loops) was used to generate the

symnietric/antisymrnetric components of the response vectors at each time step. The top level

iteration (outer iteration loop) is the Newton-Raphson iteration, and the bottom-level iteration

(inner iteration loop) is the PCG iteration. The PCG iteration was applied to Eqs. 2.

At each time step, three Newton-Raphson iterations and an average of 20 PCG iterations

(per Newton-Raphson iteration) were required to obtain fivo. significant digits of accuracy of the

response quantities obtained using Eqs. 2. The details of the analysis are given in Ref. 20.

Normalized contour plots for the displacement and velocity components at 3.0 rnsec, drawn on

the undcformed middle surface of the panel, are shown in Fig. 7. The measured CP times and

8



processing rates on a single CPU for the different modules of the proposed strategy, are shown in

Fig. 8. As can be seen from Fig. 7, the processing rates of most of the modules was over 175

MFLOPS and the processing rate for the most time-consuming module (module 4 - incorporation

of boundary conditions and matrix decomposition) was 274.7 MFLOPS. Comparison of the

wall-clock tirnes obtained by the present strategy on one-, two- and four-CPUs, with those of the

direct analysis of the panel (with no partitioning) are given in Table 2. As can be seen from

Table 2, the use of the present strategy on a four CPU CRAY-YMP machine reduces the total

analysis time by over one order of magnitude, compared with that required by the direct analysis

(on a single processor). It is anticipated that the speedup ratios can be increased by further

optimizing the Fortran code used in implementing the computational procedure of the partition-

ing strategy. The sustained processing rate would then be increased to that of the direct analysis

implementation.

CONCLUDING REMARKS

Novel computational strategies are presented for the analysis of large and complex struc-

tures. The strategies are based on generating the response of the complex structure using large

perturbations from that of a simpler structure (or a simpler mathematical/discrete model of the

original structure). Two general approaches are described for selecting the simpler model and

establishing the relations between the original and simpler models. The two approaches are:

decomposition or partitioning strategy, and hierarchical modeling strategy. Two effective

partitioning strategies are proposed. The first is based on uncoupling of load-carrying

mechanisms, and the second is based on symmetry transformations. Numerical results are

presented to demonstrate the effectiveness of the decomposition strategies.
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APPENDIX A - PCG TECHNIQUE
US1JD FOR IT1W SOLUTION OF I-QS. 3

For convenience, EqIs. 3 can he written in the following compact fonm

[IKjl-XKjXIKJ-) I Kb.] mZ= 1Q}(,-XI~KJI' IQ}

whe re



[ K . K. 2 2  I KI 2  K 1 2

{} , 1

The four major steps of the solution are:

Step I - Initialization

I. Obtain an initial estimate, {Z} of [Z) by solving the equations:

1Kh,{Z} ={Q} 0

Then obtain the vector {Z}( using the equations:

IKI,,{Z}, =IKlx{Z}o

2. Obtain the corresponding preconditioned residual, {y}, by solving the equations:

IKI,,{y},, =-KIX({Z},,-{Z}o)
= {~

where { R ,, is the initial residual vector.

3. Set the initial conjugate search direction vectors {S },, {Y }, and obtain the vector {S },, by

solving tie equations:

IKI,, {Sl,, = IKlXjS},,

Step 2 - Line Search and Updating of Solution and Residual

For i=O, begin the iteration loop and do the following:

4. Compute the step length 0ti along the search direction:

{y} i{R}1  ,

IS} {IKI S I KI J.S i}J

where superscript I denotes transposilion.
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5. Update (he solution:

{Z}i+I ={Z1i +oQ{S}i

6. Obtain the vector {Z}+ 1 using the equations:

IKj,, { + = { K. {Zl+

7. Compute and update the new residual vector using the equations:

{Ri+,= {Ri - lKl,,{Sb + tKix({Z}i+1 -{Z}i)

Step 3 - Convergence Check

8. If jRjj+1 
< C IRL, where IRI is the Euclidean norm of the residual vector and E is a prescribed

tolerance, then stop, otherwise continue.

Step 4 - Computation of New Search Direction Vector

9. Solve for the preconditioned residual vector {Yki+j

[K1 {Y}yj+1 ={Rji+j

10. Compute the orthogonalization coefficient, Pi+ ,, using

={Y;:it {R}i~l

11. Update the conjugate search direction vector

{S}i+1 = {Y}+i + 3 i+1 {S1i

12. Obtain the vector {S}+ 1 using the equations

IKI4,, {S }i =IKIX{S}i+,

13. Step i by I and go to 4.
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Table I - Number of degrees of freedom in each partition for the two decomposition strategies.
Cantilevertd composite shallow shell (see Fig. 1).

Nonzero Uncoupling of' Load-Carrying Symmetry
Degrees Mechanisms* Transformiations**
of__ _ _ _ _ _ __ _ _ _ _ _ _

Freedom
(ZI I (Z2) (Z,) (1,)

Stress 1728 2880 2304 2304
Parameters

Generalized 1200 1800 1512 1488
Displacements

*(Zi ) is the vector of degrees of freedom associated with (N,, N2, N, 2) and (ti19 112); and1( Z2 is
the vector of degrees of freedom associated with (M,, M21 M12, Q1, Q2) and (W, Oil 02)
**fZ,) and [Z2 1 are symmetric and antisymmetric components of the response vector.
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Table 2 - Perf'oniance evaluiation of' the symmetry transformation strategy onl the CRAY-
YMP4/432 at CRAY Research, Inc., in Mendota I leights, MIN. UNICOS 5.1I.10( operating
system, C171'77 compiler version 4.0.0.

Full Structure Partitioned Structure
(optimized code) (nearly optimized code)

Number of 3818 (1 dsplacementls 97 1 displacements
degrees of' 6144 stresses 1 536 stresses
freedom

Semihandwidth 700 315
of equations

Wall clock time 171 58.6 (1 CPU)
Ior f'irst ten 29.7 (2 CPIUs)
steps, (sec.) 16.4 (4 CPIUs)

Sustained speed 277.6 246
onl oiie CPU,
M FLOPIS

Speedup due to 1.0 0 CPU)
multiprocessing 1.95 (2 CPUs)

3.45 (4 CPUs)

Total speedup 1.0 2.92 (1 CPU)
achieved by I5.76 (2 CPUs)
partitioning I10.43 (4 CPUs)
strategyI
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Figure 1 - Cantilevered composite shallow shell with trapezoidal planform considered in the
present study.

Figure 2 - Normalized contour plots for the generalized displacements evaluated at X=0
(uncoupled load carrying mechanisms) and at X=I. Cantilevered composite shallow
shell shown in Fig. 1. Spacing of contour lines is 0.2 and dashed lines represent
negative contours.

Figure 3 - Convergence of normal displacement, w, at point a and total strain energy, U, ob-
tained by using PCG technique in conjunction with Eqs. 2 and 3. Cantilevered
composite shallow shell shown in Fig. 1. Iteration 0 corresponds to uncoupled
load-carrying mechanisms.

Figure 4 - Normalized contour plots for the displacement components at X=0 (symmetrized
structure) and at X=1. Cantilevered composite shallow shell shown in Fig. 1. Spacing
of contour lines is 0.2 and dashed lines represent negative contours.

Figure 5 - Convergence of normal displacement, w, at point a and total strain energy, U, ob-
tained by using PCG technique in conjunction with Eqs. 2 and 3. Cantilevered
composite shallow shell shown in Fig. 1. Iteration 0 corresponds to a symmetrized
structure.

Figure 6 - Laminated anisotropic composite panel with an off-center circular cutout used in the
present study.

Figure 7 - Normalized contour plots for generalized displacements and velocity components at
t=3.0 Msec. Laminated anisotropic composite panel with an off-center circular cutout
subjected to unifomi normal loading p,,=-50,00 Pa (see Fig. 6). Spacing of contour

lines is 0.2 and dashed lines represent negative contours.

Figure 8 - Measured CP times and CP speed on one CPU of the CRAY-YMP4/432. Laminated
anisotropic composite panel with an off-center circular cutout subjected to uniform
normal loading p,)=- 50 ,00 0 Pa (see Fig. 6).
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ABSTRACT

A study is made of a predictor-corrector procedure for the accurate determination of the

temperature and heat flux distributions in thick multilayered composite plates and shells. A

linear through-the-thickness temperature distribution is used in the predictor phase. The func-

tional dependence of temperature on the thickness coordinate is then calculated a posteriori and

used in the corrector phase.

Extensive numerical results are presented, for linear steady-state heat conduction

problems, showing the effects of variation in the geometric and lamination parameters on the

accuracy of the thermal response predictions of the predictor-corrector approach. Both atisym-

metrically laminated anisotropic plates, and multilayered orthotropic cylinders are considered.

The solutions are assumed to be periodic in the surface coordinates. For each problem the

standard of comparison is taken to be the analytic three-dimensional solution based on treating

each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector

approach for predicting the thermal response of multilayered plates and shells with complicated

geometry is discussed.

NOTATION

c(1, CT  integration constants (see Eqs. X and 9)

h thickness of plate (or shell)

Ilj_j, hj distance from the middle surface to the bottom and top surfaces of tie jth

layer, respectively

K~l)  Integrated thermal conductivity coeffic'ients (see Eqs. 20)iL

(i,t=l to 3; J=1,2,3)

SkLL, krr thermal conductivity coefficients in the direction of fibers and nornal to it.



respectively

kit (i,t=l to 3) thermal conductivity coefficients for a typical layer

side length of plate (or cylinder) in x direction

L2 side length of plate in x2 direction (2Ir 0 for cylinders)

m longitudinal wave number (in x, direction)

NL number of layers of plate (or cylinder)

11 circumferential wave number

Q internal heat generation per unit volume

Q) (1=1,2) integrated heat generation (see Eqs. 17)

qi (i= I to 3) heat flux components in the xj coordinate directions

Rit (i,t=l to 3) thermal resistivity coefficients for a typical layer

r,, radius of middle surface of cylinder

S() S) (o, 1,2) integtted heat flux components (see Eqs. 17)

T temperature

T., T, temperature functions used in first-order heat conduction theory (see Eq.

14)

x, X2, x3  orthogonal coordinate system

tracing parameter identifying anisotropic temls

0 fiber orientation angle

X. = 1 for plates

= I + X3 /r,, for cylinders

l, 2, dimensionless coordinates in the x1 , x2 and x3 coordinate directions (see

Fig. 1)

i, functional defined in Eq. 5JI'
I = 11 Rit q (tt dV = thermal potential of structure

[1, componcnt of 11 associated with the in-olane heat flux componenis

q1 and q2
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112 component of HI associated with the transverse heat flux component (l3

Ranges of Indices (subscripts and superscripts)

1 1,2

J 1,2,3

i, t 1,2,3

j I toNL

(x, 1,2

INTRODUCTION

The expanded use of advanced composite materials in aerospace, automotive, shipbuilding,

nuclear and other high tech industries has stimulated interest in the accurate prediction of the

thermal response of laminated anisotropic plates and shells. A number of approaches have been

developed for the determination of the heat transfer characteristics and thermal response of

laminated anisotropic plates and shells. Some of these approaches are similar to the ones used in

predictng the mechanical response of composite plates and shells and include microstructural

models in which the fibers and matrix are each treated as homogeneous isotropic (or anisotropic)

material (see, for example, Refs. 1, 2 and 3); and lamination theories in which the multilayered

composite is replaced by an equivalent homogeneous anisotropic material and effective thermal

conductivities are obtained in terms of the component conductivities (see Refs. 4, 5 and 6).

Analytic, semi-analytic and finite element solutions for the heat conduction three-dimensional

solids are presented in Refs. 7, 8, 9, 10, 11 and 12. A number of approaches have been proposed

for the reduction of the three-dimensional heat transfer problem in laminated plates and shells to

a two-dimensional problem. These include global approximation models in which the order of

the governing differential equations is ,not dependent on the number of layers (see, for example,

Ref. 13); discrete layer models (Refs. 14 and 15) in which the order of the governing differential

equations dep'ends on the number of layers, integral transform techniques (Ref. 16), and oI)crator

methods (Ref. 17).

A simple predictor-corrector procedure has been developed by the authors in Refs. I8, I()

and 20 for the accurate determination of the global as well as the detailed response characteristics

3



of isothenual plates and shells. The procedure is based on using the information obtained from a

simple two-dimensional shear deformation theory to correct certain key elements of the com11[utII-

ational model (in an inexpensive postprocessing mode), and hence, improve the response predic-

tions. The present study is an adnptation of the predictor-corrector procedure to the heat transfer

problem of multilayered composite plates and shells.

To sharpen the focus of the study, only linear steady-state heat conduction of composite

plates and cylinders is considered. The plates are assumed to be antisymmetrically laminated

with respect to the middle plane, and the cylinders are constructed of orthotropic layers. For both

the plates and cylinders, the themial response quantities are assumed to be periodic in the surface

coordinates.

2. MATHEMATICAL FORMULATION

Figure I shows the geometric characteristics of multilayered plates and cylinders as

follows: L, = the length of the plate (or cylinder) in the x, direction; h = total thickness of the

plate (or cylinder); r0 = the radius of the middle surface of the cylinder; and L2 = the length of tlhe

plate in the x2 direction (21rr,, for the cylinder). The dimensionless coordinates ,1 , 2 are

introduced, where

xl

2 (2)

and X3  (3)

where X= for plates and I + 3 for cylinders; and X3  r-r, for cylinders.
ro ,

2.1 Basic Assumptions

The computational models are based on the following assumptions:

1. Each layer is considered as a homogeneous anisotropic material with the effective

thermal characteristics obtained using micromechanics equations (see, for example, Refs. 5 and

4I



6).

2. Heat transfer coefficients and thermal characteristics of all layers are independent of

tempe ratu ire.

3. Perfect thennal contact exists between layers (i.e., the temperature and the normal flux

component are continuous at layer interfaces).

4. No heat flux is generated at the internal surfaces.

5. The themial response is governed by two sets of equations, namely, the heat flow

balance equation and the generalized Fourier's law of heat conduction. These equations are

given subsequently for multilayered anisotropic plates and cylinders.

2.2 Governing Equations for Individual Layers

The governing three-dimensional equations for each layer of the plate (or shell) can be

written in the following form (see, for example, Refs. 21 and 22):

a) I leat Flow Balance

;)I(h +0(212 + I d(t Q (4)

and

b) Generalized Fourier's Law

rk11  Fk12 Ik13ir oT~
(12f k K 2 fk 23  () 2 T (5)
L Lsyrnm k 33 _L43 TJ

or, tile inverse relations

RI, R12 JlR3l(11

()3 TJ Lsyrrm R3 q3J

where tli (i= Ito 3) are the flux components in the xi coordinate directions; T is the temperature.

kit =kti (i,t= I to 3) are the thermal conductivity coefficients of the material of tile layer; R, are the

thermal resistivity coefficients; Q is tile internal heat generation per unit volume; ) - lx,, andi

I--0 and I for orthotropic and anisotropic layers, resprectivcly.
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Equations 4 and 6 are the stationary conditions of the following two-field functional:

-t(li,T) f [qi 0iT+ - qi R, + QT dxI dx 2 dx3 (7)
v

X11where 0i= ) (i = I to 3), and a repeated index i or t in the same term denotes summation over

its full range (I to 3).

2.3 Reduction to a Two-Dimensional Problem

In the present study, the reduction of the three-dimensional heat conduction problem

described in Eqs. 4 and 5 (or 6) to a two-dimensional problem is accomplished by assuming a

linear temperature variation in the thickness coordinate; and replacing the laminated plate (or

shell) by an equivalent single-layer plate (or shell). The governing equations of the reutl ing

first-order heat conduction theory are obtained by integrating Eqs. 4 and 5 in the thickne,s

direction. Blcause of the discontinuity of the thermil conductivity coefficients, the integralion i,

perlormed layer-by-klyer. The findamental equations of tlie first-order heat con(luction iheorv

er given in the Appendix.

3. PREDICTOR-CORRECTOR PROCEDURE

3.1 Basic Idea of the Procedure

The predictor-corrector procedure used in the present study is an iterational process in

which the themia! response obtained in the first (predictor) phase of the analysis is ued to

correct the temperature distribution and, hence, improve the response predictions. Numerical

experiments have shown that only one or two iterations are needed (in the corrector phase) to

obtain highly accurate response predictions. The application of' the procedure to multiLayered

composite plates and shells is described subseqjently. The superscript o refers to the predictions

of (lie first-order heat coMducition theory; and a bar (-) over a symbol refers to the thcrnull Irc

spMse quantities obtained by using three-dimensional cquatiops.

3.2 Predictor Phase

The first-order theory outlined in the previous section is used to evalnat ti 0hr0u1gh-ihC-

thickness telil)perattLire, 'I', :a1dI Flux co' nell' C s (1'1 and Tq'. Then the flux colipomcln l (It hv
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integrating Eqs. I in the thickness direction as follows:

x3

q. --- -- f X 1q + o"22 Q) dx 3 +cl (C)

The temperature distribution in the thickness direction, T, is obtained by integrating the

third equation of Eqs. 3 as follows:

r= f [0 (R3q? + R 23 q) + R 3 3q]dx 3 +CT (+)
-h/2

In Eqs. 8 and 9, cq and CT are integration constants obtained from the conditions at the outer

sunr'aces of the laminate.

Note that because of the discontinuity of q, and q2 at layer interfaces, the integrations in

Eqs. 8 and 9 are performed in a piecewise manner (layer by layer).

3.3 Corrector Phase

The calculation of the corrected themial response of the plate (or shell) may be con-

veniently divided into three steps: namely, 1) generation of coordinate (basis) temperature

functions; 2) computation of amplitudes of the coordinate functions, and 3) evaluation of the

corrected through-the-thickness flux components using three-dimensional continuum equations.

The first two steps are described subsequently.

1. Generation of Coordinate (Basis) Temperature Functions. The temperature T is

decomposed into symmetric and antisymmetric functions of the thickness coordinate x3. Each of

the symmetric and antisymmetric functions is further subdivided into an initial and correction

function. The initial functions are associated with the temperature distribution T0 , obtained in the

predictor phase. The correction functions are nonlinear functions in x-, and are associated with

the difference T -' " . Since the initial functions satisfy the temperature boundary conditions at

the outer surfaces of the plate (or shell), the correction functions vanish on these surfaces.

2. Conmpurarioi of' the AnqIitmles of the Coordinate Functions. The resultirg four

symmetric/at isynimelric functions associatcd with the temperature are now chosen as coor-

7



dinate (or basis functions), and the temperature is expressed as a linear combination of the four

functions, with unknown parameters (representing the amplitudes of the coordinate functions (or

temperature modes). The four unknown parameters are obtained by using a direct variational

procedure.

Note that further improvement can be obtained by performing additional correction steps.

This is accomplished by replacing T, q' and q" in Eqs. 8 and 9 by the response quantities

obtained in the preceding corrector step and repeating the corrector phase.

4. NUMERICAL STUDIES

To assess the accuracy and effectiveness of the predictor-corrector computational proce-

dure, a large number of heat-conduction problems of multilayered composite plates and cylinders

have been solved by these techniques. The composite plates considered in the present study are

square laminates with L, =L 2 =1.0, and have antisymmetric lamination with respect to the middle

plane. The composite cylinders considered are closed circular cylinders with orthotropic layers,

and with L, =r,, =1.0. The fibers of the different layers alternate between the circumferential and

longitudinal directions, with the fibers of the top layers running in the circumferential direction.

The temperature boundary conditions at the top and bottom surfaces, as well as the thermal

response, are periodic in x, and x2 with periods 2L1 and 2L 2 for plates (2L1 and L2 for

cylinders).

For both the plates and the cylinders, the x3 coordinate is a principal material direction.

More,'wer, for the antisymmetrically laminated plates, the thermal conductivity coefficients for a

pair of layers j* and j which are symmetrically situated with respect to the middle plane satisfy

the following relations:

k(i'- )  (i=l to 3 and i is not summed)

Sk(') = 0 (cc= 1,2) (I0)

12 12

with similar relations for the thennal resistivity coefficients.

Equations 10 are satisfied for angle-ply antisymmetric laminates, cross-ply symmetric
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laminates, and combinations of the two. In the case of symmetric or unsymmetric cross-ply

laminates, k12 --0 and the matrix of thermal conductivity coefficients is diagonal. The same is

true for the matrix of thermal resistivity coefficients.
I

The material characteristics of the individual layers are taken to be those typical o high-

modulus fibrous composites, namely:

kLL=5.0 , k-rr=0.5

where subscript L refers to the direction of fibers and subscript T refers to the transverse direc-

tion. For plates the symmetric and antisymmetric (in the thickness direction) components of the

temperature were assumed to be of the form:

T, sin n, sin 7t 2  1d (11)

Ta cos lr l cos r 2  (12)

where subscripts s and a refer to tile symmetric and antisyrnmetric components (in the thickness

direction). The values of 1Ts and T at the top surface of the plate are given by

T, = 250 and T,, = 50. Note that the trigonometric functions used in describing the surface

distributions of the symmetric and antisymmetric components of the temperature are different.

For cylinders, the temperature distribution was assumed to be of the form:

= cos t i cos 2tn 2 (13)

where T, = 300 and T = 200. Subscripts o and i refer to the outer (top) and inner (bottom)

surfaces of the cylinder, respectively. For each problem, the solutions obtained by the four

models described in Table I were compared with the analytic three-dimensional continum

solutions.

9



Table 1 - Characteristics of the models used in the numerical studies

Number of iterations in
Model Predictor Phase the corrector

1 First-order heat conduction theory 0
2 (based on assuming a linear temperature I
2A variation in the thickness coordinate) 2

2B 3

For plates, three parameters were varied, namely: the thickness ratio of the plate, h/L; the

number of layers, NL; and the fiber orientation angle of the individual layers, 0. The thickness

ratio was varied between 0.01 and 0.5; the number of layers was varied between 2 and 20; and 0

was varied between 0' and 45' . For cylinders, three parameters were varied, namelv: the

thickness ratio h/r,,; the number of layers, NL; and the circumferential wave number, n. The

longitudinal wave number was selected to be 1, and the length-to-radius ratio, L/r,, was selected

to be 1.0. The number of layers was varied between 2 and 20; h/r,, between 0.01 and 0.5, and n

between 0 and 10.

As a step towards establishing the range of validity of the predictor-corrector procedure

and the number of iterations required in the corrector phase, the thermal potential of the structure,I I
11 = f Rit qi qL dV (i,t = 1 to 3); was decomposed into two components: lI associated with

q, and q2; and 112 associated with q3 (112 = f R33 q3 q3 dV). The total thermal potential of

the structure 11 = 'll + 112. The assessment of the predictor-corrector procedure included both

the global thermal response characteristics, 11, 11, and I12, as well as detailed temperature and

flux (listribtltions in the thickness direction.

Typical results are given in Figs. 2, 3 and 4 for the ant'isymnmetrically laminated plates, and

in Figs. 5, 6 and 7 for the multilayered orthotropic cylinders. The effects of variation of the two

parameters, h/L1 , NL for plates (and h/Li and n for cylinders) on the them'al potential compo-

10



nents I and 12, obtained by the three-dimensional continuum model are depicted in Fig. 2

for plates and in Fig. 5 for cylinders.

An indication of the accuracy of the thermal potential components Fi t and F12, obtained by

the predictor-corrector procedure, is given in Figs. 3 and 6. Figures 4 and 7 give an indication of

the accuracy of the temperature and heat flux distributions in the thickness direction. In Fig. 4

both the symmetric and antisymmetric parts of the thermal response quantities (with respect to

the middle plane) are shown. Note that since the symmetric and antisymmetric components of

each thermal response quantity are multiplied by different trigonometric functions in x, and x2,

the value of the response quantity is a linear combination of the two components.

An examination of Figs. 2 to 7 reveals:

1. The ratio of the thermal potential component Hi /11 increases rapidly with the increase

in h/L1 from 0.01 tip to h/L1=0.1 for plates (and h/Ll from 0.01 to 0.15 for cylinders with 1 2).

The decrcase in Hi /rI is associated with a sharp decrease in I-2/H. Further increases in h/LI are

associated with a slow decrease in 1 /11 and a slow increase in 112/1- (see Figs. 2 and 5).

2. The ratios Hi/l-i and l12/-1 are somewhat insensitive to variations in tile number of

layers NL. For plates these ratios are also somewhat insensitive to the fiber orientation angle 0

(results not shown).

3. For antisymmetrically laminated plates, the accuracy of the predictions of the first-order

heat-conduction theory, Model 1, deteriorates rapidly as h/Li increases. This is true for both the

global as well as the detailed thermal response characteristics. For plates with NL=10, 0=45",

h/L 1=0. 1, the error in 1 predicted by Model I was 7.4% and increased to 165% for h/Ll=0.3 (see

Fig. 3).

4. The accuracy of the predictions of the first-order theory and its range of validity can be

significantly improved by using one or two iterations in the corrector phase, Models 2 and 2A.

even for very thick plates and shells. As an example to this, for plates with h/L1 =0.5, the error in

1I was 249%. The corresponding errors after one and two iterations in the corrector phase were

only 3.2% and 0.08%, respectively (see Fig. 3).

5. For orthotropic cylinders the accuracy of the predictions of Model I deterioriates

11



rapidly as the circumferential wave number, n, increases. As an example to this, for cylinders

with h/r0=0.5, NL=10, n=2, the error in 11 predicted by Model I was 220%, and increased to

378% for n=6. The use of one and two iterations in the corrector phase (Models 2 and 2A)

reduced the errors for n=6 to 9.8% and 0.64%, respectively (see Fig. 6).

6. The thickness distributions of temperature and flux components obtained by the

predictor-corrector approach are highly accurate. For plates and cylinders with h/Lj 5 0.5 and n

5, the distributions of the responsc quantities after two iterations (Model 2A) in the corrector

phase were almost indistinguishable from the exact three-dimensional solutions (see, for ex-

ample, Figs. 4 and 7).

7. Numerical experiments (not presented herein) have shown that the use of higher-order

heat conduction theories for multilayered composites based oil a global cubic variation, or

higher-degree polynomial approximation, for the temperature through the thickness results in

highly accurate temperature, as well as heat Ilux components qcl and t12. However, the transverse

heat flux component q3 obtained by these theories is not as accurate.

5. POTENTIAL OF THE PREDICTOR-CORRECTOR PROCEDURE

The predictor-corrector procedure appears to have high potential for the accurate predic-

tion of the thermal response of multilayered composite plates and shells. The numerical studies

conducted for antisymmetrically laminated anisotropic plates and simply supported orthotropic

cylinders demonstrated the accuracy and effectiveness of the predictor-corrector procedu, re. In

particular, the following two points are worth mentioning:

1. The predictor-corrector procedure can be applied, in conjunction with finite element

models, to the analysis of anisotropic plates and shells with arbitrary geometry. The calculation

of the heat flux component in the transverse direction, and the correction phase (including the

calculation of the transverse temperature distribution) can be performed on the element level for

selected elements (in the critical regions of the plate and shell, models).

2. Although any of the two-dimensional heat conduction models can be used in tle first

(predictor) phase of the predictor-corrector procedure, the first-order theory involves fewer

temperature parameters than higher-order theories.

12



6. CONCLUDING REMARKS

A study is made of a predictor-corrector procedure for the accurate determination of the

temperature and heat flux distribitions in thick multilayered composite plates and shells. A

first-order heat conduction theory, based on linear through-the-thickness temperature distribu-

tion, is used in the predictor phase. The functional dependence of temperature on the thickness

coordinate is then calculated a posteriori and used in the corrector phase.

Extensive numerical results are presented, for linear steady-state heat conduction

problems, showing the effects of variation in the geometric and lamination parameters on the

accuracy of the thernal response quantities obtained by the predictor-corrector approach. Both

antisymmetrically laminated anisotropic plates, and multilayered orthotropic cylinders are

considered. The solutions are assumed to be periodic in the surface coordinates, and for each

problem the standard of comparison is taken to be the analytic three-dimensional solution based

on treating each layer as a homogeneous anisotropic medium.

The numerical results clearly demonstrate the effectiveness of the predictor-corrector

procedures for the accurate determination of the global as well as detailed thermal response

characteristics of multilayered plates and shells. The accuracy of the response quantities ob-

tained in the first (predictor) phase for thick laminates (h/L _> 0.1) may be unacceptable.

However, the use of one or two iterations in the corrector phase improves the predictions sub-

stantially and results in highly accurate distributions of temperature and heat flux components

through the thickness.
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APPENDIX - FUNDAMENTAL EQUATIONS OF THE FIRST-ORDER
HEAT CONDUCTION THEORY USED IN THE PRESENT STUDY

The fundamental equations of the two-dimensional first-order heat conduction theory used

in the present study are given in this appendix.

Temperature Distribution

The temperature is assumed to have a linear variation in the thickness coordinate as follows:

T=T, +x3 T1  (14)

where T,, and T1 are functions of xt and x2.

Heat Balance Ejtuations

The two global heat balance equations can be written in terms of the integrated heat flux
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components as follows:

acx, S"' - Q(') + (),q 3) , = (Tt3)I 0 (15)"3 - ' '3 - -  -'

all ,qS2 - I Q(2) + (3.31:/
- 3' (X3 3  - (X3 Xq 3) = 0 (16)

=ii/2x- =-hI"2

where

SSqI) " J { X1 3  } dx 3  (17)

with Y() = Xand Y(2) = 1, CC = 1,2 and I = 1,2. Note that a repeated index aC in Eqs. 15 and 16

denotes summation over the range 1,2; and a is not summed in Eqs. 17.

Generalized Fourier's Law
Sm) _() '()I i) IS(1 -K',,), D11 T,) - 0)T, K( Oi')To

a€ ' "LI all p ,(18)

S 1) 0 T. 0 ) T, K (2) T (19)
-- P3 1 ,3 i 3 33 113

where

NL i

) = I f v() kit x 0- ) dx 3  (20)
j=l hj l

with V(i) = V(3) = f, v(2) = iiI4 ; J = 1,2,3; it : 1,2,3; and c,3 : 1,2. Note that a repeated

index 3 in Eqs. 18 and 19 denotes summation over the range 1,2; and it are not summed in Eqs.

20.

Governing !:qlualions

The two governing differential equations in the temperature functions T, and T, are ob-
tained by replacing the quantities S(') , S(1) in Eqs. 14 and 15 by their expressions in terms of

To and T, (Eqs. 19 and 20).

Trigonometric Functions for the Temperature and Integrated Heat Flux Components
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The temperature and integrated heat flux components are assumed in the present study to be

periodic in both the x1 and x2 directions with periods of 2L1 and 2L 2 for plates (and 2L 1 , L for

cylinders). The following products of trigonometric functions are used for the different rcsponse

quantities:

Antisymmetrically laminated plates:

To =Tomn sin m7r 1 sin nll 2  (21)

mn m ,  rn O
(T1 ,S~')) =(T 1 ~ SY)) c cos nnr4 2  (22)

(s<1), s!r,) -,, cossos(2(SVn Sn,) Ci,, n,-r, Co, 2 (23)

(si') S 2)) (S .in)n'1 sin rnin~1 COS nn 2  (24)

Multilayered orthotropic cylinders:

(To,T, 1) -(, YCnOns rn cos 2in 2  (25)

(s'), (2) " ) sin rnn , cos 2nn2 (2-6)

(I), S(2)) - M (~) ) Cos vmir, sin 2inn 2  (27)2 ' 2 nin' S(27)i

The governing equations can be reduced to a set of algebraic equations through the use of the

trigonometric functions, Eqs. 21 to 27. Note that the trigonometric functions, Eqs. 21 to 27,

provide exact solution for the governing differential equations of antisymmetrically laminated

plates and mnultilayered orthotropic cylinders.
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LIST OF FIGURES

Figure I - Laminated composite plates and cylinders used in the present study.

Figure 2 - Effect of thickness ratio, h/L1 , and number of layers, NL, on components of the

thermal potential obtained by three-dimensional continuum model. Antisymmetri-

cally laminated plates with prescribed surface temperatures T, sin t~l sin nt 2 and

T,, cos ntl cos t 2 . At the top surface Ts = 250, Ta= 50, 0=45".

Figure 3 - Effect of thickness ratio, h/L1 , on the accuracy of the total thermal potential, 1I, and

the thennal potential components, 1 , H2, obtained by the predictor-corrector proce-

dure. Antisymmetrically laminated plates with prescribed surface temperatures

T, sin 7j sill 7tE 2  and T, cos it l cos nt2. At the top surface

T, = 250, Ta = 50, 0=450, and NL=10.

Figure 4 - Accuracy of temperature and heat flux components obtained by predictor-corrector

procedures. Antisymmetrically laminated plates with prescribed surface temperatures

T,, sin irj sin 7r( 2  and T,, cos cos rt 2. At the top surface

T= 250, T,, = 50, 0=45", h/L1 =0.5, and NL=I0.

Figure 5 - Effect of thickness ratio, h/L1 , and circumferential wave number, n, on thermal

potential components, obtained by the three-dimensional continuum model. Multi-

layered composite cylinders with prescribed surface temperatures

. T,, ') cos 7[41cos 2Itn 2, T = T cos tl cos 2rn 2 ; T, = 300, T, = 200, L/r,

=1.0, NL=10.

Figure 6 - Effect of circumferential wave number, n, on the accuracy of the total potential, 11.

and thermal potential components, rlI , rl 2, obtained by the predictor-corrector

procedures. Multilayered composite cylinders with prescribed surface temperatures

T. = TO cos 7T cos 2nn 2, Tj =Tii cos rTl cos 2in2; T,,= 300, Tj= 200. L/r,,

=1.0, NL= 10, h/r,=0.5.



Figure 7 -Accuracy of temperature and heat flux components obtained by predictor-corrector

procedure. Multilayered composite cylinders with prescribed surface temperatures

T= T,, cos Tr~j cos 2RIrn 2 , T, =i cos 7rjcos 2in1 2 ; T0 300, T, = 200, Lir,,

=1 .0, h/r,,=0.5, NL= 10, and n= 1.
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